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Abstract

Research in chemistry increasingly requires interdisciplinary work prompted by,

among other things, advances in computing, machine learning, and artificial intelli-

gence. Everyone working with molecules, whether chemist or not, needs an under-

standing of the representation of molecules in a machine-readable format, as this is

central to computational chemistry. Four classes of representations are introduced:

string-, connection table-, feature based-, and computer learned-representations. Three

of the most significant representations are SMILES, InChI, and the MDL molfile, of

which SMILES was the first to successfully be used in conjunction with a variational

autoencoder to yield a continuous representation of molecules. This is noteworthy be-

cause a continuous representation allows for efficient navigation of the immensely large

chemical space of possible molecules. Since 2018, when the first model of this type

was published, considerable effort has been put into developing novel and improved
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methodologies. Most, if not all, researchers in the community make their work easily

accessible on GitHub, though discussion of computation time and domain of applica-

bility is often overlooked. Herein we present questions for consideration in future work

which we believe will make chemical variational autoencoders even more accessible.

Introduction

Representing chemical data in a concise and unambiguous way, understandable by both hu-

mans and machines, is not an easy task; this is particularly true for the representation of

molecules. While there are numerous methods of adequately representing small and ’simple’

organic molecules, significant complexity may arise when considering molecules with features

such as ring structures, non-standard valency/bonding, inorganic components, or symme-

try. These complexities may lead to issues such as representations being non-canonical (i.e.

multiple different representations for the same molecule), being non-unique/clashing (i.e.

multiple different molecules that are encoded into the same representation), assuming the

wrong number of implicit hydrogen-atoms, or failing to capture tautomerism. This can make

(sub)structure searching in databases difficult, and even result in representations that refer

to the wrong molecules. One way of elucidating the robustness of a representation is with

a so-called ’round-trip conversion experiment’ which tracks whether the conversion from

representation to structure and back is correct for a given molecule. As an example, one

could draw a molecule in ChemDraw, read it into ChemDoodle, and then check whether

the same structure is obtained when reading the ChemDoodle file back into ChemDraw.

Broadly speaking, molecules can be represented in a machine-readable format in four ways:

as a string; with a connection table; as a collection of features, e.g. a fingerprint or series of

physical descriptors; or most recently, with a computer-learned representation using machine

learning (ML).

As the problems that chemists tackle become increasingly complex, interdisciplinary work

also becomes more important, particularly between data scientists, with inherent greater ML
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understanding, and chemical engineers, system-level problem-solvers. A key component to

most computational chemistry is the choice of machine-readable molecular representation.

No representation is perfect for every circumstance, and the choice will depend on a variety

of factors, including: whether it should be human-reader friendly (e.g. labelling a molecule

in a report/spreadsheet), compatibility with other programs or algorithms (e.g. a ML model

requiring a numerical input), space constraints (e.g. when populating a database with mil-

lions of entries, requiring dozens of lines for a molfile instead of dozens of characters for a

SMILES string can quickly add up), and more.

Representing knowledge in a machine-readable format has become a ubiquitous task in

the sciences, and there are so many exciting developments within the chemistry community

that covering them all would be impossible in one review. This work deals almost exclusively

with the representation of small organic molecules, and how said representations can be fed

to ML models. An emphasis is placed on the chemical variational autoencoder (VAE) due

to this class of model being the first to showcase effective black-box generation of molec-

ular feature vectors. Reaction representation is briefly mentioned herein, though a more

complete description and analysis would require a review of its own. Similarly, discussions

of the representation of biological molecules, such as proteins (e.g. AlphaFold1) and other

macromolecules (e.g. HELM2), are also considered beyond the scope of this work.

It has been argued that only the applications of molecular representations are of interest,

because the basic work was complete by the 1990’s3. However, there is arguably a renewed

interest in the foundations of molecular representation due to the emergence of ML, and its

ability to convert a discrete representation of molecules into one that is continuous. Con-

tinuous representation enables the use of gradient-descent for optimisation with respect to a

property, which is much more efficient than a brute-force approach. In addition, the develop-

ment of new three-dimensional (3D) representations is proving valuable for finding optimal

ligands for a given chemical system (’screening ligands’), as binding of proteins also can de-

pend on 3D conformation and alignment4. This work provides an introduction to molecular
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representations which will help the reader appreciate complexities and subtleties which may

not be apparent, whilst concurrently reviewing how aforementioned representations can be

coupled with ML to predict molecular properties, generate novel molecular structures, and

more.

Classes of machine-readable representation of molecules

Molecules can be represented on a piece of paper using a two-dimensional (2D) scheme

such as the one of dicycloverine hydrochloride in Scheme 1, but there are many different

options for representing compounds computationally. When computers were first commer-

cialised, strings of alphanumerical characters were preferred, as these required less memory

to store and less computational power to process, but as computers developed and mem-

ory/processing power became less expensive, less compact representations (that contain more

information and are less ambiguous) became more widespread. An overview of the different

classes of molecular representation can be seen in Figure 1.

String representations

String representations generally consist of ASCII characters and are more compact and easier

for humans to read and write than other representations. An example showing various string

representations for the molecule dicycloverine hydrochloride (Scheme 1) can be seen in Table

15,6.

Scheme 1: Structure graph of dicycloverine hydrochloride.
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Figure 1: Overview of the different classes of molecular representations.

Registry systems

Various registry systems exist, and they share the feature that an arbitrary, but unique,

number is assigned to a new molecule that is not already present in their database. Examples

include the CAS Registry Number (RN)7, PubChem CID8, ChemSpider9, ChEMBL10–12,

and others. Their globally unique nature eases communication, but decoding these numbers

involves referencing the relevant database.

Table 1: Various representations of the dicycloverine hydrochloride molecule.

Generic names5 Dicycloverine HCl, Benacol, Bentyl, Dibent, Dyspas, etc.
Mol. formula C19H36ClNO2

IUPAC name 2-(diethylamino)ethyl 1-cyclohexylcyclohexane-1-
carboxylate; hydrochloride

CAS RN 67− 92− 5
Canonical SMILES CCN(CC)CCOC(=O)C1(CCCCC1)C2CCCCC2.Cl
InChI InChI=1S/C19H35NO2.ClH/c1-3-20(4-2)15-16-22-18(21)19

(13-9-6-10-14-19)17-11-7-5-8-12-17;/h17H,3-16H2,1-2H3;1H
InChIKey:GUBNMFJOJGDCEL-UHFFFAOYSA-N

WLN6 L6TJA-AL6TJAVO2N2&2&GH
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WLN

First described in 1949, Wiswesser Line Notation (WLN) was one of the first notation formats

for representing complex molecules, and it boasted widespread popularity up until the 1970’s

when it was largely replaced by the more flexible SMILES-representation. It sees little use

today, which makes encoding/decoding more difficult, and this is unlikely to change13–15. In

WLN, digits from ’1’ to ’9’ represent unbranched alkyl chains, and uppercase letters represent

either an atom or a collection of atoms. It uses uppercase letters for common substructures,

which can make WLN quite compact; as an example, two benzene-rings connected through

an N- and C-atom, which would have the SMILES string ’c1ccccc1NCc2ccccc2’, can be

represented in WLN simply with ’RM1R’6.

Fragmentation codes

Chemical patents will often cover a wide range of chemicals, making it infeasible to repre-

sent each patented molecule separately. It is therefore useful to represent patented chemicals

using Markush structures16, where placeholder letters (e.g. R-groups) denote independently

variable groups. While this makes it possible to enumerate all patented molecules from a

Markush structure, quickly evaluating whether a seemingly novel compound has already been

patented, given a set of Markush structures, can be a challenge. The Chemical Fragmen-

tation Coding System was developed to solve this challenge. The chemical codes are used

to index and retrieve chemical patents in Derwent World Patents Index (DWPI), specifi-

cally sections B (pharmaceuticals), C (Agricultural Chemicals), and E (General Chemicals),

hence why they are also referred to as BCE chemical codes. The BCE chemical code for

a molecule will consist of a set ’words’, where each word represents a functional group and

is formed of typically four alphanumerical characters. The four-character code is hierarchi-

cal, with the first character representing the part, and each additional character defining a

smaller, more specific, set of functional groups. As an example, ’H’ represents ’Common

Functional Groups Without >C=O or >C=S’, while ’H724’ represents ’Two conjugated
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>C=C< groups present’. While representing molecules with fragmentation codes does incur

a loss of information, they have proven invaluable for patent searching17.

IUPAC

The IUPAC nomenclature for organic molecules, developed by the International Union of

Pure and Applied Chemistry, uses words to represent functional groups, unlike most other

string representations which use letters/numbers. As an example, the molecule CH4 has the

IUPAC name ’methane’, but would simply be referred to as C in SMILES. While the use

of words makes IUPAC nomenclature less compact, it also makes it easier for humans to

read and pronounce. In particular, functional groups may be apparent by inspection, even

by non-experts. As an example, the IUPAC name of dicycloverine hydrochloride, shown in

Table 1 is the only string representation that instantly reveals the presence of two cyclic

groups even to someone who does not know the grammar of the representations.

Canonicalisation is important for any representation for the sake of consistency and dis-

ambiguity. While the IUPAC nomenclature was likely intended to be canonical, it is not

considered a canonical representation due to the consistent use of alternative forms, particu-

larly retained names. The Preferred IUPAC Name (PIN)18 was introduced to encourage the

use of canonical names. Another concern with IUPAC names is that they can be difficult

for computers to understand, though interpreters do exist19.

SMILES

Simplified Molecular-Input Line-Entry System (SMILES20,21) represents (organic) molecules

with a string of ASCII characters. Atoms are simply represented with the same one- or

two-letter symbol that is used in the periodic table, which is one of the reasons why SMILES

is more flexible than WLN. Single bonds can either be implicit or represented with −, and

double, triple and quadruple bonds with =, #, and $, respectively. Rings are represented

with a number after the (arbitrarily chosen) initial atom in the ring and closing atom (e.g.
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C1CCNCC1 and N1CCCCC1 are equivalent). Branching is represented with parentheses

around the branch, e.g. 4-ethylheptane (a 7-C backbone with a 2-carbon sidechain on the

4th carbon) would be CCCC(CC)CCC. Branches can also be nested within other branches

by adding more parenthesis pairs. Aromaticity can be represented with either alternating

single/double bonds, or by writing aromatically bonded atoms in lower case. To illustrate

this, consider all of these equivalent representations of benzene: c1ccccc1, C1=C-C=C-

C=C1, C1=CC=CC=C1.

While it can be easy to write down a SMILES string that is syntactically correct since

there are many ways to write the same thing, this non-canonical nature of SMILES can make

(sub)structure searches in a database difficult. Despite potentially being computationally

expensive, various algorithms have been developed to canonicalise SMILES strings including

Universal SMILES22, InChIfied SMILES23 and CANGEN24.

A chemical reaction is a rearrangement of atoms in or between molecules, and if the

reaction context of two reactions is similar, one might reasonably expect the outcome to also

be similar. This fact, coupled with the advent of computers, led to the production of reaction

heuristics (now called rule-based expert systems or expert-defined reaction templates) which

enabled computational reaction prediction in the late 1960’s25. Automatic rules/template

extraction using ML has since been developed26 and refined27; the reaction template specifies

the reaction centers of all participating molecules up to a certain radius, and in both examples

mentioned, the template is represented using SMIRKS28. SMIRKS is a hybrid representation

of SMILES and SMARTS29, and SMARTS is a SMILES-based representation of reactions

where molecules are separated by ’.’ and reactants are separated from products using ’>>’.

For the template-based approach to reaction prediction to work, the correct template must

be chosen for each task; using extended-connectivity fingerprints (ECFPs), in combination

with ML has been shown to improve accuracy in template selection30.

There is growing interest in exploring how concepts from natural language processing can

be repurposed to solve problems in chemistry. In Molecular Transformer chemical reaction
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prediction is seen as a machine translation task, predicting product SMILES strings given

reactant SMILES strings31. STOUT (SMILES-TO-IUPAC-name translator) is a machine

translation algorithm translating molecule names from one chemical language to another32.

Mol2vec33 uses the Word2vec concept for chemistry; an unsupervised ML model is used to

generate a vectorised representation of molecules, with similar compounds having similar

vector representations.

When SMILES is used as the language of generative models, the output SMILES strings

can sometimes be invalid due to the requirement of parentheses and ring-indication numbers

to occur in pairs, and in the right order. As an example, CC)C(CC would not be a valid

SMILES string, despite carrying a pair of parentheses. A modification of SMILES, called

DeepSMILES34, was proposed to alleviate these issues. Instead of parentheses around the

branch, only right (closing) parentheses are used, with the number of them indicating the

length of the branch, e.g. 4-ethylheptane is CCCCCC))CCC; however, using a large number

of closing parentheses instead of simply a pair of parentheses can make it less human-reader

friendly. When representing ring structures in DeepSMILES, a number follows the final

atom of the ring with the value of the number indicating the size of the ring; e.g. benzene

(c1ccccc1 in SMILES) becomes cccccc6 in DeepSMILES. This has the added benefit of in-

stantly revealing the ring-size. However, the issue of chemical validity (e.g. exceeding normal

valency) was not addressed with DeepSMILES. The SELFIES35 (SELF-referencIng Embed-

ded Strings) representation was developed to solve the issue of invalidity of strings on a more

fundamental level: SELFIES can reportedly represent every molecule, and every SELFIES

string corresponds to a valid molecule. Each symbol in a SELFIES string is derived from

the corresponding rule vector and state of derivation. The rule vector represents the type of

chemical structure ([C], [=O], etc.), while the state of derivation represents syntactical and

chemical constraints (e.g. maximal valency). The robustness of SELFIES has been exploited

in a number of different ML applications36–39.
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InChI

International Chemical Identifier (InChI) is an open-source string representation that was

developed by IUPAC in 2005. Key benefits include it having built-in canonicalisation, being

open source, being applicable for most organic and inorganic chemistry, and having a hierar-

chical structure which allows encoding with different levels of granularity. The representation

contains ’layers’ of information about the compound, each separated by ’/’ and initiated by

a prefix:

1. Main layer (core parent structure)

• Empirical formula (always present, no prefix)

• Skeletal connections (prefix: ’/c’)

• Hydrogens (prefix: ’/h’)

2. Charge layer

• Net charge (prefix: ’/q’)

• Protonation/deprotonation (prefix: ’/p’)

3. Stereochemical layer

• Double bond (prefix: ’/b’)

• Tetrahedral (prefix: ’/t’)

• Indicator stereo layers (’/m1’, ’/s1’. May also be included in Isotopic ’/s’).

4. Isotopic layer (’/i’)

5. FixedH layer (for tautomers, prefix: ’/f’)

6. Reconnected layer. Typically bonds to metals are broken as part of the normalisation

procedure; in this layer, the molecule can be represented as if the bonds were intact

(prefix: ’/r’)
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It is worth noting that InChI strings always start with ’InChI=’ followed by a sequence

of letters/numbers before the first slash. In the example InChI string in Table 1, ’InChI=1S’

indicates that it is a standard InChI of version 1. InChI strings for large and complex

molecules can quickly become verbose, so to ensure compatibility with search engines, a

27-character fixed length, hashed version of InChI called ’InChIKey’ has been developed40.

InChI represents structures with great veracity, with InChI v1.03 and StdInChI report-

edly achieving 99.95% accuracy on 39 million structures from PubChem Compound in a

round-trip conversion experiment which records the number of correct InChI → Structure

→ InChI conversions40. As with most things, achieving 100% accuracy is near impossible,

though InChI is continuously getting closer. Many improvements have been made since

v1.03 such as adding compatibility with the V3000 molfile format, which enables handling of

molecules with more than 1000 atoms, in v1.0541, and fixing bugs in the normalisation pro-

cedure. To better understand what might go wrong in the normalisation procedure consider

the following two examples: an update in InChI v1.04 fixed an issue where some structures

containing a radical atom in an aromatic ring might yield different InChI strings for the same

molecule depending on the original order of the atomic numbers42, and an update in InChI

v1.06 fixed a bug which caused a change in the InChI string upon renumbering of atoms for

some molecules containing an acidic hydroxy group at a cationic heteroatom center43. At the

time of writing, the most recent version of InChI is v1.06; a more complete overview of the

changes, additions, and bug-fixes associated with this version can be found online for free43.

With these improvements, and many more, InChI is now more than 99.99% reliable44.

Other string representations

Less popular line notations than the aforementioned also exist, such as SYBYL Line Notation

(SLN)45, and are described elsewhere3,46.
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Chemical table representations

A chemical table (CT) lists the x-, y-, and z-, coordinates of each atom in a connection table

(CTab), and how they are bonded to each other in a molecule. This makes the generation

of 2D/3D graphic representations from a CT quite easy, and they are typically used for rep-

resenting molecules within databases/programs. The most widely used is the MDL molfile,

which exists in two versions (V2000 and V3000). MDL molfiles can be ’bundled’ into an SDF

(structure-data file). One drawback of the CT is that translation or rotation of a molecule

will lead to a new set of atom coordinates, despite the molecule being unchanged.

MDL molfile

MDL molfiles consist of three main sections: the header block (containing title, timestamp

and an optional comment), the CTab, and end line which must read ’M END’47,48. The

CTab consists of a number of sections, best understood by considering Figure 2.

Unfortunately, there is no uniform standard for CTs as both MDL V2000 and MDL V3000

are widely used. There are three main advantages of V3000: the counts line not being

capped at 999 atoms/bonds , an improved description of stereochemistry, and enhanced

support for new chemical properties. For many purposes, such as handling of small and

non-stereochemical molecules, these improvements were not significant enough to incentivise

switching.

One of the primary drawbacks of CTs is related to their handling of complex chemistries.

MDL molfiles only support single, double and triple bonds, which does not work well for

molecules containing bonds where simple sharing of electrons in a covalent bond is an inade-

quate description. It has been suggested that introducing a zero-bond order could (partially)

alleviate this issue49. Furthermore, when the number of hydrogen atoms is not explicitly

stated, non-trivial valency could lead to the wrong number of implied hydrogen atoms; an

important issue not easily solved (simply requiring the number of H-atoms to be specified
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Counts line: Number of atoms (9), bonds (8), atom lists (0), chirality (1=yes),
and CTab version (V2000)

Atom block: Relative coordinates, atomic symbols, mass difference, charge,
stereochemistry, and excessive associated hydrogens for each atom.

Bond block: Specifies the two atoms connected by the bond, the bond type, and
any bond stereochemistry and topology for each bond.

Atom list block: Identifies the atom (number) of the list and the atoms in the list.
Stext: Structural text descriptor block, used by ISIS/Desktop programs.
Properties block: Provides future expandability of Ctab features, while maintaining

compatibility with earlier Ctab configurations.

Figure 2: Example of a Connection table within an MDL molfile V2000 for the molecule
leucine generated by ChemDraw47.

might compromise back-compatibility)50.

CDXML

CDXML is an XML-compliant version of CDX (ChemDraw Exchange), the native file for-

mat of ChemDraw. ChemDraw is a commercial piece of software for handling molecular

representations, with features such as structure to name/name to structure, NMR and mass

spectrum simulation, and more. Like a CT, a CDX file can record the coordinates for each
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atom (alternatively, coordinates are omitted and then generated by ChemDraw), though the

representation format is different. A CDX file contains a set of nested objects (such as atoms,

bonds, fragments) and properties (such as position, colour, arrow type, bond order). Each

object can have nested objects (zero or more), and also a number of properties associated

with it (zero or more)51, thus creating a tree. Since CDXML is not open source, it does not

play much of a role in chemistry research, other than being used by ChemDraw.

Feature-based representations

Molecular properties

Perhaps the simplest way to describe a molecule is by listing the features of the molecule

which are relevant to the problem at hand in a vector. As an example, it has been shown that

a combination of physical molecular descriptors, such as molecular weight, density, melting

point etc., reaction-specific descriptors, and descriptors based on screening charge density,

can be used to predict which solvent might provide optimal conversion and diastereomeric

excess in an Rh-Josiphos catalysed asymmetric hydrogenation reaction52.

Selecting the optimal descriptors for a ML model is difficult even with good domain

knowledge, in part due to the opaque nature of ML, and for this reason it is not uncommon

for researchers to explore a range of different featurisation for the chemical system at hand53.

The simplest featurisation is one-hot encoding, where a vector of 1’s and 0’s is constructed

to represent whether a molecule is present or not present, respectively. As an example,

representing the selection of only chemical B from the options A, B, C, and D, might take

the form [0, 1, 0, 0], where the first index represents the presence of chemical A, the second

index represents the presence of chemical B, and so on. For getting started with a prediction

problem it may be helpful to mimic approaches found in the literature54, e.g. using a binary

one-hot encoding (time: quick, detail: none), cheminformatics descriptors generated from

open-source libraries55 (time: medium, detail: medium), and quantum chemical features
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computed via density-functional theory56 (time: slow, detail: high).

Molecular graphs

Molecules can be conveniently represented as undirected graphs, with nodes as atoms and

edges as bonds. Molecular graphs can be a powerful way of representing molecules, and

have found their way into many generative model strategies, as described in the section

’Beyond string representations in generative models’. A molecular graph with featurised

nodes (atoms) and edges (bonds) is called an ’attributed molecular graph’. Features similar

to those used in the ECFP (features such as atomic identity, formal charge and aromaticity

for each node, and bond order for each edge) can be used to featurise an attributed molecular

graph. Using an attributed molecular graph featurised in this way in combination with

a convolutional neural network can lead to the creation of molecular fingerprints which

have enhanced performance in physical property prediction57. An alternative to atom-level

feature attribution is the reduced graph, where each functional group is replaced by a unit,

or superatom, which represents the relevant features. While the structure to reduced graph

transformation is well defined, the reverse transformation is not. The ability to generate

novel molecules with favourable properties by first identifying a suitable reduced graph has

been explored for de novo molecule design58.

Extended-connectivity fingerprints

Molecular fingerprints are intended to represent the presence (or absence) of substructures

within molecules often in a sparse vector, and they generally fall into one of two categories:

matching substructures in a molecule to substructures in an expert-defined set, or algorith-

mic enumeration and hashing of substructures in a molecule. The ECFP is one of the most

widely used chemical fingerprinting techniques due in large part to the popular open-source

python package RDKit having an implementation of it, called ’Morgan fingerprint’. How-

ever, chemical fingerprint techniques existed before the ECFP, see for example HOSE59 and
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FREL60. Comparing and contrasting fingerprinting methods can be found in the literature61,

so this text will instead give a brief overview of how ECFPs are generated and may be used

in ML models.

The first step in generating an ECFP is using information about each atom in a molecule

to yield a descriptor of the atom and its immediate environment that is invariable with how

the atoms in the molecule are numbered. Any set of properties which fulfil these criteria

could be used. For ECFPs the property set came from the Daylight atomic invariants rule:

the number of connections, number of non-hydrogen bonds, atomic number, sign of charge,

absolute charge, and number of attached hydrogens. The Daylight atomic invariants rule

was developed by Daylight Chemical Information Systems Inc., the company that invented

SMILES, SMARTS, and SMIRKS24. The property set used for the ECFP was augmented

with an additional feature defining whether the atom is part of a ring. These seven property

values are then hashed to yield a 32-bit integer value which can be used to initialise the

ECFP algorithm. In the first iteration an array is built from the iteration number, bond

orders (single: 1, double: 2, triple: 3, aromatic: 4), and hash values of the neighbouring

atoms within the appropriate radius (as illustrated in Figure 3); this array is then hashed

into a new 32-bit integer, which effectively serves as a label for the substructure. Applying

the algorithm iteratively with increasing radius, and saving the intermediate labels, then

yields a complete set of labels for all substructures within the molecule up to a given user-

specified radius. Barring bit-collision, each unique substructure will map to a unique integer.

One interpretation of these integers is as the index of 1’s in a vector otherwise consisting

of 0’s, i.e. a sparse vector representation of molecular substructures for the molecule. It is

worth noting that such a vector would never be constructed in practice, since it would be of

length 232 ≈ 4.3∗109. Since the size of the labels depends on the hash function, it is possible

to create a smaller fingerprint (e.g. 2048 bits) by hashing the labels into smaller space62.

While this ’folding’ operation can worsen quality and increase the risk of bit-collision, there is

some evidence to suggest that much of the information is retained63. A detailed discussion
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on initialising, bit-collisions, handling duplicates, etc. can be found elsewhere62. RDKit

includes an implementation similar to the ECFP, dubbed ’Morgan fingerprint’, which can

be found online and used for free64.

Morgan fingerprints are lightweight, quick to compute, and represent salient features of

molecules well, and have thus found many uses beyond computing similarity. Being already

formatted as a vector with numerical entries, they are well suited to be used as features in

ML models for chemistry65.

Computer-learned representations

A molecule is a discrete, 3D collection of atoms bonded together through the favourable

interaction of their electrons. Many representations of molecules are indeed also discrete,

often consisting of a combination of letters and numbers. However, to perform operations on

molecules with a computer, a representation entirely consisting of numbers is required. Two

approaches were presented above in the section on Feature-based representations. Construct-

ing vectors of molecular properties involves a human deciding which properties to include,

and as with ECFPs, there is no guarantee that the vectors that these methods produce

capture all relevant information; additionally, they are not generally invertible (i.e. it is

generally not possible to deduce the molecular structure from the vector). Developing a con-

Figure 3: Illustration of the ECFP algorithm on leucine using the carbon assigned ’3’ in
Figure 2. With each iteration, the atoms/bonds considered for the next hashed identifier
increases as a circle growing around the atom under consideration (hence the name ’circular
fingerprint’). Iterations are initiated on all non-H atoms in the structure62.
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tinuous and invertible representation of molecules within a latent space could be powerful,

as this would enable the use of various simple numerical operations on molecules, such as

interpolation between molecules and gradient descent optimisation with respect to certain

properties, which might yield interesting novel molecules which would otherwise be expen-

sive to find with a brute-force systematic combinatorial approach. In January 2018, the first

implementation of a computer learned molecular representation that was both continuous

and invertible was published, where molecules were encoded by converting their SMILES

string to a continuous valued vector using a neural network (NN)66. Since then, at least

45 papers have been published demonstrating new techniques that can be used to enable

computer generated representation of molecules. Three popular deep learning architectures

are recurrent neural networks (RNNs), autoencoders, which includes both variational au-

toencoders (VAEs) and adversarial autoencoders (AAEs), and finally generative adversarial

networks (GANs)67.

Molecule generation based on strings

What is a VAE?

A VAE consists of two NNs, an encoder and a decoder. The input layer of the encoder

consists of a large number of nodes, with each subsequent layer in the encoder containing

fewer and fewer nodes, which forces the NN to carry only crucial information forward to the

next layer. The encoder finally yields a vector in the latent space. This vector is decoded

with the decoder to yield an output as similar to the input as possible. The difference

between input and output of the VAE is incorporated into the loss function which is used

to train the system. Once the decoder is able to consistently produce outputs which are

adequately similar (or possibly identical) to the input to the VAE, the VAE is said to be

’well-trained’, and the fact that a well-trained VAE can encode and then decode something

despite the constriction in the number of nodes implies that the latent vector in some way

represents key features of the input68.
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Gómez-Bombarelli et al., under the supervision of Professor Aspuru-Guzik, were the first

to train a VAE using SMILES strings, allowing them to generate a continuous and invert-

ible representation of molecules66. The model architecture used was doubly probabilistic.

Gaussian noise was added to the encoder as this would allow the decoder to encounter a

broader variety of points in the latent space, resulting in a more robust representation.

Noise was also introduced by using non-deterministic sampling of the decoder’s final layer.

Once well-trained, the VAE is capable of encoding a SMILES string as a vector which cap-

tures characteristic features about the structure, while the decoder is capable of converting

the vector back to a SMILES string, as shown in Figure 4. It is worth noting that the

stochastic nature of the VAE, as well as querying the model in sparsely trained regions, may

result in the decoder producing SMILES strings different from the one fed to the encoder.

A surrogate model f(z) for predicting target properties of the encoded molecule from its en-

coded vector z was jointly trained with the VAE. This amalgamation contributed to shaping

the latent space, placing molecules with similar target properties close to each other in the

latent space. Having a smooth latent space organised according to target properties allows

for efficient search for points with desirable characteristics using methods such as gradient

descent. Decoding optimal points into SMILES strings is a new method for guided novel

molecule generation.

Figure 4: This graphic shows how a VAE can be used to interpolate/optimise/explore molec-
ular properties in a continuous latent space, before being decoded to yield a (potentially) valid
SMILES string66. Figure reused with permission from American Chemical Society (ACS).
Further permissions related to the material excerpted should be directed to the ACS.
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Issues with molecule-generation based on string representations

While SMILES strings are perhaps the most prevalent molecular representation used with

deep learning for novel molecular structure generation67, there are a number of issues associ-

ated with using these. The two most pervasive issues are that the SMILES strings which are

generated may be invalid, and that NNs may be learning the SMILES syntax rather than

learning the underlying properties of the molecules that the SMILES strings represent. This

is partially due to the non-canonical nature of SMILES; one example of the implications of

this is that the SMILES strings for two different molecules may in certain circumstances be

more similar than two equivalent but different SMILES strings for the same molecule. When

using RNNs, the rate of valid SMILES strings is reportedly greater than 90%69,70. However,

when using different methods, the rate of generated strings that are valid deteriorates signif-

icantly; in one particular implementation of a VAE, the decoding rate was around 73-79%

for points close to known molecules. However, this dropped to roughly 4% for randomly

selected points in the latent space66.

Given the complexity of real molecular behaviour, any choice of representation will almost

invariably be a simplification, and when training a model one must keep in mind whether

the representation is capable of carrying information which is critical to understanding the

molecular behaviour (e.g. chirality, tautomerism, etc.), while balancing this against keeping

the representation as simple as possible. The obvious approach to strengthening the associa-

tion between representation and underlying molecular structure is to feed the algorithm with

more data. However, this is not always possible nor productive, thus numerous alternative

strategies have been suggested, such as providing models with multiple different, but equiv-

alent, SMILES strings for each molecule71. Winter et al. proposed continuous data-driven

descriptors (CDDD)72 which were generated by training a NN to convert between the se-

mantically equivalent but syntactically different string representations SMILES and InChI.

A third proposed approach added the semantic and syntactic constraints of SMILES to a

VAE decoder using context and attribute free grammar73,74. Furthermore, DeepSMILES has
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been proposed as an alternative to SMILES to solve two of the most common reasons for

syntactically invalid SMILES strings, with SELFIES taking a step further by also addressing

chemical invalidity (see SMILES).

Areas of further investigation for chemical VAEs

It is encouraging that most, if not all, researchers make their work easily available post-

publication on GitHub, particularly their pre-trained models as this allows other researchers

to explore potential applications. Cloning a repository may take as little as five minutes, and

once the model has been loaded to your machine, calculating latent vectors from a molecular

representation (e.g. SMILES string) may take less than a second per molecule. We believe

there are a few things that the community could do to make using the work of others even

more accessible.

The domain of applicability is the area of chemical space where a model can be expected

to work ’well’, with predictions made on molecules outside the domain of applicability being

either less accurate or beyond the scope of the model. The importance of defining the

domain of applicability should be self-evident: without it one would not know the uncertainty

associated with a new data point. Using continuous variables, one might reasonably define

the domain of applicability of a model as the hypercube formed from the most extreme

point in each dimension, though since molecules are discrete structures, defining a domain of

applicability for chemical VAEs is not trivial; indeed, predicting out-of-distribution samples

in VAEs is a difficult task75. To ensure that the domain of applicability extends to the area

of chemical space relevant to a new project, researchers may want to retrain a VAE model

on new data, but how accessible is this retraining in terms of hardware specifications, time,

and hyperparameter tuning? Hyperparameter tuning is the act of tweaking the parameters

controlling the training process of a ML model. We hope authors of publications describing

novel chemical VAE architectures will discuss the following questions:

1. How much RAM memory would it take to retrain the model on n data points (i.e.
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can the model be retrained on a regular laptop, or does it require a high-performance

cluster?)

2. How much time did it take to train the model, and on which hardware specifications?

If possible, how long would it approximately take on a laptop PC/MacBook?

3. What is the domain of applicability? If an encoded molecule does not decode to the

original molecule how would one know if this is due to inherent stochasticity or because

the queried molecule is beyond the scope of the model?

4. Training a VAE on the same datasets as previous work eases comparison, but how does

the accuracy and domain of applicability change when smaller datasets are used?

5. How were the hyperparameters chosen? What approach do you suggest to other re-

searchers wanting to use your method on a different dataset?

Providing estimates of training time can be quite valuable as this gives the reader an idea

of the order of magnitude to expect if they were to attempt to reproduce the results. The work

of the Aspuru-Guzik group, reported in reference,66 used 108,000 and 250,000 molecules from

the QM976 and ZINC77 databases respectively, and many subsequent approaches used the

same datasets to ease comparison. Recent work has shown that it is possible to set up a VAE

with as little as 2500 molecules (training for 30 hours on a single GPU) which can achieve

comparable accuracy on predicting log(P ) to VAEs which use hundreds of thousands of data

points.78 Of course, using a smaller training dataset also shrinks the domain of applicability.

We would expect chemical VAEs to continue developing, requiring smaller datasets and less

training time without sacrificing domain of applicability, and hope that the questions above

will reduce the barriers to entry for new researchers interested in chemical VAEs.

In the 2500 molecule VAE described above78, the encoder takes a SMILES string as input

and turns it into a continuous representation which can be used to predict log(P). It is worth

noting that for applications like this, no decoder is required, since there is no need to decode
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novel points in the latent space into SMILES strings. A VAE, by definition, consists of an

encoder and a decoder, both of which are necessary for training, and the quality of a VAE

may be judged by its ability to recreate its input. However, if only a well-trained encoder is

required, is this the correct metric by which to judge a VAE? An inefficient decoder which

rarely produces useful SMILES strings may still have value for training an encoder, and it is

possible that the best encodings for a task, such as property prediction, are not ones which

work well with decoders.

Beyond string representations in generative models

Using SMILES strings in generative models is increasingly widespread. However, more so-

phisticated representations are also being developed. In addition to the specific issues with

SMILES mentioned above, there are also crucial features of molecules that string represen-

tations cannot capture, such as 3D configuration which can be particularly important for

biological applications, e.g. when molecules interact with enzymes/receptors in the body.

2D/3D representations may specify the coordinates of the atoms in the molecule, but the syn-

tax used to specify how atoms are connected is something models must learn, and this may

result in generative models proposing chemically invalid molecules. One way to overcome the

chemical invalidity issue might be to use the Junction Tree VAE, which generates molecular

graphs by sequentially adding chemically-valid functional groups to a molecular backbone

(known as fragment-by-fragment molecular generation), as opposed to adding atoms one

at a time (known as node-by-node molecular generation)79. This will lead to more robust,

though less flexible, molecular generation. Generative models using molecular graphs have

become popular in recent years, leading to a wide range of such methods being developed,

e.g. using molecular hypergraph grammar80 and graph neural networks81.
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Molecule generation in 3D

Real molecules exist in three dimensions, so a representation in fewer dimensions must nec-

essarily incur a loss of information, which may or may not be relevant to the task at hand.

Molecules with multiple low-energy conformations also cannot be adequately represented

simply with a single static 2D/3D representation. A molecule represented in 3D space would

have different coordinates following translation and/or rotation, despite still being the same

molecule, and answering even the simple question of identicality of two molecules can be

computationally expensive. Tensor field NNs, which are locally equivariant to rotations,

translations, and permutations in 3D, have recently been introduced, and they have been

shown to be capable of handling molecular structures (when molecules are treated as 3D

point-clouds)82. There are also a number of examples of 3D molecular representations being

developed to be compatible with convolutional neural networks (CNNs)83,84. Deep learning

has been shown to make accurate predictions about biological function from electron density

fields and electrostatic potential fields85. Representing molecules in 3D adds additional de-

grees of freedom, and while this may be a good thing, because it allows the representation to

more closely align with the real world, it also would require more data to yield a well-trained

model. We believe access to high-quality standardised data is one of the most significant

bottle-necks in computational chemistry and drug discovery86,87 today, and while this issue

is indeed receiving much attention (e.g. with the Open Reaction Database initiative88), we

are cautious about methods which would require more data to work well, rather than less.

Challenges with new techniques

As with most new fields, rigorous comparison of new and old techniques can be difficult

due to the lack of an agreed upon standard to test models against. This has led to a

subtle bias towards demonstrating that novel methods outperform existing techniques, an

outcome which sometimes proves difficult to reproduce89. Some meta-work has been done

on GANs which also found reproducibility to be a key issue, in part due to the challenging
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nature of training GANs, which often requires neural architecture engineering, excessive

hyperparameter tuning, and non-trivial ’tricks’ – all of which are non-standardised90. Indeed,

it has been demonstrated that with enough hyperparameter tuning and random restarts,

most GAN-models reach similar results91. Similar issues regarding lack of reproducibility

have also been demonstrated within reinforcement learning92.

Discussion

As each molecular representation has its own (dis)advantages, it follows that the ideal repre-

sentation will depend on the task. String and chemical table representations are invaluable

for communication, as these can most accurately convey the underlying structure of the

molecule which is being represented. However, their discrete nature makes them difficult to

use as much more than a label for the molecule. This is especially true for registry system

representations such as CAS RNs, which themselves contain no information about the un-

derlying structure of the molecule, and instead represent a link to the relevant record in a

database, which does contain a great deal of (structural) information. Answering interesting

questions about molecules requires a numerical description of the structure or the molecular

features to allow computational handling, and this also true when ML is used to solve a

problem.

Loosely speaking, the ECFP can be thought of as a vector containing 1s and 0s according

to which substructures are present in a particular molecule, and this makes fingerprints use-

ful for representing molecules in ML models when predicting variables which depend largely

on the molecular structure. 2D fingerprint-based models have been shown to perform equally

well to state-of-the-art 3D structure-based models on a variety of tasks, such as predicting

partition coefficients, toxicity, and solubility, though falling short of the 3D methods when

predicting complex-based protein-ligand binding affinity93. For a task such as solvent selec-

tion, the features resulting from the molecular structure may be more relevant to use than an
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embedded representation of the structure itself52. Just as the mathematics of ML algorithms

dictate how they may rationally be used, so too must chemical knowledge be incorporated

in choosing the representation. The ECFP and computer learned representations focus on

the structure of the molecule to yield a numerical representation. One particular issue with

using the ECFP, which may not also be problematic with a computer learned representation,

is the loss of structural connectivity in the molecular representation. ECFPs reflect which

substructures are present in a molecule, but the interconnectedness (particularly over large

distances) is lost. In contrast, computer learned representations lack interpretability. We

know of only one study rigorously comparing molecular fingerprints and descriptors to the

newer methods for learning molecular embeddings; the comparison task was quantitative

structure-activity relationship (QSAR) modelling on a variety of datasets, and interestingly

it was found that the embedded representations generated by deep learning methods did not

significantly outperform the more traditional molecular representations94. Whether deep

learning will emerge as superior for molecular representation remains to be seen.

A number of techniques for de novo molecule generation with favourable properties have

been discussed herein. Generative algorithms may often suggest synthetically inaccessible or

otherwise unrealistic molecules, so screening molecule libraries is still an important method

for identifying potential ’hits’. Numerous methods for generating and handling interesting

libraries exist, such as BRICS95 and RECAP96 which break retrosynthetically interesting

compounds into fragments which can be combinatorally recombined, DOGS97 for the de

novo design of drug-like molecules using a ligand-based strategy, and combining CoLibri

with FTrees-FS98 for chemical space creation and similarity search.

Screening a library of molecules involves predicting or otherwise evaluating target prop-

erties for each molecule in the dataset to find molecules with an attractive property profile.

The probability of finding suitable molecules will of course increase the larger the library,

and this has led to an explosion in the size of molecule libraries, perhaps the largest of which

being the proprietary GSK XXL database which contains 1026 molecules. When dealing
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with databases of this magnitude, efficient navigation of the chemical space is crucial99. It

is possible to search upwards of 400 million molecules per second, though with linear scal-

ing: O(n). The scaling behaviour of an algorithm deals with how much additional time it

would take to handle more data points; linear scaling implies that doubling the number of

data points would also double the time needed for computation. Development of sublinear

scaling algorithms would allow much faster handling of these massive databases, and is still

an active area of research; see for example NextMove Software’s SmallWorld100,101. While

it is theoretically possible for molecule databases to get even larger, they are already at a

near unmanageable size; at 400 million molecules/second it would take 109 years to screen

the whole of the GSK XXL database. This highlights a clear need for new and faster algo-

rithms such that the field may transition from brute force screening to intelligent and guided

search102.

An aspect of molecular representation that also deserves more attention is stereochem-

istry: molecules which have the same atoms and same connectivity but are distinct species.

Simple examples include E-but-2-ene and Z-but-2-ene. SMILES strings are not capable of

distinguishing stereoisomers, implying that any ML method relying on SMILES cannot dis-

tinguish stereoisomers either. InChI strings have stereochemical representation built in with

the stereochemcial layer, though they have not, to date, been used in ML workflows as of-

ten as SMILES. Consideration of stereochemistry with SMILES is possible with the three

stereochemical descriptors (’@’, ’/’, and ’\’), and a few different approaches to stereochemi-

cal SMILES exist: InChIfied SMILES22, Jmol SMILES and Jmol SMARTS103, ChemAxon

Extended SMILES104, and RDChiral27.

Encoding stereochemical information in 2D graph representations is also not trivial, as

there is no coordinate information in the third dimension; stereochemical handling has suc-

cessfully been built into graph-based canonicalisation algorithms105. Stereochemistry has

thus far largely been ignored in generative models such as molecular VAEs, in an attempt to

keep the representation syntax a bit simpler. In the development of the Junction Tree VAE79
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it was indeed empirically found that considering stereochemistry during molecular genera-

tion was not as efficient as splitting molecule generation and stereochemical handling into

two separate steps. In the stereochemical handling step RDKit’s EnumerateStereoisomers

generated all possible stereoisomers; each stereoisomer was then encoded using the VAE

encoder, and the stereoisomer selected was the one with the highest cosine similarity to

the latent representation of the query molecule. However, the empirical finding that stereo-

chemical handling is more efficient as a separate step to molecule generation does not imply

that this is true in general. In an MDL molfile the coordinates of all atoms are given in all

three dimensions together with information of the interatomic bonding, which may aid in

representing stereochemistry. In addition, the fifth number in the counts line (see Figure 2)

specifies whether the molecule is [1] or is not [0] chiral, while the fourth number for each

atom in the bond block specifies whether the bond is in line with the page [0], pointing

towards you [1], or pointing into the page [6].

ML models are notoriously data-hungry, and this is doubly true in chemistry due to the

sparse nature of organic compounds and their reactivity (the number of possible organic

molecules is near infinite). Therefore, using ML models for predictions in chemistry requires

a large amount of data, highly descriptive features, and/or a constriction of the chemical

space. The prediction of stereoselective organic and organometallic catalysis with only small

datasets available is an example of a task which might require highly descriptive features,

e.g. in the form of hand-crafted descriptors which can incorporate mechanistic knowledge

and account for complicated 3D-conformations. As our ability to do density-functional

theory calculations is increasingly automated, and more flexible molecular representations

are developed further, semi-automatic methods not relying on hand-crafted descriptors may

soon rival expert-curated feature sets even on complex prediction tasks, particularly as data

availability grows106.

While this work is intended as an introduction to and comparison of molecular repre-

sentation in machine readable format, and, in particular, how these various representations
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can interact with ML methods, it is worth noting that many of the representations that

researchers use today have moved beyond what is described herein. Before moving on to

state-of-the-art it is important to grasp the basics, and understanding differences and similar-

ities between representations based on time, training, and precision will aid in the selection of

representation for your project. The needs and culture of different research fields can have a

large influence of what is considered the ‘gold standard’, and a degree of uniformity within a

field can ease cooperation. However, methodological uniformity, and the drawbacks/benefits

associated with particular techniques, can influence the direction of the research itself. One

thing known to aid advancements within a field is the development of standardised problems

which allows for fair benchmarking of various methods, similar to the MNIST107,108 dataset

for computer vision. Various datasets for benchmarking ML algorithms in cheminformatics

do exist, such as ALChemy109 and QM9110,111, though the diversity of tasks and vastness of

chemical space means that benchmarking is still a challenge.

Conclusions

The effective representation of molecules is imperative for most chemical problems, and given

the increasingly complex interactions between established representations and machine learn-

ing (ML), accessible material on this topic is crucial for lowering the barriers to entry. A

wide range of molecular representations has been introduced across four categories: string-,

chemical table-, feature-based-, and computer-learned representations. While the issue of

representing molecules for communication between humans has largely been solved, we be-

lieve that the advent of ML has sparked renewed efforts in attempting to refine molecular

representation such that we can feed models with information which enable them to predict,

extrapolate, and ultimately solve important problems in chemistry. The simplest way of rep-

resenting a molecule within a model is with a one-hot encoding, relying on either descriptors

about the molecule or vast amounts of data to arrive at a well-trained model. While SMILES
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and InChI strings and MDL molfiles all represent the structure of the molecule, these rep-

resentations are not in a format which is directly compatible with a prediction model, since

models typically must have strictly numeric inputs. Various approaches have been devel-

oped to arrive at a numeric representation of molecules of which the extended connectivity

fingerprint (ECFP) and computer-learned representations were discussed in detail. ECFPs

have proven useful in a wide range of scenarios, though their sparse nature and large size

can make them unsuitable in regimes with low data availability. It is generally not advisable

to feed a model with data having more input dimensions than there are data points, as this

might lead to overfitting, and excessive ’folding’ of the ECFP to arrive at a smaller input

vector may deteriorate the quality of the fingerprint. An alternative to folding could be

using a dimensionality reduction method, such as principal component analysis. Morgan

fingerprints may be a good place to start for a wide variety of tasks given their track-record,

ease of use (RDKit has extensive and easy-to-follow documentation), and lightweight nature;

a Morgan fingerprint can be calculated in mere milliseconds and computation time scales

linearly with the number of fingerprint calculations.

The use of variational autoencoders (VAE) for generating continuous representations

of molecules is an exciting new development, and the vast number of papers presenting

new ideas since the idea was first presented in the beginning of 201866 speaks both to the

high expectations in the community for this method, and also that it will likely require

much more work before it becomes clear how to best put such a model together. The first

chemical VAE was trained on hundreds of thousands of molecules, and many subsequent

papers trained on the same datasets for ease of comparison, though recent work would suggest

that a well-trained VAE can be set up with as little as 2500 molecules. The effort put into

making finished models easily available for others to use through platforms such as GitHub

is commendable. To aid reproducibility we believe features such as hardware specifications,

training time, and model domain of applicability deserve more detailed mention and are too

often implicit.
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While preliminary results certainly are interesting, current research efforts mostly are

focused on improving the representation method, rather than exploring applications. For

this reason, we believe it is too early to attempt to predict how it will change the industry,

though we are cautiously optimistic that this new class of representation will bring about a

wave of new discoveries.
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