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Myelofibrosis (MF) and Essential Thrombocythemia (ET) are clonal disorders 
with driver mutations (JAK2, CALR, MPL), chronic inflammation and abnormalities 
in megakaryocyte development and platelet activation. The absence of the 3 
“driver” mutations identifies triple negative (TN) patients. Ruxolitinib (JAK1/2 
inhibitor) reduces splenomegaly and constitutional symptoms in MF. However, over 
50% of patients fail to achieve or lose the response over time (Tefferi et al, 2015; 
Vainchenker et al, 2018).  

Extracellular microvesicles (MVs) are size-heterogeneous small vesicles (100-
1000 nm) with pleiotropic effects on cell signalling including immunity and 
inflammation (Butler et al, 2018).  Megakaryocyte- and platelet-MVs are the most 
abundant in peripheral blood (PB). However, while the MVs production by 
megakaryocytes is based on a constitutive mechanism, only activated platelets can 
produce CD62P+ MVs (Flaumenhaft et al, 2009). High serum levels of MVs have 
been detected in MF and ET (Caivano et al, 2015; Zhang et al, 2017).  

Circulating MVs as biomarkers of disease/malignancy in MPNs is an open 
question. Here we investigated: 1) the profile of MVs in MF and ET; 2) whether MVs 
proportions could be related to severity of MF; 3) the role of inflammation on MVs 
frequency of MF; 4) the effects of ruxolitinib on MVs in MF. 

Firstly, we characterized the circulating megakaryocyte- and platelet-MVs 
frequency. Comparing patients and healthy donors (HD; Fig 1a, 1b), megakaryocyte-
MVs were significantly decreased in MF (p<0.001) and ET (p<0.001). By contrast, 
platelet-MVs were significantly increased in MF (p<0.01) and ET (p<0.001). 
Comparing patients groups, platelet-MVs were significantly increased in ET vs MF 
(p<0.01). No significant differences in megakaryocyte- and platelet-MVs distribution 
were observed between primary or post-PV/post-ET MF. According to mutation 
status (Fig 1c, 1d), the megakaryocyte-MVs of the JAK2(V617F)-(p<0.001)/CALR-
(p<0.01) mutated and TN (p<0.01) MF patients were significantly decreased as 
compared to HD. Conversely, the platelet-MVs were significantly increased in the 
JAK2(V617F)-(p<0.001)/CALR-(p<0.05) mutated MF patients only. Comparing the 
molecular subtypes, the platelet-MVs of the JAK2(V617F)-(p<0.05)/CALR-(p<0.05) 
mutated patients were significantly increased as compared with the TN 
counterparts. In ET patients (Supplementary Fig 2a, 2b), only the megakaryocyte-
MVs of the JAK2(V617F)-(p<0.05)/CALR-(p<0.05) mutated patients were significantly 
decreased as compared to HD. By contrast, the platelet-MVs were significantly 
increased in JAK2(V617F)-(p<0.001)/CALR-(p<0.01) mutated and TN patients (p<0.05). 
Comparing ET molecular subtypes, no significant differences were observed in 
megakaryocyte- and platelet-MVs.  

Secondly, we explored the circulating megakaryocyte- and platelet-MVs of MF 
patients according to the IPSS risk score. Intermediate-2/high IPSS risk patients 
showed a significant decrease in megakaryocyte-MVs along with a significant 
increase of platelets-MVs as compared to intermediate 1/low IPSS risk patients 



(p<0.05 and p<0.01, respectively) and HD (p<0.001) (Fig 1e, 1f). Comparing IPSS 
subgroups according to molecular subtypes and HD (Fig 1g, 1h), we observed that 
the megakaryocyte-MVs were significantly decreased in higher risk JAK2(V617F)-/CALR-
mutated patients (p<0.001, respectively). Concomitantly, the same group (higher 
risk JAK2(V617F)-/CALR-mutated patients) presented a higher percentage of platelet-
MVs (p<0.001, respectively), suggesting a disease-related specific pattern. 
Surprisingly, we found a positive correlation between the megakaryocyte-MVs 
percentages of MF and platelets count (r=0.45; p<0.001; Fig 2a), suggesting a role of 
circulating megakaryocyte-MVs as biomarker of thrombopoiesis. In addition, the 
percentages of megakaryocyte-MVs of MF were inversely related to splenomegaly 
(r=-0.39; p<0.01; Fig 2b), confirming that a high disease severity is associated with 
reduced circulating megakaryocyte-MVs. Of note, no correlation was found between 
platelet-MVs and platelets count or splenomegaly.   

Thirdly, despite plasma crucial pro-inflammatory cytokines, Thrombopoietin 
and soluble (s)P-selectin were increased in MF (Supplementary Table 4), only IL-6 
were inversely related with megakaryocyte-MVs percentages (r=-0.38; p<0.05; data 
not shown). We can therefore hypothesize that in MF IL-6 inhibits megakaryocyte-
MVs production and/or increases their clearance. Conversely, the percentages of 
the platelet-MVs were positively correlated with the Thrombopoietin and sP-
selectin levels confirming a platelet activation-based mechanism (r=0.51, p<0.01; 
r=0.36, p<0.05, respectively; data not shown). Consistently, Thrombopoietin-driven 
platelets activation has been previously described (Kojima et al, 1995). 

Finally, to investigate whether ruxolitinib therapy may affect circulating MVs, 
MF patients were studied before and after 6 months of therapy.  After 6 months, 12 
out of 27 (44%) patients were in spleen response. At baseline, the percentages of 
megakaryocyte-MVs were significantly decreased as compared with the HD 
counterparts (spleen responders/non-responders p<0.001, respectively), while 
platelet-MVs significantly increased (spleen responders/non-responders p<0.001, 
respectively) (Fig 2c, 2d). Importantly, non-responders showed a significantly lower 
median percentage of megakaryocyte-MVs as compared with the spleen responders 
counterparts (p<0.05) (Fig 2c). To further explore whether megakaryocyte-MVs 
proportion could be linked to ruxolitinib response, we performed a ROC analysis. A 
cut-off value of 19.95% of megakaryocyte-MVs was calculated with a specificity of 
80%/sensitivity of 72% and discriminated the non-responders (megakaryocyte-MVs 
< 19.95%). Ruxolitinib therapy, along with a significant decrease of platelet-MVs 
(p<0.01), promoted the release of megakaryocyte-MVs of spleen responders only 
(p<0.001) (Fig 2c, 2d), restoring the normal megakaryocyte- and platelet-MVs profile 
(Fig 2e).  

Interestingly, circulating monocyte- and endothelial-MVs (Supplementary Fig 
3a, 3b) were significantly increased in MF patients (p<0.05 and p<0.01, respectively). 
At baseline, monocyte- and endothelial-MVs were not significantly different 



between spleen responders and non-responders. Ruxolitinib therapy decreased the 
endothelial-MVs frequency in spleen responders only (p<0.05). A trend, albeit not 
statistically significant, toward a reduction of the monocyte-MVs was also observed 
in spleen responders. 

Overall, these results demonstrate that distinct abnormalities of circulating 
megakaryocyte- and platelet-MVs profile are associated to MF and ET and suggest 
that: 1) platelets activation and abnormal/defective megakaryocytopoiesis may 
contribute to the increased/decreased proportion of circulating platelet- and 
megakaryocyte-MVs, respectively; 2) the activated JAK/STAT pathway plays a role in 
MVs biogenesis/clearance and, ultimately, in communication between 
megakaryocytes/platelets and the other cells.  Additionally, circulating 
megakaryocyte-MVs may be considered a biomarker of thrombopoiesis in MF.  
Ruxolitinib therapy normalizes the profile of circulating MVs in spleen responders 
MF patients only by increasing the megakaryocyte-MVs and decreasing the platelet-
MVs. Importantly, a cut-off value of 19.95% of megakaryocyte-MVs discriminates 
spleen responders and non-responders, demonstrating that circulating 
megakaryocyte-MVs, as a liquid biopsy assay, may be used as potential tool to 
predict response to ruxolitinib therapy. Therefore, despite the need to be confirmed 
in a larger casistic, circulating megakaryocyte/platelet-MVs may have a tissue-
specific diagnostic and prognostic role in MF. 
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Legend to Figures: 

 
Fig 1. Circulating megakaryocyte- and platelet-MVs frequency of MF and ET 
patients. Megakaryocyte-MVs (MK-MVs; CD61+CD62P-) and platelet-MVs (PLT-MVs; 
CD61+CD62P+) of MF (n=61), ET (n=20) patients and HD (n=20) are shown in panels 
(a) and (b). Panels (c) and (d) show the frequency of MK- and PLT-MVs of MF 
patients according to mutation status (JAK2(V617F) n=38; CALR n=11; MPL n=6 and TN 
n=6) and HD (n=20). Panels (e) and (f) depict MK- and PLT-MVs frequency of MF 
patients according to IPSS risk (HR= intermediate 2/high IPSS risk (n=37); 
LR=intermediate 1/low IPSS risk (n=24)). Frequency of MK- and PLT-MVs of MF 
patients according to mutation status and IPSS risk is shown in panels (g) and (h) 
(JAK2(V617F)HR n=22; JAK2(V617F)LR n=16; CALR HR n=6; CALR LR n=5; MPL HR n=6 and 
TN HR n=3; TN LR n=3). In addition to individual data, median values and 
interquartile ranges are shown. (Kruskal-Wallis test; *p<0.05; **p<0.01; 
***p<0.001) 
 
 
 
 
 
Fig 2. (a, b) Correlation between circulating megakaryocyte-MVs frequency and 
platelets count or splenomegaly in MF patients.  Megakaryocyte-MVs (MK-MVs; 
CD61+CD62P-) percentages (a) positively correlates with platelets count and (b) 
negatively with splenomegaly (Spearman’s correlation test). (c, d, e) Circulating 
megakaryocyte- and platelet-MVs frequency of MF patients according to 
ruxolitinib therapy response. (c) and (d) show megakaryocyte-MVs (MK-MVs; 
CD61+CD62P-) and platelet-MVs (PLT-MVs; CD61+CD62P+) of HD (n=20), spleen 
responders (SR; n=12) and non-responder (NR; n=15) MF patients before (T0) and 
after 6 months ruxolitinib therapy (6M). In addition to individual data, median 
values and interquartile ranges are shown. (Kruskal-Wallis test; *p<0.05; **p<0.01; 
***p<0.001). (e) the MK- and PLT-MVs combined profile of HD, spleen responders 
and non-responders before and after 6 months ruxolitinib therapy is shown (mean ± 
SEM).  
 


