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Abstract 
 
Proteomic profiling studies of schizophrenia have the potential to shed further light on this 

debilitating and poorly understood condition which affects up to 1% of the world’s 

population. However, recent studies suggest that the field of proteomics in general has 

been hindered by poor application of bioinformatic strategies, contributing to the failure of 

many findings to validate. In the context of schizophrenia research, there is therefore a 

need for a more robust application and integration of existing statistical approaches to 

proteomic datasets, as well as the development of new methodologies to offer solutions to 

current challenges. 

 

The aims of this thesis were multi-fold. Many studies have stipulated the need for new 

diagnostic and prognostic strategies to aid psychiatrists, particularly in predicting disease 

conversion from the prodromal phase. Proteomic data from serum samples was used to 

investigate the potential for statistical models based on biomarker panels to offer a new 

and clinically relevant approach. Models were trained based on either differential protein 

(chapter 3) or peptide (chapter 4) expression levels between schizophrenia patients and 

controls, as measured through multiplex immunoassay or targeted mass spectrometry 

technologies. In chapter 4, an SVM model based on 21 peptides was identified that is 

both highly sensitive and specific as a diagnostic and prognostic tool in symptomatic 

individuals.     

 

Furthermore, in recent years, few preclinical innovations have been made in 

schizophrenia research in either in vitro or in vivo studies, resulting in a standstill in the 

development of treatments. In chapters 5 and 6 of this thesis, proteomic information from 

a novel cellular model of schizophrenia was analyzed. In chapter 5, cell signalling 

alterations in vitro were identified which may underpin dysfunctional microglial activation in 

at least a subgroup of patients, thus representing new drug targets in the CNS. 

Subsequent analysis identified compounds which have the potential to ameliorate the 

observed changes. Lastly, in chapters 7 and 8, a novel systems biology methodology was 

developed for the functional comparison of proteomic changes in brain tissue from 

existing preclinical rodent models of psychiatric disorders to those in human post-mortem 

samples, providing a new means of overcoming some of the translational hurdles of 

preclinical psychiatric research.     

 



The application of different bioinformatic strategies to a range of proteomic datasets in this 

thesis has yielded a number of findings which have enhanced the understanding of 

schizophrenia pathophysiology and provide a platform for future studies towards the goal 

of improving outcomes for patients affected by this disorder.   
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using Gene Ontology Term similarity. 

Table 8.1. Structural properties of protein-protein interaction networks. 

Table 8.2. Top 5 functional groups for each protein-protein interaction network. 

Table 8.3. Domain comparison to schizophrenia based on scores computed using gene 

ontology term similarity. 
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Chapter 1 Introduction 

1.1 The burden and challenges of schizophrenia 

Schizophrenia is a major psychiatric disorder that affects up to 1% of the global population 

and has been listed among the world’s top ten causes of disease-related disability(1). 

Research has shown that the disorder is a known risk factor to reduced life expectancy by 

15 to 20 years in the Western world(2–4). Schizophrenia has an annual incidence rate of 

around 15 in every 100,000 people and the lifetime risk of developing the disease is 

approximately 0.7%(1).  It has no obvious gender bias, affecting men and women with 

approximate equal frequency(5) although gender discrepancies occur regarding the onset of 

the disease. In males, disease onset typically occurs between 16-20 years whereas in 

females, disease onset is slightly later and typically between 20-30 years(5). 

The symptoms of schizophrenia range from positive (hallucinations, delusions, and 

movement impairments) to negative (avolition, anhedonia, and poverty of speech) as 

summarized in Table 1.1(1). In addition, schizophrenia can lead to deterioration in cognitive 

functions such as working memory and attention which can greatly impair social and 

occupational functioning(6,7). Mental health studies by the World Health Organization 

(WHO) have found the disorder to be the 5th and 6th leading cause worldwide of years lost to 

disability, for men and women respectively(8). When viewed on the disability-adjusted life 

year (DALY) scale of assessing overall disease burden, schizophrenia is eighth for 

individuals between 15 and 44 years old(9). In addition studies have noted the considerable 

burden on family members who care for the sufferers(9). The annual cost of schizophrenia to 

the US healthcare system has been estimated to be in excess of 60 billion dollars due to life-

long disability and the need for ongoing treatment and provision of care required by 

patients(10). 

The field of schizophrenia research has acknowledged considerable limitations in both the 

diagnosis and treatment of the disorder which remain areas of ongoing research(11). The 

means of diagnosing of schizophrenia has not changed over the last 100 years since Emil 

Kraepelin first defined the disease and is still based on evaluation of signs and symptoms in 

clinical interviews, which means that misdiagnosis is common(12). Studies following patients 

from first admission for psychosis for a period of ten years or more, found that diagnoses 

changed in 50% of cases(13). In addition there is a pressing clinical need to develop 

prognostic tools to help detect the 20-30% of prodromal individuals who go on to develop 

schizophrenia, at an early stage, from those who do not(14) (discussed further in  1.5).  
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Table 1.1. Positive and negative symptoms in schizophrenia(1) 

 

 

 Development of effective treatments for schizophrenia patients has been hampered by a 

lack of significant innovations over the past 60 years since first-generation (typical) 

antipsychotics were introduced in the 1950s(15). The difficulty in developing new 

medications is thought to be due to both the complexity and the diversity of the underlying 

pathophysiological mechanisms associated with the schizophrenia disease process, which is 

still largely unknown. Studies have estimated that as many as 60% of schizophrenia patients 

do not respond at all to typical antipsychotics, or are only partially responsive(16). 

Despite the introduction of second-generation (atypical) antipsychotics in the past four 

decades, response rates to both first and second-generation antipsychotics are low, 

especially after multiple treatment attempts, with many patients continuing to experience 

residual symptoms(17,18). Treatment with atypical antipsychotics is still not effective in up to 

40% patients(19). In addition, both typical and atypical antipsychotics are associated with 

prominent side effects which can lead to serious secondary health conditions. In some 

countries, the use of typical antipsychotics has been restricted due to their propensity for 

inducing acute and long-term neurological side effects such as extrapyramidal symptoms 

(EPS)(20). While atypical antipsychotics were introduced in an attempt to deliver enhanced 

safety and tolerability by reducing EPS, they have their own safety concerns with side effects 

such as weight gain, hyperglycemia and dyslipidemia(20,21). The ongoing discovery of 

novel therapeutic compounds has been slowed down by the development of “me-too” or 

“follow-on” drugs which mainly duplicate the actions of existing antipsychotics with minor 

Positive symptoms Negative & Cognitive symptoms 

Hallucinations (eg: visual, auditory, tactile, 
olfactory) 

Affective flattening - reduction in range & 
intensity of emotional expression 

Delusions (eg: paranoid delusions, delusions of 
reference, somatic delusions) 

Alogia - lessening of speech fluency and 
productivity 

Disorganized speech 
Avolition - reduction or inability to persist in 

goal-driven behaviour 

Grossly disorganized or catatonic behaviour Emotional withdrawal 

  Stereotyped thinking 

  Social isolation 

  Poor concentration & memory 

  
Difficulty integrating thoughts, feelings and 

behaviour 
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improvements in efficacy. These developments reduce incentives for pioneering innovation 

and diminish valuable R&D resources(22,23).   

As a result, there is a great need to improve our understanding of the complex and diverse 

underlying pathophysiological mechanisms associated with the schizophrenia disease 

process at the molecular level, both from the perspective of improving diagnosis and 

therapeutic options.  

 

1.2 Proteomic methods in the study of schizophrenia 

A variety of different ‘omics’ strategies have been used for biomarker discovery in psychiatric 

disorders, including genomics, proteomics, transcriptomics, metabolomics, and 

lipidomics(24). While this thesis focuses on proteomic profiling, this section provides a brief 

overview of the other molecular fingerprinting approaches which have been used to study 

schizophrenia.  

Genomic studies have identified various gene variants which have been linked to 

schizophrenia through genome-wide association studies (GWAS)(25) and in recent years, 

two comprehensive GWAS identified 13 and 108 schizophrenia-associated risk loci that 

contribute to disease susceptibility and point to various functional targets such as calcium 

channel subunits(26,27). Transcriptomics biomarker discovery analyses typically use high-

throughput microarray gene chips which can identify mRNA abundances as well as more 

recent studies using microRNAs(28). To date transcriptomics studies examining gene 

expression changes are the most common biomarker research undertakings in the literature 

for schizophrenia(29). Metabolomics analyses in schizophrenia are based around the 

hypothesis that the disorder disrupts biochemical pathways resulting in a characteristic 

metabolic signature. Metabolomic profiling of schizophrenia patients known to be at risk of 

metabolic syndrome, has shed some light on the molecular underpinnings of the metabolic 

disturbances experienced by at least a subset of schizophrenia patients(29,30). Lipidomics 

platforms have been used to study metabolic vulnerability in schizophrenia patients through 

measuring alterations in different lipids classes in blood plasma(31). 

Proteomics techniques are being increasingly used to screen for biomarkers of 

schizophrenia with various studies revealing new information regarding etiology and 

mechanisms of the disease over the past ten years through quantitative and qualitative 

identification of protein patterns in a variety of tissue types(24). The commonly used 

platforms for identifying new protein biomarkers include multiplex immunoassay platforms, 
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liquid chromatography mass spectrometry in expression mode (LC-MSE), liquid 

chromatography multiple reaction monitoring mass spectrometry (MRM), single enzyme-

linked immunosorbent assay (ELISA) tests, and flow cytometry (see Chapter 2 for more 

details). These platforms have typically been used to screen for protein alterations in post-

mortem brain tissue, CSF, plasma, serum and other tissues such as the liver(32–37). 

Peripheral studies have the advantage of ease of access to study tissue from living patients, 

enabling the study of disease onset and development. Patterns observed in the periphery 

can mirror certain aspects of brain function. Post-mortem studies have revealed information 

on abnormalities in brain regions including the frontal cortex(38), thalamus(39), anterior 

cingulate cortex(40), corpus callosum(41) and the hippocampus(42) which will be described 

in more detail in 1.3. With the well-known role of various environmental factors as potential 

triggers for schizophrenia(43), animal models of the disease can be created through different 

environmental and biological manipulations, and proteomic profiling of various tissue types 

can be used to study the physiological mechanisms behind certain behavioural phenotypes. 

Proteomics is thought to be a viable tool both for developing new diagnostic strategies, and 

identifying novel therapeutic drug targets for schizophrenia. These are both areas of 

research which will be investigated later in this thesis as while proteomics has already 

provided valuable information, there remains a need for the identification of more robust 

biomarkers to improve diagnosis and prognosis, and breakthroughs in developing and 

analyzing reliable preclinical models of the disease to aid the development of more 

efficacious treatments.  

Several review studies have argued that proteomics holds a number of advantages 

compared to genomics and transcriptomics approaches for identifying diagnostic and 

therapeutic biomarkers of schizophrenia(24,43–45), reasons summarized in Table 1.2. 

While genomic studies have generated significant data, so far they have been unsuccessful 

in advancing diagnostic and therapeutic options in psychiatric disorders after two decades of 

research(44). This may be because genomic studies alone are not sufficient to fully elucidate 

the pathophysiology of complex mental illnesses, as variations of many genes, typically with 

subtle effects, are believed to be involved in the etiology of these disorders(46). While 

determination of gene expression and DNA variations in schizophrenia remains important, 

many researchers believe the study of proteins is one of the most informative reflections of 

biological functionality, as these molecules are involved in most physiological processes(45). 

One of the main limitations of genomic and transcriptomic studies is that they are unable to 

extrapolate to functional protein expression in healthy or disease states, as proteins undergo 

multiple modifications from transcription to posttranslation(43,47,48). While proteomic 

platforms typically detect fewer proteins than expressed genes detected through 
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transcriptomic approaches, protein expression is thought to present a more precise reflection 

of the physiological state(49,50). Current hypotheses of schizophrenia postulate that the 

disorder arises due to heterogenous interactions of genetic and environmental factors, the 

biochemical basis of which is most strongly reflected by proteomic changes in various 

pathways in the brain, periphery and other tissues rather than individual gene products(24).   

 

Table 1.2. Summary of recent review studies discussing the advantages of proteomic research 
compared to genomics and transcriptomics. 

Proteomics vs Genomics and Transcriptomics References 

Genomic studies have found involvement of many genes, typically 
common variants with subtle effects in the disease etiology but they 
haven't answered the main questions on disease pathophysiology. 

Owen et al. (2010)(46) 
Nascimento et al. (2015)(43) 

Davalieva et al. (2016)(44) 

Difficult to extrapolate from gene to protein expression as proteins 
undergo modifications from transcription → posttranslation and 

transcript abundance can't predict protein levels 
Baloyianni et al. (2009)(47) 

Vogel et al. (2012)(48) 

Proteomics can show global expression of proteins and is more 
complex than genomics as it can change from each cell type at any 

given time or state Baloyianni et al. (2009)(47) 

Proteomic studies detect fewer expressed proteins than expressed 
genes in transcriptomic studies but protein expression provides a 
more precise functional profile reflecting the current physiological 

state 
Guest et al. (2014)(50) 

English et al. (2011)(49) 

Proteomics is more likely to unravel the signal transduction 
pathways and complex interaction networks behind the gene-

environment interactions which underpin schizophrenia  
       Sethi et al. (2016)(24) 
 

 

 

1.3 Pathology 

The varying hypotheses as to the etiology of schizophrenia have largely been derived from 

studying the pathology of the disorder and the identification of central and peripheral 

abnormalities which are briefly summarized in this section. The hypotheses will be discussed 

in further detail in 1.4.  
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1.3.1 Central 

Many studies have identified structural and functional brain abnormalities in schizophrenia, 

many of which are already present in first-onset drug naive patients by the time of 

diagnosis(51). A meta-analysis of structural magnetic resonance imaging (MRI) studies of 

regional brain volumes found global structural differences between schizophrenia patients 

and those without the disorder. A decrease was seen in cerebrum volume, while a marked 

increase was found in total ventricular volume(52). In addition, a decrease was found in 

amygdala, hippocampus and parahippocampus volume.  The extent to which these 

abnormalities progress during the course of the disorder has yet to be conclusively 

determined. Some studies have attempted to quantify the longitudinal aspect of such 

structural abnormalities and have concluded that they may deteriorate over time and may be 

worsened by long-term antipsychotic use(53,54).   

Further MRI studies comparing schizophrenia patients with controls have found significant 

reductions in cortical gray matter volume, white matter volume, and increases in sulcal and 

ventricular cerebrospinal fluid (CSF)(55). As some of these changes were additionally found 

in the siblings of these patients, who did not have the disorder, the causal factors are 

thought to be linked to particular gene variants leading to alterations in synaptic, dendritic 

and axonal organization.    

Functional imaging studies have found evidence of abnormalities in neural connectivity in 

circuits involving the prefrontal cortex, hippocampus and various subcortical regions, which 

appears to be involved in the pathophysiology of schizophrenia(56). Evidence from 

functional MRI and PET studies has suggested that the dorsolateral prefrontal circuit and in 

particular, the dorsolateral prefrontal cortex is compromised in at least a subgroup of 

schizophrenia patients through decreased metabolism, abnormal cortical connectivity as a 

consequence of epigenetic factors and alterations in neurotransmission(57). This may be 

behind the cognitive deterioration experienced by some patients, as described in 1.1.  

In addition, post-mortem brain studies of schizophrenia patients have found alterations in 

gene and protein expression after molecular profiling analysis using microarray techniques 

and proteomic technologies. These alterations were found to be related to various functional 

pathways involving energy metabolism, oxidative stress, inflammatory processes, 

myelination, cell communication and synaptic transmission(58–61). 
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1.3.2 Peripheral 

Extensive studies have been conducted examining peripheral alterations in schizophrenia 

patients with the aim of enhancing the quality of therapeutic interventions and detecting 

patient subgroups through varying pathophysiological causes. A variety of 

immune/inflammatory, metabolic, neurotrophic and endocrine abnormalities have been 

detected through proteomic studies comparing the serum of patients with controls(62–65).  

Many peripheral alterations are thought to either reflect or act as a causal factor for central 

disturbances. Altered levels of cytokines and other inflammatory markers have been found in 

schizophrenia patients in the blood and CSF(62,63) which can cross the blood-brain barrier 

(BBB) and induce a variety of harmful consequences such as neuronal inflammation, 

damage, and degeneration, which have been implicated in the disorder(66). The elevated 

pro-inflammatory status seen in some schizophrenia patients has led to research into new 

therapeutic strategies exploring the potential for anti-inflammatory medications such as 

aspirin(67), celecoxib(68) and N-acetyl cysteine (NAC) as add-on treatments to 

antipsychotics. NAC acts as a strong inhibitor on cytokines such as TNF- α, IL-6 and IL-1 β, 

which are the main mediators of pro-inflammatory status(69) and is thought to exert 

beneficial regulatory effects on neurotransmission pathways that are known to be altered in 

schizophrenia(70). 

Peripheral abnormalities have been observed which point to metabolic dysfunction in some 

patients. Higher insulin levels are frequently observed in first onset schizophrenia patients 

along with impaired glucose tolerance and elevated insulin resistance(71). In addition lipid 

based treatments have shown some therapeutic efficacy with omega-3 fatty acids reported 

as reducing conversion rates to psychosis in individuals identified as being at risk(72).  

Serum studies of first-onset schizophrenia patients have suggested that increased 

concentrations of neuroendocrine hormones such as chromogranin A, pancreatic 

polypeptide, prolactin, progesterone, and cortisol may be implicated in the disease 

onset(64). The role of brain-derived neurotrophic factor (BDNF) levels in the periphery and 

central nervous system (CNS) is an area of ongoing research with some studies reporting 

reduced levels both in post-mortem brain tissue and in the serum and plasma of patients, 

both in drug naive and medicated patients(65). BDNF is involved in regulating neuron growth 

and survival, and synaptic plasticity and so reduced BDNF may play a role in the 

schizophrenia pathology by contributing to dysfunction in neuronal signalling during 

neurodevelopment(65).       
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1.4 Hypotheses 

A variety of models have been hypothesized to explain the onset and development of 

schizophrenia but while many mechanisms have been proposed, as yet there is no exact 

consensus. Such is the heterogeneity of schizophrenia that there may be multiple disease 

mechanisms affecting different patient subpopulations, which are not mutually exclusive(73). 

Some of the main hypotheses for the disease pathophysiology are summarized in this 

section. These hypotheses are always developing, based on new pathological findings. 

 

1.4.1 Genetic vulnerability 

Schizophrenia is thought to have a high heritability component with some estimates placing 

the liability of genetic factors and gene-environment interactions for developing the disorder 

at 80-85%(1). The illness commonly runs in families with the risk of developing it increasing 

considerably if a close family member has been affected. One of the well-known findings 

among twin studies is that monozygotic twin pairs are far more likely to both develop the 

disorder, than dizygotic twin pairs. If one monozygotic twin has developed schizophrenia, 

then the risk for the other twin is 40-50%(1).  

To date, no single gene locus has been identified as a major risk factor for the disorder. 

Instead research so far supports a highly polygenic architecture(74) with a large proportion 

of the variation in liability to schizophrenia thought to be spread across thousands of 

common SNPs in various genetic loci, over 100 of which have been discovered in sizeable 

GWAS studies(26,27,74–76). A 2014 meta-analysis of GWAS studies linked effects in 108 

loci to schizophrenia(26). The associations found convergence upon genes expressed in 

tissue types likely to be relevant to the disease, for example those with important immune 

functions like B-lymphocyte lineages involved in acquired immunity. In addition, the 

associations included genes involved in glutamatergic neurotransmission and the dopamine 

D2 receptor, supporting previously defined hypotheses of schizophrenia(26). 

However, while hundreds of genetic loci have been weakly implicated in the pathogenesis of 

schizophrenia, there is still much that remains unknown about the genetic architecture of the 

disorder(77). In addition, some studies have questioned the effectiveness of GWAS research 

in schizophrenia and other psychiatric disorders due to their heterogeneity. They argue that 

because each GWAS is conducted on a subset of a diverse overall patient population, and 

the loci identified in each study are very diverse, there are concerns that as more and more 

patients are studied, loci will ultimately be implicated across the entire genome, thus 

rendering the findings increasingly uninformative(77). One of the reasons for this is the 
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genetic heterogeneity of schizophrenia across ethnic populations. This was illustrated by a 

2017 study of 128 schizophrenia associated loci across five ethic populations of patients 

which found significant heterogeneity between ethnic groups in the majority of these loci(78). 

 

1.4.2 Immune system dysfunction 

Evidence from neurobiological, genetic and environmental studies suggests that alterations 

in immune function may be associated with schizophrenia pathogenesis in at least a 

subgroup of patients(62). Schizophrenia patients and their relatives are often found to have 

a higher or lower than expected prevalence of auto-immune disorders such as multiple 

sclerosis, autoimmune encephalitis, rheumatoid arthritis and celiac disease(79).  

Genetics has provided considerable evidence that immune system dysfunction plays a key 

role in the pathophysiology of schizophrenia(80). A 2013 study identified 144 genes relating 

to inflammation and immune response in the hippocampus of schizophrenia patients, which 

were differentially expressed compared with controls(81). In addition one of the most 

replicated genetic findings is the association between schizophrenia and the immune 

response regulating major histocompatability complex (MHC) region which is thought to play 

a role in the pathogenesis of multiple sclerosis. The genetic-inflammatory-vascular 

hypothesis of schizophrenia suggests that a genetic predisposition to an over-expressed 

inflammatory response could damage the microvascular system in the brain, with such 

immune disturbances thereby triggering metabolic dysfunction(82).  

Analyses of blood levels in first onset and relapsed patients have found elevated 

concentrations of numerous inflammatory cytokines in serum and plasma(62,63,83). One 

hypothesis is that increased psychological stress on susceptible individuals can trigger an 

exaggerated inflammatory response via pathways involving defective glucocorticoid-

mediated feedback inhibition and exaggerated sympathetic nervous system mediated 

activation of immune responses(62). The peripheral levels of C Reactive Protein (CRP), a 

protein mainly generated in the liver, are also a good indicator of chronic inflammation. 

Recent data have shown that it is increased in around 30% of schizophrenia patients(84,85). 

Studies have pointed to the potential harmful role of activated inflammatory processes in 

schizophrenia on the CNS(86) which will be discussed further in 1.6.1. The release of 

cytokines and free radicals through activation of the brain’s immune cells, the microglia, is 

central to the microglia hypothesis of schizophrenia which will be discussed in 1.6.2. 
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1.4.3 Infectious disease 

Exposure to pathogenic microbes, during either the prenatal period or childhood, has been 

suggested as being a contributing factor to the etiology of schizophrenia by causing 

disruptions in brain development(87). This is a potential component of the two-hit hypothesis 

of schizophrenia, discussed further in 1.6.3. Studies investigating the role of specific 

infectious agents in schizophrenia have suggested that the risk is mainly posed by viruses 

and parasites with a tendency to invade the CNS. 

A number of viral traces have been identified in first episode drug naive schizophrenia 

patients and over the past decade, studies applying bioassays to measure anti-microbial 

antibodies in archived maternal serum samples have yielded some notable results. They 

suggest that infections posing a particular risk factor for schizophrenia include influenza A 

virus, polio virus, and rubella virus(88–90). In particular, influenza A virus has been 

suggested to increase the risk of developing schizophrenia by sevenfold when mothers are 

exposed to the virus during the first trimester of pregnancy(88).  

In addition, there is evidence that viral CNS infections during childhood increase the risk of 

developing schizophrenia as an adult by at least two-fold(91,92) and schizophrenia patients 

who have suffered a viral CNS infection earlier in life, tend to have an earlier disease 

onset(92). Post-mortem brain tissue studies have also yielded evidence of viral traces, with 

one study finding retroviral RNA to be present in the frontal cortices of all patient 

samples(93). 

Considerable research has been undertaken on the parasite Toxoplasma (T.) gondii and its 

potential contribution to the etiopathogenesis of schizophrenia(94,95). As of 2013, thirty-

eight studies have shown positive correlations between T. Gondii antibody titers and 

schizophrenia(96), and links have been observed between exposure in adulthood and 

schizophrenia in studies of the US military(97) and ultra-high risk individuals(98). 

However although associations have been made between schizophrenia and infections 

years to decades before diagnosis, investigations into how infectious agents contribute to 

the pathomechanisms of the disorder, after a lengthy latency period, are still ongoing. 

 

1.4.4 Metabolic dysfunction 

A major contributing factor to this increased risk of mortality from schizophrenia is believed 

to be the greater susceptibility of patients to metabolic syndrome, cardiovascular disease 

and diabetes compared to the general population(31,99–101). For example, a large UK 
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study of 46,000 patients with either schizophrenia-spectrum or bipolar disorder and 300,000 

controls reported that hazard ratios for cardiovascular disease mortality were threefold for 

schizophrenia patients aged 18-49 years and twofold for patients aged 50–75 years(102). 

Metabolic dysfunctions include insulin resistance, hyperinsulinemia, dyslipidemia, 

hyperglycemia, central obesity and hypertension(103). While metabolic dysfunctions can be 

side effects of antipsychotics, studies showing a high prevalence of metabolic syndrome in 

drug naïve patients imply that metabolic dysfunction is associated with the schizophrenia 

disease process(104–106) .  

The exact role which metabolic dysfunction plays in the disease process of schizophrenia is 

still little understood but proteomic serum findings suggest that it represents a vulnerability 

factor to developing the disorder. Increased levels of molecules such as insulin, C-peptide 

and proinsulin have been found in both patients(107,108) and unaffected first degree 

relatives(107), suggesting there is a shared genetic and environmental disposition in families 

to conditions such as hyperinsulinemia.   

 
1.4.5 Neurodevelopmental 

The neurodevelopmental hypothesis of schizophrenia posits that brain development in the 

early stages of gestation is altered, and the onset of psychosis occurs at a later stage as the 

disease progresses, due to abnormal cortical development(109). The hypothesis was initially 

formed following epidemiological studies of an influenza epidemic in 1957. It was found that 

children whose mothers were pregnant during the epidemic, had an 88% higher likelihood of 

later developing schizophrenia compared to those born in the periods before and after the 

epidemic(109,110). The hypothesis is based around the fact that the typical age-range for 

the onset of schizophrenia is between 18 and 36, a period where the prefrontal cortex is still 

developing, indicating involvement of cortex development in the disorder(111).   

The neurodevelopmental hypothesis has been further supported by associations to 

schizophrenia with genetic and early risk factors that affect development, along with imaging 

studies which have identified structural brain abnormalities in patients which were already 

present before disease onset(112,113). Similar alterations have been found to be present to 

a lesser degree in prodromal individuals(114).  

The neurodevelopmental hypothesis is linked to the two-hit hypothesis which will be 

discussed further in 1.6.3. 
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1.4.6 Neurotransmitter dysfunction 

Multiple neurotransmitter theories have been proposed for schizophrenia, which have 

formed the basis of all antipsychotics developed so far. Each of these theories implies a 

circuit-based pathology for the disorder involving multiple interconnected brain regions.  

It is thought that there is a dopaminergic abnormality underlying the pathogenesis of 

schizophrenia(115). The current dopamine hypothesis is that presynaptic dopamine 

availability and dopamine release are increased in schizophrenia patients, and in particular 

sub-cortical dopamine dysfunction plays a contributory role to both psychosis and the 

cognitive and negative symptoms of the disorder(116–118). This theory is given additional 

support by studies of prodromal individuals which have found that dopamine synthesis 

capacity appears to specifically increase in those who develop the disorder(119–121). 

However other studies have suggested that there may be ‘hyperdopaminergic’ and 

‘normodopaminergic’ subtypes of schizophrenia, as for a significant number of patients, the 

mechanisms underlying their symptoms appear unrelated to dopamine dysregulation(122). 

N-methyl-D-aspartate receptor (NMDAR) hypofunction has been hypothesized as being 

involved in schizophrenia, through development of earlier theories for the involvement of 

glutamatergic mechanisms in the disorder(123). NMDAR abnormalities have been observed 

in post-mortem studies(124), genetic studies(26) and in preclinical studies(125) using 

NMDAR antagonists as a model system for schizophrenia, though NMDAR hypofunction 

abnormalities may be present in only a subset of patients, and possibly only at a particular 

phase of the disorder(126). While recent studies have attempted to integrate the dopamine 

and NMDAR hypofunction hypotheses, it may be that they each underpin different subtypes 

of schizophrenia. The NMDAR hypofunction hypothesis provides a clearer way of accounting 

for the negative and cognitive symptoms of the disorder, and studies examining the 

effectiveness of antipsychotics have found that different individuals show treatment 

resistance to drugs which target dopaminergic systems to those which target glutamatergic 

systems(127).  

Other neurotransmitter hypotheses include serotonin and the cholinergic system. The latter 

has been linked to schizophrenia through environmental associations such as the high 

prevalence of patients who smoke(128). Serotonergic dysfunction in the cerebral cortex is 

thought to be a cause of abnormalities in glutamate signalling and cortical atrophy in 

schizophrenia(129).  
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1.5 Diagnosis 

1.5.1 Diagnosis through serum molecular profiling 

Over the past decade, there have been attempts to investigate novel diagnostic strategies 

for schizophrenia through the identification of biomarkers in transcriptomic(130,131), 

proteomic(132), epigenetic(133) and neuroimaging studies(134). Particular attention has 

been given to identifying serum-based diagnostic biomarkers due to the ease of access to 

samples, and the potential for translation to clinical utility at relatively low cost(29). 

1.5.2 Current diagnostic strategies and limitations 

Currently, the diagnosis of schizophrenia is entirely based on the evaluation of signs and 

symptoms in clinical interviews, a procedure which has changed little in the past 

century(135). Table 1.3 shows the current clinical diagnostic criteria for schizophrenia 

according to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5), 

produced by the American Psychiatric Association(136). 

Previous studies have stated that one of the key problems afflicting schizophrenia patients is 

the time taken to reach a correct diagnosis(137). As mentioned in 1.1, one study found 50% 

patient diagnoses changed over the course of ten years, following initial admission for 

psychosis(13).  A large component of this is thought to be the reliance on clinical interviews 

as the sole diagnostic technique. The problems of just using clinical interviews for diagnosis 

were highlighted in a landmark study in 1973 in which healthy individuals faking 

hallucinations were diagnosed with psychiatric disorders and admitted to hospital(138).  

More than 40 years on, misdiagnosis through clinical interviews remains common across all 

psychiatric disorders, with one study reporting that approximately one third of bipolar 

patients are mistakenly diagnosed with schizophrenia or other psychotic disorders(139). 

Various reasons have been postulated for why schizophrenia patients in particular are 

misdiagnosed, for example the refusal of some patients to acknowledge symptoms of 

psychosis such as hallucinations or delusions, the overlap of symptoms between different 

psychiatric disorders(140), the occurrence of similar symptoms in schizophrenia and mood 

and personality disorders(141), frequently occurring confounding factors such as substance 

abuse, and symptoms of other medical conditions(142). The heterogeneous nature of 

schizophrenia itself can make diagnoses difficult and unreliable as each patient may 

manifest a different subset of symptoms(143). 
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Table 1.3. DSM-5 criteria for the diagnosis of schizophrenia(136) 

A 

Two or more of the following, each present for a significant portion of time during a 1 month 
 period:  
a. Delusions 
b. Hallucinations 
c. Disorganized speech 
d. Grossly disorganized or catatonic behaviour 
e. Negative symptoms, i.e., affective flattening, alogia or avolition 
 
Note: Only one Criterion A symptom is required if delusions are bizarre or hallucinations consist of a voice 
consisting of a running commentary on the person's behaviour or thoughts, or two or more voices 
conversing with each other. 

B For a significant portion of the time since the onset of the disturbance, one or more major areas of 
functioning, such as work, interpersonal relations, or self-care, are markedly below the level achieved 
prior to the onset (or when the onset is in childhood or adolescence, failure to achieve expected level of 
interpersonal, academic, or occupational achievement). 

C Continuous signs of the disturbance persist for at least 6 months. This 6-month period must include at 
least 1 month of symptoms (or less if successfully treated) that meet Criterion A (i.e., active-phase 
symptoms) and may include periods of prodromal or residual symptoms. During these prodromal or 
residual periods, the signs of the disturbance may be manifested by only negative symptoms or by two or 
more symptoms listed in Criterion A present in an attenuated form (e.g., odd beliefs, unusual perceptual 
experiences). 

D Schizoaffective disorder and depressive or bipolar disorder with psychotic features have been ruled out 
because either (1) no major depressive or manic episodes have occurred concurrently with the active 
phase symptoms; or (2) if mood episodes have occurred during active-phase symptoms, their total 
duration has been brief relative to the duration of the active and residual periods 

E Substance/general medical condition exclusion: The disturbance is not attributed to the direct 
physiological effects of a substance (e.g., a drug of abuse, a medication) or another medical condition. 

F If there is a history of autism spectrum disorder, the additional diagnosis of schizophrenia is made only if 
prominent delusions or hallucinations are also present for at least 1 month (or less if successfully treated). 

 

In addition, there are currently no tools available to aid psychiatrists either with diagnosis, or 

prognosis for those in the prodromal phase to detect which individuals are more likely to 

develop schizophrenia. The latter is a particularly critical area of research in psychiatry as 

studies have shown that the earlier treatment intervention occurs, the more likely it is to be 

effective(144).   
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1.5.3 Serum biomarker panels 

The identification of serum biomarker panels as the basis for a blood test which could be 

used as a clinical diagnostic tool, has long been an objective across the healthcare 

spectrum. Considerable investment has been made in biomarker studies in cancer(145), 

tuberculosis(146), Alzheimer’s(147) and many other diseases(148). The WHO has 

encouraged biomarker research, stating that millions of patients could be saved from 

premature deaths through more accurate diagnostics(149).  

If such a biomarker panel could be identified and established to work reproducibly and 

efficaciously in schizophrenia, it could potentially yield considerable clinical benefits. The 

current DSM-5 based diagnostic criteria, described in 1.5.1, requires a 6 month duration of 

continuous symptoms before diagnosis is confirmed(132). The use of a biomarker panel 

could establish a diagnosis more rapidly, resulting in less delay before treatment and 

therefore better patient outcomes(132). Studies have shown that schizophrenia patients with 

a shorter duration of untreated psychosis are typically more responsive to antipsychotic 

treatment as well as being less symptomatic later on, resulting in lower maintenance doses 

of medication(144). One of the minimum requirements of a biomarker panel would be for it to 

be highly sensitive and specific. From a diagnostic perspective, the minimum sensitivity of 

clinical interviews in correctly diagnosing schizophrenia patients has been estimated to be 

75%, hence it is felt that any additional diagnostic tool should have a sensitivity and 

specificity of at least 80%(150).    

It is thought to be possible to identify CNS disorders relative to healthy controls through a 

fingerprint of alterations in peripheral protein biomarkers(132). The peripheral alterations 

described in 1.3.2 are believed to be a consequence of CNS dysfunction, and thus can be 

used as a tool for diagnosis. For example, as discussed in 1.4.2 and 1.4.4, two of the main 

hypotheses for the onset of schizophrenia are immune and metabolic system dysfunction. 

These peripheral pathways can be altered via crosstalk with the CNS, mediated by various 

hormonal signalling networks, molecular signalling pathways and neuroanatomical 

networks(151). Various proteomic profiling studies conducted on the serum of schizophrenia 

patients have identified significant alterations in proteins relating to immune and metabolic 

pathways, as described in 1.3.2. However, research remains ongoing into whether such 

alterations provide consistent predictive power across the spectrum of heterogeneity within 

the schizophrenia patient population, and whether their predictive ability remains robust to 

confounding factors which can affect the levels of serum proteins such as antipsychotic 

medication(152). 
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As of yet, no diagnostic biomarker tests for schizophrenia and other psychiatric disorders are 

clinically available. A variety of gene expression and microRNA profiling studies have been 

carried out to identify blood-based biomarkers for schizophrenia with a range of diagnostic 

accuracies obtained by plotting receiver operating characteristic (ROC) curves. Classification 

performances, based on the area under the curve (AUC), of 0.69-0.85 have been reported 

between patients and controls using these biomarkers (153–155). A 2010 proteomics study 

reported the identification of a diagnostic signature of 51 inflammatory, oxidative stress and 

hypothalamic–pituitary–adrenal signalling serum proteins altered in first onset schizophrenia 

patients compared to controls with 83% accuracy(156). This 51-analyte assay was 

incorporated into a clinical blood test but was subsequently withdrawn(152). While clinicians 

agreed that the test could be helpful in aiding diagnosis schizophrenia, measuring 51 

proteins meant that it cost $2500 per patient, which was considered prohibitive(152,157).  

In addition, subsequent studies have found that psychiatrists consider one of the most 

pressing clinical needs is a biomarker test which can predict psychosis or schizophrenia 

conversion in prodromal individuals(152). Overall, the biomarker field for schizophrenia 

remains in its early stages. The major limitation has been that it is difficult and expensive to 

recruit patients, and therefore many discovery studies are underpowered statistically, and 

lack validation cohorts.  As the field develops, and more data becomes available, more meta 

analyses and validation will be possible(158).  

 

1.5.4 Predicting disease conversion from the prodromal phase 

The need for a prognostic tool based on biomarkers which can predict conversion to 

psychosis or schizophrenia in prodromal individuals, arises from evidence that one of the 

major causes of the delay in reaching a correct diagnosis of the disorder is the insidious 

disease onset. As a result many psychiatrists prescribe antipsychotic medication to 

individuals thought to be at high risk of schizophrenia purely on the basis of family history 

and early functional decline, even though a schizophrenia diagnosis has not been 

reached(159). Hence over the past two decades much focus has been placed on the 

prodromal phase of schizophrenia, such that the recent revision of the DSM-5 has seen 

prodromal syndrome listed as a ‘condition for further systematic study’ and a potential future 

diagnostic category(160). While prodromal symptoms such as disturbances in perception, 

thought processing, language and attention can resolve(161) and hence do not guarantee 

transition to an initial psychotic episode, they can indicate an increased risk of this 

transition(162). Studies have found that around 20-35% of individuals in the prodromal 



17 
 

phase go on to develop schizophrenia over a 2-3 year period(14). As a result prodromal 

schizophrenia is often referred to as ultra-high-risk syndrome(12).  

A biomarker panel which could perform with high efficacy as both a diagnostic and a 

prognostic tool would be an important breakthrough in helping psychiatrists to identify 

particularly vulnerable patients early in the disease process, allowing for earlier or even 

preventative therapeutic intervention(163). Some studies have hypothesized that if it were 

possible to predict disease onset with near certainty, then it may be possible to reduce the 

duration of untreated psychosis to zero(152).  

However, a biomarker panel intended for potential prognostic use in the clinic would need to 

be highly robust due to the potential consequences of false-positive predictions. The 

majority, approximately 70%, of individuals with prodromal symptoms do not develop 

schizophrenia, and a false diagnosis may have devastating consequences due to the stigma 

associated with the disorder(164). In addition, the consequences of unwarranted treatment 

could be serious as studies have shown that when antipsychotics are used to treat 

individuals with ultra-high-risk syndrome, there is an increased risk factor for motor side 

effects for example akathesia and EPS with first generation antipsychotics and metabolic 

side effects such as cardiac disease and diabetes with second generation 

antipsychotics(165). 

So far few biomarker studies have been conducted in prodromal schizophrenia cohorts. A 

2015 study identified a panel of 15 analytes in plasma capable of predicting conversions 

from individuals with ultra-high-risk syndrome to psychosis, but to date, this has not been 

taken forward to the clinic(166). 

 

1.5.5 Current proteomic biomarker study limitations 

There is a need for novel studies for the identification of diagnostic and prognostic biomarker 

panels for schizophrenia which avoid some of the limitations of existing proteomic biomarker 

studies across the field of medicine. Many of these limitations have been observed in studies 

attempting to identify biomarkers for different psychiatric disorders. This section looks to 

summarize these limitations, and address methodologies for tackling them. 

Between 2008 and 2013, over 3000 publications were listed in PubMed for ‘biomarker 

discovery.’(167) Across these studies, a wide variety of bioinformatic strategies were used to 

try and identify panels of proteomic biomarkers which were sensitive and specific enough to 

be used as diagnostic tools. Various statistical and machine learning based classification 

methods such as support vector machines (SVM)(168), random forest(169,170), artificial 
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neural networks(171), and linear discriminant analysis(172) have been used to try and 

identify global trends in discovery datasets. Alternative approaches include the use of 

dimensionality reduction techniques such as principal component analysis (PCA) to identify 

important influences in data which can be taken as biomarkers(167). Newer studies have 

begun to explore the potential of Bayesian methods in proteomic analysis due to their 

capacity for handling complex, noisy and incomplete data(173,174). However, despite many 

model comparison biomarker studies using classification criteria including ROC based 

performance metrics,  as yet no one model has been identified as being optimal for 

biomarker discovery(175–177). Instead the “correct” solution often hinges on a variety of 

factors ranging from the characteristics of the discovery dataset to the interpretability of the 

model for clinicians(178).  

Regardless of the model employed, many proteomic biomarker discovery studies have 

suffered from limitations based on poor statistical design(179,180). This has seen the field 

come under scrutiny in recent years because few published candidate biomarkers have 

‘survived’ validation and reached clinical utility, despite significant government and industry 

investment(181,182). Among the few positive case studies has been the identification of the 

HER-2/neu, estrogen receptor, and progesterone receptor biomarkers which are all used 

clinically for diagnosis and prognosis(183).  However numerous other protein biomarkers 

which were initially thought to be highly discriminatory in breast cancer, and other diseases, 

for example in prostate, pancreatic, and ovarian cancers, have all failed to validate across 

multiple follow-up studies. Those studies revealed that the markers, having appeared 

promising, do not provide sufficient sensitivity, specificity and prognostic value for clinical 

decision making across a range of independent sample cohorts(184,185). These setbacks 

have illustrated that the challenge of finding a sensitive and specific panel of protein 

biomarkers is more complex than previously thought, particularly problematic in a highly 

heterogeneous disorder such as schizophrenia. 

1.5.5.1 Statistical Shortcomings 

Reviews seeking to address why so many discovery studies have ultimately failed to achieve 

their desired goals have pinpointed a variety of statistical downfalls(186). These are 

summarized as follows: 

(a) Overfitting: Overfitting refers to the chosen statistical model fitting the discovery dataset 

to the extent that it picks up and learns random noise in the data as concepts, therefore 

negatively impacting its ability to generalize(187). Because the model does not reflect a 

general trend, its performance on independent validation datasets is negatively impacted. 
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Studies have cited overfitting as one of the main reasons why many proteomic biomarkers 

have failed to reach clinical utility, as they have been identified as strong predictors in the 

initial discovery study, but subsequent validation studies have proved disappointing(188).  

Overfitting is exacerbated by small sample sizes, which is a particular problem in psychiatric 

research where substantial patient cohorts are difficult to obtain and expensive, particularly 

for serum profiling. Many proteomic discovery experiments involve the use of multiplex 

immunoassay technology for the measurement of protein levels or LC-MSE for peptide 

identification and quantification, measuring sometimes thousands of variables (referred to as 

p) on a fairly small number of samples (referred to as n). The typical statistical guideline for 

discovery cohort dimensions is the number of events per predictor variable (EPV) where an 

‘event’ is defined as the clinical group with the lower frequency, and the predictor variables 

are the proteins or peptides being measured(189). Studies suggest that the minimum EPV 

should be at least 5(189), but many discovery studies in psychiatry have an EPV of less than 

1 because there are far fewer clinical samples than proteins/peptides being measured 

(190,191). For example, in Perkins et al.(166) the discovery cohort has an EPV of just 0.27, 

as 117 proteins are measured across 32 psychosis converters (the clinical group with the 

lower frequency).  One of the consequences of a low EPV is that the statistical models 

trained on this discovery cohort may not have sufficient degrees of freedom to accurately 

estimate the full model.  This is typically referred to as the “small n, large p” problem, and 

can affect the performance of the model on validation cohorts(187). 

(b) No validation cohorts: To obtain an unbiased estimate of the performance of the 

statistical model trained on the discovery data, it is necessary to validate it on independent 

cohorts. This is required to evaluate whether the model is overfitting. However many study 

designs do not include validation cohorts, and only use the discovery data to estimate the 

model performance(188). This is again commonly seen in psychiatric research due to the 

difficulties in obtaining samples. For example, Perkins et al. identified a panel of 15 

biomarkers for predicting conversion to psychosis from prodromal individuals with an AUC of 

0.88 but the model was trained and tested on the same data(190). If the model is overfitting, 

the performance estimate will be overly optimistic compared to its true classification ability, 

as the biomarker coefficients are already strongly associated with the response 

variable(192,193). 

(c) Inclusion criteria: An additional problem for biomarker discovery studies is that 

discovery datasets can be unintentionally pre-biased through selection of subjects(167,168). 

This is particularly pronounced in psychiatric disorders due to the high disease heterogeneity 

stemming from the various underlying pathophysiological causes. Therefore, biomarkers 
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identified in one particular set of subjects may not be robust in another dataset obtained 

through different selection criteria. This problem is especially pronounced when discovery 

datasets are small, but it can be negated somewhat by conducting biomarker discovery 

through meta-analysis of data from multiple independent studies(167,168). However, in 

psychiatric disorders, this problem is especially challenging because there are so many 

confounding variables associated with these disorders for example age, sex, and ethnicity, 

as well as environmental factors such as substance abuse, and life traumas(191).  

(d) Erroneous application of models: In studies which do have validation cohorts, inflated 

performances estimates can be obtained through erroneous application of statistical 

methodologies(188). For example in Chan et al. 26 biomarkers were obtained through 

applying a logistic regression model to the discovery dataset(12). Subsequently, a new 

regression model was fitted to each of the validation cohorts using those 26 biomarkers, 

resulting in biased performance estimates of AUC = 0.9 and greater. The only way to ensure 

unbiased and accurate evaluation of the performance of a biomarker panel is to use the 

same model for discovery and validation.    

 

1.5.5.2 Strategies for negating statistical shortcomings 

Reviews seeking to improve the quality of future proteomic biomarker studies have proposed 

various strategies which can be used to address the above mentioned shortcomings, in an 

attempt to identify more robust and clinically relevant biomarkers(167). 

(a) Meta-analysis: In addition to addressing the inclusion criteria problem, meta-analysis of 

multiple independent datasets to create a larger discovery dataset can be used to reduce the 

overfitting problem, by increasing the EPV(186). However due to sample limitations in 

psychiatric studies, it may still be difficult to reach the recommended 5 EPV. 

(b) Reducing the model space: With p predictor variables, the total model space is 2p. One 

of the strategies which can be used to reduce overfitting, is to prefilter the number of 

predictors in the discovery dataset through running a series of t-tests or linear regression 

model(186). Thus the dataset is stratified by eliminating proteins which were not significant 

(p < 0.05) according to the t-test/regression model, and then training a classification model 

on this filtered data.   

(c) Utilizing prior information: If relevant prior information exists on the predictor variables 

in the discovery dataset, either through independent datasets or previously reported findings 

in the literature, this can be utilized through applying Bayesian models with an informed 

prior(194). This is thought to result in more stable and informed models through the twin 
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benefits of filtering spurious proteins, and potentially identifying higher levels of abstraction 

through groups of proteins acting in concert in a signalling pathway to influence biological 

response. This is thought to be a potential improvement on classification models such as 

Random Forest(167,194). Such methods have already been incorporated in other fields of 

medicine, for example the integration of existing data to predict response to an anti-cancer 

agent in breast cancer studies(195). 

 

1.6 Preclinical models for drug discovery 

Despite the findings from proteomic studies over the past decade regarding schizophrenia 

pathology, as summarized earlier in this chapter, there remain difficulties in translating 

findings into improved treatment options. This is felt to be partly due to a lack of effective 

preclinical models of schizophrenia which has hindered the ability to screen for novel 

compounds against targets of interest(196). There is a need for novel preclinical models of 

the disease which can be utilized to explore the affected functional pathways relating to 

changes observed in the periphery between control and disease states. To date, the majority 

of preclinical models for developing novel drugs for schizophrenia have been animal models, 

but it has been commonly observed that a key driver in the high drug attrition rate is the lack 

of a methodology for translating pathophysiologies identified in these models to the human 

disease (described further in 1.6.2)(196).       

 

1.6.1 Cellular models of schizophrenia 

Over the past six years, cellular models of schizophrenia have formed a new class of 

preclinical models for investigating various hypotheses of the disorder(197). Peripheral blood 

cells, which express signalling pathways of interest found in the brain, for example those 

involving neurotransmitter and cytokine receptors(198), have already been used as a cellular 

model to identify known disease signatures in schizophrenia patients, as well as novel 

functional changes relating to impaired energy metabolism(197). Subsequent investigations 

have sought to use this model to screen various compounds against identified targets. A 

different cellular model, obtained directly from patients, has used neuron-like cells from 

reprogrammed fibroblasts to investigate the neurodevelopmental hypothesis of 

schizophrenia, reproducing abnormalities found in patients with the disorder such as 

reduced neuronal connectivity and post-synaptic density(199). 

This section describes a novel cellular model of schizophrenia which is investigated later in 

this thesis, exposing the brain’s immune cells, the microglia, to serum from schizophrenia 
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patients and controls in vitro. As explained in 1.6.1.2, abnormal activation of brain microglial 

cells has been widely implicated in the pathogenesis of schizophrenia, a process which 

GWAS studies have indicated may be linked tothe presence of altered circulatory proteins 

with microglial activation propensity(25,200–202). Many hypotheses of schizophrenia, 

including immune system dysfunction (1.4.2), infectious disease (1.4.3) and 

neurodevelopmental dysfunction (1.4.5), are based around dysfunctional interaction between 

the periphery and CNS, which will be described in more detail in the next section. However, 

as yet, this hypothesized effect of circulatory protein abnormalities on microglial activation 

status has not been explored. Therefore analysis of data generated from this model may 

point towards new cell signalling targets, and provide a means of testing compounds with the 

potential to normalize the activation phenotype, on a human cell line. 

 
1.6.1.1 Peripheral and central inflammation in schizophrenia 

CNS immune function is driven by separate systems to that of the periphery, and thus the 

characteristics of neuroinflammation differ somewhat to inflammatory processes in other 

tissues. In particular, the brain contains few of the immune system cells found elsewhere in 

the body. However, there is a continuous crosstalk between the CNS and the periphery, 

reflected by an exchange of signalling proteins which can influence central immune system 

processes(203). 

As such, there are a variety of mechanisms by which peripheral inflammation has been 

hypothesized to either mirror or cause CNS dysfunction in schizophrenia. As mentioned in 

1.3.2 and 1.4.2, many molecular profiling studies have identified increased blood 

concentrations of inflammatory cytokines in schizophrenia patients. Studies have suggested 

that high concentrations of cytokines may affect brain function through interaction with the 

vagus nerve(204), or through direct or indirect modulation of dopaminergic or glutamatergic 

neurotransmission(205–208). 

The amount of crosstalk between the periphery and the CNS is typically restricted in healthy 

individuals due to the presence of the BBB. However high cytokine concentrations in the 

periphery can cause disruption, lowering the BBB and inducing abnormal trafficking of 

leukocytes and large inflammatory molecules between the periphery and the brain(203).  

Damage to the BBB impairs its ability to modulate which cells and molecules enter the brain, 

enhancing neuroinflammation and preventing normal brain function, leading to tissue 

damage(203). In addition, high concentrations of peripheral cytokines can stimulate cytokine 

production in the cells which form the BBB, allowing cytokines to reach the brain through the 

circumventricular organs, structures in the brain which lack a BBB(204).       
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1.6.1.2 The role of microglia in schizophrenia 

Microglia are the brain’s immune cells and provide a similar protective function in the CNS 

against insults and foreign invaders, to that of the peripheral immune cells in the rest of the 

body(209).  In healthy individuals, microglia survey the entire CNS for pathogens and debris, 

and are involved in a variety of homeostatic functions including synaptic pruning and 

maintenance, developmental apoptosis, neuronal survival, trafficking of neurotransmitters, 

and phagocytosis(203,210,211). However, dysfunctional microglia-mediated inflammatory 

processes have been theorized as one of the mechanisms behind several of the hypotheses 

for schizophrenia, resulting in many of the structural brain changes known to be associated 

with the disorder(212,213). Microglia have different phenotypical activation states ranging 

from an M1 pro-inflammatory phenotype which arises in response to neuroinflammation and 

leads to the release of glutamate and inflammatory cytokines such as interleukin (IL)-6 and 

TNF-alpha, to an M2 neurotrophic phenotype which resolves the inflammatory response 

through the release of anti-inflammatory cytokines such as IL-4 and IL-13(214). The balance 

between the M1 and M2 states is known to be crucial to aid the brain in repairing itself from 

acute injury(215,216). However, while microglia naturally activate in response to pathogens, 

it is thought that microglial dysfunction can accentuate the schizophrenia disease process by 

subjecting the brain to an inflammatory assault causing disturbances in both grey and white 

matter which underpin the disorder(217–221).  

The release of pro-inflammatory cytokines by M1-activated microglia is thought to have the 

capability to disrupt the BBB, allowing cytokines from the periphery to reach the brain, 

creating a build-up of neuroinflammation(203). The cytotoxic consequences of persistently 

activated microglia are hypothesized to potentially result in secondary neuronal 

degeneration, decreased neurogenesis and synaptic dysfunction(212). Little is known about 

the consequences for the CNS of microglial dysfunction in the M2 phenotype, particularly 

regarding schizophrenia. In addition, microglial dysfunction is thought to be associated with 

the neurodevelopmental hypothesis of schizophrenia, through neurotoxic mechanisms other 

than cytokine production. In healthy individuals, the interaction between microglia and 

complement activation is thought to be necessary for brain wiring and development in the 

postnatal period(222). However, when this process goes awry or is recapitulated during 

adulthood, the overactivation of the complement cascade is thought to lead to 

neurodegenerative processes resulting in destabilization of neuronal circuits and synapse 

elimination(223,224).  

As of yet there is no direct empirical evidence proving the relationship between dysfunctional 

microglial activation and schizophrenia, but a number of studies have pointed towards a 
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causal link. Some post-mortem studies of the disorder have identified increased microglia 

density in several brain regions(225–228), and various animal studies based on pre or 

postnatal infection paradigms stimulating inflammation, have pointed towards a link between 

increased microglial density or activation and schizophrenia endophenotypes(229–232). 

Moreover, clinical and preclinical studies on agents such as minocycline which are known to 

be capable of crossing the BBB and inhibiting microglial activation, have shown benefits in 

ameliorating symptoms of schizophrenia(233–237).  

 

1.6.1.3 The two-hit hypothesis 

As mentioned in 1.4.3 and 1.4.5, the theories of dysfunctional microglial activation as one of 

the mechanisms for schizophrenia neuropathology, are linked to the infectious disease and 

neurodevelopmental hypotheses for the disorder through the so-called “two-hit” hypothesis 

of schizophrenia(238). This postulates an involvement of genetic liabilities to schizophrenia 

through various risk factors such as those touched upon in 1.4.1, combined with an 

environmental insult during the key early phases in neurodevelopment(239). This comprises 

the first hit, affecting CNS development and creating an abnormal signalling network(240). 

The first hit primes the individual for an event later in life, the second hit, which results in the 

onset of the disorder(239). This second hit typically occurs in adolescence or post-

adolescence and can be one of a range of incidents from viral infection to immune system 

dysfunction or environmental stress(241). The two-hit hypothesis is summarized in Figure 

1.1.    

Various environmental insults have been suggested as potential contributory factors to the 

first hit. Past studies have pointed towards factors such as extreme stress causing an 

immune insult during gestation and affecting the developing nervous system(242,243). 

Evidence comes, for example, from epidemiological evidence of disease incidence following 

the Dutch famine of 1944-1945 which resulted in a two-fold increased in schizophrenia 

prevalence for offspring whose second trimester occurred during this period(244,245). Other 

studies have suggested that maternal infection during the prenatal phase could be a key 

component of the first hit as discussed in 1.4.3, and that the resulting maternal immune 

activation could interfere with fetal brain development(241). 

The role of microglia in the two-hit hypothesis is thought to be through early microglial 

activation via the first hit, subsequently sensitizing them for later activation(246). Animal 

studies have provided evidence for this theory, suggesting that infections or severe stress in 

the prenatal or early life phases can result in primed microglia which are then more easily 

activated(247–249). From a molecular perspective, this priming may result in abnormal 
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Genetic Vulnerability

• Environmental Stress
• Maternal Infection
• Immune system dysfunction

• Abnormal cortical development
• Impaired myelination
• Primed microglia
• Predisposition to psychosis

• Viral Infection
• Environmental Stress
• Autoimmune disorder

• Activated microglia
• Increased neuroinflammation
• More permeable BBB
• Cytotoxicity

• Conversion to psychosis

Figure 1.1.  The two-hit hypothesis of schizophrenia. During key early phases in neurodevelopment,  
environmental insults combined with genetic vulnerability can prime microglia  for a further event later in life, 
triggering microglial activation and neuroinflammatory processes which lead to the onset of schizophrenia.  
Abbreviations: BBB, blood brain barrier.  

development of microglial cells themselves, possibly in terms of their glutamate receptor 

composition, leading to increased inflammatory cytokine release upon activation, which in 

turn could result in excitotoxic neuronal death(250). 

 

 

1.6.1.4 Bioinformatic strategies for investigating data from 
cellular models of schizophrenia 

As mentioned earlier in this section, while cellular models of schizophrenia represent a novel 

area of preclinical research into the disorder, thus far no studies have investigated the 

functional effects of circulatory protein abnormalities on microglial activation status. One of 

the proteomic platforms used to analyze such cellular models is flow cytometry (described in 

Chapter 2) which typically yields median fluorescent intensities for different cellular epitopes 

in response to a stimulant. Experiments are often run in triplicate, and thus a linear mixed 

model provides a means of modeling any experimental variation between measurements. In 

addition, the molecular pathways in such models are typically driven by modules of proteins 
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working in concert rather than the expression of individual molecules(251). Such is the likely 

complexity of the signaling networks driving microglial phenotypes in schizophrenia, 

approaches such as Goeman’s global test will be a necessary addition to univariate analysis 

to order to examine expression changes across the differentially regulated pathways. 

Through analyses which are based not just on single proteins, but affected pathways or 

signaling chains, a more complete interpretation can be reached(251).  

1.6.2 Animal models of schizophrenia 

As described in 1.1, there has been a lack of significant breakthroughs in developing new 

treatments for schizophrenia over the past half century. This has had a significant impact on 

patients suffering from the disorder as while positive symptoms can be ameliorated to a 

certain extent by first and second generation antipsychotics, negative and cognitive 

symptoms remain resistant(252–254). As such there is a pressing need to develop novel 

compounds which display efficacy against these aetiopathological facets of the disorder.  

 

1.6.2.1 The need for animal models of schizophrenia    

Animal models represent the first phase in the drug discovery pipeline and are regarded as 

valuable preclinical tools to investigate the mechanisms behind disease progression and 

molecular pathways forming the basis of a complex disorder such as schizophrenia. Such 

models can provide a more rapid platform for monitoring disease progression, and provide a 

means of testing novel therapeutics which would not be feasible in humans(255).  In 

addition, animal models of psychiatric disorders enable various environmental or genetic risk 

factors to examined under controlled conditions, and it has been hoped that models which 

recapitulate certain aspects of the human pathology in response to environmental or genetic 

manipulations can facilitate identification of novel targets for further validation.  

It is currently estimated that there are over 20 different animal models of “schizophrenia”, 

most of which produce a phenotype replicating certain aspects of the positive symptoms of 

schizophrenia although some also demonstrate aspects of impairments in cognition(22). 

These models are typically selected based on a spectrum of behavioural and biochemical 

abnormalities such as vulnerability to stress, abnormal response to reward, limbic dopamine 

dysregulation and cortical glutamatergic hypofunction.   
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1.6.2.2 Glutamatergic animal models of schizophrenia 

As discussed in 1.4.6, all currently available treatments for schizophrenia have been 

developed in response to various neurotransmitter theories of the disorder. The majority of 

preclinical research has focused on hypotheses based on dopaminergic system dysfunction 

but over the past two decades, there has been growing interest in glutamatergic models of 

schizophrenia based on evidence pointing to NMDAR abnormalities as one of the disease 

mechanisms(256).    

NMDA antagonist models of schizophrenia are the most studied glutamatergic models of the 

disease(256). These models are based on the systemic injection of NMDA receptor 

antagonists such as the dissociative anethetic phencyclidine (PCP), ketamine, AP5 or 

MK801 in laboratory animals, predominantly rodents. These models have various 

advantages over alternative preclinical pharmacological models of the disorder such as 

those administering amphetamine or cannabinoids, most notably that they have a direct 

clinical parallel. Various clinical trials exposing healthy individuals to a single injection of 

ketamine or PCP have been shown to induce temporary schizophrenia-like symptomatology 

including positive symptoms such as paranoia and auditory hallucinations, as well as 

negative and cognitive symptoms such as social withdrawal and impaired working 

memory(257–262). In addition, both clinical and recreational use of PCP has been found to 

precipitate episodes of psychosis which are unresponsive to conventional antipsychotic 

treatment(258,263). PCP and ketamine preclinical models produce a phenotype which bears 

some similarities to the observed clinical effects of these agents in humans. This phenotype 

has been repeatedly shown to be characterised by hyperactivity, stereotypic behaviour, 

sensory gating deficits and impaired working memory performance(264–267). 

In addition to pharmacologically based models of schizophrenia, in recent years mutant 

models have been developed based on studies which have identified genetic abnormalities 

in schizophrenia patients relating to the glutamatergic system. These models include 

neuregulin 1 hypomorphs, a gene which regulates expression of glutamate receptor 

subunits(268). Another mutant model of interest the NR1 partial knock-down model which 

reduces NMDAR expression and has been seen to produce a phenotype characterized by 

exaggerated locomotion, stereotypy and reduced social interaction(269).     
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1.6.2.3 The need for novel bioinformatic strategies to 
assessing translational relevance between animal models of 
psychiatric disorders and human pathology 

 
As mentioned in 1.6, for all animal models of psychiatric disorders, finding a means of 

assessing the translational relevance in a quantitative fashion is an ongoing challenge, 

particularly in terms of identifying which model represents a particular aspect of the human 

pathology most closely. Nestler et al. defined construct, face and predictive validity as a 

means of characterising preclinical models, as summarized in Figure 1.2(270).  Construct 

validity concerns whether a model replicates implicated aetiological factors of the human 

disorder. Face validity concerns whether a model shows symptomatic homology to the 

disorder, particularly in terms of known behavioural and biochemical aspects of the 

condition. Predictive validity concerns whether the observed face validity can be 

subsequently ameliorated following treatment interventions.  

 

Despite these characterizations, many studies have found that behavioural observations 

associated with a particular animal model can be hard to directly quantify, even if correlated 

Animal modelPredictive validity Face validity

Construct validity
• Represents implicated aetiological factors eg: 
genetic alterations, neurotransmitter 
dysfunction

• Shows symptomatic homology eg: mimicking 
positive or negative symptoms of the disorder

• Antipsychotics work with similar effectiveness 
as in humans
• Can test novel therapeutic compounds 

Figure 1.2.  The three aspects of validity for assessing the translational relevance of an animal model of a 
psychiatric disorder to the human disease pathology; construct, face and predictive validity.
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with disease symptomatology, making it difficult to assess uniquely human behavioural 

symptoms in animals(255,271). Attempts to profile molecular biomarkers underpinning 

behavioural endophenotypes in animal models of psychiatric disorders have led to difficulties 

in interpretation due to the limited overlap in proteome coverage between human and rodent 

tissue (272) As a result, progress in developing new animal models for psychiatric disorders 

has slowed to a standstill, creating a pressing need for new bioinformatic methodologies to 

aid the comparison of these models to the disease state(270).  

However, one emerging area of bioinformatics for the comparison of large scale proteomic 

data, such as that obtained from profiling analysis of tissue or serum from an animal model, 

is network biology and in particular protein-protein interaction (PPI) networks(273). These 

strategies can be used to obtain functional information represented by observed molecular 

changes and thus perhaps link functional alterations in animal models to the human disease 

on an ontology level, providing a new way of interrogating translational preclinical 

validity(274,275). 

 

1.7 Thesis aims and outline 

Despite considerable research, the aetiology and pathophysiology of schizophrenia remains 

little understood. Proteomic research can yield further insights into the pathophysiological 

mechanisms of the disorder through different profiling studies, with the aim of improving 

diagnosis and treatment of the disorder. 

As such, the aims of this thesis are multi-faceted. This work (a) explores the potential for 

serum protein biomarkers to provide a new diagnostic and prognostic tool for schizophrenia; 

(b) analyzes data from a novel cellular model of schizophrenia to examine alterations in 

signalling pathways underpinning dysfunctional microglial activation in both antipsychotic 

naive and antipsychotic treated patients. These studies aim to identify new potential targets 

in the CNS and quantify the potential of various compounds for normalizing the observed 

changes; (c) develops a novel methodology to conduct a functional comparison between 

proteomic changes observed in animal models of a psychiatric disorder to those observed in 

human post-mortem brain tissue. The aim of this methodology is to enable more targeted 

preclinical studies in future, and thus aid identification of novel targets relating to particular 

neuropathological facets of a psychiatric disorder.     
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Below is an outline of the remaining chapters of this thesis: 

 Chapter 2 discusses the experimental platforms used to generate the data analyzed 

in this thesis and the statistical methodologies used to obtain the results presented in 

Chapters 3-8.   

 Chapter 3 uses a multiplex immunoassay platform to measure the concentrations of 

proteins across various inflammatory, metabolic and hormonal pathways in 11 

cohorts of antipsychotic naive patients and controls, antipsychotic treated patients 

and controls, pre-symptomatic patients and controls, and prodromal converters and 

non converters. Multiple statistical models are trained on a meta-cohort of 

antipsychotic naive patients and controls. These models are subsequently tested on 

the remaining independent cohorts, assessing classification performance and thus 

their potential as a diagnostic and/or prognostic test. Variable selection methods are 

then used to identify important subsets of analytes in the training data relating to 

each model. New statistical models are subsequently trained on each of these sets of 

analytes, and classification performance on the independent cohorts is computed 

using these models to assess whether sufficient performance for clinical utility can be 

achieved with a smaller and more cost-effective set of proteins.    

 Chapter 4 applies the same methodologies as in Chapter 3 except it utilizes 

targeted mass spectrometry to measure the abundances of panel of peptides linked 

to psychiatric disorders in 5 cohorts of antipsychotic naive patients and controls, 

antipsychotic treated patients and controls, pre-symptomatic patients and controls, 

and prodromal converters and non converters. As in Chapter 3, the aim is to identify 

a model which achieves both high diagnostic and prognostic performance when 

tested in independent cohorts, while remaining financially viable in terms of the 

number of analytes required. 

 Chapters 5 & 6 analyze data from a novel preclinical cellular model of schizophrenia 

to investigate dysfunctional microglial activation. Chapter 5 investigates microglial 

disturbances in response to serum exposure from antipsychotic naive schizophrenia 

patients, and examines whether these signalling alterations can be normalized using 

known microglial inhibitors. Chapter 6 investigates microglial activation in 

antipsychotic treated patients through analyzing data from the aforementioned 

cellular model, in conjunction with PET imaging data from these patients. The 

chapter subsequently examines whether antipsychotics may be involved in driving 

the observed signalling alterations in patients.        

 Chapter 7 develops a novel methodology for quantifying the molecular similarity of 

protein alterations observed in animal models of psychiatric disorders with the human 
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disease pathology, using data from proteomic profiling of brain tissue. The 

methodology is applied to identify common neuropathological domains between three 

environmental stress animal models and post-mortem tissue of major depressive 

disorder (MDD) patients, and quantify which model represents each 

neuropathological domain of MDD most closely. 

 Chapter 8 applies the novel methodology outlined in Chapter 7 to conduct a 

functional comparison between four glutamatergic animal models of schizophrenia 

and post-mortem brain tissue from schizophrenia patients.  

 Lastly, Chapter 9 provides an overall summary of the findings from Chapters 3-8, 

and the implications of this work. In addition, this chapter discusses the limitations of 

the research presented and considers future studies which would build on these 

findings.  
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Chapter 2 Methods 
 

2.1 Proteomic data generation 

The proteomic data analyzed in this thesis is generated using four separate experimental 

platforms relating to the biological samples in question; multiplex immunoassay for the 

acquisition of serum protein concentrations (Chapters 3 and 5), MRM to quantify peptide 

abundances in serum (Chapters 4 and 5), flow cytometry for the measurement of 

fluorescent intensities from cellular epitopes in pathways relating to CNS pathology (Chapter 

5) and LC-MSE for the measurement of protein abundance in post-mortem brain tissue 

samples (Chapters 6 and 7). In Chapter 5, epitope measurements for schizophrenia patient 

and control samples are correlated with positron-emission tomography (PET) imaging data 

for several brain regions, an experimental platform will be very briefly summarized in this 

section. Details on how the data generated from each of these platforms was pre-processed 

and analyzed will be provided in each individual chapter. 

 

2.1.1 Multiplex immunoassay 

The multiplex immunoassay platform employed in Chapter 3 has been utilised for the 

purpose of biomarker detection across a range of psychiatric illnesses including 

MDD(276,277) and Alzheimer’s(278,279), as well as cancer(280). This particular 

immunoassay platform combines ELISAs with flow cytometry. The platform measures the 

concentrations of a pre-specified panel of proteins in serum using antibody based protein 

detection. This is achieved through the use of polystyrene microsphere beads coated with 

antibodies targeting the defined proteins. Each antibody can be individually identified by an 

internal dye consisting of a unique combination of red and infrared fluorophores. Following 

incubation with serum samples and protein binding, detection antibodies labelled with 

fluorescent dyes are added. Subsequently, the beads are fed into a flow cytometer where 

the internal and fluorescent detection dyes are utilized for identification and quantification of 

each protein. A red laser excites the internal dye, thus identifying the bead, while a blue 

laser excites the fluorescent detection dye and the amount of fluorescence is used to 

quantify the protein concentration levels. A similar platform is used in Chapter 5 to 

simultaneously measure specific cytokines and growth factors. The technology is illustrated 

in Figure 2.1. 
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Figure 2.1 Overview of multiplex immunoassay technology used to measure protein 
concentrations in serum. Image courtesy of Dr. Wolfgang Kluge, reprinted with permission. 

 

2.1.1.1 Advantages 

In general, multiplex immunoassay platforms hold several advantages. The platform used in Chapter 

3 enables the simultaneous measurement of the concentrations of over 200 proteins in serum, 

namely high and low abundance proteins involved in various hormonal, immune and inflammatory, 

metabolic and neurotrophic pathways. The high sample throughput of these platforms enables the 

analysis of hundreds of samples within a short timeframe, reducing measurement variability and 

sample deterioration which can result from lengthy experiments. It is possible to detect proteins over a 

wide dynamic range of concentrations, enabling the simultaneous measurement of high and low 

abundance proteins. In particular, multiplex immunoassays are very sensitive and specific for proteins 

typically present in low serum concentrations such as hormones or cytokines which is one of the 

biggest advantages of the technology(281,282). 
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2.1.1.2 Disadvantages 

The main drawback of these platforms is that there are a limited number of commercially 

available assays, and the proteins measured are biased towards a selected few biological 

pathways(283). Their reliability can also be compromised by cross reactions between 

proteins. Incorporating new assays is expensive as this can require generation of new 

antibodies, and extensive testing for interactions, for the protein of interest. In addition, they 

have relatively large sample volume requirements, are costly, and they can suffer from 

variation in concentration measurements due to the effects of batch to batch antibody 

variation(284,285).   

 

2.1.2 Mass spectrometry 

Two different mass spectrometry approaches are used in this thesis, which are summarized 

as follows.  

 

2.1.2.1 Liquid chromatography mass spectrometry in 
expression mode (LC-MSE) 

In Chapters 7 and 8, LC-MSE is used to measure peptide abundances in post-mortem brain 

tissue of patients with psychiatric disorders and animal models of those conditions. In these 

studies, the protocol applied involved protein digestion using trypsin, followed by peptide 

separation using liquid chromatography(286). Peptides are ionized as they are introduced 

into the mass spectrometer, before being accelerated through an electric field, meaning that 

the velocity of the ions depends on their molecular mass or mass to charge ratio (m/z). The 

accelerated ions are subsequently fragmented in the collision cell chamber by helium 

molecules. The peptides and thus proteins to which each of the ion fragments belong are 

identified by protein database algorithms which match them to corresponding precursor 

peptide ions through retention time, mass accuracy and other physiochemical properties. 

The ion fragments are fed into the time of flight analyser where they are accelerated by an 

electric field and the analyser measures the time taken by ions of different molecular mass 

values to reach the detector. The overall abundance quantification assumes that the mass 

spectrometry signal of a particular peptide is linearly related to its quantity(287). The data is 

subsequently exported for statistical analysis. 
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2.1.2.2 Advantages 

Hundreds or even thousands of peptides can be identified in a single non-hypothesis driven 

discovery analysis, known as ‘shotgun proteomics’ which allows for more complex functional 

analyses such as the creation of protein-protein interaction (PPI) networks as presented in 

Chapters 7 and 8(288).  

 

2.1.2.3 Disadvantages 

Unlike multiplex immunoassays, LC-MSE biomarker studies have been unable to detect 

lower abundance proteins such as cytokines, hormones and growth factors. In addition, LC-

MSE is thought to have poor reproducibility, which has contributed towards the failure of 

many proteomic biomarkers to validate(187,283).   

 

2.1.2.4 Liquid chromatography multiple reaction monitoring 
mass spectrometry (MRM) 

MRM is a highly sensitive and specific mass spectrometry technique which is used in 

Chapters 4, 5 and 6 to measure the abundances of a panel of peptides known to be 

associated with psychiatric disorders in the serum of patients and controls. MRM is a 

targeted mass-spectrometry approach which is utilized for quantification of pre-selected 

biomarker panels based upon an existing hypothesis(289). As described in the LC-MSE 

approach, the experimental protocol involved trypsin digestion of proteins, peptide 

separation, ionization and filtering, collision cell chamber fragmentation, and subsequent 

quantification. In addition, to these endogenous peptides, synthetically generated 

isotopically-labelled peptides with identical chromatographic, ionization and fragmentation 

properties, are added to the clinical samples in a 1:10 ratio to the endogenous peptides. This 

step is important to improve the specificity and reproducibility of the data(290). The data is 

subsequently exported for statistical analysis using a data pre-processing methodology 

outlined in Chapter 4.      

 

2.1.2.5 Advantages 

MRM has a number of advantages including low development costs and multiplexing 

capability(291). It has a higher dynamic range than traditional hypothesis-free mass 

spectrometry approaches like LC-MSE  allowing it to detect lower abundance proteins and is 

thought to be far more reproducible, allowing for sensitive and robust quantification(292). It 

requires lower sample volume than immunoassays which is useful from a practical 
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perspective as schizophrenia patient samples can be expensive and difficult to obtain(284). 

In addition, it does not suffer from batch to batch antibody variation resulting in fewer false 

positives and false negatives, and MRM experiments are not restricted to the commercial 

assays currently available.  

2.1.2.6 Disadvantages 

One of the main disadvantages of MRM is the time required to select representative peptide 

candidates for each protein of interest, synthesize isotopically labelled peptides for each 

endogenous peptide, and optimize the mass spectrometer in order to measure the particular 

set of peptides in question(293,294). In addition, because the intensities measured are those 

of peptide ion fragments (transitions) and the intensities of different transitions for a single 

peptide can differ substantially, manual validation is necessary to select the most abundant 

transition to represent that particular peptide(294). MRM also has a lower sample throughput 

compared to other technologies. 

 

2.1.3 Flow cytometry 

In Chapters 5 and 6, a flow cytometry platform incorporating fluorescent cell barcoding, is 

used for parallel detection of serum responses from patient and control populations across 

multiple intracellular signalling epitopes. This platform has been optimized across previous 

studies(196,295,296) to enable characterization of downstream signalling mechanisms in 

cellular models of schizophrenia. For the studies described in Chapters 5 and 6, a protocol 

is applied in which microglia cells are exposed to serum samples for thirty minutes before 

being fixed to stop signalling and phosphorylation events, and permeabilized so that 

antibodies for each epitope can enter the cells. Cells are subsequently multiplexed through 

the use of fluorescent cell barcoding technology to enable the simultaneous analysis of 

single-cell signalling responses of up to 139 serum samples, and then stained with 

antibodies specific to the phosphorylated form of the signalling epitopes of interest. Serum 

responses at individual epitopes are quantified through phosphoflow cytometry. This 

measures changes in phosphorylation status for each epitope in terms of the average of the 

fluorescent intensities of each antibody binding to each cell(297). These changes in 

phosphorylation status allows for the direct quantification of the activation or deactivation 

status of specific proteins(297). Protein phosphorylation is a reversible process which occurs 

through the addition of phosphatase to a protein by enzymes called kinases, resulting in the 

amino acids within the protein being phosphorylated or dephosphorylated, and thus 

regulating protein function(298). Phosphorylation of specific phosphoproteins is the main 
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mechanism through which extracellular stimuli such as cytokines, neurotrophic factors and 

hormones, modulate physiological processes(298). 

 
2.1.3.1 Advantages 

There are several advantages of the above flow cytometry platform in the context of 

proteomic data generation. Through measuring protein phosphorylation at different cellular 

epitopes, this approach provides more functional information than immunoassays, as it is 

measuring the quantity of activated or inhibited protein rather than protein 

concentrations(299). Secondly, many highly functional molecules such as protein kinases, 

have a fairly low level of expression, and thus other proteomic technologies do not detect 

them, focusing proteomic analyses towards more abundant proteins(300). Flow cytometry 

approaches make it possible to accurately measure signalling cascades downstream of 

these low abundance molecules. Thus thirdly, the use of flow cytometry and phospho-

specific state antibodies makes it possible to interrogate in vitro a number of signalling 

processes for which function in microglial cells is hitherto unknown in the context of 

schizophrenia. Fourthly, this technology makes it possible to screen a variety of compounds 

across the same signalling epitopes previously stimulated by serum samples(295). This 

allows for the identification of potential clinically relevant compounds with the abilities to 

normalize dysregulated signalling mechanisms seen in the disease state.  

 

2.1.3.2 Disadvantages 

It is not possible to utilize the flow cytometry platform described in this thesis, to quantify 

causal relationships between epitopes in the microglial signalling network through correlation 

analysis(301). As such, in Chapter 5 and 6 these relationships can only be speculated upon 

through the results of univariate and multivariate analyses of epitopes in different signalling 

pathways. This is because the platform measures three epitope responses at the same time 

in parallel, meaning that not all epitopes are measured in the same cell. Alternative 

technologies such as mass cytometry are capable of multiplexing 50 epitopes at a time(196), 

therefore offering the possibility of determining casual relationships between epitopes in the 

same signalling cascade across thousands of single cells.    
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2.1.4 Positron-emission tomography imaging 

In Chapter 6, PET imaging is used to measure binding potential (BPND) of the PET tracer 

(R)-[11C]PK11195 in total gray matter, and five gray matter regions of interest in recent 

onset schizophrenia patients and controls. The BPND of this tracer was used to measure 

levels of 18 kDa translocator protein (TSPO). Elevated levels of this protein is associated 

with microglial activation. The protocol followed was the same as described in previous 

studies(302). Following tracer administration, a three-dimensional emission scan was 

obtained, using a head immobilization device to minimize subject motion. Binding potential 

information was extracted from the image data using a supervised cluster analysis algorithm 

described in previous studies(302).     

2.2 Statistical methodologies 

This section provides brief summaries of the main statistical techniques used throughout this 

thesis. Details of how each method is applied to each particular dataset are provided in 

those chapters. The data pre-processing and analyses in Chapters 3-8 are carried out using 

the statistical program R (v3.1.3)(303), and the Bioconductor statistical package(304). 

Network analysis in Chapters 7 and 8 is carried out using the software package Cytoscape 

(v3.3.0)(305). 

 

2.2.1 Principal component analysis 

PCA is a non-parametric, multivariate technique used to reduce the dimensionality of 

complex datasets to facilitate visualization of trends or artefacts in the data such as batch 

effects(306). PCA projects correlated variables to uncorrelated linear combinations of these 

variables called principal components. It makes the assumptions that the dataset consists of 

linear combination of the variables, that large variances have meaningful dynamics, and that 

principal components are orthogonal(306). The first principal component is obtained by 

identifying a vector known as the loading vector, along which the greatest variation occurs in 

the data in the original variable space. Subsequent principal components are obtained by 

identifying vectors in the direction of maximum variance, providing that they are orthogonal 

to all principal components previously identified. The first few principal components account 

for the majority of the variation in the data. PCA is used in Chapters 3-8 to assess data 

artefacts such as batch effects from differing experimental run times between sample 

groups, or instrumental variation. The function prcomp in the R ggfortify package is used for 

PCA with default settings(303).   
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2.2.2 ComBat 

Batch effects due to non-biological variation have long been known as a potential hindrance 

in gene expression microarray experiments, making samples in each ‘batch’ not directly 

comparable(307).  Sources of such variation range from batches of reagent used to practical 

limitations forcing samples to be run on different well plates or different days(308). Such 

batch effects are not limited to microarrays. They can be seen in proteomic experiments, and 

when a meta-analysis of multiple studies is conducted(309). ComBat is an algorithm 

developed to eliminate such batch effects, which is designed to work well on relatively small 

sample sizes. The algorithm assumes that batch effects typically affect many analytes in 

similar ways, such as higher variability and increased concentration. It works by borrowing 

information across analytes in each batch to estimate the parameters that represent the 

batch effects, then shrinking these parameter estimates towards the overall mean of the 

estimates across all analytes in the data, then using these estimates to adjust the data. 

ComBat is used to normalize experimental variation in Chapters 3, 4, 5 and 6, using the 

ComBat function in the R sva package with default settings(310). 

2.2.3 Stepwise variable selection 

Stepwise variable selection is used for biomarker selection in conjunction with the logistic 

regression model in Chapters 3 and 4, and to adjust for confounding variables in univariate 

analyses in Chapters 4-8 using the R function step in the stats package, with the arguments 

direction = “both” and k=log(n)(303). The Stepwise approach used in this thesis was mixed 

stepwise selection (chosen by selecting the direction=”both” option). This considers either 

dropping or adding a variable at each stage, depending on whichever option minimizes the 

Bayesian information criterion (BIC). Setting k=log(n) in the step function ensures that the 

BIC is used as the criterion of choice. BIC penalizes larger models more severely than other 

criteria, and is asymptotically consistent(311). It provides an estimate of the test error of the 

model by adjusting the training error to account for the number of model parameters.  
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2.2.4 Wilcoxon rank-sum test 

The Wilcoxon rank-sum test is used to compute epitope expression in response to 

serum/compound exposure relative to the vehicle condition for the cellular model 

investigated in Chapters 5 and 6 using the R function wilcox_test in the coin package, with 

distribution = “exact” (312). It is a non-parametric test for comparing samples of observations 

nA and nB from two populations A and B. The test assumes that the two samples are 

independent of each other, and that the populations have equal variance(313). Applying the 

test in the case of unequal variance would be inaccurate due to lack of statistical power. The 

aim of the Wilcoxon rank-sum test is to examine the null hypothesis H0 that the distributions 

of populations A and B are the same, as displayed below: 

𝐻଴: 𝐴 = 𝐵 

𝐻ଵ: 𝐴 ≠ 𝐵 

Hypothesis H1 is as such unless there is a strong prior reason for hypothesising a shift in a 

particular direction. 

The Wilcoxon rank-sum test tests H0 through the following algorithm. 

1. Combine the nA + nB observations into one group N and rank them from smallest to 

largest. Compute the observed Wilcoxon rank-sum test statistic, WA, whereby WA = 

sum of the ranks for the observations from population A. 

2. Permute population class labels across the ranks in N (10,000 permutations are used 

in this thesis). For each permutation, compute W, where W is the sum of the ranks 

now in population A.    

3. Determine the p-value through:  

𝑃 =  
∑(𝑊 ≠ 𝑊஺)

𝑛௣௘௥௠௨௧௘
 

2.2.5 Linear regression 

Linear regression is used in this thesis to conduct exploratory univariate analyses, modelling 

the relationship between a response variable (clinical status) and one or more explanatory 

variables (typically protein concentration measurements and covariates such as age and 

gender). Algebraically, the model can be represented as(314): 

𝑦௜ =  𝛽ଵ𝑥௜ଵ +  𝛽ଶ𝑥௜ଶ + … . + 𝛽௞𝑥௜௞ +  𝜀௜ ,      𝑖 = 1 … . 𝑛 
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Where yi represents the response variable for observation i, xi1 to xik represents the values of 

each of the k independent variables for observation i, βi to βk are the regression coefficients 

for each of the independent variables, n represents the number of observations, and εi is an 

unobserved error term. The regression coefficient βk for an independent variable xik 

represents the predicted change in the response variable yi for a unit change in xik, while 

keeping all other independent variables constant(314).  

In order for linear regression estimates to be valid, several assumptions must be 

satisfied(315–317). These include: 

 The response variable is a linear function of the independent variables and the error 

term.  

 The samples are drawn randomly from the population. 

 The expected value of the mean of the errors in the regression should be zero given 

the values of the independent variables, denoted algebraically as E(ε/X) = 0. This 

means that there is no relationship between errors and independent variables. 

 There is homoskedasticity, meaning that the variance of the regression errors is 

constant. Heteroskedasticity can result in inaccurate standard error calculations. 

 Error terms should be normally distributed, conditional on the independent variables.  

 No multi-collinearity between independent variables which could result in unstable 

coefficients and inflate model variance. 

Linear regression was used in Chapter 4 using the lm function with default settings in the R 

stats package(303).  

 

2.2.6 Logistic regression 

Logistic regression is used in Chapters 3 and 4 for classification purposes. Logistic 

regression models the probability of a binary event given the independent variables. 

Algebraically, the logistic regression model is represented as(318): 

log ቆ
𝜋(𝑥௜)

1 − 𝜋(𝑥௜)
ቇ =  𝛽ଵ𝑥௜ଵ +  … . + 𝛽௞𝑥௜௞    , 𝑖 = 1 … . 𝑛 

Where log ቀ
గ(௫೔)

ଵିగ(௫೔)
ቁ is referred to as the logit or the log odds of an event, xi1 to xik represents 

the values of each of the k independent variables for observation i, βi to βk are the regression 

coefficients for each of the independent variables, and n represents the number of 

observations. The regression coefficient βk for an independent variable xik represents the 
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change in log odds ratio for a unit change in xik, while keeping all other independent 

variables constant.  

 

In order for logistic regression estimates to be valid, several assumptions must be 

satisfied(318,319). These include: 

 The response variable should be binomially distributed.  

 The logit and the independent variables should be linearly related 

 No multi-collinearity between independent variables which could result in unstable 

coefficients and inflate model variance. 

 Error terms should be independent of each other 

Logistic regression is implemented in R in this thesis using the glm function with family = 

“binomial” in the stats package(303).  

2.2.7 Ridge regression and LASSO 

Ridge regression and least absolute shrinkage and selection operator (LASSO) are forms of 

penalized regression applied in Chapters 3 and 4 using the glmnet function in the R glmnet 

package with family = “binomial” (320). As is customary, ridge regression was applied by 

setting alpha = 0 in the function, LASSO was applied by setting alpha = 1. The tuning 

parameter λ was obtained through cross-validation. 

Ridge regression is used with a binomial distribution for binary classification and LASSO is 

used for variable selection. The ridge regression method is designed to negate overfitting 

which may occur due to problems associated with multicollinearity which are inherent to 

many datasets. Multicollinearity causes the variability of parameter coefficients to be large, 

meaning they are far from the true value. Ridge regression reduces the standard errors 

through adding a degree of bias by penalizing large coefficients through the L2 norm (the 

Euclidean length) of the parameter coefficient vector. Algebraically, ridge regression looks to 

minimize the log likelihood function (L) added to the L2 norm: 

𝐿 +  𝜆 ෍ 𝛽௝
ଶ

௡

௜ୀଵ

 

Where λ is the tuning parameter, n is the number of coefficients, and βi are the estimated 

coefficients.   
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LASSO also penalizes large coefficients but it does so through the L1 norm (the sum of the 

absolute values of the parameter coefficient vector) which enables it to shrink some 

parameter coefficients to zero, meaning it can be used as a variable selection technique. 

Algebraically, LASSO looks to minimize the log likelihood function added to the L1 

norm(321):  

L +  λ ෍ |𝛽௜|

௡

௜ୀଵ

 

Where λ is the tuning parameter, n is the number of coefficients, and βi are the estimated 

coefficients. 

Elastic net regularization, a compromise between the LASSO and Ridge approaches which 

selects an optimum value of the alpha parameter between 0 and 1 (typically through cross-

validation), was not considered for fitting classification models in the work conducted in 

Chapters 3 and 4, due to the model comparison nature of these studies. Ridge regression 

was used for the classification stages of these studies, whilst Elastic net would not have 

been suitable in this case, because it would have selected a subset of the initial predictors. 

To enable model comparison, it was important that the classification methods chosen 

(Logistic regression, Ridge regression, Random forest, SVM, Bayesian LASSO and BART), 

were not implementing any variable selection as part of the model fitting. LASSO was used 

at the ‘Biomarker Identification’ stages of these studies to select the most important variables 

from the initial sets of predictors. Elastic net would have been a viable alternative, but 

LASSO was selected as it has been used for this purpose in a number of previous 

proteomics studies in this field(322,323). 

2.2.8 Random forest 

The Random Forest classification algorithm is an example of a classification tree based 

method. Many classification trees (the exact number is defined as a model parameter) are 

constructed, and test data is classified based on the majority decision of these trees. Each 

tree in the forest is grown from the training data, beginning with all training samples in the 

root node. Every time this node is split into two child nodes (which then become the new root 

nodes), the search for the best variable (in Chapter 3 the variables are protein 

concentrations, and in Chapter 4 the variables are peptide abundances) to split on is limited 

to a subset of m variables (the model parameter mtry) which is randomly drawn (with 

replacement) from the total number of variables n, in the training data(324). The variable 

chosen to split the node sample pool on is determined by the maximum decrease in the Gini 

impurity criterion, a measure of node class heterogeneity. The algorithm terminates when for 
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each tree, all samples belonging to the same node are from the same clinical group, and the 

Gini impurity criterion is equal to 0(325).      

For binary classification problems such as those examined in this thesis, the Gini impurity 

criterion Ig for a particular node, is defined as(314): 

I୥ = 1 − ෍ P୧
ଶ

ଵ

୧ୀ଴

 

Where pi is the proportion of data points with label i in the node sample pool.   

Random Forest is used in Chapters 3 and 4, using the train function in the R caret package 

with method=”rf”(326). Model parameters number of trees and mtry are obtained through 

cross-validation.  

2.2.9 Support vector machines 

SVM is a machine learning method which is used for classification purposes in Chapter 3 

and Chapter 4. When applied to the training data, the algorithm attempts to find an optimal 

hyperplane which will separate the data into two clinical groups with minimal error(327). 

However, as a linear hyperplane is typically insufficient for stratifying the data in this way, a 

nonlinear hyperplane is required. This hyperplane is constructed throughout mapping the 

training data to points in a higher dimensional space, called the feature space, through the 

use of an appropriate kernel function(327). The closest equidistant data points to the 

hyperplane in the feature space are known as support vectors.   

In Chapter 3 and Chapter 4, a polynomial kernel is used. For prediction on a test data, the 

independent samples are projected into the feature space and assigned a class, based upon 

the side of the margin that they fall. Algebraically, the SVM obtains predictions through(328): 

f(x) = sign(෍ α୧ y୧K(x, x୧) +  b)

୬౩౬

୧ୀଵ

 

where f(x) represents the predicted classes for each of the test data samples, xi is the 

training data samples, yi is the training data classes, nsv is the number of support vectors, 

and α and b are obtained by solving the classifier optimization problem. 

The polynomial kernel is defined as(327): 

𝐾(𝑥, 𝑥௜) = (𝛾(𝑥்𝑥௜) + 𝑏)ௗ 
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Where d is the degree parameter, γ is a scale parameter, and b is an offset parameter.  

SVM is applied in Chapters 3 and 4, using the train function in the R caret package with 

method='svmPoly'(326). The cost, degree and scale parameters are obtained through cross-

validation.  

 

2.2.10 Bayesian modelling 

In Chapters 3 and 4, two different Bayesian modelling approaches are used to train a 

classifier and test on an independent dataset.  The key to all Bayesian approaches is Bayes’ 

theorem, summarized as ‘the posterior is proportional to the prior times likelihood’ or 

algebraically(187): 

𝑃(𝜃|𝑌) ∝  𝑃(𝜃) × 𝑃(𝑌|𝜃)  

Where Y refers to the experimental data, and θ is the unknown parameter variables. 

𝑃(𝜃|𝑌)is the posterior distribution, or the joint probability distribution of the unknown 

parameters given the experimental data. 𝑃(𝜃)is the prior distribution, or the existing 

knowledge regarding the unknown parameters before any data has been measured, in the 

form of a probability distribution. 𝑃(𝑌|𝜃) is the likelihood or the conditional probability 

distribution of the experimental data, given the unknown parameters(187). 

 

2.2.10.1 Bayesian LASSO 

One of the Bayesian methodologies used in this thesis is the Bayesian LASSO which has 

been utilized in a variety of GWAS datasets with sparse parameter spaces(329). The 

Bayesian LASSO places a Laplace prior on the parameter vector 𝑃(𝛽|𝜎ଶ) This can be 

expressed algebraically as(330): 

𝑃(𝛽|𝜎ଶ) =  ෑ
𝜆

2√𝜎ଶ
𝑒ିఒหఉೕห√ఙమ

௣

௝ୀଵ

 

Where β refers to the parameter coefficients and σ2 is the model variance. λ is the LASSO 

tuning parameter.j is the number of parameters. The median of the Bayesian LASSO 

posterior distribution estimates corresponds to the standard LASSO point estimates. The 

Bayesian LASSO approach differs from LASSO in that it automatically provides credible 

interval estimates for all parameters in the model. 
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In Chapters 3 and 4, the Bayesian LASSO is implemented using the reglogit function in the 

reglogit R package with 10,000 iterations and normalize=FALSE. This is a Markov Chain 

Monte Carlo (MCMC) implementation of the model algorithm that is equivalent to a logistic 

regression with double exponential priors(331).  

2.2.10.2 BART 

BART is a non-parametric, classification tree based method, which uses sums of regression 

trees. BART and other Bayesian classification and regression decision tree (CART) 

approaches are popular in classification problems due to their ability to capture interactions, 

non-linearities and additive effects in datasets(332). Unlike Random Forest, BART takes a 

set of trees, T0.....Tk (the number k is defined as a model parameter) and updates them 

again and again through MCMC methods, known as a stochastic search, throughout the 

model training process.  

Each tree has a prior distribution, and a prior on the tree terminal node outputs which 

represents the probability of that node splitting (thus an informative prior can be incorporated 

into the model providing information from independent datasets on which node is likely to 

split)(333). At each iteration k a new tree is proposed through either growing or swapping the 

nodes of the most recently accepted tree. The new tree is either accepted or rejected based 

on how well it matches the training data and prior distribution. The algorithm continues to 

iteratively sample trees until the model parameter estimates are stable, and convergence is 

reached(333).  

Posterior predictions are then obtained by adding the MCMC samples across all trees, thus 

combining the prior distributions across each tree with the tree model likelihood. The BART 

model can be summarized algebraically for binary classification problems as(327): 

𝑃(𝑌 = 1|𝑋) =  𝜑(𝑇ଵ
ெ(𝑋) +  𝑇ଶ

ெ(𝑋) + ⋯ +  𝑇௠
ெ(𝑋))  

Where Y is the response variable, X is the dataset of parameter variables, φ is the  

cumulative density function of the standard normal distribution, m is the number of trees and 

T is the total tree structure. M is the parameters at each root node in the tree. TM denotes an 

entire tree with its structure and all node parameters.   

In Chapters 3 and 4, BART is implemented using the bartMachineCV function in the 

bartMachine R package with serialize=TRUE(334). Model hyperparameters and number of 

trees are obtained through cross-validation. 
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2.2.11 Mixed effects models 

While a linear regression model, contains only fixed effects, mixed effects models have both 

fixed and random effects(335). This can be utilized when analyzing proteomic data where 

there is more than one observation per subject for a particular analyte. These individual 

differences can be modelled by assigning different random intercepts for each subject to 

represent the idiosyncratic variation(335).  

In Chapters 5, 6, 7 and 8, a linear mixed model is used to model the random variation 

incurred by running multiple replicates on the flow cytometry and LCMSE platforms described 

in 2.1. Algebraically, this model is of the form: 

𝑦௜ =  𝛽଴ +  𝛽ଵ𝑥௜ଵ +  … . + 𝛽௞𝑥௜௞ + 𝑣௜ +  𝜀௜  ,      𝑖 = 1 … . 𝑛 

 

Where 𝑦௜ represents the response variable for observation i, 𝑥௜ଵ to 𝑥௜௞ represents the values 

of each of the k independent variables for observation i,𝛽ଵ to 𝛽௞ are the regression 

coefficients for each of the independent variables,𝛽଴ is the fixed intercept of the regression 

model, 𝑣௜ is the random intercept for observation i,n represents the number of observations, 

and 𝜀௜ is an unobserved error term. 

The model has several assumptions, including that the response variable is a linear function 

of the independent variables and the error term, the samples are drawn randomly from the 

population, and the random intercept and error term are independent of one another(335). 

The linear mixed model is implemented in R using the lme function in the nlme package with 

default settings(336). 

 

2.2.12 Classification performance 

In order to assess the classification performances of the statistical models in Chapters 3 

and 4, ROC curves are plotted. The ROC curve plots the true positive rate (TPR) against the 

false positive rate (FPR). The TPR is also known as the sensitivity, and is the proportion of 

patients who are correctly identified by the model. The FPR is 1-specificity and is the 

proportion of controls who are wrongly classified as patients by the model. The line y=x on a 

ROC curve plot represents the performance which would be expected through random 

chance, and the greater the distance between a ROC curve and this line, the greater the 

classification performance(337). 
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Classification performance is assessed through three measures, measuring AUC, and 

computing the classifier sensitivity and specificity via the Youden’s index(338). 

The AUC represents the probability that a randomly chosen patient with schizophrenia will 

be ranked higher by the model than a randomly chosen healthy control(337). Previous 

studies using ROC curves to evaluate classification performance have defined the ranges of 

AUC values as follows; 0-9-1 (excellent), 0.8-0.9 (good), 0.7-0.8 (fair), 0.6-0.7 (poor), <0.6 

(fail)(339–341). 

Values for sensitivity and specificity are computed through identification of an optimal 

threshold point on the ROC curve. This was done using the commonly advocated Youden’s 

index (J; calculated by 𝐽 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1)(338). The aim of the Youden’s 

index is to maximise the difference between the TPR and FPR, thus maximizing the correct 

classification rate. 

Classification performance is computed in R using the performance function in the ROCR 

package(342) with “auc”, “sens” and “spec” for calculating AUC, sensitivity and specificity. 

 

2.2.13 Goeman’s global test 

Goeman’s global test is used to obtain further information on whether different microglial 

signalling pathways are dysregulated between patients and controls in Chapters 5 and 6 by 

testing whether the combined expression profile of multiple individual epitopes in a pathway 

is associated with patient-control status. This is done through modelling individual epitope 

expressions as random effects in a logistic regression model(343). The global test was 

initially developed for microarray data to assess whether groups of genes were differentially 

expressed between controls and patients thus shifting analyses from the single gene level to 

the pathway level(343) and the method has subsequently been adopted for utility on 

proteomic datasets(344). 

The assumption behind Goeman’s global test is that all parameter coefficients in the 

regression are sampled from a common distribution with mean zero and variance τ2. The null 

hypothesis is that the parameters are not differentially expressed, meaning that the 

parameter coefficients (β) are zero, and thus τ2 = 0. The global test model is defined 

algebraically for logistic regression as(343,345): 

𝐸(𝑌௜|𝛽) = ℎିଵ(𝛼 + ෍ 𝑥௜௝𝛽௝),    𝑖 = 1 … 𝑛,    𝑗 = 1 … . 𝑚

௠

௝ୀଵ
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Where with a binary response variable Y, h-1 is the logit function, α is the intercept, and x is 

an n x m matrix of n subjects and m proteins, βare the regression coefficients. This simplifies 

to the following random effects model through the notation 𝑟௜ =  ∑ 𝑥௜௝𝛽௝௝  

𝐸(𝑌௜|𝑟௜) = ℎିଵ(𝛼 + 𝑟௜) 

 

The null hypothesis for the global test can then be tested using a score test statistic which 

can be obtained from this model through procedures described at length in previous review 

papers(346,347). The score test statistic for each of the pathways examined in Chapters 5 

and 6 is a weighted average of the individual score test statistics for each epitope in the 

pathway. A p-value is then obtained for the pathway through permuting this test statistic. 

Goeman’s global test is implemented in R using the gt function in the globaltest package 

with model="logistic" and 10,000 permutations(348). 

2.2.14 Protein-protein interaction networks 

In Chapters 7 and 8, a functional comparison is conducted between protein expression 

profiles in brain tissue from post-mortem samples and animal models of psychiatric 

disorders. This comparison is made possible through the construction of PPI networks, 

integrating individual protein abundances found to be significantly altered between disease 

and control groups with cellular network information on their first-degree interactors from 

multiple protein interaction data repositories. In each PPI network, proteins are represented 

as nodes, and interactions as edges. In Chapters 7 and 8, PPI networks were created using 

the software program Cytoscape(305) and the databases IntAct(349), MINT(350) and 

UniProt(351). Filtering was applied to ensure that only proteins expressed in the organism of 

interest were included in the network, and to exclude all interactions other than direct 

interactions or physical associations.  

Functional annotation of different modules or clusters of interacting proteins within the 

network, is conducted through protein enrichment analysis using the Cytoscape plugin 

ClueGO(352). ClueGO conducts enrichment through the Gene Ontology (GO) database, 

identifying biological process GO terms annotated to each protein in the network, and using 

a hypergeometric test to assess which GO term annotations appear significantly more 

frequently than would be expected by chance(352). Subsequently, significant GO terms can 

be summarized in functional groups using the kappa score statistic which is a metric used to 

assess the similarity of GO terms based on shared underlying proteins.  
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More specific information on how PPI networks, GO term enrichment and kappa score 

grouping are used in this thesis and the other methodologies utilized for the functional 

comparison, can be found in Chapters 7 and 8.  
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Chapter 3 Comparison of statistical 
models for the classification and 
prediction of schizophrenia diagnosis 
through multiplex immunoassay 
profiling of serum 
 

3.1 Introduction 

In order to improve schizophrenia diagnosis, various studies in the past decade have 

described the potential benefits of a diagnostic test based on robust biomarkers in blood 

which can differentiate schizophrenia patients from healthy controls as a means of aiding 

psychiatrists reach an accurate conclusion(152,353). In addition, as discussed in Chapter 1, 

the clinical relevance of such a test would be enhanced if it also displayed the capacity to 

provide prognostic information regarding whether prodromal individuals at risk of developing 

schizophrenia would transition or not(152). Prodromal schizophrenia has become an area of 

increased research focus over the past two decades(12) as investigations have found that 

20-30% of these individuals go on to develop schizophrenia over a two year period(14). If a 

biomarker test could be used to differentiate prodromal individuals who later experience a 

psychotic episode from those who do not, with a high classification performance as 

measured through the AUC, this could be greatly beneficial. Such a test would also need to 

be both highly sensitive and specific because, as mentioned in Chapter 1, previous research 

has suggested a minimum AUC, sensitivity and specificity threshold of 80% for a test to have 

clinical value(150). False positive predictions for prodromal individuals resulting in 

unnecessary treatment could have severe health consequences due to the side-effect profile 

of many conventional antipsychotics(165). An additional requirement is for such a test to 

require relatively few biomarkers as the cost of a test increases with the number of analytes 

measured. A previous attempt to develop a diagnostic test for schizophrenia did not reach 

clinical utility, as with 51 biomarkers, it was deemed too expensive(152).    

The aim of this study is to identify a statistical model based on serum protein concentrations 

which has the potential to both reproducibly classify schizophrenia from healthy controls, and 

prodromal individuals who later develop psychosis (converters) from prodromal individuals 

who do not develop schizophrenia (non-converters). Proteomics has been used extensively 

as a means of identifying disease-associated biomarkers through altered expression levels. 
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The combination of a set of proteins as a biomarker panel is thought to potentially yield a 

specific signature for a particular disease(354), and an appropriate model based on such a 

panel could form the basis of a diagnostic or prognostic blood test(166,355,356).  In this 

study protein concentrations are measured using the multiplex immunoassay platform 

described in Chapter 2 which measures up to 225 proteins across various hormonal, 

inflammatory, and metabolic pathways, many of which have been previously implicated in 

schizophrenia(132,157). Immunoassays are thought to be more reliable than more traditional 

methods such as Western Blot which have lacked the ability to reliably detect different 

proteins across a broad dynamic range, while the development of ELISA assays are more 

costly and associated with a high failure rate(357). The platform used in this study has been 

applied in recent biomarker studies across a range of diseases including autoimmune 

disorders(358), coronary artery disease(359), epithelial ovarian cancer(281) and MDD(360).  

This study aims to address some of the bioinformatics shortcomings highlighted by recent 

reviews of proteomic biomarker studies, as discussed in Chapter 1. In particular, many 

studies suffer from small sample sizes relative to the number of proteins measured, known 

as a “small n, large p” problem, leading to overfitting and identification of biomarkers and 

clinical demographic variables which do not reflect the wider disease population(186). 

Previous reviews have shown that psychiatry and clinical neuroscience as a whole suffer 

from small sample sizes, reducing the reliability and reproducibility of findings, yet obtaining 

larger cohorts is both costly and difficult(361). In the discovery stage of this study, a training 

dataset is created by combining five independent cohorts through meta analysis. The 

resulting meta-cohort consists of 204 controls and 127 first-onset antipsychotic naive 

schizophrenia patients. Previous research suggests that at least 5 EPV is required to avoid 

overfitting(189), and while the meta-cohort still has only 1.92 EPV, it is still greater than the 

cohorts typically used for identifying proteomic biomarkers in psychiatry. Recent discovery 

cohorts used for psychosis, MDD and bipolar disorder had 0.2 EPV(166), 0.79 EPV(191) 

and 1.64 EPV(362), respectively.     

There are a preponderance of different statistical methodologies available for use in 

classification problems, but different studies have shown that the best performing algorithms 

are highly dependent on the individual dataset characteristics(363,364). In this study, models 

are fitted on the training data using a range of different statistical methods including Logistic 

Regression, Ridge Regression, the machine learning algorithms Random Forest and SVM, 

and the Bayesian methodologies Bayesian LASSO and BART. The rationale for applying a 

range of different methods to tackle this particular classification problem is to see which 

algorithm most accurately represents the underlying trends in the data, and thus can identify 



53 
 

a model which produces robust classification performance on independent cohorts. 

Advantages and disadvantages of each of these methods are discussed in 3.2. 

As discussed in Chapter 1, relatively few studies which attempt to identify diagnostic protein 

biomarkers include independent validation cohorts, and some of those which do, apply 

statistical models incorrectly, resulting in inflated assessments of the real classification 

abilities of the underlying biomarkers(365). This study tests each model on an independent 

validation cohort consisting of 88 controls and 47 first-onset antipsychotic naive patients. In 

addition, while previous attempts to identify a diagnostic biomarker test for schizophrenia 

have focused mainly on first-onset antipsychotic naive schizophrenia patients(355), it is also 

relevant to examine the performance of a proposed test in classifying schizophrenia patients 

already on some form of antipsychotic treatment(152), a comparison which has not been 

assessed in past studies. This comparison is of interest because research has shown that 

many individuals thought to be at risk of the disorder are pre-treated with antipsychotic 

medication(162) so when a diagnosis is reached, they may have been taking antipsychotics 

for a period of time, and studies have found that antipsychotic medication can modulate 

peripheral biomarkers of the disorder(63,366). As such, this study design includes the testing 

of each model on three independent application cohorts of recent-onset antipsychotic treated 

schizophrenia patients and controls. To assess prognostic classification performance, each 

model is tested on two different prediction cohorts, one consisting of pre-symptomatic 

individuals and another consisting of prodromal individuals. In each case, serum was 

sampled in a timeframe of several months and several years prior to disease onset and 

diagnosis.  

Lastly, the study considers practical application in terms of identifying a cost-effective test. 

Based on previous research, a test which measured all the proteins in the initial training data 

would likely be too expensive to be clinically viable(152), but if sufficient performance can be 

obtained on a smaller set of protein biomarkers, this may be more feasible. Thus the most 

informative disease biomarkers are obtained from each model by identifying the most 

important proteins contributing to the model fit through variable selection methods. Models 

are then trained on these smaller subsets of proteins and their performance is assessed on 

each of the independent cohorts.  
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3.2 Methods 

The full workflow for this chapter is summarized in Figure 3.1. 

 

Figure 3.1. Workflow for Chapter 3.   

 

 

 

 

 

 

Stages

I. Statistical model  
training 
(66 proteins)     

Training data (n = 331)

Meta-cohort :  cohorts 1-5. 
204 controls + 127 SCZ (naive)

II. Validation –
antipsychotic naive 

Validation (n = 135)
Cohort 6: 88 controls + 47 SCZ (naive)

III. Application –
antipsychotic treated 

Application (n = 253)
Cohort 7: 33 controls + 56 SCZ (treated)
Cohort 8: 40 controls + 33 SCZ (treated)
Cohort 9: 21 controls + 70 SCZ (treated) 

IV. Predictive 
performance testing

Prediction (n = 446)
Cohort 10: 184 controls + 75 pre SCZ  +  110 pre BD
Cohort 11: Prodromal cohort

To assess practical applicability, the following stages were included. The most important biomarkers were identified for each of the 6 
models.  Each model was then trained on these subsets of proteins, and performance assessed on the independent cohorts.

1165 subjects included

V. Biomarker 
identification

VI. Model  training
(subsets of important 

proteins)      

Training data
(same as above)

VII-IX. Same as II-IV
Validation and prediction cohorts

(same as above) 

Methods

6 statistical models
1. Logistic Regression
2. Ridge Regression    3. Random Forest        
4. SVM                     5. Bayesian LASSO
6. BART                         
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3.2.1 Clinical samples 

Serum samples were collected from 1165 individuals recruited from seven independent 

centres across Germany, Netherlands, Spain, United States and France as displayed in 

Table 3.1. The initial stage of the study is conducted on cohorts 1-5, consisting of healthy 

controls and either first or recent-onset antipsychotic naïve schizophrenia patients who were 

diagnosed as having the paranoid subtype of the disorder. Cohorts 1-5 came from three 

clinical centres in Germany and the Netherlands (cohort 1, Central Institute of Mental Health, 

Mannheim; cohorts 2-4, University of Magdeburg, Magdeburg; cohort 5, Erasmus University 

MC, Rotterdam). 

The validation phase of the study is conducted on cohorts 6-9 from clinical centres in Spain, 

Germany and the Netherlands (cohort 6, University of Cantabria, Santander; cohort 7, 

Central Institute of Mental Health, Mannheim; cohort 8, Erasmus University MC, Rotterdam; 

cohort 9, University of Muenster, Muenster). Cohort 6 consists of healthy controls and first-

onset antipsychotic naïve schizophrenia patients while cohorts 7-9 contains healthy controls 

and recent-onset schizophrenia patients treated with a mixture of first and second generation 

antipsychotic medications. For cohorts 1-9, DSM-4 diagnoses were performed by 

psychiatrists along with Positive and Negative Syndrome Scale (PANSS) testing. Patients 

and controls were excluded from this study if they met the following criteria: first degree 

relatives with a medical history of mental disease, diabetes, cardiovascular disease, immune 

and autoimmune disorders, infections, other neuropsychiatric/neurological disorders 

(multiple sclerosis, epilepsy, mental retardation), chronic (terminal) diseases affecting the 

brain (cancer, hepatic and renal insufficiency), alcohol or drug addiction, organic 

psychosis/organic affective syndromes, severe trauma, other psychiatric and non-psychiatric 

co-morbidity. The ethical committees at all involved centres approved the protocols of the 

study which were applied according to the Declaration of Helsinki. All participants provided 

written consent. 

The prediction phase of the study is conducted on cohorts 10-11. Cohort 10 consists of 

samples selected from the US Department of Defence Serum Repository (DoDSR). Samples 

consist of pre-symptomatic individuals who subsequently presented with initial symptoms 

within 30 days of collection, and subsequently received a psychiatric diagnosis. They later 

received a diagnosis of either schizophrenia or bipolar disorder according to the DSM-4, 

several months or years later. In this study, they are referred to as ‘pre-schizophrenia’ or 

‘pre-bipolar’ individuals. In addition, to complete cohort 10, healthy control samples were 

selected from the active duty military service population with no inpatient or outpatient 

psychiatric disorder diagnoses, as confirmed by current military records.  
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Cohort 11 consists of 77 prodromal individuals who were referred to the Adolescent and 

Young Adults Assessment Center (SHU, Paris, France) between 2009 and 2013 and 

enrolled in the ICAAR collaborative study. Individuals were included in this study if they 

displayed altered global functioning in the previous year, as defined by a score of less than 

70 on the Social and Occupational Functioning Assessment Scale. Altered global functioning 

is associated with psychiatric symptoms and/or subjective cognitive complaints. The 77 

individuals were evaluated by psychiatrists using the Comprehensive Assessment of At-Risk 

Mental State (CAARMS) threshold criteria(367). Of the 77 prodromal individuals assessed, 

19 later developed psychosis after twelve months, and 58 did not. Psychosis conversion was 

defined through the CAARMS psychosis onset threshold, described as supra-threshold 

psychotic symptoms, meaning thought content and perceptual abnormalities, and/or 

disorganized speech. 

 As for cohorts 1–9, informed written consent was given by all the participants, and study 

protocols, collection and analysis of samples and all test methods were approved by the 

local Institutional Ethics Review Boards. As this cohort was specifically for prodromal 

individuals, individuals were excluded from the study if they already met DSM-4-defined 

criteria at the time of sample collection for psychosis, schizophrenia or schizo-affective 

disorders, pervasive developmental or bipolar disorders, as were individuals with other 

established diagnoses such as obsessive-compulsive disorders. Individuals were also 

excluded if they had currently been receiving antipsychotic treatment for more than 12 

weeks, had psychoactive substance dependence or abuse during the previous year and/or 

more than 5 years, serious or evolutive somatic and neurological disorders or head injury 

and intelligence quotient <70.   

 

 

 

 

 

 

 

 

 



57 
 

Table 3.1 Patient and control demographics characteristics for the cohorts analyzed in Chapter 3. 
Values are presented as average ±standard deviation. 

Stage Cohort Number Centre Sex (M/F) Age (years) 

Training 
 
Cohort 1 (106) 

52 CT 
54 SCZ Mannheim 

27/25 
32/22 

30 ± 8 
30 ± 10 

  Cohort 2 (106) 
73 CT 
33 SCZ Magdeburg 

46/27 
22/11 

32 ± 9 
31 ± 10 

  Cohort 3 (39) 
23 CT 
16 SCZ Magdeburg 

10/13 
8/8 

33 ± 11 
35 ± 11 

  Cohort 4 (26) 
16 CT 
10 SCZ Magdeburg 

8/8 
6/4 

35 ± 11 
37 ± 12 

  Cohort 5 (54) 
40 CT 
14 SCZ Rotterdam 

33/7 
11/3 

26 ± 4 
24 ± 6 

Validation Cohort 6 (135) 
88 CT  
47 SCZ Santander 

51/37 
28/19 

33 ± 8 
30 ± 9 

Application Cohort 7 (91) 
21 CT 
70 SCZ Mannheim 

13/8 
41/29 

36 ± 9 
38 ± 11 

  Cohort 8 (73) 
40 CT 
33 SCZ Rotterdam 

33/7 
25/8 

27 ± 4 
27 ± 8 

  Cohort 9 (89) 
33 CT 
56 SCZ Muenster 

11/22 
28/28 

40 ± 13 
38 ± 11 

Prediction Cohort 10 (369) 

184 CT 
75 pre-SCZ 
110 pre-BD US Military 

136/48 
67/8 
70/40 

22 ± 4 
24 ± 5 
21 ± 4 

  Cohort 11 (77) 
19 pre-SCZ 
58 not pre-SCZ Paris 

11/7 
33/25 

20 ± 3 
22 ± 4 

 

 

3.2.2 Data pre-processing 

The concentrations of 225 serum proteins are measured for all 1165 samples across cohorts 

1-11 using the multiplex immunoassay platform described in Chapter 2. All serum proteins 

measured are run through a series of pre-processing steps. Proteins with more than 30% 

missed values are removed. Missing values arise either due to protein concentrations being 

below or above the limitation of detection, or due to low sample volume. To reflect the 

underlying biological reasoning behind missing values which were below/above the detection 

limit, they are replaced by the minimum or maximum protein concentration level in that 

particular cohort of samples. Missing values occurring due to low sample volume are 

replaced by the mean concentration for that protein in that cohort. All protein concentration 

values are log10-transformed to stabilize data variance and improve normality. In addition, 

quality control (QC) assessment is carried out for each cohort. Sample outliers are assessed 

using PCA through inspection of quantile-quantile plots. PCA is additionally used to check 
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for data artefacts. PCA is applied using the prcomp function in the R ggfortify package (302). 

Quantile-quantile plots are computed using the qqPlot function in the R car package.   

Following the removal of proteins with more than 30% missing values from the initial 

immunoassay panel of 225, there are 66 proteins remaining which are measured across all 

11 cohorts. A list of these 66 proteins and their abbreviations can be found in the Appendix 

(Table A.3.1). Batch effects arising due to technical variation are normalized using the 

ComBat algorithm(310) (full details in Chapter 2).  

 

3.2.3 Statistical model training 

Six statistical models, Logistic Regression, Ridge Regression, SVM, Random Forest, 

Bayesian LASSO and BART are trained on the metacohort formed from cohorts 1-5, 

consisting of 331 samples, 66 proteins and the demographic variables age and gender. The 

advantages and disadvantages of these methods are summarized in Table 3.2. Random 

Forest and SVM were chosen for this study as two of the most common machine learning 

techniques used in classification problems. Both have been previously applied to proteomic 

data(368). Studies have described one of the main advantages of Random Forest as its 

resilience to overfitting which makes it a good choice for a classifier on relatively small 

datasets such as those commonly studied in psychiatric research due to the difficulties of 

obtaining samples(369–372). SVM has the notable advantage of flexibility provided by the 

choice of kernel functions, enabling non-linear separations to be found between 

groups(373). Previous classification studies using proteomic data, found SVM to produce the 

most efficient classifier compared to other machine learning techniques such as artificial 

neural networks and partial least squares based methods(177). Bayesian LASSO and BART 

were chosen for this study due to the growing interest in the application of Bayesian 

methods to proteomic biomarker discovery and classification studies(187). The main 

advantage of Bayesian techniques compared to other approaches, is that they model the 

uncertainty inherent to the data which is thought to give them a better chance of validating 

on an independent cohort(374). Accounting for uncertainty is particularly applicable to 

schizophrenia datasets, given the high heterogeneity within the disease population. The 

Bayesian LASSO and BART models were chosen as two very different means of applying a 

Bayesian framework to proteomic data. Bayesian LASSO is a parametric test while BART is 

a non-parametric approach. The Bayesian LASSO has been applied to some sparse 

proteomic datasets in recent years(375–377) while BART has yet to be applied to proteomic 

data but has been used in gene expression studies(378). 
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Table 3.2 Advantages and disadvantages of statistical methods used in 
Chapter 3 as described in the literature(187,368,379,380) 

 

 

3.2.3.1 Model fitting 

Each model is fitted using the R functions and packages defined in Chapter 2. The model 

parameters defined below are tuned through ten-fold cross-validation over a grid of values.  

SVM: A non-linear SVM is used through the selection of a polynomial kernel function. The 

cost, scale and degree parameters of this kernel function are tuned.  

Random Forest: The parameters mtry and number of trees. 

BART:  The hyper-parameters alpha, nu and k, and the parameter number of trees. 

 

Model Advantages Disadvantages 

Logistic Regression 

Easily interpretable relationship between response and 
predictors through regression coefficients   
    Not computationally intensive 
 

Not so stable on data with a low EPV   
    Only assumes linear relationship between 
between response and predictors 

Ridge Regression 

    Easily interpretable relationship between response and predictors 
through regression coefficients   
    Penalizes unimportant predictors by shrinking coefficients, 
reducing overfitting 
    Not computationally intensive 

     Only assumes linear relationship between 
between response and predictors 

Random Forest 

Can handle large numbers of predictor variables 
    Can deal with missing data 
Resilient to overfitting 
    Provides variable importance scores 
    Non-parametric test, so no assumptions about linearity 

 
    More accurate models can require more trees 
which can increase run-time performance 
Can’t see relationship between response and 
predictors (e.g. through regression coefficients in 
logistic regression) which reduces interpretability 
 

SVM 

    Can find either linear/non-linear relationships between response 
and predictors through flexible choice of kernel functions 
    Regularisation parameter provides resilience to overfitting 
    Can handle large numbers of predictor variables 

    Computationally intensive 
    Less interpretable than other models in terms 
of identifying important variables 

Bayesian LASSO 

    Works well with "small n, large p data" 
    Easily interpretable relationship between response and predictors 
through regression coefficients   
    Effectively eliminates non-predictive variables 
    Models data uncertainty through prior distribution 

     Only assumes linear relationship between 
between response and predictors 

BART 

    Works well with "small n, large p data" 
    Automatically includes high order variable interactions 
    Effectively eliminates non-predictive variables 
    Models data uncertainty through prior distribution 
   Non-parametric test, so no assumptions about linearity  
    Provides variable importance scores 

    Computationally intensive                        
Can’t see relationship between response and 
predictors (e.g. through regression coefficients in 
logistic regression)  which reduces interpretability 
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3.2.4 Evaluating classification performance on validation, 
application and prediction cohorts 

The six statistical models trained in 3.2.3, are first tested on the training meta-cohort to 

provide a comparison reference in terms of performance, for testing on the independent 

cohorts. They are subsequently tested on the validation cohort (Cohort 6 – antipsychotic 

naive schizophrenia patients and controls), and the three application cohorts (Cohorts 7-9 – 

antipsychotic treated schizophrenia patients and controls). Their performance is then tested 

on the two prediction cohorts, Cohort 10 (pre-schizophrenia individuals, pre-bipolar 

individuals, and controls) and Cohort 11 (prodromal individuals who later converted to 

psychosis and prodromal individuals who did not). In Cohort 10, the classification 

performance of each model was tested in three cases; pre-schizophrenia individuals against 

controls, pre-bipolar individuals against controls (to examine the disease specificity of the 

classification performance) and pre-schizophrenia individuals against pre-bipolar individuals. 

The latter comparison is thought to be of interest due to the high rates of misdiagnosis 

between the two disorders(139). 

Classification performance is evaluated by plotting ROC curves (using the R functions and 

packages described in Chapter 2), computing AUC, sensitivity, and specificity. The AUC is 

thought to be an effective measure of the classification ability of a model, both in terms of 

evaluating its discriminatory ability  between two groups, and to compare  performance 

between models(381). Sensitivity and specificity values for the model’s performance on a 

particular cohort were computed following identification of an optimal threshold point on the 

ROC curve via Youden’s index (described in Chapter 2). 

 

3.2.5 Biomarker identification 

Following classification performance testing, the most informative biomarkers out of the 66 

proteins are identified for each model using different variable selection methods. These 

biomarkers are the most important proteins which contributed to the model, maximising the 

discriminatory power between patients and controls. For the Bayesian LASSO model, the 

most informative biomarkers are defined as proteins whose 95% posterior credible interval 

does not contain zero(329). For BART, biomarker identification is done automatically by the 

model, using a variable selection algorithm explained in Bleich et al which utilizes the model 

‘variable inclusion proportions’ that are computed as part of the tree-based structure(333). 

This is computed in R using the var_selection_by_permute_cv function in the bartMachine 

package. For Random Forest and SVM, biomarker identification is computed through 

recursive feature elimination (RFE) as in other studies, using Gini importance scores as the 
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ranking criterion for Random Forest and the square of the weights calculated by the model 

as the ranking criterion for SVM(382–384). RFE is applied in R using the rfeControl function 

in the caret package, with default settings(326). For Logistic Regression, biomarker 

identification is computed through stepwise selection which selects the most parsimonious 

set of proteins using the BIC (applied in R using the settings described in Chapter 2). To 

gain an indication of the most important biomarkers as determined through a penalized 

regression procedure, a LASSO regression model is used to conduct variable selection on 

the training data (applied in R using the settings described in Chapter 2).      

 

3.2.6 Reduced model fitting 

Following biomarker identification, the six methods are trained on each unique subset of 

biomarkers. Each method is trained on all biomarker sets to allow for comparability between 

methods on each set of proteins. Each model is trained on the biomarker set in question on 

the meta-cohort, and then tested on all of the validation, application and prediction cohorts. 

This obtains a spectrum of classification performances for each model, across all of the 

independent cohorts, for a series of different subsets of the 66 proteins. This makes it 

possible to determine whether similar or better performance could be achieved with a 

smaller, more optimal subset of protein predictors, which would be cheaper to incorporate 

into a clinical test.  

 

3.3 Results 

The study presented in this chapter includes a total of 1165 participants across 11 sample 

cohorts, comprising 331 in the training meta-cohort (cohorts 1-5), 135 in the validation cohort 

(cohort 6), 253 in the three application cohorts (cohorts 7-9), and 446 in the prediction 

cohorts (cohorts 10 and 11). 

3.3.1   Data pre-processing 

As Figure 3.2 (a) shows, there is initially some variation between the cohorts. These 

differences are likely to be a result of either technical variation in the initial handling and 

processing of samples, or variation from the cohorts being analysed on the multiplex 

immunoassay platform at different times. The ComBat algorithm is used to normalize this 

variation by borrowing information across the 66 proteins to calculate and then adjust for 

additive and multiplicative batch effects (as described in Chapter 2). The eleven cohorts with 

adjusted values for these 66 proteins following ComBat normalization are displayed in 
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Figure 3.2 (b). These adjusted protein values are then used for the subsequent analyses in 

this chapter.     

 

Figure 3.2 Principal component analysis (PCA) plots showing the 11 cohorts (a) before and (b) after 
ComBat normalisation to eliminate batch effects arising due to technical variation from the 
cohorts being run on different plates/days. 
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3.3.2   Evaluating classification performance on validation, 
application and prediction cohorts  

3.3.2.1 Validation and application cohorts 

The classification performance of the six models is tested on the training meta-cohort 

(Cohorts 1-5) to provide a reference in terms of AUC, sensitivity and specificity for the 

subsequent independent cohorts. The models are then tested on the independent validation 

cohort (Cohort 6 – antipsychotic naive schizophrenia patients and controls) and the three 

application cohorts (Cohorts 7-9 – antipsychotic treated schizophrenia patients and controls). 

Performance analysis across the training data, validation cohort and application cohorts is 

summarized in Tables 3.3 and 3.4 while Figure 3.3 shows ROC curves for all models on the 

validation and application cohorts. As described in Chapter 2, classification performance is 

typically categorized as “very good” (AUC > 0.9), “good” (AUC: 0.8-0.9), “fair” (AUC: 0.7-

0.8), “poor” (0.6-0.7) and “fail” (AUC < 0.6).  

SVM is the only model which produces at least a “good” performance as well as sensitivity 

and specificity of at least 0.8 on both the training meta-cohort (Cohorts 1-5) and the 

validation cohort (Cohort 6). SVM produces a “very good” performance on the meta-cohort 

(AUC: 0.97, sensitivity: 0.87, specificity: 0.96) and a “good” performance on cohort 6 (AUC: 

0.88, sensitivity: 0.81, specificity: 0.81). In comparison, while the other five models all 

produce “very good” performances (AUCs: 0.96-1) and high sensitivities and specificities 

(sensitivities: 0.9-1, specificities: 0.9-1) on the meta-cohort, and “good” performances 

(AUCs: 0.81-0.88) on cohort 6, each model has either suboptimal sensitivity or specificity on 

cohort 6 (sensitivities: 0.74-0.96, specificities: 0.64-0.83). There is a decrease in 

classification performance between the meta-cohort and cohort 6 for the SVM model. This is 

expected on an independent test cohort, the model’s performance still falls in the range of 

what could be deemed clinically useful. 

However when the SVM model is tested on the three application cohorts, the performance is 

more variable. Classification performance is “poor” on Cohort 7 (AUC: 0.74, sensitivity: 0.76, 

specificity: 0.67) and the model fails on Cohort 9 (AUC: 0.56, sensitivity: 0.66, specificity: 

0.52). While the model produces a “good” performance on Cohort 8 (AUC: 0.87, sensitivity: 

0.76, specificity: 0.95), it is not sufficiently sensitive. These results indicate that the SVM 

model would not be clinically useful in diagnosing treated patients. The same trends across 

the three cohorts are seen for the other five models with “poor” performances on Cohort 7 

(AUCs: 0.66-0.74, sensitivities: 0.54-0.76, specificities: 0.52-0.81), “good”-“very good” 

performances on Cohort 8 (AUCs: 0.8-0.96, sensitivities: 0.67-0.94, specificities: 0.75-0.98), 
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and failing on Cohort 9 (AUCs: 0.5-0.59, sensitivities: 0.34-0.84, specificities: 0.36-0.97). 

While models perform well on Cohort 8 in terms of AUC, they are typically not sensitive 

enough (<0.8) apart from the Random Forest model which is highly sensitive and specific on 

Cohort 8 (sensitivity: 0.94, specificity: 0.98). However this model does not perform as well on 

the other two application cohorts.           

 

3.3.2.2 Prediction cohorts 

The classification performances of the six models is subsequently tested on the prediction 

cohorts (Cohorts 10 and 11) to assess whether the models are able to predict schizophrenia 

before disease onset, based on the relative protein concentrations between first onset 

patients and controls. In Cohort 10, all models are used to classify between pre-

schizophrenia individuals and healthy controls, pre-bipolar individuals and controls (to detect 

whether any classification ability seen between pre-schizophrenia individuals and controls 

was disease-specific), and between pre-schizophrenia individuals and pre-bipolar individuals 

(rates of misdiagnosis between these two psychiatric disorders is extremely high). In Cohort 

11, all models are used to classify between prodromal individuals who developed psychosis 

within the following 12 months (converters) and prodromal individuals who did not develop 

psychosis within 12 months (non-converters). Classification performance across cohorts 10 

and 11 is summarized in Table 3.5, while Figure 3.4 shows ROC curves for all models for 

these cohorts. 

As shown in Table 3.5, the performance of the SVM model (the only model which could 

classify patients from controls in the meta-cohort and cohort 6 with high AUC, sensitivity and 

specificity), on the prediction cohorts means that it would not be useful as a prognostic test.  

Overall Random Forest is the only model which produces a “fair” classification performance 

(AUC: 0.7, sensitivity: 0.59, specificity: 0.73) on the comparison between pre-schizophrenia 

individuals and controls in Cohort 10. The other five models produce “poor” classification 

performances (AUCs: 0.61-0.68, sensitivities: 0.44-0.69, specificities: 0.57-0.79) with the 

sensitivity range indicating that models particularly struggle to correctly classify pre-

schizophrenia individuals. All six models produce “poor” performances in the comparison 

between pre-schizophrenia individuals and pre-bipolar individuals (AUC: 0.6-0.65, 

sensitivities: 0.32-0.69, specificities: 0.52-0.91) with the sensitivity range again indicating that 

models struggle to accurately classify pre-schizophrenia individuals.    

All six models fail on the classification comparisons in Cohort 10 between pre-bipolar 

individuals and controls (AUC: 0.5-0.55), and in Cohort 11 between psychosis converters 
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and non-converters (AUC: 0.38-0.43). While it may seem strange that the AUCs for Cohort 

11 appear to be worse than random chance (AUC < 0.5), this is a mathematical quirk of 

ROC analysis which can occur if the relationships the models are using from the training 

data are not at all generalizable to that test cohort(337). Some research studies on ROC 

analysis have recommended inversing model classification decisions (i.e. AUC’ = 1-AUC) for 

AUC < 0.5, but this would only be applicable in this case if there were no a priori information 

regarding whether a randomly chosen converter would be likely to ranked more highly by the 

models than a randomly-chosen non-converter(337). 

 

Table 3.3 Classification performance of the six statistical models across the training meta-cohort 
(Cohorts 1-5) and the validation cohort (Cohort 6). Logistic; Logistic Regression. Ridge; Ridge 
Regression. RF; Random Forest. BL; Bayesian LASSO. 

Performance  
Metric Centre Cohort Logistic Ridge RF SVM BL BART 

AUC 
Meta 
Cohort 

Cohorts 1-5 (Training) - 
Antipsychotic naive SZ & 
Ctrls 0.98 0.96 1.00 0.97 0.97 0.99 

  Santander 

Cohort 6 (Validation) - 
Antipsychotic naive SZ & 
Ctrls 0.83 0.85 0.88 0.88 0.86 0.81 

                  

Sensitivity 
Meta 
Cohort 

Cohorts 1-5 (Training) - 
Antipsychotic naive SZ & 
Ctrls 0.94 0.90 1.00 0.87 0.91 0.99 

  Santander 

Cohort 6 (Validation) - 
Antipsychotic naive SZ & 
Ctrls 0.87 0.74 0.96 0.81 0.94 0.85 

                  

Specificity 
Meta 
Cohort 

Cohorts 1-5 (Training) - 
Antipsychotic naive SZ & 
Ctrls 0.93 0.90 1.00 0.96 0.93 0.99 

  Santander 

Cohort 6 (Validation) - 
Antipsychotic naive SZ & 
Ctrls 0.69 0.83 0.67 0.81 0.68 0.64 
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Table 3.4 Classification performance of the six statistical models across the three application 
cohorts (Cohorts7-9). Logistic; Logistic Regression. Ridge; Ridge Regression. RF; Random Forest. BL; 
Bayesian LASSO. 

Performance  
Metric Centre Cohort Logistic Ridge RF SVM BL BART 

AUC Cologne 

Cohort 7 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.69 0.67 0.69 0.74 0.72 0.66 

  Rotterdam 

Cohort 8 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.86 0.80 0.96 0.87 0.85 0.91 

  Muenster 

Cohort 9 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.57 0.50 0.58 0.56 0.55 0.59 

  
       

  

Sensitivity Cologne 

Cohort 7 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.54 0.66 0.56 0.76 0.67 0.76 

  Rotterdam 

Cohort 8 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.67 0.76 0.94 0.76 0.70 0.79 

  Muenster 

Cohort 9 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.75 0.34 0.46 0.66 0.75 0.84 

  
       

  

Specificity Cologne 

Cohort 7 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.81 0.76 0.76 0.67 0.81 0.52 

  Rotterdam 

Cohort 8 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.98 0.75 0.98 0.95 0.93 0.88 

  Muenster 

Cohort 9 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.48 0.97 0.79 0.52 0.45 0.36 

 

 

 

 



67 
 

 

False positive rate

T
ru

e
 p

os
iti

ve
 ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0.
4

0
.6

0
.8

1.
0

Logistic Regression: AUC = 0.83
Ridge Regression: AUC = 0.85
Random Forest: AUC = 0.88
SVM: AUC = 0.88
Bayesian LASSO: AUC = 0.86
BART: AUC = 0.81

False positive rate

T
ru

e 
p

os
iti

ve
 ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic Regression: AUC = 0.69
Ridge Regression: AUC = 0.67
Random Forest: AUC = 0.69
SVM: AUC = 0.74
Bayesian LASSO: AUC = 0.72
BART: AUC = 0.66

False positive rate

Tr
ue

 p
o

s
iti

ve
 ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0
.2

0
.4

0.
6

0.
8

1
.0

Logistic Regression: AUC = 0.86
Ridge Regression: AUC = 0.8
Random Forest: AUC = 0.96
SVM: AUC = 0.87
Bayesian LASSO: AUC = 0.85
BART: AUC = 0.91

False positive rate

Tr
ue

 p
o

s
iti

ve
 ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0
.4

0.
6

0.
8

1
.0

Logistic Regression: AUC = 0.57
Ridge Regression: AUC = 0.5
Random Forest: AUC = 0.58
SVM: AUC = 0.56
Bayesian LASSO: AUC = 0.55
BART: AUC = 0.59

(A) (B)

(C) (D)

Figure 3.3. ROC curves showing classification performance for the six statistical models across the validation cohort; (A) Cohort 6 – antipsychotic 
naive schizophrenia (SZ) patients and controls (CT), and the 3 application cohorts; (B-D) Cohorts 7-9 - antipsychotic treated SZ patients & CT   

Cohort 6:  88 CT + 47 SZ Cohort 7:  21 CT + 70 SZ

Cohort 8:  40 CT + 33 SZ

Cohort 9:  33 CT + 56 SZ
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Table 3.5 Classification performance of the six statistical models across the two prediction cohorts 
(Cohorts10-11). Logistic; Logistic Regression. Ridge; Ridge Regression. RF; Random Forest. BL; 
Bayesian LASSO. 

Performance 
Metric Centre Cohort Logistic Ridge RF SVM BL BART 

AUC US Military 
Cohort 10 (Prediction) - 
pre-SZ & Ctrls 0.66 0.65 0.70 0.61 0.67 0.68 

  US Military 
Cohort 10 (Prediction) - 
pre-BD & Ctrls 0.50 0.51 0.55 0.51 0.51 0.53 

  US Military 
Cohort 10 (Prediction) - 
pre-SZ & pre-BD 0.65 0.63 0.64 0.60 0.65 0.64 

  Paris 

Cohort 11 (Prediction) - 
psychosis converters & non-
converters 0.41 0.41 0.42 0.41 0.43 0.38 

                  

Sensitivity US Military 
Cohort 10 (Prediction) - 
pre-SZ & Ctrls 0.69 0.44 0.59 0.51 0.64 0.53 

  US Military 
Cohort 10 (Prediction) - 
pre-BD & Ctrls 0.62 0.27 0.24 0.34 0.37 0.35 

  US Military 
Cohort 10 (Prediction) - 
pre-SZ & pre-BD 0.49 0.55 0.32 0.44 0.40 0.69 

  Paris 

Cohort 11 (Prediction) - 
psychosis converters & non-
converters 0.95 1.00 1.00 1.00 0.68 0.53 

                  

Specificity US Military 
Cohort 10 (Prediction) - 
pre-SZ & Ctrls 0.57 0.79 0.73 0.70 0.63 0.78 

  US Military 
Cohort 10 (Prediction) - 
pre-BD & Ctrls 0.45 0.8 0.89 0.75 0.70 0.79 

  US Military 
Cohort 10 (Prediction) - 
pre-SZ & pre-BD 0.77 0.66 0.91 0.73 0.85 0.52 

  Paris 

Cohort 11 (Prediction) - 
psychosis converters & non-
converters 0.21 0.03 0.03 0.02 0.36 0.48 
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Figure 3.4. ROC curves showing predictive performance for the six statistical models across prediction cohorts 9 and 10; (A) Cohort 9 (US Military) –
pre schizophrenia (SZ) individuals and controls (CT), (B) Cohort 9 (US Military) – pre bipolar disorder (BD) individuals and CT, (C) Cohort 9 (US Military) 
– pre SZ individuals and pre BD individuals, (D) Cohort 10 (Paris) – prodromal individuals who converted to psychosis and prodromal individuals who 
did not  
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3.3.3 Biomarker identification 

The most informative biomarkers out of the 66 proteins in the training meta-cohort are 

identified using different variable selection methods for each model. Stepwise selection 

identifies 31 biomarkers and the variable gender for Logistic Regression. LASSO identifies 

28 biomarkers, as an indication of the most important proteins as selected by a penalized 

regression procedure. RFE identifies 28 biomarkers for Random Forest and all 66 proteins 

are selected as biomarkers for SVM. The Bayesian LASSO model identifies 11 biomarkers, 

fewer than any other model. BART identifies 13 biomarkers. There are 7 biomarkers which 

are identified by all six methods. These proteins are Alpha-1 antitrypsin, Cortisol, Factor VII, 

Ferritin, Macrophage migration inhibitory factor, Pancreatic polypeptide, and Receptor for 

advanced glycosylation end products. Table 3.6 lists the biomarkers identified by each 

method, highlighting the overlap.    

 

3.3.4 Reduced model analysis 

With 66 proteins, there are 266 possible models for a given statistical method. As it would not 

be practical to examine the performance of all of these, this study uses different variable 

selection methods to identify sets of proteins which represent the most important biomarkers 

contributing to each model. In the case of Ridge Regression, LASSO is used for variable 

selection to obtain a set of biomarkers through a penalized regression method. As shown in 

Table 3.6, the six methods identified 5 unique sets of biomarkers (running RFE with SVM 

identified all 66 proteins as biomarkers) from the original 66 proteins. In addition, there are 7 

common proteins to all these biomarker sets. Subsequently, models are trained using each 

statistical algorithm, on these 7 biomarkers, and then on each of the five unique sets of 

biomarkers identified by the models. These new models are then tested on each of the 

independent cohorts to examine whether similar or better classification performance could 

be achieved with a smaller, optimal set of proteins. 

Figures 3.5-3.6 show the performances of each model in terms of AUC on the meta-cohort 

and the independent cohorts, for each set of biomarkers. The performance with all 66 

proteins is included for comparison purposes. Plots for sensitivity and specificity are included 

in the Appendices. Cohorts 9 (application), 10 (prediction – pre bipolar vs control group), 

and 11 (prediction) are not included in these figures as all models “fail” when classifying 

these comparisons, for all sets of biomarkers. 
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Table 3.6 Biomarkers selected by the six variable selection methods. The 7 biomarkers selected by 
all models are highlighted in bold. 

Biomarker Name 

Stepwise Selection 
(Logistic 

Regression) LASSO 

RFE 
(Random 
Forest) 

RFE 
(SVM) 

Bayesian 
LASSO BART 

Age    

Gender     

Adiponectin    

Alpha-1 antitrypsin      

Alpha-2 macroglobulin    

Angiopoietin 2      

Apolipoprotein A1      

Apolipoprotein CIII    

Apolipoprotein H     

AXL receptor tyrosine kinase    

Beta-2 microglobulin       

Brain-derived neurotrophic factor    

C reactive protein       

CD40 antigen    

CD40 ligand    

Chemokine CC4    

Complement C3    

Cortisol      

Creatine Kinase MB   

EN-RAGE     

Eotaxin    

Epidermal growth factor      

Epithelial derived  
neutrophil activating protein 78    

Factor VII      

FASLG receptor    

Ferritin      

Follicle stimulating hormone        

Haptoglobin        

Hepatocyte growth factor    

Immunoglobulin A     

Immunoglobulin M    

Insulin-like growth factor binding protein 2      

Intercellular adhesion molecule 1    

Interleukin-16     

Interleukin-18    

Leptin     

Lipoprotein (a)    
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Macrophage derived chemokine    

Macrophage inflammatory protein 1 beta     

Macrophage migration inhibitory factor      

Matrix metalloproteinase 3     

Monocyte chemotactic protein 1    

Myeloperoxidase     

Myoglobin     

Pancreatic polypeptide      

Plasminogen activator inhibitor 1      

Platelet derived growth factor    

Progesterone       

Prolactin     

Pulmonary and activation  
regulated chemokine     

Receptor for advanced  
glycosylation end products      

Resistin    

Serum amyloid P component 
   


 

  
Sex hormone binding globulin 

   


 
  

Sortilin 
   


 

  
Stem cell factor 

 


 
  

Superoxide dismutase 
  

 
 

  
RANTES  

 


 
  

Tenascin C    
 

  
Testosterone 

 
 

 
  

Thrombospondin 1 
 


 

  
Thyroid stimulating hormone 

  
 

 
  

Thyroxine binding globulin 
   


 

  
Tissue inhibitor of metalloproteinases 1 

 


 
  

Tumor necrosis factor receptor like 2 
 


 

  
Vascular cell adhesion molecule 1 

 


 
  

Vascular endothelial growth factor  
 


 

  
von Willebrand factor        
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One of the main findings of this analysis is that the SVM model based on 66 proteins, 

identified in 3.3.2.1, remains the only method which achieves at least a “good” classification 

performance and sensitivity and specificity of at least 0.8 on both the training meta-cohort 

and the validation cohort (cohort 6). Thus this is the only model which has sufficient 

performance for clinical use as a diagnostic test. 

While all 6 statistical methods fit models on 13 proteins which produce “good”-“very good” 

performances on the meta-cohort (AUCs: 0.92-1, sensitivities: 0.8-1, specificities: 0.77-1) 

and cohort 6 (AUCs: 0.8-0.84, sensitivities: 0.79-0.91, specificities: 0.64-0.72), in terms of 

AUC, and 13 proteins would represent a far cheaper option for a diagnostic test than 66 

proteins, in each case either sensitivity or in particular, specificity, is suboptimal. A similar 

trend is seen when fitting models on both sets of 28 proteins. 

As observed with 66 proteins in 3.3.2.1, classification performance varies substantially 

between the application cohorts. While all models fail on Cohort 9, performances range from 

“poor”-“fair” on Cohort 7, and “poor”-“very good” on Cohort 8. The most consistent models 

are the SVM model with 11 proteins which produces both a “fair” performance (AUC: 0.7, 

sensitivity: 0.7, specificity: 0.71) on Cohort 7 and a “good” performance on Cohort 8 (AUC: 

0.81, sensitivity: 0.76, specificity: 0.8), and the Random Forest model with 31 proteins which 

produces a “fair” performance (AUC: 0.7, sensitivity: 0.84, specificity: 0.52) on Cohort 7 and 

a “very good” performance on Cohort 8 (AUC: 0.97, sensitivity: 0.97, specificity: 0.93) but 

while this latter performance is interesting, and shows it is possible to achieve high 

performance on an independent cohort of treated patients and controls, further research is 

needed to understand exactly why biomarker performance is so variable on other cohorts of 

treated patients.   

The performance ranges on the prediction cohort comparisons from Cohort 10 shown in 

Figures 3.5-3.6 are almost all in the “poor” category, as was observed in 3.3.2.2. Along with 

the results from Cohort 11 (not included in these figures as all models fail) this appears to 

provide conclusive evidence that it is not possible to develop a prognostic test based on the 

protein concentrations examined in this study. 
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Figure 3.5 Classification performances for Logistic Regression, Ridge Regression and Random Forest across the training data (Meta-Cohort), and the 
independent validation (Cohort 6), application (Cohorts 7 & 8) and prediction (Cohort 10) cohorts. Performance was measured across models fitted on 
all unique protein biomarker sets identified in Table 3.8, the 7 biomarkers identified by all six models and the full set of 66 proteins for comparison. 28a 
and 28b refers to the set of 28 biomarkers identified by LASSO (28a) and the 28 biomarkers identified by RF-RFE (28b). 
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Figure 3.6 Classification performances for SVM, Bayesian LASSO, and BART across the training data (Meta-Cohort), and the independent validation 
(Cohort 6), application (Cohorts 7 & 8) and prediction (Cohort 10) cohorts. Performance was measured across models fitted on all unique protein 
biomarker sets identified in Table 3.8, the 7 biomarkers identified by all six models and the full set of 66 proteins for comparison. 28a and 28b refers to 
the set of 28 biomarkers identified by LASSO (28a) and the 28 biomarkers identified by RF-RFE (28b). 
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3.4 Discussion 

In summary, this chapter presents the application of multiple statistical techniques towards 

the problem of identifying models which can classify schizophrenia through molecular 

profiling of serum. In this chapter, this problem is examined through profiling serum protein 

concentrations using multiplex immunoassay technology.  Six statistical models were trained 

on a meta-cohort of antipsychotic naive schizophrenia patients and controls, tested on an 

independent cohort of antipsychotic naive patients and controls, and applied to three 

independent cohorts of antipsychotic treated patients and controls. The models were then 

tested as to whether they could predict early indications of the disease in cohorts of pre-

symptomatic or prodromal individuals. 

To our knowledge, the work presented in this chapter is one of the largest studies to date 

which has looked at the problem of classifying schizophrenia through serum proteomic 

profiling. The study design has a number of advantages, including the use of a large meta-

cohort of antipsychotic naive schizophrenia patients and controls for training the models. 

Combining five independent cohorts from different clinical centres in this way helps to reduce 

the overfitting problem, and ensures that the model fits are based on a far larger disease 

population than customary in psychiatric studies. Recruiting first-onset antipsychotic naive 

patients for such studies is extremely difficult as even large psychiatric centres can only 

recruit 20-30 of these patients each year, and few centres follow strict standard operating 

procedures for sample collection(12).  

 

3.4.1 Classification performance 

The main finding of this study is that the SVM model based on the serum concentrations of 

66 proteins can classify antipsychotic naive schizophrenia patients from healthy controls on 

both the training dataset and an independent cohort with an AUC of 0.88-0.97, and 

sensitivity and specificity of 0.81-0.87 and 0.81-0.96. This is an important result as previous 

proteomic studies looking at classifying schizophrenia through the levels of serum proteins 

have either not included independent validation cohorts for testing or applied inaccurate 

statistical methods for doing so(12,166,355,385). In addition, this finding matches up well 

against alternative approaches for classifying antipsychotic naive patients from controls 

which have been investigated in recent years. Studies attempting to build SVM classifiers 

using MRI data have reported a sizeable variation in classification performance ranging from 

“fair” to “excellent” (AUC: 0.7-0.92)(134). In particular, classification performance has been 

lower in larger MRI studies, for example Nieuwenhuis et al(386), where an SVM classifier 
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was trained on a cohort of 111 controls and 128 patients, and tested on an independent 

cohort of 122 controls and 155 patients, yielding an AUC of 0.7. 

However, this model is unlikely to be suitable as a clinical diagnostic tool as it requires the 

measurement of 66 proteins. As stated in 3.1, a previous diagnostic test for schizophrenia 

was withdrawn as it required the measurement of 51 proteins which was found to be too 

expensive(152). The subsequent analysis of models trained on smaller sets of proteins, 

consisting of the most informative biomarkers among the 66 proteins for differentiating 

patients from controls, found that these models were not sufficiently sensitive or specific 

enough.       

In addition, the variability of the classification performances obtained through applying the 

different models examined in this study to multiple independent cohorts of recent onset, 

antipsychotic treated schizophrenia patients illustrate some of the practical challenges 

involved in attempting to develop a serum diagnostic test for schizophrenia which would be 

applicable for medicated patients as well as antipsychotic naive patients. Classification 

performances for the SVM model based on 66 proteins, for example, range from AUC: 0.56-

0.87 across the three cohorts. This variability in performance has been observed in previous 

studies, with peripheral microRNA biomarkers achieving similarly variable classification 

performance (AUC: 0.69-0.85), when tested on a cohort of controls and recent onset 

patients treated with a mixture of first and second generation antipsychotics(154). There are 

several possible reasons for this variability, firstly the fact that antipsychotic medication is 

known to have a confounding effect on the levels of circulating proteins which can impact on 

classification accuracy(33). Hence some antipsychotics may be strongly modulating the 

levels of the proteins measured in this study, especially key predictors involved in driving the 

differences between antipsychotic naïve patients and controls. Unfortunately it is not 

possible to draw firmer conclusions as to the exact role of antipsychotics in this study’s 

results as exact treatment information was not available for all patients in these cohorts. As 

such, we cannot discount the role of other factors in driving this variation in performance, 

including duration of illness, and the heterogeneity which exists between different 

populations of schizophrenia patients.      

It is notable that none of the models examined in this study achieved sufficient classification 

performance on the prediction cohort comparisons for use as a prognostic test. The majority 

of the models produced “poor” performances in classifying pre-symptomatic individuals who 

later developed schizophrenia from healthy controls, and the sensitivities of these models 

were typically very low, thus demonstrating little ability to correctly classify the disease 

group. Classification performances were worse on the prodromal cohort, with all models 
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failing when attempting to classify psychosis converters from non-converters, even though 

these individuals were already displaying initial symptoms when samples were collected. 

These results are considerably different to those found by Chan et al(12), where the 

classification performances of a panel of 22 serum proteins measured through multiplex 

immunoassay were reported as ranging from  AUC: 0.82-0.9 on different prediction cohorts 

of pre-onset individuals. However, that study is thought to be inaccurate as the biomarker 

coefficients were optimized for each test dataset and therefore did not reflect the true 

performance of the panel. The poor performances of the models in this study could be 

because they represent differences in the concentrations levels of these proteins between 

patients and controls at a timepoint when the patients were fully symptomatic, and these 

differences are more subtle at an earlier stage of the disease. In addition, it may be that 

different proteins are expressed strongly both early in the development of the disorder and 

after disease onset. One of the limitations of this study is that only 66 serum protein 

concentrations are measured in all eleven of the cohorts analyzed. Further limitations are 

discussed in Chapter 9. 

 

3.4.2 Further work 

While multiplex immunoassay platforms are one of the most conventional proteomic profiling 

technologies used in classification and biomarker discovery studies, the proteins measured, 

and thus the pathways examined, tend to be biased towards those already available in 

commercial assays been designed with a broad range of diseases in mind(283). The 66 

proteins measured in this study are involved in pathways including inflammation, immune 

system function, lipid transport, hormonal and growth factor signalling, which have also been 

investigated in biomarker discovery studies in cancer(281), cardiovascular disease(359), and 

arthritis(358).       

While this study has been necessary to explore the diagnostic and prognostic potential of 

these proteins in schizophrenia using robust statistical methods, it may be that a more 

targeted proteomic analysis (for example using MRM technology to measure proteins 

already known to be implicated in schizophrenia pathophysiology through existing studies) is 

required to detect proteins substantially expressed in both the prodromal phase and after 

disease onset. This approach is examined in Chapter 4.                  
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Chapter 4 Comparison of statistical 
models for the classification and 
prediction of schizophrenia through 
targeted mass spectrometry profiling 
of serum 
 

4.1 Introduction 

Multiplex immunoassays are one of the most conventional proteomic profiling technologies 

currently used for biomarker identification. However, one of their disadvantages is that the 

only proteins measured tend to be those commonly available on commercial panels, which 

biases studies towards certain protein classes eg: proinflammatory cytokines(283,387). A 

multiplex immunoassay platform was used to profile the serum concentrations of 66 proteins 

across a training meta-cohort and independent validation, application and prediction cohorts 

in the study presented in Chapter 3. While this study identified an SVM model based on the 

concentrations of these 66 proteins, which produced a “good” (AUC > 0.8) classification 

performance as well as high sensitivity and specificity on an independent validation cohort, 

measuring this many proteins would not be viable for a clinical test. Subsequent testing of 

models based on 7-31 proteins found that they were either not sensitive or specific enough 

to be considered for clinical use. In addition, the SVM model based on 66 proteins “failed” 

(AUC < 0.6) at classifying psychosis converters from non-converters in one of the prediction 

cohorts. In the other prediction cohort, it only produced a “poor” (AUC: 0.6-0.7) performance 

when classifying pre-symptomatic individuals who later developed schizophrenia, from 

controls. This prediction ‘failure’ indicates that there is no relationship between the 

differential concentrations of those particular proteins between first-onset patients and 

controls, and psychosis converters and non converters. As such, different circulating 

proteins may be more important mechanistically, both in the early stages of disease 

progression, and following disease onset.       

Following on from Chapter 3, the study in this chapter aims to identify a statistical model 

which can reproducibly classify schizophrenia from healthy controls, and predict disease 

conversion in pre-onset individuals with an AUC, sensitivity and specificity of at least 80%, 

through a different proteomic profiling approach. MRM is used to measure the abundances 

of a pre-selected panel of 147 peptides, corresponding to 77 proteins previously identified as 
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being associated with psychiatric disorders. This panel contains many peptides associated 

with proteins not typically measured in multiplex immunoassays, including members of the 

complement cascade and various neurotrophic factors(283). In addition, MRM is regarded 

as more reliable, yielding fewer false positive and false negative detections as it does not 

have the batch to batch antibody variation which is a drawback of multiplex 

immunoassays(284,292).   

This is the first study to apply an MRM-based proteomic approach to the problem of 

identifying a diagnostic and prognostic biomarker test for schizophrenia. Through the 

targeted profiling of these serum analytes, this study aims to identify statistical models with 

an improved performance to those assessed in Chapter 3. Once again, an independent 

validation cohort of first-onset antipsychotic naive patients and controls is included in the 

study design, in addition to an application cohort of recent-onset antipsychotic treated 

patients and controls, and two prediction cohorts, one consisting of pre-symptomatic 

individuals and another consisting of prodromal individuals. As in Chapter 3, this study trains 

multiple statistical methods on a dataset of first-onset antipsychotic naive patients and 

controls to see which algorithm most accurately represents the underlying trends in the data. 

In this chapter, an additional statistical approach is considered which incorporates prior-

based information. Bayesian approaches were used purely with non-informative priors in 

Chapter 3, but in this section BART is used with non-informative and informative priors. The 

benefits of informative priors in providing a more stable and accurate model by incorporating 

external information about the parameters have been previously discussed in the proteomic 

literature(187). Previous proteomic studies using Bayesian Belief Networks to classify 

patients with different subtypes of T-cell Leukemia Virus type 1 found that using a Bayesian 

model with informative priors outperformed other statistical approaches in terms of prediction 

accuracy(388). Lastly, as in Chapter 3, this study considers the trade-off between 

classification performance and cost which is a crucial practical consideration for all 

biomarker tests. The most informative disease biomarkers are identified from each model by 

identifying the peptides which contribute most to the classification performance. Models are 

then subsequently trained on these smaller subsets of peptides to see whether they produce 

similar performances on the independent cohorts to those trained on the original training 

data. 

Identifying a model which can accurately classify prodromal converters from non-converters 

would have great clinical relevance as previous research studies have established a strong 

association between early therapeutic intervention and improved patient outcomes in the 

treatment of psychosis(163). While progress has been made in establishing clinical criteria 

for individuals with ultra-high-risk syndrome, there is currently no tool to aid psychiatrists 
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detect the 20-35% who will experience a psychotic episode over two to three years(14). As 

described in Chapter 1, the only two previous studies which have attempted to identify such 

a classification model have both had various limitations.  Perkins et al. constructed a 

classifier to identify analytes in plasma which could differentiate converters from non-

converters, but the study lacked an independent dataset in which to validate the 

performance(190). Chan et al. identified a panel of 22 serum proteins which could predict 

prodromal conversion in an independent dataset with an AUC of 0.9 when combined with 

clinical scores, but this result is thought to be unreliable as the coefficients of these proteins 

were optimized for the test dataset and therefore did not reflect the real predictive 

performance of this panel(12). This is one of the statistical shortcomings highlighted Chapter 

1 as contributing to the failure of many proteomic biomarkers to validate.  

 

4.2 Methods 

R packages, functions and settings were applied as in Chapter 3, unless otherwise stated. 

 

4.2.1 Clinical samples 

Serum samples were collected from 639 individuals recruited from five clinical centres 

across Germany, The Netherlands, United States and France as displayed in Table 4.1.   

The training phase of the study is conducted on cohort 1, consisting of healthy controls and 

first-onset antipsychotic naïve schizophrenia patients from the Department of Psychiatry, 

University of Cologne. The validation phase of the study is conducted on cohort 2, consisting 

of healthy controls and first-onset antipsychotic naïve schizophrenia patients from Erasmus 

University Medical Centre, Rotterdam.  

The application phase of the study is conducted on cohort 3, consisting of healthy controls 

and recent-onset schizophrenia patients with an average disease duration of approximately 

one year, treated with a mixture of first and second generation antipsychotic medications 

from the Department of Psychiatry, University Medical Centre Utrecht.  

The prediction phase of the study is conducted on cohorts 4 and 5. Cohort 4 is the the same 

as Cohort 10, described in 3.2. For Cohort 5, psychosis converters and non-converters were 

determined through the same criteria described for Cohort 11 in 3.2.      
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Table 4.1 Patient and control demographics characteristics for the cohorts analyzed in Chapter 4. 
Values are presented as average ±standard deviation. 

Cohort Number Centre 
Sex 
(M/F) 

Age 
(years) 

PANSS 
positive 

PANSS 
negative 

PANSS 
general 

PANSS 
total 

 
Cohort 1 (139) 

79 CT 
60 SCZ Cologne 

43/36 
31/29 

31 ± 8 
31 ± 10 

NA 
23 ± 6 

NA 
23 ± 7 

NA 
49 ± 10 

NA 
96 ± 20 

Cohort 2 (21) 
12 CT 
9 SCZ Rotterdam 

12/0 
9/0 

27 ± 7 
28 ± 6 

NA 
20 ± 5 

NA 
22 ± 7 

NA 
39 ± 6 

NA 
80 ± 15 

Cohort 3 (32) 
17 CT 
15 SCZ Utrecht 

14/3 
12/3 

26 ± 4 
25 ± 4 

NA 
11 ± 3 

NA 
14 ± 3 

NA 
27 ± 6 

NA 
53 ± 9 

Cohort 4 (369) 

184 CT 
75 pre-SCZ 
110 pre-BD 

USA 
DoDSR 

136/48 
67/8 
70/40 

22 ± 4 
24 ± 5 
21 ± 4 

NR 
NR 
NR 

NR 
NR 
NR 

NR 
NR 
NR 

NR 
NR 
NR 

Cohort 5 (78) 
24 pre-SCZ 
54 not pre-SCZ Paris 

15/9 
28/26 

20 ± 3 
22 ± 4 

16 ± 6 
12 ± 4 

18 ± 6 
16 ± 7 

42 ± 10 
39 ± 10 

75 ± 19 
67 ± 18 

 

4.2.2 Data pre-processing 

The abundances of up to 147 peptides are measured for all 639 samples across cohorts 1-5 

using the MRM platform described in Chapter 2. All peptide abundances measured are run 

through a series of pre-processing steps based on an optimal MRM analysis metholodogy 

outlined in Ozcan et al(283). The abundances of each peptide and its underlying transitions 

can be affected by various forms of non-biological variation, originating from the 

experimental settings. Therefore quality control steps were conducted to detect inaccurate 

transitions, so only the most reliable transitions were taken forward for analysis. Based on 

the recommended procedure as defined in Ozcan et al., to ensure reproducibility, the most 

abundant peptide-transitions, with a minimum of 80% consistency between endogenous and 

isotopically-labelled peptides, across mass spectrometry runs are selected(283). For the 

most abundant peptide-transitions with less than 80% consistency, peptides are visually 

inspected for interference from the biological matrix, and the most abundant transition was 

manually chosen based on quality control samples. Subsequently, the relative abundance 

ratio is computed for each peptide between endogenous and isotopically-labelled peptides. 

All peptide abundances are log transformed. In addition, sample outliers are assessed using 

PCA through inspection of quantile-quantile plots. PCA is additionally used to check for data 

artefacts. Two control samples are detected as outliers in cohort 1, and removed. Batch 

effects between each of the five sample cohorts, are normalized using the ComBat 

algorithm. 
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4.2.3 Exploratory analysis 

To improve the EPV (defined in Chapter 1) and reduce overfitting, an exploratory univariate 

analysis is conducted on Cohort 1 using a linear regression model (applied in R as described 

in Chapter 2) to identify significantly (p < 0.05) changed peptides between first-onset 

antipsychotic naive schizophrenia patients and controls. The significantly (p < 0.05) altered 

peptides identified in this analysis are used to stratify the training data. Thus subsequently 

each statistical model is only trained on this reduced set of peptides, improving the EPV.  

 

4.2.4 Statistical model training 

Six statistical models, Logistic Regression, Ridge Regression, SVM, Random Forest, 

Bayesian LASSO and BART, are trained on 21 peptides measured across 137 samples (77 

controls and 60 first-onset patients) and the demographic variable age, in cohort 1. In this 

instance, BART is applied with an uninformative prior. Model parameter tuning is carried out 

using ten-fold cross validation over a grid of values as described in Chapter 3.  

 

4.2.4.1 Informative prior 

To explore the potential of an informative prior for providing a more stable and accurate 

model, BART is subsequently trained on cohort 1 with an informative prior. Prior information 

is set as follows: 

A BART model is trained on cohort 2 with uniform weights (the default setting) to obtain 

variable inclusion proportions for each of the 21 peptides. These proportions are used as 

weights determining how often each peptide should be proposed when training a BART 

model on cohort 1, so the splits proposed in tree growing and training for the model took into 

account which peptides are important in an independent dataset of antipsychotic naive 

patients and controls.      

4.2.5 Evaluating classification performance on validation, 
application and prediction cohorts 

The statistical models trained in 4.2.4, are subsequently initially tested on the training data 

(Cohort 1) purely to provide a comparison reference in terms of performance, for testing on 

the independent cohorts. They are subsequently tested on the validation cohort (Cohort 2 – 

antipsychotic naive schizophrenia patients and controls), although for the BART model with 

an informative prior, it should be noted that this model’s performance will be biased, because 

prior information was obtained from this cohort.  The models are then tested on the 
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application cohort (Cohort 3 – antipsychotic treated schizophrenia patients and controls), 

and the prediction cohorts (Cohort 4 – pre schizophrenia individuals, pre bipolar individuals, 

and controls, and Cohort 5 - prodromal individuals who converted to psychosis after one 

year, and prodromal individuals who did not). In Cohort 4, the classification performance of 

each model is tested in three cases; pre-schizophrenia individuals against controls, pre-

bipolar individuals against controls and pre-schizophrenia individuals against pre-bipolar 

individuals. Classification performance across the validation, application and prediction 

cohorts is again evaluated through plotting ROC curves and computing the associated 

metrics outlined in Chapter 3.  

 

4.2.6 Biomarker identification 

Following classification performance testing on the independent validation, application and 

prediction cohorts, the most important biomarkers are identified for each model. These 

biomarkers are the peptides which contribute most to the model performance, maximising 

the discriminatory power between schizophrenia patients and controls. Biomarker 

identification is conducted as described in Chapter 3. 

 

4.2.7 Reduced model analysis 

Following biomarker identification, the seven methods are trained on each unique subset of 

biomarkers. Each method is trained on all biomarker sets to allow for comparability between 

methods on each set of peptides. Each model is trained on the biomarker set in question on 

cohort 1, and then tested on all of the validation, application and prediction cohorts. This 

obtains a spectrum of classification performances for each model, across all of the 

independent cohorts, for a series of different subsets of the 21 peptides. This makes it 

possible to determine whether similar or better performance could be achieved with a 

smaller, more optimal subset of peptide predictors, which would be cheaper to incorporate 

into a clinical test.  

 

4.3 Results 

The study presented in this chapter includes a total of 639 participants across 5 sample 

cohorts, comprising 137 in the training data (cohort 1), 21 in the validation cohort (cohort 2), 

32 in the application cohort (cohort 3), and 447 in the pre-onset prediction cohorts (cohorts 4 

and 5). The ComBat algorithm is used to normalize batch effects between the five cohorts, 

and the adjusted peptide abundances are used for the subsequent analyses in this chapter. 
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4.3.1 Exploratory analysis 

Exploratory analysis conducted on cohort 1 using a linear model, identifies 21 significantly (p 

< 0.05) changed peptides (corresponding to 16 unique proteins) between first-onset patients 

and controls, shown in Table 4.2. These peptides are used to stratify the training data to 

reduce the propensity for overfitting.  

Table 4.2 Significantly (p < 0.05) altered peptide abundances between first-onset antipsychotic 
naive schizophrenia patients and healthy controls in cohort 1. These 21 peptides correspond to 16 
unique proteins. 

Protein Abbreviation Peptide Sequence P Value 

Vitronectin VTNC DWHGVPGQVDAAMAGR 0.0004 

Haptoglobin HPT DYAEVGR 0.0042 

Haptoglobin HPT VTSIQDWVQK 0.0047 

Hemoglobin subunit alpha HBA MFLSFPTTK 0.0058 

Antithrombin-III ANT3 LPGIVAEGR 0.0070 

Apolipoprotein H APOH VSFFCK 0.0073 

Antithrombin-III ANT3 FDTISEK 0.0089 

α-1-antichymotrypsin AACT EQLSLLDR 0.0140 

Apolipoprotein C-III APOC3 DALSSVQESQVAQQAR 0.0160 

Apolipoprotein C-I APOC1 EFGNTLEDK 0.0190 

Inter-α-trypsin inhibitor heavy chain H4 ITIH4 GPDVLTATVSGK 0.0216 

Complement C4-A CO4A VLSLAQEQVGGSPEK 0.0220 

α-2-antiplasmin A2AP FDPSLTQR 0.0245 

Ficolin-3 FCN3 YGIDWASGR 0.0257 

Apolipoprotein A-IV APOA4 ALVQQMEQLR 0.0269 

Complement component C9 CO9 VVEESELAR 0.0301 

Apolipoprotein C-III APOC3 GWVTDGFSSLK 0.0329 

Apolipoprotein A-IV APOA4 ISASAEELR 0.0387 

Complement C4-A CO4A ITQVLHFTK 0.0410 

Retinol-binding protein 4 RET4 YWGVASFLQK 0.0427 

Complement C2 CO2 HAIILLTDGK 0.0457 
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4.3.2 Evaluating classification performance on validation, 
application and prediction cohorts 

4.3.2.1 Validation and application cohorts 

The classification performance of the seven models is tested on the training data (Cohort 1) 

to provide a reference in terms of AUC, sensitivity and specificity for the subsequent 

independent cohorts. The models are then tested on the independent validation cohort 

(Cohort 2 – antipsychotic naive schizophrenia patients and controls) and application cohort 

(Cohort 3 – antipsychotic treated schizophrenia patients and controls). Performance analysis 

across cohorts 1-3 is summarized in Table 4.3 while Figure 4.1 shows ROC curves for all 

models on cohorts 2 and 3. As described in Chapter 3, classification performance is typically 

categorized as “very good” (AUC > 0.9), “good” (AUC: 0.8-0.9), “fair” (AUC: 0.7-0.8), “poor” 

(0.6-0.7) and “fail” (AUC < 0.6).  

SVM is the only model which produces at least a “good” performance plus sensitivity and 

specificity of at least 0.8, on both the training (cohort 1) and validation (cohort 2) cohorts. 

SVM produces a “very good” performance on cohort 1 (AUC – 0.92, sensitivity – 0.85, 

specificity – 0.86), and a “good” performance on cohort 2 (AUC – 0.87, sensitivity – 0.89, 

specificity – 0.92).  

In comparison, while Random Forest and BART produce only “fair” performances on cohort 

2 (AUC – 0.79), Bayesian LASSO, BART prior, Logistic Regression and Ridge Regression, 

produce “good” – “very good” (Cohort 1 AUCs: 0.89-0.93, Cohort 2 AUCs: 0.79-0.93) 

performances on cohorts 1 and 2. However each model has either suboptimal sensitivity or 

specificity compared to SVM (Cohort 1 sensitivities: 0.72-0.92, Cohort 1 specificities: 0.83-

0.95, Cohort 2 sensitivities – 0.56-0.89, Cohort 2 specificities – 0.75-1) on one of the 

cohorts.  
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Table 4.3 Classification performance of the seven statistical models across cohorts 1-3 (training, validation and application). Logistic; Logistic Regression. 
Ridge; Ridge Regression. RF; Random Forest. BL; Bayesian LASSO. BART; BART – uninformative prior. BART prior; BART – informative prior.  

Performance 
Metric Centre Cohort Logistic Ridge RF SVM BL BART BART prior 

AUC Cologne 
Cohort 1 (Training) - 
Antipsychotic naive SZ & Ctrls 0.93 0.90 1.00 0.92 0.92 0.89 0.91 

  Rotterdam 
Cohort 2 (Validation) - 
Antipsychotic naive SZ & Ctrls 0.84 0.93 0.79 0.87 0.87 0.79 0.8 

  Utrecht 

Cohort 3 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.67 0.62 0.73 0.63 0.63 0.66 0.66 

                    

Sensitivity Cologne 
Cohort 1 (Training) - 
Antipsychotic naive SZ & Ctrls 0.92 0.72 1.00 0.85 0.75 0.82 0.77 

  Rotterdam 
Cohort 2 (Validation) - 
Antipsychotic naive SZ & Ctrls 0.89 0.89 0.89 0.89 0.89 0.78 0.56 

  Utrecht 

Cohort 3 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.63 0.37 0.84 0.42 0.42 0.74 0.74 

                    

Specificity Cologne 
Cohort 1 (Training) - 
Antipsychotic naive SZ & Ctrls 0.81 0.95 1.00 0.86 0.94 0.96 0.92 

  Rotterdam 
Cohort 2 (Validation) - 
Antipsychotic naive SZ & Ctrls 0.75 0.92 0.58 0.92 0.92 0.75 1.00 

  Utrecht 

Cohort 3 (Application) - 
Antipsychotic treated SZ & 
Ctrls 0.76 1.00 0.59 0.94 1.00 0.71 0.71 

 



88 
 

Figure 4.1 ROC curves illustrating classification performance for each of the seven models on (a) cohort 2 (validation) – antipsychotic naive schizophrenia 
patients & controls; (b) cohort 3 (application) – antipsychotic treated patients & controls. Logistic; Logistic Regression. Ridge; Ridge Regression. RF; 
Random Forest. BL; Bayesian LASSO. BART; BART – uninformative prior. BART prior; BART – informative prior.    
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Table 4.4 Classification performance of the seven statistical models between pre-schizophrenia individuals and controls, pre-bipolar individuals and 
controls, and pre-schizophrenia individuals and pre-bipolar individuals. Samples came from cohort 4 (prediction). Logistic; Logistic Regression. Ridge; 
RidgeRegression. RF; Random Forest. BL; Bayesian LASSO. BART – uninformative prior. BART prior; BART – informative prior.    

Performance 
Metric Centre Cohort Logistic Ridge RF SVM BL BART BART prior 

AUC Military 
Cohort 4 (Prediction) - 
pre-SZ & Ctrls 0.42 0.41 0.43 0.42 0.40 0.45 0.47 

  Military 
Cohort 4 (Prediction) - 
pre-BD & Ctrls 0.46 0.51 0.56 0.51 0.51 0.57 0.58 

  Military 
Cohort 4 (Prediction) - 
pre-SZ & pre-BD 0.46 0.40 0.38 0.41 0.39 0.38 0.39 

                    

Sensitivity Military 
Cohort 4 (Prediction) - 
pre-SZ & Ctrls 0.00 0.01 0.02 0.03 0.00 0.03 0.50 

  Military 
Cohort 4 (Prediction) - 
pre-BD & Ctrls 0.07 0.66 0.42 0.46 0.62 0.62 0.70 

  Military 
Cohort 4 (Prediction) - 
pre-SZ & pre-BD 0.81 1.00 0.99 1.00 0.96 0.99 0.99 

                    

Specificity Military 
Cohort 4 (Prediction) - 
pre-SZ & Ctrls 1.00 1.00 0.99 1.00 1.00 0.99 0.54 

  Military 
Cohort 4 (Prediction) - 
pre-BD & Ctrls 0.94 0.42 0.74 0.59 0.46 0.59 0.51 

  Military 
Cohort 4 (Prediction) - 
pre-SZ & pre-BD 0.22 0.02 0.06 0.02 0.06 0.06 0.06 
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Table 4.5 Classification performance of the seven statistical models between converters (prodromal individuals who later developed psychosis) and non-
converters (prodromal individuals who did not).  Samples came from cohort 5 (prediction). Logistic; Logistic Regression. Ridge; RidgeRegression. RF; 
Random Forest. BL; Bayesian LASSO. BART – uninformative prior. BART prior; BART – informative prior 

Performance 
Metric Centre Cohort Logistic Ridge RF SVM BL BART BART prior 

AUC Paris 
Cohort 5 (Prediction) - 
converters & non-converters 0.92 0.84 0.57 0.88 0.89 0.55 0.55 

Sensitivity 
  

0.83 0.83 0.96 0.88 0.83 0.96 0.96 

Specificity     0.94 0.72 0.28 0.80 0.87 0.22 0.22 
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Figure 4.2 ROC curves illustrating performance for each of the seven models on cohort 5 
(prediction) – psychosis converters and non converters. Logistic; Logistic Regression. Ridge; Ridge 
Regression. RF; Random Forest. BL; Bayesian LASSO. BART; BART – uninformative prior. BART 
prior; BART – informative prior. 
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The SVM model’s performance on the validation cohort (cohort 2) compares well to its 

performance on the training data (cohort 1), showing that classification ability is not 

substantially reduced when it is tested on an independent cohort of antipsychotic naive 

patients and controls. However this model produces a “poor” performance (AUC – 0.63) 

when tested on the application cohort (cohort 3) of recent-onset antipsychotic treated 

patients and controls. A drop in performance is expected on this cohort as the models were 

trained on a different category of patients, antipsychotic naive patients and controls, but this 

result suggests that the SVM model would not be clinically useful in diagnosing treated 

patients. All other models produce “poor” classification performances (AUCs: 0.62-0.67) on 

this cohort, apart from Random Forest which is the only model to produce a “fair” 

performance (AUC – 0.73).  Apart from the three tree-based models, Random Forest, BART 

and BART prior, SVM and the other models have much lower sensitivities than specificities 

on cohort 3, showing that they struggle to correctly classify patients.  

 

4.3.2.2 Prediction cohorts 

The classification performances of the seven models are subsequently tested on the 

prediction cohorts (Cohorts 4 and 5) to assess the ability of the models to predict 

schizophrenia before disease onset. In Cohort 4, all models are used to classify between 

pre-schizophrenia individuals and controls, pre-bipolar individuals and controls (to detect 

whether any classification ability seen between pre-schizophrenia individuals and controls 

was disease-specific), and between pre-schizophrenia individuals and pre-bipolar individuals 

(rates of misdiagnosis between these two psychiatric disorders is extremely high). In Cohort 

5, all models are used to classify between prodromal individuals who later developed 

psychosis (converters) and prodromal individuals who didn’t develop the disorder (non-

converters). Performance analysis across cohorts 4 and 5 is summarized in Tables 4.4 and 

4.5, while Figure 4.2 shows ROC curves for all models for the comparison in Cohort 5. 

As shown in Table 4.4, all models fail on the classification comparisons investigated in 

Cohort 4. The performance ranges are AUC: 0.4-0.47 between pre schizophrenia individuals 

and controls, AUC: 0.46-0.58 between pre-bipolar individuals and controls, and AUC: 0.39-

0.46 between pre schizophrenia individuals and pre-bipolar individuals. The issue of AUCs 

being less than 0.5 is discussed earlier in Chapter 3. 

However, the most notable result of this study is found through the comparison investigated 

in Cohort 5, as shown in Table 4.5 and Figure 4.2. The SVM model (the only model which 

could classify patients from controls in cohorts 1 and 2 with high AUC, sensitivity and 

specificity), is also able to classify psychosis converters from non converters with a “good” 
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performance and high sensitivity and specificity (AUC - 0.88, sensitivity – 0.88, specificity - 

0.8). 

The Logistic Regression and Bayesian LASSO models are also able to classify psychosis 

converters from non-converters with “good”-“very good” AUCs ranging from 0.89-0.92, and 

high sensitivity and specificities of 0.83 and 0.87-0.94. There is a notable difference in 

performance between the three tree-based models (Random Forest and the two BART 

models) and the other four models, which can be seen clearly in Figure 4.2. The three tree-

based models “fail” when attempting to classify converters from non-converters with AUCs of 

less than 0.6.    

 

4.3.3 Biomarker identification 

All seven models are initially trained on 21 peptides and the demographic variable age in 

cohort 1. The same variable selection methods applied in Chapter 3 are utilized to identify 

different subsets of biomarkers from these 21 peptides. The purpose of identifying 

biomarkers is for clinical applicability, to see whether each model can achieve a similar 

performance on the independent cohorts with a smaller subset of peptides, thus making a 

prospective clinical test cheaper to run. Table 4.6 shows the biomarkers identified for each 

of the models. RFE identifies 20 biomarkers for Random Forest and 14 for SVM. Stepwise 

selection identifies 9 biomarkers for Logistic Regression, and LASSO selects 7 biomarkers. 

Bayesian LASSO selects 3 biomarkers, and BART with uninformative and informative priors 

selects the same 2 biomarkers. It may be notable in the context of schizophrenia 

pathogenesis that the peptide DWHGVPGQVDAAMAGR, corresponding to the protein 

Vitronectin (VTNC), is the only peptide to be selected as a biomarker by all seven models. 

VTNC has previously been shown in rodent studies to play a crucial role in the developing 

CNS in interacting with and determining the functions of proteins directly involved in synaptic 

plasticity, synaptogenesis, neural differentiation and survival, and neural regeneration 

following injury(389,390). Several of these proteins have been linked to schizophrenia and 

other psychiatric disorders in humans, suggesting that changes in the abundance of VTNC 

may play a role in the pathophysiological mechanisms underpinning these disorders(389). 

4.3.4 Reduced model analysis 

With 21 peptides, there are 221 possible models for a given statistical method such as 

Logistic Regression. As it would not be practical to examine the performance of all of these, 

this study uses different variable selection methods to identify sets of peptides which 

represent the most important biomarkers contributing to each model. In the case of Ridge 
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Regression, LASSO is used for variable selection to obtain a set of biomarkers through a 

penalized regression method. As shown in Table 4.6, 7 unique sets of biomarkers were 

identified from the 21 peptides in the original training data. Cohort 1 is then used to train 

each statistical method on each of these sets of biomarkers. These models are then tested 

on each of the independent cohorts to examine whether similar or better classification 

performance could be achieved with a smaller, optimal set of peptides. 

Table 4.6 The seven sets of biomarkers identified using stepwise selection with logistic regression, 
LASSO, recursive feature elimination with Random Forest and SVM, and biomarker selection 
strategies for Bayesian LASSO, and both BART models. 

Biomarker Name 
Protein 
Name 

Stepwise 
Selection 
(Logistic 

Regression) Ridge 

RFE 
(Random 
Forest) 

RFE 
(SVM) BL BART 

BART 
prior 

Age NA   
DWHGVPGQVDAAMAGR VTNC       

DYAEVGR HPT     

VTSIQDWVQK HPT       

MFLSFPTTK HBA        
LPGIVAEGR ANT3    

VSFFCK APOH     

FDTISEK ANT3    
EQLSLLDR AACT   

DALSSVQESQVAQQAR APOC3       

EFGNTLEDK APOC1     

GPDVLTATVSGK ITIH4     
VLSLAQEQVGGSPEK CO4A     

FDPSLTQR A2AP    
YGIDWASGR FCN3     

ALVQQMEQLR APOA4       
VVEESELAR CO9     

GWVTDGFSSLK APOC3     

ISASAEELR APOA4     

ITQVLHFTK CO4A      

YWGVASFLQK RET4       

HAIILLTDGK CO2             
 

Figures 4.3-4.5 show the performances of each model in terms of AUC on cohort 1 and the 

independent cohorts, for each set of biomarkers. The performance with all 21 peptides is 

included for comparison purposes. The same plots for sensitivity and specificity are included 
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in the Appendices. Cohort 4 (prediction), is not included in these figures as all models “fail” 

on this cohort for all sets of biomarkers. 

One of the main findings of this analysis is that, as in 4.3.2.1, SVM is the only method which 

achieves at least a “good” classification performance and sensitivity and specificity of at least 

0.8 on both the training cohort (cohort 1) and the validation cohort (cohort 2), with a reduced 

set of peptides. SVM achieves a comparable performance to the full 21 peptides with just 7 

peptides (VTNC, HPT, HBA, APOC3, APOA4, CO4A, RET4). The SVM model with 7 

peptides produces a “very good” performance on cohort 1 (AUC – 0.92, sensitivity – 0.8, 

specificity – 0.91), and a “good” performance on cohort 2 (AUC – 0.88, sensitivity – 0.87, 

specificity – 0.83).  

In comparison, when fitting models on these 7 peptides using the other six statistical 

methods, the BART, BART prior and Ridge Regression models produce “very good” 

performances on cohorts 1 and 2 (Cohort 1 AUCs: 0.9-0.93, Cohort 2 AUCs: 0.91) but for 

each model, sensitivity is less than 0.8 for either cohort 1 or 2 ,indicating that the ability to 

correctly classify patients consistently may be suboptimal. The same trend is true for the 

Bayesian LASSO, Random Forest and Logistic Regression models with 7 peptides. Again 

the models produce classification performances in the “good”-“very good” range on cohorts 1 

and 2 but sensitivities are less than 0.8 on one of the cohorts. 

These results suggest that when it comes to diagnosing antipsychotic naive patients from 

controls, the SVM model with 7 peptides is the most optimal for fulfilling the desired criteria 

of consistently high classification performance, high sensitivity and specificity, and a 

relatively few number of biomarkers. While all 7 statistical methods still produce “good” 

performances on both cohorts 1 and 2 (Cohort 1 AUCs: 0.83-1, Cohort 2 AUCs: 0.83-0.85) 

with just 3 peptides, in each case the sensitivity (Cohort 1 sensitivities: 0.53-1, Cohort 2 

sensitivities: 0.89-1) and/or specificity values (Cohort 1 specificities: 0.84-1, Cohort 2 

specificities: 0.67-0.83) on the two cohorts are not sufficient for clinical use.    

However the SVM model with 7 peptides produces a “poor” performance (AUC: 0.67, 

sensitivity: 0.53, specificity: 0.88) on the application cohort (cohort 3). None of the other 

models produce sufficient performances to be considered as clinically relevant tools, but the 

Random Forest model with 9 peptides (VTNC, HPT, HBA, APOC3, APOA4, CO9, APOC3, 

APOA4, RET4) is the only model out of all, including the models with 21 peptides, which 

achieves at least a “fair” classification performance as well as sensitivity and specificity of at 

least 0.7 (AUC – 0.76, sensitivity – 0.79, specificity – 0.71). Most models have high 

specificity but low sensitivity across the sets of biomarkers, showing the difficulty in 

classifying patients in this cohort based on the relative peptide abundances of antipsychotic 
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naive patients and controls. The tree-based models, BART, BART prior and Random Forest 

achieve the highest classification performances for cohort 3 with both BART models 

producing an AUC of 0.78 with 7 peptides, but Random Forest is the only model which 

achieves both “fair” performances and higher sensitivities for this cohort.   

For the prediction cohort (cohort 5), the SVM model with 7 peptides has a low sensitivity 

(AUC: 0.82, sensitivity: 0.63, specificity: 0.89). Therefore, the SVM model with 21 peptides 

remains the only model which produces “good”-“very good” classification performances in 

discriminating both antipsychotic naive schizophrenia patients from controls across cohorts 1 

and 2, and psychosis converters from non-converters in cohort 5, as well as having 

sensitivities and specificities for these comparisons of at least 0.8. 

However from a biomarker cost perspective, an important finding could be that the Bayesian 

LASSO model with 3 peptides (VTNC, HBA and RET4) produces a “very good” performance 

and high sensitivity and specificity (AUC – 0.9, sensitivity – 0.92, specificity – 0.87) on this 

cohort.  While this model is not sensitive or specific enough for utility as a diagnostic test 

between antipsychotic naive patients and controls (Cohort 1 – AUC: 0.83, sensitivity: 0.67, 

specificity: 0.84. Cohort 2 – AUC: 0.85, sensitivity: 1, specificity: 0.67), it may be worth 

further investigation as a purely prognostic test for detecting psychosis conversion, as this 

model is more sensitive and specific on cohort 5 than the SVM model with 21 peptides, and 

requires the measurement of far fewer biomarkers. 
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Figure 4.3 Classification performance on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) and prediction 
(cohort 5) cohorts for Logistic Regression, Ridge Regression and SVM. Performance was measured across models fitted on all unique peptide biomarker 
sets identified in Table 4.6 and the full set of 21 peptides for comparative purposes.   
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Figure 4.4 Classification performance on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) and prediction 
(cohort 5) cohorts for Bayesian LASSO, Random Forest and BART. Performance was measured across models fitted on all unique peptide biomarker sets 
identified in Table 4.6 and the full set of 21 peptides for comparative purposes. 

 

 

 

Bayesian LASSO

1.0
0.9

0.8

0.7

0.6

0.5

2 3 7 9 14 20 21 2 3 7 9 14 20 21 2 3 7 9 14 20 21 2 3 7 9 14 20 21

Peptides

Random Forest

1.0

0.9

0.8

0.7

0.6

0.5

2       3 7 9 14 20 21 2 3 7 9 14 20 21 2 3 7 9 14 20 21 2 3 7 9 14 20 21

Peptides

BART

1.0

0.9

0.8

0.7

0.6

0.5

2 3 7 9 14 20 21 2 3 7 9 14 20 21 2 3 7 9 14 20 21 2 3 7 9 14 20 21

Peptides

A
U

C
A

U
C

A
U

C

Cohort 3Cohort 2Cohort 1 Cohort 5

Cohort 2Cohort 1 Cohort 3 Cohort 5

Cohort 2Cohort 1 Cohort 3 Cohort 5



99 
 

 

 

Figure 4.5 Classification performance on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) and prediction 
(cohort 5) cohorts. Performance was measured across models fitted on all unique peptide biomarker sets identified in Table 4.6 and the full set of 21 
peptides for comparative purposes. 
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4.4 Discussion 

In summary, this chapter presents the application of multiple statistical methods towards the 

problem of identifying models which can classify schizophrenia and predict the onset of the 

disease through molecular profiling of serum. This problem was initially examined in 

Chapter 3 through the concentration levels of 66 proteins, measured using a multiplex 

immunoassay platform. The study presented in this chapter differs from Chapter 3 as (a) it 

measures the abundances of peptides in serum using targeted mass spectrometry, and (b) 

its main focus is on identifying serum analytes which can predict the development of 

psychosis before disease onset. Hence a targeted approach is applied, measuring the 

abundances of a pre-selected panel of 147 peptides linked to psychiatric disorders, many of 

which are associated with different proteins to those studied in Chapter 3.  

 

4.4.1 Classification performance with 21 peptides 

There are two major findings of this study. The first is the identification of an SVM model 

based on the abundances of 21 peptides in serum which can classify antipsychotic naive 

schizophrenia patients from healthy controls with an AUC of 0.87-0.92 and sensitivity and 

specificity of 0.85-0.89 and 0.86-92. The second is that this model can also predict 

conversion to psychosis in prodromal individuals with an AUC of 0.88 (0.88 sensitivity and 

0.8 specificity). 

The latter finding is particularly notable, as thus far, no other study has been able to robustly 

identify a model based on a set of serum analytes which can predict psychosis conversion in 

an independent cohort. In Chapter 3, the statistical models based on the concentrations of 

66 serum proteins, failed when it came to classifying converters from non-converters. In 

addition, independent studies which have claimed to identify protein biomarkers capable of 

predicting schizophrenia conversion have either lacked a validation cohort or demonstrated 

analytical flaws in the application of statistical models which have biased the results(12,190). 

As such, the performance of this model in classifying psychosis converters from non-

converters suggests that if this result survives further validation testing in similar cohorts, this 

model could form the basis of a blood biomarker assay for aiding clinicians in evaluating the 

likelihood of progression to schizophrenia in at-risk individuals, in conjunction with the 

currently used structured clinical interviews. Previous review papers have stated that such 

an assay would have the potential to be particularly useful, as there are currently no 

biological tools available to assist clinicians in this regard(152). 
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In light of these classification performances, the biological functions represented by these 21 

peptides provides novel, useful information regarding disease pathophysiology. The results 

demonstrate that differences in their abundances are not only capable of discriminating the 

schizophrenia patient group from healthy controls once symptoms develop, thus 

representing a ‘schizophrenia signal’, but that this signal is present in the at-risk population 

even before disease onset, indicating that the relevant pathways may be involved at the 

earliest stages of schizophrenia pathogenesis. The 21 peptides in this panel are associated 

with the members of the apolipoprotein family, the complement cascade, and further proteins 

involved in inflammatory processes, metabolic function, coagulation, and cell adhesion. Of 

these associated proteins, apolipoprotein A-IV (APOA4)(391,392), apolipoprotein C-III 

(APOC3)(34), apolipoprotein H (APOH)(34), antithrombin-III (ANT3)(393,394), complement 

C2 (CO2)(25), complement C4-A (CO4A)(25,395), complement component C9 (CO9)(395), 

ficolin-3 (FCN3)(33), haptoglobin (HPT)(396,397), inter-α-trypsin inhibitor heavy chain H4 

(ITIH4)(398), retinol-binding protein 4 (RET4)(399), and VTNC(355) have all been previously 

linked to schizophrenia in either genomic or proteomic studies. 

It should be noted that the SVM model based on these 21 peptides “fails” to classify pre-

schizophrenia individuals from controls in another independent cohort. This indicates that the 

model is only capable of predicting disease conversion in individuals who are already 

symptomatic. The pre-schizophrenia individuals in this cohort were sampled before they 

began displaying symptoms, and were only diagnosed with schizophrenia at a much later 

date. In contrast, the psychosis converters in the prodromal cohort were already displaying 

initial symptoms at the time of sample collection, although further symptom progression to a 

clinical diagnosis of psychosis lasted between several months and a year.  

The SVM model’s classification performance on the application cohort of recent-onset 

antipsychotic treated patients and controls is “poor” and the performance of other models on 

this cohort, based on these 21 peptides, ranges from “poor” to “fair”. While patients in this 

cohort had an average disease duration of around one year, they had lower severity scores 

than the first-onset patients in the training data. Therefore we can suggest that the 

modulatory effects of antipsychotic treatment could be the reason why none of the models 

achieve better performance. The patients in this cohort are treated with a mixture of first and 

second generation antipsychotics. Antipsychotics have been previously shown to modulate 

the levels of haptoglobin, and complement C4, two of the proteins associated with the panel 

of 21 peptides, in plasma of schizophrenia patients(400). These findings suggest that in 

order to identify a statistical model which can achieve classification performances sufficient 

for clinical utility in this particular patient population, it may be necessary to train and test 

different statistical models specifically on cohorts of antipsychotic treated patients.  
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4.4.2 Classification performance with reduced peptide sets 
 

As stated earlier in this chapter, the more serum analytes required, the greater the cost of a 

biomarker test. Thus, the reduced model analysis section of this study assessed whether 

there are more cost-effective options available which still produce sufficient classification 

performance, sensitivity and specificity for classifying antipsychotic naive patients from 

controls and psychosis converters from non-converters. 

One of the key findings of this analysis is that an SVM model based on the abundances of 

just 7 peptides (VTNC, HPT, HBA, APOC3, APOA4, CO4A, RET4) can classify antipsychotic 

naive patients from controls with an AUC of 0.88-0.92 as well as sensitivity and specificity of 

0.8-0.87 and 0.83-0.91. However, while this model does not have sufficient sensitivity for 

clinical use when classifying psychosis converters from non-converters, it is also found that a 

Bayesian LASSO model based on the abundances of 3 peptides (VTNC, HBA and RET4) 

can classify converters with an AUC of 0.9, sensitivity of 0.92 and specificity of 0.87. If the 

aforementioned SVM model with 21 peptides is found to be too expensive, an alternative 

possibility could be to do further validation work on two separate biomarker tests, one 

specifically for classifying antipsychotic naive patients using the SVM model with 7 peptides, 

and another specifically for classifying psychosis converters using the Bayesian LASSO 

model with 3 peptides. 

Moreover, the fact that differences in the abundances of peptides relating to VTNC, HBA and 

RET4 between first-onset schizophrenia patients and controls are important in differentiating 

psychosis converters from non converters at an earlier stage on the disease suggests these 

analytes are worthy of further investigation as prognostic biomarkers. Previous research 

findings have linked both VTNC and RET4 to various pathological processes in the 

development of the disease, with VTNC being of particular interest as the only analyte which 

was selected as a biomarker by all seven methods. VTNC has been found to interact with, 

and mediate the function of other proteins which have key roles in the developing CNS 

relating to neural cell proliferation, neuritogenesis, synaptogenesis, and synaptic 

plasticity(389,390). Elevated plasma levels of RET4 have previously been implicated in the 

development of insulin resistance and other metabolic adversities in schizophrenia 

patients(399). 
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4.4.3 Comparison of statistical approaches 

As discussed in 3.1, it has been previously found for classification problems that different 

statistical methods perform better on different datasets, hence the application of multiple 

methodologies in this chapter to assess which was most suited to this data. As described in 

this discussion, SVM performs best out of all seven approaches in terms of a model which 

has sufficiently high AUC, sensitivity and specificity, both for classifying antipsychotic naive 

patients from controls but converters from non converters. However, purely in terms of AUC, 

the trends seen between the SVM, Bayesian LASSO, Logistic Regression and Ridge 

Regression models across all test cohorts are broadly similar. The tree-based 

methodologies Random Forest, and both BART approaches do not perform so well on this 

classification problem, most notably when classifying converters from non converters. In the 

case of Random Forest, this may be because the models overfit on the training data to a 

greater extent than any other approach. This is suggested that the fact that all Random 

Forest models return an AUC, sensitivity and specificity of 1 when tested on this data. There 

are no real differences in terms of performance, between BART models fitted with and 

without informative priors, but one of the limitations of this study is that due to data 

availability, the prior used is based on one of the test cohorts. 

Further limitations and future work relating to this study are discussed in Chapter 9.  
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Chapter 5 Identification of novel drug 
discovery targets through analysis of 
data from a cellular model of 
schizophrenia 

5.1 Introduction 

The development of novel medications for schizophrenia has come to a standstill, due to 

insufficient understanding of the affected molecular pathways in patients, and how these 

translate to disease symptoms. As such, relevant cellular models are now thought to form a 

vital part of the preclinical drug discovery pipeline, both for identification of disease-specific 

signatures, and as potential novel screening platforms for drug profiling.  

As described in 1.6, the suitability of microglia as the basis for a putative cellular model of 

schizophrenia derives from multiple post-mortem immunohistochemistry and PET studies 

which have pointed towards abnormal activation of microglia as a mechanism for 

schizophrenia pathogenesis in approximately 40% of patients(227,401,402). This activation 

profile has been accompanied by evidence of increased neuroinflammatory processes 

through upregulated proinflammatory cytokine expression in the brain and periphery, along 

with regional brain volume reductions, and treatment-resistant negative 

symptomatology(402–404). In addition, GWAS findings in schizophrenia patients suggest 

that genetic polymorphisms in secreted proteins, including members of the complement 

cascade, may alter synaptic pruning by microglial cells during critical neurodevelopmental 

phases already linked to schizophrenia(25,200–202).   

However, so far the majority of data linking microglial activation to schizophrenia has been 

acquired through in vivo studies, quantifying circulating proteins, for example specific 

cytokines, and imputing their potential net effect on microglial function based on their BBB 

permeabilities(63,402,403,405). Therefore, there is a need for in vitro studies to assess the 

functional role assumed by microglia at the proteome level across multiple cell signalling 

pathways, in response to complex body fluids such as serum and CSF(406–408). This study 

aims to investigate the signalling pathways underpinning microglial activation in 

schizophrenia through analyzing data from an in vitro cellular model in which human 

microglial cells are exposed to serum samples from schizophrenia patients and controls. 

Fluorescent intensities from targeted intracellular signalling epitopes were acquired using a 
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high-content flow cytometry screening platform. Subsequently, serum protein alterations are 

accrued through targeted mass spectrometry analysis, to explore which molecules may 

stimulate the observed microglial signalling patterns in the disease state relative to controls. 

One of the aims of this study is to provide new results regarding the intracellular signalling 

alterations underpinning the complex microglial activation phenotype, relating to 

schizophrenia. Activated microglia are broadly categorised as classically activated M1 or 

alternatively activated M2 microglia(406,409), The balance between M1 and M2 phenotypes 

is believed to be particularly relevant to the pathogenesis of schizophrenia as it is thought to 

determine the long-term consequences of brain inflammation(406,410). M2 microglia, induce 

tissue restoration by releasing anti-inflammatory cytokines, trophic factors and the 

phagocytosis of cellular debris(406,409). M1 microglia instigate a protective response 

against an external insult such as pathogens or acute CNS injury, inducing an inflammatory 

state through the release of proinflammatory cytokines and reactive oxygen 

species(406,409). However dysfunctional M1 microglia have been linked to the deleterious 

consequences of microglial activation in the CNS, in stroke, traumatic brain injury, and 

neurodegenerative diseases(406,409).  

In this study, intracellular signalling differences between patients and controls are quantified 

using different statistical methodologies. Each serum sample is run in triplicate, and as such, 

a linear mixed model is used to account for the individual variation between measurements. 

Once patient-control differences in individual epitopes have been assessed, the global 

expression pattern of individual changes at the pathway level was examined using the 

commonly used global test approach(343). This method was initially developed for genetics 

studies to investigate hypotheses that the combined expression levels of a set of genes were 

connected to a particular molecular function. More recently, it has been utilized in proteomic 

studies, with Hollander et al.(411),using the global test to examine whether the global 

expression pattern of a panel of biomarkers identified through high throughput mass 

spectrometry was associated with heart function status. The use of the global test in this 

study is akin to more targeted approaches which focus on sets of features involved in the 

same biological function or cellular pathway(344). 

The final part of this study looks to quantify whether the observed dysfunctional microglial 

signalling phenotypes can be utilized for novel drug discovery. This is investigated by 

targeting the individual epitopes found to be over-activated by schizophrenia patient serum, 

with a range of compounds, some of which have been previously hypothesized to be 

microglial M1 inhibitors, such as rapamycin(412).    
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Overall the exploratory analyses presented in this chapter represent the first attempts to 

create a preclinical cellular model of schizophrenia to explore the signalling mechanisms 

involved in abnormal microglial activation in the disease state. The involvement of microglia 

in schizophrenia disease pathogenesis has been widely speculated, and due to their 

perivascular localization, it has been hypothesized that microglia can be polarized by factors 

present in circulating blood. This chapter also presents the first use of a preclinical cellular 

model to examine the potential efficacy of various compounds to normalize dysfunctional 

microglial activation, by testing a range of current antipsychotics and existing compounds 

which have been proposed as potential novel treatments for schizophrenia.     

 

5.2 Methods 

5.2.1 Functional characterization of cellular model through 

detection of M1 vs M2 microglial polarization signals 

Initially it is assessed whether the proposed cellular model is capable of detecting 

characteristic signalling responses to particular ligands known in the literature to specifically 

induce either M1 or M2 microglial phenotypes(409,413). If this capability is observed, this 

would validate the model for use in a serum exposure study. 42 intracellular signalling 

epitopes are stimulated by 4 different M1 ligands (IFN-γ, IL-23, TNF-α and IL-1β), and 4 

different M2 ligands (IL-4, IL-13, TGF-β and BMP7) titrated at different concentrations, in 

addition to two broad spectrum positive controls (calyculin which upregulates cell signalling 

expression, and staurosporine which downregulates cell signalling expression). Experiments 

are run in triplicate. Ligand responses are computed relative to the vehicle condition, using 

the Wilcoxon rank-sum test (applied in R as described in Chapter 2). Ligand responses are 

only considered if they are significant (p<0.05), and survive filtering for background 

fluorescence. Fold changes for each epitope are defined as ligand response/vehicle 

response. 
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5.2.2 Microglial exposure to serum from first-onset 

antipsychotic naive schizophrenia patients 

5.2.2.1 Clinical samples 

Serum samples were collected from 139 individuals, 60 antipsychotic naive, first onset 

schizophrenia patients, and 79 healthy controls, recruited from the Department of Psychiatry, 

University of Cologne, Germany. Diagnoses of schizophrenia were based according to the 

DSM-4. Exclusion criteria for patients and controls included additional neuropsychiatric 

diagnoses other than schizophrenia, other neurological disorders including epilepsy, mental 

retardation, multiple sclerosis, immune/autoimmune disorders, infectious disease, metabolic 

disorders including diabetes, obesity (body mass index above 30), cardiovascular disease, 

hepatic and renal insufficiency, gastrointestinal disorders, endocrine disorders including 

hypo-/hyperthyroidism and hypo-/hypercortisolism, respiratory diseases, cancer, severe 

trauma, substance abuse including psychotropic drugs and alcohol, somatic medication with 

brain side-effects, somatic medication affecting the immune system including 

glucocorticoids, anti-inflammatory/immunomodulating drugs and antibiotics. Table 5.1 

displays demographic information for the cohort. 

 
Table 5.1 Demographic characteristics and determination of clinical samples used in the microglial 
serum exposure study with serum from first-onset antipsychotic naive schizophrenia patients and 
controls. PANSS - Positive and Negative Syndrome Scale. NA – not applicable. Values are 
presented as average ±standard deviation. 

  SCZ Control 

N 60 79 

Age (years) 30.72 ± 10.46 31.15 ± 8.32 
Gender 
(male/female) 31/29 43/36 

PANSS Positive 22.96 ± 5.91 NA 

PANSS Negative 23.20 ± 7.34 NA 

PANSS General 49.37 ± 9.95 NA 

PANSS Total 95.54 ± 20.49 NA 
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5.2.2.2 Data pre-processing 

The median fluorescent intensities of 62 cellular epitopes spanning key microglial cell 

signalling pathways, are measured across all 139 samples with 3 replicates, using the flow 

cytometry platform described in Chapter 2. A list of these 62 epitopes, their abbreviations, 

and their signalling pathways can be found in Table 5.2. 

All epitope fluorescent intensities are run through a series of pre-processing steps. All 

epitope fluorescent intensity values are log10-transformed to stabilize data variance and 

improve normality. In addition, quality control assessment is carried out. Sample outliers are 

assessed using PCA through inspection of quantile-quantile plots (applied in R as described 

in Chapter 3). PCA is additionally used to check for data artefacts. Missing data points 

which occurred due to low cell count are excluded in all univariate analyses, and replaced 

with the mean value for that epitope for PCA and multivariate analyses. 

 
5.2.2.3 Stimulant responses 

Stimulant (schizophrenia patient or control serum) responses relative to the vehicle 

condition, for each of the 62 epitopes, are computed using the Wilcoxon rank-sum test. Only 

responses which were significant (p < 0.05), and survive adjustment for background 

autofluorescence are considered. For comparison, stimulant responses relative to the 

vehicle for positive control compounds staurosporine and calyculin across all 62 epitopes are 

computed. Calyculin induces widespread up-regulation while staurosporine induces 

widespread down-regulation. Fold changes for each epitope are defined as response to 

stimulant/response to vehicle.  
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Table 5.2 List of microglial cell signaling epitopes measured in this study and their 
corresponding genes and cell signalling pathway classes(296). 
 

Epitopes Gene Signalling Pathway 

CREB (pS133) / ATF-1 (pS63) CREB1 PKA 

PKA RIIα (pS99) PRKAR2A PKA 

PKA RIIβ (pS114) PRKAR2B PKA 

p120 Catenin (pS268) CTNND1 PKC 

p120 Catenin (pS879) CTNND1 PKC 

p120 Catenin (pT310) CTNND1 PKC 

PKC-α PRKCA PKC 

PKC-α (pT497) PRKCA PKC 
PKC-θ PRKCQ PKC 

PLC-γ1 PLCG1, PLCG2 PKC 
PLC-γ1 (pY783) PLCG1 PKC 

PLC-γ2 PLCG2 PKC 
PLC-γ2 (pY759) PLCG2 PKC 

4EBP1 (pT36/pT45) EIF4EBP1 Akt/mTORC1 
4EBP1 (pT69) EIF4EBP1 Akt/mTORC1 
Akt (pS473) AKT1 Akt/mTORC1 
Akt (pT308) AKT1 Akt/mTORC1 
Akt1 AKT1 Akt/mTORC1 
β-Catenin (pS45) CTNNB1 Akt/mTORC1 
CD221 (pY1131) IGF1R Akt/mTORC1 
elF4E (pS209) EIF4E Akt/mTORC1 
Ezrin (pY353) EZR Akt/mTORC1 
GSK-3α/β GSK3B Akt/mTORC1 
GSK-3β (pS9) GSK3B Akt/mTORC1 
GSK-3β (pT390) GSK3B Akt/mTORC1 
IRS-1 (pY896) IRS1 Akt/mTORC1 
PDPK1 (pS241) PDPK1 Akt/mTORC1 
S6 (PS235/PS236) RP26 Akt/mTORC1 
S6 (PS240) RPS6 Akt/mTORC1 
Bcl-2 (pS70) BCL2 MAPK 
ERK1/2 (pT202/pY204) MAPK1, MAPK3 MAPK 
MAPKAPK-2 (pT334) MAPKAPK MAPK 
MEK1 (pS218)/MEK2 (pS222) MAP2K1, MAP2K2 MAPK 
MEK1 (pS298) MAP2K1 MAPK 
p38 MAPK (pT180/pY182) MAPK14, MAPK13, MAPK12 MAPK 
p53 (acK382) TP53 MAPK 
p53 (pS37) TP53 MAPK 
Ikβα NFKBIA IL1R/ TLR 
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IRF-7 (pS477/pS479) IRF7 IL1R/ TLR 
NF-kB p65 (pS529) RELA IL1R/ TLR 
SHP2 (pY542) PTPN11 JAK/Stat 
Stat1 (N-Terminus) Stat1 JAK/Stat 
Stat1 (pS727) Stat1 JAK/Stat 
Stat1 (pY701) Stat1 JAK/Stat 
Stat3 Stat3 JAK/Stat 
Stat3 (pS727) Stat3 JAK/Stat 
Stat3 (pY705) Stat3 JAK/Stat 
Stat4 (pY693) Stat4 JAK/Stat 
Stat5 (pY694) Stat5A, Stat5B JAK/Stat 
Stat6 (pY641) Stat6 JAK/Stat 
c-Cbl (pY700) CBL IR/AR 
c-Cbl (pY774) CBL IR/AR 
Pyk2 (pY402) PTK2B IR/AR 
SLP-76 (pY128) LCP2 IR/AR 
Src (pY418) SRC IR/AR 
WIP (pS488) WIPF1 IR/AR 
Zap70 (pY319)/Syk (pY352) SYK, ZAP70 IR/AR 
CD140b (pY857) PDGFRB Other 
CrkL (pY207) CRKL Other 
Rb (pS780) RB1 Other 
Smad2 (pS465/pS467)/Smad3 (pS423/pS425) SMAD2 Other 

 

5.2.2.4 Univariate patient-control analysis 

A linear mixed model (applied in R as described in Chapter 2) with a random intercept to 

account for the variation between replicates, and a stepwise selection procedure (applied in 

R as described in Chapter 2) to adjust for confounding variables age and gender, is used to 

compute differential responses between schizophrenia patients and controls. Fold changes 

for each epitope are defined as response to schizophrenia serum/response to control serum. 

Only epitopes which display significant serum responses relative to the vehicle in at least 

one clinical group are included in this analysis.  

Permutation testing is used to evaluate p-values for each epitope by comparing a test 

statistic computed from the original dataset, with a distribution of permuted values obtained 

on a large number of simulated datasets constructed by randomly permuting the dataset 

patient-control labels 10,000 times. Each p-value is calculated as the fraction of permutation 

values which are at least as extreme as the original test statistic, thus representing the 

probability of obtaining a result at least as extreme as the test statistic given that the null 

hypothesis is true(414). As has been stated in previous research papers, permutation 

procedures are widely used in bioinformatics for statistical hypothesis testing in 
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underpowered studies such as this one, where the distribution of the test statistic is 

perceived to be unreliable due to insufficient sample size(415). The popularity of permutation 

procedures derives from the non-parametric nature of these tests, whereby a sampling 

distribution is estimated for the test statistic due to a lack of sufficient evidence to assume a 

particular model for the biological data under investigation(414).  

Q-values are subsequently obtained by adjusting the p-values for multiple testing according 

to the Benjamini Hochberg procedure(416). 

5.2.2.5 Multiplex immunoassay and MRM profiling of serum 

To explore whether the identified microglial activation phenotype can be explained by 

differences between patients and controls in the relative concentrations or abundances of 

serum proteins known to be associated with psychiatric disorders, two distinct 

methodologies are used. Multiplex immunoassays (for low abundance proteins) are used to 

measure serum concentrations in all patient and control samples, of 17 immunomodulatory 

proteins previously linked to neuropsychiatric disorders, including complement factors and 

proinflammatory cytokines. These proteins are Complement C1q, Complement C3, 

Complement C3b, Complement C4, Granulocyte macrophage colony-stimulating factor, 

Interferon-γ, IL-10, IL-12(p70), IL-13, IL-1β, IL-2, IL-4, IL-6,Transforming growth factor-β1, 

Transforming growth factor-β2, Transforming growth factor-β3, and Tumor necrosis factor-α. 

MRM (for medium-high abundances proteins) is used to quantify abundances of a panel of 

147 peptides (corresponding to 77 proteins previously linked to neuropsychiatric 

disorders)(283). These 147 peptides and corresponding proteins are detailed in the 

Appendix. 

Data pre-processing for multiplex immunoassay data is carried out using the methodology 

already detailed in Chapter 3, while pre-processing for MRM data was carried out using the 

methodology detailed in Chapter 4. PCA plots are used to check for data artefacts. Two 

control samples are identified as outliers in the MRM data, and removed. Linear regression 

(applied in R as described in Chapter 2) is used to quantify protein concentration differences 

and peptide abundance differences respectively for multiplex immunoassay data and MRM 

data, between patients and controls while accounting for confounding variables age and 

gender using stepwise selection. Permutation testing to compute the distribution of p-values, 

and multiple testing correction to obtain q-values, are applied as described in 5.2.2.4. 
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5.2.2.6 Global test analysis of signalling pathways 

The epitopes analyzed in 5.2.2.4 are grouped into their associated signalling pathways and 

Goeman’s global test (applied in R as described in Chapter 2) with a logistic regression 

model is applied to test whether the global expression pattern of all the epitopes in each of 

these pathways is associated with patient-control status. Permutation testing is used to 

compute p-values, and q-values are obtained through correcting for multiple testing as 

described in 5.2.2.4. In this case, the null hypothesis is that patient-control status depends 

on none of the epitopes in the pathway. The relative contribution of individual epitopes to 

significantly altered pathways is examined visually through an influence plot which 

decomposes the overall model test statistic into the contributions made by individual 

epitopes(348).  

5.2.2.7 Screening of microglial activation inhibitors on 
signalling epitopes 

The final stage of this study explores whether the significant changes observed in epitope 

signalling in response to serum exposure from schizophrenia patients relative to controls (as 

accrued through the analysis outlined in 5.2.2.4), are amenable to drug screening. As part of 

a targeted screening experiment, microglial cells are stimulated at these sites with two 

compounds known to inhibit microglial activation in previous in vivo studies, rapamycin and 

the tetracycline antibiotic minocycline. Median fluorescent intensities of these sites in 

response to compound stimulation are measured across six replicates, responses are 

computed relative to the vehicle condition using the Wilcoxon rank-sum test and adjusted for 

background fluorescence. Fold changes for each epitope are defined as response to 

compound/response to vehicle. Q-values are obtained through adjusting the Wilcoxon p-

values for multiple testing, as described in 5.2.2.4. 

 

5.3 Results 

5.3.1 Functional characterization of cellular model through 
detection of M1 vs M2 microglial polarization signals 

The functional validity of the cellular model as a basis for detecting M1 versus M2 microglial 

polarization signals is examined through screening a variety of M1 specific and M2 specific 

ligands at different titrations across 42 microglial signalling epitopes. Results are displayed in 

Figure 5.1. Responses are observed which are known to be specific to the four M1 ligands 

(IFN-γ, IL-23, TNF-α and IL-1β) at epitope sites Stat1 (pY701), Stat4 (pY693), NF-κB p65 
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(pS529) and IκBα, and to the four M2 ligands (IL-4, IL-13, TGF-β and BMP7) at epitope sites 

Akt (pS473), Stat6 (pY641), Smad2 (pS465/pS467)/Smad3 (pS423/pS425) and PKA RIIα 

(pS99)(409). In addition, convergent cell signalling responses are seen within both M1 and 

M2 ligand classes. For example M1 ligands IL-23, TNF-α and IL-1β all induce 

downregulation of IκBα, and M2 ligands IL-4, IL-13, TGF-β and BMP7 all induce 

phosphorylation of Stat6 (pY641).   

Figure 5.1 Characteristic responses at selected microglial signalling epitopes following stimulation 
with ligands which specifically induce either M1 or M2 phenotypes. Only significant responses 
(P<0.05) which survived filtering for background fluorescence are shown. Responses are 
represented as mean fold change in epitope expression, calculated as mean median fluorescence 
intensity (MFI) of the ligand/mean MFI of the vehicle across triplicate experiments. For down-
regulated epitopes, the legend shows -1/fold change. Legend labels are distributed evenly across 
the quantile range for negative and positive fold changes separately. Ligands and epitopes are 
grouped by association to either M1 or M2 microglial signalling. 

 

5.3.2 Microglial exposure to serum from first-onset 
antipsychotic naive schizophrenia patients 

5.3.2.1 Stimulant responses 

Median fluorescent intensities of 62 microglial signalling epitopes are measured across 60 

“markedly ill” (417) (95.54 ± 20.49 PANSS total score) schizophrenia patients and 79 control 

samples. Stimulant responses relative to the vehicle condition were measured for patient 

and control serum, and positive controls calyculin and staurosporine for all epitopes as 

shown in Figure 5.2. There are 39 epitopes which both survived background fluorescence 
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filtering and showed significant responses relative to the vehicle in at least one clinical 

group.   

Figure 5.2 Stimulant responses across 62 microglial signalling epitopes for antipsychotive naive 
schizophrenia patient serum, control serum and positive controls calyculin and staurosporine. 
Only significant responses (P<0.05) which survived filtering for background fluorescence are 
shown. Responses are represented as mean fold change in epitope expression, calculated as mean 
median fluorescence intensity (MFI) of the ligand/mean MFI of the vehicle across triplicate 
experiments. For down-regulated epitopes, the legend shows -1/fold change. Legend labels are 
distributed evenly across the quantile range for negative and positive fold changes separately. The 
62 epitopes are grouped by signalling pathway class (top). 

 

5.3.2.2 Univariate patient-control analysis 

A linear mixed model is applied to the 39 epitopes which show significant responses relative 

to the vehicle in at least one clinical group in Figure 5.2, to quantify differential epitope 

intensities in response to serum from schizophrenia patients and controls. Six epitopes 

(4EBP1 (pT36/pT45), 4EBP1 (pT69), stat3 (pY705), SHP2 (pY542), elF4E (pS209), and 

Stat3) are found to show significant (p < 0.05) differential responses between patient and 

control serum as shown in Table 5.3, with 4EBP1 (pT36/pT45), 4EBP1 (pT69), stat3 

(pY705), and SHP2 (pY542) remaining significant (q < 0.05) following correction for multiple 

testing. 

These six epitopes are clustered on adjacent proteins in either the Akt/mTORC1 or 

JAK/STAT pathways, as shown in Figure 5.3. The direct mTORC1 substrates 4EBP1 

(pT36/pT45) and 4EBP1 (pT69), along with 4EBP1 substrate elF4E (pS209) comprise the 



 

sites on the Akt/mTORC1 pathway. In addition, the JAK/STAT pathway sites consist of the 

activation site stat3 (pY705), the regulatory site SHP2 (pY542) and total Stat3 (independent 

of phosphorylation). The responses to serum from schizophrenia patients relative to controls 

at these sites suggests an increase in the activation status of both pathways.

Table 5.3 Alterations in microglial signalling epitopes in response to serum exposure from firs
onset antipsychotic naive schizophrenia patients relative to controls. 

Epitope P Value 

4EBP1 (pT36/pT45) 0.0001 

4EBP1 (pT69) 0.0001 

stat3 (pY705) 0.0012 

SHP2 (pY542) 0.0049 

elF4E (pS209) 0.0384 

Stat3 0.0357 
 

Figure 5.3 Epitopes which responded differently to
serum exposure relative to healthy controls are shown in the mechanis
proteins in Akt/mTORC1 and JAK/STAT signalling pathways
increased activation status of epitope
changes at those epitopes in response to SCZ 
arrows represent the increased activation status of epitopes 
of expression changes at those epitopes
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sites on the Akt/mTORC1 pathway. In addition, the JAK/STAT pathway sites consist of the 

activation site stat3 (pY705), the regulatory site SHP2 (pY542) and total Stat3 (independent 

ylation). The responses to serum from schizophrenia patients relative to controls 

at these sites suggests an increase in the activation status of both pathways.

3 Alterations in microglial signalling epitopes in response to serum exposure from firs
onset antipsychotic naive schizophrenia patients relative to controls.  

 
Q Value Response Direction Fold Change

 
0.0001 ↑ 1.07

 
0.0001 ↑ 1.07

 
0.0152 ↑ 1.04

 
0.0466 ↑ 1.04

 
0.2432 ↑ 1.02

 
0.2432 ↑ 1.04

which responded differently to antipsychotic naive schizophrenia
relative to healthy controls are shown in the mechanistic context of adjacent 

proteins in Akt/mTORC1 and JAK/STAT signalling pathways. Full vertical arrows represent the 
activation status of epitopes resulting from an increased potentiation of 

in response to SCZ serum relative to healthy controls.
arrows represent the increased activation status of epitopes resulting from a reduced attenuation 

those epitopes in response to SCZ serum relative to healthy controls

sites on the Akt/mTORC1 pathway. In addition, the JAK/STAT pathway sites consist of the 

activation site stat3 (pY705), the regulatory site SHP2 (pY542) and total Stat3 (independent 

ylation). The responses to serum from schizophrenia patients relative to controls 

at these sites suggests an increase in the activation status of both pathways. 

3 Alterations in microglial signalling epitopes in response to serum exposure from first-

Fold Change 

1.07 

1.07 

1.04 

1.04 

1.02 

1.04 

 

schizophrenia patient 
tic context of adjacent 

ertical arrows represent the 
s resulting from an increased potentiation of expression 

serum relative to healthy controls. Dotted vertical 
a reduced attenuation 

relative to healthy controls. In 
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the Akt/mTORC1 pathway, mTORC1 phosphorylates 4EBP1 at residues T36 and T69, which triggers 
the dissociation of eIF4E. eIF4E is then phosphorylated by MNK1 at residue S209 and combines 
with eIF4A and G to initiate cap-dependent translation. In the JAK/STAT pathway, activation of 
cytokine or growth factor receptors induces the phosphorylation of STAT3 at residue Y705 by 
JAK1/2 kinases. Subsequent dimerization of STAT3 pY705 recruits transcriptional co-activators 
which enhance the activity of RNA polymerase at specific genomic loci. Phosphorylation of SHP2 at 
Y542 negatively regulates STAT3 Y705 phosphorylation. Proteins are coloured with respect to their 
cellular function: green (kinase), blue (phosphatase), pink (translation), red (transcription) and 
turquoise (receptor). P - phosphate group.(Figure reproduced with permission of Dr Santiago Lago). 

 
The activation of the Akt/mTORC1 and JAK/STAT pathways has been implicated as an 

important molecular switch controlling the conversion of microglia from a resting phenotype 

to a deleterious proinflammatory M1-activated phenotype in animal models of 

neurodegeneration, stroke and traumatic brain injury(413,418–420). To obtain further 

understanding of the mechanisms within these pathways, implicated by this study, Table 5.4 

shows the serum response for each of the clinical groups at each of the 6 significant 

epitopes, relative to the vehicle condition, as displayed in Figure 5.2. These values show 

that there is a potentiation of expression changes in schizophrenia patients, compared to 

controls, for 4EBP1 (pT69), elF4E (pS209) and Stat3. In addition, they show that the positive 

fold changes observed in Table 5.3 for 4EBP1 (pT36/pT45), stat3 (pY705) and SHP2 

(pY542), represent an attenuation of expression changes in patients relative to controls at 

these sites, ie: in controls there is a greater inhibitory effect taking place, which is reduced in 

patients. The consequential effect of this is a net functional increase in the activation status 

of the Akt/mTORC1 and JAK/STAT pathways. The over-activation of these signalling 

pathways in response to schizophrenia patient serum could represent a cellular phenotype 

driving M1 activation. For example, activation of Stat3 transcription factors downstream of 

proinflammatory cytokine receptors, is thought to trigger the further synthesis and secretion 

of characteristic M1 cytokines, for example IL-6, IL-23, IL-1β, TNF-α(413,418).  At the same 

time, Akt/mTORC1 pathway activation through the epitopes 4EBP1 and elF4E, may 

represent a metabolic shift towards the translation of proteins implicated in M1 microglial 

reactivity, for example IL-1β and TNF-α(419,420).   
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Table 5.4 Serum responses for antipsychotic naive schizophrenia (SCZ) patient serum and control 
(HC) serum relative to the vehicle condition at each of the six significant (p<0.05) epitopes listed in 
Table 5.3.  

Epitope SCZ response HC response 
4EBP1 
(pT36/pT45) 0.963 0.934 

4EBP1 (pT69) 1.061 1.038 

stat3 (pY705) 0.988 0.97 

SHP2 (pY542) 0.951 0.933 

elF4E (pS209) 1.027 1.01 

Stat3 1.062 1.051 

 

5.3.2.3 Multiplex immunoassay and MRM profiling of serum 

Multiplex immunoassays and MRM are used to profile 17 serum proteins and 147 peptides 

(associated with 77 proteins) respectively to analyze whether the observed M1 phenotype 

could be explained by differences between the clinical groups in the concentrations or 

abundances of serum analytes. 

This reveals significant (p<0.05) alterations in the concentrations of cytokines IFN-γ and 

TGF-β, and the abundances of peptides associated with several proteins from the 

apolipoprotein family (AII, AIV, CI, CIII and H subtypes), the complement cascade (C1 

inhibitor, C4a, C9 and ficolin-3), and various coagulation factors (haptoglobin, antithrombin-

III, inter-α-trypsin inhibitor heavy chain H4, α-1-antichymotrypsin and α-2-antiplasmin). 

However, it should be noted that only peptides associated with haptoglobin remain 

significant (q<0.05) following correction for multiple testing. The full table of results is 

included in the Appendix. Figure 5.4 summarizes the differential peptide abundances 

between patients and controls, for the full panel of 147 peptides profiled in the MRM 

analysis.  

These results are consistent with previously reported findings showing alterations in these 

serum analytes in schizophrenia patients(63,421). In addition, there is a direct link between 

these particular proteins and microglia, suggesting that the M1 phenotype of dysregulated 

microglial activation seen in this study may be induced by circulating proteins, a mechanism 

which may play a role in the pathogenesis of schizophrenia in the CNS. The cytokines IFN-γ 

and TGF-β are thought to be mediators of M1 and M2 microglial polarization, 

respectively(413). In the CNS microglia are the primary cell type expressing receptors for 
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complement factors (CR1, CR3 and CR4)(421), apolipoprotein (TREM2)(422) and 

haptoglobin (CD163)(423), and these protein classes have been linked to M1 microglial 

activation through increased synaptic pruning and neuroinflammation in response to cellular 

debris at crucial neurodevelopmental stages(421–424). Table 5.5 summarizes the significant 

(p<0.05) serum analyte findings from both multiplex immunoassay and MRM profiling along 

with their functional pathways, microglial activation capacity and links to schizophrenia as 

reported in previous studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Volcano plot illustrating the relationship between log2 fold change (x-axis) and 
statistical significance (y-axis) for differential peptide abundance changes between antipsychotic 
naive schizophrenia patients and controls as measured through multiplex reaction monitoring 
(MRM) mass spectrometry profiling. Peptides highlighted are significantly different (p<0.05) 
between patients and controls, and labelled with their associated proteins. 
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Table 5.5 Summary of significant (p<0.05) serum analyte findings from analysis presented in Section 5.3.2.3, along with an overview of associated 
functional pathways, links to schizophrenia as reported in previous research studies, and links to studies which report whether microglia respond to that 
particular protein, and how it may be associated with microglial polarization. NA – information not available.   

      Functional pathways           Microglial polarization 

Protein Abbreviation 
Direction  
of change 

Blood 
coagulation 

Complement 
activation 

Metabolic 
process 

Acute phase/ 
inflammatory 

response 

Metal/ 
ion 

binding 

Lipid 
binding/ 
transport 

References  
to SCZ 

References 
to microglia M1 M2 

α-2-antiplasmin A2AP ↑     (425) NA   

α-1-antichymotrypsin AACT ↑      
(227,426,42

7) (428,429)    

Antithrombin-III ANT3 ↑      (394,425) NA   

Apolipoprotein A-II APOA2 ↓    (32,425) (422) 

Apolipoprotein A-IV APOA4 ↓   
(32,391,425,

430) NA   

Apolipoprotein C-1 APOC1 ↓   (32,425) (431) 

Apolipoprotein C-III APOC3 ↓   (425) NA   

Apolipoprotein H APOH ↑   (156) NA   
Complement C4-A C4A ↑     (421) (421)    

Complement 
component C9 C9 ↑    (33) NA   
Ficolin-3 FCN3 ↑     (33) NA   

Haptoglobin HPT ↑     
(391,432,43

3) (434) 

Plasma protease 
C1 inhibitor IC1 ↑      (426) NA   
Interferon-γ IFNG ↓    (63,435,436) (408,437)    
Inter-α-trypsin 
Inhibitor heavy 
chain H4 ITIH4 ↑     (75,438,439) (440) 

Transforming  
growth factor-β1 TGFB1 ↓            (63,436) 

(408,441,44
2)   
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5.3.2.4 Global test analysis of signalling pathways 

The 39 epitopes analyzed in 5.3.2.2 are grouped into six microglial signalling pathways 

based on the pathway classifications defined in Table 5.2; Akt/mTORC1, IR/AR, JAK/Stat, 

MAPK, PKA, and PKC. Goeman’s global test is used to quantify whether the global patterns 

of the epitopes measured in these pathways was significantly changed in patients relative to 

controls.  

As shown in Table 5.6, a significant (p<0.05) differential response is seen in the 

Akt/mTORC1 pathway between patients and controls, based on the combined patterns of 

responses from the ten epitopes, 4EBP1 (pT36/pT45), 4EBP1 (pT69), Akt1, CD221 

(pY1131), elF4E (pS209), Ezrin (pY353), GSK-3 beta (pSer9), GSK-3 Beta(pThr390), IRS-1 

(pY896), and S6 (PS240). However, none of the pathways remain significant (q<0.05) 

following correction for multiple testing. 

Table 5.6 Summary of microglial signalling pathway global test results. P-values are based on 
10,000 permutations, significance level = 0.05 

Pathway Number of epitopes P Value Q Value 

Akt/mTORC1 10 0.04 0.24 

IR/AR 8 0.4 0.504 

JAK/Stat 8 0.42 0.504 

MAPK 3 0.12 0.36 

PKA 3 0.51 0.51 

PKC 7 0.37 0.504 
 

Not all of the ten epitopes may contribute towards this significant (p<0.05) response, and 

thus the influence plot in Figure 5.5 for the Akt/mTORC1 pathway provides more individual-

level information about the contributions of each epitope. It illustrates the relative importance 

of each epitope to the overall test statistic through their individual p-values as covariates in 

the model.  

As can be observed, while all epitopes are positively associated with schizophrenia, this 

overall dysregulation of the Akt/mTORC1 pathway appears to be mostly driven by the 

mTORC1 substrate 4EBP1 (pT69) which makes the greatest contribution (p-value: 0.01).     
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Figure 5.5 Influence plot for the ten epitopes measured in the Akt/mTORC1 pathway. Epitopes are 
plotted according to hierarchical clustering based on absolute linkage. Absolute correlation 
distance is the measure used to arrange the epitopes. The height of the bars represents the 
individual p-value for each epitope as a covariate in the model, thus illustrating its contribution to 
the overall test statistic. 

 

5.3.2.5 Screening of microglial activation inhibitors on 
signalling epitopes 

The compounds rapamycin and minocycline are screened across the six epitopes which 

showed significant differential signalling responses between patient and control serum in 

5.3.2.2. Figure 5.6 shows the responses at each of these epitopes, and Table 5.7 

summarizes the compound responses relative to the vehicle condition.  
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Figure 5.6 Responses to minocycline and rapamycin in comparison to the vehicle condition, for each of the six microglial signalling epitopes which 
showed differential responses between patient and control serum exposure. 
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Table 5.7 Compound responses relative to the vehicle condition across the six microglial signalling 
epitopes which show differential responses between patient and control serum exposure. 

  Minocycline     Rapamycin     

Epitope 

 
Fold  

Change P Value Q Value 
Fold  

Change P Value Q Value 
4EBP1 
(pT36/pT45) 0.97 0.71 0.73 0.47 0.004 0.0048 

4EBP1 (pT69) 0.96 0.36 0.54 0.75 0.004 0.0048 

stat3 (pY705) 0.91 0.03 0.18 0.85 0.002 0.004 

SHP2 (pY542) 1.02 0.73 0.73 0.99 0.33 0.33 

elF4E (pS209) 0.96 0.27 0.54 0.81 0.002 0.004 

Stat3 0.95 0.11 0.33 0.9 0.002 0.004 
  

Rapamycin and minocycline are selected as they have previously shown to inhibit microglial 

activation in vivo(233,419,443). Rapamycin displays broad inhibition of the M1 phenotype 

which is thought to be represented by these findings, significantly (p<0.05) inhibiting all 

epitopes apart from the JAK/Stat pathway regulatory site SHP2 (pY542), responses which 

remain significant following correction for multiple testing (q<0.05). Rapamycin displays 

particularly strong inhibition of the Akt/mTORC1 pathway epitopes 4EBP1 (pT36/pT45) and 

4EBP1 (pT69) which are both phosphorylated mTORC1 substrate sites. This is expected as 

rapamycin is a known mTOR inhibitor(419). Minocycline displays more selective activity, 

only significantly inhibiting the expression of the JAK/Stat pathway activation site, 

phosphorylated stat3 (pY705). These findings suggest that phenotypes identified by this 

cellular model could form the basis for novel drug discovery approaches for schizophrenia. 
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5.4 Discussion 

In summary, this chapter presents the application of a novel cellular model to investigate 

microglial signalling alterations in schizophrenia. Microglia are exposed to serum from 

schizophrenia patients and controls across 62 different epitopes spanning seven key 

signalling pathways. Epitope expression levels are measured using a flow cytometry 

platform, and univariate and multivariate statistical techniques are applied to quantify 

signalling changes between patients and controls. Finally, this cellular model is used to 

screen two known microglial inhibitors against epitopes found to be differentially expressed 

in the disease group. 

This is the first study to suggest that circulating blood serum from schizophrenia patients can 

have a direct effect on the intracellular activation phenotypes of microglia in vitro. This is 

notable as it has been previously hypothesized that circulating serum factors can access the 

CNS and initiate local immune activation through a variety of mechanisms. These include 

leakage through the circumventricular organs which lack a BBB(204), disruption of the BBB 

due to high levels of peripheral inflammation resulting in abnormal trafficking of inflammatory 

molecules between the periphery and the brain(203), and peripheral interactions between 

cytokines and vagal nerve afferents which relay cytokines signals to relevant brain 

regions(444). In addition, activated immune cells such as monocytes and macrophages, can 

be recruited from the periphery to the brain parenchyma, and these cells can synthesize 

cytokines in the brain(444). Because of the perivascular localization of microglia to the BBB, 

it is thought that microglial activation can be initiated through such interactions between 

peripheral serum factors and the CNS. 

As such, this study provides new information regarding potential causality between 

peripheral and CNS disease mechanisms. While alterations in circulating serum factors have 

often been considered a secondary effect of CNS abnormalities, the data presented in this 

study suggests that they may be sufficient, or at least reciprocal, for inducing cell signalling 

alterations in key CNS cell subpopulations which are involved in the pathogenesis of 

schizophrenia. Previous studies investigating the implications of dysfunctional JAK/STAT 

and mTORC1 signalling suggest that this particular interaction between the periphery and 

CNS may play a profound role in the disease aetiology in at least a subgroup of patients. 

 

5.4.1 Akt/mTORC1 and JAK/STAT activation 

One of the strongest findings of this study is the activation of the Akt/mTORC1 pathway as 

observed through the univariate and multivariate analysis. This appears to be driven by three 
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particular epitopes, most notably 4EBP1 (pT69), but also 4EBP1 (pT36/pT45) and elF4E 

(pS209), although the latter does not remain significant (q<0.05) following multiple testing 

correction. Previous studies have repeatedly associated the activation of this pathway with 

the deleterious consequences of microglial M1 polarization in preclinical models of 

neurodegeneration(445–447). While Akt/mTORC1 signalling alone is not thought to be 

sufficient to initiate microglial activation, it is believed to act as a metabolic priming of key 

translational proteins, resulting in an exaggerated response when subsequently presented 

with particular proinflammatory stimuli(448). In addition, there is evidence of an association 

between increased activation of Akt/mTORC1 signalling and impairments in autophagy(449). 

It has been hypothesized that the latter play a role in the pathogenesis of psychiatric 

disorders following studies which identified a comparative reduction in autophagic regulator 

beclin-1 expression in post-mortem brain samples from schizophrenia patients, compared to 

controls(450). Induction of autophagy has also been suggested as a potential means of 

improving efficacy of various pharmacological treatments for MDD and bipolar 

disorder(451,452).      

Activation of the JAK/STAT pathway is also observed through increased signalling at stat3 

(pY705), SHP2 (pY542) and total Stat3 (independent of phosphorylation) in schizophrenia 

patients. The multivariate analysis results indicate that this may not be as strong a response 

as the Akt/mTORC1 pathway activation, but more epitopes would need to be measured 

along both of these pathways to reach a definite conclusion. The increased expression 

levels of these JAK/STAT epitopes is particular of note because Stat3 transcription factor 

activation in microglia is mainly associated with synthesis and secretion of proinflammatory 

cytokines which mediate M1 polarization such as IL-6, IL-23, IL-1β and TNF-α(406). These 

proinflammatory cytokines can additionally trigger further activation of Stat3 downstream of 

their receptors. As such, studies of stroke, neurodegeneration and traumatic brain injury 

have described Stat3 as a key molecular switch which mediates microglial transition from a 

resting state to an M1 activation state(419,420,453).      

However increased Stat3 signalling is not purely restricted to proinflammatory cytokine 

secretion. Recent rodent studies have suggested that Stat3 is particularly highly expressed 

in the brain relative to the other Stat isotypes(454), and is strongly increased in CNS 

subpopulations at key stages of postnatal development associated with critical periods of 

synaptic pruning(455). In rodent models of MDD, Stat3 knockout specifically in microglia 

cells has been found to lead to increased synaptic plasticity and anti-depressive like 

behavioural endophenotypes(456). These findings, combined with the results of this study, 

suggest that the role of Stat3 activation, provoked by circulating serum factors, during critical 
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neurodevelopmental stages warrants further investigation, in the context of schizophrenia 

aetiology(457). 

While it may be noted that signalling pathways such as Akt/mTOR and JAK/STAT are 

ubiquitous, their implication in this study in the context of schizophrenia is particularly 

informative as it adds cumulative evidence to previous hypotheses. In particular, recent 

publications have postulated a novel mTOR based hypothesis of the neuropathology of 

schizophrenia(458). As discussed in Chapter 1, there is evidence for a neurodevelopmental 

component to the pathophysiology of schizophrenia, and previous research has found that 

genetic and epigenetic factors can disrupt mTOR signalling, with adverse effects on 

neuronal growth and connectivity, a risk factor for the onset of schizophrenia in 

adulthood(458,459). As such it is particular notable that altered Akt/mTOR signalling has 

been observed in a model of the disease created using a CNS cell population. Likewise, the 

critical role of JAK/STAT signalling in the CNS for functions such as synaptic plasticity, 

means that many studies have hypothesised that dysregulation of the JAK/STAT pathway is 

at the heart of most brain disorders(460). This study is the first to imply that altered 

JAK/STAT signalling in microglial cells may play a role in the development of schizophrenia. 

5.4.2 Alterations in circulating serum proteins 

Immunoassay and mass spectrometry profiling of schizophrenia patient and control serum 

resulted in several findings which validate recently published studies. In particular, increased 

complement C4-A and complement component C9 in patient serum relative to controls 

matches the findings of several studies which have found associations between the 

complement cascade and schizophrenia. Variation at the C4 locus is one of the known 

genetic risk factors for schizophrenia(26), and this has been found to correlate with impaired 

C4-A expression in the brain and serum of patients(25,395,461). In addition, rodent studies 

have linked increased C4 with increased microglial synaptic pruning(462,463), which has 

been postulated as a potential mechanism in the development of schizophrenia during late 

adolescence and early adulthood(464,465).  

In addition, alterations were found in several apolipoproteins, another finding that validates 

previous studies. Alterations in apolipoproteins in schizophrenia patient serum have been 

reported in various analyses, along with significant correlations between apolipoprotein 

levels and cognitive deficits and alterations in hippocampal brain volume(466). Furthermore, 

a rodent model of neurodegeneration found that overexpression of microglial apolipoprotein 

receptor TREM2, resulted in a neuroprotective shift in microglia towards M2 polarization, and 

a reduction in proinflammatory cytokine secretion(422). As such, we can hypothesize that 
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the reductions in the levels of Apolipoprotein A-2, A-4, C-1 and C-III observed in 

schizophrenia patient serum in this study, may possibly reflect a compromised 

neuroprotective profile in the CNS.  

It should be noted that caution must be drawn regarding the interpretation of these serum 

alterations, as few of the significant (p<0.05) findings survive multiple testing correction, 

save for peptides associated with haptoglobin. However, because many of these 

differentially expressed analytes have already been identified in other biomarker studies of 

schizophrenia, further work in understanding the potential functional relationships between 

apolipoproteins, the complement cascade, and Akt/mTORC1 and JAK/STAT signalling in 

microglia, may prove worthwhile.  

 

5.4.3 Inhibitory profiles of rapamycin and minocycline 

Rapamycin and minocycline are both compounds which have previously been associated 

with inhibitory effects on microglial activation, and rapamycin has been proposed as a 

potential novel treatment for schizophrenia following the results of clinical trials in disorders 

with high schizophrenia comorbidity such as autism spectrum disorder(412). The potential 

efficacy of minocycline as a treatment for schizophrenia is currently being investigated in 

various clinical trials(467). Minocycline has already been used as an add-on treatment for 

schizophrenia and meta-analyses have suggested that it displays efficacy at treating the 

negative symptoms of the disease, an aspect which is known to be under-addressed by 

existing antipsychotics(468).   

The findings of this study suggest that rapamycin in particular can be used to target epitopes 

which are overactivated by schizophrenia serum exposure and thus potentially inhibit 

microglial M1 polarization. While minocycline has a more selective profile, it is of particular 

interest that minocycline significantly (p<0.05) inhibits stat3 (pY705) signalling, although this 

finding does not survive adjustment for multiple testing. Many studies have suggested that 

Stat3 in microglia may represent a crucial target for addressing treatment resistant negative 

symptomatology common to schizophrenia and other psychiatric disorders. Stat3 may be 

one of the mechanisms by which minocycline achieves its reported therapeutic benefits in 

this regard, and thus this may be worthy of further investigation. 

Overall, the findings of this study, and the fact that microglia have been increasingly 

implicated in the pathogenesis of psychiatric disorders and treatment response, suggests 

that they have the potential to provide an underexploited target for novel treatments with the 

potential for modification of the disease course, as is discussed further in Chapter 9.  
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Chapter 6 Analysis of data from 
functional imaging and a cellular model 
of schizophrenia to investigate 
microglial signalling in antipsychotic 
treated schizophrenia patients 

6.1 Introduction 

To date, the only available methodology for investigating microglia cells in vivo is the 

application of PET imaging which can be used to quantify TSPO expression(469). Both 

altered microglia density and the microglial activation phenotype are associated with 

elevated TSPO levels(302), which can be assessed by measuring TSPO binding with 

various TSPO PET ligands across various brain regions(470). However so far, PET studies 

investigating TSPO binding in schizophrenia have yielded inconsistent results(302). Among 

the reasons suggested for this are methodological differences, and variation in the stage of 

the disease for each cohort of patients. Some studies have analyzed individuals in the 

prodromal phase(401), while others have examined patients in early stages of the 

disease(470) or chronic antipsychotic treated patients(471). In addition, the ability to interpret 

these studies and draw conclusions about microglial function has been limited due to the 

absence of any orthogonal experimental methodologies. As such it has not been possible to 

make inferences regarding alterations in microgial signalling pathways or patient 

inflammatory profiles potentially associated with these brain changes(302). 

This study aims to investigate microglial activation in a cohort of recent onset antipsychotic 

treated schizophrenia patients and healthy controls by using PET to measure BPND in total 

gray matter and multiple gray matter regions of interest. In addition, alterations in the 

inflammatory status of these patients are examined through the use of targeted mass 

spectrometry to profile serum samples obtained from the study participants at the time of 

PET imaging, by measuring a panel of analytes known to be associated with psychiatric 

disorders. Concurrently, a human microglial cell line was exposed to serum from these 

patients and controls, through the same methodology outlined in Chapter 5. This cellular 

model is utilized to dissect the cell signalling pathways which may predispose microglia to 

phenotypic switching in these patients.  
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An additional aim of this study is to utilize this cellular model to further investigate microglial 

signalling differences in antipsychotic treated schizophrenia patients relative to controls, by 

exposing microglia to serum from two separate cohorts of treated patients and controls. 

Univariate and global test analyses are conducted on the data from the individual cohorts 

before both datasets are combined in a meta analysis to increase the statistical power.     

As indicated by the results of Chapters 3 and 4, it is likely that the levels of serum analytes 

in recent-onset antipsychotic treated patients may be different to those of first onset 

antipsychotic naive patients. Hence it is necessary to characterize CNS processes in this 

patient group. In Chapter 5, signalling alterations were identified which pointed to microglial 

activation in antipsychotic naive patients, and findings from both rodent model studies(472), 

and human PET studies(473) have suggested that chronic exposure to antipsychotic 

medication may stimulate microglial activation in some recent-onset treated schizophrenia 

patients. This suggests that antipsychotics could in fact perpetuate neuroinflammation in this 

patient group, possibly through different intracellular mechanisms to those observed in 

antipsychotic naive patients. As such, the final part of this study looks to provide more 

information on whether antipsychotics themselves appear to be directly associated with the 

observed signalling alterations. The individual epitopes found to be differentially expressed 

in treated patients compared to controls, are targeted with a range of first and second 

generation antipsychotics to explore whether they induce the same direction of expression 

changes relative to the vehicle condition.  

 

6.2 Methods 

R packages, functions and settings were applied as in Chapter 5, unless otherwise stated. 

6.2.1 Clinical samples 

Serum samples were collected from 53 individuals recruited from two clinical centres in the 

Netherlands as shown in Table 6.1. 

Cohort 1 consists of 15 recent onset schizophrenia patients treated with a mixture of first and 

second generation antipsychotics, and 17 healthy controls recruited from the Department of 

Psychiatry, University Medical Centre Utrecht, The Netherlands. Patients displayed 

moderate symptoms at the time of serum collection, and the average duration of 

antipsychotic treatment was one year. Cohort 2 consists of 9 recent onset schizophrenia 

patients and 12 controls recruited from Erasmus University Medical Centre, Rotterdam, The 

Netherlands. Patients displayed moderate symptoms at the time of serum collection, and 

had been treated with olanzapine for six weeks.Diagnoses of schizophrenia were based 
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according to the DSM-4. The same exclusion criteria described in Chapter 5 was applied to 

patient and control groups. 

Table 6.1 Demographic characteristics and determination of clinical samples for the cohorts 
analyzed in Chapter 6. Values are presented as average ± standard deviation. 

 

  Cohort 1 Cohort 2 

Centre Utrecht Rotterdam 

Number 
17 CT 
15 SCZ 

12 CT 
9 SCZ 

Age (years) 
26 ± 4 
25 ± 4 

28 ±8 
27 ± 7 

Sex (M/F) 
14/3 
12/3 

12/0 
9/0 

PANSS Positive 
NA 
11 ± 3 

NA 
15 ± 5 

PANSS Negative 
NA 
14 ± 3 

NA 
19 ± 5 

PANSS General 
NA 
27 ± 6 

NA 
31 ± 8 

PANSS Total 
NA 
53 ± 9 

NA 
64 ± 16 

Antipsychotic  
treatment (SCZ only) 
 
Clozapine 
Risperidone 
Olanzapine 
Other 

 
 
 
 
3 
2 
5 
5 

 
 
 
 
0 
0 
9 
0 

 
 
6.2.2 PET imaging 

PET imaging is conducted for all patients and controls from cohort 1, using the method 

described in Chapter 2. PET is used to measure the BPND of TSPO ligand (R)-

[11C]PK11195 across total gray matter and five gray matter regions of interest (frontal cortex, 

temporal cortex, parietal cortex, striatum and thalamus). These regions of interest are 

selected based on widespread TSPO availability in the brain. 

A linear regression model is used to explore whether total gray matter or any of the five gray 

matter regions showed significantly (p < 0.05) changed TSPO binding between patients and 

controls. The analysis accounts for age and gender, covariates which are selected using 
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stepwise selection (described in Chapter 2). Q-values are obtained by adjusting the p-

values for multiple testing, as described in Chapter 5. 

6.2.3 Cellular model data pre-processing 
 
The cellular model described in Chapter 5 is applied to cohorts 1 and 2 in separate 

experiments. For each cohort, a human microglial cell line is exposed to serum from patients 

and controls and the median fluorescent intensities of 62 cellular epitopes (listed in Chapter 

5), are measured across all samples with 3 replicates, using flow cytometry. Pre-processing 

steps are carried out as described in Chapter 5. 

 

6.2.4 Stimulant responses and univariate analysis 

For both cohorts 1 and 2, stimulant (patient or control serum) responses relative to the 

vehicle condition, for each of the 62 epitopes, are computed using the Wilcoxon rank-sum 

test. Only responses which were significant (p < 0.05), and survive adjustment for 

background autofluorescence are considered. Positive controls calyculin and staurosporine 

are included for comparison as in Chapter 5. Univariate analysis is subsequently conducted 

on epitopes which displayed significant (p < 0.05) serum responses relative to the vehicle in 

at least one clinical group, using a linear mixed model as described in Chapter 5. Fold 

change definitions are the same as in Chapter 5. 

 

6.2.5 Global test analysis of signalling pathways 
 
For cohorts 1 and 2, the epitopes analyzed in 6.2.4 are grouped into their associated 

signalling pathways and Goeman’s global test (described in Chapter 2) with a logistic 

regression model is used to test whether the global expression pattern of all the epitopes in 

each of these pathways is associated with patient-control status as described in Chapter 5. 

The relative contribution of individual epitopes to significantly (p < 0.05) altered pathways is 

examined visually through an influence plot which decomposes the overall model test 

statistic into the contributions made by individual epitopes. Q-values are obtained by 

adjusting the p-values for multiple testing, as described in Chapter 5. 

 

6.2.6 Correlation analysis 

For patients in cohort 1, correlation analysis is conducted between PANSS scores 

representing clinical severity, and PET regions in which TSPO BPND was found to be 

significantly (p < 0.05) different between patients and controls. Correlations are computed 
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using the Pearson correlation coefficient. Similarly, correlation analysis is conducted 

between PANSS scores, and epitope expression for epitopes either found to be significantly 

(p < 0.05) different between patients and controls (in cohort 1) through univariate analysis or 

found to be significantly (p < 0.05) contributing to differences between patients and controls 

in a significantly altered pathway in the global test analysis. Finally correlations are 

conducted between these epitopes and PET regions. Correlations are computed separately 

for control and patient groups. Q-values are obtained by adjusting the correlation p-values 

for multiple testing, as described in Chapter 5. 

 

6.2.7 MRM profiling of serum 

To explore whether the cell signalling phenotypes observed in cohorts 1 or 2 can be 

explained by differences between patients and controls in the relative abundances of serum 

proteins associated with psychiatric disorders, MRM is once again used to quantify 

abundances of the panel of 147 peptides utilized in Chapter 5. Both data pre-processing 

and linear regression analysis are carried out as described in Chapter 5. 

 

6.2.8 Meta analysis 

Due to the relatively small sample sizes of cohorts 1 and 2, the two cohorts are analyzed 

together as a meta-cohort to investigate whether the gain in statistical power yielded further 

insight regarding microglial signalling alterations and serum alterations between 

antipsychotic treated patients and controls. Univariate and global test analysis was 

conducted on the meta-cohort using the same methodologies applied in 6.2.4, 6.2.5 and 

6.2.7. The ComBat algorithm (described in Chapter 2) was utilized to normalize batch 

effects due to technical variation resulting from the cellular model experiments for cohorts 1 

and 2 being run at different times.  

 

6.2.9 Microglial exposure to antipsychotics at key signalling 
epitopes 

The final stage of this study looks to provide further evidence towards whether 

antipsychotics are involved in inducing the observed cell signalling alterations. As part of a 

targeted screening experiment, microglial cells are stimulated at epitopes found to be 

significantly (p < 0.05) altered between patients and controls in univariate and multivariate 

analyses across cohorts 1, 2 and the meta-cohort, with several common first and second 

generation antipsychotics. Median fluorescent intensities of these sites in response to 
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compound stimulation are measured across six replicates, responses were computed 

relative to the vehicle condition using the Wilcoxon rank-sum test and adjusted for 

background fluorescence. Fold changes for each epitope are defined as response to 

antipsychotic/response to vehicle. Q-values are obtained by adjusting the Wilcoxon p-values 

for multiple testing, as described in Chapter 5. 

 

6.3 Results 

6.3.1 PET imaging 

Following PET imaging scans of patients and controls in cohort 1, (R)-[11C]PK11195 BPND 

was quantified across total gray matter and five gray matter regions – frontal cortex, 

temporal cortex, parietal cortex, striatum and thalamus. BPND, and thus TSPO expression, 

is found to be significantly (p < 0.05) increased in the temporal cortex only, as shown in 

Table 6.2, although this result does not survive multiple testing correction. 

 
Table 6.2 Differences in (R)-[11C]PK11195 binding potential (BPND) between patients and controls 
in cohort 1 across total gray matter and five gray matter regions. 
 
  Binding potential    

Region of interest Control SZ 
 

P Value Q Value 
Frontal 0.12±0.07 0.13±0.07 0.37 0.39 
Temporal 0.08±0.09 0.13±0.06 0.04 0.24 
Parietal 0.15±0.07 0.16±0.07 0.35 0.39 
Striatum 0.09±0.11 0.10±0.10 0.39 0.39 
Thalamus 0.20±0.12 0.13±0.13 0.19 0.38 
Total grey matter 0.14±0.09 0.15±0.06 0.14 0.38 

 
 

6.3.2 Stimulant responses 

Median fluorescent intensities of 62 microglial signalling epitopes are measured across 

patient and control samples in cohorts 1 and 2. Stimulant responses relative to the vehicle 

condition are measured for patient and control serum, and positive controls calyculin and 

staurosporine for all epitopes as shown in Figure 6.1. There are 25 epitopes which both 

survive background fluorescence filtering and show significant responses relative to the 

vehicle in at least one clinical group for cohort 1, and 34 epitopes for cohort 2.   
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Figure 6.1 Stimulant responses for cohort 1 (a) and cohort 2 (b) across 62 microglial signalling 
epitopes for microglial exposure to antipsychotic treated schizophrenia patient serum, control 
serum and positive controls calyculin and staurosporine. Only significant responses (P<0.05) which 
survived filtering for background fluorescence are shown. Responses are represented as mean fold 
change in epitope expression, calculated as mean median fluorescent intensity (MFI) of the 
ligand/mean MFI of the vehicle across triplicate measurements. For down-regulated epitopes, the 
legend shows -1/fold change. Legend labels are distributed evenly across the quantile range for 
negative and positive fold changes separately. The 62 epitopes are grouped by signalling pathway 
class.  

 

SCZ
Control 

Calyculin 
Staurosporine

C
R

E
B

(p
S

13
3)

/A
TF

−1
(p

S
63

)A
F6

47
PK

A
R

II
al

ph
a

(p
S

99
)

A
F6

47
PK

A
[R

II
be

ta
](

pS
11

4)
FI

TC
p1

20
 C

at
en

in
(p

S
26

8)
FI

TC
  

p1
20

 C
at

en
in

(p
S

87
9)

PE
  

p1
20

 C
at

en
in

 (
pT

31
0)

FI
TC

PK
C

al
ph

a
FI

TC
  

PK
C

 a
lp

ha
 (

pT
49

7)
A

F6
47

PK
C

th
et

a
PE

  
PL

C
−g

am
m

a
1

PE
  

PL
C

−g
am

m
a 

1 
(p

Y
78

3)
A

F6
47

PL
C

−g
am

m
a

2
FI

TC
  

PL
C

−g
am

m
a 

2 
(p

Y
75

9)
A

F6
47

PR
K

C
Q

(p
T5

38
)P

E 
 

4E
B

P1
 (

pT
36

/p
T4

5)
FI

TC
4E

B
P1

(p
T6

9)
PE

  
A

kt
(p

S
47

3)
A

F6
47

  
A

K
T 

(p
T3

08
)P

E
A

kt
1

FI
TC

be
ta

−C
at

en
in

(p
S

45
)A

F6
47

  
C

D
22

1
(p

Y
11

31
)A

F6
47

  
el

F4
E 

(p
S

20
9)

PE
Ez

rin
(p

Y
35

3)
PE

  
G

S
K

3 
A

/B
FI

TC
G

S
K

−3
 b

et
a

(p
S

er
9)

PE
  

G
S

K
−3

B
et

a(
pT

hr
39

0)
PE

  
IR

S
−1

(p
Y

89
6)

A
F6

47
  

PD
PK

1 
(p

S
24

1)
FI

TC
S

6 
(P

S
23

5/
PS

23
6)

A
F6

47
S

6
(P

S
24

0)
FI

TC
  

B
cl

−2
 (

pS
70

)A
F6

47
ER

K
1/

2
(p

T2
02

/p
Y

20
4)

A
F6

47
  

M
A

PK
A

PK
−2

 (
pT

33
4)

FI
TC

M
EK

1 
(p

S
21

8)
/M

EK
2 

(p
S

22
2)

A
F6

47
M

EK
1

(p
S

29
8)

PE
  

p3
8 

M
A

PK
 (

pT
18

0/
pY

18
2)

A
F6

47
p5

3
(a

cK
38

2)
A

F6
47

  
p5

3 
(p

S
37

)F
IT

C
Ik

B
al

ph
a

PE
  

IR
F−

7
(p

S
47

7/
pS

47
9)

FI
TC

  
N

F−
kB

 p
65

(p
S

52
9)

A
F6

47
  

S
H

P2
 (

pY
54

2)
A

F6
47

st
at

1
(N

−T
er

m
in

us
)P

E 
 

st
at

1
(p

S
72

7)
FI

TC
  

st
at

1 
(p

Y
70

1)
A

F6
47

S
ta

t3
PE

  
st

at
3

(p
S

72
7)

FI
TC

  
st

at
3 

(p
Y

70
5)

A
F6

47
st

at
4

(p
Y

69
3)

PE
  

st
at

5 
(p

Y
69

4)
A

F6
47

st
at

6
(p

Y
64

1)
PE

c−
C

bl
(p

Y
70

0)
PE

c−
C

bl
(p

Y
77

4)
PE

Py
k2

(p
Y

40
2)

PE
S

LP
−7

6
(p

Y
12

8)
A

F6
47

S
rc

(p
Y

41
8)

FI
TC

W
IP

(p
S

48
8)

PE
Z

ap
−7

0 
(p

Y
31

9)
/S

yk
 (p

Y
35

2)
A

F6
47

C
D

14
0b

(p
Y

85
7)

FI
TC

  
C

rk
L

(p
Y

20
7)

FI
TC

  
R

b 
(p

S
78

0)
FI

TC
S

m
ad

2 
(p

S
46

5/
pS

46
7)

/S
m

ad
3 

(p
S

42
3/

pS
42

5)
PE

PKA PKC Akt/mTORC1 MAPK I/T JAK/STAT IR/AR Other

PKA PKC Akt/mTORC1 MAPK I/T JAK/STAT IR/AR Other

(a)

(b)



135 
 

6.3.3 Univariate patient-control analysis 

For cohorts 1 and 2, a linear mixed model is applied to the epitopes which show significant 

responses relative to the vehicle in at least one clinical group in Figure 6.1, to quantify 

differential epitope intensities in response to serum exposure from schizophrenia patients 

and controls. For cohort 1, the epitopes (stat3 (pS727) and CrkL (pY207)) are found to show 

significant (p<0.05) differential responses between patient and control serum, and for cohort 

2, the epitope p38 MAPK (pT180/pY182) was found to be significant (p<0.05) between 

patients and controls as summarized in Table 6.3, although none of these findings remain 

significant (q<0.05) following adjustment for multiple testing. This table also displays the 

serum response for each of the clinical groups at both significant epitopes, relative to the 

vehicle condition. 

Table 6.3 Alterations in microglial signalling epitopes for cohorts 1 and 2 in response to serum 
from recent-onset antipsychotic treated schizophrenia (SCZ) patients relative to healthy controls 
(HC). SCZ response and HC response refers to the serum response for each of the clinical groups 
relative to the vehicle condition.  

  Epitope 
P 

Value 
Q 

Value 
Response 
Direction 

Fold 
Change 

SCZ 
response 

HC 
response 

Cohort 1 stat3 (pS727)  0.025 0.451 ↓ 0.95 0.88 0.92 

  CrkL (pY207) 0.036 0.451 ↓ 0.96 1.1 1.15 

    
 

  

Cohort 2 
p38 MAPK 
(pT180/pY182) 0.03 0.935 ↓ 0.87 1.12 1.28 

 

The fold changes in Table 6.3 show a downregulated response in patients compared to 

controls at the indicated epitope sites. Mechanistically, the serum response values at these 

sites suggest the changes may be due to a potentiation of expression changes in 

schizophrenia patients at stat3 (pS727), and an attenuation of expression changes in 

patients at CrkL (pY207) and p38 MAPK (pT180/pY182).  

 
6.3.4 Global test analysis of signalling pathways 
 
For cohort 1, 25 epitopes are analysed in 6.3.3, and for cohort 2, 34 epitopes are analysed. 

These epitopes are grouped into microglial signalling pathways based on the pathway 

classifications defined in Chapter 5. Goeman’s global test is used to quantify whether the 

global patterns of the epitopes measured in these pathways were significantly changed in 

patients relative to controls. 
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As shown in Table 6.4, a significant (q<0.05) differential response is seen in the JAK/STAT 

pathway in cohort 1, based on the combined patterns of responses from the five epitopes 

stat3 pS727, stat4 pY693, stat1 pS727, SHP2 pY542, and stat1 N Terminus. No significant 

responses are found in the pathways analysed in cohort 2. 

 
Table 6.4 Summary of microglial signalling pathway global test results for cohorts 1 and 2. P-values 
are based on 10,000 permutations, significance level = 0.05 

  Cohort 1       Cohort 2     

Pathway 
Number of 
epitopes 

P 
Value Q Value Pathway 

Number of 
epitopes 

P 
Value Q Value 

Akt/mTORC1 8 0.19 0.32 Akt/mTORC1 12 0.31 0.78 

JAK/Stat 5 0.0017 0.0085 IL1R/TLR 3 0.09 0.63 

MAPK 3 0.49 0.49 IR/AR 2 0.56 0.78 

PKA 2 0.16 0.32 JAK/Stat 8 0.92 0.92 

PKC 4 0.3 0.38 MAPK 6 0.43 0.78 

  
  

  PKA 3 0.68 0.79 

        PKC 5 0.55 0.78 
 

The relative contributions of the five JAK/STAT pathway epitopes towards this significant 

response is summarized in the influence plot in Figure 6.2. The overall dysregulation of this 

pathway appears to be strongly associated with the changes observed in three epitopes, 

stat3 pS727 (p-value: 0.001), SHP2 pY542 (p-value: 0.001), and stat4 pY693 (p-value: 

0.003). As in the univariate analysis, the responses of each epitope are downregulated in 

treated patients compared to controls. The stimulant responses relative to the vehicle from 

Figure 6.1 point to a potentiation of expression in patients at stat3 pS727, and an 

attenuation of expression at SHP2 pY542, and stat4 pY693.   
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6.3.5 Correlation analysis 
 
Correlations are computed between PET regions, epitopes found to be significant in either 

the univariate or global test analyses on cohort 1, and PANSS scores. The significant 

(p<0.05) findings are summarized in Table 6.5. A positive correlation is found between 

TSPO expression in the temporal cortex and PANSS general, while negative correlations are 

found between TSPO expression in the temporal cortex and stat3 (pS727) expression for 

both clinical groups. The latter correlations remain significant (q<0.05) following adjustment 

for multiple testing. 

Figure 6.2 Influence plot for the five epitopes measured in the JAK/STAT pathway in cohort 1. 
Epitopes are plotted according to hierarchical clustering based on absolute linkage. Absolute 
correlation distance is the measure used to arrange the epitopes. The height of the bars 
represents the individual p-value for each epitope as a covariate in the model, thus illustrating its 
contribution to the overall test statistic.  
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Table 6.5 Summary of correlation analysis between PET regions found to have significant (p<0.05) 
TSPO expression between patients and controls, epitopes identified as significant through 
univariate or multivariate analysis, and PANSS scores. 

    Group 
Pearson 
Coefficient P Value Q Value 

Temporal 
PANSS 
general SZ 0.54 0.046 0.18 

Temporal stat3 (pS727) SZ -0.64 0.01 0.03 

Temporal stat3 (pS727) Ctrl -0.72 0.001 0.003 
 

 

6.3.6 MRM profiling of serum 
 
MRM is used to profile 147 peptides in the serum samples from cohort 1 and cohort 2 to 

analyze whether the phenotypes observed in each cohort could be explained by differences 

in the abundances of serum analytes between patients and controls. The results are detailed 

in Table 6.6. For cohort 1, significant (p<0.05) changes are observed in the abundances of 

15 peptides including those associated with proteins from the apolipoprotein family (L1, C1, 

E and H subtypes), and various coagulation factors (A1AT, HEP2, HPT and HRG). For 

cohort 2, only the antibody IGHG2 shows significant differential abundance between patients 

and controls. None of these findings remain significant following adjustment for multiple 

testing. 
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Table 6.6 Significant (p<0.05) alterations in peptide abundances between antipsychotic treated schizophrenia patients and healthy controls as measured 
through multiplex reaction monitoring (MRM) mass spectrometry in cohorts 1 and 2. The associated proteins are included alongside each peptide 
sequence.  

  Cohort 1         Cohort 2       

Protein Peptide sequence P Value 
Q 
Value 

Fold 
change Protein 

Peptide 
sequence P Value 

Q 
Value 

Fold 
change 

Apolipoprotein L-1 VNEPSILEMSR 0.0011 0.077 1.41 

Immunoglobulin heavy 
constant 
gamma 2 GLPAPIEK 0.004 0.616 0.44 

Apolipoprotein L-1 LNILNNNYK 0.0011 0.077 1.58     

Apolipoprotein L-1 VTEPISAESGEQVER 0.0061 0.266 1.43     

Histidine-rich glycoprotein DSPVLIDFFEDTER 0.0076 0.266 1.33     

Heparin cofactor 2 IAIDLFK 0.0158 0.329 1.46     

α-1 antitrypsin SPLFMGK 0.0200 0.329 1.52     

α-1 antitrypsin SVLGQLGITK 0.0208 0.329 1.71     

Apolipoprotein F SLPTEDCENEK 0.0220 0.329 0.62     

Apolipoprotein C-I  EWFSETFQK 0.0229 0.329 0.72     

Histidine-rich glycoprotein 
ADLFYDVEALDLESP
K 0.0246 0.329 1.27     

Alpha-2-HS-glycoprotein HTLNQIDEVK 0.0259 0.329 1.21     

Haptoglobin VGYVSGWGR 0.0426 0.398 1.55     
Pigment epithelium-derived 
factor TVQAVLTVPK 0.0442 0.398 1.29     

Immunoglobulin heavy constant  
gamma 2 GLPAPIEK 0.0443 0.398 0.58     
Apolipoprotein E AATVGSLAGQPLQER 0.0483 0.398 1.50           
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6.3.7 Meta analysis 
 
To obtain further information on microglial signalling differences between antipsychotic 

treated patients and controls, cohorts 1 and 2 are combined to increase statistical power and 

a meta analysis was conducted. The ComBat algorithm is used to remove batch differences 

resulting from technical variation between the two cohorts. 19 epitopes are measured across 

both cohorts. Univariate and global test analysis is computed as in 6.3.3 and 6.3.4. Results 

are summarized in Table 6.7.  

 
Table 6.7 Summary of univariate and global test results for the meta analysis on cohorts 1 and 2. 

  Epitope P Value Q Value Response Direction Fold Change 
Univariate 
analysis stat4 (pY693) 0.03 0.31 ↓ 0.96 

          
Global test 
analysis Pathway P Value Q Value 

Number of 
Epitopes   

  Akt/mTORC1 0.61 0.76 7   

  JAK/STAT 0.02 0.1 4   
  MAPK 0.96 0.96 2   
  PKA 0.38 0.76 2   
  PKC 0.58 0.76 2   

  

As in the univariate and global test analysis of cohort 1, the results show alterations in the 

JAK/STAT pathway, although in the univariate meta-cohort analysis, stat4 (pY693) is found 

to be significantly (p<0.05) different between patients and controls, rather than stat3 

(pS727).  

The influence plot for the global test analysis on the meta-cohort in Figure 6.3 again shows 

that, as in cohort 1, the key individual epitopes driving the significant (p<0.05) dysregulation 

of the JAK/STAT pathway are stat4 (pY693), stat3 (pS727), and SHP2 (pY542), except that 

this time stat4 (pY693) is the most important driver, while in cohort 1 alone, the three 

epitopes appear to have relatively equal contributions to the observed effect. 
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Figure 6.3 Influence plot for the five epitopes measured in the JAK/STAT pathway in the meta-
cohort. Epitopes are plotted according to hierarchical clustering based on absolute linkage. 
Absolute correlation distance is the measure used to arrange the epitopes. The height of the bars 
represents the individual p-value for each epitope as a covariate in the model, thus illustrating its 
contribution to the overall test statistic.  

 

The MRM datasets for cohorts 1 and 2 are then combined and analyzed as a meta-cohort to 

see whether the increased statistical power could shed further insights on the serum 

differences between patients and controls driving the changes in epitope expression. 

ComBat is again used to normalize technical variation between the cohorts. Results are 

summarized in Table 6.8. 

As in cohort 1, significant (p<0.05) changes are observed in the abundances of proteins from 

the apolipoprotein family (L1 and C1 subtypes), and the coagulation factor HRG. As in 

cohort 2, the antibody IGHG2 is significant. However, again, none of these findings are 

significant (q<0.05) following adjustment for multiple testing. 
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Table 6.8 Significant alterations in peptide abundances between antipsychotic treated 
schizophrenia patients and healthy controls as measured through multiplex reaction monitoring 
(MRM) mass spectrometry in the meta-cohort. The associated proteins are included alongside 
each peptide sequence. 

Protein Abbreviation Peptide sequence P Value Q Value 
Fold 
change 

Immunoglobulin heavy 
constant 
gamma 2 IGHG2 GLPAPIEK 0.001 0.169 0.52 

Apolipoprotein L-1 APOL1 VNEPSILEMSR 0.004 0.266 1.30 

Apolipoprotein L-1 APOL1 LNILNNNYK 0.014 0.604 1.35 

Apolipoprotein C-I  APOC1 EWFSETFQK 0.018 0.604 0.75 
Pigment epithelium-derived 
factor PEDF TVQAVLTVPK 0.025 0.604 1.24 

Apolipoprotein C-I  APOC1 EFGNTLEDK 0.026 0.604 0.78 

Apolipoprotein L-1 APOL1 VTEPISAESGEQVER 0.034 0.687 1.22 

Histidine-rich glycoprotein HRG DSPVLIDFFEDTER 0.046 0.808 1.20 
  

 
6.3.8 Microglial exposure to antipsychotics at key signalling 
epitopes 
 
The final stage of this study explores whether there is evidence to suggest that 

antipsychotics themselves can potentiate the changes in epitope expression observed 

through univariate and global test analyses in this study. To investigate this, the first and 

second generation antipsychotics haloperidol, aripiprazole, clozapine, olanzapine and 

risperidone are screened against epitopes stat3 (pS727), CrkL (pY207), p38 MAPK 

(pT180/pY182), stat4 (pY693), and SHP2 (pY542). Table 6.9 summarizes the antipsychotic 

responses relative to the vehicle condition.  

The most notable findings are that olanzapine and haloperidol significantly (p<0.05) 

downregulate the expression of all five of these epitopes, especially as these results remain 

significant (q<0.05) following adjustment for multiple testing. They thus appear to be 

exacerbating the attenuation or potentiation phenotypes observed for the disease group at 

each of these epitopes in this study. This is illustrated in Figure 6.4. The other three 

antipsychotics do not have such a broad effect, but risperidone significantly (q<0.05) 

downregulates p38 MAPK (pT180/pY182), the epitope found to be downregulated between 

patients and controls in cohort 2, while clozapine significantly (p<0.05) downregulates p38 

MAPK (pT180/pY182) and stat4 (pY693), the main epitope which was altered between 

patients and controls in the meta analysis. 
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Table 6.9 Microglial responses to antipsychotic exposure relative to the vehicle condition across the five microglial signalling epitopes which were 
implicated in inducing differential responses between treated patients and controls in this study. 

  Aripiprazole     Clozapine     Haloperidol     Olanzapine     Rispiridone     

Epitope FC 
P 

Value 
Q 

Value FC 
P 

Value 
Q 

Value FC 
P 

Value 
Q 

Value FC 
P 

Value 
Q 

Value FC 
P 

Value 
Q 

Value 

CrkL (pY207) 0.95 0.048 0.12 0.96 0.2 0.22 0.95 0.047 0.047 0.92 0.007 0.012 0.94 0.17 0.17 

p38 MAPK 
(pT180/pY182) 0.96 0.16 0.27 0.92 0.002 0.01 0.88 0.002 0.005 0.83 0.002 0.005 0.94 0.009 0.045 

stat3 (pS727) 1 0.46 0.58 0.99 0.22 0.22 0.92 0.002 0.005 0.95 0.03 0.03 0.97 0.048 0.12 

stat4 (pY693) 1.04 0.93 0.93 0.96 0.048 0.12 0.95 0.041 0.047 0.88 0.002 0.005 0.96 0.097 0.1375 

SHP2 (pY542) 0.98 0.022 0.11 0.98 0.11 0.18 0.93 0.022 0.037 0.9 0.02 0.025 0.98 0.11 0.1375 
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Figure 6.4 Microglial responses to haloperidol and olanzapine in comparison to the vehicle condition, for each of the five microglial signalling epitopes 
which showed significant (p < 0.05) differential responses from serum exposure to treated patients and controls in this study
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6.4 Discussion 

In summary, this chapter investigates microglial disturbances in antipsychotic treated 

schizophrenia patients through the analysis of PET imaging of TSPO expression levels 

across several gray matter regions. This is the first study to provide evidence regarding 

dysfunctional CNS mechanisms in addition to PET data from different brain regions. The 

lack of information regarding the cellular processes which could be contributing to the 

observed PET signal has been widely described as a limitation of previous PET 

studies(302,401,471). In this study, this is achieved through the use of a cellular model to 

investigate intracellular signalling alterations between patients and controls by quantifying 

differential expression patterns across a number of epitopes in various microglial signalling 

pathways.  

This study conducts a further investigation of the mechanisms behind signalling alterations in 

antipsychotic treated patients through a meta analysis, combining microglial signalling data 

from two separate cohorts of recent onset antipsychotic treated patients to gain statistical 

power. Finally the study examines whether antipsychotics themselves have the potential to 

induce these signalling changes in microglia. 

 

6.4.1 Increased microglial activation in gray matter 

One of the most notable findings of this study is evidence for significantly (p<0.05) increased 

TSPO expression in the temporal region in recent onset antipsychotic treated schizophrenia 

patients. TSPO expression levels are low in the healthy brain, but increased in activated 

microglia, and thus they have been used as a marker of microglial activation and 

neuroinflammation in schizophrenia(474). While this result does not remain significant 

(q<0.05) following adjustment for multiple testing, this finding could still be of interest as it 

corresponds to the results of previously published PET studies which have identified 

significantly (p<0.05) increased microglial activity in frontal and temporal cortex gray matter 

in patients with schizophrenia and individuals in the prodromal phase(401,471). A 

contributing factor to the significant (p<0.05) finding in this study may be the inclusion of the 

hippocampus in the temporal region studied, as previous studies using the TSPO ligand (R)-

[11C]PK11195 to measure TSPO expression have reported significant increases in the 

hippocampal region in patients(471). The hippocampal region was included in the temporal 

region rather than being assessed on its own, in order to minimize the partial volume effect. 

In PET studies, this effect can be problematic as it causes the signal of the voxels at the 

edge of the region being measured, to be underestimated. Because the relative influence of 
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the partial volume effect is smaller for larger brain regions, one method of reducing the effect 

is to pool brain regions together in this manner(302). 

As in previous studies(401,475), a positive association was found between increased 

temporal TSPO expression and symptom severity, as assessed through PANSS scores. 

This result provides additional evidence that disturbances in microglial activation may be 

associated with increasing symptom severity, and possibly with disease pathogenesis. 

Previous PET studies have suggested that the deleterious effects of aberrant microglial 

activation are particularly involved in the early phases of schizophrenia, with one study 

suggesting that microglia activation is present in patients with an illness duration of less than 

five years(302,470). This corresponds to the cellular model findings in Chapter 5 which point 

towards microglial activation in first-onset antipsychotic naive patients, and the PET findings 

in this study, conducted on patients with an average disease duration of approximately one 

year. 

Mechanistically, this study suggests that the intracellular signalling alterations in the CNS 

underpinning microglia activation are different in recent-onset treated patients to first-onset 

antipsychotic naive patients. While in Chapter 5, a net functional activation of the 

Akt/mTORC1 pathway is strongly implicated in the observed phenotype, alongside activation 

of several epitopes within the JAK/STAT pathway; in this study impaired JAK/STAT 

signalling appears to be the primary affected mechanism, albeit through a different pattern of 

expression changes to those observed in Chapter 5. As noted in 5.4, the role of this 

particular pathway is of interest as it has been described as a molecular switch mediating 

microglial polarization(419,420,476). However, this study provides evidence that this switch 

may be mediated by different mechanisms in recent-onset treated patients, compared to 

those of antipsychotic naive patients in Chapter 5. Both univariate and global test analysis of 

cohort 1 implicate changes in the expression of stat3 (pS727) as a key component of 

JAK/STAT dysregulation. The comparative responses indicates that while stat3 (pS727) is 

downregulated in patients and controls, there is a greater reduction in stat3 (pS727) 

expression in the disease group. In addition, correlation analysis identifies a significant 

negative correlation between stat3 (pS727) and TSPO expression in the temporal region, 

suggesting that increased downregulation of stat3 (pS727) leads to greater TSPO 

expression and thus microglial activation. This observed link between stat3 and TSPO is 

particularly interesting due to previous studies which have suggested that the PKC – ERK1/2 

– Stat3 signal transduction pathway is the main regulator of TSPO expression in both 

schizophrenia and control tissues(477).  
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Global test analysis implicates reductions in the expressions of the epitopes stat4 (pY693) 

and SHP2 (pY542) as contributing to this cellular phenotype. As explained further in 6.4.3, 

there are suggestions that these expression changes may be a consequence of 

antipsychotic treatment. Similarly, this may be the case for CrkL (pY207), which was 

identified as being significantly downregulated in patients in the univariate analysis. A 

previous study using PBMCs as a cellular model of schizophrenia found a reduction in 

expression levels of CrkL (pY207) in patients after six weeks of olanzapine treatment(296). 

However it is not possible to conclude definitively whether these changes are a marker of 

disease state or a consequence of treatment exacerbating a pathological phenotype. For 

example, Crkl has also previously been linked to schizophrenia through genetic studies 

which have linked alterations in the CRKL gene locus to risk of developing the 

disease(478,479).    

As such, the mechanistic differences between this study, and those presented in Chapter 5, 

may be due to a variety of factors. Due to the heterogeneity of schizophrenia, there may be 

different mechanisms of microglia disturbances across different patient populations. In 

addition, the involvement of different epitopes along the JAK/STAT pathway may be a 

consequence of the difference in disease duration between the patients studied in Chapter 5 

and those in this study. There is evidence that microglia shift in both function and 

morphology during the course of schizophrenia(480). 

Mass spectrometry profiling of patient and control serum in cohort 1 identified a number of 

overlaps with findings from Chapter 5 including alterations in Apolipoprotein C-I and 

Haptoglobin. The increased abundances of Haptoglobin, α-1 antitrypsin, and Apolipoprotein 

E points towards a pro-inflammatory M1 activation phenotype. Haptoglobin is known to 

modulate many aspects of the acute-phase response(481), while Apolipoprotein E is the 

major apolipoprotein in the brain and is synthesized by activated microglia(482). Studies 

have found evidence that overproduction of Apolipoprotein E may exacerbate 

inflammation(483,484), while as noted in Chapter 5, the reduced levels of Apolipoprotein C-

1 may represent compromised neuroprotective mechanisms.   

As in Chapter 5, it should be noted that a major caveat to this study is that a number of the 

results - including the observed significant alterations in epitopes stat3 (pS727), CrkL 

(pY207) and p38 (pT180/pY182) in the univariate analyses of cohorts 1 and 2, and the 

significant alterations in serum analytes measured through mass spectrometry profiling of 

cohort 1 – do not remain significant (q<0.05) following multiple testing correction. However, 

this study is very underpowered in terms of sample size, and thus should be viewed largely 

as an exploratory analysis, gathering evidence towards future studies with larger cohorts. In 
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addition, global test analysis of cohort 1 implicated impaired JAK/STAT signalling in patients, 

a finding which did remain significant (q<0.05) following multiple testing, indicating that this 

particular signalling pathway does play a relevant role in the disease group. 

 One experimental limitation of this study which should be noted in the context of these 

findings is the fact that TSPO ligands such as (R)-[11C]PK11195 do not exclusively bind to 

microglia, but may also be indicative of TSPO expression in other CNS cell types such as 

astrocytes(485,486). Future developments are needed in terms of ligands which are more 

specific exclusively to microglia.       

6.4.2 Dysregulation of the JAK/STAT pathway in a meta 
analysis of antipsychotic treated patients 

While JAK/STAT may appear to be a fairly generic signalling pathway, as stated in Chapter 

5, identifying alterations in JAK/STAT signalling in a microglial cell line with relation to 

schizophrenia is notable as dysregulation of this pathway in the CNS has been increasingly 

postulated in being involved in a range of neurological disorders(460,487). This is because 

JAK/STAT is one of the most important signalling pathways in the regulation of neural 

function, which highlights the importance of understanding how it can influence the fate and 

function of brain cells in the context of schizophrenia.   

As such, to further investigate the microglial signalling phenotype in recent onset 

antipsychotic treated patients, cellular model and mass spectrometry serum profiling data 

from cohorts 1 and 2 were analyzed as a meta analysis to gain statistical power. Few 

conclusions were possible from analysis of cohort 2 alone, likely due to lack of power, but 

univariate analysis of cellular model data from this cohort identified a significant attenuation 

in expression levels of the mitogen-activated protein kinase (MAPK) epitope p38 

(pT180/pY182) in patients compared to controls. This again points towards a compromised 

neuroprotective state as preclinical rodent studies have found that in a healthy state, 

increased levels of p38 are crucial to regulating microglial response to brain injury(488) 

through attenuating and balancing the increased levels of pro-inflammatory cytokines before 

the acute-phase response causes harmful and persisting consequences(489). 

One of the limitations of this study is that p38 (pT180/pY182) did not survive data pre 

processing in cohort 1, and thus is not included in the meta analysis. As with cohort 1, 

univariate and global test analysis of the meta-cohort points towards dysregulation of the 

JAK/STAT pathway driven by stat3 (pS727), stat4 (pY693) and SHP2 (pY542). The two 

phenotypes identified in cohorts 1 and 2 may be linked as rodent studies suggest that the 
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MAPK and JAK/STAT pathways tend to converge during periods of cellular stress(490). In 

particular p38 is thought to directly modify epitopes on the JAK/STAT pathway(491,492).       

6.4.3 Stimulation of dysfunctional microglial signalling by first 
and second generation antipsychotics 

There is growing evidence that antipsychotics may cause or perpetuate 

neuroinflammation(493). The screening of a range of first and second generation 

antipsychotics on the microglial epitopes which showed altered signalling in this study, may 

point towards this, suggesting that antipsychotics have the potential to exacerbate 

dysfunctional microglial signalling through these mechanisms. 

In the results of the meta analysis of cohorts 1 and 2, it is possible that olanzapine has a 

substantial effect as it was used to treat all patients in cohort 2. Evidence of this is provided 

by the screening analysis in which olanzapine is found to significantly (q<0.05) downregulate 

the expression of all five epitopes, an effect which remains following adjustment for multiple 

testing. The biggest reductions in expression are seen in p38 (pT180/pY182) which was 

found to be significantly (p<0.05) downregulated in patients in cohort 2, and stat4 (pY693) 

which is found to be significantly (p<0.05) downregulated in univariate analysis of the meta-

cohort. Rodent studies have found that olanzapine has a causal effect in terms of JAK/STAT 

pathway activation(494), thus its profile across these five epitopes may provide both new 

information on its mechanism of action in microglia. 

In addition, haloperidol significantly (q<0.05) downregulates all five epitopes. This is 

interesting in light of previous rodent findings which suggest that typical antipsychotics can 

induce microglia activation(493). These rodent studies have also found that the volume of 

brain regions where microglial cells are activated shrink following antipsychotic 

treatment(495). Previous studies analyzing TSPO expression in atypical antipsychotics have 

suggested that clozapine has the potential to induce microglia activation(496). As such, it is 

interesting that clozapine significantly downregulates p38 (pT180/pY182) and stat4 (pY693), 

thus possibly accentuating neuroinflammation through those mechanisms.   

In future, these findings may prove to be notable in the context of the side effect profiles of 

first and second generation antipsychotics. While there have yet to be studies investigating a 

causal relationship between microglial activation and side effects relating to antipsychotic 

treatment, it may be plausible that processes resulting from dysfunctional microglial 

signalling could contribute to these adverse symptoms. Extrapyramidal symptoms are a 

common side effect of haloperidol, and are thought to be a consequence of dysregulation of 

the dopaminergic system, and damage to GABA-ergic neurons(497). Abnormal microglial 
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signalling is thought to result in extensive neurotransmitter dysregulation, exacerbating the 

disinhibition of dopamine neurons, as well as altering GABA-ergic signalling pathways(241). 

As such it is possible that extrapyramidal symptoms are a downstream consequence of 

dysfunctional microglial activation, stimulated by haloperidol. Concurrently, more recent 

theories have suggested that microglial activation can induce the hypoglutamatergic states 

associated with the pathophysiology of schizophrenia(498). While atypical antipsychotics 

such as olanzapine and clozapine act on the glutamate system, a common side effect of this 

is metabolic disturbances such as impaired glucose tolerance and weight gain(499). Further 

studies are needed to investigate whether potentiation of microglial signalling mechanisms 

as a consequence of atypical antipsychotic treatment could be associated with these side 

effects.  

Further limitations and future work relating to this study are discussed in Chapter 9.  
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Chapter 7 Development of a proteomic 
systems methodology for the 
evaluation of molecular brain changes 
in rodent models compared to 
psychiatric disorders 

 

7.1 Introduction 

Despite the considerable disease burden of psychiatric disorders, current treatment options 

remain limited. Schizophrenia patient response rates to first and second generation 

antipsychotics are typically low(17,18) while response rates to treatment are equally poor in 

other psychiatric disorders with only one third of MDD patients reaching remission criteria 

following initial therapy(500). In order to develop novel and improved treatments, animal 

models of psychiatric disorders are investigated to evaluate the potential benefits of 

promising new drug candidates.  

The aetiology of schizophrenia, MDD and other psychiatric disorders is not well understood, 

the onset of these disorders is most likely precipitated by a combination of genetic and 

environmental factors, leading to a diverse range of clinical phenotypes(501–503). Exposure 

of animals to various forms of genetic modifications and selective trait breeding, 

environmental stressors, or pharmacological challenges can induce behavioural 

disturbances which may represent certain neurocognitive or neurobehavioural 

endophenotypes(255,504–506). Although no rodent model can reflect a given psychiatric 

disorder in its complexity, they may provide insights into certain aspects of the underlying 

molecular pathology associated with different symptom dimensions. Of all animal models, 

rodent models are most commonly used for preclinical drug evaluations due to the 

advantages of a homogenous breeding background and the potential for controlled 

experiments(255).        

However such models of psychiatric disorders have yet to yield the expected breakthroughs 

in terms of novel pharmacological treatments. Among the main reasons postulated for this is 

that it is difficult to reliably or convincingly assess human behavioural symptoms of these 

disorders in animals, and examining the translational relevance of animal models with the 
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human pathology has proven difficult(507). As described in 1.7.3, animal models of 

psychiatric disorders have varying degrees of construct, face and predictive validity, but a 

novel step has been to attempt to identify molecular disease hallmarks of distinct 

endophenotypes in these models as an essential part of their integration into the drug 

development pipeline(272,507,508). 

The work presented in this chapter is the first study to develop and apply a novel 

methodology for directly evaluating and comparing the molecular changes associated with 

rodent models of psychiatric disorders to human post-mortem brains on the functional level. 

Direct proteomic comparisons between animal models and human tissue have yielded 

relatively little information for the study of psychiatric disorders due to the limited overlap 

between the mouse and human proteome(272). Alternatively, an analysis methodology 

based on GO annotations to protein abundance changes enables a cross-species 

comparison between functional patterns associated with the molecular changes between 

species and models. The application of this methodology is based on proteomics data 

obtained from post-mortem brain tissue and equivalent data from commonly used preclinical 

models. This data is subsequently integrated and evaluated using a network biology 

approach, resulting in the identification of pathophysiological features associated with the 

psychiatric disorder in question.   

In this chapter, this methodology is developed on rodent models of MDD (based on different 

common environmental stressors, i.e. social defeat (SD), chronic mild stress (CMS), prenatal 

stress (PNS)) and human MDD post-mortem brains. Environmental stress is thought to be 

one of the most significant risk factors for the development of MDD, especially in an 

interaction with genetic risk factors, early life stress and ongoing stress may determine an 

individual’s vulnerability to develop depression(501). The methodology is subsequently 

applied to rodent models of schizophrenia and human post-mortem tissue in Chapter 8.  

 

7.2 Methods 

Figure 7.1 provides a step-by-step illustration of the general methodology outlined in this 

chapter for conducting a systems approach for comparing proteomic data from animal 

models of a psychiatric disorder to human post-mortem brain tissue. 
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Figure 7.1 Flowchart representing an outline of the methodology developed in this chapter   
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7.2.1 Clinical samples 

35 post-mortem anterior prefrontal cortex (Brodmann area 10 - BA10) brain samples were 

obtained from the Stanley Medical Research Institute(509). Samples are derived from 12 

MDD patients (with purely affective diagnoses and no psychotic features in their disease 

course) and 23 healthy control subjects. 

Tissue collection took place with the full informed consent of a first-degree relative to comply 

with the Declaration of Helsinki. As outlined previously(510), there were no differences in 

grey and white matter volumes between samples, and no significant differences in brain 

side, gender or secondary axis diagnosis of alcohol abuse/dependency and drug 

abuse/dependency between patients and controls.    

Three stress-based rodent models of MDD commonly used in preclinical research are 

generated applying the standard protocols outlined below. Rats (Rattus norvegicus) are 

used in the CMS and PNS models and mice (Mus musculus) are used in the SD model. At 

the end of each protocol, rodents are sacrificed by decapitation, and frontal cortex tissue 

samples are collected from both stressed samples and a matching number of unstressed 

control samples. As in previous studies(511), the frontal cortex is defined as the anterior 

portion of the cortex up to 2.15 mm rostral from bregma.    

 

7.2.1.1 Social defeat 

7-9 week old animals are exposed individually to 9-13 month old socially dominant 

aggressor animals for ten minutes each day, for ten successive days, in a 1:1 social 

dominance constellation as described previously(512,513). The two mice are kept in the 

same cage separated by a Plexiglas screen for the remaining 24 hours for constant visual 

and olfactory cues, prolonging the defeat procedure. A different aggressor mouse is used 

each day to minimize inter-aggressor variability. On day eleven, all mice exposed to SD 

stress are subjected to the established social interaction test(513) which employs a video-

tracking system to score interaction/avoidance behaviours towards an aggressor mouse. 

Following this test, all mice exposed to SD stress are sorted into either susceptible or 

resilient groups, by comparing the interaction test score ratio for each animal to established 

behavioural scores associated with defeat and resilience(512,513). An interaction test score 

ratio of 1, in which SD animals have displayed an identical amount of interaction with a 

social and a non-social target in the presence of a formerly unknown mouse, has been 

previously defined as the threshold for dividing defeated mice into susceptible and resilient 

groups. Twelve animals deemed susceptible in accordance to the SD procedure (social 
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interaction score <1) described above, and 12 control animals which did not undergo defeat 

were sacrificed 24 hours after the final social interaction testing and 48 hours after the last 

defeat (SD mice only).  

 

7.2.1.2 Chronic mild stress 

24 adult male rats are housed individually with free access to food and water. 12 animals are 

maintained as controls and 12 animals are exposed to a mild stress regimen for three 

consecutive weeks, five days a week, based on a previously described CMS 

procedure(514,515). Stressors consist of repeated periods of confinement to small cages 

(24 × 10 x 9 cm), two periods of continuous overnight light exposure, one 18 hour period of 

food and water deprivation followed by 2 hours of restricted food access, one 18 hour period 

of water deprivation immediately followed by 1 hour’s exposure to an empty bottle, and one 

18 hour period of group housing in a soiled cage. The CMS protocol is evaluated through 

three commonly used behavioural tests. The sucrose preference test (SPT)(516) sees each 

animal receive free access to 150ml of sucrose solution and 150ml of water. The SPT tests 

for reduced responsiveness to positive stimuli, which is symptomatic of depression in 

humans. The forced swim test (FST)(517)is then used to analyse whether animals show 

inclinations towards despair by placing them in a situation where they may perceive that 

escape from the water is impossible(518). Finally the tail suspension test(519)is used as an 

additional quantifier of behavioural despair. Animals from the stress group display similar 

depression-related phenotypes in comparison to the control group as expected from 

previous work(520). All animals are sacrificed via decapitation following the end of the 

protocol. 

 
7.2.1.3 Prenatal stress 

Pregnant dams are obtained at gestation day 6-7 and randomly assigned to control or 

prenatal stress groups after one week of acclimatisation. The stress groups are exposed to 

varying stressors during their third trimester, from gestational day 14 until day 20, following 

an established protocol(521). A different stressor is applied for each of these days. Following 

birth, all dams and pups were housed in a single cage and left undisturbed for 20 days. On 

postnatal day 21, pups are separated from their mothers and kept single housed. In an 

evaluation of the PNS paradigm, young adult animals are subjected to stress evaluation 

behavioural tests between postnatal days 50-70(521). Locomotor and rearing/climbing 

activity was assessed over a 24h period as changes in circadian activity patterns can be 

symptomatic of depression-like behaviour. The FST is used as in the CMS procedure. 
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Similar to previous work(521), animals from the stress groups display a phenotype related to 

increased behavioural despair and decreased exploratory behaviour. Adult male offspring 

(10 from the control group and 10 from the stress group) are sacrificed at postnatal day 150. 

 

7.2.2 Label-free LC-MSE analysis of brain tissue 

Using previously defined storage, preparation and measurement procedures(510), brain 

samples are analyzed individually in technical duplicates using label-free LC-MSE. 

Approximately 12-16mg of mouse tissue per sample is used for the SD model and 22-28mg 

of rat tissue per sample is used for the CMS and PNS models. For the subsequent analysis, 

the Swiss-Prot human reference proteome (Uniprot release, Sep 2014; 20 209 entries) is 

used for peptide/protein identification. The protein sequences of the Mus musculus and 

Rattus norvegicus UniProt reference proteome files are merged to create a joint database 

(retrieved Sep 2014; total joint number of entries 24 577). 

LC-MSE raw data is processed using the ProteinLynx Global Server v.2.5. (Waters 

Corporation), and Rosetta Elucidator v.3.3 (Rosetta Biosoftware), applying settings and 

procedures as reported previously(510). Peptide signal intensities for each sample are 

exported for pre-processing and statistical analysis in the software R. Only peptides with an 

amino acid sequence ending in R or K are considered to avoid unspecific trypsin cleavage. 

Non-unique peptides are excluded. The first two principal components are used to identify 

sample outliers(522) resulting in the removal of two control samples and one MDD sample, 

one stress sample from the PNS model and one stress sample from the SD model. Log2 

transformation is applied to stabilize data variance. 

Protein abundance changes for the human and rodent model comparisons (MDD compared 

to control, or stress versus non-stressed controls in the rodents, respectively) are 

determined using a linear mixed model (applied in R as described in Chapter 2). This model 

adjusted for covariates in the post-mortem brain samples regarding age, gender, diagnoses 

of alcohol or substance abuse, brain pH, brain side and post-mortem interval (PMI). For the 

human tissue, the false discovery rate (FDR) is controlled by adjusting p-values according to 

the Benjamini Hochberg procedure(416) with a cut-off of 0.05, using the p.adjust function in 

the R stats package(302). For each rodent model, the p-values for each protein are 

evaluated through the permutation testing procedure described in Chapter 5.  

 

 



157 
 

7.2.3 Protein-protein interaction networks 

PPI networks are created for MDD and the SD, CMS, and PNS rodent models using the 

software package Cytoscape v3.2.1(523), enabling the comparison of MDD and rodent 

tissue on a functional level, based on the annotation of GO terms to the detected significant 

protein abundance changes described above. The databases MINT(350), IntAct(349) and 

UniProt(351)are used to retrieve all available known PPI between the significant (corrected 

p-value ≤  0.05) protein abundance changes and their respective first-order protein 

interactors. Network nodes are filtered by taxonomy identifiers (9606 for Homo sapiens in 

the MDD network along with 10116 and 10090 for Rattus norvegicus and Mus musculus 

respectively in the rodent networks) while edges are filtered so that all connections other 

than direct interactions or physical associations between proteins are excluded. The 

structures of each network are characterized using three properties of complex networks. 

These are, average degree – the degree of each protein (the number of other proteins to 

which it is connected) averaged across the entire network(524); characteristic path length - 

the average of the shortest path lengths between all pairs of proteins (which is small for less 

informative networks)(525); and density – the number of edges in the network divided by the 

possible number of edges(525). 

 

7.2.3.1 GO term enrichment 

GO term enrichment is computed on each PPI network using the ClueGO(352) Cytoscape 

package, with default settings unless described below. The ontology category used is 

“Biological Process”. The Homo sapiens GO database is used for the terms of the MDD 

network. The Mus musculus database is used to evaluate all rodent networks to reduce a 

species-specific annotation bias. A two-sided hypergeometric distribution is used to compute 

the statistical significance of each GO term, describing the probabilities associated with 

sampling randomly without replacement from a finite network of proteins where all proteins 

have an equal chance of being drawn. This determines whether any GO terms occur at a 

frequency greater than would be expected by chance. For each term, p-values are corrected 

for multiple testing (q-values) by applying a Benjamini-Hochberg correction. Terms with a 

significant q-value (q < 0.05) are taken forward and terms with no significant enrichment (q > 

0.05) or less than two proteins are removed automatically. 
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7.2.3.2 Kappa score grouping 

Functional grouping is applied to the list of terms for each network using the kappa 

score(37), a metric which reflects the degree of the relationship between GO terms, based 

on shared underlying proteins. A kappa score of 0.7 is used, as this requires abundant 

shared proteins in order for terms to be grouped(352,526), ensuring that each group has a 

distinct biological functionality. SD, CMS or PNS functional groups which did not contain at 

least two GO terms are excluded from the analysis. A more stringent threshold is applied to 

the MDD functional groups, as the MDD PPI network is a factor of ten larger than the rodent 

networks. This size discrepancy derives from the information bias in GO annotations and 

protein databases between human and rodent proteins. This bias exists because far more 

studies have been conducted investigating human proteins, and experimentally annotating 

their functions compared to rodent proteins. This means that more information is known 

about human proteins and their interactors, and there are more GO annotations associated 

with each protein. The net result of this is that human PPI networks are going to be far 

larger, and thus this analysis yields far more functional groups for MDD, compared to the 

three models. 

As such, to account for this, MDD functional groups which did not contain at least ten GO 

terms are excluded from the analysis. Groups are named according to the most significant 

GO term following the Benjamini Hochberg FDR correction mentioned in 7.4.1. 

 

7.2.3.3 Local linear embedding kernel group augmentation 

The biological interpretation of each functional group is enhanced by augmenting the groups 

with closely related GO terms using a diffusion-type manifold embedding technique called a 

Local Linear Embedding (LLE) kernel, commonly used to group related proteins or 

genes(527,528). Kernels are manifold embedding techniques which are commonly used in 

bioinformatics to classify data points into particular categories(529). In this instance, kernel 

methods are used to compute similarity metrics through a geometric interpretation of 

manifold embedding where each GO term is treated as though positioned in a virtual two-

dimensional space based on its place in the GO tree. The LLE kernel is chosen over other 

kernel techniques, as it emphasizes short-range interactions between terms(530).  

The LLE kernel is used to embed the entire H.sapiens GO graph into Euclidean space, and 

then for every MDD term in a given functional group, it obtains distance similarity values 

between that term and any other term in the graph. These similarity values utilise the 

geometry of the GO graph to estimate the divergence in function between any two terms, 
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based on underlying proteins. A positive similarity value between each term in a functional 

group and any other term in the GO database meant this new term was related and could be 

added to the group. A negative value meant that there are no shared proteins, and so the 

new term was unrelated. 

This was computed in R using the calc.diffusion.kernel function with 

method=”diffKernelLLE”, in the R GOSim package(531). Likewise with each SD, CMS, and 

PNS term, similarity metrics are computed to every term in the M. musculus GO tree. The 

concept behind the use of the LLE kernel to augment the existing functional groups is that 

the particular proteins underlying these additional terms will be associated with a variety of 

related biological functions to those already conveyed by the group. Hence, this method 

yields more informative functional groups of highly related terms. 

 

7.2.4 Functional comparison between MDD and rodent models 

Following augmentation, the percentage overlap of GO terms is computed between MDD 

functional groups and those of the three rodent models, using a Z score transformation. 

Related clusters of functional groups between MDD and each model were identified using 

hierarchical clustering with the Ward’s criterion metric. This enables different functional 

domains of the disease which are represented across all three models, to be determined, 

where each domain consists of a vector of GO terms. The subsets of GO terms behind each 

domain which are completely unique to that domain were then identified, thus defining the 

biological functionality more precisely. 

 

7.2.5 Domain comparison using GO term similarity 

Having identified a series of unique functional domains of human MDD represented by the 

four models, it is necessary to quantify which model represents each domain most closely. 

This is done by modifying an approach from genetic research(532,533) to obtain a numerical 

quantification for the closeness of the models to the disease by computing a similarity score 

between rodent and human domains. These scores are obtained through evaluating the 

average of the best matching GO term similarity between the domain vectors, where the 

pairwise similarity scores between GO terms were obtained using the LLE kernel described 

in 7.2.3.3.The rodent and human domains are more similar, the closer the similarity scores 

are to 1. 
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Condition/Model N n (% of N) Number of nodes Number of edges Average degree Characteristic path length Density

MDD 109 92 (84%) 2218 4892 2.953 3.826 0.001

SD 69 36 (52%) 151 282 2.583 4.377 0.017

CMS 43 24 (56%) 70 280 4.229 3.126 0.061

PNS 30 16 (53%) 77 170 3.377 3.133 0.044

7.3 Results 

 

7.3.1 Protein abundance changes for brain tissue comparisons 

1280 unique quantifiable proteins are identified across all post-mortem brain samples. 875 

were identified across all SD samples, 749 across all CMS samples and 887 across all PNS 

samples. 109 proteins were found to be differentially expressed in MDD patients compared 

to control individuals. For the rodent models, 68 proteins were found to be differentially 

expressed in stressed compared to control mice in the SD model, 43 in the CMS model and 

30 in the PNS model. Appendix tables A.7.1-A.7.4 display these proteins and their fold 

changes. 

 

7.3.2 PPI networks and GO term enrichment analysis   

By retrieving all available interactions from the protein databases UniProt, MINT and IntAct, 

PPI networks are created for MDD and all three rodent models from the significant proteins 

identified above and their respective first-order interactors. In order to characterize each of 

these networks, several commonly used structural properties of complex networks are 

computed, average degree, characteristic path length and density as summarized in Table 

7.1.   

Table 7.1 Structural properties of protein-protein interaction networks. Abbreviations: MDD, 
major depressive disorder; SD, social defeat; CMS, chronic mild stress; PNS, pre-natal stress; N = 
number of significant proteins, n = number of significant proteins included in the network 

 

The CNS and PNS networks display a slightly greater connectivity and density, potentially 

because they are more compact, as indicated by their smaller characteristic path length. 

However, the biological conclusions which can be drawn from direct comparisons between 

structural properties of networks are inherently limited, due to the possibility that the 

observed effects are artefacts of information bias in the protein databases used to create the 
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Condition/Model N Top five group names No of GO terms Group p-value
No of significant proteins

per group

MDD 2218 Phosphorylation
Phosphate-containing compound metabolic process
Intracellular signal transduction
Regulation of protein modification process
Regulation of cellular process

22
16 
17
27
13

8.6 E-104
9.3 E-87
7.5 E-86
5.2 E-67
6.0 E-55

43
42
55
20
59

SD 151 Organelle organization
Chromosome organization
Multicellular organismal development
Cellular component assembly
Transport

11
12
10
12
44

5.7 E-22
6.5 E-16
1.3 E-14
2.2 E-13
4.2 E-12

17
16
21
13
23

CMS 70 Protein localization
Generation of neurons
Establishment of localization in cell
Organelle organization
Cell morphogenesis involved in neuron differentiation    

22
35
5

32
7

2.0 E-13
3.2 E-13
2.8 E-12
3.1 E-12
4.0 E-11       

10
15
10
14
4

PNS 77 Cell morphogenesis
Purine ribonucleoside metabolic process
Synaptic vesicle endocytosis
Cellular protein localization
Regulation of receptor internalization                                        

7
12
7
5
3

1.4 E-5
1.9 E-5
2.6 E-5
5.4 E-5
1.4 E-4

6
8
5
3
3

networks. For example previous studies have shown that certain nodes may appear to have 

a higher degree simply because they have been investigated further and more is known 

about them than other proteins, rather than possessing any biological significance(534). As 

such, a functional comparison based on gene ontology annotations may prove more 

informative.    

Following functional enrichment analysis of the networks, and Kappa score grouping of the 

resulting terms, 77 MDD functional groups, 52 CMS groups, 41 SD groups and 9 PNS 

groups are obtained. Each group corresponds to a specific biological process. Table 7.2 

displays the top 5 groups for MDD and each rodent model, in order of significance. 

 

Table 7.2 Top 5 functional groups for each protein-protein interaction network. Abbreviations: 
MDD, major depressive disorder; SD, social defeat; CMS, chronic mild stress; PNS, pre-natal stress; 
GO, Gene Ontology; N = number of nodes in the network. 
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7.3.3 Identification of corresponding functional domains 
between MDD and rodent models 

Kernel techniques are used to enhance the identified functional groups, as described in the 

methods section. Subsequently the percentage overlap is computed between MDD and 

rodent model groups. It is found that groups which cluster together and overlap are involved 

in closely related biological processes, resulting in the identification of seven functional 

domains of MDD in the post-mortem brains – “transport, localization and cellular 

import/export”, “development/differentiation and immune system”, “cytoskeleton and 

DNA/RNA processes”, “carbohydrate metabolism and cellular respiration”, “nucleic acid 

metabolism and ATP/GTPase activity”, “intracellular signalling/regulation & post-translational 

modification” and “cellular response and receptor signalling”, which are also represented by 

the GO terms based on protein changes detected in the rodent models. The CMS model 

represents all seven of these domains and the SD and PNS models represent five, 

respectively. The domains are shown in Figure 7.2. 

Prior to quantifying which model was most representative of MDD for each functional 

domain, the individual groups of GO terms behind the seven domains for MDD and all three 

models are displayed by projecting them into Cytoscape. The resulting four networks of GO 

terms in Figure 7.3, in which nodes represent terms and edges connect the terms found to 

be related by the LLE kernel, display the subsets of GO terms behind each domain, which 

are completely unique to that domain.  
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Figure 7.2 Identification of functional domains of human MDD represented across two or more rodent 
models. Vertical axes on the right side represent rodent functional groups. Hierarchical clustering using 
Ward’s criterion was used on both vertical and horizontal axes to identify related clusters of groups for 
both MDD and each model. (A) Prenatal Stress (B) Chronic Mild Stress (C) Social Defeat 
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Figure 7.3 Networks of GO terms representing the seven functional domains of MDD which were 
identified across at least two rodent models. Projection of significantly overlapping GO terms into 
functional networks enabled the identification of a vector of unique terms underlying a particular domain 
for both MDD and each rodent model. Representative GO terms for each domain are highlighted. (A) MDD  
(B)  Prenatal Stress  (C)  Chronic Mild Stress  (D) Social Defeat 
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Functional Domain SD CMS PNS

Transport, localization & cellular import/export 0.62 0.45 0.22

Development/differentiation & immune system 0.62 0.65 0.33

Cytoskeleton & DNA/RNA processes 0.35 0.3 0.1

Nucleic acid metabolism & ATP/GTPase activity N/A 0.4 0.53

Carbohydrate metabolism & cellular respiration N/A 0.37 0.0004

Intracellular sig./regulation & post-translational modification 0.4 0.16 N/A
Cellular response & receptor signalling 0.62 7.9E-05 N/A

7.3.4 Quantification of most representative rodent model via 
GO term similarity methods  

The vectors of GO terms for each domain are compared by computing scores based on GO 

term similarity, enabling the quantification of the model that represents MDD most closely. 

These scores are shown in Table 7.3.   

The scores indicates that overall the SD model represents MDD most closely (to a greater 

extent than the other two models) for the functional domains “transport, localization & cellular 

import/export”, “cytoskeleton & DNA/RNA processes”, “intracellular signalling/regulation & 

post-translational modification” and “cellular response & receptor signalling”. The SD and 

CMS models are particularly close to MDD for three functional domains where the similarity 

scores between models and the disease are greater than 0.5 - “transport, localization & 

cellular import/export”, “development/differentiation & immune system” and “cellular 

response & receptor signalling.” 

Table 7.3 Domain comparison to Major Depressive Disorder based on scores computed using Gene 
Ontology Term similarity. Abbreviations: SD, social defeat; CMS, chronic mild stress; PNS, pre-
natal stress. 
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7.4 Discussion 

Despite the high prevalence and considerable clinical impact of psychiatric disorders, 

progress in understanding their pathophysiology has proved difficult, thought to be due to 

the heterogeneous and complex nature of these disorders(535). Animal models of 

psychiatric disorders have been utilised for the identification of novel drug targets and have 

provided new insights into the genetic and molecular alterations  which are thought to 

underpin these disorders(536). However, challenges have arisen in comparing alterations in 

animal models with the underlying molecular disease factors in psychiatric disorders 

measured in serum(508) or brain tissue(510). Therefore, most comparisons are based on 

behavioural phenotypes, sometimes additionally supplemented with histological and 

electrophysiological data. This has led to difficulties in bias and irreproducibility, as many of 

the behavioural characteristics for psychiatric disorders like MDD or schizophrenia cannot be 

translationally evaluated in animals(537). 

Here, a novel methodology is presented which allows the comparison of brain changes from 

rodent models with those observed in human post-mortem tissue from individuals with a 

psychiatric disorder. In the application presented in this chapter, changes in three rodent 

models are compared with those observed in human MDD brains. Thus, it is possible to 

assess which model reflects changes in MDD most closely for various pathophysiological 

features of the disease. The approach seeks to compare human and animal brain tissue on 

a functional level using GO terms annotated to proteins. Proteomic analysis has several 

advantages over genomic/transcriptomic analysis, as protein changes represent the 

transcribed and translated genetic information resulting from epigenetic and mRNA 

modifications more closely reflect the disease pathophysiology(538). Twin studies, for 

example, have approximated the heritability of MDD at 37% suggesting that genetic 

investigations may not be the optimum basis for a comparison(539). Similar to the case of 

schizophrenia and other psychiatric disorders, evidence suggests that MDD is a polygenic 

disorder with the disease phenotypes arising as a consequence of many small risk genes 

together with environmental factors(503).   

Through this approach, it is possible to quantify seven functional domains identified as 

altered in MDD post-mortem brain tissue, which are all represented across two or more of 

the investigated animal models. It is shown that the four functional domains “transport, 

localization & cellular import/export”, “cytoskeleton & DNA/RNA processes”, “intracellular 

sig./regulation & post-translational modification”, and “cellular response & receptor 

signalling”, are represented most closely by the SD model. While these domains may seem 

relatively generic, this confirms existing findings in the literature as previous rodent studies of 
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SD stress have found brain changes implying impaired cell proliferation mechanisms(540) 

which is consistent with the finding that the SD model is characterised especially through 

intracellular signalling and post-translational modification. In addition, it is demonstrated that 

the functional domains “development/differentiation & immune system” and “carbohydrate 

metabolism & cellular respiration” are represented most closely by the CMS model. It is 

unsurprising that immune dysfunction was represented strongly in this model as disturbed 

HPA function, dampened neurogenesis and increased oxidative stress have been reported 

in rat CMS models(541,542). The “development/differentiation & immune system” domain is 

also strongly represented in the SD model. This is in line with previous studies 

demonstrating that SD stress induces pro-inflammatory signalling including increased 

monocyte trafficking via a variety of immune-regulatory pathways found to be dysfunctional 

in the CNS of MDD patients(543,544).  

This methodology is the first proteomic approach for a cross-species comparison of human 

and animal tissue which applies a novel functional analysis procedure using GO terms 

annotated to proteins rather than relying on a comparison based solely on the significantly 

altered proteins as measured through LC-MSE. There are multiple strengths of the 

methodology including the use of carefully matched post-mortem brain samples while 

adjusting for covariates in a regression analysis via a stepwise selection procedure which 

accounted for the most commonly addressed confounders while avoiding 

overparameterization. The present approach involves the use of a joint rodent protein 

database at the LC-MSE processing stage and the Mus musculus GO database at the GO 

term enrichment stage to avoid introducing any species-specific bias which could bias the 

results in favour of one particular model. The chosen systemic methodology involving 

enrichment of PPI networks is superior to the standard way of pathway analysis based on 

individual proteins which is most commonly used in preclinical studies. A systems approach 

leverages the signature proteins as a representation of changes in signalling pathways, 

characterizing the biological processes more precisely through the inclusion of first-degree 

interactors in the networks, instead of interpreting the relevance between each protein and 

phenotype, thus expanding the functional scope of the study. In addition, once functional 

groups have been determined within the network, an approach commonly used to compare 

gene functionality is adopted(545,546). This approach utilizes kernel methods, one of the 

most advanced techniques in machine learning, to compare vectors of GO terms through 

their closeness to each other in the GO hyperspace, thus making individual comparisons 

possible between models and the disease(529,547). By tackling a pressing question in 

translational research through the adaptation and application of machine learning based 

methods already established as a means of conducting functional comparisons in other 
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disciplines of medicine, decision processes in preclinical neuropsychiatry could benefit of 

synergies between different fields of molecular research. 

In summary, it is shown that different animal models of a psychiatric disorder can represent 

individual functional aspects of the disease more closely than others. The development of a 

methodology which can quantify molecular similarity between preclinical models and the 

disorder in this way is needed, as it is generally agreed that individual models are unlikely to 

mirror the full extent of the human disease(548). Therefore, in future, the way forward in 

preclinical research may be separate pharmacological studies, each focusing on different 

models targeting different clusters of disease symptoms, and thus different underlying 

molecular changes. This approach is likely to be of increasing importance in the search for 

novel pharmacological compounds, based on theories that individual psychiatric disorders 

could be a constellation of diseases, manifesting in behavioural symptoms which correlate 

with different neurobiological adaptations(549). There is a pressing need for pharmacological 

interventions that differ from current approaches which have tended to focus on a specific 

signalling pathways such as glutamatergic neurotransmission for schizophrenia and 

monoaminergic neurotransmission for MDD(550). Future research should aim to re-evaluate 

these disease-model comparisons incorporating proteomic analysis from genetic and 

pharmacological models. The ability to apply this novel method to conduct a direct functional 

comparison between multiple preclinical models and a psychiatric disorder will help gain 

greater insights into the underlying molecular and cellular mechanisms behind behavioural 

abnormalities and their response to pharmacological interventions, as attempts are made to 

obtain a greater understanding of the consequences of differing stressors in the context of 

these disorders. 
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Chapter 8 Application of a proteomic 
systems methodology for the 
evaluation of the molecular validity of 
preclinical rodent models compared to 
schizophrenia brain pathology 
 

8.1 Introduction 

Antipsychotics represent the first line of pharmacotherapy for schizophrenia and 

predominantly target dopamine, noradrenaline and serotonin pathways(1). However these 

medications typically fail to treat the cognitive and  negative symptoms, which contribute 

substantially to the morbidity of schizophrenia(551–553). Due to increased evidence that 

dysfunction of glutamatergic transmission is implicated in psychotic states(125,554,555), 

glutamatergic animal models of the disease have increasingly been used to test the potential 

efficacy of novel compounds(256). Such models enable the study of central biological 

processes associated with a particular group of symptoms and the testing and evaluation of 

novel treatments.      

Glutamatergic mechanisms were initially implicated in schizophrenia pathogenesis after 

reduced cerebrospinal fluid levels were reported in patients(556), with later studies pointing 

to more complex mechanisms behind dysfunction of glutamate neurotransmission(261). 

Glutamatergic models of schizophrenia in animals include genetic manipulation of the 

NMDAR(557) and acute or chronic exposure to NMDAR antagonists such as PCP(558) and 

ketamine(559). Systemic treatment with these antagonists in preclinical studies was found to 

mimic negative symptoms of the disease alongside an increase in glutamate efflux in the 

prefrontal cortex(560,561). Administration of PCP and ketamine in clinical studies was found 

to induce psychotomimetic effects ranging from positive symptoms such as hallucinations 

and paranoia(261) to negative and cognitive symptoms in healthy volunteers(562,563), in 

addition to precipitating psychotic relapses in chronic stable schizophrenia patients(564).    

Preclinical evaluation is an important step in the drug discovery pipeline for schizophrenia, 

and allows the prioritization of compounds for clinical trials. However, regardless of ongoing 

advances in other areas of medicine, the development of preclinical models for 

schizophrenia and other neuropsychiatric disorders is at a near standstill(270), and there 
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have been failures in finding new pharmacological treatments because the observed 

outcomes in behavioural screenings were not predictive of clinical outcomes. As mentioned 

in Chapter 7, the main reason for this is the fact that uniquely human behavioural symptoms 

cannot be reliably or convincingly mirrored or assessed in animals, explaining difficulties in 

face validity. Additionally, the face validity of genetic and pharmacological models has been 

criticized as more than a single gene is considered to be important in the etiology of 

schizophrenia and injections of compounds only induce transient phenotypes. As such, there 

is a need to find a way to quantitatively assess which animal models represent different 

pathophysiological aspects of schizophrenia most closely.  

In this chapter, the methodology developed and outlined in Chapter 7 is applied to post-

mortem brain tissue from schizophrenia patients and four established rodent models of the 

disease, integrating this proteomic information in a novel systems based approach. The 

rodent models were based on either psychosis-inducing NMDAR-antagonists (Ketamine and 

PCP) or genetic modifications targeting the glutamate system (NR1-knockdown) were 

investigated. Rats were chosen over mice in the pharmacological models to increase brain 

tissue yield for proteomic extractions. Mice were chosen for the NR1 knockdown due to the 

availability of superior methods of genetic manipulation compared to rats. The anterior 

frontal cortex was chosen as the tissue of interest in both humans and rodents as a brain 

region which is strongly linked to psychotic disorders. The anterior prefrontal cortex plays a 

crucial role in the processing and evaluation of internally generated information across 

multiple cognitive operations(565), and the negative and cognitive symptoms of 

schizophrenia are characterized by impairments in executive functioning and socio-

emotional cognition. As described in Chapter 7, through this methodology the biological 

processes affected in the anterior frontal cortices in each condition are characterized and 

compared across species and models. Based on protein-protein-interaction networks, key 

functional patterns are identified that allow the molecular similarity of the models with the 

human condition to be quantified, a novel way of interrogating translational preclinical 

validity. 
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8.2 Methods 

R and Cytoscape packages, functions and settings were applied as in Chapter 7, unless 
otherwise stated. 

Figure 8.1 provides a step by step illustration of the workflow for this chapter. 

 

 

 

 

 
Figure 8.1 Flowchart representing methodology and experimental setup used in this chapter. 
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8.2.1 Clinical samples 

46 post-mortem anterior prefrontal cortex (BA10) brain samples are obtained from the 

Stanley Medical Research Institute(509). Samples are derived from 23 schizophrenia 

patients and 23 control subjects. 

Tissue collection took place with full informed consent of a first-degree relative to comply 

with the Declaration of Helsinki. As outlined previously(510), there are no differences in grey 

and white matter volumes between samples, and no significant differences in brain side, 

gender or secondary axis diagnosis of alcohol abuse/dependency and drug 

abuse/dependency between patients and controls.    

Four glutamatergic animal models of schizophrenia commonly used in preclinical drug 

discovery and development are generated applying the protocols outlined below. Rats 

(Rattus norvegicus) are used for the ketamine, acute PCP (aPCP) and chronic PCP (cPCP) 

models and mice (Mus musculus) are used for the NR1 knockdown model. All animals are 

housed 4-5 per cage on a 12-h light/dark cycle in a temperature-controlled facility with food 

and water available ad libitum. At the end of each protocol, rodents are sacrificed by 

decapitation, and brain tissue samples are collected. A matching number of control samples 

are collected at the same time. 

Ketamine:  10 control animals received a subcutaneous dose of saline and 10 animals 

received 10mg/kg ketamine subcutaneously as described previously(566). Dosage levels 

are based on previous research which examines dose/response levels based on locomotor 

activity ataxia, brain dialysis/neurotransmitter release and pharmacological magnetic 

resonance data(567–570). Doses are chosen which yield robust readouts while avoiding 

inducing anaesthesia. Sacrifice and tissue collection takes place place two hours after the 

last injection.   

aPCP:  10 control animals received a subcutaneous dose of saline and 10 animals received 

5mg/kg PCP hydrochloride subcutaneously as previously described(571,572). Sacrifice and 

tissue collection takes place 30min after the last injection.  

cPCP: 10 control animals received subcutaneous doses of saline and 9 animals received 

5mg/kg PCP hydrochloride subcutaneously for 15 consecutive days as previously 

described(573). Sacrifice and tissue collection takes place 30min after the last injection on 

day 15.   
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NR1 Knockdown: NR1 transgenic mice are bred and genotyped as previously 

described(269,557,574). 12 adult male homozygous mice and 12 wild-type littermates are 

used for this study. 

8.2.2 Label-free LC-MSE analysis of brain tissue 

Using previously defined storage, preparation and measurement procedures(510), brain 

samples are analyzed individually in technical duplicates using label-free LC-MSE. For the 

subsequent analysis, a human proteome database is obtained from UniProt (retrieved 2015-

14-10, number of entries 20,196). A joint Mus musculus and Rattus norvegicus database is 

created by merging the protein sequences of the respective UniProt reference proteome files 

(retrieved 2015-14-10, number of entries 24,664). MS raw data and ProteinLynx Global 

Server v2.5 search results are imported into the Rosetta Elucidator software (build 3.3, 

Rosetta Biosoftware). Settings and procedures are applied as stated previously(510), and 

peptide signal intensities for each sample are exported for pre-processing and statistical 

analysis in R. Only peptides with an amino acid sequence ending in R or K are considered to 

avoid unspecific trypsin cleavage. Non-unique peptides are excluded. Sample outliers are 

identified using the first two principal components(522) resulting in the removal of one 

control sample from the aPCP, cPCP, Ketamine and NR1-knockdown models. 

Following log2 transformation to stabilize data variance, protein abundance changes for the 

human and rodent model comparisons are determined using a linear mixed model, with a 

stepwise selection adjustment for covariates age, gender, diagnoses of alcohol or substance 

abuse, PMI, brain pH and brain side. For the schizophrenia tissue, the FDR is controlled at a 

cut-off of 0.05 by adjusting the p-values according to the Benjamini Hochberg 

procedure(416). For each rodent model, p-values are evaluated through permutation testing 

as described in Chapter 5. 

 

8.2.3 Protein-protein interaction networks 

As described in Chapter 7, the analysis framework is designed to compare schizophrenia 

and rodent tissue on a functional level, based on the annotation of GO terms to the protein 

abundance changes described earlier. In order for these terms to represent the biophysical 

interactions which occur between sets of proteins(575), PPI networks for schizophrenia and 

the aPCP, cPCP, ketamine and NR1 knockdown rodent models are created using the 

software package Cytoscape v3.2.1(523). Each network is represented as a graph where 

the nodes are proteins and the edges are interactions between proteins.  
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Networks are constructed by retrieving all available known PPI information for proteins with 

significantly changed abundances following multiple testing or permutations as described in 

8.2.2, and their first-order protein interactors, from the databases MINT(350), IntAct(349) 

and UniProt(351). Filtering is applied to both the node and edge lists for all four networks. 

Nodes are filtered by taxonomy identifiers (9606 for Homo sapiens in the schizophrenia 

network, in addition to 10116 and 10090 for Rattus norvegicus and Mus musculus 

respectively in the rodent networks), while edges are filtered to exclude all connections other 

than direct interactions or physical associations between proteins. All unconnected subsets 

of nodes are removed from the network. The structures of each network are assessed using 

three common properties of complex networks, average degree, characteristic path length 

and density, as defined in Chapter 7.  

 
8.2.3.1. GO term enrichment 

The ClueGO(352) Cytoscape package is used to compute GO term enrichment on each PPI 

network. Settings and filtering methods are applied as described in Chapter 7. The statistical 

significance of each GO term is computed using a two-sided hypergeometric distribution, 

determining whether GO terms occur at a frequency greater than would be expected by 

each term. The significance of each term is adjusted for FDR using the Benjamini Hochberg 

correction with a cut-off of 0.05. 

 

8.2.3.2. Kappa score grouping 

The list of terms for each network are functionally grouped based on shared underlying 

proteins using a kappa score of 0.7(576). The kappa score metric reflects the degree of the 

relationship between two GO terms. A score of 0.7 or higher requires abundant shared 

proteins(352,526), ensuring that the groups are likely to be biologically similar. Functional 

groups which did not contain at least two GO terms are excluded from the analysis. Groups 

are named according to the most significant (q-value <= 0.05) GO term. 

 

8.2.3.3. Local linear embedding kernel group augmentation 

A LLE kernel is applied to enhance the biological interpretation and comparability of each 

functional group by augmenting them with closely related GO terms as previously outlined in 

Chapter 7. Manifold embedding techniques classify data points in particular categories and 

are commonly used in bioinformatics. The kernel applied here computes similarity scores 

based on a geometric interpretation of manifold embedding interpreting every GO term as a 
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point on a virtual two-dimensional GO tree. The LLE kernel is selected because it 

emphasizes short-range interactions between GO terms(530) and thus is typically used to 

group related proteins or genes(527–529). Every given GO term in a functional group is 

analysed for positive similarity values to other GO terms due to relative closeness on the GO 

tree. The LLE kernel group augmentation is based on the concept that the functional 

annotations added by this approach are highly likely to be related to biological functions 

already conveyed by that group (and closely related to the underlying PPIs). Therefore this 

procedure results in more informative function groups of highly interconnected GO terms. 

 

8.2.4 Functional comparison between schizophrenia and 
rodent models 

The enhanced groups of GO terms are used as the basis for a functional comparison 

between schizophrenia and the four rodent models. The percentage overlap of terms in 

terms of Z score is computed between each of the schizophrenia groups and the rodent 

model groups. Hierarchical clustering using Ward’s criterion is employed to identify related 

clusters of groups for both schizophrenia and each model, enabling the identification of 

different functional domains in the disease represented across all four models, where each 

domain is a vector of GO terms. The subsets of GO terms behind each domain which are 

completely unique to that domain are then identified, thus defining the biological functionality 

more precisely. 

 

8.2.5 Domain comparison using GO term similarity 

For each unique functional domain of human schizophrenia represented across the four 

rodent models, a numerical quantification is obtained for which model represented the 

human domain most closely, by adapting an existing approach used in genetic 

research(532,533). A similarity score is computed between rodent and human domains by 

first evaluating the pairwise similarity scores between individual GO terms in the domain 

vectors using the LLE kernel, and then obtaining the average of the best matching GO term 

similarity between the domains. The rodent and human domains are more similar, the closer 

the similarity scores are to 1. 
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8.3 Results 

8.3.1 Behavioural characteristics of rodent models 

For both acute and chronic models, PCP doses are found to induce the expected 

abnormalities of hyperlocomotion, increased stereotypic behaviour and impaired attention 

and social interaction as reported previously(577,578). Ketamine doses induce 

hyperlocomotion, stereotypy, impaired information processing with abnormalities in cognitive 

function, and impaired social interaction, behavioural characterizations which has been 

described in previous acute ketamine models(567,579). NR1-knockdown mice display both 

hyperlocomotion and increased stereotypic behaviour in addition to impairments in cognition 

and escape behaviours as found previously(580).    

 
8.3.2 Protein abundance changes for brain tissue comparisons 

A total of 1280 quantifiable proteins are measured across all schizophrenia brain samples, 

643 across all aPCP samples, 873 across all cPCP samples, 772 across all Ketamine 

samples and 409 across all NR1 knockdown samples. Figure 8.2 summarizes the overlap in 

proteins measured between these groups. It is found that 159 proteins were differentially 

expressed in schizophrenia tissue compared to controls. For the rodent models, 47 proteins 

were found to be differently expressed in the aPCP-control comparison, 84 in the cPCP-

control comparison, 93 in the Ketamine-control comparison and 80 in the NR1 knockdown-

control comparison. Appendix tables A.8.1-A.8.5 display these differentially expressed 

proteins and their fold changes. Appendix A.8.6 displays the 162 proteins which were 

quantified across all schizophrenia and rodent model tissue samples, as indicated in Figure 

8.2. 
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Figure 8.2 Overlaps in quantifiable proteins detected in schizophrenia, aPCP, cPCP, Ketamine and 
NR1-Knockdown brain tissue. 

 

8.3.3 PPI networks and GO term enrichment analysis 

PPI networks are created for schizophrenia and all four rodent models using PPI information 

from the UniProt, MINT and IntAct protein databases between the significant proteins 

identified in 8.3.2, and their respective first-order interactors. The significantly changed 

abundances of these proteins is determined through multiple hypotheses testing (human 

samples) or permutation testing (rodent samples).  All rodent model PPI networks, as well as 

the schizophrenia PPI network are characterised using several structural properties of 

complex networks - average degree, characteristic path length and density as summarized 

in Table 8.1. The structural properties of average degree and characteristic path length are 

most closely related between the schizophrenia and Ketamine networks. However, as 
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Condition/Model N n (% of N) Number of nodes Number of edges Average degree Characteristic path length Density

SCZ 159 115 (72%) 2163 3297 2.698 4.162 0.001

aPCP 48 29 (62%) 150 203 2.493 3.772 0.017

cPCP 85 59 (69%) 351 507 2.741 3.3 0.008

Ketamine 94 54 (57%) 189 271 2.698 4.278 0.014

NR1-knockdown 81 52 (64%) 349 537 2.951 3.368 0.008

addressed previously in Chapter 7 the biological conclusions which can be drawn from 

direct comparisons between structural properties of networks are inherently limited, and the 

subsequent functional comparison based on gene ontology annotations is most informative. 

Table 8.1 Structural properties of protein-protein interactionnetworks. Abbreviations: SCZ, 
schizophrenia; aPCP, acute phencycline; cPCP, chronic phencycline; N = number of significant 
proteins, n = number of significant proteins included in the network. 

 

 

 

Functional enrichment analysis of the networks, and grouping of the resulting terms 

according to a Kappa score of 0.7, yields 222 schizophrenia functional groups, 63 aPCP 

groups, 128 cPCP groups, 117 Ketamine groups and 119 NR1-knockdown groups, with 

each group corresponding to a specific biological process.  Table 8.2 displays the top 5 

functional groups for schizophrenia and each rodent model, in order of significance.   
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Condition/Model N Top five group names No of GO terms Group p-value
No of significant proteins

per group

SCZ 2163 Regulation of phosphorus metabolic process
Phosphorylation
Protein phosphorylation
Cellular protein metabolic process
Intracellular signal transduction

14
12
4
4
3

4.7 E-115
6.4 E-92
1.1 E-70
6.2 E-68
2.1 E-67

24
23
38
40
30

aPCP 150 Cellular component assembly
Transport
Regulation of cellular metabolic process
Negative regulation of biological process
Regulation of signalling

3
3

23
2
4

1.2 E-16
4.0 E-15
4.2 E-15
5.3 E-14
6.4 E-14        

6
14
14
7
4

cPCP 351 Phosphorus metabolic process
Organic substance catabolic process
Single-organism catabolic process
Transport
Cell projection organization 

2
3

23
2

15

1.6 E-40
2.4 E-40
3.2 E-40
2.2 E-32
1.7 E-25

31
30
31
33
21

Ketamine 189 Transport
Regulation of localization
Cell communication
Cell-cell signalling
Regulation of cell communication

2
2
2
2
4

1.4 E-26
2.3 E-20
2.7 E-19
5.1 E-19
5.2 E-19

20
10
22
6

13 
NR1-knockdown 349 Phosphorus metabolic process

Transport
Establishment of localization in cell
Cellular component assembly
Regulation of transport

2
2
9
3
2

3.5 E-34
1.3 E-31
3.4 E-23
1.7 E-22
6.0 E-22

28
21
14
15
13

Table 8.2 Top 5 functional groups for each protein-protein interaction network. Abbreviations: 
SCZ, schizophrenia; aPCP, acute phencycline; cPCP, chronic phencycline; N = number of nodes in 
the network. 

 

8.3.4 Identification of corresponding functional domains 
between schizophrenia and rodent models 

Following the enhancement of these functional groups by kernel techniques, the percentage 

overlap is computed between schizophrenia and rodent model groups. It is found that groups 

which cluster together and overlap are involved in closely related biological processes, 

resulting in the identification of five functional domains of the disease – “development and 

differentiation”, “intracellular signalling and regulation”, “intracellular transport and 

organization”, “biosynthetic processes and energy metabolism”, and “nucleic acid 

metabolism and ATP/GTPase activity” - which are represented across all four models. These 

domains are shown in Figure 8.3. 
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Figure 8.3 Identification of five functional domains of human schizophrenia represented across all four rodent models. 
Vertical axes on the right side represent rodent functional groups. Hierarchical clustering using Ward’s criterion was 
used on both vertical and horizontal axes to identify related clusters of groups for both schizophrenia and each 
model. (A) Acute PCP (B) Ketamine (C) NR1-Knockdown (D) Chronic PCP 
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Functional Domain aPCP cPCP Ketamine NR1-knockdown

Development and differentiation 0.398 0.561 0.405 0.445

Intracellular signalling and regulation 0.365 0.385 0.454 0.396

Intracellular transport and organization 0.639 0.688 0.644 0.496

Biosynthetic processes and energy metabolism 0.582 0.61 0.573 0.554

Nucleic acid metabolism and ATP/GTPase activity 0.68 0.681 0.648 0.658

8.3.5 Identification of most representative rodent model via 
similarity based methods  

Similarity-based methods are used to compare the vectors of GO terms for each domain, 

making it possible to quantify the model that is most representative of schizophrenia through 

similarity scores as shown in Table 8.3.   

 
Table 8.3 Domain comparison to schizophrenia based on scores computed using gene ontology 
term similarity. Abbreviations: SCZ, schizophrenia; aPCP, acute phencycline; cPCP, chronic 
phencycline; N = number of nodes in the network. 

 

These scores indicate that overall the cPCP model represents schizophrenia the most 

closely for the four functional domains, “development and differentiation”, “intracellular 

transport and organization”, “biosynthetic processes and energy metabolism”, and “nucleic 

acid metabolism and ATP/GTPase activity,” more than the other three models. The 

Ketamine model represents “intracellular signalling and regulation” most closely, although 

the similarity scores between models and the disease were generally not so close for this 

domain (less than 0.5). 
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8.4 Discussion 

Our current understanding of the underlying molecular pathology associated with 

schizophrenia is limited. Post-mortem studies and animal models of the disease can provide 

new insights into the patterns of alterations at the genetic and protein level which play a role 

in the neuropathology of schizophrenia(510,581,582). However, so far it has proven hard to 

quantify the molecular similarity of the models with the human disease pathology(507). 

These characterization issues have meant that progress has been limited in developing new 

pharmacotherapies from animal studies(583). As a consequence, few new chemical entities 

have reached the clinic over the last decades.   

In this chapter, the methodology developed in Chapter 7 is applied to conduct a non-

hypothesis driven integration of proteomic data on the systems biology level enabling the 

direct comparison of brain changes from four rodent models of schizophrenia with those 

observed in schizophrenia post-mortem brains. Previous approaches have tried to establish 

various phenotypic similarities between animal models and schizophrenia through construct, 

face and predictive validity, assessments predominantly based on behavioural paradigms 

often supplemented with histological or electrophysiological investigations(507). However, 

these approaches have struggled to establish a particular model as the ‘best for use’ for a 

particular aspect of the disease because assessing similarities between animal behaviour 

and schizophrenia patient characteristics is typically vague, leading to difficulties regarding 

bias and irreproducibility(584). In addition, demonstrating that molecular changes in 

schizophrenia blood serum or plasma alone are equivalent to that of a relevant animal model 

has proven to be challenging(272).      

Collectively, the application of this systems-based methodology in this study enables the 

identification of functional aspects identified in schizophrenia post-mortem brain tissue which 

are represented across all four animal models – intracellular signalling and regulation, 

development and differentiation, intracellular transport and localization, biosynthetic 

processes and energy metabolism, nucleic acid metabolism and ATP/GTPase activity. The 

described approach revealed that the latter four functional domains are represented most 

closely by the cPCP model. Blocking the NMDAR through PCP treatment has been 

previously associated with neurodegenerative pathologies in both humans and animal 

models(585), but while acute NMDA antagonist treatment has mainly been linked to 

disinhibition of the cortical transmitters glutamate, dopamine and serotonin (5-HT)(586,587), 

chronic NMDA antagonist administration is associated with more complex molecular and 

behavioural adaptations, leading to a more defined cognitive deficit profile(588,589). This 

could explain why the cPCP model outperforms the ketamine and aPCP models across most 
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categories. Reduced rates of oxygen uptake into mitochondria isolated from brain tissue 

have been observed in previous PCP rat studies, hence it is not unexpected that chronic 

PCP treatment represented impairments in energy metabolism, a common trait of psychiatric 

diseases(590–592). It is interesting to note that despite precautions of introducing a species-

specific bias (e.g. joint rodent protein database, one shared functional annotation pool), the 

NR1 knockdown mice show the lowest similarity scores across the domains. Although all 

rodent models investigated in this study support the theory of a dysfunctional 

hypoglutamatergic frontal cortex state in schizophrenia post mortem brains(593), it is 

possible that compensatory developmental mechanisms following a single gene knockdown 

are more likely to influence and potentially dilute a functional cross-species similarity, than 

the molecular reaction of the frontal cortex to NMDAR antagonist exposure in adult animals. 

As an example of these compensatory mechanisms, recent research has indicated that 

while NR1 is a key mediator of cortical ErbB4 signalling, it is not the sole transmitter(594). 

The ErbB4 pathway integrates input from multiple ligands, and evidence suggests that when 

NR1 signalling is impaired, NR2 can partially compensate for this state in the brain. 

Concurrently, it has recently been shown in preclinical studies that a cortical loss of NR1 

results in an increase in the expression and sensitivity of postsynaptic GABA receptors on 

pyramidal neurons(594). In addition, the results of this study could reflect the fact that the 

NR1 knockdown model may not necessarily model a schizophrenia-like state, as while 

human risk haplotypes for schizophrenia map to non-coding regions of the NR1 gene, in 

practise the NR1 knockdown may therefore not reflect a comparable expression/proteome 

level effect to the identified human risk SNPs(595). Finally, while it is thought that an optimal 

level of NR1 is required for the development and homeostasis of synaptic 

neurotransmission, and an imbalance in the inhibitory/excitatory ratio could result in the 

deficits in cortical synchronization observed in schizophrenia(596), evidence remains 

inconclusive as to whether diminished or enhanced NR1-mediated ErbB4 signalling is most 

likely to trigger psychosis-like phenotypes, with both increased and decreased expression 

levels being found in schizophrenia human post-mortem tissue(597,598). 

While the five functional domains identified in this study are not specific to schizophrenia, 

previous research papers have identified impairments in each of these processes in the 

context of the disorder(554,591). One of the advantages of this methodology is that being 

able to identify which model most closely recapitulates different functional characteristics of 

the disease, could result in more informed future preclinical studies, targeting those 

particular models as a means of yielding new insights regarding the molecular basis of these 

abnormalities.   
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The current consensus regarding animal models of psychiatric disorders is that no single 

model can completely recapitulate the full complexity of human conditions(599). As an 

example, auditory electrophysiological abnormalities recorded in studies involving the NR1 

knockdown model are thought to more closely resemble those seen in autism than 

schizophrenia(600). Conversely, this model is a good proxy for behavioural phenotypes 

which invoke some of the negative symptoms of schizophrenia such as impairments in 

spatial cognitive performance(580) and reduced social interaction. Hence, it is felt that future 

models of schizophrenia should be focused on behavioural endophenotypes and more 

importantly molecular alterations, as more understanding is gained of the genetic and 

neurodevelopmental causes(271,601). In particular given the failures of current medications 

in treatment of negative and cognitive symptoms of schizophrenia, preclinical models for 

different symptom clusters are likely to play an increasingly important role in new 

pharmacological approaches(427,602–604). It is felt that proteomic analysis has advantages 

over a genomic/transcriptomic based approach, as this provides a greater indication of the 

functional alterations within tissue(538). Additionally, while the heritability of schizophrenia 

has been approximated as being between 50% and 90% beased on twin studies, the genetic 

landscape may not be the best framework for comparison as schizophrenia appears to be a 

polygenic disorder with disease phenotypes arising through the accumulation of multiple 

small risk genes(502,605,606). 

Our results provide evidence that different models can represent functional aspects of 

schizophrenia more closely than others. This analysis is the first to directly compare multiple 

animal models to schizophrenia on a functional level, with the findings supporting the notion 

that a variety of available models, each reflecting different pathological molecular hallmarks 

of schizophrenia could be important for insights into the molecular and cellular basis of 

behavioural abnormalities relevant to schizophrenia, as well as testing their responsiveness 

to existing and upcoming medication. This need will become increasingly important to reach 

a broader understanding of the ramifications of a given genetic, environmental or 

pharmacological manipulation in the context of psychotic spectrum disorders. 
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Chapter 9 Final discussion 
In summary, this thesis uses proteomic profiling of serum and brain samples to: (a) 

investigate new diagnostic strategies for schizophrenia (Chapters 3 and 4), (b) examine 

data from a novel cellular model of schizophrenia, thus identifying new potential targets in 

the CNS and quantifying the potential of various compounds for future clinical trials 

(Chapters 5 and 6), and (c) develop a novel methodology for conducting a functional 

comparison between post-mortem tissue and various animal models of schizophrenia, 

offering the potential for more clinically informative preclinical rodent studies (Chapters 7 

and 8). Central to this work has been the application and integration of relevant bioinformatic 

strategies for tackling these diverse problems, and adapting to the various forms of 

proteomic data generated by the experimental methodologies summarized in Chapter 2.  

To conclude this thesis, the main findings for each of the three above mentioned sub-

sections are summarized, and conclusions are drawn about their significance to the field of 

schizophrenia research. Subsequently limitations are discussed, along with potential future 

studies which may yield further insights.  

 

9.1 Classifying and predicting schizophrenia through 
serum profiling 

9.1.1 Summary of findings 

As described in Chapter 1, there is a need for alternative diagnostic strategies to improve 

and complement the existing clinical interview based diagnostic approaches for 

schizophrenia. Previous attempts to develop serum based diagnostic and prognostic tests 

for the disorder, through identifying statistical models based on panels of protein biomarkers, 

have proven too costly for clinical utility and been hindered by various limitations in study 

design eg: lack of validation cohorts, and flaws in statistical methodology, as summarized in 

Chapter 1.  

Chapters 3 and 4 present two different proteomic approaches to try and identify a panel of 

serum analytes which can diagnose schizophrenia and predict the onset of the disease. In 

Chapter 3 a multiplex immunoassay platform is used to measure the concentration levels of 

a range of proteins across hormonal, inflammatory and metabolic pathways. In Chapter 4, 

targeted mass spectrometry is used to measure the abundances of a panel of peptides 

which have previously been linked to psychiatric disorders, many of which are not typically 

measured in standard commercially available assays. In both studies, multiple statistical 
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models are trained using a variety of methods, including machine learning and Bayesian 

methodologies, to assess which method is most applicable to the data, and thus best suited 

to solving this problem. Validation cohorts of antipsychotic naive schizophrenia patients and 

controls are included in the study designs, in addition to independent application cohorts to 

assess model performance at classifying antipsychotic treated patients from controls. Both 

studies have two cohorts of pre-onset individuals to assess whether the models can predict 

disease conversion in pre-symptomatic individuals, and whether they can predict psychosis 

conversion in a group of prodromal subjects. In each study, classification performance is 

computed on the full training dataset before different variable selection methods are used to 

identify important subsets of analytes in the data. Each statistical method is used to train 

new models on these subsets of analytes to answer the practical question of whether 

sufficient classification performance for clinical utility can be achieved with a smaller, and 

cheaper set of analytes. 

The study presented in Chapter 3 identifies an SVM model based on the concentrations of 

66 proteins which is the only model to have high sensitivity, specificity and at least a “good” 

performance (AUC: 0.88) at classifying antipsychotic naive patients from controls in an 

independent validation cohort. However this model only serves diagnostic, rather than 

prognostic value, as it produces a “poor” performance when classifying pre-symptomatic 

individuals who are later diagnosed with schizophrenia from healthy controls, and fails at 

classifying psychosis converters from non converters. In addition, it would likely not be 

suitable for clinical use as it requires too many proteins to be financially viable. While 

different models based on smaller sets of proteins identified through variable selection, 

achieve a “good” AUC on the validation cohort, they lack sufficient sensitivity and specificity 

to be clinically viable. 

The work presented in Chapter 4 finds an SVM model based on the abundances of 21 

peptides which is the only model in this study to classify antipsychotic naive patients from 

controls in both the training data and a validation cohort, with at least a “good” performance 

(AUC: 0.87-0.92) and high sensitivity and specificity. In addition, most notably, this same 

model can classify converters from non converters with an AUC of 0.88, and high sensitivity 

and specificity, thus illustrating its potential value as a diagnostic and prognostic test in 

individuals who are symptomatic. The model, however fails at classifying individuals who 

were pre-symptomatic at the time of sample collection, and later (over a period of months or 

years) reach a diagnosis of schizophrenia. None of the models based on smaller sets of 

peptides, as identified through variable selection, achieve the same combination of high 

diagnostic and prognostic performance. However an SVM model based on the abundances 

of 7 peptides, achieves a comparable performance on the training data and validation 
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cohort, in terms of AUC, sensitivity and specificity, to the model with 21 peptides. Similarly, a 

Bayesian LASSO model based on the abundances of 3 peptides achieves a slightly better 

performance on the cohort of converters and non converters. As such, these models could 

represent a more cost-effective alternative worthy of further validation, as purely diagnostic 

and prognostic tests respectively.            

Both Chapter 3 and Chapter 4 indicate the confounding effect that antipsychotic treatment 

appears to have on how well a test classifies patients from controls. In Chapter 3, the SVM 

model based on the concentrations of 66 proteins achieves AUCs ranging from 0.56-0.87 

across three of these application cohorts, and in Chapter 4, the SVM model based on 21 

peptide abundances performs only poorly (AUC: 0.63) on an application cohort of treated 

patients and controls. 

 

9.1.2 Significance of findings 

The studies in Chapters 3 and 4 represent the most rigorous attempts to date, both in terms 

of methodology and design, to identify a statistical model based on serum protein 

biomarkers which can act as a diagnostic and prognostic tool for schizophrenia. This is 

important as reviews which have attempted to understand why so few biomarkers have been 

converted into clinical tests for schizophrenia, have criticised a lack of rigour in statistical 

model application, and lack of validation in the findings of previous studies(607). The studies 

presented in these chapters attempt to overcome some of the limitations in previous 

research by robustly applying a range of statistical methods to quantify which is the most 

applicable to this particular problem, and conducting the largest studies of this nature in 

terms of sample size. Chapter 3 measures serum protein concentrations across 1165 

samples, while Chapter 4 measures peptide abundances across 676 samples.  

The ability of the SVM model based on 21 peptide abundances (Chapter 4)to classify both 

antipsychotic naive patients from controls and psychosis converters from non converters, 

with high AUC, sensitivity and specificity is the most notable finding from these studies. From 

a prognostic perspective, this result is particularly relevant because previous attempts to 

identify such a panel have proven inadequate, as described in Chapter 1 and Chapter 4. 

Previous reviews have stipulated that if a disease trace could be detected in the serum at an 

early stage, it could result in better patient outcomes. The current debates surrounding the 

prodromal phase of schizophrenia arise from the lack of diagnostic tools which can 

accurately identify the 20-30% of individuals who go on to develop the disorder over a two to 

three year period(608). Studies have stipulated that this area of unknown results in issues 

regarding stigmatization, and the potential for inappropriate treatment(608,609). Market 
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analysis has suggested that a blood test which possesses prognostic abilities to predict 

conversion in pre-onset individuals, and could thus be used in conjunction with the current 

structured clinical interviews, would be highly valued by psychiatrists(610).  

From a diagnostic perspective, the SVM model based on these 21 peptides is more 

advantageous than the SVM model based on 66 proteins identified in Chapter 3, firstly 

because it is more sensitive and specific on an independent cohort, and secondly because it 

requires the measurement of fewer analytes. The SVM model based on 66 proteins would 

likely not be clinically viable as one of the reasons that a previous biomarker test for 

schizophrenia (measuring 51 proteins), was withdrawn, was because it was too 

expensive(152). In addition, the SVM model based on 21 peptides would be more practical 

because targeted mass spectrometry is more cost effective than immunoassays and 

requires less sample volume(283). As such, the comparative results between Chapters 3 

and 4 suggest that targeted mass spectrometry is a preferable method for future studies 

seeking to identify prognostic and diagnostic biomarker panels for psychiatric disorders. 

While immunoassay platforms are limited to commercially available assays, mass 

spectrometry provides the option of targeting analytes linked to these disorders such as 

VTNC and RET4 for which assays are not readily available. 

In both chapters, SVM is the statistical method which comes closest to providing an optimal 

solution. SVM has been widely utilized to identify diagnostic and prognostic biomarker 

panels in other areas of medicine such as cancer research, and SVM classifiers are felt to 

have good generalizability, aiding the reliability of performance on independent cohorts(611). 

The other methods explored in these chapters identified models which produced sufficient 

performance in terms of the AUC, but did not have sufficient sensitivity and/or specificity. 

Previous reviews have stipulated that it is important for biomarker tests for schizophrenia to 

be both highly sensitive and specific, as described in Chapter 1, hence models which did not 

achieve at least 80% sensitivity and specificity were not considered. The performance of the 

SVM model with 21 peptides (Chapter 4) compares well with previously published proteomic 

biomarker studies for schizophrenia. It has higher sensitivity and specificity in classifying 

antipsychotic naive patients from controls, than the 51-biomarker assay which was briefly 

implemented as a clinical diagnostic for the disorder(132). In addition, the model’s 

performance seems to compare favourably with the results of other diagnostic solutions 

being explored for schizophrenia. It appears to be more sensitive than a recently discovered 

panel of metabolomic biomarkers which reported a sensitivity and specificity of 82% and 

89% in classifying patients from controls, while imaging techniques such as MRI, PET and 

single-photon emission computerized tomography have yet to achieve sufficient sensitivity 

and specificity for clinical use(612). In terms of understanding the pathophysiology of 
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schizophrenia, the 21 peptides provide novel information as the performance of the SVM 

model in classifying converters from non converters suggests they may be implicated in the 

development of psychosis during the prodromal phase. Most have been previously linked to 

schizophrenia through either GWAS or proteomic studies(25,34,355,391,392,395,398,613). 

The finding that this model fails at classification on the prediction cohort of pre-symptomatic 

individuals is notable in terms of connecting symptomatology to disease pathophysiology. It 

indicates that the abundances of these 21 peptides can only be used to classify individuals 

before disease onset, who are already displaying initial symptoms and signs of altered global 

functioning.    

The studies presented in Chapters 3 and 4 are also unique as they use different variable 

selection methods, based on the different statistical techniques, to prune the model space 

from the original set of analytes in the training data, and obtain several sets of what are 

deemed to be the most important proteins/peptides. While an alternative approach to this 

problem could be to utilize the variable importance scores or inclusion proportions computed 

in tree-based models such as Random Forest and BART, and rank the proteins/peptides 

before iteratively fitting models to the top 2 analytes, top 3 analytes etc and computing 

performance, such an approach would not be applicable to methods such as SVM or 

Bayesian LASSO. The findings of the model analysis on reduced sets of analytes in Chapter 

4 yields a couple of potential alternative solutions worthy of further investigation. In 

particular, the Bayesian LASSO model based on just 3 peptides could represent a financially 

viable prognostic test if it is found to validate on further prodromal cohorts of psychosis 

converters and non converters. In addition, Bayesian models offer useful practical 

advantages from a clinician’s perspective as through the posterior distribution they can 

provide a credible interval for classification performance which may be more informative than 

just a point prediction(187).   

 

9.1.3 Limitations 

While the performance of the SVM model of 21 peptides, identified in Chapter 4, is a notable 

finding, there are not sufficient independent cohorts in this study to truly assess whether it 

may have value as a diagnostic and prognostic test in the wider disease population. 

However, as has been already stated, such cohorts, especially those of prodromal 

individuals, are difficult to obtain and the studies presented in Chapter 3 and Chapter 4 are 

larger than any other diagnostic study thus far for schizophrenia.  

An inherent limitation of this work in the field of psychiatric disorders is the fact that it is 

difficult to get a training dataset which is large enough to gain an accurate representation of 
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the relative levels of these analytes between “disease” and “control” groups on a global level. 

As such, the size of the training datasets in Chapter 3 and Chapter 4 with 127 patients and 

60 patients respectively, are unlikely to be sufficient. Likewise, it may be that a much wider 

range of analytes needs to be measured in order to identify a set of biomarkers truly 

fundamental to the pathophysiology of schizophrenia both throughout the prodromal phase 

and after disease onset. However, due to the relative paucity of research studies which have 

explored the potential of serum biomarkers as a diagnostic and prognostic tool for 

schizophrenia, these results can be seen as exploratory, pointing towards further investment 

in larger studies. 

One of the technical limitations of the study presented in Chapter 3 is that while up to 225 

protein concentrations are measured by the multiplex immunoassay platform, only 66 

proteins are measured across all 11 cohorts, and are able to be incorporated in the study. 

This is because in every cohort, a certain proportion of the proteins are excluded as part of 

pre-processing due to missing values. 

Another limitation is the lack of information regarding details of antipsychotic medication for 

the application cohorts in Chapter 3. This limits the conclusions which can be drawn on why 

classification performance varies between these cohorts. Finally, while the demographic 

variables age and gender were incorporated as predictor variables where possible in 

Chapters 3 and 4, it was not possible to include other demographic variables such as body 

mass index(614) and cannabis consumption(615) which have been previously linked to 

schizophrenia and could be important predictors in conjunction with protein biomarkers, as 

they were either not recorded or only partially recorded during sample collection. Similarly, 

other demographic variables which were not considered included smoking, the use of 

contraceptives and menstrual cycle phase. These factors are known to potentially influence 

the levels of proteins involved in hormonal and metabolic pathways known to be 

dysregulated in at least a subset of schizophrenia patients(12). Future study designs should 

aim to account for these factors.    

 

9.1.4 Future work 

To further investigate the true predictive performance of the SVM model with 21 peptides (as 

a diagnostic and prognostic test), the SVM model with 7 peptides (as a diagnostic test), and 

the Bayesian LASSO model with 3 peptides (as prognostic test), it would be necessary to 

validate these models on further independent cohorts from different clinical centres. In 

particular, it would be necessary to investigate whether the prognostic tests still perform well 

when classifying converters at different stages of the prodromal phase. 
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Moreover, it may also be of interest to further investigate the role of the 21 peptides, and 

their associated proteins, in the development of schizophrenia. Elucidating the nature of how 

these alterations in the periphery represent pathophysiological changes occurring in the 

CNS during the prodromal phase of the disease may yield new insights regarding 

schizophrenia pathogenesis. 

In addition, it would be of interest to determine whether each of these models can act as a 

disease-specific differential diagnostic. Most notably, schizophrenia is commonly 

misdiagnosed as bipolar disorder (139), and there have been cases of misdiagnosis with 

MDD (616). In addition, there is a distinct overlap in clinical characteristics between 

schizophrenia and other disorders such as obsessive compulsive disorder (OCD) (617), and 

attention deficit hyperactivity disorder (ADHD) (618). 

The ability of the SVM model with 21 peptides, the SVM model with 7 peptides, or the 

Bayesian LASSO model with 3 peptides to act as differential diagnostic tests could be 

assessed by fitting them to independent cohorts of schizophrenia patients and bipolar 

disorder patients, as well as schizophrenia-MDD, schizophrenia-OCD, and schizophrenia-

ADHD cohorts, and assessing performance. If the model performance is not sufficiently good 

in these comparisons, then this indicates that these peptides are not disease-specific to 

schizophrenia. In this instance, it may be necessary to obtain separate individual tests for 

schizophrenia-bipolar, schizophrenia-MDD, schizophrenia-OCD and schizophrenia-ADHD by 

training and testing new models on a range of cohorts for each of these comparisons, using 

a different panel of peptides that are thought to be uniquely implicated in schizophrenia 

pathophysiology based on existing biomarker studies. This work would be worth undertaking 

as tests which could elucidate schizophrenia from these other disorders would be invaluable 

to clinicians.   

The results of Chapter 3 and Chapter 4 indicate that a separate proteomic test would likely 

be required to accurately classify recent-onset antipsychotic treated patients from controls. 

Such a test may be clinically useful in instances where individuals have been pre-treated 

with antipsychotics during the prodromal phase. This study would involve training models on 

a cohort of recent-onset antipsychotic treated patients and controls, and then testing each 

model on independent cohorts of patients treated with either first generation or second 

generation antipsychotics or a mixture of both, to assess robustness across different forms 

of treatment. It could be useful if such a study design included independent cohorts of 

bipolar disorder and MDD patients treated with medication, to assess whether a proposed 

test could classify treated schizophrenia patients from treated patients with other psychiatric 

disorders.        
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Finally, it is hoped that proteomic biomarker tests may eventually be able to elucidate 

different subgroups from within the schizophrenia population, based on different 

pathophysiological mechanisms, such as those outlined in Chapter 1. If training and test 

datasets of sufficient sample size could be accrued, measuring a wide range of molecular 

pathways, then it would potentially be possible to conduct an exploratory study separating 

patients into different subgroups using clustering analysis, based on the levels of different 

proteins.    

 

9.2 Investigating disturbances in microglial signalling 
through analyzing data from a novel cellular model of 
schizophrenia  

9.2.1 Summary of findings 

Despite the many hypotheses regarding the role of dysfunctional microglial activation in the 

etiology and pathophysiology of schizophrenia, the empirical evidence to suggest that 

microglial abnormalities may influence the course of the disease largely emanates from PET 

imaging data, which has yielded inconsistent findings, and post mortem studies. Chapters 

5and6 present analyses of data obtained from the first in vitro studies which attempt to 

characterize the intracellular mechanisms underpinning microglial activation in response to 

serum exposure from first-onset antipsychotic naive schizophrenia patients (Chapter 5) and 

recent-onset antipsychotic treated schizophrenia patients (Chapter 6). The cellular data in 

the latter study is analyzed in conjunction with PET readouts. 

The two studies identify different cellular mechanisms of aberrant microglial activation, both 

pointing towards a pro-inflammatory state, classically regarded as M1 polarization. The 

findings in Chapter 5 suggest that in antipsychotic naive schizophrenia patients this 

phenotype is primarily associated with increased activation of the Akt/mTORC1 pathway. 

Differential expression levels of the epitopes 4EBP1 (pT36/pT45), 4EBP1 (pT69) and elF4E 

(pS209) appear to be a key factor in these signalling alterations. Concurrently, activation of 

the JAK/STAT pathway, as observed through increased expression levels of the stat3 

(pY705), Stat3 and SHP2 (pY542) epitopes, may interact with impaired Akt/mTORC1 

signalling, to switch microglia from a resting state to an activated pro-inflammatory 

phenotype. Serum profiling changes indicate that these signalling alterations may be 

induced by circulating serum factors including increased levels of members of the 

complement cascade, as well as reduced levels of apolipoproteins which have previously 

been associated with neuroprotective mechanisms in microglia. Screening of the known 
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microglial activation inhibitor, rapamycin, significantly reduces the expression of all epitopes 

apart from SHP2 (pY542), suggesting it may have the potential to impart a normalizing effect 

across the Akt/mTORC1 and JAK/STAT pathways, down-regulating epitope expression to 

the levels seen in the healthy state. The antibiotic minocycline displays a more selective 

profile, only significantly reducing the expression of stat3 (pY705). 

In Chapter 6, the results of PET imaging data implies increased microglial activation 

associated with neuroinflammation in the temporal regions of recent-onset antipsychotic 

treated patients. This increased activation is found to be associated with increased symptom 

severity. Concurrently, cell signalling data from microglial exposure to serum from these 

patients, identifies impairment in JAK/STAT pathway signalling through reductions in the 

expression of epitopes stat3 (pS727), stat4 (pY693), and SHP2 (pY542). Impaired 

JAK/STAT signalling appears to be linked to dysfunctional microglial activation in these 

patients, as reduction in stat3 (pS727) expression is significantly correlated with the 

increased microglial activation seen in the PET data. Serum profiling changes identified by 

mass spectrometry suggest a pro-inflammatory state through increased abundances of 

haptoglobin, α-1 antitrypsin and Apolipoprotein E. There is evidence that increased 

expression of the latter in the brain exacerbates neuroinflammation(484). Meta analysis of 

two cohorts of recent-onset antipsychotic treated schizophrenia patients and controls 

provides further evidence as to impairment in JAK/STAT signalling in this patient population, 

and univariate analysis of the latter cohort suggests that reductions in the expression of p38 

(pT180/pY182) may also be involved. In a healthy state, increased expression of this epitope 

is involved in regulating microglial response to insult and injury and attenuating 

neuroinflammation before it has deleterious consequences in the CNS(488). 14 of the 24 

patients in these two cohorts are treated with olanzapine, a drug which has been previously 

shown to modulate JAK/STAT signalling and this study provides evidence that it, and other 

antipsychotics, may contribute to the signalling impairments observed in this particular study. 

When olanzapine and haloperidol are screened against the five epitopes identified as having 

altered expression in patients in either of the cohorts, they are found to significantly change 

expression levels across all of them in the same direction as in the disease state.    

 

9.2.2 Significance of findings 

The findings presented in Chapter 5 are the first in vitro evidence that circulating serum 

analytes can induce signalling changes in microglia which may represent a dysfunctional 

activation phenotype contributing to the pathogenesis of schizophrenia. They are particularly 

notable in the context of the fact that several of the serum proteins (e.g. apolipoproteins) 
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identified as being altered in patients through immunoassay and mass spectrometry 

profiling, have been associated with increased BBB permeability in subgroups of 

schizophrenia patients(619).  

In addition, this study provides the first direct experimental evidence of impaired 

Akt/mTORC1 signalling in a model of schizophrenia. While pathways such as Akt/mTOR and 

JAK/STAT may seem relatively generic, their implication in Chapters 5 and 6 in a cellular 

model of schizophrenia, created using a CNS cell population, is particularly notable. This is 

because disrupted Akt/mTORC1 signalling has been shown to result in abnormal 

neurodevelopment and deficient synaptic plasticity, and as such, it has been hypothesized 

as a potential causal factor in the neuropathology of schizophrenia(620). Prior to this study, 

the only evidence associating Akt/mTORC1 with schizophrenia came from studies reporting 

over-activation or inhibition of this pathway in response to environmental stressors or 

upstream activators linked to schizophrenia(620). Similarly, this is the first direct evidence 

linking Stat3 signalling to schizophrenia. Microglial Stat3 signalling has previously been 

identified in other neuropsychiatric disorders such as MDD(403), and given the link between 

impaired microglial activation and cognitive deficits in schizophrenia(403), it is plausible that 

Stat3 may be involved in the negative symptomatology of the disease. The identification of 

both Akt/mTORC1 activation and JAK/STAT activation through Stat3 is notable as rodent 

studies have previously suggested that Akt/mTORC1 can stimulate a proinflammatory 

response via Stat3(621). Taken together, the findings of this study suggest that the impact of 

peripheral alterations on the CNS may have more profound implications in the 

pathophysiology of schizophrenia than previously anticipated. As such, the epitopes 

identified in this study as being key to impaired Akt/mTORC1 and JAK/STAT pathway 

activation in first-onset schizophrenia patients may represent novel drug targets, providing 

potential for therapeutic intervention. The capability of rapamycin of normalizing the 

expression of all but one of these epitopes, suggests that the modification of microglial 

function, either by direct pharmacological inhibition or the normalization of circulating ligands 

with microglial activation propensity, represents a potentially novel strategy of reversing 

dysfunctional signalling patterns in the CNS at a relatively early stage. The more specific 

profile of minocycline, targeting stat3 (pY705), is also notable as studies have suggested it 

displays efficacy at improving negative symptomatology which is notoriously treatment-

resistant(468). 

The findings presented in Chapter 6 represent the first study to combine functional PET 

imaging information regarding microglia in schizophrenia, with cell signalling and serum 

proteomic data. It has been previously stipulated that PET studies should look to combine 

information regarding changes in microglia intracellular cascades to aid interpretation of the 
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results. The finding of increased microglial activation in the temporal region in recent-onset 

antipsychotic treated schizophrenia patients matches with the results of a previous PET 

study examining both treated patients and individuals in the prodromal phase of 

schizophrenia(401). It is notable that JAK/STAT signalling is once again implicated in 

dysfunctional microglial activation, and the changes in epitope expression suggests that this 

occurs through a different mechanism compared to first-onset antipsychotic naive patients. It 

appears possible that this mechanism is either induced or perpetuated by antipsychotic 

treatment, which corresponds to findings from previous preclinical and post-mortem studies 

implicating both typical antipsychotics and atypical antipsychotics such as olanzapine and 

clozapine in driving neuroinflammation. However to date the exact mechanisms by which 

this happens in the CNS remain poorly understood. The results of this study provide novel in 

vitro evidence for their mechanisms of action in microglia. 

 

9.2.3 Limitations 

To provide a reference point to previous work regarding microglial activation in 

schizophrenia, the conclusions of both Chapters 5 and 6 point towards the classical 

microglial polarization definitions of M1 and M2(407). However, as has been discussed in 

the recent scientific literature, these broad definitions are likely to be an oversimplification, 

and in reality microglia are likely to assume multiple intermediate phenotypes, for example 

M2a M2b, M2c and Mox12(406,409,622,623). However as of yet, the full spectrum of 

phenotypes and their individual definitions in terms of function, remains little understood. 

One of the limitations of the study in Chapter 6 it that it is not possible to conclude 

definitively whether the differences in the phenotype observed, compared to that of Chapter 

5, are a result of antipsychotic treatment or disease duration. As will be discussed in 9.2.4, 

the construction of future study designs could provide more information regarding these 

questions.  

From a statistical perspective, a limitation of both studies in Chapters 5 and 6 is the fact that 

a number of the significant findings do not survive correction for multiple testing. However, 

as the first in vitro studies to examine microglial activation in the context of schizophrenia, 

these should be viewed as exploratory analyses and the findings are intended as a starting 

point for future work (as discussed in 9.2.4) rather than definitive proof. In addition, both 

studies are statistically underpowered and hence it is not possible to draw firm conclusions, 

especially in light of the heterogeneity of schizophrenia. However the results demonstrate 

that these cellular models have the potential to shed new light on microglial disturbances in 

schizophrenia, particularly in conjunction with other experimental techniques such as PET 



196 
 

imaging and thus are worthy of future investigation with larger cohorts. The small cohort 

sizes in both studies reflects the difficulty and high cost of obtaining serum or imaging data 

from schizophrenia patients, a common limitation of psychiatric research. The size of the 

cohort used for the PET analysis in Chapter 6 is representative of typical cohorts in 

previously published PET research in schizophrenia(302,401,471,475). In addition, 

permutation testing was conducted for all univariate and multivariate analyses to ensure an 

accurate distribution of p-values. In future, once more studies have been conducted using 

these cellular models, meta analyses could be employed, for example across the results 

obtained on different populations of antipsychotic naive patients and controls. Meta analyses 

across studies may also yield more information from the existing PET studies of microglial 

activation in schizophrenia. One of the limitations of these studies is that they often fail to 

clearly define the patient population, which is crucial for comparison as microglia shift in 

morphology and function through the course of the disease, and with the effects of 

treatment(480). There may be substantial differences between individuals with prodromal 

schizophrenia to those with chronic schizophrenia who have been treated for many years. 

As observed in this thesis, the intracellular mechanisms in a cohort of first onset 

antipsychotic naive patients differ to a cohort of recent onset antipsychotic treated patients, 

hence meta analyses would need to be conducted between studies with similarly defined 

patient groups, for example first-onset antipsychotic naive patients. 

 

9.2.4 Future work 

As has been mentioned previously, microglial phenotypes are not static and continuously 

shift during the course of disease progression(480). Therefore, it could be of particular 

interest to use this cellular model to gather further data on microglial signalling alterations in 

response to serum collected at different points in the prodromal phase, in the five years 

following disease onset, and in chronic patients. Data collected early in the course of the 

disease may be of particular interest as recent studies suggest that many of the pathological 

changes attributed to microglial dysfunction, such as altered synaptic refinement, occur early 

in the course of schizophrenia, and only in a subset of patients(227,403,624). Therefore, 

from a perspective of developing new therapeutic strategies, it is of interest to identify the 

optimal time point for early intervention. If sufficient sample sizes could be accrued, it may 

be possible to use microglial pathology to characterize patient subgroups at different stages 

of the disease by using clustering techniques to identify groups of intracellular biomarkers.   

In particular, the results in Chapter 5 imply that more studies should be conducted to further 

characterize the process of Akt/mTORC1 pathway activation in microglia in relation to 
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schizophrenia, and the interaction with the JAK/STAT pathway. Given the identification of 

microglial Stat3 signalling as being impaired in multiple neuropsychiatric disorders, 

measurement of key epitopes in this pathway in response to circulating serum factors at 

critical neurodevelopmental phases could reveal new information regarding schizophrenia 

pathogenesis and in particular, the little understood negative and cognitive symptomatology. 

In addition, although many of the proteins reported in Chapter 5, such as complements and 

apolipoproteins, are consistent with previous reports of changes in circulating mediators of 

microglial function, further characterization is required to determine their relationship to the 

observed signalling changes in the Stat3 and mTORC1 pathways. Further to the results 

acquired in Chapter 6, study designs which examine changes in microglial phenotypes in 

the same patients before and after treatment, over the course of a longitudinal study, could 

reveal further information on the role of antipsychotics in altering microglial function and 

perhaps contributing to disease pathology.    

Furthermore, one of the limitations of the current experimental methodology is that only three 

epitopes can be measured at a time. Alternative experimental techniques such as mass 

cytometry could be used to enable the simultaneous measurement of as many as 50 

epitopes. This would allow the use of more complex statistical techniques such as Bayesian 

networks to make inferences regarding signalling links in key pathways such as 

Akt/mTORC1, JAK/STAT and MAPK. A similar methodology has been previously 

successfully applied to infer protein signalling networks in a breast cancer cell line(301). 

Finally, given the demonstrated ability of this model in providing a functional basis for 

understanding the cellular mechanisms of microglial specialization, it could in future be 

utilized to analyze serum responses to microglia obtained through reprogramming induced 

pluripotent stem cells (iPSCs) derived from schizophrenia patients and controls, thus offering 

the potential for patient-specific modelling of microglial dysfunction(199,625,626). 

 

9.3 Developmental and application of a methodology for 
the functional comparison of proteomic changes in rodent 
models to those in psychiatric disorders 
9.3.1 Summary of findings 

The current bottleneck in drug development for schizophrenia and other psychiatric 

disorders is thought to come down to a variety of factors including the cost and length of time 

required to discover novel compounds, a lack of suitable targets due to reasons such as the 

failure of many proteomic biomarkers to validate, and an inability to relate changes observed 
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in rodent models of these disorders to the human condition(504). While the development of 

cellular models in recent years, such as the model of microglial activation in schizophrenia 

analyzed in Chapters 5 and 6, have provided an alternative for some preclinical work, 

rodent models remain a vital part of the drug discovery pipeline as they allow for the study of 

genetic or environmental manipulations associated with a disorder in fully developed 

neuronal systems. However, there remains a considerable need for new strategies to 

improve their utility by quantifying how a particular model represents different 

pathophysiological characteristics of a psychiatric disorder(270). 

Chapters 7 and 8 present the development and application of a novel systems methodology 

to quantify the molecular similarity of protein alterations observed in these models with the 

human disease pathology. As outlined in Chapter 7, this methodology creates PPI networks 

from protein alterations between control and disease states in both human and animal 

tissue, thus leveraging the mass spectrometry-identified proteins as being representative of 

changes in signalling pathways by introducing validated molecular interaction partners. 

Subsequent GO enrichment enables a comparison on the functional level, separating 

identified GO terms into functional groups using the kappa score metric, based on the 

underlying proteins shared by overlapping terms. Hierarchical clustering was used to identify 

related constellations of GO term groups representing neuropathological domains which 

shared functional similarities between each model and the disease. Finally, kernel based 

machine learning methods were used to obtain a numerical quantification of how 

representative each model is of the disease for particular domains, by computing the 

pairwise similarity scores for the underlying vectors of GO terms based on their relative 

distance in the GO hyperspace. 

Subsequently this methodology was applied to compare proteomic changes in brain samples 

from three commonly used environmental stress models to those observed in MDD post-

mortem tissue (Chapter 7), and changes in four common glutamatergic models of 

schizophrenia to those observed in schizophrenia post-mortem tissue (Chapter 8). In 

Chapter 7, seven neuropathological domains associated with MDD and represented across 

at least two models were identified. Through statistical evaluation using kernel-based 

machine learning techniques, the social defeat model was found to represent MDD brain 

changes most closely for four of the seven domains. In Chapter 8, five neuropathological 

domains were identified in schizophrenia post-mortem brain tissue and represented across 

all four animal models. Of these domains, four were represented most closely by the cPCP 

model.    
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9.3.2 Significance of findings 

The methodology described is the first approach to enable a cross-species comparison of 

proteomic data from human and animal tissue on the functional level. This has the potential 

to aid scientific decision-making regarding which models of affective and psychotic spectrum 

conditions warrant further prioritization. This novel approach could also enable more 

targeted studies by virtue of estimating which models most closely recapitulate particular 

neuropathological facets of interest for a psychiatric disorder.  

Due to the limited overlap in proteome coverage comparing rodent and human tissue 

samples, previous neuropsychiatric evaluations have been almost entirely restricted to 

comparing observed behavioural characteristics between animals which were either thought 

to mirror disease-specific endophenotypes, or have been demonstrated to possess 

predictive probabilities tailored towards already known mechanisms of action of psychotropic 

medication(270). However it has proven challenging to quantify these comparisons, leading 

to issues of reproducibility. In contrast, the methodology introduced in this thesis enables the 

direct quantification of which models represent specific salient features of MDD or 

schizophrenia most closely, based on underlying pathological molecular hallmarks, thus 

representing a new advance in connecting brain proteomic fingerprints with behavioural 

patterns in animal models of major psychiatric diseases. As such, this may aid future drug 

development, as researchers will be able to determine which rodent model will be most 

suitable for preclinical testing of a novel compound aimed at a particular aspect of human 

pathophysiology (eg glutamatergic disturbances or axonal transport deficiencies). 

The application of this methodology in Chapters 7 and 8 also revealed that comparing and 

contrasting findings between even aetiologically diverse rodent models and a psychiatric 

disorder may allow for the identification of functional domains which are represented strongly 

by multiple different models. These common patterns of change may represent mechanisms 

which underlie fundamental neurobiological changes present in MDD or schizophrenia. As 

such, it has been suggested that the functional overlap of the underlying protein abundance 

changes in multiple models of different aetiology with protein abundance changes found in 

MDD or schizophrenia brain samples enhances the construct validity of each of these 

models(627).  

While the five neuropathological domains of schizophrenia represented across the four 

rodent models in Chapter 8, may appear relatively generic, they correspond to previous 

preclinical findings relating to schizophrenia. In particular, the abnormalities identified 

relating to glycolysis and mitochondrial energy metabolism have appeared in multiple 



200 
 

studies, and have been postulated to potentially affect a variety of processes in the CNS 

which are dependent on adenosine triphosphate (ATP) such as presynaptic transmitter 

release and intracellular transport. This can lead to impaired information processing across 

brain regions, and thus these mechanisms have been implicated in psychiatric disorders, so 

it is not surprising to see them reflected to various degrees across all models(43). It is an 

advantage of the methodology that in both Chapters 7 and 8, a certain model (e.g. the 

chronic PCP model in Chapter 8) can be found to recapitulate the majority of the identified 

domains most strongly. This allows for more informed future studies which target that 

particular model, with the aim of understanding the molecular underpinning of these 

functional impairments in greater detail, in the context of the disease.  

9.3.3 Limitations 

One of the limitations of this methodology is the fact that in the present form, it cannot 

account for directionality in terms of protein signalling. While the effects on a particular 

function/process can differ depending on whether the proteins associated with a particular 

GO term are up/downregulated, there is as yet no standard annotation to account for this in 

PPI networks. In addition, one has to keep in mind that ultimately the identified domains 

were limited by the detected fraction of the proteome and therefore are less likely to contain 

GO terms based on proteins that are difficult to detect in whole-tissue approaches, for 

example membrane-integral proteins or proteins with very specific expression time windows 

(e.g. proteins involved in apoptosis signalling).  

As with the studies discussed in 9.2, the studies described in Chapters 7 and 8 in which this 

method is applied, are statistically underpowered. This relates both to the limited availability 

of post-mortem brain tissue samples relating to psychiatric disorders, and the exploratory 

nature of the study meaning that only a limited amount of animal tissue was available. As 

such, while the results of each study should be interpreted with that in mind, the method 

outlined is intended as a template which could be used for future studies comparing further 

animal models of a psychiatric disorder to the human disease in question and would remain 

applicable with larger numbers of samples.  

In addition, in the presented studies, despite taking steps to reduce a rodent species-specific 

bias through a joint protein database, it is likely that full comparability of preclinical models 

might only be achievable on a species specific level. As both mice and rats come with 

possible advantages to potential future experimental designs (tissue amount and sample 

size, available behavioural paradigms, ease of genetic manipulation) the results regarding 

the comparative validity have to be interpreted with caution. Future studies applying this 
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methodology should aim to use rodent models created in a single species. In addition, it 

should be noted that the applied proteome extraction protocol and the subsequent in silico 

analyses in both human post-mortem brain and rodent tissue can only deliver an 

approximate view of the underlying proteomes as multiple cell types are used simultaneously 

and are therefore represented jointly in the significant abundance changes. Subsequent 

analyses should consider the fractionization of samples, rendering the analyses of targeted 

sub-proteomes possible. 

 

9.3.4 Future work 

The flexible structure of the framework proposed in Chapters 7 and 8 allows for the re-

evaluation of cross-species network comparisons once new information is available. Future 

research should aim to introduce proteomic information of different putative MDD and 

schizophrenia animal models for comparison with the human disease pathology. While the 

analysis presented in Chapter 8 focused on the glutamatergic system through examining 

three pharmacological models of schizophrenia and one gene-knockout model, future 

studies may look to include dopaminergic manipulations using direct and indirect dopamine 

agonists which have previously shown to induce behavioural phenotypes associated with 

positive and negative symptoms of schizophrenia such as supersenstivity to 

psychostimulants or persisting prepulse inhibition abnormalities and various other sensory 

gating deficits(255). In addition a future study could focus on comparing further models 

based on different genetic manipulations, for example the 22q11.2 deletion syndrome mouse 

model which is thought to model some of the negative and cognitive symptoms of 

schizophrenia. Moreover, while the analyses presented in Chapters 7 and 8 are based on 

the profiling of tissue from the anterior prefrontal cortices in humans and rodents due to 

previous studies linking this region to altered top-down control, future studies may wish to 

investigate subcortical brain regions eg: the limbic system, including the hippocampus.  

Finally, the significantly changed protein sets which underlie each of the identified functional 

domains could form the basis of future assays for drug development using techniques such 

as MRM. Once such key pathway candidate biomarkers have been identified, MRM can be 

applied to analyze their abundance levels in a selective, quantitative manner.  This has been 

previously reported on in a study of anterior prefrontal cortex tissue from patients with 

schizophrenia, bipolar disorder and MDD, in which expression levels were quantified for a 

panel of 56 proteins suggested to be associated with various functional aspects of these 
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disorders , including for example alterations in cellular energy metabolism and dysfunction of 

neuronal differentiation(291).  

 

Appendix 

Chapter 3 - Appendices 

Table A.3.1 66 serum proteins and their abbreviations which were measured across the 11 cohorts 
analyzed 

Analyte Abbreviation 

Adiponectin ADPN 

Alpha-1 antitrypsin A1AT 

Alpha-2 macroglobulin A2M 

Angiopoietin-2 ANGPT2 

Apolipoprotein A1 ApoA1 

Apolipoprotein CIII ApoCIII 

Apolipoprotein H ApoH 

AXL receptor tyrosine kinase AXL 

Beta-2 microglobulin B2M 

Brain-derived neurotrophic factor BDNF 

C reactive protein CRP 

CD40 antigen CD40 

CD40 ligand CD40L 

Chemokine CC4 CCR4 

Complement C3 C3 

Cortisol Cortisol 

Creatine Kinase MB CK-MB 

 Extracellular newly identified receptor for 
advanced glycation end-products binding 

protein EN-RAGE 

Eotaxin Eotaxin 

Epidermal growth factor EGF 
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Epithelial derived neutrophil activating  
protein 78 ENA-78 

Factor VII FVII 

FASLG receptor FasR 

Ferritin Ferritin 

Follicle stimulating hormone FSH 

Haptoglobin HAPT 

Hepatocyte growth factor HGF 

Immunoglobulin A IgA 

Immunoglobulin M IgM 

Insulin-like growth factor binding protein 2 IGFBP2 

Intercellular adhesion molecule 1 ICAM 

Interleukin 16 IL16 

Interleukin 18 IL18 

Leptin Leptin 

Lipoprotein (a) Lp(a) 

Macrophage derived chemokine MDC 

Macrophage inflammatory protein 1 beta MIP1 beta 

Macrophage migration inhibitory factor MIF 

Matrix metalloproteinase 3 MMP3 

Monocyte chemotactic protein 1 MCP1 

Myeloperoxidase MPO 

Myoglobin MB 

Pancreatic polypeptide PPP 

Plasminogen activator inhibitor 1 PAI1 

Platelet derived growth factor PDGF 

Progesterone P4 

Prolactin PRL 

Pulmonary and activation regulated  
chemokine PARC 

Receptor for advanced glycosylation end 
products RAGE 
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Resistin Resistin 

Serum amyloid p component SAP 

Sex hormone binding globulin SHBG 

Sortilin Sortilin 

Stem cell factor SCF 

Superoxide dismutase SOD 

T cell specific protein RANTES RANTES 

Tenascin C TNC 

Testosterone TEST 

Thrombospondin 1 THBS1 

Thyroid stimulating hormone TSH 

Thyroxine binding globulin TBG 

Tissue inhibitor of metalloproteinases 1 TIMP1 

Tumor necrosis factor receptor like 2 TNFR2 

Vascular cell adhesion molecule 1 VCAM1 

Vascular endothelial growth factor VEGF 

von Willebrand factor VWF 
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Table A.3.2 Significant (q<0.05) serum protein concentration differences between antipsychotic 
naive schizophrenia patients and healthy controls as analyzed in Chapter 3 

Molecular Function Analyte Abbreviation 
Fold 

Change Covariates P-value Q-value 

Inflammatory response 
Macrophage migration inhibitory 

factor MIF 1.73 None 2.90E-10 1.91E-08 

Hormonal signalling Pancreatic polypeptide PPP 1.92 None 8.25E-10 2.72E-08 

Inflammatory response Ferritin Ferritin 1.82 None 5.96E-08 1.31E-06 

Hormonal signalling Leptin Leptin 0.50 None 5.50E-07 9.07E-06 

Inflammatory response 

 Extracellular newly identified 
receptor for advanced glycation end-

products binding protein EN-RAGE 1.71 None 8.08E-07 1.07E-05 

Inflammatory response Tenascin C TNC 1.28 None 2.50E-06 2.75E-05 

Growth factor signalling 
Insulin-like growth factor binding 

protein 2 IGFBP2 1.31 None 
5.0604E-

06 4.77E-05 

Clotting cascade Factor VII FVII 0.83 None 6.81E-06 5.6169E-05 

Hormonal signalling Cortisol Cortisol 1.24 None 8.49E-06 6.2271E-05 

Lipid transport Apolipoprotein CIII ApoCIII 0.83 None 0.000012 8.0341E-05 

Inflammatory response 
Receptor for advanced glycosylation 

end products RAGE 0.79 None 0.00015 0.0009 

Inflammatory response Alpha-1 antitrypsin A1AT 1.12 None 0.00027 0.0013 

Inflammatory response Haptoglobin HAPT 1.45 None 0.00026 0.0013 

Hormonal signalling Progesterone P4 1.23 None 0.00026 0.0013 

Hormonal signalling Follicle-stimulating hormone FSH 1.41 None 0.00043 0.0019 

Immune system Superoxide dismutase SOD 1.25 None 0.0011 0.0047 

Inflammatory response von Willebrand factor VWF 1.19 None 0.003 0.01 

Inflammatory response Alpha-2 macroglobulin A2M 1.10 None 0.004 0.01 

Growth factor signalling AXL receptor tyrosine kinase AXL 0.90 None 0.004 0.01 

Growth factor signalling Angiopoietin-2 ANGPT2 1.18 None 0.006 0.02 

Inflammatory response Beta-2 microglobulin B2M 0.95 None 0.009 0.03 

Lipid transport Apolipoprotein H ApoH 1.08 None 0.01 0.03 

Inflammatory response Interleukin 16 IL16 1.12 None 0.01 0.03 

Immune system Myeloperoxidase MPO 1.22 Gender 0.01 0.03 

Hormonal signalling Testosterone TEST 1.25 None 0.01 0.03 

Hormonal signalling Apolipoprotein A1 ApoA1 0.91 None 0.01 0.04 

Lipid transport Immunoglobulin A IgA 0.89 None 0.02 0.04 

Immune system Thyroid stimulating hormone TSH 0.86 Gender 0.02 0.04 

Growth factor signalling Stem cell factor SCF 0.91 None 0.02 0.05 
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Figure A.3.1. Classification performances (sensitivity) for Logistic Regression, Ridge Regression and Random Forest across the training data (Meta-
Cohort), and the independent validation (Cohort 6), application (Cohorts 7 & 8) and prediction (Cohort 10) cohorts. Performance was measured across 
models fitted on all unique protein biomarker sets identified in Table 3.8, the 7 biomarkers identified by all six models and the full set of 66 proteins for 
comparison. 28a and 28b refers to the set of 28 biomarkers identified by LASSO (28a) and the 28 biomarkers identified by RF-RFE (28b). 
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Figure A.3.2 Classification performances (sensitivity) for SVM, Bayesian LASSO, and BART across the training data (Meta-Cohort), and the independent 
validation (Cohort 6), application (Cohorts 7 & 8) and prediction (Cohort 10) cohorts. Performance was measured across models fitted on all unique 
protein biomarker sets identified in Table 3.8, the 7 biomarkers identified by all six models and the full set of 66 proteins for comparison. 28a and 28b 
refers to the set of 28 biomarkers identified by LASSO (28a) and the 28 biomarkers identified by RF-RFE (28b). 
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Figure A.3.3. Classification performances (specificity) for Logistic Regression, Ridge Regression and Random Forest across the training data (Meta-
Cohort), and the independent validation (Cohort 6), application (Cohorts 7 & 8) and prediction (Cohort 10) cohorts. Performance was measured across 
models fitted on all unique protein biomarker sets identified in Table 3.8, the 7 biomarkers identified by all six models and the full set of 66 proteins for 
comparison. 28a and 28b refers to the set of 28 biomarkers identified by LASSO (28a) and the 28 biomarkers identified by RF-RFE (28b). 
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Figure A.3.4 Classification performances (specificity) for SVM, Bayesian LASSO, and BART across the training data (Meta-Cohort), and the independent 
validation (Cohort 6), application (Cohorts 7 & 8) and prediction (Cohort 10) cohorts. Performance was measured across models fitted on all unique 
protein biomarker sets identified in Table 3.8, the 7 biomarkers identified by all six models and the full set of 66 proteins for comparison. 28a and 28b 
refers to the set of 28 biomarkers identified by LASSO (28a) and the 28 biomarkers identified by RF-RFE (28b). 
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Chapter 4 - Appendices 

 

Figure A.4.1. Classification performance (sensitivity) on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) 
and prediction (cohort 5) cohorts for Logistic Regression, Ridge Regression and SVM. Performance was measured across models fitted on all unique 
peptide biomarker sets identified in Table 4.6 and the full set of 21 peptides for comparison   
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Figure A.4.2 Classification performance (sensitivity) on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) and 
prediction (cohort 5) cohorts for Bayesian LASSO, Random Forest and BART. Performance was measured across models fitted on all unique peptide 
biomarker sets identified in Table 4.6 and the full set of 21 peptides for comparison 
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Figure A.4.3 Classification performance (sensitivity) on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) and 
prediction (cohort 5) cohorts for BART prior. Performance was measured across models fitted on all unique peptide biomarker sets identified in Table 
4.6 and the full set of 21 peptides for comparison 
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Figure A.4.4. Classification performance (specificity) on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) and 
prediction (cohort 5) cohorts for Logistic Regression, Ridge Regression and SVM. Performance was measured across models fitted on all unique peptide 
biomarker sets identified in Table 4.6 and the full set of 21 peptides for comparison  
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Figure A.4.5 Classification performance (specificity) on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) and 
prediction (cohort 5) cohorts for Bayesian LASSO, Random Forest and BART. Performance was measured across models fitted on all unique peptide 
biomarker sets identified in Table 4.6 and the full set of 21 peptides for comparison 
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Figure A.4.6 Classification performance (specificity) on the training data (cohort 1), and the independent validation (cohort 2), application (cohort 3) and 
prediction (cohort 5) cohorts for BART prior. Performance was measured across models fitted on all unique peptide biomarker sets identified in Table 
4.6 and the full set of 21 peptides for comparison 

 

 

BART prior

1.0

0.8

0.6

0.4

0.2

2 3 7 9 14 20 21 2 3 7 9 14 20 21 2 3 7 9 14 20 21 2 3 7 9 14 20 21

Peptides

Cohort 3Cohort 2Cohort 1 Cohort 5

S
p

ec
if

ic
it

y



216 
 

Chapter 5 - Appendices 

Table A.5.1  The panels of 17 immunomodulatory proteins, and 147 peptides measured in the 
serum of 79 controls and 60 schizophrenia patients from Cologne using multiplex immunoassay 
and multiplex reaction monitoring (MRM) mass spectrometry, in Chapter 5. 

Protein Uniprot Entry 
Uniprot 
ID Peptide sequence Assay 

Complement C1q NA NA NA MI 
Complement C3 CO3_HUMAN P01024 NA MI 
Complement C3b NA NA NA MI 
Complement C4 NA NA NA MI 
Granulocyte macrophage colony-stimulating factor CSF2_HUMAN P04141 NA MI 
Interferon-γ IFNG_HUMAN P01579 NA MI 
Interleukin-10 IL10_HUMAN P22301 NA MI 
Interleukin-12(p70) NA  NA NA MI 
Interleukin-13 IL13_HUMAN P35225 NA MI 
Interleukin-1β IL1B_HUMAN P01584 NA MI 
Interleukin-2 IL2_HUMAN P60568 NA MI 
Interleukin-4 IL4_HUMAN P05112 NA MI 
Interleukin-6 IL6_HUMAN P05231 NA MI 
Transforming growth factor-β1 TGFB1_HUMAN P01137 NA MI 
Transforming growth factor-β2 TGFB2_HUMAN P61812 NA MI 
Transforming growth factor-β3 TGFB3_HUMAN P10600 NA MI 
Tumor necrosis factor-α TNFA_HUMAN P01375 NA MI 
Angiotensinogen  ANGT_HUMAN P01019 SLDFTELDVAAEK MRM 
Angiotensinogen  ANGT_HUMAN P01019 FMQAVTGWK MRM 
Angiotensinogen  ANGT_HUMAN P01019 ALQDQLVLVAAK MRM 
Antithrombin-III  ANT3_HUMAN P01008 FDTISEK MRM 
Antithrombin-III  ANT3_HUMAN P01008 LPGIVAEGR MRM 
Apolipoprotein A-I  APOA1_HUMAN P02647 EQLGPVTQEFWDNLEK MRM 
Apolipoprotein A-I  APOA1_HUMAN P02647 ATEHLSTLSEK MRM 
Apolipoprotein A-II APOA2_HUMAN P02652 SPELQAEAK MRM 
Apolipoprotein A-IV APOA4_HUMAN P06727 IDQNVEELK MRM 
Apolipoprotein A-IV APOA4_HUMAN P06727 ISASAEELR MRM 
Apolipoprotein A-IV APOA4_HUMAN P06727 ALVQQMEQLR MRM 
Apolipoprotein C-I  APOC1_HUMAN P02654 EFGNTLEDK MRM 
Apolipoprotein C-I  APOC1_HUMAN P02654 EWFSETFQK MRM 
Apolipoprotein C-II  APOC2_HUMAN P02655 ESLSSYWESAK MRM 
Apolipoprotein C-II  APOC2_HUMAN P02655 TAAQNLYEK MRM 
Apolipoprotein C-III  APOC3_HUMAN P02656 GWVTDGFSSLK MRM 
Apolipoprotein C-III  APOC3_HUMAN P02656 DALSSVQESQVAQQAR MRM 
Apolipoprotein C-IV  APOC4_HUMAN P55056 AWFLESK MRM 
Apolipoprotein D APOD_HUMAN P05090 VLNQELR MRM 
Apolipoprotein E  APOE_HUMAN P02649 LEEQAQQIR MRM 
Apolipoprotein E  APOE_HUMAN P02649 ALMDETMK MRM 
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Apolipoprotein E  APOE_HUMAN P02649 AATVGSLAGQPLQER MRM 
Apolipoprotein E  APOE_HUMAN P02649 LGPLVEQGR MRM 
Apolipoprotein E  APOE_HUMAN P02649 SELEEQLTPVAEETR MRM 
Apolipoprotein F  APOF_HUMAN Q13790 SLPTEDCENEK MRM 
Apolipoprotein L1  APOL1_HUMAN O14791 VNEPSILEMSR MRM 
Apolipoprotein L1  APOL1_HUMAN O14791 LNILNNNYK MRM 
Apolipoprotein L1  APOL1_HUMAN O14791 VTEPISAESGEQVER MRM 
Apolipoprotein M  APOM_HUMAN O95445 SLTSCLDSK MRM 
Apolipoprotein M  APOM_HUMAN O95445 AFLLTPR MRM 
C4b-binding protein α chain  C4BPA_HUMAN P04003 EDVYVVGTVLR MRM 
C4b-binding protein α chain  C4BPA_HUMAN P04003 YTCLPGYVR MRM 
C4b-binding protein α chain  C4BPA_HUMAN P04003 FSAICQGDGTWSPR MRM 
Carbonic anhydrase 1 CAH1_HUMAN P00915 ADGLAVIGVLMK MRM 
Carboxypeptidase B2  CBPB2_HUMAN Q96IY4 YPLYVLK MRM 
Carboxypeptidase B2  CBPB2_HUMAN Q96IY4 DTGTYGFLLPER MRM 
CD5 antigen-like  CD5L_HUMAN O43866 EATLQDCPSGPWGK MRM 
Ceruloplasmin  CERU_HUMAN P00450 NNEGTYYSPNYNPQSR MRM 
Ceruloplasmin  CERU_HUMAN P00450 EVGPTNADPVCLAK MRM 
Clusterin  CLUS_HUMAN P10909 FMETVAEK MRM 
Clusterin  CLUS_HUMAN P10909 IDSLLENDR MRM 
Coagulation factor XII  FA12_HUMAN P00748 CFEPQLLR MRM 
Coagulation factor XII  FA12_HUMAN P00748 VVGGLVALR MRM 
Complement C1q subcomponent subunit C C1QC_HUMAN P02747 TNQVNSGGVLLR MRM 
Complement C1r  C1R_HUMAN P00736 YTTEIIK MRM 
Complement C1r subcomponent-like protein C1RL_HUMAN Q9NZP8 GSEAINAPGDNPAK MRM 
Complement C1s subcomponent  C1S_HUMAN P09871 TNFDNDIALVR MRM 
Complement C1s subcomponent  C1S_HUMAN P09871 LLEVPEGR MRM 
Complement C2  CO2_HUMAN P06681 HAIILLTDGK MRM 
Complement C3  CO3_HUMAN P01024 VYAYYNLEESCTR MRM 
Complement C3  CO3_HUMAN P01024 AGDFLEANYMNLQR MRM 
Complement C4-A  CO4A_HUMAN P0C0L4 VLSLAQEQVGGSPEK MRM 
Complement C4-A  CO4A_HUMAN P0C0L4 ITQVLHFTK MRM 
Complement C4-A  CO4A_HUMAN P0C0L4 DFALLSLQVPLK MRM 
Complement component C6 CO6_HUMAN P13671 TLNICEVGTIR MRM 
Complement component C6 CO6_HUMAN P13671 SEYGAALAWEK MRM 
Complement component C8 α chain  CO8A_HUMAN P07357 MESLGITSR MRM 
Complement component C9  CO9_HUMAN P02748 VVEESELAR MRM 
Complement component C9  CO9_HUMAN P02748 LSPIYNLVPVK MRM 
Complement factor B  CFAB_HUMAN P00751 EELLPAQDIK MRM 
Complement factor B  CFAB_HUMAN P00751 DISEVVTPR MRM 
Complement factor B  CFAB_HUMAN P00751 YGLVTYATYPK MRM 
Complement factor B  CFAB_HUMAN P00751 DLLYIGK MRM 
Complement factor H  CFAH_HUMAN P00751 CFEGFGIDGPAIAK MRM 
Corticosteroid-binding globulin CBG_HUMAN P08185 ITQDAQLK MRM 
Corticosteroid-binding globulin CBG_HUMAN P08185 GTWTQPFDLASTR MRM 
Fibronectin  FINC_HUMAN P02751 YSFCTDHTVLVQTR MRM 
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Ficolin-3  FCN3_HUMAN O75636 YGIDWASGR MRM 
Gelsolin  GELS_HUMAN P06396 AGALNSNDAFVLK MRM 
Gelsolin  GELS_HUMAN P06396 SEDCFILDHGK MRM 
Haptoglobin  HPT_HUMAN P00738 DYAEVGR MRM 
Haptoglobin  HPT_HUMAN P00738 VTSIQDWVQK MRM 
Haptoglobin  HPT_HUMAN P00738 VGYVSGWGR MRM 
Hemoglobulin subunit α HBA_HUMAN P69905 MFLSFPTTK MRM 
Hemoglobulin subunit α HBA_HUMAN P69905 FLASVSTVLTSK MRM 
Hemoglobulin subunit γ-1 HBG1_HUMAN P69891 MVTAVASALSSR MRM 
Hemopexin  HEMO_HUMAN P02790 VDGALCMEK MRM 
Hemopexin  HEMO_HUMAN P02790 NFPSPVDAAFR MRM 
Heparin cofactor 2 HEP2_HUMAN P05546 IAIDLFK MRM 
Heparin cofactor 2 HEP2_HUMAN P05546 FAFNLYR MRM 
Histidine-rich glycoprotein  HRG_HUMAN P04196 ADLFYDVEALDLESPK MRM 
Histidine-rich glycoprotein  HRG_HUMAN P04196 DSPVLIDFFEDTER MRM 
Igα-1 chain C region IGHA1_HUMAN P01876 DASGVTFTWTPSSGK MRM 
Igα-1 chain C region IGHA1_HUMAN P01876 TPLTATLSK MRM 
Igα-2 chain C region IGHA2_HUMAN P01877 DASGATFTWTPSSGK MRM 
Igγ-1 chain C region IGHG1_HUMAN P01857 FNWYVDGVEVHNAK MRM 
Igγ-2 chain C region IGHG2_HUMAN P01859 GLPAPIEK MRM 
Igγ-2 chain C region IGHG2_HUMAN P01859 TTPPMLDSDGSFFLYSK MRM 
Igγ-3 chain C region  IGHG3_HUMAN P01860 DTLMISR MRM 
Igγ-3 chain C region  IGHG3_HUMAN P01860 NQVSLTCLVK MRM 
Igμ chain C region IGHM_HUMAN P01871 YAATSQVLLPSK MRM 
Igμ chain C region IGHM_HUMAN P01871 QIQVSWLR MRM 
Inter-α-trypsin inhibitor heavy chain H1  ITIH1_HUMAN P19827 LDAQASFLPK MRM 
Inter-α-trypsin inhibitor heavy chain H1  ITIH1_HUMAN P19827 GSLVQASEANLQAAQDFVR MRM 
Inter-α-trypsin inhibitor heavy chain H2  ITIH2_HUMAN P19823 FYNQVSTPLLR MRM 
Inter-α-trypsin inhibitor heavy chain H2  ITIH2_HUMAN P19823 IQPSGGTNINEALLR MRM 
Inter-α-trypsin inhibitor heavy chain H4  ITIH4_HUMAN Q14624 GPDVLTATVSGK MRM 
Inter-α-trypsin inhibitor heavy chain H4  ITIH4_HUMAN Q14624 ETLFSVMPGLK MRM 
Kininogen-1  KNG1_HUMAN P01042 DFVQPPTK MRM 
Kininogen-1  KNG1_HUMAN P01042 DIPTNSPELEETLTHTITK MRM 
Lumican  LUM_HUMAN P51884 SLEDLQLTHNK MRM 
N-acetylmuramoyl-L-alanine amidase  PGRP2_HUMAN Q96PD5 GCPDVQASLPDAK MRM 
N-acetylmuramoyl-L-alanine amidase  PGRP2_HUMAN Q96PD5 TFTLLDPK MRM 
Phosphatidylinositol-glycan-specific phospholipase D  PHLD_HUMAN P80108 NQVVIAAGR MRM 
Pigment epithelium-derived factor  PEDF_HUMAN P36955 LQSLFDSPDFSK MRM 
Pigment epithelium-derived factor  PEDF_HUMAN P36955 TVQAVLTVPK MRM 
Pigment epithelium-derived factor  PEDF_HUMAN P36955 ELLDTVTAPQK MRM 
Pigment epithelium-derived factor  PEDF_HUMAN P36955 DTDTGALLFIGK MRM 
Plasma kallikrein KLKB1_HUMAN P03952 LSMDGSPTR MRM 
Plasma protease C1 inhibitor IC1_HUMAN P05155 TNLESILSYPK MRM 
Plasma protease C1 inhibitor IC1_HUMAN P05155 FQPTLLTLPR MRM 
Plasminogen  PLMN_HUMAN P00747 FVTWIEGVMR MRM 
Protein AMBP AMBP_HUMAN P02760 TVAACNLPIVR MRM 
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Protein AMBP AMBP_HUMAN P02760 ETLLQDFR MRM 
Prothrombin  THRB_HUMAN P00734 SGIECQLWR MRM 
Prothrombin  THRB_HUMAN P00734 ELLESYIDGR MRM 
Retinol-binding protein 4  RET4_HUMAN P02753 YWGVASFLQK MRM 
Retinol-binding protein 4  RET4_HUMAN P02753 QEELCLAR MRM 
Serotransferrin  TRFE_HUMAN P02787 EGYYGYTGAFR MRM 
Serum albumin ALBU_HUMAN P02768 AAFTECCQAADK MRM 
Serum albumin ALBU_HUMAN P02768 ETYGEMADCCAK MRM 
Serum albumin ALBU_HUMAN P02768 QNCELFEQLGEYK MRM 
Serum amyloid P-component  SAMP_HUMAN P02743 IVLGQEQDSYGGK MRM 
Sex Hormone-binding globulin SHBG_HUMAN P04278 IALGGLLFPASNLR MRM 
Tetranectin  TETN_HUMAN P05452 EQQALQTVCLK MRM 
Transthyretin  TTHY_HUMAN P02766 AADDTWEPFASGK MRM 
Transthyretin  TTHY_HUMAN P02766 VLDAVR MRM 
Vitronectin VTNC_HUMAN P04004 DVWGIEGPIDAAFTR MRM 
Vitronectin VTNC_HUMAN P04004 DWHGVPGQVDAAMAGR MRM 
α-1-antichymotrypsin  AACT_HUMAN P01011 EQLSLLDR MRM 
α-1-antichymotrypsin  AACT_HUMAN P01011 EIGELYLPK MRM 
α-1-antichymotrypsin  AACT_HUMAN P01011 ADLSGITGAR MRM 
α-1-antitrypsin  A1AT_HUMAN P01009 LSITGTYDLK MRM 
α-1-antitrypsin  A1AT_HUMAN P01009 SVLGQLGITK MRM 
α-1-antitrypsin  A1AT_HUMAN P01009 SPLFMGK MRM 
α-1B-glycoprotein A1BG_HUMAN P04217 CLAPLEGAR MRM 
α-1B-glycoprotein A1BG_HUMAN P04217 ATWSGAVLAGR MRM 
α-1B-glycoprotein A1BG_HUMAN P04217 SGLSTGWTQLSK MRM 
α-2-antiplasmin  A2AP_HUMAN P08697 FDPSLTQR MRM 
α-2-antiplasmin  A2AP_HUMAN P08697 DFLQSLK MRM 
α-2-antiplasmin  A2AP_HUMAN P08697 DSFHLDEQFTVPVEMMQAR MRM 
α-2-HS-glycoprotein FETUA_HUMAN P02765 HTLNQIDEVK MRM 
α-2-HS-glycoprotein FETUA_HUMAN P02765 FSVVYAK MRM 
α-2-macroglobulin  A2MG_HUMAN P01023 NEDSLVFVQTDK MRM 
α-2-macroglobulin  A2MG_HUMAN P01023 AIGYLNTGYQR MRM 
β-2-glycoprotein 1  APOH_HUMAN P02749 EHSSLAFWK MRM 
β-2-glycoprotein 1  APOH_HUMAN P02749 VSFFCK MRM 
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Table A.5.2  Alterations in serum analytes between schizophrenia patients and controls  as described in 
Section 5.3.2.3.  

Protein Peptide sequence Assay Covariates 
Permuted 
P 

Q 
Value 

Fold 
change 

Interferon- (IFN-) NA MI - 0.018 0.159 -1.07 
Transforming growth factor-β1 
(TGF-β1) NA MI - 0.045 0.091 -1.05 

Antithrombin-III  FDTISEK MRM 
gender + 
age  0.016 0.208 1.26 

Antithrombin-III  LPGIVAEGR MRM 
gender + 
age  0.015 0.208 1.25 

Apolipoprotein A-II SPELQAEAK MRM - 0.024 0.244 -1.13 

Apolipoprotein A-IV IDQNVEELK MRM gender 0.008 0.208 -1.26 

Apolipoprotein A-IV ISASAEELR MRM - 0.041 0.308 -1.21 

Apolipoprotein C-I  EFGNTLEDK MRM age 0.033 0.299 -1.26 

Apolipoprotein C-III GWVTDGFSSLK MRM gender 0.004 0.123 -1.25 

Apolipoprotein C-III 
DALSSVQESQVAQQA
R MRM - 0.011 0.208 -1.21 

Apolipoprotein H EHSSLAFWK MRM - 0.047 0.308 1.26 

Complement C4-A  VLSLAQEQVGGSPEK MRM age 0.016 0.208 1.24 

Complement C4-A  ITQVLHFTK MRM age 0.044 0.299 1.22 

Complement component C9  VVEESELAR MRM - 0.027 0.284 1.23 

Ficolin-3  YGIDWASGR MRM - 0.038 0.299 1.23 

Haptoglobin DYAEVGR MRM age 0.000 0.044 1.56 

Haptoglobin VTSIQDWVQK MRM - 0.001 0.044 1.54 

Haptoglobin VGYVSGWGR MRM age 0.002 0.044 1.53 
Inter-α-trypsin inhibitor heavy 
chain H4 GPDVLTATVSGK MRM gender 0.024 0.254 1.18 

Plasma protease C1 inhibitor TNLESILSYPK MRM 
gender + 
age  0.001 0.051 1.36 

Plasma protease C1 inhibitor FQPTLLTLPR MRM 
gender + 
age  0.013 0.208 1.34 

α-1-antichymotrypsin EQLSLLDR MRM 
gender + 
age  0.018 0.244 1.38 

α-2-antiplasmin FDPSLTQR MRM 
gender + 
age  0.043 0.308 1.23 
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Chapter 7 - Appendices 

Table A.7.1 Proteins significantly (q<0.05) altered in MDD post-mortem brains compared to 
healthy controls. 

Protein 
Name 

Fold Change Q Value 

CATD 1.010 0.001 
CH60 1.007 0.001 
ANR16 1.031 0.001 
AT1A4 1.009 0.002 
PRDX3 1.013 0.002 
GBB1 1.009 0.002 
FBX2 1.018 0.002 
FUT4 1.063 0.002 
KCC2A 1.008 0.002 
HPRT 1.013 0.002 
NEGR1 1.034 0.002 
PP1A 1.026 0.002 
MAP2 1.009 0.003 
SODC 1.008 0.003 
DHE3 1.006 0.003 
HS905 1.018 0.003 
DHPR 1.005 0.003 
CO1A1 0.996 0.003 
TTC25 1.031 0.003 
WDR20 1.047 0.004 
AT2B1 1.014 0.004 
DPYL2 1.004 0.004 
VATF 1.050 0.004 
TBA1B 1.004 0.005 
PGDH 1.061 0.005 
MYL6 1.040 0.005 
ALBU 1.005 0.005 
HXK1 1.007 0.005 
ENOG 1.004 0.006 
E41L3 1.009 0.006 
HS90B 1.007 0.007 
ACTB 1.010 0.007 
VDAC2 1.017 0.007 
GLNA 1.013 0.007 
ARC1A 1.010 0.007 
TPPP 1.006 0.007 
THIO 1.013 0.009 
GNAO 1.007 0.010 
HSP7C 1.006 0.010 
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GBB4 1.010 0.011 
LSAMP 1.015 0.011 
SYN2 1.007 0.011 
ODPB 1.009 0.011 
NDRG4 1.024 0.011 
CR1L 0.984 0.012 
DPOLN 1.031 0.012 
CADM2 1.011 0.013 
OTUB1 1.004 0.013 
CTDP1 1.025 0.013 
TRI13 1.014 0.014 
APOE 1.040 0.015 
PGK1 1.006 0.016 
TBA8 1.006 0.016 
IGHG1 1.015 0.016 
MTMR6 1.018 0.016 
PP2AB 1.006 0.016 
MDHM 1.005 0.017 
HXC9 1.140 0.017 
YI007 0.984 0.020 
CDC42 1.011 0.020 
DDAH1 1.003 0.020 
VPP1 1.010 0.020 
GT251 0.964 0.020 
LIPE 1.018 0.020 
SNP25 1.005 0.020 
CA138 0.948 0.020 
DPPA3 1.026 0.021 
SNAA 1.016 0.021 
AP2A2 1.009 0.022 
1433S 1.012 0.022 
TRI42 1.026 0.022 
MIDN 1.039 0.022 
BCAS1 1.010 0.023 
TCPA 1.015 0.023 
TBB8 1.009 0.024 
ALDOA 1.006 0.024 
POTEE 1.007 0.024 
K1C10 0.987 0.024 
CNTN1 1.006 0.024 
BIN1 1.004 0.024 
HCD2 1.028 0.024 
APT 1.027 0.024 
ATIF1 1.067 0.024 
SCND1 1.081 0.024 
POTEF 1.012 0.024 
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MK01 1.010 0.024 
ANKS3 1.013 0.025 
NRIP1 0.984 0.026 
MCMBP 0.999 0.028 
KCRB 1.005 0.030 
CALL3 1.011 0.030 
1433G 1.008 0.031 
QCR1 1.008 0.031 
KCC2G 1.007 0.032 
STXB1 1.004 0.036 
BASI 0.969 0.038 
MPIP3 1.018 0.039 
MDHC 1.006 0.039 
HNRPQ 1.040 0.044 
TY3H 1.016 0.045 
RAC1 1.010 0.046 
DYN2 1.005 0.046 
ATPK 1.015 0.046 
EF1A2 1.008 0.046 
RASK 1.012 0.047 
BAG3 0.940 0.047 
K2C4 0.996 0.047 
PP1G 1.018 0.047 
HAUS8 1.103 0.047 

 

Table A.7.2 Proteins significantly (p<0.05) altered in social defeat model brain tissue compared to 
control animals. 

Protein Name Fold 
Change 

P Value 

MTERF 0.960 0.002 
NASP 0.983 0.002 
ADT4 0.987 0.003 
TRAP1 0.970 0.004 
NOP58 0.978 0.006 
GNAI1 0.991 0.006 
CEP72 0.984 0.007 
CX7A2 0.962 0.008 
PCNP 1.035 0.010 
SFXN1 0.946 0.011 
RL8 0.956 0.012 
TEKT1 1.015 0.012 
EFC4A 1.040 0.012 
FIGL1 0.979 0.013 
GNAT3 0.988 0.013 



224 
 

TBB3 0.991 0.015 
CALM 0.990 0.016 
MAP6 0.984 0.016 
H2B1A 0.961 0.017 
ZC12A 0.977 0.018 
CX6B1 0.993 0.018 
STX1B 0.989 0.018 
EIF3I 0.954 0.019 
HS90A 0.991 0.019 
HS90B 0.988 0.019 
VAMP3 0.978 0.022 
TM11F 0.966 0.023 
MTPN 0.985 0.023 
GPM6A 0.991 0.024 
PP1G 1.006 0.024 
NCAM1 0.991 0.025 
ACTN3 0.985 0.025 
RAB13 0.947 0.026 
RAB14 0.983 0.026 
KCC2B 0.983 0.027 
MARCS 0.973 0.027 
PACN1 0.994 0.028 
1433E 0.991 0.029 
LMNB1 0.928 0.030 
NFM 0.990 0.031 
TPPP 0.984 0.031 
GNAS1 0.986 0.032 
GATA4 0.973 0.033 
HBB1 0.985 0.034 
CENPQ 0.946 0.034 
VP9D1 0.975 0.035 
ARF5 0.978 0.036 
PPIA 0.994 0.037 
GRP78 0.990 0.037 
MUS81 0.988 0.038 
AT12A 0.989 0.039 
BIN1 0.977 0.039 
GNAS2 0.979 0.040 
LRC8E 1.051 0.041 
MYO1A 0.942 0.043 
NIBL1 1.039 0.043 
PPCT 1.057 0.044 
H33 0.965 0.045 
VDAC1 0.984 0.046 
K1C20 0.957 0.048 
EFTU 0.985 0.049 
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SYDC 0.955 0.049 
HS12A 0.983 0.049 
CENPO 0.925 0.049 
FIL1L 0.977 0.049 
RAP1B 0.976 0.050 
H2B2E 0.980 0.050 
RAB5C 0.979 0.050 

 
Table A.7.3 Proteins significantly (p<0.05) altered in chronic mild stress model brain tissue 
compared to control animals. 

Protein 
Name 

Fold Change P Value 

IP3KA 1.054 0.001 
HEM1 1.094 0.001 
MCM7 0.974 0.006 
ADPRH 1.036 0.006 
RAB3A 1.005 0.007 
TBA3 0.936 0.010 
AIF1L 1.010 0.011 
AT2A2 1.017 0.012 
COX41 0.995 0.013 
DHSB 1.024 0.013 
OFUT1 1.029 0.013 
PEBP1 1.004 0.015 
PPM1E 0.987 0.017 
TRAP1 0.990 0.018 
AMPD1 0.991 0.021 
KPYM 0.996 0.022 
NP1L2 1.044 0.025 
ACTN1 1.010 0.028 
GFAP 0.996 0.028 
TPIS 0.996 0.029 
CAZA2 1.010 0.030 
CEP57 0.978 0.032 
M3K8 0.975 0.033 
CALR 0.993 0.033 
NCAM1 0.995 0.033 
FKB1A 1.006 0.034 
NFM 0.996 0.038 
DREB 0.993 0.039 
AT5F1 0.996 0.039 
ACSL6 0.979 0.039 
OCSTP 1.054 0.043 
LDHB 1.007 0.043 
PROF1 1.003 0.044 
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WWC2 0.992 0.046 
ODP2 0.994 0.046 
K6PF 0.993 0.046 
IL18 0.988 0.047 
S10A8 0.982 0.048 
GNAT2 1.077 0.048 
PCCA 0.908 0.048 
SYUG 1.011 0.048 
RAB1A 1.008 0.049 
GALT 0.983 0.050 

 
 
Table A.7.4 Proteins significantly (p<0.05) altered in prenatal stress model brain tissue compared 
to control animals. 

Protein Name Fold Change P Value 

PP2BB 1.034 0.003 
HBB1 0.981 0.004 
CC114 0.938 0.008 
CNTRB 1.030 0.010 
GNAL 1.030 0.011 
K2C73 1.090 0.011 
FRMD6 0.952 0.011 
CAP2 1.018 0.013 
FA92B 1.094 0.013 
HKDC1 1.022 0.014 
CIP4 1.084 0.015 
AT2A1 1.057 0.016 
CPLX2 1.019 0.017 
H33 0.979 0.017 
RAB14 1.013 0.019 
ARC1A 1.082 0.025 
RM37 1.050 0.026 
GDIR1 1.021 0.027 
NFASC 1.018 0.031 
TTC23 1.085 0.032 
MATR3 0.876 0.037 
CYB5B 1.025 0.040 
FA11 0.968 0.040 
GCM2 1.033 0.043 
CNTN1 1.008 0.044 
SH3G2 1.014 0.044 
SMAG1 1.065 0.045 
NDRG2 1.027 0.046 
M3K8 1.039 0.048 
KIZ 1.057 0.048 
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Chapter 8 - Appendices 

Table A.8.1 Proteins significantly (q<0.05) altered in schizophrenia post-mortem brains compared 
to healthy controls. 

Protein 
Name 

Fold Change Q Value 

HBB 1.003 0.000 
AT1A2 1.005 0.000 
HBA 1.000 0.000 
AP2A2 1.004 0.000 
HS90B 1.003 0.000 
ALDOA 1.007 0.000 
BIN1 1.007 0.000 
GRP75 1.006 0.000 
NOSIP 1.015 0.000 
IGHG1 1.014 0.001 
ATPG 1.015 0.001 
SMC1B 1.012 0.001 
ENOG 1.003 0.001 
GRP78 1.006 0.001 
DPYL3 1.005 0.001 
TKT 1.005 0.001 
ALBU 1.000 0.001 
TBA1B 1.001 0.001 
FBX2 1.012 0.002 
TTC25 1.026 0.002 
HS90A 1.002 0.002 
VDAC2 1.007 0.002 
AL7A1 1.012 0.003 
NDRG2 1.014 0.003 
IGKC 1.011 0.003 
PP1A 1.014 0.003 
MK01 1.007 0.003 
GLNA 1.006 0.004 
DPYL1 1.005 0.004 
UCHL1 1.004 0.004 
E41L3 1.003 0.004 
PGAM1 1.002 0.004 
ELAV2 1.049 0.004 
MYPR 0.991 0.005 
HAUS8 1.081 0.005 
ATIF1 1.055 0.005 
SPB5 1.021 0.006 
CG033 1.019 0.006 
DHYS 0.954 0.006 
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CNTN1 1.003 0.006 
CATD 1.006 0.007 
MT3 1.017 0.007 
LSAMP 1.005 0.007 
GBB2 1.006 0.007 
FIBG 1.015 0.007 
PRP19 1.048 0.008 
UAP1L 0.974 0.008 
SC65 1.038 0.008 
KCC2D 1.007 0.008 
KPCG 1.013 0.009 
AT2B4 1.004 0.010 
1433G 1.003 0.010 
LMNB1 1.013 0.010 
MIDN 1.034 0.010 
RHOA 1.011 0.011 
CLH1 1.001 0.011 
AT1A4 1.004 0.011 
RINI 1.008 0.012 
HPT 1.037 0.012 
PRDX3 1.008 0.012 
ACTB 1.005 0.012 
H90B2 1.005 0.012 
HPLN2 0.982 0.013 
A1AT 1.016 0.013 
KAD1 1.007 0.014 
CS052 0.980 0.014 
PA1B2 1.010 0.014 
TOP1M 0.994 0.014 
ADT1 1.004 0.014 
PPIA 1.007 0.014 
ANKS3 1.032 0.015 
HBD 1.007 0.015 
TBB8 1.003 0.015 
H90B3 1.008 0.015 
RAP1B 1.010 0.016 
RAC1 1.007 0.016 
ACTC 0.994 0.016 
DHE3 1.003 0.016 
2AAA 1.004 0.017 
PAI1 1.075 0.017 
POTEE 1.002 0.018 
EIF3A 1.015 0.018 
H2B1C 1.030 0.019 
SEP14 1.007 0.019 
K2C5 1.012 0.019 
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ANR44 0.952 0.019 
ACBP 0.992 0.019 
AL4A1 1.014 0.019 
FA81A 0.989 0.019 
UBA1 1.004 0.020 
MBP 0.998 0.020 
UBP25 1.016 0.021 
GFAP 0.999 0.021 
GBB4 1.007 0.021 
GT251 0.975 0.021 
AQP4 1.021 0.021 
RAB1C 1.010 0.023 
DYN1 1.002 0.024 
MPCP 1.005 0.024 
SERA 1.008 0.024 
NEGR1 1.020 0.024 
TFAP4 1.016 0.025 
RAB1B 1.006 0.029 
NCK1 1.014 0.029 
KAP3 1.011 0.029 
RAB10 1.004 0.030 
K1C10 0.997 0.030 
GBB1 1.002 0.030 
HCD2 1.017 0.031 
CADM4 1.021 0.031 
TRIM1 1.027 0.031 
GLOD4 1.013 0.031 
SYN1 1.002 0.032 
PHB2 1.008 0.032 
H2B1A 1.010 0.033 
TAU 1.002 0.034 
H2A2C 1.025 0.034 
EPN3 1.025 0.035 
TRAF3 0.940 0.036 
HS904 1.007 0.036 
ANR16 1.027 0.036 
GDIB 1.003 0.036 
SNP25 1.002 0.037 
APT 1.021 0.037 
SELR1 1.057 0.037 
VATA 1.003 0.038 
SYWC 1.005 0.038 
CH60 1.002 0.038 
KCC2B 1.002 0.038 
KPYM 1.003 0.038 
LDHA 1.002 0.039 
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TPPP3 1.015 0.039 
RNB3L 0.990 0.041 
AUXI 1.018 0.041 
VGFR1 1.023 0.041 
KCC2A 1.002 0.041 
NPS3A 1.008 0.041 
OLFM4 1.031 0.042 
SEP7 1.003 0.042 
STIP1 1.008 0.043 
AT2B1 1.003 0.043 
RTN4 1.004 0.043 
HSP7C 1.002 0.043 
TAGL3 0.993 0.044 
YI023 0.983 0.044 
ANXA6 1.002 0.045 
PRS33 1.014 0.045 
HNRPQ 1.030 0.046 
HOME2 0.994 0.046 
CALL3 1.004 0.047 
OXR1 1.009 0.047 
GSTM3 1.008 0.047 
MDHC 1.002 0.047 
DPYL5 0.990 0.047 
SCND1 1.049 0.048 
LAC2 1.015 0.049 
BACHL 1.017 0.049 
AP2B1 1.002 0.049 
IQEC2 1.009 0.050 

 

Table A.8.2 Proteins significantly (p<0.05) altered in acute PCP model brain tissue compared to 
control animals. 

Protein Name Fold Change P Value 

MBP 0.989 0.000 
GLSK 1.006 0.001 
MTAP2 0.997 0.001 
CMC1 1.005 0.001 
EDN2 0.972 0.001 
VDAC3 0.985 0.001 
VPP1 1.005 0.002 
EF1A2 0.996 0.003 
RPR1B 1.025 0.004 
H2B1P 1.008 0.005 
RRFM 0.985 0.009 
QCR1 1.004 0.010 
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ARRB1 1.015 0.011 
GEPH 1.012 0.011 
SBSN 1.006 0.011 
NCALD 1.003 0.011 
POC1B 1.011 0.011 
CN37 0.996 0.012 
PFKAP 1.009 0.013 
BASP1 0.997 0.015 
ODPB 1.003 0.015 
PSMD3 1.013 0.016 
RAB13 0.991 0.021 
H33 0.986 0.022 
MCA3 0.987 0.025 
AP2A1 1.006 0.026 
SPG7 1.010 0.028 
DPYL4 0.991 0.030 
RAB10 1.004 0.030 
H2B1K 0.984 0.032 
VDAC2 0.996 0.032 
RAB26 1.010 0.033 
RAB3C 1.008 0.034 
KLC3 1.006 0.035 
SIR2 0.991 0.035 
RAB35 0.985 0.036 
GNAL 0.993 0.038 
AINX 0.997 0.038 
PDXK 1.006 0.039 
SEGN 0.992 0.039 
STX1A 1.004 0.042 
DYN1 1.001 0.043 
KPYR 1.004 0.044 
H4 0.996 0.046 
H2B1 0.997 0.047 
ERAL1 1.012 0.049 
HSP7C 0.998 0.050 

 

 

 

 

 

 



232 
 

Table A.8.3 Proteins significantly (p<0.05) altered in ketamine model brain tissue compared to 
control animals. 

Protein Name Fold Change P Value 

NEUG 0.960 0.000 
GSTM4 1.016 0.000 
KCRB 1.009 0.000 
NDUA9 1.014 0.000 
CAMKV 1.011 0.000 
MYPR 0.989 0.000 
GBB4 1.022 0.000 
TIF1B 1.057 0.001 
K2C1 1.014 0.001 
GLNA 1.012 0.001 
ATP4A 1.009 0.001 
HS71L 1.015 0.001 
STPG2 1.047 0.001 
CLH1 1.006 0.001 
SYT13 1.040 0.001 
K2C8 0.973 0.001 
NELFE 1.009 0.002 
KPYM 1.006 0.002 
STX17 1.019 0.002 
FGFR2 1.048 0.003 
AT1A4 1.008 0.003 
RBM25 1.022 0.005 
DHX8 1.023 0.005 
SH3G1 1.064 0.006 
ATP5J 1.022 0.006 
BPNT1 1.020 0.006 
DPYL3 1.012 0.007 
RAB3C 0.984 0.007 
COTL1 1.050 0.008 
RUSD2 1.031 0.009 
ACTS 1.052 0.009 
GDIB 1.008 0.009 
RL40 1.011 0.010 
KPYR 1.015 0.010 
AINX 0.995 0.010 
CANB1 1.034 0.010 
UCHL1 1.008 0.011 
CH10 0.991 0.011 
CAZA2 0.986 0.011 
ALBU 1.004 0.013 
ACTG 1.011 0.013 
K2C73 1.011 0.014 
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MT3 0.993 0.014 
CX6B1 0.986 0.015 
GBB1 0.994 0.015 
G3P 1.006 0.016 
PHAR2 1.013 0.016 
PDIA3 1.008 0.016 
PP2BB 1.010 0.016 
HXK1 1.007 0.016 
GPM6B 1.014 0.017 
GNA13 1.018 0.017 
CMC1 1.006 0.017 
DYN1 1.004 0.017 
ARF3 1.010 0.017 
MBP 0.995 0.017 
RAC1 0.991 0.018 
TBB2B 1.029 0.018 
NRX1A 1.013 0.019 
AT2B2 1.014 0.019 
DHB2 1.023 0.019 
HMGN2 1.021 0.020 
OXR1 1.027 0.020 
TT23L 1.025 0.021 
SEP14 0.995 0.022 
OPTN 1.017 0.022 
KLOT 1.011 0.023 
PGRC1 1.027 0.023 
ACBP 0.989 0.024 
PP2BA 1.007 0.024 
CY1 1.019 0.026 
CO1A1 1.020 0.026 
K1C15 0.981 0.026 
AP2A2 1.012 0.026 
ODP2 1.005 0.027 
NCALD 1.014 0.028 
KCC2A 0.998 0.028 
RHOF 1.024 0.029 
CC175 1.015 0.030 
ZN365 0.989 0.034 
SYN2 1.008 0.034 
PCSK1 1.013 0.035 
HPCL4 1.012 0.036 
MTPN 0.991 0.038 
ZBT42 1.019 0.038 
KAD1 1.007 0.038 
TRIM1 0.987 0.039 
VA0D1 0.991 0.040 



234 
 

NDUBA 1.012 0.042 
F221B 1.021 0.045 
ACADS 1.037 0.045 
FSCN1 1.019 0.046 
ENOG 1.004 0.048 

 

Table A.8.4 Proteins significantly (p<0.05) altered in chronic PCP model brain tissue compared to 
control animals. 

Protein Name Fold Change P Value 

HBB1 1.012 0.000 
ATPB 0.989 0.000 
HBA 1.011 0.000 
AT1A3 0.995 0.000 
MTAP2 0.993 0.000 
ENOG 0.991 0.000 
1433Z 0.994 0.000 
TBB2A 0.992 0.000 
DPYL2 0.993 0.000 
CH60 0.986 0.000 
SEPT6 0.978 0.000 
CN37 0.993 0.000 
GNAO 0.994 0.001 
HNRPD 0.978 0.001 
HA2B 0.977 0.002 
RAB6B 0.986 0.002 
PP2BA 0.991 0.002 
PICAL 0.977 0.002 
CNTN1 0.989 0.003 
LDHB 0.995 0.003 
ENOB 0.983 0.003 
GRP78 0.992 0.004 
NDRG2 0.979 0.005 
HSP7C 0.995 0.005 
G6PI 0.994 0.006 
KPYM 0.996 0.006 
AL2SB 0.972 0.006 
MT3 0.979 0.007 
PARK7 0.989 0.008 
SNAB 0.988 0.008 
STX1B 0.994 0.009 
NCAM1 0.990 0.009 
RAB3B 0.981 0.010 
AT2B1 0.994 0.010 
CALX 0.990 0.010 
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TPM3 0.985 0.011 
UMPS 0.965 0.011 
HS90A 0.994 0.012 
RAB12 1.053 0.012 
EF2 0.987 0.014 
AT1A2 0.996 0.014 
AP3S2 0.969 0.015 
SYUB 0.989 0.015 
ACTC 0.966 0.015 
DYN3 0.990 0.016 
PACN1 0.987 0.017 
VATG2 0.982 0.018 
ATP5H 0.989 0.019 
PP2BC 0.986 0.020 
CX7A2 0.977 0.021 
PSMD3 0.975 0.022 
OSCP1 0.978 0.023 
THY1 0.990 0.023 
KS6A2 0.986 0.024 
TAU 0.991 0.025 
ST2A2 0.975 0.026 
BACD3 0.982 0.026 
KLD8A 0.964 0.027 
PGAM1 0.994 0.028 
AINX 0.992 0.029 
SYPH 0.991 0.030 
UCHL1 0.995 0.033 
PROF1 0.989 0.033 
RAC1 1.020 0.034 
STIP1 0.973 0.035 
API5 0.979 0.037 
ALBU 1.004 0.038 
MYH6 0.985 0.040 
ASTL 0.982 0.040 
KAD1 0.964 0.041 
PRDX6 0.991 0.042 
GSTM4 0.991 0.043 
GNAI1 0.989 0.043 
2AAA 0.993 0.044 
CLCA 0.975 0.044 
HSP72 0.990 0.045 
IDH3B 0.985 0.046 
MRRP1 0.986 0.046 
VDAC3 1.008 0.046 
RPGF5 0.976 0.047 
VDAC2 0.988 0.047 
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1433E 0.994 0.048 
AMPH 0.989 0.049 
COX5B 0.984 0.050 

 

Table A.8.5 Proteins significantly (p<0.05) altered in NR1 knockdown model brain tissue compared 
to wild-type animals. 

Protein Name Fold Change P Value 

LDHB 0.987 0.000 
GNAO 0.985 0.000 
TBB4A 0.981 0.000 
KCRB 0.990 0.000 
ENOB 0.972 0.000 
HSP7C 0.990 0.000 
DPYL2 0.992 0.000 
DYN1 0.988 0.000 
VISL1 0.982 0.000 
G6PI 0.984 0.000 
CAZA2 0.979 0.000 
H2B1 1.009 0.000 
GBB3 0.964 0.000 
H14 1.018 0.001 
ADM2 0.961 0.001 
CLH1 0.993 0.001 
THY1 0.962 0.001 
ARF2 0.985 0.001 
SNP25 0.989 0.002 
1433T 0.991 0.002 
MBP 0.992 0.002 
LIAS 1.029 0.002 
STXB1 0.994 0.002 
LRC34 0.971 0.003 
HS90A 0.990 0.003 
AT1A1 0.988 0.003 
TBB3 0.984 0.004 
ACON 0.994 0.004 
CETN2 0.960 0.004 
SYUB 1.016 0.005 
1433E 0.990 0.007 
AT1A4 0.984 0.007 
SEPT5 0.981 0.007 
CI172 1.020 0.009 
ZSC21 0.985 0.010 
EF1A1 0.986 0.012 
RLA1 0.981 0.013 
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CACB2 1.042 0.014 
KCRS 0.968 0.015 
SNAB 0.976 0.015 
DHB3 1.013 0.016 
GNAI1 0.985 0.017 
MDHM 0.994 0.017 
NSF 0.995 0.017 
ACTS 0.984 0.018 
GPSM1 0.976 0.018 
DC1L1 1.011 0.018 
TWST1 0.973 0.018 
DCDC2 1.010 0.019 
ODPB 0.982 0.020 
AT1A2 0.993 0.021 
TRPV6 0.944 0.021 
LDHA 0.989 0.022 
GNAI2 0.982 0.022 
TNNC2 0.949 0.022 
ATPA 0.995 0.022 
PRDX6 0.972 0.023 
KPYM 0.995 0.025 
HMGCL 0.972 0.026 
TBB4B 0.994 0.027 
WDR5 0.964 0.027 
TBA1B 0.992 0.027 
CN37 0.983 0.028 
2A5G 0.973 0.030 
GNAI3 0.986 0.032 
KCRU 0.977 0.035 
TBB1 0.987 0.035 
ALDOA 0.995 0.036 
MAGIX 0.969 0.036 
K2C72 0.972 0.038 
1433Z 0.992 0.041 
CDR2L 0.978 0.041 
SNAPN 0.955 0.042 
RRP15 1.034 0.043 
TAGL2 0.991 0.043 
RL40 0.985 0.044 
TM143 0.965 0.045 
TBAL3 1.020 0.047 
ENOA 0.995 0.048 
TBB6 0.989 0.049 
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Table A.8.6 The 162 proteins which were quantified across all human and rodent model tissue 
samples, as indicated in Figure 8.2. Arrows indicate the subsets of these proteins which were 
significantly differentially expressed in each comparison, and the direction of change. 

Protein 
Name Schizophrenia aPCP cPCP Ketamine NR1 
AT1A2 

 
   

HBA 
 

     
HS90B 

 
      

ALDOA 
 

    
ENOG 

 
    

DPYL3 
 

     
ALBU 

 
    

TBA1B 
 

    
HS90A 

 
   

VDAC2        
GLNA 

 
     

DPYL1 
 

      
PGAM1 

 
     

MYPR 
 

     
GBB2 

 
      

KCC2D 
 

      
1433G 

 
      

CLH1 
 

   
AT1A4 

 
   

ACTB 
 

      
ADT1 

 
      

PPIA 
 

      
MBP      
GBB4  `      
DYN1      
MPCP 

 
      

RAB1B 
 

      
RAB10         
GBB1 

 
     

SYN1 
 

      
TAU 

 
     

GDIB 
 

     
SNP25 

 
    

VATA 
 

      
CH60 

 
     

KCC2B 
 

      
KPYM 

 
  

LDHA 
 

    
KCC2A 

 
     

HSP7C      
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TAGL3 
 

      
MDHC 

 
      

AP2B1 
 

      
HXK1   

 
     

PRDX2   
 

      
EF1A1   

 
    

SAP   
 

      
POTEF   

 
      

TPIS   
 

      
ACTN1   

 
      

COF1   
 

      
SYN2   

 
     

PRDX6   
 

   
1433S   

 
      

ZC3HD   
 

      
RAB3A   

 
      

GNAO   
 

   
PRDX5   

 
      

KCRU   
 

    
ENOA   

 
    

ALDOC   
 

      
GPM6A   

 
      

ADT2   
 

      
HSP72   

 
     

STX1B   
 

     
SYUA   

 
      

SH3G2   
 

      
DPYL2   

 
   

EF1A2          
PGK1   

 
      

ODPB        
PP2BA   

 
    

1433Z   
 

   
ACTBL   

 
      

AT5F1   
 

      
TBB3   

 
    

PEBP1   
 

      
ATPB   

 
     

THY1   
 

   
GNAI2   

 
    

CEND   
 

      
GBB3   

 
    

ATP4A   
 

     
HBE   

 
      

KCC2G   
 

      
ENOB   

 
   
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SNAA   
 

      
AT1A1   

 
    

TBB4A   
 

    
NSF   

 
    

MDHM   
 

    
COX2   

 
      

ALDOB   
 

      
KPYR         
CN37       
1433E   

 
   

EAA2   
 

      
AT12A   

 
      

ADT4   
 

      
G3P   

 
     

AATC   
 

      
RAB37   

 
      

HS71L   
 

     
H2A1H   

 
      

ACTS   
 

   
GNAI1   

 
   

FKB1A   
 

      
SH3G1   

 
     

AT1B1   
 

      
GNAT3   

 
      

TBB1   
 

    
GNAT2   

 
      

VATH   
 

      
LDHB   

 
   

KCRB   
 

   
SYUB   

 
   

RL40   
 

   
AATM   

 
      

STXB1   
 

    
GNAS1   

 
      

TBB2B   
 

     
1433T   

 
    

AP2M1   
 

      
G6PI   

 
   

CALM   
 

      
CY561   

 
      

GDIA   
 

      
NP1L4   

 
      

GNAT1   
 

      
RAB14   

 
      

COX5A   
 

      
ENTP5   
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VATB2   
 

      
RAB3D   

 
      

TBB2A   
 

     
TBB6   

 
    

AT1A3   
 

     
VDAC3         
ATPA   

 
    

TBA1A   
 

      
1433B   

 
      

H4          
VDAC1   

 
      

BASP1          
ACTG   

 
     

SNAB   
 

   
ARF5   

 
      

NDUA4   
 

      
TBB4B   

 
    

TBA4A   
 

      
NELFE   

 
     

IDH3A   
 

      
QCR2   

 
      

RAB3C         
NDKA   

 
      

ATPO   
 

      
TBA1C   

 
      

ACON   
 

    
TBAL3   

 
    

RAB1A   
 

      
VISL1   

 
    

TBB5           
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