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Abstract. This study considers the drawing strategies of four diverse partici-
pants as they copied a line-graph and a bar-chart.  Video recordings of the tran-
scriptions were analyzed stroke by stroke.  Diverse global drawing strategies 
were used for the line graph whereas a similar approach was used by all on the 
bar-chart, but with local differences.  The fluency of the participants’ perfor-
mance varied substantially, particular in viewing frequency of the stimuli.  Dif-
ferences in the strategies can be explained in terms of how they perceptually 
chunked the stimuli.  Sample GOMS models were constructed in order to 
demonstrate verify that chunking explains the drawing strategies.  The potential 
of using drawing transcription tasks to assess user’s competence with graphs 
and charts is discussed. 
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1 Introduction 

How people draw diagrams has been rather neglected in the diagrams research litera-
ture, but it is worth studying for many reasons. It is an interesting complex cognitive 
phenomenon that is worth investigating its own right (von Sommers, 1984). A draw-
er’s approach to drawing depends on their familiarity with the diagram and whether it 
is reproduced from long term memory, copied or traced (Obaildellah & Cheng, 2015). 
Different drawing strategies can reflect learners’ understanding of technical topics 
(Roller & Cheng, 2014). Our particular reason for studying the nature of drawing is 
motivated by whether individual’s diagram drawing behaviors reflect their familiarity 
with the diagrams being produced. Are there signals in drawing behaviour that can be 
used to assess an individual’s competence with a particular class of diagrams? The 
focus here is on data charts and graphs.  
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In turn, our interest in assessing people’s competence with particular diagrams, 
and representations more generally, is motivated by the Rep2Rep project that is at-
tempting to build an automated system to selected appropriate representations for 
individual as the attempts to solve specific problems in some target domain (Jamnik 
& Cheng, 2021). Representation selection is essential because the choice of represen-
tations substantially determines the ease and success problem solving and learning. 
The Rep2Rep framework involves two aspects: (a) selecting representations that are 
formally adequate for the problem using a formal AI system and (b) picking represen-
tations that are cognitively suited to individuals. This paper focuses on the second. A 
key aspect of assessing the cognitive suitability of a representation for an individual is 
knowledge of their level of familiar with the given representation, that is how well the 
representation is understood. So, we need  quick and reliable means of evaluate peo-
ple’s familiarity with different representations.  We contend that when a individuals 
reproduce a particular representation, or copy a diagram, their behaviour will provide 
signals that reflect how familiar they are with the diagram from which measures of 
their competence can be derived.  This paper makes a first step towards that aim by 
observing and modelling the variety of drawing strategies that people use to repro-
duce given some data diagrams.  As background consider: (i) how the graphical struc-
tures of graphs and charts are critical to how they are understood in general; (ii) how 
the role of chunking in comprehension, and how the analysis of chunks provides 
means to assess competence; (iii) existing approaches to assess familiarity.   

1.1 Interpreting and Comprehending Graphs 

As our goal is to assess users’ familiarity with data diagrams, we should consider 
what it means for someone to understand them. In general, line graphs are employed 
to depict x-y trends while bar charts support comparisons between bars that are closer 
together on the display. Wu et al. (2010) argue that the tendency to associate lines 
with trends is due to the cognitive naturalness and the ease of the perceptual process. 
Shah, Mayer & Hegarty (1999) found that format and scale influence the graph inter-
pretation, thus bar charts should be used when two independent variables are equally 
important, while line graphs when a particular trend is more relevant. According to 
the model for graph interpretation (Shah & Carpenter 1995, Shah et al. 1999), three 
processes are particularly relevant: encoding, transition of visual features to conceptu-
al relations, and referential processes. An accurate encoding of the major visual pat-
tern in the graph, such as whether there is a straight or jagged line, is essential for the 
correct comprehension of the graph. The transition of visual features to conceptual 
relations requires the retrieval of quantitative knowledge associated with the visual 
pattern, such as the knowledge that a downwardly curved line represents a decreasing 
function. Therefore, when the visual pattern evokes familiar quantitative concepts the 
comprehension is effortless. Moreover, Peebles & Cheng (2003) found that minor 
changes in the graph design affect the user performance in graph reading task in terms 
of the visual pattern to find the required information. Thus, it is likely that compe-
tence in graph comprehension is closely linked to users’ familiarity with the perceptu-
al patterns or visual features of graphs and charts. 

Process models of graph comprehension also imply the importance of grasping the 
organization and processing structure of graphs and charts. The Construction-
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Integration (CI) model (Kintsch, 1988) constitutes an effective approach for graph 
comprehension. CI model states that comprehension can be subdivided into two sub-
phases: construction phase and comprehension phase. Moreover, three pools of units 
are included in the model: visual features, domain knowledge, and interpretation 
propositions (Freedman et al. 2002). During the construction phase, textual infor-
mation, prior knowledge, and goals interact to form a coherent representation of the 
available information. During the comprehension phase when the information is de-
picted in the graph by visual features and can be linked with prior knowledge without 
making inferences, the comprehension is effortless while, if inferences are needed the 
process becomes effortful. Similarly, Hegarty (2005) proposed a Model of display 
comprehension to explain how people construct a mental model starting from the 
display visualization. The model claims that bottom-up information (design features) 
interact with top-down processes (prior knowledge). Thus, familiarity and background 
knowledge may influence the manner in which attention is directed to the external 
display and how information is perceived, interpreted, and modeled internally (Kriz & 
Hegarty, 2007). As explained by Freedman and colleagues (2002), taking as an exam-
ple a line graph, an expert can integrate into a coherent mental representation the vis-
ual features and the interpretation of data while a novice, lacking the prior knowledge 
of the graph, can’t explicit represent information, thus inferences are necessary and 
the comprehension becomes effortful. Thus, an expert automatically forms a link 
between the visual features (the shape of the line) and the theoretical interpretation of 
the data. When a perceiver lacks the relevant prior knowledge, or the display does not 
explicitly represent information that must then be inferred, comprehension is effortful. 
If diagrams do not contain all the information that a user needs to use, thus familiar 
users, due to their prior knowledge, can interact better than novices with specific dia-
grammatic representation, as their background knowledge guides them in information 
processing and inference process, compared to generating, by the graph, interaction 
new knowledge and awareness (Cheng el al., 2001).  

1.2 Chunking in Competence Measurement 

As graphical features and structure underpin comprehension theories from psychology 
and cognitive science, this can be recruited for the explanation of graph competence 
in a manner that enable methods for its assessment to be developed.  Of particular 
relevance are schema (Bartlett, 1932) and chunking (Miller, 1956) theories.  Chunk-
ing can be defined as a process by which new chunks are made to improve the learna-
bility of the information, so the greater someone’s familiarity the richer the content of 
their chunks in memory. According to Gobet et al. (2001), state the chunking process 
has a dual nature based on two opposite assumptions: the first which defines chunking 
as deliberate and conscious (goal-oriented chunking) while the second as an automatic 
and continuous process that occurs during the perception (perceptual- chunking). 
Thus, tasks involving processes that require perceptual processing and deliberate pro-
cessing of chunks will be determined by the individual’s personal organization of 
chunks in their memory, so there will be rich signals in the behaviors that reflect the 
structures of those chunks (Gobet, 2005; Gobet & Simon, 1996; Gobet, at al., 2001; 
Holding, 1985).  For instance, the time between successive task activities, pauses, 
varies depending on where in the hierarchy of chunks processing is occurring. Pauses 
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between the production of intra-chunk elements (within a chunk) will be short, 
whereas the pauses between actions spanning inter-chunk boundaries (between 
chunks) will be relatively long.  Further, the higher in the hierarchy of chunks an in-
ter-chunk transition occurs, the greater will be the pause.     

Based on these ideas about pause analysis of chunk structures, Cheng and col-
leagues (2014; Cheng & Rojas-Anaya, 2007; Albehaijan and Cheng, 2019) developed 
an approach to assess competences using transcription tasks, in which stimuli, such as 
mathematical formulas or program code, are copied. The measure of competence in 
those tasks exploit a strong and robust temporal signal that reflects the structure of 
chunks in an individual’s memory. In particular, pauses between successive written 
characters are sensitive to chunk structure, so the shape of the distribution of pauses 
varies with the competence of the transcriber. Demonstrations of the potential of as-
sessing competence using temporal chunk signals in transcription tasks have estab-
lished various measures that are well correlated with independent measures of compe-
tence. 

The issue is now whether this approach can be used to assess individuals’ compe-
tence with diagrammatic representations. The previous work has mainly focused on 
linear symbolic notations and natural language, the key issue is whether the technique 
and measures are applicable to diagrams? Diagrams are 2D, do not have an obvious 
linear format to follow during transcription, but some previous works on chunking in 
diagrams drawing suggest that there is some potential (Cheng et al. 2001; Obaidellah 
& Cheng 2015; Roller & Cheng 2014). The diagrams targeted in that works did not 
include data graphs and charts. So, the question for this paper is whether clear signs of 
chunking are manifested in the transcription of charts and graphs. Specifically: (a) 
Will the transcription of these representations show temporal signals, patterns of 
pauses between drawing actions, that reflect the structure of chunks? (b) Will those 
signals varying between individuals in ways that suggest they possess different chunk 
structures?   

These questions will be addressed empirically and theoretically.  In the next main 
section, a small-scale study of four participants transcribing diagrams is presented, 
which answers the questions affirmatively.  In the third main section, the task analysis 
– using GOMS – is used to model the differences in the observed behavioural strate-
gies in order to show that the distribution of pauses can be attributed to the possession 
by the participants of different hierarchical chunk structures.    

1.3 Existing Methods for the Assessment of Graph Familiarity 

To end the introduction, two previous approaches to the assessment of familiarity 
with graphs should be acknowledged. Xi (2005) assessed graph competence for line 
graphs and bar charts using a Graph Familiarity questionnaire. This questionnaire has 
verbal statements, which are judged on a 6-point scale, in groups concerning: partici-
pants’ prior experience using graphs, their ability to read graphs, and their typical 
reactions to graphs. Moreover, both in bar charts and line graph, Xi found that plan-
ning time affects the accuracy of the verbal graph description as participants captured 
the major points of the graph and described more elements.  

The other approach by Cox & Grawemeyer (2003) assesses how people organize 
their knowledge of external representations (ERs) through a card-sorting task. They 
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found that expert ability using ERs in reasoning and problem solving was associated 
with high performance in semantic distinction and accurate naming of ERs, thus high 
competence participants produced few categories in the ER card-sorting task as they 
had better mental representations of ER knowledge, and perceived the semantic 
commonality between visually different ERs.  

2 Observing Strategies of Drawing Graphs and Charts 

It is imaginable that participants might differ little in how they transcribe graphs and 
charts, because such diagrams have been designed to make particular visual features 
and structures particularly salient. This might mask any effects of familiarity with 
these representations and hence behavioural signals due to chunking.  This would 
contrasts with linear sentential notation in which the structure of expressions depend 
heavily on the content of the expressions. Thus, it is essential to show that the tran-
scription behaviors of these 2D representations do reveal signs of chunking. To this 
end, a small-scale observation experiment was conducted.   

2.1 Experiment 

Participants.  Four right-handed participants with Master’s in different subjects 
were recruited.  All completed Xi’s (2005) graph familiarity questionnaire (on a scale 
of 1 to 6, where 6 is high familiarity).  Their scores (and subjects) are: P1=4.7 (Fi-
nance); P2=4.3 (Engineering); P3=2.9 (Literature); P4=2.3 (Law). The scores are 
clearly dichotomous and consistent with the participants’ educational speciality.   

Materials. Fig. 1 shows the two stimuli used. In order to improve the task diffi-
culty, we used  a grouped bar graph (Fig. 1b) from the Wall Street Journal, “Auto 
Industry, at a Crossroads, Finds Itself Stalled by History”, January 2, 2006. We de-
signed the line-graph (Fig. 1a) specially so that it had two sets of points that might be 
perceived as corners of two hexagons, as potential distractor to the three data lines. 
Each was accompanied by a summary of their general meaning. To show the stimuli, 
we used a laptop computer running a logging program specially written in our lab. We 
recorded the participants’ drawing from above with a video-camera. All drawing ac-
tions, pen strokes, were coded using the ELAN video analysis software (Sloetjes & 
Wittenburg, 2008) and the duration of pauses between strokes computed with milli-
seconds (ms) accuracy.  

Procedure. The experiment consisted of two trials where participants copied the 
stimulus on a blank sheet of paper using the participant-driven “hide-show” interac-
tion method (Albehaijan & Cheng 2019), in which stimulus only appears on the com-
puter screen when the participant holds down a special key. To write on the sheet 
participants must release the key and the stimulus is hidden. This method allowed us 
to record: (a) view-numbers – the total number of views of the stimulus in a trial; (b) 
view-times – the duration of each look at the stimulus; (c) writing-times – the time 
spent writing between two successive views.   
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Fig. 1. (a)  Line graph and (b) bar chart employed as stimuli for the study 

The results for each are presented and discussed separately and then followed by 
some general discussion. 

2.2 Line Graph: Results 

Observing the drawing strategies exhibited by the participant during the task, we 
found various approaches across the participants, including: P2 & P3 – reproduce 
each set of data, switching continuously between dots and lines; P4 – reproduce each 
set of data in turn, with a tendency to do all the data points first followed by the con-
necting lines; P1 - drawing all data points first, for the two hexagons, then fill in the 
connecting lines. Consistent with previous studies, all participants had distributions of 
pauses (times between strokes) that appear to reflect hierarchal organization of chunks 
memory (Cheng & Rojas-Anaya, 2005; Roller & Cheng, 2014; Thompson et al.  
2017). Specifically, the pauses be for the first stoke of meaningful groups of elements 
is longer than the pauses within those groups: longer pauses seem to reveal with the 

 
Fig. 2. P4’s (a) drawing, (b) pause profile, and (c) chunk process hierarchy. 
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transitions between chunk or sub-chunk boundaries and may reflect the total amount 
of cognition required prior to each pen-stroke.  

Take, for example, the strategies employed by P4, Fig.2, and P1, Fig.3, as repre-
sentative of those with high (P4) and low (P1) familiarity with graphs and charts. 
Each figure is organized in three sections: (a) the drawing produced by the participant 
with stokes numbered; (b) a pause profile line graph for pauses (log scale) for each 
consecutive stroke, with diamond dots which correspond to the participant’s views of 
the stimuli; (c) a chunk process hierarchy tree diagram derived from the pause profile. 
Level L5 is the whole drawing.  L4 is for chunk(s) acquired by a view(s) of the stimu-
lus.  L3 is a sub-chunk level, where new sub-chunks are defined by a pause threshold 
of 500 ms (Obaidellah & Cheng, 2015; Roller & Cheng, 2014).  The overall structure 
of the trees changes little with reasonable variations of the threshold.  L2 and L1 are 
levels for symbols and strokes.   

P4’s graphical production, Fig. 2, appears to be organized by a graphic schema that 
separates datapoints and connecting lines, particularly in the second and third chunks, 
where all the datapoints are produced before the line connecting them is completed. 
Each schema is acquired in one view (or two consecutive views) and the connecting 
lines appear to be treated as sub-chunks. In contrast, P1’s production, Fig. 3, has a 
different strategy, that starts with datapoints at the extremes of the plot, then comple-
tion of points within each hexagon, and finally the three sets of connecting lines. The 
profile of pauses shows less evidence of large chunks, but still includes signs of 
chunks. Consequently, the process hierarchy is shallower as the sub-chunk level is 
absent (L3).  P1 has a higher number of views than P4, and initially appears to be 
treating the three sets of data points as a single field.   

P2 and P3 present a similar overall approach focusing on each data set in turn, like 
P1, but they took approximately twice the number of views (P2=8; P3=9).  At a lower 
level, however, they broke down each dataset into groups of a few points and lines, 
each associated with a view.  Thus, it appears they did not use a high-level schema for 
each dataset, but were nevertheless chunking. 

 
Fig. 3. P1’s (a) drawing, (b) pause profile, and (c) chunk process hierarchy 

1;2

3;4

5;6 7;8

9;10
11;12

13;1415;16

17;18

19;20

21;22

23

24

25

26

27

28

29;30

31

32

33

P1 (MSc Finance)TOTAL VIEWS: 10

7;
8
(+)

5;
6
(=)

1;
2
(x)

3;
4
(x)

9;
10
(+)

11;
12
(+)

19;
20 
(=)

17;
18 
(=)

13;
14
(x)

15;
16 
(=)

21;
22
(x)

23; 
24;
25

1 2 43 5 6 7 8 9 10 11 12 26 28… … …

1;2 (x); 3;4 (x) 5;6 (=);7,8 (+) 9;10 (+); 11;12 (+); 13;14 (x) 21-25

27

29-33 

… ……

x2

29;
30
(x)

31; 
32;
33

… …

- Upper hexagon
- Lower hexagon

13410 ms 5860 ms
9173 ms

6664 ms 2236 ms

7835 ms  
and 
2148 ms

8879 ms 5243 ms
7430 ms

100

500

2500

12500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

m
ill

ise
co

nd
s (

m
s)

Line graph: pattern of pauses

L4

L2

L1

L5



8 

2.3 Line Graph: Discussion 

Diverse stategies were employed by the participants during the task as expected for 
such a heaviliy perceptually oriented task (van Sommers, 1984). The strategies vary 
overall in relation to the datasets and also locally in relation to subgroup of elements 
within a data set. Despite these differences, it is clear from the pause profiles and 
structure of the derived processing hierarchies – which incorporates information about 
the occurrence of views beyond the pause threshold – that chunking is being used in 
the transcription of the line graph.   
 Contrary to expectations, the two participants with greatest familiarity with graphs 
and charts, were not exploiting chunking processes the most in their drawings. Only 
P4, the lowest scorer on the questionnaire, can be characterized as showing processes 
with a clear pattern of chunking and sub-chunking. However, P1, who scored highest 
on the questionnaire, adopted an approach that might be considered as an attempted to 
use an overly sophisticated strategy, because he ignored the three distinct groups of 
data, for some reason; faced with a large field of points, he appears to have tried to 
demark their overall shape and then fill in the individual points. This may be linked to 
Roller & Cheng’s (2014) and Obaidellah & Cheng’s (2015) observations that the 
drawing of complex diagrams may follow a decomposition strategy in which an over-
all frame is first produced and followed by details within. Despite this strategy, there 
is evidence of chunking, albeit not consistently associated with the sets of data and 
hence the intended meaning of the line graph.   

2.4 Bar chart: Results & Discussion 

Unlike the line graph, where evident differences occur in the drawing strategies, for 
the bar chart all the participants shared similarities in terms of their drawing sequenc-
es. The overall strategy adopted by all was to reproduce the bars from left to right.   
Also, the black bar was always drawn first in each pair of bars.   

At a lower level, evidence of chunking is apparent in the number of views re-
quired by each participant and their pause profiles.  The number of views varied 
markedly between participants: P1=10, P2=16, P3=6, P4=8 views. As there are 8 
pairs of bars (Fig. 1b), P1, P3 and P4 require approximately one view per couple of 
bars whereas P2 dealt with one bar at a time.  Given the similarity of the overall strat-
egy, we were able to derive a general pause profile per each participant, shown in Fig 
.4 (numbers 1 to 5 indicate the pause sequence).  All the values are means, except the 
1st of each participant and the and the 4th of P2 for which the first quartile (Q1) of the 
view time was used to predict the pause duration and note the log scale. The pause at 
the start of each bar is longer than that for strokes within a bar and the pause for the 
start of the second bar is shorter than first, but longer than the pauses within the first 
bar.  Thus, all participants are shown signs of treating each pair of bars as a chunk and 
each bar within as a sub-chunk.  
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It is odd that P2, who had a high score  familiarity questionnaire, was not grouping 
two bars into one chunk. After the trial P2 explained that his overall goal was to accu-
rately represent the values of the bars, which accounts for his one bar at a time ap-
proach. As P2 was attending to extra information, it is possible that this may have 
sufficiently loaded his working memory that no capacity was spare for the second bar. 
The approach is reflected in his generally longer durations of pauses for the first line 
of each bar compared to the other participants.  Despite this difference in strategy, it is 
noteworthy that his pause profile has the same overall shape as the others.   

The pause profiles are independent of the precise order of the drawing of lines 

within the bars.  P1, P2 and P3 started the black bar drawing: (i) left line, (ii) top line 
and (iii) right line. However, they differ for the direction from which they start the left 
line: P2 drew the line from the top to the x-axis whereas P3-P4 did contrariwise. P4 
drew bars differently producing in sequence: (i) top line, (ii) left line and (iii) right 
line. The production of the second bar was consistent for all participants.  Despite the 
marked difference in the specific strategy of line production, it is clear that this is 
secondary to the role of chunking in their performance as shown by the profile of 
pauses in Fig. 4.   

2.5 Overall Discussion of the Experiment 

The purpose of the experiment was to investigate the possibility that the task of tran-
scribing graphs and charts could be used as a basis of a method to assess users’ famil-
iarity or competence in particular classes of representation. In particular, it is essential 
to show that chunking has a major role in the production process, so that measures of 
chunking can be engaged, such as the number of views and distributions of pauses 
(Albehaijan & Cheng, 2019; Cheng, 2014).  Overall, there is clear evidence of chunk-
ing in participants’ transcriptions of both the line graph and bar chart stimuli.  This is 
demonstrated by the pause profiles and also the coherence of derived chunk process 
hierarchies, that is the putative chunks correspond to meaningful groups of elements 
(Figs. 2, 3, 4). Chunking provides good explanations of the participants’ performance 

  
Fig. 4. Participants’ pause profiles for one pair of bars in the bar chart. 
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despite the wide variety of strategies they used, at global and local levels.  Further, the 
size of derived chunks (2-4 sub-chunks) is in line with chunking theory for complex 
tasks. In this respect the transcription of graphs and charts may have potential as 
method for competence measurement.  

However, the diverse drawing strategies are problematic as they may not be asso-
ciated with chunks that are related to the meaning of the target representation but 
encode superficial visual features. As noted by Kriz and Hegarty (2007), the interac-
tion between prior knowledge and the bottom-up features presented by a stimulus 
influences the perceptual processing and therefore the way in which chunks are made 
and drawn.  The sequence of production may be affected by a wide range of perceptu-
al factors, intrinsic the design of our stimulus, inviting the subjects to adopt a specific 
order of production (Van Sommers, 1984). Strong visual patterns, such as those high-
lighted by gestalt principles of visual perception, may determine a drawing strategy.  
This is a particular concern, when such patterns coincide with meaningful features of 
the data being displayed, such as smooth trends in the data.  For instance, are P2 and 
P3 drawings of each trend of line ( where they switch continuously between dots and 
lines) uninfluenced by the “Law of Continuity”, where the line is perceived as contin-
uous movement in order to minimize abrupt changes? Alternatively, is P4’s graphic 
schema of grouping visually similar units together influenced by the principle of 
“Grouping by Similarity”? 

An implication of this is that methods must be developed so that the strategies 
adopted during transcription are closely tied to whatever meaningful chunk the partic-
ipants have of the target stimuli; that is, chunks must reflect the way in which infor-
mation is encoded when transcribing a representation rather than accidental perceptu-
ally salient patterns. At minimum, participants must be instructed that precise values 
of data points are not of concern, in order to prevent behaviors such as P2’s narrow 
precision goal on the bar chart. We might, for instance, instruct participants to focus 
on the meaning and communicative intent embodied by the representations.   

Although only four participants contributed transcriptions for each representation, 
it is noteworthy that despite the clear difference in the familiarity of the two pairs of 
participants, there was no indication of difference in competence. One explanation of 
why is that any effect of familiarity may have been masked by the issue of diverse 
drawing strategies, some of which might have been perceptually driven. Another ex-
planation is that the selected stimuli (Fig. 1) are too simple for the selected partici-
pants. In future work we will test more complex line graphs and bar charts. 

3 CPM-GOMS Verification of the Line Graph Chunking 

The aim of this second part of the study is to obtain converging evidence that the 
behaviors in the transcription of the graph and chart were largely determined by 
chunking processes.  We will use cognitive modelling, specifically task analysis, for 
this and focus specifically on the line graph. The idea is to generalize the strategies 
used by participants on the line graph to produce an ideal chunk hierarchy that shares 
the common features of the individual approaches (Fig. 6, top).  This ideal chunk 
hierarchy is then adopted as the basis for building a task analytic model composed of 
a typical sequence of cognitive processes for similar tasks and standard values of 
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timings for basic cognitive operations.  The chunk hierarchy determines sequencing 
of operators in the model.  From the model we derive pauses preceding each stroke in 
the simulated drawing of the ideal chunk hierarchy. If the profile of pauses of the 
model matches the typical distribution of the participants’ pauses, this implies that 
chunking processes are also responsible for the participants’ pauses. 

3.1 CPM-GOMS Modelling 

We adopt the GOMS approach to task analysis.  John & Kieras (1996) GOMS is a 
family of modelling techniques that analyses the user complexity of interactive sys-
tems. Each type of GOMS task analysis consists of a hierarchical task decomposition 
based on the Goal, Operators, Methods, and Selection rules (Card et al. 1983). The 
Goal is what the user is trying to accomplish on several levels of abstraction. Opera-
tors are atomic elements that generally hold a fixed execution time.  Methods consist 
of set of operators commonly applied to achieve a goal.  Selection rules choose be-
tween methods. The Cognitive, Perceptual, Motor GOMS (CPM-GOMS) technique, 
using the Model Human Processor (MHP) as a framework (Card et al., 1983), is the 
most suitable for drawing transcription tasks because it can deal with parallel execu-
tion of visual perception, cognitive and motor operations. In CPM-GOMS, the per-
ceptual processor is responsible for transforming external information into a form that 
the cognitive system can process; the cognitive processor uses contents of WM and 
LTM to make decisions and schedule actions with the motor system; and, the motor 
processor is responsible to translate thoughts into actions. The CPM-GOMS architec-
ture employs the PERT/Gantt-like charts to represent the relations between the opera-
tors and the critical path that derives from it allows to estimate the total time required 
for the task execution. We used the software Cogulator (Estes, 2016) to model the 
drawing task.  

Fig. 5 shows a section of the Cogulator model for the ideal chunk hierarchy.   
In this section we will explain how the model was built and we will show a short 

template used for CPM-GOMS model (Fig. 5). The model has three principal types of 
statements: GOAL, .Goal and .Also. The GOAL statements represent the main goals 
required to perform the transcription task, specifically a perceptual goal and a drawing 
goal. The .Goal statements are sub-goals included within the main goal and deal with 
the different items that must be drawn. Also is used to represent the parallel processes 
that occur during the pauses when the pen is moving or hovering between the inscrip-
tions. Each operation has a separate line in the code.  The number of full stops before 
a code word indicates the nesting level of the operator.  

Most of the values employed for the operators are provided by the literature (John 
& Newell, 1989; Gray & Boehm-Davis, 2000). At the beginning of each chunk within 
the drawing GOAL, we assumed a recall operator of 1200 ms (John et al. 1989; Lee, 
1995) to retrieve information from WM. For the .jump and .pen_stroke motor opera-
tions, which execute pen moves between strokes and the strokes themselves, we 
picked values based on the average times of the participants for .pen_stroke operators 
while we predicted the jump durations summing the values for all cognitive operators 
that we assumed occur in parallel during the pause. Moreover, as pauses between 
symbols' inscriptions are assumed to be automatic processes, are not included in 
CPM-GOMS analysis.  
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  As diagram drawing is not typically modelled by GOMS, we decided to deal with 
the spatial information separately as the spatial coordinates values are fundamental 
both in drawing and graph comprehension. So, some non-standard operators are de-
fined: verify_location, shifting and updating. We decided to assign 50 ms to veri-
fy_location, to match that of the standard GOMS verify_information. Furthermore, as 
the task is complex, it likely involves executive functions (EF) (Miyake et al. 2000, 
2012; Morra  & Panesi, 2016).  EF operators comprise those mental capacities neces-
sary for formulating goals, planning how to achieve them, and carrying out the plans 
effectively (Lezak, 1982), they differ from the cognitive functions (CF) as they ex-
plain how and whether a person goes about doing something, rather than what and 
how much. Thus we also define EF cognitive operators: ignore, shifting, and updating. 
The shifting operator is a main component of the cognitive flexibility.  It is an ability 
used by people to represent their knowledge about a task and the possible strategies in 
which to engage (Cañas et al. 2006). A shifting operator of 100 ms occurs when, dur-
ing drawing, a participant switches between necessary sub-tasks to accomplish a sub-
chunk (e.g., before drawing each connecting line following a symbol) while its value 
increase to 200 ms during the switching between sub-chunks as an upper item in the 
hierarchy need to be picked (e.g. the transition from pen stroke 5 to 6 in fig.6). An 
.updating operator of 100 ms is required before drawing each point or line which rep-
resent the data points respectively in the line graph and bar charts while an .ignore 
operator occurs whenever a pen stroke is made before starting the subsequent cogni-
tive operation. 

 
Fig. 5.  Example of Cogulator code for a CPM-GOMS for the drawing of the first chunk for the ideal-
ized model (fig.6). Two main GOAL are required, one for perceiving the stimulus and the latter for 
drawing the chunks. The second is always broken down into several sub-goals (i.e. .Goal statements) 
necessary for drawing the elements within the chunk (e.g. symbols, connecting lines). All the pauses 
between the inscriptions represented by the .jump motor operators, were obtained summing the cogni-
tive operators values which occur in parallel within .Also statements.    
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3.2 Modelling Results 

The idealized chunk hierarchy has three chunks with two or three sub-chunks, Fig. 6. 
Applying standard sequences of CMP-GOMS operators to this hierarchy, with the 
values given above, the full series of operations needed for the task and their timings 
were assembled. Pauses between the end of each stroke and beginning of each stroke 
were computed and the pause profile graph plotted, Fig. 6 bottom.   

The overall shape of the profile resembles the profiles for the participants (e.g., 
Figs. 2 & 3).  There are long pauses for the views, very short pauses for strokes with-
ing symbols, but critically medium and short pauses for sub-chunk, which are compa-
rable to the participants durations of pauses.  When the idealized chunk structure is 
modified, for example to more closely reflect a specific participant, the precise pattern 
of the pause profile also changes, but the overall nature of the distribution remains the 
same.  Thus, the match between the CPM-GOMS models and that of the participants, 
suggests that chunking is primarily responsible for the shape of the profiles, and 
hence chunking is critical in these drawing transcription tasks. 

4 Discussion  

Chunking is one of the most studied phenomena in cognitive science due to its ubiqui-
ty in learning and information processing. We aim to produce a method to assess 
competence in representations that goes beyond current tests that only indirectly as-
sess familiarity using questionnaire, verbal descriptions or a simple task (Cox & 
Grawemeyer, 2003; Xi 2005).  Critical for our approach is to show that chunking 
occurs in transcriptions involving the drawing of diagrams, so the previously estab-
lished measures of chunk-based assessment can be adopted (Cheng et al. 2014; Cheng 
& Rojas-Anaya, 2007; Albehaijan & Cheng, 2019).   

In the observations of drawings of the four participants on the line graph and bar 
chart, evidence was found of chunking.  Pauses between strokes had distributions 

  
Fig. 6. Idealized chunk hierarchy (top) and predicted pause profile (bottom).  
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typical of tasks involving chunking, and values typical of chunking. Longer pauses 
for inter-chunk transition at higher level chunks and shorter pauses for intra-chunk 
transitions at lower levels. From the pause profile putative chunk hierarchies were 
systematically derived, and they exhibited structure typical of chunking processes. 

Generalizing over the predicted chunk hierarchies an idealized chunk hierarchy 
was constructed and used as the foundation of a CMP-GOMS task analytic model. 
The good correspondence between the model and participants pause profiles, particu-
lar in the levels and magnitudes of pauses, adds weight to the claim the chunking was 
central in the transcription processes.  This suggests, at least in principle, that such 
drawing transcription task may have potential as measures of competence.   

However, the diversity of strategies and the actual patterns of drawn elements 
suggest that the chunks may often reflect obvious perceptual patterns and conventions 
rather than chunks and schemas that underpin the participants underling knowledge of 
the two representations.  Thus, recommendations for refinements to the method have 
been suggested (in Section 2) to ensure that meaningful chunks are most likely to be 
probed.   

Acknowledgements 

We thank Gem Stapleton, from Cambridge University, for her comments and sugges-
tions for this paper. This work was supported by the EPSRC grants EP/R030650/1, 
EP/T019603/1, EP/R030642/1, and EP/T019034/1. 

References 

1. Albehaijan, N., & Cheng, P. C.-H. (2019). Measuring programming competence by as-
sessing chunk structures in a code transcription task. In A. Goel, C. Seifert, & C. Freksa 
(Eds.), Proceedings of the 41st Annual Conference of the Cognitive Science Society (pp. 
76-82). Austin, TX: Cognitive Science Society 

2. Bartlett, F. C. (1932) Remembering: a study in experimental and social psychology. Cam- 
bridge, UK: Cambridge Univer. Press. P. 329.  

3. Bengio, .Y. Aaron Courville, and Pascal Vincent. Representation learning: A review and 
new perspectives. IEEE transactions on pattern analysis and machine intelligence, 
35(8):1798–1828, 2013. 

4. Bower, G. H. (1970) Organizational factors in memory. Cognitive Psychology, 1(1), 18-
46. Retrieved from http://linkinghub.elsevier.com/retrieve/pii/0010028570900034.  

5. Brewer, W. F. (1999) Schemata. In R. A. Wilson & F. C. Keil (Eds.), MIT encyclopedia of 
the cognitive sciences. Cambridge, MA: MIT Press. Pp. 729-730.  

6. Canas, J. J., Fajardo, I., & Salmeron, L. (2006). Cognitive flexibility. In W. Karwowski 
(Ed.), International encyclopedia of ergonomics and human factors (2nd ed., pp. 297–301). 
Boca Raton, FL: CRC Press.  

7. Card, Stuart, Moran, Thomas P., and Newell, Allen, The Psychology of Human-Computer 
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ (1983) 

8. Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. The Psychology of 
Learning and Motivation, 16, 1–58.  



15 

9. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–
81. 

10. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4(1), 
55–81.  

11. Cheng, P. (2020). A Sketch of a Theory and Modelling Notation for Elucidating the Struc-
ture of Representations. Diagrams (2020) 

12. Cheng, P. C. H., Lowe, R. K., & Scaife, M. (2001). Cognitive science approaches to un-
derstanding diagrammatic representations. Artificial Intelligence Review, 15(1–2), 79–94.  

13. Cheng, P. C.-H. (2014). Copying equations to assess mathematical competence: An evalu-
ation of pause measures using graphical protocol analysis. In P. Bello, M. Guarini, M. 
McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Meeting of the Cogni-
tive Science Society (pp. 319-324). Austin, TX: Cognitive Science Society. 

14. Cheng, P., & Rojas-Anaya, H. (2007). Measuring mathematic formula writing compe-
tence: An application of graphical protocol analysis. Proc. of the Thirtieth Annual Confer-
ence of the Cognitive science Society. 

15. Cheng, P., McFadzean, J., & Copeland, L. (2001). Drawing out the temporal signature of 
induced perceptual chunks. Proceedings of the Twenty-Third Annual Conference of the 
Cognitive Science Society, 200–205.  

16. Cheng, Peter C-H (2016). What constitutes an effective representation? In: Jamik, M., 
Uesaka, Y. and Schwartz, S. (eds.) Diagrammatic Representation and Inference: 9th Inter- 
national Conference, Diagrams 2016. LNAI (9781). Springer, Heidelberg, Germany, pp. 
17-31.  

17. Cox, R., & Grawemeyer, B. (2003). The Mental Organisation of External Representations. 
Proceedings of EuroCogSci 03, 91–96. 

18. Egan, D. E., & Schwartz, B. J. (1979). Chunking in recall of symbolic drawings. Memory 
& Cognition, 7(2), 149–158.  

19. ELAN (Version 6.0) [Computer software]. (2020). Nijmegen: Max Planck Institute for 
Psycholinguistics, The Language Archive. Retrieved from https://archive.mpi.nl/tla/elan 

20. Estes, Steven. (2016). Introduction to Simple Workload Models Using Cogulator.  
21. Freedman, E. G., & Shah, P. (2002). Toward a model of knowledge-based graph compre-

hension. LNCS, 2317, 18–30.  
22. Freedman, E. G., Shah, P. S. (November 2001). Individual differences in domain 

knowledge, graph reading skills, and explanatory skills during graph comprehension.  
23. Gobet, F. (2005), Chunking models of expertise: implications for education. Appl. Cognit. 

Psychol., 19: 183-204.  
24. Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling 

several boards. Cognitive Psychology, 31, 1–40.  
25. Gobet, F., Lane, P. C. R., Croker, S., Cheng, P. C. H., Jones, G., Oliver, I., & Pine, J. M. 

(2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences. 
https://doi.org/10.1016/S1364-6613(00)01662-4  

26. Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: an introduction to mi-
crostrategies and to their use in describing and predicting interactive behavior. Journal of 
Experimental Psychology: Applied, 6(4), 322-335.  

27. Gray, W. D., & Fu, W. T. (2004). Soft constraints in interactive behavior: The case of ig-
noring perfect knowledge in-the-world for imperfect knowledge in-the-head. Cognitive 
Science, 28(3), 359–382.  

28. Harnishfeger, K. K., & Pope, R. S. (1996). Intending to forget: The development of cogni-
tive inhibition in directed for- getting. Journal of Experimental Child Psychology, 62(2), 
292–315.  



16 

29. Holding, D. H. (1985). The psychology of chess skill. Hillsdale, NJ: Erlbaum. 
30. Jamnik, M., & Cheng, P. C.-H. (2021). Endowing machines with the expert human ability 

to select representations: why and how. In S. Muggleton & N. Chater (Eds.), Human-Like 
Machine Intelligence. Oxford: Oxford University Press. 

31. John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis tech-
niques. ACM Transactions on Computer-Human Interaction, 3(4), 320–351.  

32. John, B. E., & Newell, A. (1989). Cumulating the science of HCI: From S-R compatibility 
to transcription typing. Conference on Human Factors in Computing Systems - Proceed-
ings, May, 109–114. https://doi.org/10.1145/67449.67472 

33. Kintsch, W. (1988). The role of knowledge in discourse comprehension. A construction- 
integration model. Psychological Review, 95, 163-182.  

34. Kriz, S., & Hegarty, M. (2007). Top-down and bottom-up influences on learning from an-
imations. International Journal of Human Computer Studies, 65, 911–930 

35. Lee, A. (1995). Exploring User Effort Involved in Using History Tools Through 
MHP/GOMS: Results and Experiences. 109–114. https://doi.org/10.1007/978-1-5041-
2896-4_18 

36. Lezak, M.D. (1982). The problem of assessing executive functions. International Journal 
of Psychology, 17, 281-297.  

37. Lohse, J. (1991). A cognitive model for the perception and understanding of graphs. Con-
ference on Human Factors in Computing Systems - Proceedings, 137–144.  

38. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our 
capacity for processing information. Psychological Review, 63(2), 81–97. 

39. Obaidellah, U. H., & Cheng, P. C. H. (2015). The role of chunking in drawing Rey com-
plex Figure. Perceptual and Motor Skills, 120(2), 535 555.  

40. Palmer, S. (1977) Hierarchical structure in perceptual representation. Cognitive Psycholo-
gy, 9(4),  

41. Peebles, D., & Cheng, P. C. H. (2003). Modeling the effect of task and graphical represen-
tation on response latency in a graph reading task. Human Factors, 45(1), 28–46.  

42. Raggi D., Stapleton G., Stockdill A., Jamnik M., Garcia G. G. and Cheng P. C.-H., "How 
to (Re)represent it?," 2020 IEEE 32nd International Conference on Tools with Artificial 
Intelligence (ICTAI), Baltimore, MD, USA, 2020, pp. 1224-1232.  

43. Roller, R., & Cheng, P. C.-H. (2014). Observed strategies in the freehand drawing of com-
plex hierarchical diagrams. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), 
Proceedings of the 36th Annual Meeting of the Cognitive Science Society (pp. 2020-2025). 
Austin, TX: Cognitive Science Society. 

44. Shah, P., & Carpenter, P. A. (1995). Conceptual limitations in comprehending line graphs. 
Journal of Experimental Psychology: General, 124(1), 43–61.  

45. Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: 
Signaling techniques for guiding the process of graph comprehension. Journal of Educa-
tional Psychology, 91(4), 690–702.  

46. Sloetjes, H., & Wittenburg, P. (2008). Annotation by category - ELAN and ISO DCR. In: 
Proceedings of the 6th International Conference on Language Resources and Evaluation 
(LREC 2008) 

47. van Sommers, P. 1984. Drawing and Cognition: Descriptive and Experimental Studies of 
Graphic Production Processes. Cambridge, UK: Cambridge University Press 

48. Wu, P., Carberry, S., Elzer, S., & Chester, D. (2010). Recognizing the intended message of 
line graphs. LNCS, 6170 LNAI, 220–234.  

49. Xi, X. (2005). Do visual chunks and planning impact performance on the graph description 
task in the SPEAK exam? In Language Testing (Vol. 22, Issue 4).  


