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Abstract

Deep learning methods have been shown to achieve excellent performance on

diagnostic tasks, but it is still an open challenge how to optimally combine them

with expert knowledge and existing clinical decision pathways. This question

is particularly important for the early detection of cancer, where high volume

workflows might benefit from (semi-)automated analysis. Here, we present a

deep learning framework to analyse samples of the Cytosponge R©-TFF3 test, a

minimally invasive alternative to endoscopy, for detecting Barrett esophagus,

the main precursor of esophageal adenocarcinoma. We trained and indepen-

dently validated the framework on data from two clinical trials, analysing a

combined total of 4,662 pathology slides from 2,331 patients. Our approach
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exploits decision patterns of gastrointestinal pathologists to define eight triage

classes of varying priority for manual expert review. By substituting manual

review with automated review in low-priority classes, we can reduce patholo-

gist workload by 57% while matching the diagnostic performance of experi-

enced pathologists.

Introduction

Early detection of cancer often leads to better survival (1), because pre-malignant lesions and

early stage tumors can be more effectively treated (2). Most pre-malignant lesions amenable to

early detection rely on targeted sampling and show only minor tissue changes on pathology as-

sessment (3–5). In addition, pathology procedures often involve laborious and time-consuming

steps which can lead to errors and adversely affect patient care (6). Recent developments in Ar-

tificial Intelligence (AI) have achieved excellent performance on diagnostic tasks (7–9). How-

ever, understanding how these techniques can be integrated into clinical workflows most effi-

ciently and to assess the actual benefits they bring remains a challenge. The design of a clinical

decision support system needs to balance its performance against workload reduction and po-

tential economic impact. Replacing pathologists entirely could lead to substantial workload re-

duction, but such an approach would only be viable if performance remains comparable to that

of human experts. Between a fully automated approach and the status quo of fully manual re-

view lies a semi-automated approach, which uses computational methods to triage patients and

only presents pathologists with equivocal cases. A semi-automated approach will not reduce

workload as much as a fully automated approach, but its performance benefits from existing ex-

pert knowledge and heuristics. Here we present such a semi-automated triage system using deep

learning for the detection of Barrett esophagus (BE), a precusor of esophageal adenocarcinoma

(EAC).
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Esophageal cancer is the sixth most common cause for cancer related deaths (10). Patients

usually present at an advanced stage with dysphagia and weight loss, and the 5-year overall

survival of EAC, one of two pathological subtypes, is 13% (11). EAC can arise from a pre-

cursor lesion called Barrett esophagus (12, 13), providing an effective starting point for early

detection. BE occurs in patients with Gastresophageal Reflux Disease (GERD), a digestive

disorder where acid and bile from the stomach return into the esophagus leading to heartburn

symptoms. In Western countries, 10 to 15% of the adult population are affected by GERD (14)

and, therefore, at an increased risk of having BE. The pathognomonic feature of BE is intestinal

metaplasia (IM), a process whereby the stratified squamous epithelial lining localized in the

lower esophagus is replaced with columnar epithelium containing goblet cells (15, 16). The

conventional diagnosis of BE requires an invasive endoscopic procedure of the upper gastroin-

testinal tract. However, there is no routine endoscopic screening of the GERD population and

thus the vast majority of BE patients are undiagnosed (14).

Cytosponge-TFF3 is a non-endoscopic, minimally invasive diagnostic test for BE (17–19).

It is a cell collection device consisting of a compressed sponge on a string inside a gelatin cap-

sule. The capsule is swallowed by the patient and the gelatin dissolves in the stomach, releasing

the sponge. The expanded sponge is withdrawn by the attached string, sampling superficial

epithelial cells from the top of the stomach, the esophagus, and the oropharynx (Figure 1a).

Therefore, the cellular composition of the sample is dominated by squamous cells, gastric

columnar epithelium, and respiratory epithelium as well as any IM cells, if present. Follow-

ing removal, the device is placed in a container with preservative solution and the sampled cells

are processed, embedded in paraffin and stained with Hematoxylin & Eosin (H&E) as well as

immunohistochemically stained with Trefoil Factor 3 (TFF3) (20). H&E stains allow the iden-

tification and quantification of cellular phenotypes, which is critical for quality control. TFF3

is over-expressed in mucin-producing goblet cells which are a key feature of BE. TFF3 also
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Figure 1: Cytosponge procedure, triage scheme and data summary. a The sponge samples epithelial
cells, which are stained with Hematoxylin & Eosin (H&E) and Trefoil Factor 3 (TFF3). b Convolutional
neural networks use H&E and TFF3 stains to identify relevant regions (columnar epithelium on H&E and
goblet cells on TFF3 stain). Tile-level results are aggregated into quality control and diagnostic classes.
c Quality and diagnostic classes are mapped to a conceptualised pathway for sample stratification (Pos =
Positive, Neg = Negative). d Overview of data used in this study. Percentages are shown for cases and
controls.
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functions as a protector of the mucosa from insults, stabilizes the mucus layer, and promotes

healing of the epithelium (21). TFF3 stains allow the identification and quantification of goblet

cells, which are indicative of IM. Therefore, TFF3 is the key diagnostic biomarker for BE (20).

The Cytosponge-TFF3 approach has profound and well-tested clinical significance. It of-

fers, with substantial clinical trial data underpinning its efficacy, a long-awaited diagnostic alter-

native to endoscopy (BEST1 (17), BEST2 (18), BEST3 (22)). The BEST3 study found that the

Cytosponge-TFF3 test had in excess of a 10-fold increase in detection of BE compared to usual

clinical care in which patients with heartburn receive medication and an endoscopy if deemed

necessary. This performance makes the Cytosponge a major advance in patient management.

The BEST3 study also concluded that the pathology assessment is a major bottleneck for scal-

ing the test to large patient populations. The analysis of Cytosponge-TFF3 pathology slides

is a very laborious process due to the large amount of sampled cellular material. It comprises

several time-consuming tasks such as assessing the amount of sampled material and checking

the presence of gastric-type columnar epithelium to confirm that the capsule reached the stom-

ach, followed by assessment for the presence of goblet cells indicative of BE. Staining patterns

of TFF3 can be complex and sometimes require double reporting (20). Though effective, the

laboriousness of this process gives rise to a major opportunity for a clinical decision support

system to improve analysis and scalability of the Cytosponge-TFF3 test.

Here, we use a deep learning approach for quality control and diagnosis of pathology slides

for the Cytosponge-TFF3 test (Figure 1b). We propose a triage-driven approach, which retains

diagnostic accuracy by leveraging the decision-making rules of expert gastrointestinal patholo-

gists (Figure 1c). We train, calibrate, and internally validate our approach on data of the BEST2

multi-centre clinical trial (18) and externally validate it in an independent cohort from the recent

BEST3 multi-centre trial (22) (Figure 1d). Additionally, we explore in a simulation study how

well our results generalise to more general populations.
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Results
Deep learning models achieve high performance for tile-level classifications

The first step of our approach is based on the tile-level detection of different classes of cells

relevant for quality control and diagnosis of BE. For model development and internal valida-

tion, we used 812 Cytosponge-TFF3 patient samples with paired pathology and endoscopy data

from the BEST2 clinical case-control study (18). Samples were randomly divided into train-

ing/development (n=100), calibration (n=187) and internal validation (n=525) sets (Figure 1d).

An additional independent dataset (n=1,519) from the BEST3 study was used for external vali-

dation of the developed approach.

Training sets of larger size did not improve tile-level accuracy (Figure 1). Training, cali-

bration, and validation sets were kept separate. Endoscopic as well as Cytosponge pathology

diagnoses were only unblinded after tile-wise tissue classification models were calibrated and

validated, respectively. All training slides were tessellated prior to training: For H&E we de-

rived 193,734 tiles from 100 slides and for TFF3 we derived 235,932 tiles from 100 slides (based

on the size of annotated areas, see Methods). All tiles were 200-by-200 µm and all labels were

taken from expert slide annotations.

For both quality control (H&E) and diagnostic (TFF3) tasks, we trained several state-of-the-

art networks (AlexNet (23), DenseNet-121 (24), Inception v3 (25), ResNet-18 (26), SqueezeNet (27),

and VGG-16 (28)) and evaluated their performance on the development datatset. Using indi-

vidual tiles, we compared tile-level precision and recall for classifying columnar epithelium

using the presence of gastric-type cells (on H&E) and positive goblet cells (on TFF3) (Ta-

ble 1, description in Methods): For gastric-type columnar epithelium, VGG-16, DenseNet and

Inception v3 achieved the highest recalls (0.950, 0.947, 0.940, respectively) with consistent pre-

cisions (0.843, 0.865, 0.857). For goblet cells, VGG-16, Inception v3, and ResNet-18 achieved
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the highest recalls (0.919, 0.919, 0.912) with consistent precisions (0.856, 0.856, 0.827). Sev-

eral examples of tile-level inference maps are shown in Figure 2a.

Saliency maps agree with pathologist criteria for classification of tissue tiles

To understand which characteristics of the tile images were relevant to our models’ classifica-

tions, we generated saliency maps using Gradient-weighted Class Activation Mapping (Grad-

CAM) (29). These maps highlight the local regions of an image most relevant to a model’s iden-

tification of a particular class. We generated saliency maps for classes in one H&E-based model

(VGG-16) and one TFF3-based model (VGG-16) (Figure 2b). For the gastric-type columnar ep-

ithelium class of the H&E-based model, the saliency maps highlight gastric cells by both the

linear organisation of their nuclei as well as the presence of a straight border between the cells

and the lumen. For the positive class of the TFF3-based model, we found that the saliency

maps highlighted the mucin-containing goblet cells that characterise IM with high precision.

In addition to the three representative examples in Figure 2b, we compared landmarks selected

by an experienced pathologist with tile images and respective saliency maps (Figure 2). The

saliency maps confirm that the models learned features are similar to those used by pathologists

to identify different tissue classes.

Fully automated approach shows suboptimal performance compared to experienced pathol-
ogists

Tile-level classifications were aggregated into patient-level classifications using tile counts above

thresholds determined by the specificity of experienced pathologists on the calibration cohort

(Methods, Table 2, Figure 4). We then performed Receiver Operating Characteristics (ROC)

analysis with matched Cytosponge pathology and endoscopy ground truth on the internal vali-

dation cohort (Figure 2c-e).

First, patient-level classifications were compared against the binary Cytosponge-TFF3 ground

7



c

a b

d e

0

Likelihood of positive goblet
cells on TFF3 using VGG-16

PositiveNegativePositive

Pathologist quality control Pathologist diagnosis
Negative

1 Low

Gradient visualisation of
class score using Grad-CAM

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

P
os
iti
ve
R
at
e

VGG-16 - AUC: 0.99 (CI: 0.97-0.99)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

P
os
iti
ve
R
at
e

VGG-16 - AUC: 0.97 (CI: 0.96-0.99)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

P
os
iti
ve
R
at
e

Pathologist
VGG-16 - AUC: 0.88 (CI: 0.86-0.91)
VGG-16 calibration point

High0

Likelihood of gland groups
on H&E using VGG-16

1

Tile image

H
&
E

C
ol
um
na
re
pi
th
.

H
&
E

Sq
ua
m
ou
s
ce
lls

TF
F3

G
ob
le
tc
el
ls

Saliency map

Automated quality control
vs. pathologist

Automated diagnosis
vs. pathologist

Automated diagnosis
vs. endoscopy

In
fe
re
nc
e
m
ap
s

C
el
lc
lo
ts
ec
tio
n

100 μm2 mm

Figure 2: Tile and patient-level classification of Cytosponge-TFF3 samples. a Examples of tile-
level inference maps. b Comparison of two tile images from H&E and one tile image from TFF3 with
their respective Grad-CAM saliency maps. Top: Columnar epithelium (H&E) of gastric type with clear
focus on columnar arrangement. Middle: Squamous cells (H&E) with distributed focus in saliency
map. Bottom: TFF3-positive goblet cells with localisation in saliency maps. Scale bar = 100 µm. c
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Centre lines in c to e represent ROC curves for entire internal validation cohort. Shaded areas show 95%
bootstrap confidence intervals.
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truth by the pathologist on the internal validation set. For quality control, VGG-16 ranked high-

est for detecting columnar epithelium in H&E stains (ROC-AUC: 0.99 (CI 95%: 0.98 - 0.99)).

For diagnosis, VGG-16 ranked highest for detecting goblet cells in TFF3 stains (ROC-AUC:

0.97 (CI 95%: 0.96 - 0.99), Figure 2d). Confidence intervals were derived by bootstrapping

(Methods). Results for all architectures are presented in table 3, and fig. 5a/b. In summary, for

both fully-automated quality control and diagnosis in comparison to Cytosponge-TFF3 pathol-

ogy ground truth, VGG-16 provided the highest performance, and SqueezeNet the lowest.

Next, patient-level classifications were compared to endoscopy ground truth for detecting

BE on the internal validation set (Methods). This ground truth was defined according to the

Prague criteria (Methods) with confirmed IM on endoscopy biopsies (30). To calculate sensi-

tivity and specificity for the fully automated method on the internal validation cohort, we used

operating points determined on the calibration cohort (Table 2). VGG-16 ranked highest for de-

tecting patients with BE from TFF3 stains (ROC-AUC: 0.88 (CI 95%: 0.85 - 0.91), Sensitivity:

72.62% (CI: 67.42% - 78.21%), Specificity: (93.13% (CI: 90.04% - 96.13%)), Figure 2e). For

comparison, the pathologists achieve a sensitivity of 81.7% (CI 95%: 77.4% - 86.5%) and a

specificity of 92.7% (CI 95%: 89.6% - 95.6%). Performances of all architectures are presented

in table 3, and fig. 5c. In summary, results for the fully automated approach on the internal

validation cohort showed a loss of sensitivity of 9.1% for BE detection when compared to an

experienced pathologist.

Triage-driven approach selects patients for manual review

We then explored whether a different modelling approach based on established decision path-

ways could boost performance. We developed a triage-driven, semi-automated approach as an

alternative to the fully automated approach described above. Both approaches use the same

patient-level aggregations as input, but their outputs are different: the fully automated approach
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tries to directly mimic pathology assessment by classifying patients as positive or negative for

BE. In contrast, the triage approach defines different quality and diagnostic confidence classes

to select challenging patient samples for manual review. Although it cannot reduce workload as

much as a fully automated approach, a triage approach keeps sample stratification more inter-

pretable and transparent.

We first selected deep learning architectures and defined cut-offs for different quality and

diagnostic confidence classes based on thresholds determined by three expert observers on the

calibration cohort (Figure 6, Methods). For quality control confidence classes, pathologists
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conclude that the sponge reached the stomach if they observe columnar epithelial groups (18,

20). We encoded these subjective metrics in a quantitative scheme where the number of tiles

detected with gastric-type columnar epithelium on H&E were classified as no confidence, low

confidence, or high confidence (Figure 6a, Table 4). For diagnostic confidence classes, the

number of tiles detected with TFF3-positive goblet cells were classified as high confidence

negative, low confidence equivocal, or high confidence positive (Figure 6b, Table 4). On the

internal validation cohort, we observed a visual agreement between these confidence classes

and pathology and endoscopy ground truths (Figure 3, Table 5).

We then combined the quality and diagnostic classes into eight triage classes of varying

priority for manual review (Figure 4a). The relative priority of each class was determined by

experienced pathologists: Cases with low confidence in sample quality (none or few colum-

nar epithelium detected on H&E) or low confidence in diagnosis (few goblet cells detected on

TFF3) should be prioritised for human expert assessment over cases with high-confidence pos-

itive or negative evidence. In our internal validation cohort, we find that only 13.0% of patients

fall into the triage classes with high priority (4 and 5), while 87.0% fall into the other six classes

(Figure 4a).

We next asked which classes can be substituted by automated review while retaining the

accuracy of full manual review by a human pathologist (sensitivity: 81.7%; specificity: 92.7%).

We applied two different cumulative substitution schemes based on whether high-confidence

negative or high-confidence positive cases were automated first. We started by substituting

class 1 (high confidence negative) with automated review, then classes 1 and 2, then classes 1,

2, and 3, and so on. In the validation cohort, we found that sensitivity and specificity remain

stable if classes 1, 2, and 3 are substituted, but decrease with the substitution of class 4, 5,

and 6 (Figure 4b). Repeating this procedure starting with class 8 (high confidence positive)

shows that sensitivity and specificity are stable if classes 8 or 7 are substituted, but decrease
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a drop of performance at substitution stage.

12



with the substitution of classes 6, 5, and 4 (Figure 4c). These results show that five of the eight

classes (1, 2, 3, 7, 8) can be substituted by automated review while three classes (4, 5, 6) should

be reviewed by a pathologist. This substitution scheme would result in similar performance

(sensitivity: 82.5% (CI 95%: 77.3% - 87.2%); specificity: 92.7% (CI 95%: 89.6% - 95.9%)) as

fully manual review by a pathologist. Unequivocal classes cover the majority of patients (66.3%

(CI 95%: 62.7% - 70.1%) in validation cohort) and triage-driven, semi-automated review would

thus save 66% of the pathologists’ workload (Methods) by enabling them to focus on equivocal

cases while leaving unequivocal cases for automated review.

Simulation of varying cohort composition corroborates reduction in expected workload

Our case-control cohort is not representative of a real-world population eligible for Cytosponge-

TFF3 testing. In our internal validation set we had a disease prevalence of 50.0%, while the

prevalence expected in a real-world population with GERD symptoms ranges from 3.0% to

7.5% (17, 31–33). Additionally, the allocation of samples to triage classes depends directly on

the amount of sampled cellular material and the resulting sample confidence, which can vary

widely and might improve with future refinements of the device administration procedure.

To understand how our results generalize, we devised a simulation approach to vary how

many samples have BE and how many samples are allocated to high/low confidence triage

classes (Methods). To simulate the change in workload over a range of possible prevalences

of BE, we first determined the proportion of patients with and without BE in each triage class

and then weighted each vector of proportions by a new prevalence ranging from 0 to 55%. To

simulate the effect that relative changes in overall sample confidence have on the workload,

we first determined the proportion of patients in triage classes with highest sample confidence

(determined by quality control and diagnostic class: 2 and 8) and lower sample confidence (1,

3, 4, 5, 6, and 7). We then modified the proportion of high confidence samples and inversely
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adapted the proportion of lower confidence samples within a range from -25% to 25%.

Over a fine grid of varying disease prevalence and changes in sample confidence, we ob-

served a negative impact of decreasing cohort BE prevalence and a positive impact of sample

confidence on the potential workload reduction (Figure 5a). According to this simulation, in

a realistic cohort with a BE prevalence of 7%, we would still be able to reduce the pathology

workload by 57%. In order to retain the same workload reduction we observed in the validation

cohort, the proportion of samples with high confidence in a realistic cohort would need to be

increased by 15%.
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External validation of triage-driven approach

Finally, we tested the validity of our results and the extrapolation in the simulation study in an

independent test set of 3038 slides from 1519 patients from from 109 primary care sites in the

UK (BEST3 trial) (22). All slides were processed in the same way and with the same model pa-

rameters as the BEST2 validation cohort (fig. 7, table 6). Following the method described in the

previous section, we used manual pathologist reviews for samples that fell into triage classes 4,

5 and 6. In the BEST3 trial, endoscopy data was only available for positive Cytosponge patients

and those who had BE diagnosed at follow-up as a result of standard of care. In addition, the

trial was not designed to investigate sensitivity or specificity but positive predictive value (PPV)

instead. We also calculated the negative predictive value (NPV) based on findings aggregated

through the primary endpoint analysis (coded BE diagnosis in patient records). For this external

validation cohort, fully manual review by pathologists resulted in a PPV of 56.08% and NPV of

99.02%. After application of the triage-driven, semi-automated approach the PPV of the overall

cohort was 53.37% and the NPV 99.39% (fig. 7). For comparison, we estimated the PPV and

NPV corresponding to a prevalence of 7.8% given the sensitivity and specificity observed in

the internal validation cohort for the triage-driven approach. The PPV was 48.88% (CI 95%:

39.76% - 61.45%) and the NPV was 98.43% (CI 95%: 98.02% - 98.82%), which are indeed

comparable with the results observed in the external validation cohort.

Based on the external validation performance, using the triage-driven approach in a realistic

primary care setting would have resulted in the following key results: In total 872 patients out of

1519 patients (57.41%) would have been reviewed automatically while 42.59% would have had

to be reviewed manually. This agrees with the expected value of workload reduction given the

prevalence (7.8%) of BE in this external validation cohort, which our simulation sets at 57.2%

(fig. 5). Six additional patients would have been diagnosed with BE while being missed by

the pathologist at the cost of 19 additional endoscopies when compared to fully manual review.
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One patient would have received an automated negative diagnosis even though the pathologist

scored it as positive with BE finding at endoscopy.

Discussion

We have presented a triage-driven approach that analyses samples of the Cytosponge-TFF3 test

using deep learning for the detection of Barrett esophagus, a precusor of EAC. Our approach

combines quality control and diagnostic metrics of pathology slides to stratify patients into 8

triage classes which determine whether a patient sample requires manual or if automated review

would suffice.

Our work builds on a previous body of literature that shows that deep learning can be applied

on pathology images to predict diagnosis (34, 35), survival (36–38), pathology subtype (39),

or genotype (40–42). Like the majority of these studies, our framework relies on standard

CNN architectures. However, we propose a human-in-the-loop triaging approach in which

difficult cases are shown to the pathologist, inspired by promising, recent human-AI cooperation

results (43–47).

For the analysis of Cytosponge-TFF3 samples, the triaging approach has several benefits:

We are able to substantially reduce workload and match the sensitivity and specificity of ex-

perienced pathologists. In our internal validation cohort, fully manual review by a pathologist

achieves 81.7% sensitivity and 92.7% specificity. In a fully automated approach, we observed

a sensitivity of 72.6% and a specificity of 93.1%. With our triage-driven approach, we demon-

strate that up to 66% of cases can be reviewed automatically while achieving a sensitivity of

82.5% and specificity of 92.7%, a performance marginally superior to fully manual review by

pathologists. Further, in an external validation cohort from a large randomised controlled trial

we observed a PPV of 53.37% and NPV of 99.39%. For comparison, pathologist review re-

sulted in very similar values with a PPV of 56.08% and NPV of 99.02%. While a small number

16



of additional endoscopies would have been triggered, they would have also yielded more posi-

tive diagnoses. In this more realistic cohort, 57.41% workload for the pathologists would have

been reduced. These results (Figure 5) have several implications: First, a fully automated re-

view would reduce sensitivity (at fixed specificity) and therefore suffer from a loss of clinical

utility when compared to the proposed triage-driven, semi-automated approach. Second, while

a triage-driven approach is not able to reduce workload as much as a fully automated approach,

the described triage classes provide a logical way for stage-wise clinical adoption and perfor-

mance testing in routine practice.

Another benefit of our approach is that we were able to directly adopt heuristics applied

by pathologists familiar with Cytosponge-TFF3 samples in our algorithmic design process.

As a result, our approach demonstrates traceability and interpretability (8): First, we mim-

icked the screening process of samples observed by experienced pathologists by replicating

their decision-making scheme (Figure 1c). Second, the saliency maps we generated from deep

learning models to visualize learned features in the pathology images show strong agreement

with manual landmarks placed by pathologists (Figure 2). Additionally, Grad-CAM provides

a level of transparency for pathologists to be reassured that the classifications are not based on

spurious morphological characteristics such as overstaining or stained spots in areas without

appropriate tissue context.

Next, a quantitative analysis of workload reduction across varying disease prevalences and

sample confidences shows that our approach is expected to generalize well to a real-world pop-

ulation. A more general population would have a lower disease prevalence than a case-control

study, which would cause a larger workload due to the distribution of BE/non-BE patients within

the individual triage classes. We were further able to confirm this simulation with an external

validation cohort. These findings provide realistic expectations of how clinical decision-making

systems are affected by bias in cohort composition.
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Finally, the clinical context of the application of the Cytosponge-TFF3 technology has to be

considered for interpretation of model and pathologist performances. A number of Cytosponge-

TFF3 tests are false positives due to the presence of IM and the gastro-oesophageal junction

or gastric IM (22). Given the classification of gastric IM as a premalignant condition and

recent updates to screening guidelines for patients with extensive gastric IM, these are clinically

relevant findings but not considered in this work due to lack of consistent ground truth for this

endpoint. Furthermore, given the number of endoscopies with clinically insignificant findings,

we envisage that the application of the Cytosponge will lead to overall reduction of workload

depending on the target population of patients. Whereas targeted screening would result in

additional endoscopies, triaging as part of referrals from primary care would lead to a reduction

of unnecessary endoscopies. The resulting increase or reduction indeed needs to be balanced

against further reduction enabled through this work.

More generally, the triage-driven approach could be applied beyond the Cytosponge to a

number of tests such as fine needle aspirations for (sentinel) lymph nodes, pancreatic cancer,

thyroid cancer or salivary gland malignancies. Furthermore, combined quality and diagnostic

criteria also apply to bronchoalveolar lavages or biopsies from gastrointestinal stromal tumors.

Our approach has several limitations: First, with data from 11 hospitals and more than 100

primary care practices across the UK, including 3 different scanner types, our data set captures

all major sources of heterogeneity present in Cytosponge samples. However, slides were sec-

tioned and stained centrally, so the data set does not capture these sources of variation (48). We

compensated for this limitation through data augmentation by spatial and color profile distor-

tion. The centralised processing of Cytosponge samples is similar to other widely used tech-

nologies (49,50). In future work, we plan to test whether the superiority of the triage-driven ap-

proach over fully manual pathologist review will generalize by incorporating multi-centre data

from ongoing and future Cytosponge-TFF3 studies to evaluate this effect more extensively. It
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should also be considered whether the preparation of serial H&E and TFF3 sections with sub-

sequent alignment could potentially improve the recall for columnar epithelium classifications.

Second, the underlying machine learning model could be further optimized. For example,

instead of using a transfer learning model based on pre-training with a primary dataset, we

could train a model from scratch, which has been proven to improve results in some CNN ap-

plications (51). In addition, the tile size needs further investigation because it determines the

receptive field in which the CNNs build feature representations of images. Although good per-

formance was observed, a refined multi-scale classification with several magnifications might

be necessary to achieve better classification of tissue types. Further improvements might be

realised from using attention-based models to reduce the laborious annotation steps required

for expanding the training data (52) or aggregating tiles to patient level with more sophisticated

approaches based on sequence models (34).

Third, a major determinant of workload reduction is the quality and therefore diagnostic

confidence attributed to a sample. However, what determines the amount of columnar mate-

rial sampled is unknown. One hypothesis is that the strength of esophageal peristalsis, which

can be influenced by variations in device ingestion, may be associated with the likelihood of

the Cytosponge reaching the stomach. We plan to investigate determinants of sample quality

by comparing the data generated by the trained deep learning models with patient and device

administrator profiles.

In summary, our triage approach differs from previous applications of deep learning to medi-

cal images (7,34) which used fully automated approaches on extremely large datasets. We show

that for a modest dataset size, leveraging existing heuristics of pathologist decision-making in a

triage-based approach is a powerful alternative to fully automated classification models, which

generalises well to an independent validation cohort. These results lay the foundation for tai-

lored, semi-automated decision support systems embedded in clinical workflows.
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Methods

Study design and dataset

The multicentre Barrett Esophagus Screening Trial 2 (BEST2) (18) case-control study (study

registration: ISRCTN12730505) investigates the automated analysis of Cytosponge-TFF3 sam-

ples as a secondary objective. Ethics approval was obtained from the East of England - Cam-

bridge Central Research Ethics Committee (number 10/H0308/71) and registered in the UK

Clinical Research Network Study Portfolio (9461). All patients provided informed consent for

use of their data in additional research. Enrolled patients underwent a Cytosponge procedure

followed by an endoscopy with biopsies where required. The objective of this work was the

comparison of: fully manual review of Cytosponge-TFF3 pathology slides by human experts,

fully automated review of Cytosponge-TFF3 pathology slides by a deep learning-based method,

and triage-driven, semi-automated review of Cytosponge-TFF3 pathology by a hybrid method

relying on deep learning methods and human experts.

812 patients were randomly selected from the entire BEST2 cohort (from 11 hospitals in

the UK) for digitisation of their respective H&E and TFF3 pathology slides (1624 in total) on

an Aperio AT2 digital whole-slide scanner (Leica Biosystems Nussloch GmbH, Germany) at

40x magnification. Cases until December 2013 were assessed by two independent researchers

and one expert pathologist (18). All remaining BEST2 cases were assessed by a team of 4

pathologists with consensus review if equivocal.

BEST2 patients were randomly partitioned into three distinct subsets: 100 patients for train-

ing/development (labels unblinded for training purposes), 187 patients for calibration (labels

unblinded for calibration), and 525 patients as an internal validation set (labels unblinded af-

ter validation). The distribution of patients with or without Barrett Esophagus (BE) for each

partition is shown in Figure 1d.
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For independent external validation we used data from the Barrett Esophagus Screening

Trial 3 (BEST3) (22) randomised controlled trial (study registration: ISRCTN68382401). Ethics

approval was obtained from the East of England - Cambridge Central Research Ethics Com-

mittee (number 16/EE/0546). All patients provided informed consent for use of their data in

additional research. Enrolled patients either were invited to a Cytosponge procedure or received

standard of care. Both arms were followed up after 8 to 18 months (weighted overall average of

approx. 12 months). Only patients who underwent a Cytosponge procedures or were referred

as part of usual care received an endoscopy. A patient was considered as positive for Barrett

esophagus if they either had a diagnosis at endoscopy or as a result of a coded search in records

from the primary care site.

1519 patients were randomly selected from the entire BEST3 cohort (from 109 primary care

sites in the UK) for digitisation of their respective H&E and TFF3 pathology slides (1638 in

total) on Hamamatsu S60 and S210 whole-slide scanners (Hamamatsu, Japan) at 40x magnifi-

cation. For each patient, the repeat test was used if one as performed due to inadquace of the

baseline test. Pathology assessment was conducted by a team of 4 pathologists with central

review of equivocal cases (22).

All BEST3 patients were processed using the fully automated and triage-driven, semi-

automated approach presented in this work. Labels were unblinded after validation.

Confidence intervals in this work were defined as the 2.5th and 97.5th percentiles on distri-

butions of 500 samples (with replacement) of the respective dataset size.

Additional information on consistency and structure of reporting can be found in the Life

Sciences Reporting Summary.
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Cytosponge-TFF3 procedure

The Cytosponge-TFF3 is a non-endoscopic diagnostic modality for BE. It is a cell collection

device, consisting of a mesh sphere on a string inside a gelatine capsule, coupled with an im-

munohistochemical biomarker called Trefoil Factor 3 (TFF3).

The capsule is swallowed by the patient, and passes to the stomach, where the gelatine dis-

solves allowing the mesh sphere to expand to a diameter of 3 cm. After 5 to 7.5 minutes, the

sponge is withdrawn from the stomach by the attached string, sampling superficial epithelial

cells from the top of the stomach, the esophagus, and the oropharynx. The removed device

is placed in a container with preservative solution (SurePath Preservative Fluid, BD) and pro-

cessed in a laboratory for histochemical (Hematoxylin & Eosin) and immunohistochemical

(TFF3) staining. The stained pathology slides are then screened by a pathologist. The primary

objective of the Cytosponge-TFF3 test is the detection of columnar epithelium of intestinal type

(with TFF3-positive goblet cells) in the squamous esophagus which is indicative of the patient

having BE. These TFF3-positive patients can then be referred for an upper gastrointestinal en-

doscopy to confirm the diagnosis. Previous studies (17–19) have shown a consistent sensitivity

(73.3% and 79.9%) and specificity (93.8% and 92.4%) for the diagnosis of BE using the Cy-

tosponge coupled with TFF3. In the context of this work, we define two distinct processes for

automation called ’quality control’ and ’diagnosis: Quality control refers to the fact that the

Cytosponge protocol requires that the sponge reaches the stomach. Only samples from sponges

that reached the stomach are of high enough quality for further analyses. Pathologists confirm

the quality of a sample by the presence of gastric columnar epithelium in the H&E stain. If the

amount of gastric columnar epithelium is insufficient, a retest of the patient is indicated. Ad-

ditionally, scoring the quality of a sample separately avoids false-positive TFF3 results caused

by respiratory epithelium. Diagnosis refers to the presence of positive goblet cells in the TFF3

stain. Positive goblet cells are indicative for the presence of intestinal metaplasia and there-
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fore potentially Barrett esophagus. TFF3 stains also need to be carefully assessed for equivocal

goblet cells or staining of respiraotry columnar epithelium which might result in false positives.

Endoscopy procedure

Esophago-gastroduodenoscopies were carried out by an endoscopist after the Cytosponge test.

BE was defined as endoscopically visible columnar-lined esophagus that measured at least 1 cm

circumferentially or at least 3 cm in non-circumferential tongues according to the Prague criteria

(≥C1 or≥M3 (53)). An additional criterion for BE was histopathological evidence of intestinal

metaplasia (IM) on at least one endoscopy biopsy. For cases with suspected BE, diagnostic

biopsies were collected following the recommended Seattle surveillance protocol (54). When

reviewing the biopsy data, all of the pathologists were blinded to the result of the Cytosponge-

TFF3 test.

Whole-slide image annotation for training

One H&E- and one TFF3-stained slide for each of the 100 BEST2 patients from the training set

were manually annotated and reviewed by an experienced pathologist (MO) using the ASAP

software (55). Pathology sections and derived whole-slide images for H&E and TFF3 were

non-serial with no alignment between them. Regions of interest (ROIs) were selected in the

digitised pathology slides at a magnification of 40x. Each of these ROIs was labeled with a class

for training. For the H&E-based quality control model, four different classes were identified:

gastric-type columnar epithelium, respiratory-type columnar epithelium, intestinal metaplasia,

and background (including other cellular material such as squamous cells and slide artefacts).

Gastric-type columnar epithelial cells were considered as the marker for quality control, as their

presence confirms that the Cytosponge has reached the stomach. For the TFF3-based diagnostic
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model, three classes were identified: TFF3-positive regions (darkly stained goblet cells), TFF3-

equivocal regions (regions of ambiguous staining that may be goblet cells), and background.

TFF3-positive cells were considered as the marker for the presence of IM, as they indicate that

the patient might have BE. All slides were annotated using the existing patient-level ground

truth data for comparison. We aimed for a representative fraction of available material on each

slide to be labelled.

Tesselation of whole-slide images for training

Tesselation, or tiling, of whole-slide images was performed in order to prepare data prior to

model training. A custom tiling method was developed to optimise the yield and coverage of

annotated cellular material in the images. Whereas packing problems of squares in polygons

can be neglected for large annotations, optimal coverage for tiles in combination with small

annotation sizes is not straightforward and requires a tailored solution. Annotations with an

area of 1.5 ∗ tile area or larger were cropped into tiles by taking the top-left coordinate of

the enveloping bounding box and iterating tiles along the x- and y-axis of the image. Tiles

with an intersection of less than 0.33 (for H&E) or 0.66 (for TFF3) with their corresponding

annotation were rejected. Annotations with an area smaller than 1.5 ∗ tile area were treated as

single examples and a tile was placed in the center-of-mass of the respective annotation. Tiles

with sufficient annotation coverage (determined by intersection) were extracted and labelled

according to the class of their parent annotation. For this work, a tile size of 400-by-400 pixels

(corresponding to 200-by-200 µm at a magnification of 40x) was selected in accordance with

sizes of relevant tissue features. The tile size choice was made by consensus of two experienced

pathologists given the size of the model-specific receptive fields and the prioritised structures

(i.e. columnar epithelium, goblet cells). Tiles were extracted from whole-slide images as JPEG

images with minimal compression.

24



Model training using deep learning

We implemented two different deep learning frameworks: one for performing quality control on

H&E-stained slides, and a second one for performing automated BE diagnosis from the TFF3-

stained slide images. Both deep learning frameworks for quality control and diagnosis were

created by comparative transfer learning of multiple convolutional neural network architec-

tures: AlexNet (23), DenseNet (24), Inception v3 (25), ResNet-18 (26), SqueezeNet (27), and

VGG-16 (28). All architectures were initialised with the best parameter set that was achieved

on the ImageNet competition. Training tile images were resized as required for the individual

architectures, resulting in a change of effective magnification from 22x to 30x. We then un-

froze all layers to enable fine-tuning of the entire network. For all models, training continued on

two NVIDIA GTX 1080Ti graphics cards for 25 epochs with an architecture-specific batch size

(ResNet-18: 128, VGG-16: 48, Inception v3: 48, AlexNet: 64, SqueezeNet: 256, DenseNet:

84) and a learning rate that decayed by a factor of 0.1 every 7 epochs. All models used cross-

entropy loss. To account for slight variations in the training data, random vertical/horizontal

flip, random rotation, and random color jitter (variation in hue, contrast, brightness, and satura-

tion) were introduced for data augmentation. Differences in tile class sizes were accounted for

by using a modified imbalanced dataset sampler, a function which oversamples from minority

classes and undersamples from majority classes. The parameter set of epoch with the highest

accuracy on the development subset was selected for further use. All models were trained us-

ing the PyTorch (version 1.0.1) deep learning framework (56). Important additional libraries

for development of associated code sci-kit learn (version 0.23.2), Shapely (version 1.7.1) and

matplotlib (version 3.3.1). Final model versions used a split of 85:15 patients for training and

development subset. We further investigated the effect of increased training set sizes by incre-

mentally increasing the training subset while fixing the development subset size (Figure 1).
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Evaluation of tile-level performance

In order to compare the performance of all six deep learning architectures, we calculated class-

specific performance in the quality control and diagnosis frameworks (Table 1). To obtain these

numbers, we selected the epochs with the best weighted accuracy score on the development sub-

set for each training run. We then calculated precision and recall of all four classes in the H&E-

based model and all three classes in the TFF3-based model in the selected epoch. The ground

truth for comparison of precision and recall was derived from extensive pathologist annotations.

For visual comparison, we also created 2D inference maps of samples which where classified as

positive or negative by a pathologist for quality control and diagnosis, respectively. Tile-level

results were not used to select architectures for the fully automated or semi-automated, triage-

driven approach. The best performing architectures according to relevant class precision and

recall on tile level for quality control and diagnosis were selected for saliency map generation.

Generation of saliency maps using Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM) class localisation maps are created

by visualising the gradients flowing into the final convolutional layer of the network, just before

the fully-connected layers (29). Since convolutional layers contain class-specific spatial infor-

mation from the input image which is lost in the fully connected layers, this is the optimal point

for map generation. Unlike conventional class-activation maps (CAMs), Grad-CAM has the

benefit of not requiring any modifications to the existing model architecture, nor does it require

any retraining of the model (29). In order to create the class-specific Grad-CAM localisation

map for class c, Lc
Grad-CAM, it is first necessary to compute the gradient ∂yc

∂Ak of the score yc for

class c with respect to the feature map Ak of the final convolutional layer (29). Once ∂yc

∂Ak has

been computed for each feature map k, these backward-flowing gradients are global-average-

pooled across the width and height of the network (indexed by i and j) to yield αc
k, the weights
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of neuron importance for each of the feature maps k (29):

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

αc
k, the neuron-importance weights for each feature map k, therefore estimate the salience

of each feature map to the prediction of class c (29). Finally, to get class c-specific Grad-CAM

localisation map Lc
Grad-CAM, we take the ReLU of the weighted sum of the feature maps Ak,

where each feature map k’s weight is αc
k (29):

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)
(1)

Note that the ReLU operation is used to retain only the features which have a positive

influence on the prediction of class c, and that the resulting localisation map will be the same

size as the feature maps of the last convolutional layer (29).

We generated saliency maps for both models trained on H&E and TFF3, respectively. The

target layer from the VGG-16 architecture was the last feature layer (no. 30) before several

stacked fully connected layers. Tiles were randomly selected from the development subset. For

qualitative comparison between saliency maps and manual landmarks, we asked one experi-

enced pathologist (MO) to highlight important areas. Areas highlighted by the pathologist pro-

vide a representation of features which a human observer uses for classification of tile images.

To investigate qualitative agreement of landmarks by the pathologist with generated saliency

maps, a side-by-side comparison of tile images and respective saliency maps was prepared

(Figure 2).

Model inference on calibration and validation cohorts

All six deep learning architectures trained separately for quality control and diagnosis tasks

were applied to pathology slides in the calibration and internal validation cohorts. Whole-
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slide images were tesselated on the fly as described above. Detection of tissue was achieved

by luminance thresholding of tile values in the LAB colour space. Tiles were forward-passed

through the trained deep learning architectures and softmax probabilities were aggregated for

each tile position.

Aggregation of classifications on tile level to the patient level

We explored two different aggregation approaches based on propagation of the individual tile-

level classifications to patient-level classifications for quality control and diagnosis: a fully au-

tomated approach which operates on the basis of a single operating point, and a semi-automated,

triage-driven approach which leverages two operating points. The model selection processes for

each of the two approaches were independent of each other. For the former approach, perfor-

mance was assessed using sensitivity and specificity; for the latter, performance was assessed

using an incremental substitution scheme with simultaneous analysis of sensitivity and speci-

ficity. For both approaches, tile-level probabilities had to be thresholded to obtain the number of

positive tiles per slide for quality control and diagnosis. In the following sections we describe

how tile-level probabilities were thresholded and how the operating points on the resulting num-

bers of positive tiles (quality control and diagnosis) were then calibrated and evaluated as part

of each approach.

Determination of tile-level probability thresholds

In order to generalise the tile-level probabilities to the number of positive tiles per patient,

we determined thresholds for each model and endpoint (quality control and diagnosis). The

probability threshold of individual tiles for quality control and diagnosis had to be determined,

then, the resulting number of positive tiles per threshold was assessed against the best ROC-

AUC on the calibration cohort (Figure 3, Table 2). This procedure was repeated across all deep
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learning architectures as part of the model selection process (Figures 3 to 5)

To achieve the best-performing threshold for individual tile probabilities and subsequent

aggregation, we iterated over a range of tile thresholds on a fine grid from 0 to 1 (in 0.005

steps and inclusive of 0.999, 0.9999, and 0.99999). For the quality control model on H&E,

the relevant class was gastric-type columnar epithelium. For the diagnosis model on TFF3, the

relevant class was TFF3-positive goblet cells.

In order to determine the resulting number of positive tiles per threshold, probability thresh-

olds for quality control were compared (ROC-AUC) to the pathologist ground truth of H&E

slide analysis. Probability thresholds for diagnosis were compared (ROC-AUC) to endoscopy

(confirmation of BE presence by endoscopist and IM on endoscopy biopsy by pathologist)

ground truth. This step was required to determine the optimal threshold for individual tile clas-

sification. This threshold was then used in the calibration and validation of the fully automated

and semi-automated, triage-driven model as described in the next section.

Calibration of fully automated model

All six deep learning architectures trained for quality control and diagnosis were applied to the

whole-slide images from the calibration cohort (see Model inference). The number of positive

tiles per sample for quality control and diagnosis was determined as described above. To de-

termine an adequate operating point for the fully automated patient-level model, ROC analysis

was performed on the number of detected tiles (quality control and diagnosis) per patient. On

the same set of patients, we calculated the performance by experienced pathologists. In order to

determine the ideal cut-off for number of detected tiles, we fixed the specificity of each model

to the performance of experienced pathologists on the calibration cohort. The resulting operat-

ing point was then chosen for validation of the fully automated model in the internal validation

cohort (Table 2). Patient-level thresholds which yielded the best sensitivity on the calibration
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cohort were used for evaluating all approaches on the validation cohorts. The best-performing

architecture (assessed by sensitivity) on the calibration cohort was considered the representa-

tive model for application on the validation cohorts. However, due to the simplicity of operating

point determination, the performance of all other architectures on the validation cohort was also

investigated.

Evaluation of fully automated model using ROC analysis

All six deep learning architectures trained for quality control and diagnosis were applied to the

whole-slide images from the internal validation cohort (see Model inference). The number of

positive tiles per sample for quality control and diagnosis was determined as described above.

Subsequently, the previously determined operating point (calibration) for each of the deep learn-

ing architectures was applied. The binary results were then compared against ground truth of

the quality control and diagnosis models. For quality control on H&E, the results were com-

pared to the ground truth of the pathologist who was reading the H&E slide of the Cytosponge

test. For diagnosis on TFF3, the results were compared with endoscopy ground truth (with

confirmation of BE presence by endoscopist and IM on endoscopy biopsy by pathologist). Sen-

sitivities and specificities on the internal validation cohort were calculated for all models with

an additional presentation of ROCs for visualisation (Table 3, Figure 5). For comparison with

other approaches, performance metrics of the architecture selected during calibration of the

fully automated model were used.

Calibration of triage-driven, semi-automated model

All six deep learning architectures trained for quality control and diagnosis were applied to the

whole-slide images from the calibration cohort (see Model inference). For calibration, only

the best model (according to ROC-AUC) was presented to three expert observers to determine
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operating points. The number of positive tiles per sample for quality control and diagnosis was

determined as described above (Figure 6). The objective of this approach was a more granular

classification of patients into three classes for quality control and diagnosis and subsequent

stratification by different class combinations. Therefore, two operating points were determined

for each model, instead of one.

All three observers were independently presented with the number of detected tiles and rel-

evant ground truth (Cytosponge pathology and endoscopy) for quality control and diagnosis

models. They were instructed to choose two operating points for each task: First, an operating

point which optimises sensitivity with a low number of false positives. Second, an operating

point which separates the intermediate region of the first and second operating point from sam-

ples with optimised specificity and a low number of false negatives. Consensus operating points

obtained by majority voting were then used for validation of the semi-automated, triage-driven

model (Table 5, Figure 6).

The two operating points for quality control and diagnosis resulted in three tiers per frame-

work and were labelled as follows: for quality control, samples above the first operating point

were to be considered as high confidence, samples between the first and second operating point

as low confidence, and samples below the second operating point as no confidence. For diagno-

sis, samples above the first operating point were to be considered as high confidence positive,

samples between the first and second operating points as low confidence equivocal, and samples

below the second operating point as high confidence negative. Eight triage classes (number 1

to 8) were composed by all possible combinations of quality control and diagnosis classes. The

combination (no confidence in quality and high confidence in diagnosis) is likely artifactual and

was therefore merged (with no confidence in quality and equivocal in diagnosis) to form triage

class 4. Three blinded expert observers then ranked all eight classes from lowest to highest

likelihood for patients having BE. They further assigned a qualitative rank for priority of man-
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ual review based on the subjective difficulty to review samples that are part of specific triage

classes. All three observers independently agreed on the class ranking.

Evaluation of triage-driven model on internal validation cohort

The triage-driven, semi-automated model was evaluated by applying a cumulative substitution

scheme on the internal validation cohort. The base scenario for all cumulative substitutions was

the performance of the pathologists on the entire internal validation cohort. At every substitu-

tion, the pathologists’ Cytosponge-TFF3 results were substituted with automated review in the

respective triage classes. Then, sensitivity, specificity, and proportion of patients substituted

with automated review were calculated and compared against the previous substitution steps.

The substitution scheme was applied starting from both ends of the triage class list. First, class

1 was substituted with automated review, then classes 1 and 2, then classes 1, 2, and 3, and so

on. Second, class 8 was substituted with automated review, then classes 8 and 7, then classes

8, 7, and 6, and so on. We then analysed the sensitivity and specificity curves for deviations

from their previous values for each step in both applications of the scheme. Classes which

caused a drop in sensitivity or specificity on substitution were considered as ‘equivocal’ and

we retained review by a pathologist for associated samples. For each of the equivocal classes

we then summed up the number of patients that fell into these classes and divided by the total

number of patient in the internal validation cohort. This ratio was to be considered as the po-

tential workload reduction which this substitution scheme could achieve without notable loss in

performance.

Simulation of cohort variation and impact on workload reduction

In order to assess workload reduction in cohorts with different compositions, we simulated the

distribution of patients within triage classes with varying BE prevalences and sample confi-
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dences. Let P be a set of all patients with two subsets: Q ⊆ P contains all patients with BE and

its complement R = P \ Q contains all patients without BE. We count the proportions of pa-

tients in each triage class in each of the sets P , Q, R as vectors cP , cQ and cR, respectively. Our

simulation consists in re-weighting these vectors to reflect different BE prevalences and sample

confidences. For each element of a range of BE prevalences (sprev = {0.00, 0.01, ..., 0.55}) we

multiply cQ by s ∈ sprev and cR by 1− s. At the same time, for each element of a range of rel-

ative sample confidences (tconf = {−0.25,−0.24, ..., 0.25}) we shift proportions of cP between

triage classes {1, 3, 4, 5, 6, 7} and {2, 8} by adding t ∈ tconf to one set of classes and subtracting

it from the other. Reduction of workload (W ) at every simulation step was defined as cP for

classes 4, 5, and 6 over classes 1, 2, 3, 7, and 8:

W =
cP4 + cP5 + cP6

cP1 + cP2 + cP3 + cP7 + cP8

Evaluation of triage-driven model on external validation cohort

The triage-driven, semi-automated model was further evaluated applying it with frozen model

parameters on the external validation cohort. Processing of images was performed as described

on the internal validation cohort above. The trial from the data originates was investigating

real-world implementation of the Cytosponge device technology. Therefore, endoscopy data

was only available for positive Cytosponge patients and those who had BE diagnosed at follow-

up as a result of standard of care. This resulted in a difference of available data as the study was

designed for PPV instead of sensitivity and specificity. The NPV was also calculated by using

aggregated findings from the primary trial endpoint. An analysis according to the presented

substitution scheme was additionally performed (fig. 7)
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Code availability

The source code of this work is freely available at a public repository:

https://github.com/markowetzlab/cytosponge-triage.

Data availability

The dataset is governed by data usage policies specified by the data controller (University of

Cambridge, Cancer Research UK). We are committed to complying with Cancer Research UK’s

Data Sharing and Preservation Policy. Whole-slide images used in this study will be available

for non-commercial research purposes upon approval by a Data Access Committee due to in-

stitutional requirements. Applications for data access should be directed to rcf29@cam.ac.uk.

Data derived from the raw images are freely available at a public repository:

https://github.com/markowetzlab/cytosponge-triage. The code and included

data enable replication of the results and figures in this manuscript.
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Extended Data Figure 1: Differential increase of training partition size for ResNet-18. Training subset
refers to the relative proportion of the training partition used in the model training phase. Development
subset refers to the relative proportion of the training partition used in the model development phase.
The peak development weighted recall (a) and precision (b) correspond to the best performing cohort for
each training run. The size of the development set was fixed at 15 patients. For each patient, an average
of 3,500 tiles was used. For both H&E and TFF3 no substantial increase in performance metrics could
be observed after a training subset size of 50 patients. Individual Cytosponge H&E sections are already
highly heterogeneous, which means that the value gained by increasing the size of the training dataset
is limited. We opted for retaining all the annotated data in the training set, to maximize the chances
of capturing the whole spectrum of data variability and therefore the robustness of the model. H&E
benefited more from an increased number of patients than the TFF3 model. This difference is associated
with the increased complexity of detecting different tissue morphologies on H&E vs. brown goblet cells
on TFF3. In TFF3 slides regions were extensively annotated by pathologists and this ground truth served
as a comparator for the recall provided in both figures.
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Extended Data Figure 2: Comparison of pathologist landmarks with saliency maps extracted from
VGG-16 architectures. Additional examples of saliency maps for Hematoxylin & Eosin stain (squa-
mous cells and columnar epithelium) and Trefoil factor 3 (positive goblet cells). Landmarks selected
by an experienced pathologist are shown as overlays with red borders on pathology tile images. For
all classes, there was visual agreement between highlighted areas by the pathologist and saliency map
activations.
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Extended Data Figure 3: Determination of probability thresholds in order to obtain number of
tiles. Both plots show the AUC-ROC for individual probability thresholds (after softmax) which are
used to decide whether a tile falls into the relevant class. (a) AUC-ROC for quality control (QC) ground
truth determined by the pathologist compared with number of tiles containing columnar epithelium at
individual probability thresholds. (b) AUC-ROC for diagnosis ground truth determined by the endoscopy
(with confirmed IM on pathology) compared with number of tiles containing positive goblet cells at
individual probability thresholds.
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Extended Data Figure 4: Performance of all deep learning architectures on the calibration cohort.
(a) ROC analysis of number of tiles containing columnnar epithelium on H&E compared with pathologist
ground truth from Cytosponge (b) ROC analysis of number of tiles containing positive goblet cells on
TFF3 compared with pathologist ground truth from Cytosponge (c) ROC analysis of number of tiles
containing positive goblet cells on TFF3 compared with endoscopy (with confirmed IM) ground truth. A
weak AUC dependency on architecture complexity can be observed.
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Extended Data Figure 5: Performance of all deep learning architectures on the internal validation
cohort. (a) ROC analysis of number of tiles containing columnnar epithelium on H&E compared with
pathologist ground truth from Cytosponge (b) ROC analysis of number of tiles containing positive goblet
cells on TFF3 compared with pathologist ground truth from Cytosponge (c) ROC analysis of number of
tiles containing positive goblet cells on TFF3 compared with endoscopy (with confirmed IM) ground
truth. As in the calibration cohort, a weak AUC dependency on architecture complexity can be observed.
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Extended Data Figure 6: Application of quality control and diagnostic confidence class scheme to
calibration cohort. The lines indicate operating points chosen by three different expert observers. a
Quality ground truth by pathologist from Cytosponge (top) compared with number of detected columnar
epithelium (CE) tiles on H&E detected by VGG-16 (bottom). For the first operating point, E#2 and E#3
agreed whereas E#1 selected a higher cut-off. Majority voting resulted in the lower cut-off being chosen.
For the second operating point, all thee observers (E#1, E#2, and E#3) agreed on the same threshold. The
line drawn by E#1 for the second operating point effectively resulted in the same operating point as E#2
and E#3. b Diagnosis ground truth by pathologist from Cytosponge (top), Endoscopy (with confirmed
IM on biopsy) ground truth (middle) compared with number of detected TFF3-positive tiles on TFF3
detected by ResNet-18 (bottom). For both the first and second operating points E#1, E#2, and E#3
agreed. The line drawn by E#3 for the second operating point effectively resulted in the same operating
point as E#1 and E#2.
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Extended Data Figure 7: Performance of semi-automated, triage-driven model on external valida-
tion cohort a Cumulative substitution scheme starting with fully manual review, followed by substitution
with automated review of class no. 1, then 1 and 2, etc. b Cumulative substitution scheme starting with
fully manual review, followed by substitution with automated review of class no. 8, then 8 and 7, etc.
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Supplementary Information

AlexNet DenseNet Inception ResNet SqueezeNet VGG
H&E

Overall accuracy 0.977 0.990 0.989 0.984 0.959 0.988
Precision

Background 0.999 0.999 0.999 0.999 0.999 0.999
CE (gastric type) 0.791 0.865 0.857 0.807 0.763 0.843

CE (respiratory type) 0.389 0.750 0.895 0.667 0.241 0.741
Intestinal Metaplasia 0.393 0.688 0.609 0.518 0.215 0.640

Recall
Background 0.984 0.995 0.996 0.991 0.963 0.995

CE (gastric type) 0.893 0.947 0.940 0.921 0.935 0.950
CE (respiratory type) 0.802 0.779 0.588 0.794 0.832 0.634
Intestinal Metaplasia 0.606 0.610 0.629 0.606 0.643 0.568
TFF3

Overall accuracy 0.996 0.999 0.998 0.998 0.999 0.998
Precision

Positive 0.752 0.903 0.856 0.827 0.589 0.856
Equivocal 0.233 0.513 0.533 0.385 0.133 0.404
Negative 1.000 1.000 1.000 1.000 1.000 1.000

Recall
Positive 0.912 0.890 0.919 0.912 0.897 0.919

Equivocal 0.465 0.465 0.372 0.465 0.767 0.442
Negative 0.997 1.000 1.000 0.999 0.991 0.999

Supplementary Table 1: Tile-level precision and recall for all classes from H&E and TFF3
models. This data is derived from the tiles in the development set. (DenseNet = DenseNet-121,
Inception = Inception v3, ResNet = ResNet-18, VGG = VGG-16). The highest value(s) per row
is/are highlighted in bold.
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AlexNet DenseNet Inception ResNet SqueezeNet VGG
Quality control
Probability threshold 0.97 0.96 0.995 0.96 0.85 0.99

AUC 0.985 0.984 0.986 0.986 0.980 0.988
Diagnosis
Probability threshold 0.9999 0.87 0.655 0.93 0.99999 0.93

AUC 0.80 0.82 0.83 0.83 0.80 0.83
Sensitivity at fixed

specificity (91.57%) 63.4% 62.5% 61.5% 63.5% 60.6% 64.4%

Tile number threshold 3 8 10 9 4 6

Supplementary Table 2: Individual probability threshold calibration with associated per-
formance based on differential ROC analysis for quality control and diagnosis. The AUC
for quality control relates to the performance on the calibration cohort at the given probability
threshold for individual tiles containing columnar epithelium on H&E. The AUC for diagnosis
relates to the performance on the calibration cohort at the given probability threshold for indi-
vidual tiles containing positive goblet cells on TFF3. Sensitivity is based on a fixed value of
specificity derived from the pathologist performance on the calibration cohort. The tile number
threshold is the resulting cut-off from the fixed specificity.
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AUC (CI 95%)
vs. pathologist

AUC (CI 95%)
vs. endoscopy

Sensitivity
(CI 95%)

Specificity

(CI 95%)
Quality control

AlexNet 0.98 (0.97-0.99) n/a n/a n/a
DenseNet 0.98 (0.97-0.99) n/a n/a n/a

Inception v3 0.98 (0.97-0.99) n/a n/a n/a
ResNet-18 0.97 (0.96-0.99) n/a n/a n/a

SqueezeNet 0.97 (0.95-0.98) n/a n/a n/a
VGG-16 0.99 (0.98-0.99) n/a n/a n/a

Diagnosis

Pathologist n/a n/a
81.75%

(76.67%-85.92%)
92.75%

(89.37%-95.51%)

AlexNet 0.96 (0.94-0.98) 0.86 (0.83-0.89)
72.24%

(66.98%-77.37%)
89.70%

(85.80%-92.97%)

DenseNet 0.97 (0.96-0.99) 0.89 (0.86-0.91)
70.34%

(64.84%-76.24%)
92.75%

(89.84%-95.85%)

Inception v3 0.97 (0.96-0.99) 0.88 (0.85-0.91)
69.96%

(64.71%-75.65%)
93.13%

(89.74%-96.03%)

ResNet-18 0.97 (0.95-0.98) 0.88 (0.85-0.91)
72.24%

(66.67%-77.18%)
91.22%

(87.72%-94.64%)

SqueezeNet 0.94 (0.92-0.96) 0.85 (0.82-0.88)
69.58%

(63.59%-74.54%)
92.37%

(88.85%-95.42%)

VGG-16 0.97 (0.96-0.99) 0.88 (0.85-0.91) 72.62%
(66.72%-77.64%)

93.13%
(89.75%-96.05%)

Supplementary Table 3: Performance of all architectures after application on the internal
validation cohort. Quality control models relied on pathologist calls on sample quality. Sen-
sitivities or specificities were not determined due to irrelevance in the fully automated model
approach. Diagnosis models relied on thresholds determined on the calibration cohort.
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Quality classes No confidence Low confidence High confidence
No. of patients 22 27 138

Proportion 11.8% 14.4% 73.8%
QC positive (path) 0 9 137
QC negative (path) 22 18 1

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 56 59 72

Proportion 30.0% 31.5% 38.5%
TFF3 positive (path) 1 10 71
TFF3 negative (path) 55 49 1

Barrett esophagus 12 26 66
No Barrett esophagus 44 33 6

Supplementary Table 4: Characteristics of patients in quality control and diagnosis classes
from calibration cohort. For each of the three quality control and diagnosis classes, the num-
ber of patients within the class and the paired ground truth is shown.

Quality classes No confidence Low confidence High confidence
No. of patients 55 116 354

Proportion 10.5% 22.1% 67.4
QC positive (path) 0 35 350
QC negative (path) 55 81 4

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 145 177 203

Proportion 27.6% 33.7% 38.7%
TFF3 positive (path) 4 33 197
TFF3 negative (path) 141 144 6

Barrett esophagus 18 61 184
No Barrett esophagus 127 116 19

Supplementary Table 5: Characteristics of patients in quality control and diagnosis classes
from internal validation cohort. For each of the three quality control and diagnosis classes,
the number of patients within the class and the paired ground truth is shown.
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Quality classes No confidence Low confidence High confidence
No. of patients 107 912 500

Proportion 7.1% 60.0% 32.9
QC positive (path) 38 733 350
QC negative (path) 69 179 4

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 747 646 126
Proportion 49.2% 42.5% 8.3%
TFF3 positive (path) 1 83 105
TFF3 negative (path) 746 563 21
Barrett esophagus 5 38 76
No Barrett esophagus 742 608 50

Supplementary Table 6: Characteristics of patients in quality control and diagnosis classes
from external validation cohort. For each of the three quality control and diagnosis classes,
the number of patients within the class and the paired ground truth is shown.
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