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Research summary: Prions are infectious agents that cause fatal neurodegenerative diseases in 

brain. The widely accepted protein-only hypothesis states that the misfolded form of prion 

protein is the sole constituent of prions, and that its propagation and replication play a central 

role in prion pathogenesis. Prions propagate when disease-related prion protein enters a cell 

and replicates, leading to an exponential increase in aggregate numbers with time. A similar 

replication mechanism has also been suggested in other notorious neurodegenerative disorders, 

such as Alzheimer’s disease and Parkinson’s disease. 

In this thesis, the aggregation mechanisms of prion protein and α-Synuclein were studied using 

single-molecule fluorescence methods. From fluorescence imaging of individual aggregates on 

a glass surface, elongation and fragmentation of prion protein were observed, which directly 

confirmed the existence of key mechanisms in prion biology. An increase in proteinase K 

resistance suggested that structural conversion to a disease-related conformation takes place 

during aggregation. Next, this process was quantified by kinetic modelling with a series of 

solution-seeded aggregation reactions in a test tube over a broad range of seed and monomer 

concentrations. The fitted kinetic rate constants for elongation and fragmentation thus provide 

a simple approach to estimate prion propagation in vivo. 

The same method was applied to measurement of α-Synuclein (αS) aggregation, which has been 

suggested to be prion-like and is a key player in Parkinson’s disease. αS was demonstrated to 

elongate and fragment significantly more slowly than prion protein in bulk solution, leading to 

a much slower replication rate. To extend the study to cellular environments, I applied super-

resolution imaging to study the transcellular spread of αS seeds. Initial results showed seeded 

amplification in the number of aggregates with time. 

The molecular details of prion protein aggregation were further characterised with various 

biophysical approaches. I explored the early events in aggregation and identified five oligomers 

with distinct structural and kinetic characteristics, co-existing during aggregation. Membrane 

disruption assay also indicated a higher membrane permeability for smaller-sized PK-sensitive 

oligomeric species. 

Overall, my studies on neurodegenerative proteins identify fibril elongation with fragmentation 

as an important mechanism of replication and provide a new quantitative approach to describe 

prion-like properties. This work also provides a simple framework to explain differences in 

disease spreading among neurodegenerative diseases from a kinetic perspective that can be 

studied with other proteins.  
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Abstract 

Prions are infectious agents that cause fatal neurodegenerative diseases in the brain. The 

wide-accepted protein-only hypothesis states that the misfolded form of prion protein 

(PrP) is the sole constituent of prions, and the self-propagating process of PrP is 

considered to play a central role in prion pathogenesis. Prions are believed to propagate 

when a PrP assembly enters a cell and replicates to produce two or more fibrils, leading 

to an exponential increase in PrP aggregate number with time. However, the molecular 

basis of this process has not yet been established in detail. This prion-like replication is 

also suggested to be the mechanism in the development of other notorious 

neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease. 

In this thesis, I use single-aggregate imaging to study fibril fragmentation and elongation 

of individual murine PrP aggregates from seeded aggregation in vitro. From fluorescence 

imaging of individual PrP aggregates on the coverslip surface, elongation and 

fragmentation of the PrP assemblies have been directly observed. PrP elongation occurs 

via a structural conversion from a proteinase K (PK)-sensitive to PK-resistant conformer. 

Fibril fragmentation was found to be length-dependent and resulted in the formation of 

PK-sensitive fragments. To gain more insights into the mechanism of the spread of PrP, 

the quantified kinetic profiles allows the determination of the rate constants for these 

processes through the use of kinetic modelling. This enables the estimation of a simple 

framework for aggregate propagation through the brain, assuming that doubling of the 

aggregate number is rate-limiting. 

In contrast, the same method was applied to measurement for α-Synuclein (αS) 

aggregation, which has been suggested to be prion-like and is associated with Parkinson’s 

disease. While αS aggregated by the same mechanism, it showed significantly slower 

elongation and fragmentation rate constants than PrP, leading to much slower replication 

rate. Furthermore, the measurements in αS aggregation has been extended to the cellular 

environment, I use super-resolution imaging to study the amplification of endogenous αS 

aggregation in cells and the transcellular spread of αS. Endogenous αS showed a clear 

amplification in number of aggregates with time after seed transduction, and the newly-

formed αS aggregates are likely to spread through cell-to-cell transmission. The 

proteasome was demonstrated to possess a novel disaggregase function for αS fibrils and 

thus produce more seeds for further replication. It partially explains that αS aggregation 

in cells was found to replicate at a substantially faster rate than that in vitro. 

Determining the nature of the oligomers formed during aggregation has been 

experimentally difficult due to the lack of suitable methods capable of detecting and 
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characterising the low level of oligomers. To address this problem, I have studied the early 

formation of PrP oligomers formed during aggregation in vitro using various single-

molecule methods. The early aggregation of PrP is observed to form a thioflavin T (ThT)-

inactive and two ThT-active species of oligomers, which differ in size and temporal 

evolution. The ThT-active oligomers undergo a structural conversion from a PK-sensitive 

to PK-resistant conformer, while a fraction of which grow into mature fibrils. These 

results also enable the establishment of a kinetic framework for elucidating temporal 

evolution of PrP aggregation and the relationship between oligomers and fibrils. 

Overall, my research identifies fibril elongation with fragmentation are the key molecular 

processes leading to PrP and αS aggregate replication, an important concept in prion 

biology, and provides a simple framework to estimate the rate of prion and prion-like 

spreading in animals. The results also show that a diverse range of oligomers is formed 

and co-exist during PrP aggregation which differ both in their structure and properties 

and provides mechanistic insights into a prion aggregation. The work provides a new 

quantitative approach to describe the prion-like property in neurodegenerative diseases 

from a kinetic perspective that can be verified in extending studies in other proteins or in 

cells.  
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Chapter 1 | Introduction 

1.1 The molecular basis of protein aggregation I: an overview 

Proteins are macromolecules that are responsible for implementing multiple essential 

functions within living organisms. Their expression patterns reflect the different 

requirements of cells at particular time points and locations. The importance of proteins 

can be attributed to their various roles in cellular maintenance, such as catalysing 

chemical reactions, transporting molecules, responding to external stimuli, and 

maintaining normal physiological conditions. To fulfil normal biological functions, the 

majority of proteins have to fold into precise three-dimensional structures in vivo. This 

behaviour has also been demonstrated in vitro for numerous proteins, confirming 

Anfinsen’s hypothesis that the linear sequence of a polypeptide chain contains all 

information required for the folding into its correct three-dimensional conformation1,2. 

The discovery of misfolded states, or amyloid states, has challenged this central dogma 

and our understanding of the nature of proteins3–6, leaving many fundamental questions 

unanswered. In particular, structural conversion of proteins from functional and soluble 

conformation into aberrant misfolded conformation is the origin of a broad range of 

human disorders6,7. Among these, neurodegenerative diseases are the largest subgroup 

responsible for many fatal diseases. To understand the origin of neurodegenerative 

diseases, the folding and misfolding mechanism of proteins is reviewed in the following 

section. 

 

1.1.1 Protein folding and misfolding 

Protein folding is described as a diffusional search process of an polypeptide sequence on 

a funnel surface of free energy, driven by various non-covalent interactions including 

hydrogen bonding, electrostatic interactions, van der Waals forces (or London dispersion 

force), and the hydrophobic effect involving solvent molecules interactions8. These 

relatively weak interactions among hundreds of amino acids have to direct the amino acid 

chain to one specific endpoint in the free energy funnel, such that a protein can acquire 

its own 3D structures to exert its normal functions. The nature of folding is a striking and 

complicated phenomenon for researchers, as an organism has 4000 (Escherichia coli) to 

20000 (humans) proteins with distinct structures, many of them containing relatively 

long sequences of >100 amino acids9. The folding reaction is so complex that even today 
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correct protein structure cannot be precisely predicted. 

We can use a thermodynamic approach to understand the folding process. The rugged 

energy landscape theory describes how a naïve and linear polypeptide chain is forced to 

search for a more stable energy state in order to reduce the entropy of the system; 

consequently, the free energy of the system decreases by excluding solvent molecules and 

then collapsing into a more compact state8. The ultimate state of the protein structure is 

achieved when a single energy minimum is reached, analogous to reaching the bottom of 

a funnel. This model provides a connection between the folding reaction, the driving 

forces involved, and free energy. However, several faults of the theory have been proposed, 

and one of the major issues is the incompatibility with the latter discovered misfolded 

products. 

A modified version of the energy landscape theory retains the central idea of the funnel, 

while it can better illustrate the phenomenon by considering the whole folding reaction 

as a process on a rugged energy surface (Figure 1.1a). As the reaction direction is multiple 

and reversible, the protein dynamics might generate several routes and local minima of 

the energy state for a single final energy minimum, or global minimum10–12. Each potential 

route of folding is created by the interactions within the polypeptide chain and between 

the polypeptide chain and the environment. During folding, protein molecules travel 

downhill on the free energy surface. Partially folded intermediates and folded 

intermediates, occupy certain local minima (Figure 1.1a, green) and represent the energy 

traps en route towards the thermodynamically favourable native state9. 

The form of protein folding can be roughly divided into two categories based on molecular 

size. Smaller proteins (<100 amino acids) tend to fold in only one step, mainly achieved 

by a hydrophobic core collapsing process; in contrast, larger proteins with >100 amino 

acids are more likely to form folding intermediates before they collapse rapidly into a 

compact native structure2,13. As the cellular environment is a highly crowded 

environment (300-400 g of total protein per litre in the cytosol14), the correct folding of 

large proteins often requires molecular chaperones2,8,9,15. Molecular chaperones assist 

protein folding by lowering free energy barriers and preventing aberrant intermolecular 

interactions (Figure 1.1a, red; and Figure 1.1b), which can lead to various misfolded states 

of protein aggregates (amorphous, oligomeric, fibrillar) that will be discussed in the next 

section. 

1.1.2 Protein misfolding leads to aggregation 

The newly-synthesised proteins, either post-translated or co-translated from mRNA, fold 

en route through structural intermediates to their final native conformation, which 
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represents the global minimum of energy. However, the folding process is error-prone due 

to several reasons: 1) there are >1030 possible conformations that can be adopted for a 

100 a.a. protein chain; 2) correct folding has to rely on various pairs of weak non-covalent 

interactions among amino acids to overcome substantial kinetic energy barriers and a 

range of folding intermediates; 3) the phenomenon of molecular crowding in cells 

enhances the tendency to form folding intermediates and misfolded states in vivo9. 

Proteins in their partially folded or misfolded states tend to self-assemble into larger-

sized aggregates. However, protein self-assembly with native conformations is not 

uncommon in vivo, of which their functional states are intrinsically insoluble in aqueous 

solutions and form into fibrillar assemblies. For example, both the cytoskeleton and silk 

are only functional as their monomers assemble into ordered fibrils in order to maintain 

the physical strength. In contrast, protein self-assembly with non-functional misfolded 

conformations leads to serious consequences and a broad range of human diseases. 

Figure 1.1 | Schematic diagram for protein folding and misfolding. (a) A schematic 

energy landscape for protein folding. During folding, protein molecules form a range 

of partially-folded intermediates with different conformations on the route travelling 

downhill on a free energy surface toward the native state (green). Chaperones assist 

folding by lowing energy barriers and preventing aberrant intermolecular 

interactions that form various misfolded conformations (red). (b) A kinetic scheme 

for protein folding. The spontaneous folding process can be assisted by chaperones 

binding to partially-folded intermediates that expose hydrophobic residues, thereby 

blocking the pathway to aggregation. Figure modified from ref. 9. 
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Protein misfolding involves substantial structural conversion from a native, soluble 

conformation to an insoluble conformation7. Misfolded proteins expose their 

hydrophobic amino acid residues to the solvent, thus are extremely unstable and 

reasonably could be considered as off-pathway products which are trapped in the valleys 

of the energy landscape (i.e. local minima)13,16. The resulting protein aggregation is a 

thermodynamically spontaneous reaction as the consequence of the unstable misfolded 

state. This intermolecular assembly process with misfolded conformations leads to a 

series of kinetically stable conformations9. Many aggregated states of proteins are 

structurally amorphous on a super-tertiary level, consisting of more or less disordered 

assemblies of interacting chains of the same or different sequences. In contrast, others 

might self-assemble as highly-ordered amyloid fibrils with “cross-β” structure due to 

their own structures and properties6,17. Amyloid fibrils are more thermodynamically 

stable than normal folding state and associated with many neurodegenerative diseases. 

This term ‘amyloid’ was first introduced in 1854. As the tissues and organs of patients 

who died from systemic amyloidosis were observed to contain deposits that stained with 

iodine, which is used for starch detection, the pathogenic agent was mistakenly regarded 

as starch-like materials, and hence the name ‘amyloid’ has been inherited until today18,19.  
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1.2 Neurodegenerative diseases 

The failure of correct protein folding and subsequent aggregation in vivo leads to protein 

deposits in tissues and a broad range of fatal human diseases. Major examples are 

provided by the amyloid β peptide (Aβ) of Alzheimer’s disease, α-Synuclein (αS) of 

Parkinson’s disease, and prion protein (PrP) of the different variants of spongiform 

encephalopathies (i.e. prion diseases). These diseases are collectively called 

neurodegenerative diseases, as these conditions lead to progressive degeneration in the 

central or peripheral nervous system7. With the global phenomenon of the increasingly 

ageing population, neurodegenerative diseases have arguably become the most dreaded 

maladies for elderly citizens, especially in the developed regions of the world20. This 

thesis covers the study of the aggregation mechanism of PrP and αS. Their pathology and 

structural biology are discussed in this section. 

 

1.2.1 Prion diseases, prion protein, and the emergence of the prion concept 

Prion diseases are an important model for neurodegenerative conditions in general. Since 

the term ‘prion’ was proposed thirty years ago21, tremendous advances have been made 

in understanding the problem of protein misfolding based on the prion hypothesis. Prion 

diseases, or more officially termed transmissible spongiform encephalopathies (TSEs), 

are a class of fatal neurodegenerative disorders which has been identified in many 

mammalian species. A list of discovered TSEs is provided in Table 1.1 that includes several 

well-known variants such as bovine spongiform encephalopathy (BSE, or commonly 

named mad cow disease) in cattle, and Creutzfeldt-Jakob disease (CJD) and Kuru disease 

in humans22. Clinical features of prion diseases often display prolonged incubation 

periods, usually followed by progressive motor dysfunction, cerebral ataxia, and 

dementia prior to death23. Histological analysis of the brains from human sufferers 

reveals symptoms of characteristic spongiform degeneration (i.e. neuronal death), 

astrogliosis, and pathological amyloid plaques containing misfolded prion protein (Figure 

1.2)23–29. The accumulation of abnormal PrP usually co-localise with TSE 

neuropathology30. 

The history of prion diseases was first documented in the 18th century. German literature 

in 1759 describes some sheep suffering from scrapie by the facts that “affected animals 

lie down, rub their backs against posts, fail to thrive, stop feeding and finally die”31. It also 
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commented that the shepherds had to isolate the affected sheep from healthy stock 

immediately because it was infectious and could cause serious harm to the flock31. In the 

19th century, European veterinarians initiated scientific research into this scrapie disease 

(i.e. the origin of the modern term for misfolded PrP, or PrPSc), and notably, Besnoit et al. 

in 1899 recognised neuronal vacuolation as a characteristic feature31,32. In 1936, another 

major finding was achieved by Cuillѐ and Chelle, who confirmed the transmissibility of 

scrapie disease by inoculating brain and spinal cord tissue from an affected animal to 

healthy sheep31,32. In 1961, transmission studies were extended to mice33, confirming that 

the scrapie agent was able to transmit. It was a milestone for researchers previously 

obliged to work exclusively with sheep and goats. 

TSEs had not been reported to be linked to humans until 1959. An American veterinarian 

Hadlow described that a newly discovered disease, Kuru disease, which was found in 

Papua New Guinea and reported by Gajdusek and Zigas two years earlier, was analogous 

Figure 1.2 | Neuropathological changes of the brain in CD-1 Swiss mice induced by 

prions of RML strain. (a) Pyramidal cell layer (Py) and stratum radiatum (SR) regions 

in the hippocampus of mice after inoculation of RML prions shows spongiform 

degeneration with vacuoles ranging 20-30 μm using hematoxylin and eosin staining. 

(b) Astrocytic gliosis (i.e. non-specific reactive change in response to damage to the 

central nervous system) in the hippocampus is shown after Glial fibrillary acidic 

protein (GFAP) immunohistochemistry. The scale bar represents 30 μm for both 

images. Figure modified from ref. 24. 
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to scrapie and transmitted by the ritual of endocannibalism34,35. This is direct evidence 

that TSEs is infectious through interorganismal transmission. Later, based on the 

exhaustive study on 12 brains from Kuru patients, Klatzo in 1968 commented that Kuru 

resembled another human disease - Creutzfeldt-Jakob disease (CJD), first described in 

1920s. Further comparisons between related human diseases such as FFI and GSS, which 

are now confirmed to result from genetic mutation of PrP nowadays, led to the 

classification of these neurodegenerative disorders as a subtype of TSEs31,32 (Table 1.1). 

In 1996, a novel human TSE, variant CJD (vCJD), was emerging in the United Kingdom36,37. 

The vCJD can be distinguished from classical CJDs by distinct neuropathological features 

and electroencephalogram changes32. Since the neuropathological patterns of mice were 

very similar after infected BSE or vCJD, it was believed to be the human form of bovine 

spongiform encephalopathy (BSE, or mad cow disease in common term), and it was likely 

to spread from cattle to humans through consumption of BSE-contaminated meat product. 

Up until 2009, there have been 211 cases of vCJD reported worldwide, and 167 of them 

were UK residents32,38. This was the first time that TSE agents were shown to be capable 

of cross-species transmission. 

The nature of TSE agents had been extensively debated for many decades. Early studies 

from scrapie disease in sheep in 1950 indicated the existence of a ‘filterable virus’39. Later 

in 1967, Griffith in the Bedford College, London suggested a revolutionary idea that the 

Figure 1.3 | TEM images of hamster PrPC and PrPSc aggregates. (a) PrPC and (b) PrPSc do 

not show distinguishable structure after negative staining with immunogold-labelled 

PrP. (c) PrP27-30 is derived from PrPSc after proteinase K (PK) treatment, showing rod-

like structure. The scale bar represents 100 nm. Figure modified from ref. 24 and 29. 
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pathogen could be protein which folds itself into an abnormal form, thus acting as an 

infectious agent40. Inspired by this idea, in 1982 Stanley B. Prusiner at the University of 

California, San Francisco proposed that the transmissible pathogen was naturally 

proteinaceous, based on the results that the pathogen was resistant against radiation and 

nuclease treatment. The term ‘prion’ (for proteinaceous infectious particle) was coined 

by him to describe such TSE agents, thereby distinguishing them from viruses and 

viroids21,23,41. It is now generally accepted that the structural conversion of PrP from the 

normal cellular prion protein (PrPC) to the misfolded scrapie form (PrPSc) is the trigger 

leading to prion diseases (Figure 1.3). Over the past two decades, a wealth of evidence 

has been supporting the protein-only hypothesis for prion transmission. These include 

the generation of PrP transgenic mice that develop neurodegenerative disease that is 

transmissible42–44 and the in vitro generation of infectious prions45–49. With growing 

knowledge in neurodegeneration research, other associated diseases are shown to 

possess the features of prions and prion-like properties that will be discussed in Chapter 

1.3. There has been a call for a unifying definition of prions in the last few years, that the 

prion should include all prion-like proteins based on their common propagation 

mechanism50–52.  
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Disease Natural host species Route of transmission or disease-

induction mechanism 

Sporadic CJD (sCJD) Humans Unknown 

Iatrogenic CJD (iCJD) Humans 
Accidental medical exposure to CJD-contaminated 

tissues, hormones or blood derivatives 

Familial CJD (fCJD) Humans Genetic (germline PRNP mutations)‡ 

Variant CJD (vCJD) Humans Ingestion of BSE-contaminated food 

Kuru Humans Ritualistic cannibalism 

Fatal familial insomnia (FFI) Humans Genetic (germline PRNP mutations) 

Sporadic fatal insomnia (sFI) Humans Unknown 

Gerstmann-Sträussler-Scheinker 

syndrome (GSS) 
Humans Genetic (germline PRNP mutations) 

Scrapie Sheep, goat, and mouflon Horizontal and possibly vertical 

Atypical scrapie Sheep and goat Unknown 

Chronic wasting disease (CWD) 
Mule deer, white-tailed deer, 

Rocky Mountain elk, and moose 
Horizontal and possibly vertical 

BSE Cattle Ingestion of BSE-contaminated food 

Atypical BSE Cattle Unknown 

Feline spongiform encephalopathy 

(FSE) 
Zoological and domestic felids Ingestion of BSE-contaminated food 

Transmissible mink 

encephalopathy (TME) 
Farmed mink Ingestion of BSE-contaminated food 

Spongiform encephalopathy of zoo 

animals 
Zoological ungulates and bovids Ingestion of BSE-contaminated food 

  
Table 1.1 | TSEs in human and mammals. Adapted from ref. 22. 

http://www.nature.com/nri/journal/v13/n12/fig_tab/nri3553_T1.html#t1-fn2
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1.2.2 Prion protein structures and functions 

The cellular form of PrP (PrPC) is a ~33-35 kDa glycoprotein (23 kDa for the recombinant 

protein) attached to the outer cell membrane by a glycosylphosphatidylinositol (GPI) 

anchor41. Lower PrPC expression is also found in various cellular components of the 

immune system, bone marrow, blood, and peripheral tissues. Maturation events of the 

nascent peptide chain result in a final protein composed of 208 residues. Through a 

succession of post-translational modifications, a signal peptide at the N-terminus (a.a. 1-

22) is removed, a GPI anchor is attached to the C-terminus, and the second and the third 

helix are linked with a disulfide bond53. The two helices also contain two N-glycosylation 

sites, which may be present as di-, mono-, or un-glycosylated forms with a large diversity 

of glycan molecules41. Structural studies of recombinant mouse PrP have identified it as a 

two-domain protein54: a predominantly disordered N-terminus (~100 residues) and a 

mainly α-helical C-terminus consisting of three α-helices and two short anti-parallel β-

strands. The NMR structure of the globular C-terminus of mouse PrPC is shown in Figure 

1.4. 

 

N-terminus of PrPC 

The structurally less-defined N-terminal region of PrPC consists of residues 23-134, which 

accounts for approximately half of the whole sequence (Figure 1.4e). It contains a stretch 

of several octapeptide repeats (OR), flanked by two positively charged clusters (CC, a.a. 

23-27 and 95-110). These domains are followed by a hydrophobic cluster of amino acids 

(HC, a.a. 111–134). Cooperative binding of four Cu2+ to the octarepeats is a unique and 

confirmed feature for PrP ligand, although its physiological role is still unclear38. In vitro, 

the octarepeats appear to strictly prefer Cu2+ over Cu+ and other metal ions. Binding of 

Cu2+ to PrPC was reportedly the most effective at neutral pH, with a reduced affinity at 

lower pH55. It is worth noting that many human prion diseases, including inherited, 

iatrogenic, and sporadic CJD, are influenced by an amino acid polymorphism resulting in 

M to V substitution within the hydrophobic region at codon 129 of PrP 56. The analysis in 

the PRNP gene in those patients with Kuru disease showed that most of them were 

heterozygous at codon 129 (i.e. MV genotype), a genotype associated with extended 

incubation periods and resistance to prion diseases57. 
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C-terminus of PrPC 

The structure of the globular C-terminus is highly conserved among mammals58. The NMR 

structure in Figure 1.4 shows that the helices H2 and H3 are linked by a disulfide bond 

between C179 and C214. The folding of PrP has been demonstrated to be intrinsically 

disordered and stabilised by the disulfide bond59, and structural conversion to a 

misfolded conformer is likely to take place from the unfolding of H260–62. A rather large 

Figure 1.4 | NMR structure of mouse PrP (121-231). (a) Ribbon diagram of mouse PrP 

(121-231) shows the globular fold of native PrP. The 3D structure reveals three α-

helices (red) and two anti-parallel β-sheets (green). The disulfide bond between C179 

and C214 (yellow) is shown. The N-terminal segment of residues 23-120 is 

unstructured and not displayed. (b) The surface view reveals the electrostatic potential 

of PrP, with blue indicating positive charges and red indicating negative charges. The 

presentation in (c) and (d) relates to the one in (a) and (b) through a 180° rotation 

around a vertical axis. (e) Structural features of PrP polypeptide sequence. Disulfide 

bond (yellow), glycosylation sites (blue), and GPI anchor in S231 are displayed. CC: 

charged cluster; OR: octarepeat; HC: hydrophobic cluster. (PDB: 1AG2) 
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variety of N-glycans are found to attach to PrPC at N181 and N19763,64. While di-

glycosylated PrPC is the dominant glycoform in the adult human brain, the ratio of di-, 

mono-, and unglycosylated PrPC glycoforms is observed to vary in different brain 

regions65. The ratio is also found to increase with the course of neuronal differentiation, 

as well as with the increasing density of cells cultured in vitro38,66,67. Recent studies in 

sialylation of the N-linked glycans have shown the glycan composition plays a key role in 

regulating prion propagation rate and infectivity68. The propagation rate in hyper-

sialylated PrPSc, which accounts for 35% of the total population in prions of the RML 

strain, is estimated to decrease by 500 folds68–70. 

 

PrPC tissue expression and functions 

PrPC is predominantly expressed at high levels in the nervous system, but it is also found 

in several types of the immune system (e.g. lymphocytes and lymphoid cell lines, 

monocytes, T cells, NK cells, B cells), bone marrow, blood, and peripheral tissues38. The 

physiological function of PrPC is still unclear, and whether the normal function 

contributes to the toxicity in prion diseases remains unknown41. Early studies in mice 

indicated that the ablation of the Prnp gene, which is located on the short arm of human 

chromosome 20 and responsible for prion protein expression, does not alter the gross 

phenotype71. In recent years, PrPC has been shown to contribute to myelin maintenance72, 

as well as to the development and interaction of T-cells, macrophages, dendritic cells, and 

stem cells22. However, conflicting results have often been reported22. 

 

Proposed models for PrPSc structure 

PrPC to PrPSc conversion is associated with structural refolding from a predominantly α-

helical conformer into a β-sheet rich conformer24. However, progress in elucidating the 

molecular details of this transition has been relatively slow, largely due to experimental 

inaccessibility of the aggregated species. Information from low-resolution spectroscopies 

such as circular dichroism (CD), Fourier-transform infrared (FTIR) spectroscopy, and X-

ray diffraction have revealed that amyloid fibrils exhibit a distinctive characteristic cross-

β structure and consist of multiple twisted protofilaments17. Interestingly, it has become 

increasingly clear that the cross-β structure seems to be a common feature shared by a 

range of different proteins, indicating that the amyloid state could be a more common 

structural phenomenon than initially thought6,7,73–75. From biochemical assays based on 

limited proteolysis, it is known that PrPSc contains a proteinase K (PK)-resistant core at 

the C-terminus (termed PrP 27-30, as the molecular weight is between 27-30 kDa), 
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indicating the existence of a highly stable inter-molecular interaction within a single 

aggregate28. Several detailed structural models for PrPSc have been proposed based on 

different approaches76–83. Among them, two contradictory models received more 

attention from the PrP research community. 

A PrP fibril model of the parallel in-register intermolecular beta-sheet (PIRIBS) 

architecture was proposed based on biochemical studies in recombinant PrP79,84, where 

PrP monomers stack along the fibril axis and form stretches of parallel β-sheet with their 

entire C-terminal region, eliminating all native α-helices, has been supported by 

abundant experimental observations for a decade82,84–89. Although the results are 

encouraging, the in vitro-produced recombinant PrP fibrils and PrPSc appear to have 

substantially different cross-β architectures based on studies using X-ray fibre diffraction, 

hydrogen exchange and atomic force microscopy (AFM)90–92.  

In contrast, a recent cryo-electron microscopy (cryo-EM) study from purified infectious 

GPI-anchorless PrPSc provides evidence of a separate model, described by a 4-rung β-

solenoid architecture within a protofilament while two protofilaments twisting about 

each other83. Despite the relatively low resolution, the average height of each PrPSc was 

determined to be ~17.7 Å along the fibril axis, while the four-rung β-solenoid fold was 

shown to have a height of 19.2 Å along the fibril axis. This extremely compact structure 

is in good agreement with several biophysical and biochemical data77,90,93–96 and shares a 

similar cryo-EM structure with HET-s97 and pectate lyase C98 fibrils with high resolutions. 

As both models are supported by contradictory evidence, a newly proposed explanation 

is that both structures are correct since the architecture of infectious PrPSc may be one of 

the total PrPSc conformations. This also explains Collinge and Clarke’s general model of 

diverse prion strains and their pathogenicity99. However, it cannot be ruled out that this 

difficulty may result from the different experimental methods used to produce misfolded 

PrP. 

 

1.2.3 Parkinson’s disease and α-Synuclein 

Parkinson’s disease (PD) is a long-term degenerative disorder in humans. The typical 

physical symptoms include resting tremor in limbs, bradykinesia (slowness of 

movement), muscular rigidity, postural instability, and festination, combined with mental 

disturbances of mood, speech, memory, and cognition100. PD is the second most common 

neurodegenerative disease after Alzheimer’s disease101. The prevalence of the disease in 

industrialised countries is generally accepted to be around 0.3% of the general population 

and about 1% of the population older than 60 years102–105. Furthermore, the onset of PD 
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is highly correlated with the age, where the prevalence is rare before age of 50 years and 

reaches 4% for the highest age groups of 85-89 years in a study based in Europe106,107. It 

is noted that 90% of PD cases are sporadic and have no identifiable genetic cause108. 

PD was first described in An Essay on the Shaking Palsy in 1817 by an English surgeon 

James Parkinson109,110. The hallmark pathology of PD was identified by Frederic Lewy in 

1912, which includes progressive loss in dopaminergic neurons in the substantia nigra 

and other regions in brain and presence of Lewy bodies (LBs) and Lewy neurites (LNs) 

inclusions in the remaining neurons111–113. In 1997, Spillantini et al. identified that the 

aggregated form of the protein, α-Synuclein (αS), is the main component of Lewy bodies 

in PD brains with an immunohistological approach114, while in the same year, 

Figure 1.5 | Neuropathological changes of three main synucleinopathies in humans. 

Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system 

atrophy (MSA) are shown. Both PD and DLB have neuronal cytoplasmic and neuritic 

αS inclusions. MSA involves dysfunction of the autonomic nervous system in addition 

to Parkinsonism and cerebellar symptoms, characterized by glial cytoplasmic 

inclusions (GCIs) and neuronal nuclear inclusions (NNIs) formed by αS aggregates. SN: 

substantia nigra. All the scale bars represent 25 μm. Figure modified from ref. 411. 
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Polymeropoulos et al. showed that a mutation on the αS gene caused PD115. It is worth 

noting that αS aggregation is also the predominant neuropathological feature of two other 

neurodegenerative disorders: dementia with Lewy bodies (DLB) and multiple system 

atrophy (MSA)116. Together with PD, these αS-induced diseases are collectively termed 

synucleinopathies (Figure 1.5). 

 

1.2.4 α-Synuclein structures 

α-Synuclein (αS) is a 14.5 kDa protein expressed in the neuronal cytosol in vertebrates, 

containing 140 a.a. without post-translational modifications117. The name ‘synuclein’ 

derives from its localisation in cells when it was first discovered in the nuclear envelope 

and pre-synaptic axon terminals from the electric fish118. The protein belongs to a larger 

family that includes α-, β-, and γ-Synuclein, and their sequences share a highly-conserved 

Figure 1.6 | NMR structure of lipid-bound α‑Synuclein (1-140). (a) Ribbon diagram of 

the global fold of full-length human αS bound to lipid micelles. The structure reveals the 

N-terminus and the NAC region forms two α-helices (blue) while the C-terminus 

remains unstructured. αS in the lipid-free state is unstructured and not displayed. (b) 

The surface view reveals the electrostatic potential, with blue indicating positive 

charges and red indicating negative charges. (c) Structural features of αS polypeptide 

sequence show three major segments: N-terminus, non-amyloid component (NAC), and 

C-terminus. (PDB: 1XQ8) 
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N-terminus119. The primary sequence of human αS consists of three regions: a positively-

charged N-terminus (1-60 a.a.), a central region of non-amyloid component (NAC, 61-95 

a.a.), and a negatively-charged C-terminus (96-140 a.a.; Figure 1.6c) 120. The protein is 

highly unstructured in lipid-free environment. 

N-terminus of αS 

The positively-charged N-terminus of αS contains seven 11-residue repeats that 

resembles the α-helical lipid-binding domain121. It has been demonstrated that αS binds 

with high affinity to lipid membranes with negative charge and high curvature, and that 

part of the N-terminus undergoes conformational changes to an α-helical structure122–128 

(Figure 1.6a and b). Interestingly, and all known pathogenic mutations (A30P129, E46K130, 

A53E131,132, A53T115, H50Q133,134, and G51D135,136) are found in this region, suggesting an 

important role of the N-terminus in the structural flexibility and function of αS137. It is 

noted that the KTKEGV sequence is characteristic for the amphipathic lipid-binding α-

helical domains of apolipoproteins, suggesting that the N-terminus of αS may be capable 

of reversibly binding to the surface of lipid membranes123,138. Truncation of the N-

terminal segment was shown to promote αS fibrillisation; in contrast, the addition of an 

extra 11-residue repeat suppresses it139. It is still controversial whether lipid binding to 

the N-terminus impedes or enhances αS aggregation from various experimental 

approaches138–140, a mechanism has been proposed for lipid-induced αS aggregation. In 

the model, extended- or broken-helix membrane-bound states of αS can partially release 

the lipid-binding region, thus converting to a partially helical intermediate on the lipid 

membrane for subsequent self-assembly138,141. Hence, the interaction between the N-

terminus and lipid membrane is likely to be a key component in the initial misfolding of 

αS. 

 

NAC region of αS 

The hydrophobic non-amyloid component, NAC, is shown to be important in αS 

aggregation and the origin of toxicity142. The cryo-EM structure of the αS fibril made from 

recombinant proteins reveals that NAC, together with part of the N-terminus, contributes 

to the core of protofilaments143, which is consistent with other structural studies144–148. 

Either partial deletions149,150 or amino acid substitutions140 in the NAC segment strongly 

inhibits αS fibrillisation, suggesting that this region is also critical during fibril formation. 
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C-terminus of αS 

Although the negatively-charged C-terminus is not part of the cross-beta structure in the 

αS fibril143, it has been shown to be responsible for protein stability both in its native 

conformation151 and the fibrillar state152. The stabilisation is likely to result from 

shielding of the hydrophobic NAC region from solvents, suggesting that the interactions 

between the C-terminus and N-terminus or NAC region of αS are important in maintaining 

its natively-unfolded structure and thus prevent conformational change153. This is 

consistent with the fact that deletion of this region enhances fibril formation154,155. 

 

αS tissue expression and functions 

αS is highly expressed in the brain, where it is specifically concentrated in pre-synaptic 

nerve terminals in close proximity to synaptic vesicles156. It has also been reported to 

localise at the nuclear envelope118 and mitochondria157. However, the physiological 

function of αS is still unclear. Multiple functions have been proposed, including 1) storage, 

transmission, and biosynthesis of dopamine158, 2) trafficking159,160 and stabilisation161 of 

synaptic vesicles, acting as a cellular ferrireductase162, 4) participating in mitochondria 

function157, and 5) neuronal protection from low levels of oxidative stress163. Mice lacking 

αS have been reported to show a deficit in dopamine secretion164 and altered pattern of 

neurotransmission164,165. Furthermore, triple-knockout mice lacking synucleins are 

developed age-dependent neurological impairments and die prematurely160. As αS 

physically interacts with at least 30 proteins166, the real function of αS is difficult to 

determine, while the studies above all suggest a critical role for αS in cell signalling in 

neurons. 

 

αS fibril structure 

Previous studies have determined some structural details of αS fibrils using micro-

electron diffraction167 and solid-state NMR (ssNMR)168, and these were further validated 

by X-ray diffraction169,170 and ssNMR at the secondary structure level171,172, forming a 

parallel in-register cross-β structure. The data are consistent with a recent observation 

from cryo-EM with high resolution, which reveals two fibril polymorphs of recombinant 

αS with distinct protofilament interfaces173. Produced under different buffer conditions, 

the rod and twister polymorphs are composed of two protofilaments with a highly 

conserved kernel structure assembled around different steric zipper interfaces (a.a. 46-

57 of the N-terminus and a.a. 68-78 of the NAC region for the rod and the twister 
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polymorph, respectively). The subunits of the twister polymorph have an ordered bent β-

arch motif, while those of the rod polymorph have a bent β-arch with an additional Greek-

key-like fold. It is worth noted that another recently released cryo-EM structure of a 

truncated αS (a.a. 1–121) fibril143 shows a similar structure with the rod polymorph of 

the full-length protein. 

Considering the fibril structures acquired from PrPSc, αS, and other aggregation-prone 

proteins, they can be classified as two main classes: β-solenoid structure and parallel in-

register β-sheet structure, where both structures are governed by the same types of 

interactions and share many molecular details96. A detailed understanding of the 

molecular arrangement for fibrillar structures would bring more insights in terms of the 

difference of protein strains and their aggregation mechanisms.  
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1.3 The molecular basis of protein aggregation II: the prion 

paradigm 

The prion paradigm has emerged as a unifying theory to explain the development of many 

neurodegenerative diseases50. The theory postulates the fundamental origin of these 

disorders is protein self-assembly and the subsequent spreading through a nucleation-

dependent pathway. In this section, the propagation mechanism and the origin of toxicity 

of PrP and other associated aggregation-prone proteins are discussed. 

 

1.3.1 Prion propagation at the molecular level 

Prions are the pathogenic agent causing prion diseases and traditionally considered 

unique among the agents of neurodegenerative diseases due to their infectious behaviour. 

According to the widely-accepted protein-only hypothesis, the prion agent comprises 

principally aberrant PrP molecules; these aggregates in their misfolded state induce the 

structural conversion of the native PrP molecules to the same misfolded state, hence 

replicating and eventually forming amyloid deposits in vivo21,24,25,41. From macroscopic 

measurements, the overall aggregation reaction shows a characteristic sigmoidal shape 

including an initial nucleation phase, followed by a rapid growth phase, and finally an 

equilibrium phase due to the depletion of monomers174 (Figure 1.7b). 

Protein aggregation at the molecular level is described by a nucleation-dependent 

polymerisation reaction175,176 (Figure 1.7a). In the initial nucleation phase, a series of 

meta-stable oligomeric intermediates are formed as a result of the stabilisation of 

misfolded proteins175,177. The nucleation process, or primary nucleation, is kinetically 

slow. It is the origin of the observed lag phase from macroscopic measurements (Figure 

1.7b). At least in some cases, these oligomers undergo structural conversion from 

relatively disorganised species to more compact structures with a rudimentary cross-β 

structure176,178–182. These meta-stable nuclei thus function as a template and are capable 

of growing into highly-organised mature amyloid fibrils through further monomer 

recruitment6,176. The growing fibril can eventually break, either spontaneously or actively 

through cellular processes, and this may depend on the increasing length and 

conformational stability of the amyloid structure174,175,183. Pre-formed aggregates can act 

as a seed and thus shorten the lag phase for the overall reaction in proportion to the dose 

of seeds applied6,184 (Figure 1.7b). 
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In contrast to conventional nucleation-dependent polymerisation that was found in actin 

and other functional fibrils, amyloid formation is distinct due to the occurrence of 

secondary pathways185. Multiple secondary events, such as secondary nucleation and 

fibril fragmentation, have been found to account for aggregation kinetics observed 

experimentally186, which is insufficiently described by a simple nucleation process 

(Figure 1.7c). Secondary nucleation allows the formation of new aggregates from existing 

template seeds with concomitant amplification of the total number of protein assemblies. 

On the other hand, fibril fragmentation increases the number of protein assemblies by 

generating multiple fragments and thus providing new ends for monomer addition. In 

Figure 1.7 | The molecular mechanism of amyloid fibril formation. (a) Amyloid fibril 

formation begins with slow primary nucleation that involves a range of structurally 

diverse intermediates, followed by rapid growth of fibrils. The fibrils can break into 

smaller fragments and act as new templates for further growth. (b) The kinetic profiles of 

protein aggregation show a characteristic sigmoidal curve from macroscopic 

measurements. The lag time observed can be shortened by the addition of pre-formed 

seeds. (c) Multiple molecular events are involved in the self-replication process. Through 

the use of kinetic models such as the nucleation-elongation-fragmentation model 

(described in Section 1.3.1), the kinetics can be rationalised based on observed reactions, 

and hence their kinetic rates are acquired. Figure modified from ref. 174 and 412. 
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particular, fibril fragmentation has been shown to be a major secondary pathway for the 

amplification of amyloid fibrils both in vitro and in vivo184,186–192. 

Conventionally, aggregation kinetics is studied with empirical approaches by fitting 

kinetic profiles to generic sigmoidal equations. Instead, through the use of more complex 

kinetic models, a rationalised approach can provide mechanistic insights into the process 

of fibril formation and changes in the elementary rate constants. An example is provided 

by the nucleation-elongation-fragmentation model. This kinetic model treats the amyloid 

self-assembly process as a nucleation-dependent polymerisation with fragmentation as a 

secondary process186,190,193. Based upon substantial empirical evidence, this model allows 

for the calculation of elementary kinetic parameters including nucleus size (nc), primary 

nucleation rate constant (kn), fragmentation rate constant (k-), and elongation rate 

constant (k+) (Figure 1.7c). The theoretical framework has proved particularly useful for 

understanding the molecular mechanisms, provided by studies in wild-type (WT) 

αS180,191, Aβ42194, tau and its mutants192,195, and yeast prion Ure2178. 

 

1.3.2 Prion neurotoxicity and infectivity: uncoupled features in protein 

propagation in vivo 

Pre-fibrillar, oligomeric species of protein aggregates, rather than mature amyloid fibrils, 

have long been suggested to be the primary toxic agents in neurodegenerative diseases 

and generically damaging to cells6,7,30,181,196–200. This is supported by accumulating 

evidence from a range of in vitro and in vivo studies on prion diseases200–204, Alzheimer’s 

disease30,194,205–208, Parkinson’s disease180,209, and non-pathological protein 

aggregates196,198. In contrast, several studies have shown that the fibrillar species of 

aggregates are toxic to neurons200,202,210, but now it is thought more likely to act as a 

protective mechanism in cells in order to remove oligomeric aggregates211–214. 

It is still unclear how these protein aggregates cause neurotoxicity, and numerous toxicity 

mechanism has been proposed. Protein aggregates have been suggested to induce cell 

death through apoptosis200,215,216, hyper-activity of the excitatory amino acid transmitters 

(e.g. glutamate)217–220, ER stress221–223, and autophagy224–229. Furthermore, neurotoxicity 

induced by protein aggregates may also come from the physical interaction between the 

aggregates and cell membranes. Hydrophobic chemical groups of misfolded protein 

aggregates are normally accessible to solvents within the cellular environment181,230,231. 

These exposed hydrophobic side chains have been shown to cause non-specific 

membrane disruption from biophysical studies and computer simulations in several 

aggregated proteins6,181,231–236. Interestingly, a report has observed that oligomeric 
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aggregates are able to form ion channels on lipid bilayers237. This aberrant interaction 

with the lipid membrane has been demonstrated to induce partial permeabilisation of the 

membrane, eventually resulting in disruption of cellular homeostasis6,180,181,205,234,235,238. 

In this context, the toxicity originating from oligomers may be attributed to their higher 

surface-to-volume ratio that leads to a greater extent of exposed hydrophobic side 

chains182,231. 

Prion infectivity is a unique feature among neurodegenerative diseases. It is defined that 

bona fide prions are transmissible from an affected individual to another recipient and 

induce pathogenesis174. The small-sized PrP aggregates have been found to account for a 

substantial proportion of the total infectivity in brain homogenate239–241. According to the 

light scattering data242, the infectious species of PrP, purified and PK-treated from scrapie-

infected (263K strain) hamster brain, appears to be around 300-600 kDa in size. In recent 

years, the proteins associated with other neurodegenerative diseases have been 

recognised to spread by cell-to-cell transmission of protein aggregates, although the 

infectivity of these aggregates is unclear52. From animal studies and the development of 

cell-based prion bioassays, the increase in infectivity during prion pathogenesis is likely 

to be uncoupled from the production of toxic species99,243. Prion propagation in the mouse 

brain has been suggested to proceed in two distinct mechanistic phases99,244,245. Phase 1 

is a clinically silent exponential phase in which prion titre rapidly grows to its maximum. 

After plateauing of the prion titre, it is followed by Phase 2 that is characterised by a linear 

increase in the toxic species, which continues until the onset of clinical signs. In the same 

study, it is observed that the PK-resistant PrPSc may account for a small and variable 

minority of the total disease-related PrP species244,246, indicating that a large amount of 

misfolded PrP in vivo may be sensitive to PK digestion. This is also supported by another 

hamster experiment247. The relative contribution of PrPSc to both infectivity and toxicity 

is still unclear244. At present, some of the disease-related species of PrP aggregates are 

thought to be PK-sensitive, which significantly contribute to the infectivity in some prion 

strains244,246 and in sCJD patients248. 

 

1.3.3 Prion-like spread in other neurodegenerative diseases 

The classical definition of the prion underlines self-replication of the misfolded protein 

as well as infectivity that enables the transmission of prion agents from one individual to 

another. With recent advances in the study of aggregation mechanisms, it is increasingly 

recognised that prion replication involves nucleation-dependent elongation with 

fragmentation, and this paradigm can be expanded to other aggregation-prone proteins 

that share the common ‘prion-like’ feature of structural refolding and self-
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assembly7,8,50,52,116,249–251. Following this molecular perspective, many aggregation-prone 

proteins have been demonstrated to be able to induce pathogenic patterns in vivo with 

exogenous seed application through prion-like propagation in the host. These include 

yeast prions Sup 35252 and Ure2178, Aβ253 and tau protein254,255 in Alzheimer’s disease, 

αS256–261 in Parkinson’s disease, and interestingly, p53262–264 involved in malignant 

cancers. Despite the lack of evidence for individual-to-individual transmission, many 

aspects of the above diseases can be explained by prion-like spreading, and the prion 

paradigm could be a more general phenomenon among aggregation-prone proteins41.   



 

 

24 1.4 Single-molecule techniques 

1.4 Single-molecule techniques 

In structural studies of biomolecules such as proteins, the majority of experiments are 

carried out using various biochemical or biophysical approaches, and in many cases, 

these are effective at elucidating biological phenomena. A typical measurement in a bulk 

solution involves the simultaneous detection of billions of molecules and the observation 

of changes from an equilibrium state to another newly-equilibrated state. However, the 

results from the bulk measurements are the ensemble averages of the behaviour of 

individual molecules, and hence the transition undergone by any individual species 

within this ensemble is usually undetectable. 

In the field of protein aggregation, current research aims to understand very complicated 

biological systems that involve kinetically-metastable, transiently formed, and 

heterogeneous species of aggregates. Single-molecule techniques offer us a new approach 

to resolve the individual behaviour of these species and are therefore highly advantageous 

over ensemble techniques265. Individual molecules can be identified and characterised 

through basic physical properties such as fluorescence intensity and the shape of objects. 

The distribution of subpopulations can be therefore classified and analysed statistically, 

allowing us to acquire new insights into the intricate process of protein aggregation. 

 

1.4.1 Fluorescence and total internal reflection fluorescence microscopy (TIRFM) 

Fluorescence is the emission of light from an electronically excited molecule with a 

wavelength equal to or longer than that of the absorbed light266. It was first described by 

Sir George G Stokes in 1852267. An electron of the molecule can be excited by absorption 

of a photon. When this electron reaches a certain excited electronic state, it relaxes to the 

lowest vibrational energy level in the same excited state via radiationless decay. 

Fluorescence occurs as the electron transfers back to its electronic ground state through 

photon emission. The emitted photon hence exhibits lower energy than the original 

excited photon, leading to a red shift of the emission spectrum from the absorption 

spectrum of this molecule, a phenomenon called ‘Stokes shift’. Fluorescence 

measurements can be considerably more sensitive than absorbance measurements due 

to higher signal-to-noise ratios (SNR), such that lower sample concentrations are 

needed266. Furthermore, fluorescence is often extremely sensitive to the environment and 

can hence be employed to probe complex local environments266. Therefore, fluorescence 

measurements have been extensively adopted to study biological processes. 
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In single-molecule fluorescence imaging, signals from individual fluorophores cannot be 

increased with larger sample volume due to the presence of various sources of 

background noise, for instance from fluorescent impurities or Raman scattering268. 

Therefore, a key determinant for the resolution of images is acquiring a high SNR in a 

small volume. To achieve this goal, the most common method is to restrict the 

illumination volume from which the light is collected265. Total internal reflection 

fluorescence (TIRF) microscopy is one of the principal techniques applied to single-

molecule experiments as the illumination volume is restricted to ~100 nm in thickness269. 

Total internal reflection (TIR) requires plane polarised light travelling through a higher-

refraction index (RA) medium to a lower-RA medium (Figure 1.8). RA is a dimensionless 

number n that describes the amount of light refracted through that medium: 

                                   (Eq. 1.1) 

 

where c is the speed of light in a vacuum and v is that in a medium. The different RA 

between two substances regulates the refraction and reflection of an incident light at the 

interface as a function of incident angle. By increasing the laser incident angle over the specific 

critical angle (θc), the light beam obeys Snell's Law and is totally reflected from the media 

interface instead of refracting: 

(Eq. 2.2) 
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Figure 1.8 | TIRF illumination. As a laser source passes through the glass (n = 1.518) 

and is reflected from the glass-water interface (n = 1.33-1.37 for aqueous solutions) 

at a critical angle, θc, an evanescent wave is established that penetrates ~100 nm into 

the sample. This creates a confined illumination region in which fluorophores in an 

aqueous medium close to the surface of a glass slide are selectively excited (red) and 

subsequently emit fluorescence, whilst those farther away from the interface remain 

non-excited (yellow). 
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where n1 is the RA of the first medium and n2 is that of the second medium. 

The TIR generates a very thin electromagnetic field termed the evanescent wave. This 

wave, which has an identical frequency to that of the incident light, undergoes exponential 

intensity decay with increasing distance, d, from the interface into the second medium: 

(Eq. 2.3) 

 

where I0 is the intensity of the evanescent wave at the interface. The penetration depth of 

the wave is given by: 

(Eq. 2.4) 

 

for θ > θc and light of wavelength λ0 in a vacuum269. Typical n values for microscope 

coverslips (for borosilicate glass, nglass = 1.518) and for buffered samples (for water, nwater 

= 1.33) result in TIR angles higher than 61.2°. The phenomenon leads to a short 

penetration depth of only several hundred nanometres (in this case ~100 nm), which 

means a restricted volume of illumination is created in very close proximity to the glass-

water interface. Since only those fluorophores within this region are able to be excited by 

the evanescent wave, the background noise can be decreased effectively, and thus single 

molecules are resolved. In a typical TIRF set-up (Figure 1.9a), a laser source excites a 

buffered sample in TIRF mode. The fluorescence emitted by the fluorophores in this 

sample is collected through a microscope objective and is separated from the incident 

light with a dichroic mirror, eventually collected by a sensitive electron multiplying charge 

coupled device (EMCCD) camera. 

 

1.4.2 Thioflavin T dye and single-aggregate imaging 

Thioflavin T (ThT, figure 1.9b) is a benzothiazole dye which has been extensively used in 

biochemical assays to determine the presence of amyloid fibrils both in vitro and in vivo. 

Although its fluorescence quantum yield is very low in water (φ<0.0001 at room 

temperature)270, upon binding to cross-β structure of fibrils the quantum yield is 

substantially increased by several orders of magnitude with a dramatic Stokes shift271, 

leading to fluorescence emission at peak around 480 nm272,273. As a representative 

amyloid dye, ThT is generally considered to be specific towards amyloid structures, and 
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the characteristic fluorescence emission does not generally occur upon binding to 

precursor proteins or amorphous protein aggregates273, though in some cases it has been 

reported to bind to non-β sheet cavities on protein surfaces274. However, the mode and 

stoichiometry of ThT binding remain unclear and controversial. Formation of ThT 

micelles of ~3 nm in diameter was observed along the length of amyloid fibrils275, while 

another excimer model suggested that the fluorescence is induced due to ThT binding in 

both monomeric and dimeric forms, ducking in channels along the long axis of fibrils273,274. 

‘Single-aggregate’ fluorescence imaging (Figure 1.10) is a newly-developed method 

aimed to directly detect the fluorescence emission of individual protein aggregates by 

taking advantage of sensitive TIRFM instrumentation and the specificity of ThT for 

amyloid structures276. In the present research, TIRFM coupled with single-aggregate 

imaging is applied to visualise the evolution of single ThT-active aggregates on the 

aggregation pathway at a sub-micromolar level of protein concentration. The morphology 

Figure 1.9 | Schematic representation of the TIRFM setup used in this thesis.  (a) The 

sample in the presence of Thioflavin T (ThT) is excited by a one-colour laser source. 

Fluorescence is collected by a high numerical aperture objective lens and recorded by 

an EMCCD camera. (b) ThT structure. ThT is non-fluorescent in polar solvents, while 

selectively bound to cross-beta structure, the quantum yield is substantially 

enhanced. 
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of individual protein aggregates and their physical properties (e.g. fluorescence intensity, 

length) can be visualised using the imaging system and then extracted after image 

analysis. This advantage allows the characterisation and temporal tracking of sub-

populations during aggregation kinetics that is likely to be averaged in conventional ThT 

assays. In addition, the non-covalent binding of ThT eliminates common concerns of 

covalent dye-labelling, such as interference with protein structure and kinetic behaviour. 

This method can be modified for multiple purposes such as dual-channel imaging, or 

sPaint and AD Paint for super-resolution imaging with protein aggregates, as will be 

discussed in the next sections.  

Figure 1.10 | Single-aggregate imaging using TIRFM. Thioflavin T (ThT) dye is used to 

visualise misfolded protein aggregates containing cross-beta sheet structure (red 

arrows) on a coverslip surface with TIRF illumination. ThT is normally non-

fluorescent (white circles) in solution and non-reactive with protein monomers (blue 

dots). Upon binding to the cross-beta sheet folds, ThT becomes highly fluorescent 

(yellow circles), and the intensity emitted from individual aggregates in the resulting 

TIRF image is linearly dependent on the size of the aggregated assemblies. As the 

photobleached ThT molecules bound on the protein surface can exchange quickly with 

the large pool of unbound ThT molecules in solution, the ThT fluorescence remains 

constant intensity over time. 
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1.4.3 Super-resolution imaging: spectral Paint (sPaint) 

In conventional light microscopy, there is a fundamental maximum to the resolution 

which is due to the diffraction of visible light. The theoretical resolution of a given optical 

system is dependent on the Abbe diffraction limit. Considering light travelling in a 

medium, it converges to a spot with certain diameter d, which can be described by: 

 

(Eq. 2.4) 

 

where λ is the wavelength of light, n is the refraction index of the medium, and θ is the 

maximal half-angle of the cone of light that can enter or exit the lens. NA (numerical 

aperture) = n sinθ, which is normally 1.4-1.6 in modern optical instruments. If we 

consider a single fluorophore is activated and emits purple light with a wavelength of 550 

nm, travelling to an oil-immersed objective with NA=1.49, the Abbe limit is about 180 nm. 

Despite the advantages of fluorescence microscopy, the scale of the diffraction limit 

inevitably leads to obscure fluorescence images that can only be resolved as a point 

spread function (see below for description)277, thus restricting observation of small 

biological agents such as proteins (1-10 nm). 

Super-resolution microscopy is an advanced optical technique aimed to resolve 

structures beyond the diffraction-limited resolution of conventional light microscopy 

while retaining the advantages of conventional imaging. One of the stochastic functional 

approaches, single-molecule localisation microscopy (SMLM), achieves super-resolution 

by serially detecting individual fluorophores, isolating them, and fitting their images with 

the point spread function (PSF). PSF is the fixed size of the spread of a single point of light 

that is diffracted through a microscope, which is also a measure of the minimum-size 

point source or object that can be resolved by a microscope277. By fitting the spread of 

intensity of individual fluorophores from the image, the locations of their centres can be 

determined with high precision, and it is only limited by its own intensity, thus acquiring 

a high-resolution map of the fluorophores. Recent developments in SMLM techniques 

have enabled nanoscopic cellular components to be imaged with a precision of tens of 

nanometres278–280, as well as simultaneous spectral and spatial imaging281–283. 

2 sin 2
d
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Spectrally-resolved Paint (points accumulation for imaging in nanoscale topography), or 

sPaint, is a recent application in SMLM that simultaneously records the spatial position 

and emission spectrum of single dye molecules to super-resolve an image284 (Figure 

1.11a). Developed in our group, this technique provides a stochastic imaging method that 

uses diffusing fluorophores at a very low nanomolar level to transiently interact with the 

Figure 1.11 | Schematic representation of sPaint setup. After sample excitation, 

fluorescence is collected by a high numerical aperture objective lens and passed 

through a blazed transmission diffraction grating. The fluorescence emission is divided 

into the spatial region (0th diffraction order) and the spectral region (1st diffraction 

order) in the image plane and recorded by an EMCCD camera. 405 nm and 532 nm 

lasers are used to sequentially excite the dyes ThT and Nile red (NR), respectively. (b) 

NR structure. NR is a typical lipophilic stain that is non-fluorescent in polar solvents, 

while in nonpolar environments, the quantum yield is substantially enhanced. (c) 

Representative sPaint image detected with the NR channel shows the hydrophobicity 

landscape (i.e. density plot) of a single PrP fibril. To quantify the hydrophobicity of 

individual aggregates, the fluorescence wavelength of each localisation event (coloured 

dots with indicated wavelengths shown in the inlet) is recorded. The median 

wavelength ( x ) of all localisation signals from a single aggregate is used to represent 

the hydrophobic level of the given aggregated assembly. 
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sample, so that the pattern of the sample can be clearly ‘painted’ in a sufficient time scale. 

The uniqueness of sPaint imaging is the ability to measure environment-specific 

properties of the fluorophore bound to protein aggregates. A spectrally-responsive dye 

fluorophore, Nile red (NR, figure 1.11b), has been shown to be an effective probe in 

hydrophobic surface of protein molecules in biochemical studies285–287. Through the use 

of NR, sPaint can generate information-enriched super-resolved images by measuring the 

variation of the emission wavelength of single NR molecules depending on the local 

environment. Hence, NR becomes a sensitive probe for structural conversion of proteins 

through the change in surface hydrophobicity while providing super-resolution images 

with a resolution of ~40 nm. A typical sPaint image is shown in Figure 1.11c, revealing 

the heterogeneity of surface hydrophobicity from a PrP filament. More importantly, 

combined with dual channel-imaging with ThT, sPaint can detect ThT-inactive protein 

aggregates that can only be imaged in the NR channel. 

 

1.4.4 Super-resolution imaging: AD Paint 

Prion and prion-like propagation in cells take place either in the cytosol or on the plasma 

membrane, and they normally involve the formation of small oligomers as well as large 

amyloid deposits with a distinct pattern for the spatio-temporal distribution. The need to 

characterise the cellular spatio-temporal distribution of proteins with high resolution has 

driven several advances in recent years288–291. One of the developments achieves super-

resolution with the same stochastic principle as sPaint through the use of two 

complementary sequences of oligonucleotides labelled with fluorophores290,291. However, 

it is difficult to find a suitable ligand candidate to specifically recognise misfolded protein 

aggregates. 

AD Paint (Antibody-DNA Paint, previously called Aptamer-DNA Paint) has been 

developed in our group for the purpose of visualising individual protein aggregates in 

fixed cells (Figure 1.12a). This method combines super-resolution microscopy with 

immunostaining of misfolded proteins using a fibrillar structure-specific antibody. To 

achieve stochastic imaging as in sPaint, the antibody is conjugated to a short single-

stranded DNA sequence (docking strand), which is designed to be complementary with 

another single-stranded DNA sequence (imaging strand) labelled with a fluorophore 

Cy3b (Figure 1.12b). The transient binding between the docking strand and the imaging 

strand can thus provide super-resolution images for specific misfolded protein targets in 

cells with a resolution of ~30 nm. The representative image in Figure 1.12c shows the 

localisation of individual signals for endogenous αS aggregates in cells, and the 

aggregated clusters are found unevenly distributed in the cytosol. This technique not only 
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enables quantitative analysis for the accumulation of protein aggregates in cells, but also 

allows the detection of aggregates in cell media and other biofluids on a coverslip. 

  

Figure 1.12 | Schematic representation of AD Paint setup. (a) The fixed cells that are 

recognised by an antibody conjugated to the docking strand are imaged in the 

presence of the imaging strand-Cy3b. Fluorescence is collected by a high numerical 

aperture objective lens and recorded by an EMCCD camera. (b) Cy3b-NHS structure. 

The NHS ester group acts as a leaving group and is released after the dye molecule is 

conjugated to an amine group of the imaging strand. (c) Representative AD Paint 

image combining the use of a fibrillar αS-specific antibody, MJFR-14-6-4-2. The 

localisations of individual endogenous αS aggregates (green) in SH-SY5Y cells are 

shown after 2 days post-transduction. 
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1.5 Aims of the thesis 

Protein misfolding and associated diseases have been important research subjects over 

the past years. A central issue to be addressed in the field is how native proteins transform 

into misfolded amyloid aggregates, and how these molecules interact with other 

amyloidogenic proteins and the quality-control system in cells. To understand the explicit 

mechanism of the protein self-assembly process, the different misfolded states involved 

in amyloid fibril formation have to be identified. Although extensive information about 

fibril formation has been acquired from previous studies, the oligomeric intermediates 

remain largely unknown owing to their metastable, transient, and heterogeneous nature. 

Prion diseases are an important model for protein misfolding neurodegenerative 

conditions in general since several of these diseases, including Alzheimer’s disease (AD) 

and Parkinson’s disease (PD), show features of prion-like transmission in experimental 

settings. From a structural perspective, PrP is distinct among the agents of 

neurodegenerative diseases by its larger molecular weight and natively-folded 

monomeric state, which could contribute to its complicated aggregation pathway. 

However, the aggregation kinetics of PrP are majorly studied using macroscopic 

approaches, and little is known about the molecular details, despite the prion-like 

phenomenon being increasingly invoked to explain the aggregation of other proteins. In 

the present research, there are four main objectives: 

1. To explore seeded PrP aggregation under native conditions in vitro and dissect the 

molecular mechanism. PrP aggregation in vitro is known to be inefficient and hence 

conventionally requires physical approaches or chemical denaturants to facilitate the 

aggregation reaction. However, for measuring the kinetic parameters for this process, 

it is ideal to carry this out under native conditions. Using single-aggregate imaging, I 

am able to study PrP fibril formation starting from a single seed and the molecular 

details of the mechanisms involved. Furthermore, the aggregation mechanism can be 

quantitatively described using the nucleation-elongation-fragmentation kinetic 

model. With the kinetic parameters acquired, it enables the establishment of a simple 

spreading model and thus estimating the time scale about how misfolded PrP might 

replicate and spread in the brain during disease development. This approach will 

ultimately help us understand if the observed aggregation mechanism is likely due to 

fibril fragmentation and to what extent other external factors are likely to contribute 

to the spreading of PrP in vivo. 

2. To study the early events of PrP aggregation and identify the formation of oligomeric 

species as a function of time. As the oligomeric aggregates have been suggested to play 
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a key role in neurodegenerative diseases, it is fundamentally important to acquire 

detailed information on the formation, structure, and toxicity of these oligomers. To 

characterise the low amount of oligomeric species with high heterogeneity in solution, 

a set of biophysical methods are exploited, including single-aggregate imaging, sPaint 

imaging, and a single-vesicle permeability assay for probing the disruption of the lipid 

membrane induced by aggregates. Despite the observation that early-formed PrP 

oligomers require semi-denaturing conditions, a kinetic scheme can be developed to 

explicitly describe the behaviours of the various oligomeric species during the lag 

phase in aggregation. 

3. To measure the kinetic parameters for αS aggregation. To examine if misfolded αS 

aggregates through a prion-like mechanism and to what extent it is similar or different 

from PrP aggregation, the same quantitative approach is applied to study the WT αS 

and its A53T mutant. With the kinetic parameter measured, it also allows me to test 

the spreading model established. 

4. To extend the quantitative study of protein aggregation to the cellular environment. 

This study aims to observe αS replication and spreading in cells at physiological 

protein levels using non-transfected cells. To achieve this, an advanced super-

resolution microscopy developed for cell imaging, AD Paint, is exploited to follow the 

spatio-temporal change of endogenous αS amplification in cells. This study will help 

to understand the molecular basis of protein aggregation in cells and compare with 

the observations in vitro. 

In summary, the aims of this thesis will endeavour to be a groundwork to dissect the 

kinetic scheme of PrP aggregation, enabling us to quantitatively describe the molecular 

basis of prion and prion-like aggregation, and establish a simple framework to start to 

determine the main factors that control the rate of prion and prion-like spreading in 

animals. 
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Chapter 2 | Methods 

2.1 PrP aggregation and production of seeds 

Amyloid fibril formation was carried out by aggregation under a semi-denaturing 

condition292. Recombinant WT mouse PrP (amino acid residues 23-231, with a 

methionine and serine residue at the N-terminus for optimum bacterial expression293), 

was kindly provided by Dr Raymond Bujdoso and Dr Alana Thackray at the Department 

of Veterinary Medicine, Cambridge and generated as previously described294. PrP solution 

(1.9 mg/mL) was added to a 1.5 mL centrifuge tube containing the reaction buffer (50 

mM sodium phosphate, pH 7.0) and 2 M guanidine hydrochloride (GdnHCl, ≥ 99%, 

Sigma-Aldrich) to a final concentration of 27.5 μM and a volume of 150 μL. The reaction 

was carried out at 37 °C with 200 rpm shaking in an orbital incubator (ES-20 

environmental shaker-incubator, Grant-Bio). To isolate large fibrils in solution, protein 

aggregates formed after 48 hr, when the number of aggregates reached equilibrium, were 

centrifuged at 16,000 ×g for 30 min. The soluble species from the supernatant were used 

as seeds, while the fibril pellet was re-suspended in the reaction buffer, sonicated for 1 

min using Sonorex Super RK-52 (Bandelin) with effective power of 60 W, and then used 

as insoluble seeds in the following seeding reactions. 

To probe the size of PrP aggregates, the soluble species from the above supernatant was 

first separated by 300k MWCO centrifugal filters (Vivaspin 500, Sartorius). The flow-

through was then separated using 100k MWCO centrifugal filters (Amicon Ultra 0.5mL, 

Merck Millipore). The distinct oligomeric species, which contains 12 molecules, was 

generated based on previously reported protocols by Trevitt et al 295. Briefly, fresh PrP 

solution no more than 1 mg/mL was denatured by 6 M GdnHCl in the presence of 100 mM 

DTT (Sigma-Aldrich) for at least 30 min. Subsequently, it was refolded by gently replacing 

the buffer with 10 mM sodium acetate (pH 4.0) and then enriched using 100k MWCO 

centrifugal filters (Amicon Ultra 0.5mL, Merck Millipore). 
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2.2 PrP seeding reactions 

For surface-seeded fibril formation, typically, 300 nM soluble or insoluble seeds were 

transferred to a slide and incubated for ~10 min, until the initial particle count reached 

100-200 per field of view. After the residual solution was washed out, 300 nM monomers 

in the reaction buffer were loaded to give a final volume of 25 μL, in the presence of 25 

μM ThT, and then sealed with a coverslip in order to minimise evaporation. The 

aggregation was performed on a microscope stage at 37 °C, controlled by a custom-made 

chamber enclosure with a heat controller (AirTherm SMT, World Precision Instrument) 

around the objective and stage. For solution-seeded experiments under native conditions, 

soluble seeds at various concentrations were mixed with fresh monomers to a final 

volume of 100 μL in the reaction buffer. All aggregation reactions were carried out at 37 

°C with 200 rpm shaking in an orbital incubator (ES-20 environmental shaker-incubator, 

Grant-Bio). At each given time point, a protein aliquot was diluted with the reaction buffer 

in the presence of ThT, bringing the final concentration to 300 nM and 25 μM, respectively, 

and loaded on a slide. All the solutions used in the continual measurements were vacuum-

degassed. 

 

2.3 WT and A53T α-Synuclein aggregation 

WT αS was expressed and purified according to a previously established protocol296. 

A53T αS mutant was kindly provided by Dr Joel Watts and Angus Lau at the Tanz Centre 

for Research in Neurodegenerative Diseases, University of Toronto. A53T was expressed 

and purified according to a previously established protocol297. The two strains of A53T 

fibrils (S and NS) were generated by aggregation in 20 mM Tris-HCl (pH 7.4) with or 

without 100 mM NaCl. 

αS aggregation was carried out in a 1.5 mL centrifuge tube containing PBS with 0.01% 

(v/v) NaN3 at a starting concentration of 70 μM and a volume of 300 μL. The reaction was 

carried out in the dark at 37 °C with 200 rpm shaking in an orbital incubator (New 

Brunswick Scientific Innova 43), and aliquots were withdrawn for TIRF imaging as 

previously described. The αS seeds were generated by collecting the pellet after 

centrifugation at 16,000 ×g for 30 min, re-suspending in the reaction buffer, and then 

sonicating for 5 min using Sonorex Super RK-52 (Bandelin) with the effective power of 

60 W. 
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2.4 ThT, Nile red solution and slide preparation 

Thioflavin T (ThT) was purchased as a chloride salt (Sigma-Aldrich). The stock solution 

was prepared by fully dissolving the dye in pure dimethyl sulfoxide (DMSO, ≥ 99.9%, 

Sigma-Aldrich) to a concentration of 10-30 M with vigorous vortexing. The working 

solution was prepared at a concentration of 50 μM by diluting in the reaction buffer. Nile 

Red (NR, ThermoFisher scientific) stock solutions were prepared by dissolving NR into 

dimethyl sulfoxide (Sigma-Aldrich) to a concentration of 1 mM. The stock solution was 

divided into 10 μL aliquots, flash frozen in liquid N2, and stored at -80 °C until use. For the 

working solution, the aliquot was diluted into filtered PBS buffer to a final concentration 

of 50 nM. All solutions, except for NR, in this study were filtrated by a 0.02 μm syringe 

filter (Anotop 10 inorganic membrane filter, Whatman) prior to use. The ThT solution 

used in the continual measurements was vacuum-degassed before use. 

Borosilicate glass coverslips (Marienfeld, VWR International, 20×20 mm) were cleaned 

by argon plasma (PDC-002, Harrick Plasma) for 1 hr, and then attached to Frame-Seal 

slide chambers (Bio-Rad, 9×9 mm), with the surface coated with poly-L-lysine (PLL, MW 

= 150,000 - 300,000, 0.01%, Sigma-Aldrich). 

 

2.5 TIRF imaging 

Imaging was performed using a home-built total internal reflection fluorescence 

microscopy (TIRFM) setup. A 35 mW diode laser (Oxxius, LBX-LD) with a wavelength of 

405 nm was used, passed through a single-band bandpass filter (Semrock, FF01-417/60-

25), and directed into a 60× magnification oil-immersion TIRF objective (ApoN TIRF, 

Olympus, NA = 1.49) mounted on an inverted microscope (Eclipse Ti-S, Nikon). The TIRF 

mode was achieved by adjusting the position of the aligned laser beam before it entered 

the objective, illuminating samples mixed with ThT molecules. The emitted fluorescence 

was collected by the same objective, separated from the returning TIR beam by a dichroic 

mirror (Semrock, Di02-R442-25×36), and passed through an emission filter (BLP01-

488R-25). The fluorescence signal was recorded by an Evolve Delta 512 EMCCD camera 

(Photometrics). Each recorded area contains a 3×3 grid (i.e. 9 images were recorded 

sequentially at adjacent positions) with a gap distance of 150 μm, in which the 
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dimensions of a single image were 512×512 pixels (i.e. 110×110 μm2). 

For each time point in kinetic measurements, three random areas (i.e. 27 images) were 

recorded. Each image sequence was acquired as a 100-framed stack at 30 frames s-1. The 

image stacks were averaged for further analysis. For the continual measurements of 

surface-seeded fibril formation, one area was recorded at each time point (i.e. 9 images) 

with a time gap of 5 min. Each image stack contains 100 frames at 30 frames s-1. Since the 

fields of view were fixed to the same positions throughout a measurement, single 

particles could be traced over time simply by averaging images at every time point and 

combining them as a video file. All the solutions used in the continual measurements were 

vacuum-degassed for four 1-minute cycles in order to prevent photooxegenation of the 

protein samples. 

 

2.6 Single-molecule proteinase K digestion assay 

Recombinant proteinase K (Fungal, Invitrogen) was prepared at a concentration of 50 μM 

in the reaction buffer. To determine the PK sensitivity, 300 nM PrP aggregates at defined 

time points were mixed with PK solution to a final enzyme concentration of 2 μM. For αS 

samples, 100 nM aggregates were mixed with PK solution to a final enzyme concentration 

of 0.1 μM. The sealed slides were loaded on a microscope stage and incubated at 37 °C in 

a custom-made chamber enclosure as described above. The images were continually 

acquired at fixed areas for 60 min with a time gap of 2.5 min. Each image contains 100 

frames at 30 frames s-1. All the solutions used in the continual measurements were 

vacuum-degassed for four 1-minute cycles. 

 

2.7 TIRF image analysis 

Individual image data were averaged over all the frames by ImageJ (National Institutes of 

Health, USA) and then subjected to image analysis. For single-particle tracing in the 

continual imaging experiments, the averaged images at the fixed fields of view were 

combined and aligned using the GDSC ImageJ Plugins (University of Sussex). Images were 

analysed with a custom-written MATLAB script (R2016a, MathWorks). For particle 

identification, images were bandpass-filtered to remove the modulated background and 

camera noise and then blurred using a 2D Gaussian filter. Particle boundaries were 
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identified by fine-tuning size and intensity thresholds, while their positions were located 

by calculating centroid positions. The length of particles was measured using built-in 

algorithms by thinning individual boundaries of particles and then calculated with the 

image pixel size of 207 nm. To eliminate the background effect in the intensity calculation, 

the signal-to-background ratio (SBR) was introduced to correct the intensity of pixels, 

where the SBR is defined as: 

 

 

(Eq. 2.1) 

 

For a given particle, its corrected intensity is the sum of SBR of each pixel within the 

boundary. 

 

2.8 Kinetic analysis 

The kinetic analyses for PrP and αS aggregation in vitro were performed by Prof Tuomas 

Knowles, Dr Lu Hong, and Dr Georg Meisl at the Department of Chemistry, Cambridge. 

 

2.8.1 Calculating the fragmentation rate constants of PrP by directly observing 

events in surface-seeded aggregation 

For the PrP aggregation carried out on a coverslip surface, the fragmentation rate 

constant was estimated from direct TIRF observation of the number of fragmentation 

events on the surface. This could be an under-estimate of the true value, because a part of 

aggregates, especially the very small-sized species, might be ThT-inactive. In addition, the 

fragmentation rate can be slower on the surface due to the steric hindrance. The 

fragmentation rate constant is given by: 

    (Eq. 2.2) 

 

where the average fibril length should be given in terms of the number of monomers in 
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the fibril to obtain the fragmentation rate in the usual units. Here, it was assumed that 

there is approximately one monomer per nm of a fibril90. In addition, since only one tenth 

of the glass coverslip was observed at any time during the measurement (i.e. one tenth of 

the fragmentation events was detected during the total measurement time), the number 

of events is multiplied by 10 to estimate the expected total number of events. 

For soluble seed experiments, there are 500 fragmentation events in total and on average 

6600 detectable fibrils on the glass coverslip at any time with an average length of 660 

nm, giving a fragmentation rate constant of kf = 5×10-9 s-1. For insoluble seed 

experiments, there are 1200 fragmentation events in total and on average 6500 

detectable fibrils on the glass coverslip at any time with an average length of 530 nm, 

giving a fragmentation rate constant of kf = 1.6×10-8 s-1. 

 

2.8.2 Calculating the fragmentation rate constant of αS from decrease on average 

lengths in bulk solution-seeded aggregation 

For the bulk seeded and non-seeded data of αS aggregation, the fragmentation rate 

constant was estimated from the decrease of the average fibril length after the 

aggregation reaction had plateaued.  

 

At the plateau of the growth on average length of aggregates, the monomer concentration 

is depleted and the fibril mass concentration, M(t), no longer changes. However, the 

average length decreases when the existing fibrils fragment. The moment equations for 

mass concentration, M(t), and number concentration, P(t) are given by: 

(Eq. 2.3) 

 

where M0 is the equilibrium fibril mass concentration. By solving these differential 

equations and defining the average length as μ(t) = M(t)/P(t), one obtained: 

 

(Eq. 2.4) 

 

where P0 is the number concentration of fibrils at the plateau of the aggregation reaction. 
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The equilibrium fibril mass concentration, M0, was obtained from the initial monomer 

concentration assuming all monomer had aggregated. The above equation was then fitted 

to the average fibril length data, with kf and P0 as free fitting parameters. The best fit was 

achieved for kf = 2×10-10 nm-1s-1 and an average length of 2300 nm at the plateau of the 

aggregation reaction. With the assumption that there is approximately one monomer per 

nanometre, the derived kf = 2×10-10 s-1. 

 

2.8.3 Calculating the elongation rate constants of PrP and αS from initial average 

length growth for bulk solution-seeded aggregation reactions 

The moment equations for mass concentration, M(t), and number concentration, P(t), at 

initial times (i.e. no monomer depletion) are given by: 

(Eq. 2.5) 

 

Correspondingly, the differential equation for the mean length reads: 

(Eq. 2.6) 

 

which can be solved to yield: 

 

(Eq. 2.7) 

 

where μ0 is the initial fibril length in nm. This expression was then Taylor-expanded for 

small t about t =0 to obtain: 

     (Eq. 2.8) 

 

Experimentally, the data were fitted with a straight line to obtain the slope s, which is then 

used to obtain the elongation rate constant as: 

         (Eq. 2.9) 
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where μ0 is the intercept of the fit. From the fit of the experimental data, one obtained: 

αS: s = 0.006 nm/s; μ0 ≈ 0 nm. The results are not sensitive to μ0 due to the very low 

fragmentation rate. 

PrP (insoluble seeds): s = 0.0065 nm/s; μ0 = 460 nm 

PrP (soluble seeds): s = 0.019 nm/s; μ0 = 450 nm 

2.8.4 Estimation of the PrPC level and the doubling time in a mouse brain 

For the calculation of the spreading time in a mouse brain, the PrPC concentration on 

average was estimated. Previous studies suggest that the abnormal PrPSc accumulates in 

intracellular endosomal compartments and trafficks to the plasma membrane298, while 

more recent research suggests that the plasma membrane is a more likely site for PrPC-

PrPSc conversion299,300. The amount of PrPSc accumulated in the brain of a wild-type 

Prnp+/+ mouse at the terminal stage of prion diseases was reported to be around 13 ± 7 

µg per g of tissue301–303. Hence, the PrPSc concentration in the brain was estimated to be 

0.9 ± 0.50 µM on average, given the weight (0.4 g) and volume (~450 mm3) of a typical 

mouse brain. Given that the Prnp gene expression level does not change304,305 and the PrPC 

concentration does not rise306 during mouse prion disease pathogenesis, and that the 

initial PrPC level is about 8-fold lower than the total PrP level in a mouse brain at the 

terminal stage244, the cellular PrPC concentration was estimated to be ~0.12 ± 0.06 µM 

on average at a normal expression level in a mouse brain. Based on cryo-immunogold EM 

studies, ~56% and ~15% of PrPC is located at the plasma membrane and in the 

endosomal compartments, respectively298. Therefore, cellular PrPC concentration was 

estimated to be 60 nM and that in the endosomal compartments was ~15 nM. It is noted 

that for simplicity of the calculation, the variation of the PrPC level in different cell types 

was not considered, and the mean value was used for estimation. 

 

2.8.5 Comparing the doubling time for different prion strains 

Two types of prion strains, fast (F) and slow (S), were considered with doubling times t2 

and α·t2, respectively, where α > 1 (i.e. the S strain with longer doubling time α·t2). Their 

number increases as P0·exp(t·ln2/t2), where P0 is the initial number of aggregates. 

Assuming that at t=0 they are present in equal proportions, their ratio of amount at any 

time t is given by: 
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Hn

H HS K m

 

     (Eq. 2.10) 

 

The time at which F strain is more abundant than S strain by a factor x is therefore given 

by: 

    (Eq. 2.11) 

 

which corresponds to (ln(x)/ln2)(α/(α-1)) rounds of doubling for F strain. 

 

2.8.6 Kinetic analysis of the early stage of PrP aggregation under a semi-denaturing 

condition 

The TIRF data at the early stage of PrP aggregation (≤ 8 hr) was fitted to the kinetic model 

described as follows. Since no fibrils were detected, depletion of monomers could be 

negligible, and the monomer concentration was approximated to be constant during the 

modelling process. The number of PK-sen species (SL and SH) remained unchanged over 

the measurement period (Figure 4.1b). Hence, the two species were modelled as being at 

equilibrium with monomers over this time period of the measurements. It has to be noted 

that the constant number of SL and SH was very unlikely due to the steady state of the 

aggregation kinetics, as there was insufficient production of PK-res species or fibrils at 

the early stage of the aggregation. Therefore, the number of the PK-sen species was 

approximated as: 

 

(Eq. 2.12) 

(Eq. 2.13) 

 

where KL and KH are the equilibrium constants between monomers and PK-sen species 

for SL and SH, respectively. m is the monomer concentration. nL and nH are the equilibrium 

reaction orders for PK-sen species formation (i.e. they must be ≥ 1). Dissociation of PK-

sen species to monomers was assumed to be well-described by a single process with a 

reaction order of 0. 

 
2

ln

ln 2 1x

x
t t





 
 
 




2 2 2

ln 2 ln 2 ln 2 1
exp expF

S

P
t t

P t t t



 

     
              


  

Ln

L LS K m



 

 

44 2.8 Kinetic analysis 

cLnL
cL L LdL

dR
k m S k R

dt
 

cHnH
cH H HdH

dR
k m S k R

dt
 

α 1 dLk t

L LR e
 

 
 

 

α 1 dHk t

H HR e
 

 
 

 

At the early stage of PrP aggregation, the aggregate length did not show obvious increase 

compared to that of fibrils at 48 hr (Figure 4.2), and little increase in ThT intensity was 

seen during this time period (Figure 4.1a). Furthermore, the molecular size of the H 

species has been previously shown to be > 300 kDa (i.e. >12 PrP molecules), while the L 

species was < 300 kDa307. Therefore, all of the four ThT-active species: SL, SH, RL, and RH 

were highly unlikely to be fibrils. 

Because RL and RH formed more slowly than SL and SH formation (Figure 4.1d), RL and RH 

could either convert from SL and SH, or be nucleated directly from monomers. From the 

observations, RL shares a similar ThT intensity profile with SL (and likewise, in the RH and 

SH pair) (Figure 4.1c), and the increase of the fraction of the PK-res species was at the 

same rate as that of the decrease of the PK-sen species (Figure 4.5d). Therefore, it is highly 

likely to be the case of a direct PK-sen  PK-res structural conversion (Figure 4.8a). We 

therefore described these relations as: 

 

(Eq. 2.14) 

 

(Eq. 2.15) 

 

where kcL and kcH are the rate constants of structural conversion of SL to RL and of SH to 

RH, respectively. ncL and ncH are the monomer-dependent reaction orders of the 

conversion reaction. kdL and kdH are the rate constants of depletion of RL and RH. Solving 

the equations, the number of the PK-res species is obtained: 

 

(Eq. 2.16) 

 

(Eq. 2.17) 

where α /cL Ln n
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To determine the kinetic parameters in this nucleation-dissociation-conversion model, 

the quantitative TIRF data obtained from 3 different starting monomer concentrations 

(Figure 4.1b) were fitted to these equations individually, and then the fitted parameters 
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in Table 1 was obtained. It has to be noted that the fitted results are only proportional to 

the monomer concentrations. However, the fitted equilibrium constant K may contain 

unknown proportionality coefficients and thus cannot be compared with other 

aggregation systems. 

From Table 4.1, SL and SH share similar kinetic parameters, as do RL and RH. This suggests 

that the L and H species are likely to interconvert rapidly on the time scale of the 

measurements. Therefore for convenience, the scheme can be simplified to that shown in 

Figure 4.8b, where SL and SH are treated as a single species, as are RL and RH. This 

simplified model is given by: 

(Eq. 2.18) 

 

(Eq. 2.19) 

where S = SL + SH, R= RL + RH, and α /cn n

c dk m k


  

Fitting the number of S and R to this simplified model, good fits were obtained (Figure 

4.8c) with the fitted parameters given in Table 4.2. It is clear that an equally good fit can 

be obtained from the two models, which share the same functional form, based on the 

same TIRF data, as the reaction orders and rate constants are very close or identical 

between the two models. It is noted that the fitted reaction order of nucleation n=1 

implies that this rate-determining step involves only 1 monomer for nucleation, which 

suggested that this process may involve surface interaction e.g. microcentrifugal tube 

surface. 

 

2.9 TEM imaging 

To prepare TEM samples, protein solutions were applied and fixed on a carbon-coated 

400-mesh copper grid for 3 min, and then excess solution was removed from the surface 

by washing twice with distilled water. Negative staining was carried out using 2% (v/v) 

uranyl acetate for 1 min. After drying, the samples were transferred to the Cambridge 

Advanced Imaging Centre (CAIC) for imaging. Image acquisition was carried out by a 

Tecnai G2 microscope operated at 200 kV. 

 



 

 

46 2.10 Gel electrophoresis 

2.10 Gel electrophoresis 

Aliquots of αS aggregates at defined time points, incubated as described above, were 

taken and mixed with 1x NuPAGE LDS sample buffer (Thermo, Invitrogen) supplemented 

with 5 mM β-mercaptoethanol, and boiled at 95°C for 10 min. The samples were then 

separated by NuPAGE 4-12% Bis-Tris Gel (Thermo, Invitrogen) at 200 V. 

 

2.11 sPaint imaging with PrP aggregates 

PrP aggregated in partially denaturing condition was described in Chapter 2.1. At defined 

time points, an aliquot was removed and diluted to 50 nM (oligomeric species) or 100 nM 

(fibrillar species) with 0.22 μm-filtered PBS buffer containing 5 µM ThT, 2 nM NR and 

10% (v/v) fiducial markers. The sample mix was added to the coverslip and incubated 

for 10 minutes allowing aggregates to adhere to the surface of glass coverslips. The 

coverslip was then immediately loaded onto the microscope stage for imaging. 

The sPaint imaging was performed in collaboration with Dr Ji-Eun Lee at the Department 

of Chemistry, Cambridge. Fluorescence imaging was performed using a separate home-

built TIRF setup based on an inverted optical microscope (IX73, Olympus) and coupled 

to an EMCCD (Evolve II 512, Photometrics). Lasers operating at 405 nm continuous wave 

(CW) diode laser (Cobolt, MLD 0405-06-01-0100-100) for ThT imaging, and 532 nm CW 

diode-pumped solid-state laser (LASOS Lasertechnik GmbH) for NR imaging were used 

as excitation sources. Images were acquired at a frame rate of 20 ms and 200 frames for 

ThT channel and 2000 frames for NR channel. 

The lasers were circularly polarised light by a quarter wave plate and directed off dichroic 

mirrors for 532 nm and 405 nm illumination (Di02-R532-25x36 and Di02-R405-25x36, 

Semrock) towards a high numerical aperture, oil-immersion objective lens (Plan 

Apochromat 60× NA 1.49, Olympus APON 60XOTIRF) to the sample coverslip. Total 

internal reflection was achieved by focusing the laser at the back focal plane of the 

objective, off axis, such that the emergent beam at the sample interface was near-

collimated and incident at an angle greater than the critical angle θc (~67° for a 

glass/water interface). This generated a ~50 μm diameter excitation footprint with 

power densities in the range ~0.5 kW-cm-2 at the coverslip. The emitted fluorescence was 

subsequently collected through the same objective and further filtered using a long-pass 

filter BLP01-532R-25 (Semrock), a bandpass filter FF01-650/200-25 (Semrock), and a 
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short-pass filter FF01-715/SP-25 (Semrock) for 532 nm illumination (NR channel) or a 

long-pass filter FF02-409/LP-25 (Semrock) for 405 nm illumination (ThT channel) 

before being expanded by a 2.5× relay lens (Olympus PE 2.5X 125). Finally, a mechanical 

slit (VA100/M, Thorlabs) and a transmission diffraction grating (600 Grooves/mm 22.0° 

Blaze Angle - GTU13-06, Thorlabs) with a homebuilt grating holder were mounted on the 

camera port path prior to the detector. The camera-to-grating distance was optimized 

using TetraSpeck beads (0.1 μm, T7297, Invitrogen) such that undiffracted (0th) and first 

order (1st) diffraction was visible on the same image. The fluorescence image was finally 

projected onto the EMCCD running in frame transfer mode with at 20 Hz, with an electron 

multiplication gain of 250, operating at -70 °C with a pixel size of 16 μm and automated 

using the open source microscopy platform Micromanager. 

The sPaint images were calibrated as described previously284. The distance between 0th 

and 1st order diffraction patterns are determined by imaging four colour fluorescence 

beads (0.1 μm, T7297, Invitrogen) in order to determine the relation to the emission 

wavelength. Based on the clustered localisations and the final result file, the spectral 

information of individual proteins was extracted and plotted using custom-written 

MATLAB software (R2014b, Mathworks). A localisation threshold of 20 was used to 

identify single aggregates. The achievable spatial localisation precision of the instrument 

was measured by imaging diffraction-limited TetraSpeck beads (0.1 mm, T7279, 

Invitrogen) using a 532 nm excitation laser. 500 frames at 20 ms per frame were collected 

at a range of excitation powers and localised using the PeakFit plugin for ImageJ from the 

GDSC SMLM package. TetraSpeck ‘orange’ peak centres, at 581.5 nm, were fitted and used 

to determine the spectral localisation precision. 

 

2.12 Membrane permeability assay using TIRFM 

The membrane permeability assay was performed in collaboration with Dr Suman De at 

the Department of Chemistry, Cambridge. The assay was implemented from a previously 

described method308. Briefly, vesicles were prepared by mixing phospholipids 16:0-18:1 

PC (catalogue no 850457, Avanti Polar Lipids) and biotinylated lipids 18:1-12:0 biotin-PC 

(catalogue no 860563, Avanti Polar Lipids) at 100:1 ratio in HEPES buffer (pH 6.5). The 

mean diameter of the vesicles was ~200 nm. They were filled with 100 µM Cal-520 dye 

(Stratech Scientific Ltd) using five freeze-and-thaw cycles. Non-incorporated Cal-520 dye 

molecules were separated from the vesicles by size-exclusion chromatography. Then the 

vesicles were tethered to the glass coverslips using biotin-neutravidin linkage and 
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incubated with of HEPES buffer of pH 6.5. Just before the imaging, HEPES buffer was 

replaced with 50 µL Ca2+ containing buffer solution L-15 and a different position of the 

coverslips was imaged (Fblank). Then, the 27.5 µM PrP aggregation solution was diluted 

and added to the coverslips so that the final protein concentration in the coverslip is 250 

nM. The same area of the coverslips was imaged to evaluate the protein aggregate-

induced membrane permeabilisation by measuring the resulting Ca2+ influx (Faggregate). 

Then, 10 µL of 1 mg/mL of ionomycin (Cambridge Bioscience Ltd, Cambridge, UK) was 

added to the same coverslips and the same fields of views were imaged (Fionomycin). As 

ionomycin induces a high degree of membrane permeation, each vesicle is saturated with 

bath Ca2+ and maximum fluorescence is observed. Therefore, the fluorescence originating 

from ionomycin-induced Ca2+ influx is used for normalization, which enables 

quantification of the aggregate-induced Ca2+ influx. All the images were taken using a 

homebuilt TIRF set-up based on an inverted Olympus IX-71 microscope, which was 

equipped with 60×, 1.49 NA oil immersion objective lens (APON60XO TIRF, Olympus) 

and an EMCCD camera (Evolve II 512, Photometrics). A 488 nm laser (Toptica, iBeam 

smart) was used to excite the sample. All the imaging experiments were performed at 

ambient temperature (295 K) with a 488 nm laser (~10 W-cm-2) for 0 frames with a scan 

speed of 20 Hz. The acquired images were analysed using ImageJ to calculate the localised 

fluorescence intensity of each vesicle under the three different experimental conditions, 

namely in presence of L15 buffer (Fblank), in the presence of the aggregation mixture 

collected at different time points (Faggregate), and after the addition of ionomycin (Fionomycin). 

The influx of Ca2+ into an individual vesicle was calculated as: 

 

       (Eq. 2.20) 

 

The Ca2+ influx from individual experiments was then normalised with the number of 

aggregates observed from TIRF images. The relative influx level at the earliest time point 

of aggregation (in this thesis, 0.5 hr of PrP aggregation at an initial concentration of 27.5 

µM) is set as 1. 
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2.13 Proteasome assay with αS aggregates using TIRFM 

The proteasome assay was performed in collaboration with Dr Yu Ye and Rachel Cliffe at 

the Department of Chemistry, Cambridge. Purification of mammalian proteasome 

holoenzymes or the free regulatory particle (RP) was carried out by Dr Yu Ye in Prof 

Daniel Finley’s laboratory at Harvard Medical School with a published protocol309. αS 

aggregation was carried out as described in Chapter 2.3. Aliquots were removed from 

aggregation reactions after 24 hrs and incubated with the proteasome. The final reactions 

contained 8 μL of 200 nM proteasome, 8 μL of the aggregated αS substrate, 5 μL of 10 × 

degradation buffer (50mM Tris [pH7.5], 5 mM ATP, 5 mM MgCl2), 2.5 μL of a 20 × ATP 

regeneration system (2 M creatine phosphate and 100 μM creatine kinase) and ddH2O to 

make up 50 μL final reaction volume. The reactions were performed at 25 °C to avoid 

further aggregation. After 0 and 20 hr of incubation, 1 μL aliquot was removed from each 

reaction and serially diluted 50-fold in PBS buffer containing 30 nM pFTAA (kindly 

provided by Dr Michel Goedert at MRC Laboratory of Molecular Biology) for TIRF imaging. 

Prior to the proteasome treatment, aggregated samples were centrifuged on a benchtop 

centrifuge at maximum velocity for 30 min. The supernatant was subsequently removed 

and resuspended with an equal volume of proteasome buffer before incubation with the 

proteasome. Addition of the proteasome was omitted in control reactions and replaced 

with an equal volume of the proteasome buffer. 

 

2.14 Cell culture and fibril transduction to cells 

SH-SY5Y cells were cultured on round borosilicate coverslips (Marienfeld, VWR 

International, Ø =20 mm) in 6-well tissue culture plates (Greiner CELLSTAR, Sigma) and 

allowed to reach 60–70% confluence for transduction experiments. Before seed 

transduction, cells were washed with PBS and transferred to serum-free OptiMEM 

(Thermo) for 1 hr. For each well, one reaction of the cationic-liposomal transduction 

reagent (BioPORTER, Sigma) was resuspended with PBS and then gently mixed with 2.5 

μM sonicated αS fibrillar seeds generated as described in Chapter 2.3. Protein-reagent 

complexes were allowed to form at room temperature for 5 min. After that, the mixture 

was diluted in OptiMEM and added to cells. Cells were then further incubated for 4 hr, 

washed three times. Transduced cells were maintained in Dulbecco’s modified Eagle’s 

medium (DMEM, Thermo) containing 10% fetal bovine serum (FBS, US sourced HyClone 

characterised, GE) and 1% penicillin-streptomycin (Thermo) unless otherwise indicated. 
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2.15 Immunostaining of endogenous αS filaments and AD 

Paint imaging 

The AD Paint imaging was performed in collaboration with Yukun Zuo at the Department 

of Chemistry, Cambridge. To prepare samples for imaging, the coverslips cultured with 

cells were transferred to a separate dish at defined time points, washed with cold PBS 

three times, and fixed with paraformaldehyde 4% (w/v) for 10 min at room temperature. 

The cells were then rinsed three times with phosphate buffered saline (PBS) before being 

membrane-permeabilised by 0.5% Triton X-100 in PBS containing 3% bovine serum 

albumin (BSA) for 20 min at room temperature. After rinsing three times with PBS, 

samples were blocked with 3% BSA/10% salmon sperm DNA (Catalogue no 15632011, 

Invitrogen) for 1 hr at room temperature before immunostaining. A conformation-

specific anti-αS filament antibody, MJFR-14-6-4-2 (Abcam), was conjugated with a 

synthesised short single-stranded DNA (docking strand), and then it was with diluted by 

10000× in the blocking solution and incubated with cells overnight at 4 °C. On the next 

day, the samples were rinsed three times with PBS, loaded in a cell chamber, and replaced 

with the imaging solution in the presence of Hoechst stain with 1:3000 dilution before 

imaging. The imaging solution was made by diluting a synthesized single-stranded DNA 

(imaging strand; contain a complementary sequence to docking strand) labelled with 

Cy3b fluorescent dye to 5 nM in the blocking solution. 

AD Paint imaging was performed using a home-built TIRFM setup as described in Chapter 

2.5 but with HILO (highly inclined and laminated optical) mode, where the laser is 

directed at a relatively sharper angle through the sample. This affords an imaging depth 

of ~5 µm in this case and hence increases illumination depth in neurites at an SNR only 

slightly lower than that of TIRF. Images were acquired in random fields of view at a frame 

rate of 50 ms and 100 frames for brightfield illumination, 100 frames for 405 nm channel, 

and 4000 frames for 561 nm channel, respectively. The subsequent image analysis was 

carried out with a custom-made Python script by Yukun Zuo. In brief, the individual 

images were filtered by fine-tuning the localisation thresholds of signals. The individual 

signals above the threshold were then calculated based on the proximity of each pair of 

signals, and the signals above a proximity threshold were determined as one object. The 

length of objects was measured using built-in algorithms by thinning individual objects 

and then calculated with the image pixel size of 98.6 nm. 
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Chapter 3 | The mechanism of prion-like 

spreading I: PrP aggregation 

3.1 Introduction 

Prion replication occurs by a nucleation-dependent polymerisation reaction, whereby 

growth of aggregated PrP nuclei is followed by fast elongation through recruitment of 

misfolded PrP monomers to the protein assemblies175. Several molecular events are 

proposed to play a key role in this process, including secondary nucleation and fibril 

fragmentation186,187,190 (Figure 3.1a). Secondary nucleation allows the formation of new 

prion aggregates from existing template seeds with concomitant amplification of the total 

number of PrPSc assemblies190. Fibril fragmentation has been demonstrated to accelerate 

prion replication in yeast prion Sup35184,187 and Ure2178, as well as αS in PD191, while few 

insights were provided from mammalian prion studies310. Significantly, there is no clear 

evidence that mammalian prions show a similar phenomenon of fragmentation in 

aggregation, although it has been long suggested that they amplify rapidly enough in vivo 

to confer transmissibility through fragmentation of existing PrP aggregates, entering 

neighbouring cells, and then acting as new seeds to initiate the aggregation of endogenous 

PrP174,186,311,312. Therefore, it is important to determine the mechanism and kinetics of 

how PrP aggregates grow and amplify, since these events will provide fundamental 

insights into how prions might spread in the brains of individuals affected by these 

conditions. 

Dissecting the mechanism of prion propagation in vivo is difficult given the molecular and 

cellular complexity of the mammalian brain. As a consequence, this process has been 

increasingly studied with recombinant prion protein in vitro. Compared with 

conventional biochemical and biophysical approaches, single-molecule fluorescence 

microscopy serves as a powerful tool by resolving individual behaviour of protein 

aggregates that may be averaged in ensemble experiments. Recently, our group has 

developed ‘single-aggregate’ fluorescence imaging to visualise protein aggregates 

through the use of sensitive total internal reflection fluorescence (TIRF) microscopy in 

combination with thioflavin T (ThT)276. This method provides direct observation of the 

low-populated species such as oligomers, which are naturally heterogeneous, transient, 

and meta-stable during aggregation180,191,195,313,314. It also enables quantitative 

measurements of the change in the number of individual aggregates as a function of time. 

Furthermore, as ThT molecules transiently bind to protein aggregates in equilibrium, this 
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approach allows protein aggregates to be imaged for extended time lengths without 

photobleaching and for biochemical assays such as proteinase K (PK) resistance 

measurements to be performed on individual aggregates. 

In this chapter, the single-aggregate fluorescence imaging has been adopted to visualise 

the aggregation process of recombinant PrP under native conditions. In this chapter, I 

have quantitatively measured PrP aggregation in vitro as a function of time. This has 

enabled determination of the elongation and fragmentation rate constants for PrP 

aggregation for the first time through the use of a kinetic modelling approach. These 

parameters thus were used for predicting the spread of PrP through the brain based on a 

simple model. In addition, it is found that during the aggregation reaction, PrP converts 

from a PK-sensitive to PK-resistant conformer. The fragmentation rate increases with 

fibril length, and this process results in the formation of PK-sensitive fragments.  
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3.2 The kinetic rate constants of PrP aggregation are 

determined from solution-seeded reactions 

Kinetic rate constants for the elongation and fragmentation process of amyloidogenic 

proteins can be derived from quantitative measurements during aggregation192. To 

acquire the kinetic parameters for PrP aggregation, a set of seeded reactions of 

recombinant mouse PrP was performed in bulk solution under native conditions (Figure 

3.1b, left). 

To produce seeds, PrP aggregation was performed following a previously published 

protocol292. The morphologies of the PrP aggregates at different times were revealed 

using single-molecule TIRF imaging (Figure 3.2a). Small aggregates, as well as large fibrils, 

were obtained after 48 hr, when the reaction reached a plateaued. The fibrils obtained 

were further examined by transmission electron microscopy (TEM) (Figure 3.2b). A 

similar morphology was found between the structure formed in the current and those in 

the previous studies292,315. The aggregation mixture collected at 48 hr was then separated 

by centrifugation to obtain soluble aggregates from the supernatant (soluble seeds), or 

insoluble aggregates (insoluble seeds; acquired from sonication of the fibrillary species 

after pellet re-suspension). Control experiments showed that upon 1-minute sonication, 

most of the mature PrP fibrils formed after 48 hr were broken into small fragments with 

low ThT intensity (<10 a.u.) (Figure 3.3), consistent with the previous result with PrP 

fibrils that generated under the same buffer condition315. 
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Figure 3.1 | Schematic description of the molecular processes of fibril formation and the 

experimental setup. (a) Amyloid fibril formation begins with slow primary nucleation that 

involves a range of structurally-diverse intermediates, followed by a fast growth of fibrils. The 

fibrils can break into smaller fragments and act as new templates for further growth. (b) In 

the bulk solution-seeded measurements (left), PrP aggregates were incubated in a 1.5-mL 

centrifuge tube. At various time points, aliquots were removed from the reaction mix and 

transferred to a solution containing ThT. The aggregates subsequently diluted to a nanomolar 

concentration. The PrP aggregates were visualised on a TIRF microscope with a 3×3 image 

grid at 3 random positions (i.e. 27 simultaneous images). The acquired images were analysed 
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with a Matlab-based script to identify individual aggregates (see Chapter 2.7 for details). For 

the surface-seeded measurements (right), pre-formed soluble or insoluble seeds were 

separated by centrifugation and then adsorbed onto a glass coverslip. After removal of 

residual solution, fresh PrP monomers and ThT were added to the glass coverslip and slide 

chamber sealed to prevent fluid evaporation. Images of individual aggregates were acquired 

over time in a single 3×3 image grid with fixed fields of view at 37 °C (i.e. 9 simultaneous 

images). All the scale bars represent 2 µm. 

Figure 3.2 | Representative images of PrP aggregates in a semi-denaturing condition. (a) 

The TIRF images of PrP aggregates at 0.5 hr, 3 hr, 8 hr, 24 hr, and 48 hr in unseeded 

aggregation are revealed. Monomeric PrP was incubated in a 1.5-mL microcentrifugal 

tube in the presence of 2 M GdnHCl at 37 °C with 200 rpm. At different time points, an 

aliquot was removed from the reaction mix, diluted to a final concentration of 300 nM, 

and loaded onto a PLL-coated glass coverslip in the presence of 25 µM ThT for TIRF 

imaging. (b) TEM images of PrP aggregates at 48 hr when the reaction plateaued. The 

protein assemblies were fixed in carbon-coated copper grids and negatively stained with 

2% (v/v) uranyl acetate. The scale bars in panel a and b represent 10 µm and 500 nm, 

respectively. 
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Prior to seeded aggregation, an optimal condition for effective protein-dye binding was 

established. A serial dilution of thioflavin T (ThT) dye was prepared ranging from 0.01 to 

100 µM, and then mixed with the aggregates collected at 48 hr to a final protein 

concentration of 300 nM. Using single-aggregate imaging with TIRF microscopy, the PrP 

aggregates were visualised at multiple fields of view, and the number at the respective 

fields of view was quantified as a function of ThT concentrations (Figure 3.4). The average 

number of the detected aggregates reached a maximum level at a ThT concentration of 25 

μM, which indicated an optimal ThT concentration for the imaging setup. Next, the 

saturation effect of the PrP aggregates upon the poly L-lysine (PLL)-coated glass surface 

was examined. The number of PrP aggregates adsorbed onto a glass surface was found to 

be proportional to their solution concentration up to 300 nM, suggesting the surface was 

not saturated by the aggregates (Figure 3.5). 

  

Figure 3.3 | Sonication effect to PrP fibrils. (a) Intensity distributions and (b) TIRF 

images of sonicated PrP fibrils for different sonication durations. PrP fibrils collected 

at 48 hr when the aggregation reaction plateaued were collected by centrifugation at 

16,000 ×g for 30 min and resuspended in the reaction buffer. The PrP fibrils were either 

non-sonicated (0 min) or sonicated for 0.5, 1, or 5 min and imaged using a TIRF setup. 

The scale bars represent 10 µm. 
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Figure 3.4 | Affinity of ThT to PrP aggregates as a function of concentration. ThT 

concentration was serially diluted and mixed with PrP aggregates formed at 48 hr at a 

fixed concentration of 300 nM. The samples were then imaged using a TIRF setup. The 

average of the count of PrP aggregates (red lines) increased at ThT concentrations that 

were over 10 µM. N: negative control of 25 µM ThT without PrP aggregates. 

Figure 3.5 | Titration of PrP aggregate concentrations on a poly L-lysine (PLL)-coated 

glass coverslip surface. The 12-mer PrP aggregates at various concentrations were 

adsorbed on PLL-coated coverslips to determine when surface adsorption was 

saturated. Protein concentrations below 300 nM are linearly correlated to their counts 

with R2 = 0.97211. The error bars represent standard deviations from three 

independent experiments with different batches of protein samples. 
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Bulk solution-seeded PrP aggregation was carried out using the soluble seed under native 

conditions (reaction buffer: 50 mM sodium phosphate buffer, pH 7.0) with a wide range 

of seed and monomer concentrations. At defined time points during the seeded 

aggregation reaction, aliquots were removed from the reaction mix, and the number of 

PrP aggregates quantified using ThT and TIRF microscopy (Figure 3.1b, left). At the 

single-aggregate level, seeded PrP aggregation was found to proceed through exponential 

amplification, as shown in Figure 3.6. Gentle shaking of the reaction mix was found to be 

required in order for PrP to form aggregates. This is consistent with conditions used for 

Figure 3.6 | Kinetics of solution-seeded PrP aggregation. (a) Representative TIRF images of 

0.35% (v/v) soluble PrP seeds+ 1 µM monomers at different times are revealed. The scale 

bars represent 10 µm. Solution-seeded PrP aggregation was followed with various 

concentrations of (b) monomers or (c) soluble seeds in 50 mM sodium phosphate (pH7.0). 

The kinetics were followed by taking aliquots at various time points from the aggregation 

reaction mix that was incubated at 37 °C with shaking at 200 rpm. (d and e) Global fits of the 

kinetic profiles. The y-axis was normalised to the maximum value of each profile. The product 

of the rate constants kekf was 0.06 M-1s-2. The error bars represent standard deviations from 

three independent experiments with different batches of protein samples. 
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QuIC experiments316 and was possibly due to a fraction of the aggregates adsorbed on the 

micro-centrifuge tube surface. Interestingly, fast disappearance of PrP aggregates was 

also observed after the reaction reached a plateau. Through the use of transmission 

electron microscopy (TEM), the PrP aggregates that disappeared in TIRF images were 

ThT-inactive and small fragments (< 50 nm) (Figure 3.7) that probably formed due to 

fragmentation.  

To acquire kinetic parameters for PrP aggregation, the data were globally fitted to the 

nucleation-elongation-fragmentation kinetic model for protein aggregation that was 

published previously186,193. This model has two parameters: the elongation rate constant, 

ke, and the fragmentation rate constant, kf. When we consider the time required for a 

single misfolded PrP aggregate to elongate and fragment to form two aggregates, the 

doubling time t2, is given by:  

 

                       (Eq. 3.1) 

 

where m is the monomer concentration. The solution-seeded data were fitted (Figure 

3.6d) with the help from Dr Georg Meisl in the Department of Chemistry, Cambridge. The 

product of ke and kf was found to be 0.06 M-1s-2 (Table 3.1).  

According to Equation 1, the doubling time t2 for PrP amplification in a cell depends on 
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Figure 3.7 | ThT-inactive PrP aggregates. Solution-seeded aggregates incubated for 72 hr 

were visualised by TEM (a) and TIRFM (b) with 25 µM ThT. (c) Comparison of ThT-active 

PrP aggregates from solution-seeded aggregates incubated for 20 hr. The seeded 

aggregation was carried out with 1 µM monomer + 0.35% soluble seeds at 37 °C with 

200 rpm. For TEM imaging, the protein assembles were fixed in carbon-coated copper 

grids and negatively stained with 2% (v/v) uranyl acetate. The scale bars represent 100 

nm in a and 2 µm in b and c. 
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the rate constants, ke and kf, as well as subcellular PrPC concentration (m) at the cellular 

location where PrPC-PrPSc conversion takes place. Since this conversion site in cells is still 

debated298–300,317, it is assumed that PrP aggregation occurs at the plasma membrane and 

the corresponding local PrPC concentration is 60 nM (see Chapter 2.8.4 for details). Using 

the rate constants obtained from the solution-seeded reaction with soluble seeds, t2 was 

estimated to be 2.2 hr for PrP assembly propagation on the plasma membrane. In 

comparison, if PrP aggregation is assumed to take place in the endosomal compartments, 

where the local PrPC concentration is 15 nM, the estimated t2 would slightly increase to 

4.4 hr, showing that t2 is not very sensitive to the monomer concentration (Table 3.1). 

 

Protein 
ke 

(M-1s-1)  

kf 

(s-1)  

kekf 

(M-1s-2) 

m 

(nM) 
t2 (hr) 

PK-senres 

conversion 

half-time 

Soluble 

seeded PrP 
~104 # ~10-6 # 0.06 ± 0.03 

60 (PM) 2.2 ± 1.1 

< 0.25 hr 

15 (EC) 4.4 ± 2.2 

Table 3.1 | Kinetic parameters for PrP aggregation in solution. ke, elongation rate constant; 

kf, fragmentation rate constant; m, local concentration of monomers in cells; t2, doubling 

time required for a single protein aggregate to replicates into two aggregates during 

aggregation. PM, plasma membrane; EC, endosomal compartments. The errors represent 

uncertainties of the fitting parameters given the dataset. 

 
# Estimate is within the same order of magnitude 
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3.3 PrP fragmentation and elongation are directly observed 

from surface-seeded aggregation 

Next, to study the fragmentation kinetics of PrP, surface-seeded aggregation reactions 

were performed under the same native conditions as above, which allowed continual 

measurements of fixed fields of view on a coverslip surface. Experiments were achieved 

by adsorbing either the soluble or insoluble seed onto a glass coverslip, removing the 

residual solution, followed by the addition of PrP monomers into the reaction mix. 

Changes in the morphology and the size of individual PrP aggregates were visualised over 

time by continual imaging of the same fields of view on a microscope stage at 37 °C 

(Figure 3.1b, right). There were more than 10000 aggregates measured from the surface-

seeded reaction using the soluble or insoluble seed, respectively. Interestingly, 8.7% 

(soluble) and 4.4% (insoluble) of the PrP aggregates were observed to grow into longer 

fibrils (Figure 3.8a, upper two panels), while the majority of the existing PrP seeds 

showed no detectable change in length. Consistent with the observation of an increase in 

aggregate length, the ThT intensity of individual aggregates increased with length both in 

soluble and insoluble seeding cases (Figure 3.8c and d). The slower increase in the 

average length for insoluble seeds compared to soluble seeds could be due to structural 

differences of the seeds and thus growing into fibrils at different replication rates (Figure 

3.8b). 

Strikingly, fragmentation of PrP fibrils was directly observed that involved one fibrillar 

assembly break into two or more smaller-sized fragments. These fragments were shown 

to be capable of growing into longer fibrils at later times (Figure 3.8a, lower two panels). 

The fragmentation events account for only 0.4% (soluble) and 0.9% (insoluble) of the 

total events recorded for each type of seed. In addition, a fraction of the fragmented 

species disappeared during the aggregation reaction, which suggested that these small-

sized assemblies were not detected by ThT. This is in agreement with the finding from 

solution-seeded experiments (Figure 3.6b and c) and TEM imaging (Figure 3.7) that PrP 

aggregates can fragment into ThT-inactive species. Centrifugation experiments 

demonstrated that fluorescence imaging with ThT was able to detect PrP aggregates of 

12-mers or larger (Figure 3.9), which suggested the ThT-inactive species were smaller in 

size. 

Although a similar real-time imaging approach has previously been used to follow fibril 

formation of β2-microglobulin318 and Aβ319, the molecular mechanism was not discussed 

or quantified despite the importance of understanding prion propagation. To measure the 
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kinetic rate constants for PrP aggregation on a surface, the average rate of increase of 

fibril length was fitted as a function of time (Figure 3.8b). The fragmentation rate 

constants were estimated as kf (soluble) ≥ 5×10-9 s-1 and kf (insoluble) ≥ 1.6×10-8 s-1 for soluble 

and insoluble seeding, respectively. In contrast, the elongation rate constants were 

estimated as ke (soluble) = 3.39 ×104 M-1s-1 and ke (insoluble) = 1×104 M-1s-1 (Table 3.2). The 

different rate constants for the soluble and insoluble seed is likely to result from the 

different structures. It should be noted that the sign ‘≥’ was used for kf values because of 

Figure 3.8 | Direct measurement of PrP fibril elongation and fragmentation. (a) The 

representative examples of PrP elongation (upper panels) and PrP fragmentation (lower 

panels) were recorded over a 6 hr period during surface-seeded aggregation with soluble 

seeds in 50 mM sodium phosphate (pH 7.0) at 37 °C. Individual particles were tracked over 

time by imaging with fixed fields of view every 5 minutes. The scale bars represent 2 µm. (b) 

Time-dependent change on average PrP assembly length for soluble- and insoluble-seeded 

aggregation. The error bars represent standard deviations from three independent 

experiments with different batches of protein samples. Correlation between intensity and 

length at different times during surface-seeded aggregation with (c) soluble or (d) insoluble 

seeds. Combined data of three independent measurements from different protein samples are 

shown. The obtained data were used to estimate the fragmentation and elongation rate 

constants (kf and ke), respectively. The kekf was ≥1.5×10-5 M-1s-2 for PrP replication induced 

by soluble seeds and ≥1.6×10-5 M-1s-2 when induced by insoluble seeds, respectively. 



 

 

3.3 PrP fragmentation and elongation are directly observed from surface-seeded aggregation 63 

 

potential under-estimation, as there may be fragmentation events that were unable to be 

detected as shown in Figure 3.7. The product of ke and kf for the soluble seed was also 

observed to be ≥0.00017 M-1s-2 in surface-seeded reaction, which is slower than 0.06 M-

1s-2 in bulk solution-seeded reaction by two orders of magnitude. This may reflect 

differences between aggregation in solution and on the surface, but may also be due to 

the under estimation of kf obtained in the surface-seeded experiments, resulting in a 

lower kekf. However, the slower surface-seeded reaction allowed the direct observation 

of fragmentation and the measurements in changes in PK resistance in the next section.   

Figure 3.9 | Probing the size of PrP aggregates using TIRF imaging with ThT. (a) PrP that 

aggregated after 48 hr was separated sequentially by centrifugal filtration with 300 and 

100 kDa cut-off and then subjected for TIRF imaging in the presence of 25 µM ThT. A 

significant increase is shown in the high-intensity range (>10 a.u.) for the species 

larger than 300 kDa. (b) The oligomeric species of 12-mer (~280 kDa), which is a 

known stable low-MW species, dominates in the lower intensity range as the filtered 

species smaller than 300 kDa. The oligomer was obtained by denaturation and 

reduction of the disulphide bond in PrP and then refolded by exchanging buffer as 

reported by Trevitt et al 295. 



 

 

64 3.3 PrP fragmentation and elongation are directly observed from surface-seeded aggregation 

 

 

 

 

Seed type ke (M-1s-1) kf (s-1) * kekf (M-1s-2) * 

PK-sen  PK-res 

conversion half-

time 

Soluble seeded 

PrP 
3.39 ± 0.04 ×104 ≥ 5×10-9 ≥ 0.00017 

0.25 hr 
Insoluble seeded 

PrP 
1×104 ≥ 1.6×10-8 ≥ 0.00016 

Table 3.2 | Kinetic parameters for surface-seeded PrP. ke, elongation rate constant; kf, 

fragmentation rate constant. The errors represent uncertainties of the fitting parameters 

given the dataset. 

* Measured as the slowest value.   
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3.4 PrP aggregates undergo structural conversion from PK-

sensitive to PK-resistant conformations 

To assess the susceptibility of PrP aggregates to proteinase K (PK) digestion, proteolytic 

digestion was carried out at the single-aggregate level during surface-seeded aggregation 

with soluble seeds (Figure 3.10). This was achieved by the addition of PK at defined time 

points during the seeded aggregation reaction and subsequent measurement of the 

decrease of ThT intensity of individual PrP assemblies induced by proteolytic digestion. 

Figure 3.10 | Schematic description of single-molecule proteinase K (PK) digestion. PK 

digestion is combined with the surface-seeded measurements (Figure 3.1b, right) by 

applying a constant concentration of PK (2 µM for 300 nM PrP aggregates and 0.1 µM 

for 300 nM αS aggregates) into the aggregation mixture at defined time points. Sealed 

glass coverslips with surface-seeded aggregates were taken out from the incubator, 

unsealed, mixed with PK, re-sealed, and then loaded back onto the microscope stage 

with an incubator chamber at 37 °C. Proteolytic digestion of individual aggregates was 

followed over time in a single 3×3 image grid with fixed fields of view (i.e. 9 

simultaneous images). In the upper panel, the majority of early PrP assemblies 

aggregated for 0 min are sensitive to PK and thus disappeared after 1-hour digestion. In 

contrast in the lower panel, a larger number of late PrP assemblies aggregated for 240 

min shows increased resistance to PK and remained a high fraction compared to their 

initial intensity after 1-hour digestion. The scale bars represent 2 µm. 

 



 

 

66 3.4 PrP aggregates undergo structural conversion from PK-sensitive to PK-resistant conformations 

Initially, the soluble seeds were predominantly PK-sensitive (PK-sen), as very few PrP 

assemblies remained detectable after 1 hr digestion with PK. With increasing time, more 

aggregates maintained high ThT intensity after PK digestion (Figure 3.11). This suggested 

that accumulation of PK-resistant species (PK-res) occurred during PrP aggregation. 

Furthermore, compared to PK-sen species, the PK-res species possessed higher initial T 

intensity before PK digestion, which indicated these assemblies were also larger in size 

since the length-intensity relationship was demonstrated to be linear (Figure 3.12). 

Figure 3.11 | PK resistance of PrP aggregates during surface-seeded aggregation. PK was added 

at different times to the glass surface that contained the PrP aggregates and slide chamber 

sealed to prevent fluid evaporation. The change in ThT intensity of individual aggregates was 

followed by continual imaging with fixed fields of view at 37 °C incubation. PK resistance was 

calculated as the fraction of the ThT intensity after 1 hr proteolytic digestion compared to that 

seen at the start of the experiment. Combined data of three independent measurements with 

different batches of protein samples are shown. 

 

 

Figure 3.12 | Analysis to the length-intensity relationship of PrP aggregates in surface-

seeded aggregation with soluble seeds. The scatter plots reveal that the length of the 

PrP aggregates follows a linear relationship against their ThT intensity over time. 

Hence, the intensity can be used for probing different sizes of PrP populations as shown 

in Figure 3.9. 
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Next, the fractions of the PK-sen and PK-res species were quantified with 2D Gaussian 

functions, and hence the kinetic profiles were acquired as shown in Figure 3.13. The 

number of PK-res aggregates showed a fast increase and reached a maximum level after 

1 hr aggregation. This suggested a fast PK-sen  PK-res conversion reaction occurred 

with a half-time of ~0.25 hr (Table 3.2). As the replication rate of PrP was slower on the 

surface due to lower kekf, this conversion rate on the surface was likely to be slower than 

that in bulk solution, which is expected to be <0.25 hr.  

It is noted that solution deoxygenation was required for continual imaging. In surface-

seeded aggregation and subsequent PK digestion, the reaction was found to be 

substantially inhibited by the presence of aerobic oxygen dissolved in solution (Figure 

3.14). The inhibition effect was likely due to photo-oxygenation of amyloid proteins, 

which involves the covalent linkage of hydrophilic oxygen atoms to cross-β-sheet 

structure on residues upon protein surface320,321. This reaction was potentially catalysed 

Figure 3.13 | Structural conversion of PrP aggregates. Temporal change in (a) the 

fraction and (b) the number of PK-sen and PK-res species of surface-seeded PrP 

aggregates using soluble seeds. The dataset from Figure 3.11 was globally fitted to 2D-

Gaussian functions to obtain the fraction of PK-sen and PK-res populations. (c) 

Intensity distributions after PK-digestion for surface-seeded PrP aggregates at 

different time points. The error bars represent standard deviations from three 

independent experiments with different batches of protein samples. 
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by long-term exposure of high-powered laser source. To evacuate the oxygen from 

solutions, the deoxygenation efficiency of two common methods, vacuum degassing322–

324 and an enzymatic scavenging system (glucose oxidase in combination with catalase, 

GOC)325–327, was estimated before PK digestion assay. From the results, both methods 

showed substantially increased rates during 1 hr proteolytic digestion with PK after 

removal of dissolved oxygen molecules in the reaction buffer, which suggested high 

efficiency of deoxygenation (Figure 3.14). As the glucose oxidase/catalase was likely to 

contribute false positive ThT signals and thus interfere image processing, the physical 

method of pump degassing was adopted throughout the continual measurements in this 

study.  

Figure 3.14 | Deoxygenation effect to PK digestion. Pump degassing and an enzymatic 

scavenging system (glucose oxidase in combination with catalase, GOC), were used for 

assessing the oxygen removal efficiency in solution. For pump degassing, four repeats 

of 1-minute vacuum cycle were applied in the buffer and ThT solutions, while in the 

GOC system, 7.5 U/mL of the oxidase and 1 kU/mL of catalase were directly added in 

the reaction mix. The changes in overall ThT intensity from PK-digested PrP aggregates 

(enzyme/PrP aggregate concentrations are 2 and 0.3 µM, individually) were followed 

by continual imaging with fixed fields of view at 37 °C incubation. 
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3.5 PrP fibril fragmentation is length-dependent and 

accompanied by loss of PK resistance 

The fragmentation rate constant, kf, in the nucleation-elongation-fragmentation kinetic 

model was defined per monomer in an aggregated assembly. A fibril may potentially 

fragment at random positions along its fibrillar axis, and hence the rate of fragmentation 

would be expected to increase with fibril length (i.e. a 1000-mer fibril is expected to have 

a fragmentation rate higher than the kf value by 1000-fold). Since very few studies have 

demonstrated the molecular details of fibril fragmentation, I measured this process on 

the coverslip surface to probe the length-dependence. Fragmentation of individual PrP 

fibrils was followed continually over 72 hr in the fixed fields of view, and the decrease in 

the average fibril length (i.e. fragmentation) measured. A higher fragmentation rate was 

revealed with increasing fibril length (Figure 3.15). The kinetic profiles were in good 

agreement with the PrP fibril fragmentation fits based on the kinetic model, which 

suggested that the fragmentation rate of a fibril is proportional to its fibril length, and that 

our previous assumption was justified, where the fragmentation rate of a fibril is 

proportional to its length. 

Next, the susceptibility of fragmented PrP fibrils to PK digestion was examined at defined 

time points (Figure 3.15c). Surprisingly, PrP fibrils rapidly lost resistance to PK despite 

the number of PK-sen aggregates remaining approximately constant (Figure 3.15b). The 

PK-res species which have a peak intensity at 10 a.u. became PK-sen, while the less 

intense PK-sen species that peaked at 5 a.u. disappeared, presumably due to 

fragmentation into smaller species that were not ThT-active. This suggested that the PK-

sen aggregates at later times are more likely to be generated from the initially PK-res 

fibrils by a structural conversion. 
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Figure 3.15 | PrP fibril fragmentation. (a) Time-dependent change on average PrP fibril 

length. The data shown correspond to the average of three independent experiments 

with different batches of protein samples. (b) Proteinase K (PK) resistance of PrP 

aggregates during surface-seeded aggregation. PK was added at different times to the 

glass surface that contained the PrP aggregates and slide chamber sealed to prevent 

fluid evaporation. The change in ThT intensity of individual particles was followed by 

continual imaging with the fixed fields of view at 37 °C incubation. PK resistance was 

calculated as the fraction of the ThT intensity after 1 hr proteolytic digestion compared 

to that seen at the start of the experiment. The error bars represent standard deviations 

from three independent experiments. (c) Temporal change in the fraction and the 

number of PK-sen and PK-res species of PrP fragments as a function of time. The dataset 

from (b) was globally fitted to 2D-Gaussian functions to obtain the fraction of PK-sen 

and PK-res populations as a function of time. 
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3.6 Estimation for PrP spreading in the brain from a kinetic 

approach 

It has been demonstrated that the growth rate of different strains in yeast prion Sup35 

can be predicted by a simple model which takes into account monomer concentration, the 

rate of cell division, and the elongation and fragmentation rates of different strains184. 

With a similar model, the spreading of tau replication in the brain was previously 

estimated using experimentally measured kinetic parameters, showing that tau 

accumulation in the brain is likely to follow an exponential behaviour resulting from 

fragmentation192. Here, I tested this spreading model with PrP using the kinetic 

parameters acquired in Table 3.1. 

Sustainable spreading of protein aggregates in the cells involves both effective seeding 

and amplification191. In this scenario, a single PrP aggregate in a cell can grow and then 

fragment into two smaller assemblies. The two assemblies thus act as new templates and 

are able to enter neighbouring cells in order to support sustained spreading. Therefore, 

the accumulated number of PrP aggregates is exponential and given by: 

 

(Eq. 3.2) 

 

where f0 is the initial number of aggregates and n is the round of doubling required to 

reach a final number of aggregates f(n). Based on the rounds of doubling (n) and doubling 

time (t2) in Equation 1, one can calculate the hypothetical spreading time (Tspreading) 

required to obtain a certain number of aggregates in the brain: 

 

(Eq. 3.3) 

 

Next, I determined how fast PrP aggregates would hypothetically spread in the mouse 

brain based on the kinetic parameters measured when a single aggregate is effectively 

seeded on the plasma membrane. According to the equations, the accumulation of PrP 

aggregates was plotted as a function of time and then calculated Tspreading (Figure 3.15).  

In a typical mouse brain, there are approximately 70 million neurons. To obtain one PrP 

0( ) 2nf n f 

2spreading
T n t 
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aggregate in every neuron on average, it would take 2.4 days for a wild-type Prnp+/+ 

mouse through the exponential replication. For a Prnp+/- mouse (~0.5x PrP expression 

level) and a tg20 mouse (~8x PrP expression level), it would take 3.4 and 0.8 days, 

respectively (Table 3.3). As discussed in Chapter 3.2, PrP levels at different conversion 

sites only have a mild effect to t2, and hence does not alter Tspreading to a greater extent. The 

hypothetical calculation of PrP spreading agrees with the experimental incubation 

periods observed in mice models within two orders of magnitude. The experimentally 

determined incubation periods are 137 ± 1.5, 258 ± 24, and 59.5 ± 2 days for Prnp+/+, 

Prnp+/-, and tg20 mice, respectively244. Importantly, the relative ratios of Tspreading 

between the three mouse strains (Prnp+/-, Prnp+/+, tg20) predicted from the model are 

very similar to those from animal experiments. 

PrP strain t2 f0 f n  Hypothetical Tspreading 

PrP+/- mouse 3.1 hr 

1 7×107 26 

3.4 day 

PrP+/+ mouse 2.2 hr 2.4 day 

Tg20 mouse 0.78 hr 0.8 day 

Table 3.3 | Hypothetical spreading time (Tspreading) for PrP in the mouse brain. t2: doubling 

time; f0: initial number of aggregates; f: accumulated number of aggregates at t=Tspreading; 

n: round of doubling for PrP replication; Tspreading: time required to obtain one aggregate 

in every neuron on average.   

Figure 3.16 | Hypothetical spreading for PrP in the brain. The simulated kinetic profiles 

are based on the exponential replication mechanism and the kinetic parameters 

measured in Table 3.1. 

 

 



 

 

3.7 Summary of the chapter 73 

 

3.7 Summary of the chapter 

In this chapter, the elongation and fragmentation of murine PrP have been directly 

observed. Despite the fact that fragmentation has been proposed to be an important 

factor for sustained replication in protein aggregation, this is the first time that this 

mechanism has been directly confirmed. The results show that amplification of the 

number of PrP aggregates occurs by an elongation/fragmentation mechanism. Surface-

seeded experiments reveal fibril fragmentation is proportional to fibril length, which 

suggested that larger-sized fibrils are more likely to break and thus produce new 

templates for further replication.  

It was also observed that during the aggregation process PrP undergoes structural 

conversion from a PK-sen to PK-res conformer. This is consistent with previous studies in 

mice, where PK-res and PK-sen species accumulated during prion propagation244,328. 

However, in the current experiments, it was found that during fragmentation PrP fibrils 

rapidly lose PK resistance, possibly due to destabilisation of the fibrillar structure. This 

finding would argue that reversion of PK resistance occurs when the fibrillar structure 

becomes fragile. Despite the fragility of fibril fragments, they are able to form new fibrils 

as directly observed on the surface and regain resistance to PK. The observations partly 

explain the production of disease-related PK-sen species observed in vivo244,246,329–331. 

Fragmentation of large PrP fibrils at later times is likely to produce more PK-sen segments 

and thus exceed the formation of new PK-resistant fibrils, which may partly explain the 

finding that the PK-sen species may constitute the majority of the total disease-related 

PrP in some prion strains of mice244,246 and in sCJD patients248. 

Through determination of the rate constants of ke and kf, one is able to calculate the t2 for 

PrP replication at the physiological protein concentration in cells, and hence establish a 

simple spreading model based on these kinetic measurements. PrP aggregation shows 

fast elongation/fragmentation and results in an estimated t2 of 2.2 hr if the aggregation 

occurs on the plasma membrane (Table 3.1), leading to spreading in a few days based on 

the hypothetical calculation of the mouse brain. The discrepancy between the theoretical 

estimation and the experimental data in vivo can be explained by several cellular 

mechanisms that were not considered in the spreading model. These include organelle 

confinement, the presence of membranes, and active clearance and degradation 

mechanisms. Furthermore, PrP glycoform ratio, especially the sialyation level, was 

demonstrated to affect the rate of PrPSc accumulation in PMCA68,69. A decrease in PrPC 

sialylation levels resulted in a higher proportion of the diglycosylated form of PrPSc that 

is faster accumulated in PMCA by 10-10000 fold. Although these determinants were not 



 

 

74 3.7 Summary of the chapter 

included in the calculations above, they would ultimately decelerate PrP spreading in vivo 

by either reducing the replication efficiency or increasing t2. 
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Chapter 4 | Biophysical characterisation of PrP at 

the early aggregation stage  

4.1 Introduction 

In prion pathogenesis, it is increasingly recognised that there are multiple disease-related 

PrP conformers, such as proteinase K (PK)-sensitive species244,246,329–331. In particular, 

small soluble oligomeric intermediates, instead of the end product of amyloid fibrils, have 

been shown to be the most efficient mediators of infectivity200,242 and exert higher 

cytotoxicity than mature fibrils both in vitro and in vivo242. The oligomeric aggregates 

have also been suggested to play key roles in other neurodegenerative diseases from 

various ensemble approaches196,332–336. It is fundamentally important to acquire detailed 

information on the formation, structure, and toxicity of these oligomers starting first with 

the oligomers formed in vitro. However, the studies in oligomers have raised a problem 

that is extremely challenging in investigating early events in protein aggregation, as these 

oligomeric species are transient and heterogeneous by nature. A recent study in yeast 

prion Ure2 has overcome the problem of structural heterogeneity with a single-molecule 

approach, identifying two structurally distinct oligomeric species before mature fibrils 

formed and establishing a temporal relationship between the oligomeric and mature 

fibrillar species178. In the particular case of mammalian PrP, prion infectivity and 

neurotoxicity have been proposed to be uncoupled99,244,245 and to be different species 

appearing in two distinct kinetic phases by Sandberg et al 244,245, while the neurotoxic 

species in Phase 2 are still undefined. The proportional contribution of PK-sensitive 

disease-related conformers and PK-resistant PrPSc also remains unclear. 

Given the structural heterogeneity of oligomers and the lack of physical studies at the 

early stage of PrP aggregation, I have studied the structural changes of the oligomeric 

species formed by recombinant mouse PrP as a function of time in this chapter. This 

characterisation has focused on molecular events before the exponential growth phase in 

bulk solution kinetics using a set of biophysical methods, including 1) TIRF imaging, 2) 

sPAINT imaging284, 3) a single-vesicle calcium influx assay for probing membrane 

permeability308, and 4) a single-aggregate PK resistance assay. These approaches have 

enabled observation of a range of different oligomeric species during early PrP 

aggregation. Furthermore, a kinetic scheme for PrP aggregation is established to provide 

insights into the key molecular mechanisms that lead to the formation of oligomers and 

identifies a key structural conversion process for PrP aggregation.  
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4.2 Single-aggregate imaging reveals the formation of small 

aggregates in early PrP aggregation 

Mouse PrP aggregation was performed at 37 °C with 200 rpm under partially denaturing 

conditions of 2 M GdnHCl that facilitate fibril formation in vitro. With the use of the single-

aggregate imaging based on TIRF microscopy276, the aggregation reaction was followed 

over time by taking aliquots at different time points and then visualised in the presence 

of 25 μM ThT (Figure 3.2). At early aggregation time (t <8 hr), the overall intensity and 

the number of PrP aggregates were observed to gradually increase depending on initial 

protein concentrations (Figure 4.1a and b), and they were found to increase at different 

rates as discussed more in Chapter 4.6. Only small-sized aggregates were detected at early 

times, and fibrils were not detected until 24 hr. It is consistent with previously measured 

kinetics in bulk solution at the same condition292, where the lag time was 10-15 hr and 

the plateau was reached after 30-35 hr.  

Figure 4.1 | Single-aggregate measurements of PrP aggregates at the early aggregation stage. 

(a) Overall ThT intensity and (b) number of PrP aggregates over time. The measurements 

were carried out from three independent experiments by taking aliquots at various time 

points from the aggregation reaction mix that was incubated at 37 °C with shaking at 200 

rpm. The error bars represent standard deviations from three independent experiments. (c) 

Intensity histograms of ThT-active PrP aggregates at different time points. The PrP 

aggregates were split into two apparent ThT intensity groups: low-intensity (L species) and 

high-intensity (H species). Illustrative fits of the individual PrP species (dash) to Gaussian 

functions and their accumulative fits (solid) are shown. The traces correspond to three 

independent experiments with different batches of protein samples. 
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4.3 Early-formed PrP aggregates are structurally diverse 

oligomers by sPAINT imaging. 

It has previously been shown that in sPAINT imaging, the fluorescence spectral shift of 

Nile red (NR) dye, which non-specifically and transiently binds to protein aggregates, 

allows super-resolution and measurement of relative surface hydrophobicity of 

individual protein aggregates284. In addition, combining with dual imaging with ThT dyes, 

the ThT-inactive aggregates can also be identified and thus provide more structural 

information compared with conventional ThT fluorescence measurements. To gain more 

structural insights at the early aggregation stage of PrP, sPaint was applied to visualise 

the morphology of PrP aggregates with spatial resolution of 40 nm, as well as to 

characterise the temporal change in surface hydrophobicity. With the help from Dr Ji-Eun 

Lee at the Department of Chemistry, Cambridge, an aliquot of PrP aggregates were 

collected from the same reaction mix at different time points, diluted to 0.1 μM of the 

Figure 4.2 | Super-resolved sPAINT images of PrP aggregates with Nile red (NR) at 

different time stages. The morphology of PrP aggregates at (a) 0.5 hr, (b) 3 hr, (c) 8 hr, 

and (d) 48 hr are revealed. Monomeric PrP was incubated in a 1.5-mL microcentrifugal 

tube with 2 M GdnHCl at 37 °C with 250 rpm. At various time points, aliquots were 

removed from the reaction mix and adsorbed onto a glass coverslip for sPAINT imaging. 

The scale bars represent 500 nm. 
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equivalent monomer concentration, and then visualised with sPAINT imaging (Figure 

4.2). 

At early times, only small-sized oligomers were found in the super-resolved images, 

which is consistent with the TIRF data. Note that the oligow2mers in this study are 

defined as being smaller than 40 nm from the super-resolved images. The results in 

Figure 4.3c showed that ThT-inactive species were formed and only constituted a small 

fraction of all oligomeric aggregates over time. Based on the shift of median wavelengths 

of NR fluorescence (Figure 4.3a and b), the surface structure of ThT-inactive species was 

more hydrophobic compared to ThT-active species. The increase in surface 

hydrophobicity with time suggested that structural reorganization of ThT-inactive 

species takes place in early PrP aggregation (Figure 4.3d). In contrast, the dominant ThT-

active aggregates showed no clear changes in hydrophobicity with time. 

The patterns of surface hydrophobicity for ThT-inactive and ThT-active oligomers were 

more clearly distinguished by accumulating the plots over 0.5, 3, and 8 hr (Figure 4.4).  

ThT-inactive and ThT-active oligomers showed distinct patterns of surface 

hydrophobicity. ThT-inactive oligomers had low numbers of NR localisation, while ThT-

active oligomers had broader numbers of NR localisation, indicating a higher diversity in 

molecular size. Furthermore, despite the number of NR localisation is lower, the pattern 

for ThT-active oligomers was close to that for mature fibrils collected at 48 hr, which 

generally possess higher number of NR localisation and hence high molecular size. This 

indicates that ThT-active oligomers were structurally more similar to mature fibrils. 

The total number of PrP aggregates detected in sPAINT imaging showed only small 

changes with time (Figure 4.3c). Consistent with TIRF data (Figure 4.1b), it suggested 

that only a small fraction of PrP oligomers formed at the early stage of aggregation 

ultimately grew into mature fibrils. The ThT intensity distributions of ThT-active species 

showed the presence of two populations, high-intensity (H species, peak at ~15 a.u.) and 

low-intensity species (L species, peak at < 1 a.u.), with different temporal behaviours 

(Figure 4.1c). While the number of L species remained approximately constant over time, 

the number of H species decreased with time. Previous experiments have shown that the 

H species appeared to be larger in size with molecular weights > 300 kDa (i.e. >12 PrP 

molecules), while the L species was < 300 kDa (Figure 3.9). It is noted that PrP fibrils are 

not efficiently detected in this TIRF imaging system, possibly due to the structural fragility 

of PrP fibrils. Despite the inefficiency in fibril detection, these experiments provide 

structural insights into early-formed oligomers based on ThT intensity of individual PrP 

aggregates and their PK resistance as discussed below.  
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Figure 4.3 | sPAINT analysis. (a) Hydrophobicity distribution of ThT-inactive and -active PrP 

species at different time points. The median wavelength of NR fluorescence derived from all 

binding events to a single PrP aggregate was determined as hydrophobicity for individual 

aggregates. (b) Hydrophobicity landscapes of individual aggregates. The distributions shown 

correspond to the accumulation of three independent measurements with different batches 

of protein samples. (c) Number and (d) Median wavelength of NR fluorescence for individual 

aggregates as a function of time. The error bars represent mean values and standard 

deviations from three independent experiments with different batches of protein samples. 

The overall number of analysed PrP aggregates is as following. At 0.5 hr: NThT-inactive = 44, NThT-

active = 403; at 3 hr: NThT-inactive = 36, NThT-active = 199; at 8 hr: NThT-inactive = 24, NThT-active = 261; 

for fibrils at 48 hr: NThT-active = 341. 
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Figure 4.4 | Different aggregated species of PrP show distinct accumulated 

hydrophobicity distributions. Hydrophobicity distributions were accumulated over all 

time points in each PrP species. ThT-active oligomers share a similar pattern with 

mature fibrils formed after 48 hr aggregation, despite the NR localisation for fibrils are 

higher. In contrast, ThT-inactive oligomers possess lower median wavelength and 

hence more hydrophobic. The number of NR localisations of ThT-inactive oligomers is 

low. The overall number of analysed PrP aggregates is as following: NThT-inactive = 103, 

NThT-active = 863, NThT-active for fibrils at 48 hr = 341. 
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4.4 PrP oligomers undergo PK-sensitive to PK-resistant 

structural conversion 

Next, the PK susceptibility of the ThT-active PrP oligomers was examined as a function of 

time using TIRF microscopy. The decrease of ThT intensity of individual oligomers at 

defined time points was measured after 1 hr-proteolytic digestion (Figure 4.5a-c). Most 

of the ThT-active oligomers were PK-sensitive (PK-sen), and PK-resistant species (PK-res) 

developed rapidly (Figure 4.5c). The initial ThT intensity of the oligomers before PK 
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treatment increased over time, suggesting the molecular size of PrP oligomers increased 

over time, which is consistent with the TIRF and sPAINT data. Interestingly, the 

relationship between PK resistance and their initial ThT intensity in Figure 4.5c also 

suggested that the H species of PrP aggregates were comprised of both PK-sen and PK-

res species. The PK resistance data was quantified by fitting to 2D-Gaussian functions at 

different time points and acquired the fraction and the number of the PK-sen/PK-res 

species (Figure 4.5d and e). 

Figure 4.5 | Time-dependent increase of PK resistance during PrP aggregation. The ThT 

intensity distributions of PrP aggregates at different time points (a) before and (b) 

after PK treatment were shown. PK was added at different times to the glass surface 

that contained the PrP aggregates and slide chamber sealed to prevent fluid 

evaporation. The change in ThT intensity of individual particles was followed by 

continual imaging with the fixed fields of view at 37 °C incubation. PK resistance was 

calculated as the fraction of the ThT intensity after 1-hr proteolytic digestion compared 

to that seen at the start of the measurement. Note that in each set of histograms at 

defined time points in (a) and (b), the occurrence was set to 1 in respective of the 

highest bin count before PK treatment. (c) The PK resistance of individual aggregates 

against their initial intensity. The plots shown correspond to the accumulation of three 

independent measurements. The dataset of the PK resistance landscape plots was 

globally fitted to 2D-Gaussian functions to estimate the fraction of PK-sen and PK-res 

species. Changes in (d) the fraction and (e) the number of PK-sen and PK-res species 

of PrP aggregates shown as a function of time. The error bars represent standard 

deviations from three independent experiments with different batches of protein 

samples. 
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To gain more insight from the correlation between PK resistance and ThT intensity, I 

combined the PK resistance data (Figure 4.5d) with the ThT intensity distributions 

(Figure 4.1c). The PK-sen and PK-res oligomers could be further sub-classified based on 

their ThT intensity, either L or H. Therefore, four oligomeric species were identified: (1) 

PK-sen/low-intensity, (SL); (2) PK-sen/high-intensity (SH); (3) PK-res/low-intensity (RL); 

and (4) PK-res/high-intensity (RH). According to Figure 4.6, RL and RH formed later than 

SL and SH formation, and hence the production of RL and RH could either convert from SL 

and SH, or be nucleated directly from monomers. From the observations, RL shares a 

similar ThT intensity profile with SL (and likewise, in the RH and SH pair) (Figure 4.1c), 

and the increase of the fraction of the PK-res species was at the same rate as that of the 

decrease of the PK-sen species (Figure 4.5d). Therefore, it is highly likely that there was 

a direct structural conversion from PK-sen to PK-res conformations. 

  

Figure 4.6 | Temporal change in the number of the four identified ThT-active PrP 

aggregate species. Combining the intensity histograms and their PK resistance, the PrP 

aggregates were characterised into four species: low-intensity PK-sensitive (L-sen), 

low-intensity PK-resistant (L-res), high-intensity PK-sensitive (H-sen), high-intensity 

PK-resistant (H-res). The error bars represent standard deviations from three 

independent experiments with different batches of protein samples. 
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4.5 PK-sensitive oligomers are more capable of disrupting the 

lipid membrane than fibrils 

The oligomeric aggregates of PrP have been shown to confer higher toxicity compared to 

fibrils both in vitro and in vivo 6,7,30,181,196–200. Despite the complexity of the origin of 

toxicity, non-specific membrane disruption induced by protein aggregates is suggested to 

cause toxicity 6,181,231–236. This aberrant interaction is shown to partially permeabilise the 

lipid membrane, resulting in Ca2+ influx and the disruption of cellular 

homeostasis6,180,181,205,234,235,238. To study the potentially damaging effects of protein 

aggregates on the lipid membrane, a single-vesicle assay has recently been developed to 

Figure 4.7 | Membrane permeability per PrP aggregate as a function of time. Monomeric 

PrP was aggregated at a concentration of 27.5 μM in the presence of 2 M GdnHCl at 

37 °C with shaking at 200 rpm. At each time point, an aliquot was taken, diluted to a 

final concentration of 50 nM, and loaded onto a liposome-attached slide surface. The 

fibrils were collected at 48 hr of aggregation by centrifugation. The increase of Cal-520 

(Ca2+-binding dye) fluorescence was determined as Ca2+ influx and was calibrated with 

the blank background and ionomycin control as described in the Methods. The Ca2+ 

influx from individual experiments was then normalised with the number of ThT-active 

PrP aggregates observed from TIRF images. The relative influx level at 0.5 hr is set as 

1. The error bars represent standard deviations from three independent experiments 

with different batches of protein samples. 
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quantify the ability to permeabilise the liposome membrane by measuring the influx of 

external Ca2+ ions with liposome-encapsulated Ca2+-binding dye308. The membrane 

permeability assay provides a reliable and ultrasensitive approach to characterise the 

various PrP species identified from a structural insight. With the help from Dr Suman De 

at the Department of Chemistry, Cambridge, PrP aggregates were applied at defined time 

points onto a liposome-attached coverslip surface, and the resulting fluorescence induced 

by Ca2+ influx was determined as membrane permeability. 

In Figure 4.7, the membrane permeability was normalised to the average number of PrP 

aggregates observed in TIRF images (Figure 4.1b). Mature PrP fibrils collected after 48 hr 

were shown to be inefficient in permeabilising the lipid membrane compared with early-

formed oligomers. In contrast, the membrane permeability per aggregate showed little 

change at early aggregation times. This constant permeability suggested that the PK-res 

oligomers (RL and RH) were less likely to be responsible for the disruption of the lipid 

membrane, as their numbers increased over time (Figure 4.5e). Instead, the PK-sen 

oligomers (SL and SH) and ThT-inactive oligomers, which both remained constant number 

over time (Figure 4.3c and 4.5e), are more likely to permeabilise the membrane. 
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4.6 Modelling the kinetics of PrP aggregation 

The aggregation kinetics of recombinant PrP at early stages under partially denaturing 

conditions has been explored180,191,337,338. To acquire more insights into the early events 

of PrP aggregation, the quantitative TIRF data were further analysed by fitting them to a 

kinetic model for protein aggregation for protein aggregation, with the help from Dr 

Georg Meisl at the Department of Chemistry, Cambridge 186,193 (see Chapter 2.8.6 for the 

derivation of the model). 

According to the original kinetic scheme for PrP aggregation (Figure 4.1b), the number of 

the PK-sen oligomers, SL and SH, remained unchanged over the measurement period, 

which is likely to be at equilibrium with monomers. The possibility of the steady state of 

the aggregation reaction was ruled out, as there were insufficient numbers of PK-res 

oligomers or fibrils to be consistent with a steady state scenario. As discussed in Chapter 

4.4, the production of RH and RL are very likely due to a direct conversion from SH and SL. 

Therefore, the kinetic model here was considered to be the nucleation of PK-sensitive 

species from the monomer (m) is at equilibrium, followed by a structural conversion 

reaction from PK-sen (S) to PK-res (R) populations (Figure 4.8a). Compared to the 

previously established model for α-Synuclein aggregation in vitro, the current model for 

PrP aggregation follows a nucleation-dissociation-conversion model, which contains 

reversible reaction steps that cannot be neglected. 

SL and SH share similar kinetic parameters, as do RL and RH (Table 4.1), which is consistent 

with the ThT intensity distribution of PrP aggregates that L and H species share a similar 

kinetic profile at the early stage of aggregation (Figure 4.1c). This suggests that the L and 

H species are likely to interconvert on the similar time scale of the measurements. 

Therefore, for convenience, the scheme can be simplified to that shown in Figure 4.8b, 

where SL and SH are treated as a single species, as are RL and RH. Based on this scheme, 

the fitted kinetic parameters are shown in Table 4.2. This means the half-life for PK-sen 

 PK-res conversion is roughly 1 hr under current aggregation condition. 
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Figure 4.8 | Modelling the kinetics of PrP aggregation. (a) The kinetic model considers the 

nucleation of PK-sensitive species from the monomer (m) is in equilibrium, and a 

structural conversion reaction happens between PK-sensitive (S) to PK-resistant (R) 

populations. (b) A simplified kinetic model that considers a single S  R population, as 

L and H shares similar kinetic parameters. The S species includes SL (low-intensity) and 

SH (high-intensity), while the R species includes RL (low-intensity) and RH (high-

intensity). (c) Global fits of the TIRF kinetic profiles in Figure 4.1b using a single S  R 

population. K, equilibrium constant; n, reaction order of nucleation; kc, rate constant of 

conversion from S to R; nc, reaction order of conversion; kd, rate constant of reverse 

reaction of conversion. 
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PrP 

Species 

K 

(count/µM) 
n kc (hr-1) nc kd (hr-1) 

L 120 1 0.80 0 0.40 

H 69 1 0.93 0 0.23 

Table 4.1 | Fitted parameters for the kinetic model of PrP aggregation. In this model, the L 

and H species are nucleated from monomers and have independent aggregation reactions 

(i.e. SLRL; SHRH). K, equilibrium constant; n, reaction order of nucleation; kc, rate 

constant of PK-sen  PK-res conversion; nc, reaction order of conversion; kd, rate 

constant of reverse reaction of conversion. 

 

 

 

PrP 

Species 

K 

(count/µM) 
n kc (hr-1) nc kd (hr-1) 

Total 

(L+H) 
189 1 0.77 0 0.27 

Table 4.2 | Fitted parameters for the simplified kinetic model of PrP aggregation. In the 

simplified model, the L and H species are treated as a single species due to their similar 

kinetics. The PK-sensitive species is formed by monomer nucleation and then converts to 

PK-resistant species. K, equilibrium constant; n, reaction order of nucleation; kc, rate 

constant of PK-sen  PK-res conversion; nc, reaction order of conversion; kd, rate 

constant of reverse reaction of conversion.  
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4.7 Summary of the chapter 

The spatial distribution and temporal evolution of the infectious and toxic species are 

important in the research in PrP neuropathology, and they require direct studies of 

infectivity and toxicity and identification of the species responsible. However, such 

physical characterisation is proving technically challenging due to the complicated nature 

of protein aggregation. The single-aggregate imaging methods provide an in vitro 

approach to characterise the various species of PrP aggregates from a structural 

perspective. 

The aggregation kinetics of recombinant PrP at the early stage has been explored under 

a semi-denaturing condition. According to the single-aggregate measurements, five 

oligomeric species with distinct structural characteristics have been identified: (1) ThT-

inactive oligomers, (2) PK-sen low-ThT intensity oligomers (SL), (3) PK-sen high-

intensity oligomers (SH), (4) PK-res low-intensity oligomers (RL), and (5) PK-res high-

intensity oligomers (RH). The presence of SL, SH, and ThT-inactive oligomers at early times 

and their constant numbers during aggregation suggests that they are in kinetic 

equilibrium with monomers. In contrast, from the temporal change of PK-sen and PK-res 

species in Figure 4.5d, it is suggested that SL and SH undergo structural conversion to RL 

and RH, independently, despite the L and H species seem to have a similar kinetic 

behaviour at early aggregation times within 10 hr (Figure 4.1c and 4.6). 

The small changes in the number and the ThT intensity of total oligomeric populations 

formed at the early stage of aggregation (Figure 4.1a and b), and no clear shift of the peak 

to higher intensity in the ThT intensity distribution (Figure 4.1c) suggest that many of the 

PrP oligomers in the early stage of aggregation remain in the soluble states, and only a 

minor fraction of the PK-res oligomers grows into mature fibrils under the semi-

denaturing condition. Despite the L and H species showing similar kinetics, the fraction 

of the H species decreased at 48 hr when fibril formation reached a plateau (Figure 4.1c), 

suggesting that the H species, possibly larger-sized RH (> 300 kDa), that ultimately grows 

to mature fibrils. 

According to the modelling to PrP aggregation, the half-life of PK-sen  PK-res 

conversion in PrP aggregation is about 1 hr. Compared to our previous measurement for 

αS180 that plays a key role in Parkinson’s disease, the half-life of PK-sen  PK-res 

conversion for αS is about 36 hr, which is slower than that for PrP by more than an order 

of magnitude. The fast conversion rate for PrP may be partially due to the denaturing 

condition, but still, it reflects the conversion rate is fundamentally faster in the PrP case. 
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Although the origin of toxicity induced by aggregated proteins might be complicated, it 

appears to highly correlate to the disruption of the lipid membrane of cellular 

components. The membrane permeability assay is the first attempt to quantitatively 

measure the damaging ability of PrP aggregates to the lipid membrane and to probe the 

responsible species from a structural perspective. The data shows that early-formed PrP 

oligomers possess higher membrane permeability than mature fibrils and that ThT-

inactive or PK-sen oligomers are likely to be responsible for inducing calcium influx in 

membranes. This is consistent with the previous finding that toxic oligomers are 

structurally loosely-packed181, as well as the observation from mouse models that the 

toxicity may result from PK-sen species244. It also suggests that the aggregate species of 

PrP that caused the disruption of the membrane may include ThT-inactive species, which 

are in a low level, relatively small in size, and technically difficult to detect. 

Overall, this chapter reveals that at least five types of aggregates can co-exist during PrP 

aggregation. The ThT-inactive oligomers and PK-sen oligomers remain constant number 

over time and are more capable of disrupting the lipid membrane and inducing Ca2+ influx. 

In contrast, PK-res oligomers are formed by a structural conversion from the PK-sen 

species and are likely to form fibrils. According to ThT intensity, the structurally different 

PK-sen/PK-res species can be sub-divided into the L and H species, individually, which 

are different in size and yet share a similar kinetic behaviour. Therefore, PrP amplification 

and lipid membrane disruption are likely mediated by different aggregate species with 

separate structural properties. Intervention in the formation of these specific targets 

during PrP propagation can be potentially important to inhibit the aggregation process. 
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Chapter 5 | The mechanism of prion-like 

spreading II: αS aggregation 

5.1 Introduction 

Parkinson’s disease, like other neurodegenerative diseases, is associated with protein 

aggregation. The hallmark of this disease is the insoluble aggregates of αS and its deposits 

in the brain, known as Lewy bodies339. According to previous immunohistochemical 

studies in PD brains, the development of PD has been found to accompany with the 

accumulation of αS inclusions before the appearance of clinical symptoms, and a mutation, 

A53T, in the αS gene is identified to accelerate the disease development114,115,340. It has 

been reported that Lewy bodies propagate from host to transplanted embryonic neurons 

in PD brains, suggesting that αS aggregates could spread to neighbouring cells341–343. 

Furthermore, WT and transgenic mouse experiments have shown that injection of 

recombinant αS fibrils could lead to endogenous αS aggregation258,259,344. This suggests 

that αS aggregation can be accelerated by seeding and follows the nucleation-dependent 

polymerisation mechanism as observed from PrP studies. From in vivo studies, clinical 

signs of synucleinopathies are demonstrated to be able to be triggered in transgenic A53T 

mice after intracerebral inoculation of brain homogenates from old mice with 

synucleinopathy345 or from MSA patients346. These findings provide strong evidence of αS 

transmissibility among cells and organisms, which is the prerequisite for bona fide prions. 

Based on the above observations from the intercellular spread and seeded propagation, 

αS aggregates have been suggested to possess ‘prion-like’ properties257,261,347,348. 

However, some have argued that Lewy pathology has not been detected in all 

transplanted cells260, and no interorganismal infectivity was reported in human PD256. 

The reason may be partially due to a low protein level in vivo and low fragmentation rates 

of αS fibrils that may lead to inefficient spreading of αS aggregates, so that αS 

amplification and transmission have not been detected in a reasonable time period. The 

prion-like hypothesis of αS in PD pathology requires further studies. In this chapter, I have 

explored the propagation characteristics of WT and A53T αS aggregates using the single-

aggregate imaging with TIRF microscopy and made quantitative comparison between αS 

and PrP based on the kinetic rate constants determined. The kinetic constants measured 

have allowed the estimation for the hypothetical spreading of αS throughout the brain 

and thus examined the validity of the spreading model with αS aggregates. 
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5.2 Single-aggregate studies of WT αS aggregation from bulk 

solutions 

The propagation characteristics of WT human αS was investigated with the same 

approach as in the PrP study in Chapter 3. Seeded or unseeded αS aggregation reactions 

were performed in bulk solution under native conditions to determine the change in 

aggregate length with respect to time (Figure 3.1, left and Figure 5.1). The αS seed was 

generated from sonication of fibrils formed by WT αS, which were typically broken into 

small fragments below the detection limit of ~450 nm and is consistent with a previous 

finding349. In unseeded αS aggregation, an initial increase in the average aggregate length 

was observed, followed by a slow decrease at later times over a long period of several 

weeks. The decrease of aggregate length was shown not to be due to proteolysis (Figure 

5.2), which suggested it is likely to result from fragmentation of αS fibrils. To extract the 

kinetic parameters of αS aggregation, the kinetic profiles were fitted again with the help 

Figure 5.1 | Kinetics of WT αS aggregation in bulk solution. (a) Representative TIRF images 

of non-seeded αS aggregation at a protein concentration of 70 μM at different times were 

revealed using TIRF imaging. The scale bars represent 10 µm. (b) The change on average 

aggregate length of non-seeded and 0.35% (v/v) seeded αS aggregation at a protein 

concentration of 70 μM in PBS (pH 7.0) supplemented with 0.01% (v/v) NaN3. Reaction 

kinetics were measured by taking aliquots at various time points from the aggregation 

reaction mix that was incubated at 37 °C with shaking at 200 rpm. The kinetic data 

obtained were used to estimate the fragmentation and elongation rate constants ke and kf, 

respectively. The product of rate constants kekf is 6.9 ×10-9 M-1s-2. The error bars represent 

standard deviations from three independent experiments with different batches of protein 

samples. 
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from Dr Georg Meisl at the Department of Chemistry, Cambridge. The product of ke and kf 

was estimated to be 6.9×10-9 M-1s-2, which is lower than the equivalent value for PrP in 

solution by a factor of 107 (Table 5.1). Given the αS concentration of neuron synapses in 

the mouse brain is 2 μM 350, the derived doubling time t2 for αS is 48 days. This suggested 

that the time for αS to replicate was approximately 1000-fold longer than that for PrP. 

This calculation provides a quantitative approach to estimate to what extent αS is ‘prion-

like’ through the kinetic parameters measured. 

Protein 
ke

 # 

(M-1s-1)  

kf
 # 

(s-2)  

kekf 

(M-1s-2) 

m 

(nM) 

t2 

(day) 

PK-senres 

conversion 

half-time 

WT αS 43±7 
1.6 ± 0.2 

×10-10 

6.9 ± 

1.4×10-9  
2000 (SN) 48 ± 2 39.5 ± 7.3 hr 

Table 5.1 | Kinetic parameters for WT αS aggregation in solution. ke, elongation rate 

constant; kf, fragmentation rate constant; m, local concentration of monomers in cells; t2, 

doubling time required for a single protein aggregate replicates into two aggregates 

during aggregation. SN: synapse. The errors represent uncertainties of the fitting 

parameters given the dataset.  

Figure 5.2 | Structural integrity of unseeded WT αS 

aggregates using SDS-PAGE. αS was aggregated in PBS 

with the supplement of 0.01% NaN3 at 37 °C with 200 

rpm. An aliquot was taken for analysis at defined time 

points. After boiling for 10 min, 2 µg of the aggregates 

were separated by 4-12% Bis-Tris NuPage gel. The 

result shows a single band with similar intensity over 

long-term incubation, suggesting no obvious 

degradation over time. No large-sized species was 

observed remaining above the wells. 1: 0 hr; 2: 168 hr; 

3: 2000 hr; M: protein marker. 
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The PK resistance for αS assemblies was analysed at defined time points (Figure 5.3). It 

was found that αS aggregates were initially PK-sensitive and subsequently acquired PK 

resistance as the assemblies grew in length into longer fibrils. To acquire more insights, 

the fractions of the PK-sen and PK-res species of αS were quantified with 2D Gaussian 

functions and hence kinetic profiles acquired. The fraction of PK-res aggregates increased 

rapidly and reached a plateau after 2 days (Figure 5.4a), while the number of these 

assemblies increased continuously over time (Figure 5.4b). The conversion from PK-sen 

to PK-res was determined to have a half time of ~39.5 hr, which is in good agreement with 

the previous FRET measurements180. In comparison with the half-time for PrP conversion, 

αS aggregates required significant >100 fold more time for structural conversion (Table 

3.1 and 5.1) despite the fact that the aggregation would appear to occur by a similar 

mechanism. 

Figure 5.3 | PK resistance of unseeded WT αS aggregates. αS was aggregated in PBS with 

the supplement of 0.01% NaN3 at 37 °C with 200 rpm. At various time points, aliquots 

were removed from the reaction mix and adsorbed onto a glass coverslip. PK was added 

at different times to the glass coverslip and slide chamber sealed to prevent fluid 

evaporation. The change in ThT intensity of individual particles was followed by 

continual imaging with the fixed fields of view at 37 °C incubation. PK resistance was 

calculated as the fraction of the ThT intensity after 1 hr proteolytic digestion compared 

to that seen at the start of the experiment. Combined data of three independent 

measurements with different batches of protein samples were shown. 
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Figure 5.4 | Structural conversion of αS aggregates. Temporal change in (a) the fraction 

and (b) the number of PK-sen and PK-res species of αS aggregates as a function of time. 

The dataset from Figure 5.3 was globally fitted to 2D-Gaussian functions to obtain the 

fraction of PK-sen and PK-res populations as a function of time. (c) Intensity 

distributions after PK-digestion at different time points. 
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5.3 Estimation for WT αS spreading in the brain from a kinetic 

approach 

Protein inclusions of αS are the neuropathological hallmark of Parkinson’s disease (PD) 

and related synucleinopathies including dementia with Lewy bodies (DLB) and multiple 

system atrophy (MSA). In the development of the synucleinopathies, αS aggregates are 

reported to exhibit transcellular spread by a prion-like mechanism256,257,261. With the 

same rationale of estimation for PrP spreading in Chapter 3.6, I repeated the calculations 

for spreading in the brain based on the rate constants obtained for WT human αS (Figure 

5.5a). 

As the fits to the kinetic profiles for αS obtained a t2 of 48 days in the mouse brain, Tspreading 

for αS was predicted to be ~3.4 years in order to spread through an entire mouse brain 

(Figure 5.5). This is in good agreement with the experimental results of 15 months 

duration, when phosphorylated αS pathology was distributed throughout the brain after 

intracerebral injection with the human αS seed258. 

 

 

 

 

Figure 5.5 | Hypothetical spreading for human WT αS in the mouse brain. The simulated 

kinetic profiles are based on the exponential replication mechanism and the kinetic 

parameters measured in Table 5.1. 
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αS strain t2 f0 f n  Hypothetical Tspreading 

WT αS in WT 

mice 
48 day 1 7×107 26 3.4 year 

Table 5.2 | Hypothetical spreading time (Tspreading) for human WT αS in the mouse brain. t2: 

doubling time; f0: initial number of aggregates; f: accumulated number of aggregates at 

t=Tspreading; n: round of doubling for αS replication; Tspreading: time required to obtain one 

aggregate in every neuron on average.  
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5.4 Kinetic studies of a disease-related αS mutant A53T 

Chapter 3 has discussed that the difference among prion strains can be explained with 

the exponential replication in the spreading model. In this context, prion strains with 

unique conformational states may be differentiated by different kinetic parameters 

acquired from single-molecule studies. In αS studies, there is no clear evidence for the 

existence of αS strains, and there is no specific definition of them. However, the existence 

of αS strains may potentially explain the distinct clinical and pathological disease 

Figure 5.6 | Kinetics of A53T αS aggregates with S or NS strain seeds. (a) Representative 

images of non-seeded A53T aggregation at a protein concentration of 70 μM at different 

times were revealed using TIRF imaging. The scale bars represent 10 µm. The change on 

average aggregate length of (b) non-seeded, salt seeded (S), and non-salt seeded (NS) A53T 

aggregation at a protein concentration of 70 μM with 0.35% (v/v) seeds in PBS (pH7.0) 

supplemented with 0.01% (v/v) NaN3. Reaction kinetics were measured by taking aliquots 

at various time points from the aggregation reaction mix that was incubated at 37 °C with 

shaking at 200 rpm. The kinetic data obtained were used to estimate the fragmentation and 

elongation rate constants ke and kf, respectively. The product of rate constants kekf is 

4.8×10-5 and 1.3×10-5 M-1s-2 for S and NS strain-seeded reaction, respectively. The error 

bars represent standard deviations from three independent experiments with the same 

batch of protein samples. 
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phenotypes observed amongst the human synucleinopathies. Several recent studies have 

provided evidence that αS aggregates may exhibit strain-like behaviour in vitro and in 

mice169,351–353. Here I test the hypothesis with, A53T, is a PD-associated αS mutant that 

has been identified to exist in two distinct aggregated strains169,353 and to accelerate the 

aggregation compared to the WT protein354. 

Two human A53T αS strains were obtained by varying the buffer conditions during fibril 

formation, in either the presence or absence of 100 mM NaCl to generate Salt (S) and No 

Salt (NS) fibrils, respectively. For the seeded reactions, pre-formed S or NS fibrils were 

sonicated as seeds, respectively. To measure the A53T αS aggregation kinetics, A53T αS 

was aggregated in bulk solution in the presence or absence of seeds over a long period of 

several weeks. A similar morphology was found between the WT and A53T aggregates 

formed in the same condition using TIRF imaging (Figure 5.6a). In contrast to WT, A53T 

aggregated faster and formed fibrils with longer average lengths (Figure 5.6b). 

Comparing the two strains, S fibrils were found to fragment more rapidly than NS fibrils. 

To determine the kinetic parameters of A53T aggregation, the TIRF data was fitted to the 

nucleation-elongation-fragmentation kinetic model. The derived ke for both S and NS 

strains was substantially higher than that of WT by 104 fold, while kf did not show an 

obvious difference (Table 5.3). The product of ke and kf was calculated to be 4.8×10-5 and 

1.3×10-5 for S and NS seeding, respectively, which are both substantially higher than the 

equivalent value for WT (6.9×10-9 M-1s-2). 

Protein 
ke

 # 

(M-1s-1)  

kf
 # 

(s-1)  

kekf 

(M-1s-2) 

m 

(µM) 
t2 

WT-seeded 

WT monomer 
4.3 ± 0.7 ×101 1.6 ± 0.2 ×10-10 6.9 ± 1.4 ×10-9  2 48 ± 2 (day) 

S strain-seeded  

A53T monomer 
3.4 ± 0.3×105 1.4 ± 1.1 ×10-10 4.8 ± 3.9×10-5 

2 13.8 ± 11.2 (hr) 

1 19.5 ± 15.8 (hr) 

NS strain -seeded  

A53T monomer 
2.9 ± 0.1×105 4.4 ± 3.0 ×10-11 1.3 ± 0.9×10-5 

2 26.5 ± 18.4 (hr) 

1 37.5 ± 26.0 (hr) 

Table 5.3 | Comparison of kinetic parameters for WT and A53T αS aggregation in solution. 

The WT-seeded aggregation data is derived from Table 5.1. ke, elongation rate constant; 

kf, fragmentation rate constant; m, local concentration of monomers in cells; t2, doubling 

time required for a single protein aggregate replicates into two aggregates during 

aggregation. The errors represent uncertainties of the fitting parameters given the 

dataset. 
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Despite the lack of information on the A53T αS concentration in vivo, at the same protein 

concentration of 2 μM, the doubling time t2 was hence 13.8 hr and 26.5 hr, respectively, 

compared to that of 43 days for WT. The difference in t2 between A53T and WT was shown 

to be roughly 10-100 fold. 

In collaboration with Dr Joel Watts at the Tanz Centre for Research in Neurodegenerative 

Diseases, University of Toronto, I was able to compare the hypothetical spreading of A53T 

with the experimental results from hemizygous TgM83 mice (M83+/-, ~0.5x expression 

level) after intracerebral inoculation with the A53T seed (Figure 5.7). As the A53T 

expression level was estimated to be half (i.e. 1 μM) in M83+/- mice than that in M83+/+ 

mice, Tspreading for the S and the NS seed-inoculated M83+/- mice was predicted to be 22 

and 42 days, respectively (Table 5.4), in order to spread through an entire mouse brain. 

In comparison, the experimentally determined incubation periods for S strain and NS 

strain-inoculated mice were 142 ± 2 days and 375 ± 63 days, respectively355, which agree 

with the estimated Tspreading within an order of magnitude. Importantly, the relative ratios 

of Tspreading between the two A53T strains (S and NS) predicted from the spreading model 

are very similar to those from the mice experiments. 

 

 

 

Figure 5.7 | Hypothetical spreading for human A53T αS in the mouse brain. The 

simulated kinetic profiles are based on the exponential replication mechanism and the 

kinetic parameters measured in Table 5.1. 
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αS strain t2 f0 f n  Hypothetical Tspreading 

S strain A53T 

in mice 
19.5 hr 1 7×107 26 22 day 

S strain A53T 

in mice 
37.5 hr 1 7×107 26 42 day 

Table 5.4 | Hypothetical spreading time (Tspreading) for human A53T αS in the mouse brain. 

t2: doubling time; f0: initial number of aggregates; f: accumulated number of aggregates at 

t=Tspreading; n: round of doubling for αS replication; Tspreading: time required to obtain one 

aggregate in every neuron on average. 
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5.5 Disaggregation of αS assemblies by the proteasome 

Although the formation of aggregates has been researched extensively, little is known 

about their removal. Aggregate degradation via both the proteasomal and the lysosomal 

systems has been described in the literature356,357. Whereas larger aggregates are 

believed to be cleared by lysosomes, removal of smaller oligomers has been attributed to 

the proteasome358. The 26S proteasome holoenzyme is an abundant multi-subunit 

protein complex responsible for the regulation of many key signalling pathways and 

general cell homeostasis359. This complex consists of a 20S core particle (CP) and one or 

two 19S regulatory particles (RP) that cap the CP at either end. Degradation activity of 

the proteasome is provided by several proteases that require ATP hydrolysis within the 

interior of the CP, while the RP is responsible for the recognition of ubiquitin-conjugated 

substrates, which are subsequently unfolded and translocated into the CP360. In cells, both 

tau and αS have been reported to be degraded by the proteasome361,362, while their 

aggregated forms were not observed to be subjects of the proteasome in vitro. It is further 

possible that distinct aggregate conformations of sufficient size and stability may be 

recognised but not processed by the proteasome and thus inhibit its activity, as has been 

suggested for Aβ, tau, αS, and PrP aggregates210,363–365. Here I show preliminary data that 

large αS fibrils were predominantly removed by the proteasome in an ATP-dependent 

manner366. 

To test whether αS fibrils may also be targeted by the proteasome holoenzyme, human 

WT αS aggregates after 24 hrs of aggregation reaction were collected and treated with the 

proteasome or an ATP-containing buffer control with the help from Dr Yu Ye and Rachel 

Cliffe at the Department of Chemistry, Cambridge. The reaction mix was visualised with 

single-aggregate TIRF microscopy combining with pentameric formylthiophene acetic 

acid (pFTAA), a fluorescent dye that significantly increases the fluorescence quantum 

yield upon binding to amyloid structures367. An ATP regeneration system (see Chapter 

2.13) was added to both the control and proteasome-treated samples to maintain the ATP 

concentration during the assay. 

According to TIRF images, the length of individual pFTAA-active aggregates was plotted 

against their intensity (Figure 5.8a and b). Large αS fibrils (length >1 μm) were still 

detected even after 20 hrs of incubation in the degradation buffer without the proteasome. 

These fibrils constituted about 28% of all aggregates (471±14 counts), while the level of 

small aggregates (length <1 μm) is 72% (1227±318 counts). In comparison, incubation 

with the proteasome significantly removed αS fibrils (259±109 counts, or 8%), while the 

level of small aggregates increased (3094±255 counts, or 92%). This result suggests that 
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the proteasome can disassemble large fibrils into small aggregates. It is noted that 

proteasomes did not bind pFTAA and therefore could not contribute to any fluorescence 

signals detected.   

Figure 5.8 | Proteasome disaggregates αS fibrils into small-sized fragments. αS aggregates 

were assembled from monomers for 24 hrs, subsequently incubated with an ATP-containing 

buffer or proteasome holoenzyme for 20 hr, and then imaged with TIRF microscopy in the 

presence of 30 nM pFTAA. (a) Particle length and intensity of individual αS aggregates at 0 

hr (upper) and 20 hr (middle) after buffer or proteasome treatment were revealed with 

contour plots. The combined data of three independent measurements with different 

batches of protein samples are shown. (b) TIRF images of the αS aggregates after 20 hr 

incubation in the presence or absence of the proteasome treatment. The scale bars represent 

10 µm. (c) Quantification of the number of αS aggregates. The aggregates with length >1 μm 

are categorised as large fibrils, while those with length < 1 μm are categorised as small 

aggregates. The error bars represent standard deviations from three independent 

experiments with the same batch of protein samples. *P < 0.05, **P < 0.01, two-tailed t-test. 

Data acquired from the collaboration with Dr Yu Ye and Rachel Cliffe in Ref. 366.  
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5.6 Summary of the chapter 

In this chapter, the elongation and fragmentation of WT and A53T mutant of human αS 

have been studied. The results show that replication of WT and A53T αS aggregates 

follows a similar elongation/fragmentation mechanism as in the PrP case, and αS fibrils 

fragment with a substantially slower rate constant compared with PrP. 

Through the measurements of the kinetic parameters, the t2 for αS replication is 

determined at the physiological protein concentration in cells. Hence, the spreading 

model established in Chapter 3 can be tested based on the experimental observations of 

αS aggregation. WT αS shows substantially slower elongation/fragmentation than PrP 

and results in t2 = 48 days, leading to a hypothetical spreading time of 3.4 years based on 

our calculation in the mouse brain. The estimation for the hypothetical spreading time in 

the brain is in good agreement with the results from animal experiments within an order 

of magnitude. Therefore, WT αS accumulation in the brain is likely to follow the same 

exponential behaviour resulting from fragmentation like PrP in Chapter 3 and tau192. 

Based on the observation of longer t2, it is predicted that WT αS aggregates would spend 

significant time in cells without degradation as has recently been observed368. 

The study in A53T αS strains shows that small differences in the product of ke and kf by 

~4 fold between the S and NS strain of the A53T aggregates, resulting in a difference in t2 

by roughly 2 fold. In contrast to WT αS aggregates, S and NS A53T αS strains had faster t2 

by approximately 100 fold. Despite the lack of information about the A53T expression 

levels in transgenic mice, the estimations for the hypothetical spreading time of A53T in 

the brain are in good agreement with the results from animal experiments within an 

order of magnitude, assuming the expression level is the same as that in WT mice. 

Furthermore, the relative ratios of t2 between the S and NS strain aggregates predicted 

from the spreading model are very similar to that from animal experiments355. This is 

consistent with the estimation of the spreading model that the diversity among prion or 

prion-like strains can be explained from a kinetic perspective as discussed in Chapter 3. 

Together with the estimations from WT and A53T αS, the results suggest that the prion-

like property can be quantified and thus compared among strains or proteins with the 

same spreading model, and it may be extended to other aggregation-prone proteins as 

well. 

Preliminary measurements in the proteasome holoenzyme reveal a potential novel 

disaggregase function of the proteasome. The proteasome is shown to disaggregate αS 

fibrils up to ~20 μm in length independently of ubiquitin conjugation, resulting in a 

substantially higher amount of small aggregates with length < 1 µm. The proteasome 
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assay has been conducted with tau in our group as well and shown a consistent result366. 

Combining with the data from gel electrophoresis and TEM images, it implies that the 

proteasome is able to disaggregate stable fibrillar structures that are larger than itself by 

several orders of magnitude, and this disaggregation ability is not restricted to a 

particular protein. This finding is in agreement with recent studies on proteasome 

recruitment to aggresomes in cultured cells369,370 and to poly-GA aggregates in neurons371. 

In this context, it may partially be true that in the cellular environment protein aggregates 

without modifications are disaggregated by the proteasome and hence generated more 

templates as new seeds, resulting in acceleration of the aggregation process. 

Furthermore, the current study has focused on the fibril disaggregase activity of 

proteasome holoenzyme on unmodified recombinant αS. In physiological conditions, 

protein aggregates with distinct modifications (e.g. ubiquitination) may be targeted by 

the proteasome through alternative cellular mechanisms for disaggregation. This may 

also explain the inhibitory effect of protein aggregates upon the proteasome in previous 

reports210,363–365,372. The cellular mechanisms for disaggregation and the aggregated 

species responsible for proteasomal inhibition remain to be studied.  
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Chapter 6 | Prion-like spreading in cells 

6.1 Introduction 

In the previous chapters, I have demonstrated PrP and αS replication in vitro at the single-

molecule level and how this process is accelerated by fibril fragmentation. In this context, 

mammalian prions and other prion-like proteins may propagate in vivo through 

fragmentation as well, to confer transmissibility via the transcellular spread of seeds that 

initiate the misfolding and aggregation in recipient cells. As PrP is generally accepted to 

transmit among cells and organisms186,312, growing evidence has been provided for the 

cell-to-cell transmissibility of many proteins associated with other neurodegenerative 

diseases, including αS373,374, tau373,375, SOD-1376, and TDP-43377. The newly emerged 

‘transmission hypothesis’ for the prion-like property offers a link to the common 

mechanism underlying the onset and progression of various neurodegenerative diseases. 

This also explains the pathological spreading patterns that have long been observed in 

these diseases174,250,378,379. 

Current approaches with the cell work in neurodegenerative diseases have been 

essentially qualitative. Furthermore, no observations were achieved to proteins at 

physiological levels in non-transfected cells. To understand the exact molecular basis of 

aggregation in cells, in this chapter I describe the observations from endogenous αS 

amplification after cellular uptake of the external seed. This ongoing project has been 

exploiting an advanced super-resolution microscopy, AD Paint, to quantitatively follow 

the spatio-temporal evolution of αS aggregates in cells and spreading to recipient cells.  
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6.2 Endogenous αS amplification is visualised in cultured cells 

with time using AD Paint imaging 

To follow the αS amplification with the seed in cultured cells, the efficiency of seed 

transduction into cells was first assessed using different delivery methods. The αS seed 

was produced by sonication of fibrils formed by WT αS labelled with Alexa 594 (A594), 

which were typically broken into small fragments below the detection limit of ~450 nm 

and is consistent with a previous finding349. The sonicated αS fibrils were then transduced 

to SH-SY5Y cells for 4 hr without (Naked) or with a delivery mediator (Bioporter), which 

is a non-covalent lipid-based delivery system into living cells373,380. The cells were 

visualised using conventional epi-fluorescence microscopy. Bioporter-mediated αS-A594 

seeds (green) showed higher co-localisation with the plasma membrane (red) and were 

more efficiently internalised by the cells after seed transduction. In contrast, cell 

Figure 6.1 | Seed transduction in cultured cells with different methods. Representative 

images of transduced αS-A594 in SH-SY5Y cell line were acquired with epi-

illumination (wide-field) mode after 4 hr mock or seed transduction. Pre-formed αS 

fibrils were sonicated and incubated with the cells for 4 hr. After transduction, the 

medium was removed, washed with PBS, and imaged with three illumination channels. 

Blue: Hoechst dye staining of DNA in nuclei; green: pre-formed αS seeds labelled with 

Alexa 594 dye; red: CellMask dye staining of the plasma membrane. Mock: PBS; Naked: 

αS-A594 without delivery mediators; Bioporter: αS-A594 mediated with the Bioporter 

lipid vesicles. In the Bioporter image, the co-localisation of yellow puncta surrounding 

the plasma membrane and the higher number of green puncta in the cytosol indicate 

a high proportion of lipid vesicle-packed αS-A594 were internalised by the neurons 

and released into the cytosol. The scale bars represent 5 µm. 
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internalisation of the seed was substantially lower without the mediator (Figure 6.1).  

AD Paint is a super-resolution imaging technique aiming to observe protein aggregates in 

fixed cells. It requires the transient binding between the docking strand and the imaging 

strand as described in Figure 1.12. In the present study, endogenous αS filaments in the 

cells induced by the internalised αS seed were recognised by the antibody-labelled 

docking strand at defined time points, subsequently visualised with the Cy3b dye-labelled 

imaging strand using a TIRF setup. The localisation events from the individual 

fluorophores shown on the images were used to probe the morphology of individual 

aggregates, as well as to quantify the number and the aggregate length. 

Next, the seeded αS aggregation in SH-SY5Y cells was followed in respect of time using 

AD Paint imaging with the assistance from Yukun Zuo at the Department of Chemistry, 

Cambridge. After Bioporter-mediated seed transduction, endogenous αS showed a 

substantial accumulation of aggregates in respect of time (Figure 6.2). As the observed αS 

inclusions were detected by binding with the conformation-specific MJFR-14-6-4-2 

antibody that recognises filament forms of αS, it suggests that αS present within 

inclusions shares a similar conformation similar to the misfolded αS in the pathological 

Lewy bodies of Parkinson’s disease, but different from normal cellular αS. Interestingly, a 

time-dependent change in the spatial distribution of αS aggregation was also observed. 

Endogenous αS aggregates at early times were spread around outside of the nucleus, 

while at later times, most of them formed large inclusions and localised in close proximity 

of the plasma membrane. In contrast, in the control group with PBS, only the background 

signal was seen over time (Figure 6.3). 
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Figure 6.2 | Time-dependent amplification of the endogenous αS aggregates in seeded 

cells. Super-resolved images of the endogenous αS aggregates in neurons were 

acquired at defined time points after seed transduction with HILO (highly inclined and 

laminated optical) illumination mode using AD Paint imaging. Pre-formed αS fibrils 

were sonicated and incubated with SH-SY5Y cells for 4 hr. After seed transduction, the 

medium was removed and washed with PBS. At defined time points, cells were fixed 

with 4% paraformaldehyde, permeabilised with 0.5% Triton X-100, and then 

immunostained with an anti-αS filament antibody, MJFR-14-6-4-2, which is conjugated 

with a 9 bp single-stranded docking DNA sequence. The docking strand is recognised 

by its complementary strand in the single-stranded imaging DNA sequence, which is 

labelled with Cy3b fluorescent dye. (blue) Hoechst dye staining of DNA in nuclei; 

(green) super-resolved αS aggregates. The arrows indicate the enlarged area shown 

in the inlets. The scale bars represent 10 µm and those in the inlets are 1 µm. 
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Figure 6.3 | Endogenous αS does not self-aggregate in mock cells. Super-resolved 

images of the endogenous αS in neurons were acquired at defined time points after 

seed transduction with HILO (highly inclined and laminated optical) illumination 

mode using AD Paint imaging. The mock solution of PBS was incubated with SH-SY5Y 

cells for 4 hr. After incubation, the medium was removed and washed with PBS. At 

defined time points, cells were fixed with 4% paraformaldehyde, permeabilised with 

0.5% Triton X-100, and then immunostained with an anti-αS filament antibody, MJFR-

14-6-4-2, which is conjugated with a 9 bp single-stranded docking DNA sequence. The 

docking strand is recognised by its complementary strand in the single-stranded 

imaging DNA sequence, which is labelled with Cy3b fluorescent dye. (blue) Hoechst 

dye staining of DNA in nuclei; (green) super-resolved αS aggregates. The arrows 

indicate the enlarged area showing in the inlets. The scale bars represent 10 µm and 

those in the inlets are 1 µm. 
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6.3 Quantitative analysis of αS amplification in the cells 

There are several approaches available to analyse the aggregation kinetics in cells. For 

further analysis, the average aggregate length was unreliable according to the cell images, 

because large αS clusters were formed at later times. As a result, the length of individual 

events (i.e. individual aggregates and inclusions) at each time point showed non-linear 

relationships with their localisation values (Figure 6.4). These events with molecular size 

> 500 nm were mostly constituted by large αS inclusions and thus caused a large 

discrepancy in the measurement. In contrast, the events with small molecular size (30-

500 nm) were mainly individual aggregates. Hence, it is extremely difficult to analyse the 

length distribution of overall aggregate populations. For the small-sized αS aggregate 

populations that < 500 nm, the typical length of them in each cell was ~90 nm on average 

(Figure 6.5). Furthermore, the average length of these small-sized aggregates did not 

show obvious changes during the measurement period, which suggested that αS 

aggregates in cells did not form long fibrillar species. It is noted that the resolution for AD 

Paint imaging is approximately 30 nm. 

The determination of the number of aggregates is likely to under-estimate the precise 

number, due to the formation of large αS inclusions. However, the trend of the increase 

Figure 6.4 | Length- localisation relationship of individual aggregates is not linear. The 

analysis in the seeded cells after 48 hr shows that the events of > 500 nm possessing 

high localisation values are relatively shorter in their apparent length compared to 

those of < 500 nm. It may be due to large aggregated clusters which exhibit relatively 

low apparent size but with high localisation. 
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may be similar to the real situation, since large inclusions contributed less to the detected 

number of aggregates (i.e. counted as 1 for a single inclusion) than to the detected length 

(i.e. measured as 500-4000 nm for a single inclusion). 

The total localisation value in single cells can be used to analyse the aggregation kinetics 

quantitatively, as it does not require one to recognise single aggregates. The temporal 

change in the number of αS aggregates and the total localisation per cell were shown in 

Figure 6.6 (cell number = 10 in each time point). After seed transduction, a clear increase 

in the number, as well as the total localisation, was seen over time, while no detectable 

increase was found in the mock control cells. Interestingly, αS aggregates were observed 

to remain undetectable in a fraction of cells, suggesting that the seeds were absent in 

these cells and thus unable to induce endogenous αS aggregation. As the number of this 

cell population decreased over time, more cells showed accumulation of αS aggregates. 

The newly-emerged cells that contained aggregates were unlikely to result from initial 

seeding since the seed should be detectable at time=0. The data suggested that the newly-

formed αS aggregates were induced by initial seeding and that the αS aggregates were 

able to spread to neighbouring cells over time. 

  

Figure 6.5 | Average aggregate length of αS does not increase during amplification in cells. At 

each time point, ten cell images were acquired from ten random fields of view using AD 

Paint. The images for single cells were analysed and quantified with a custom-made Python 

script. The dot distribution shows that αS aggregates remain constant length on average in 

the cells after seed uptake. The red lines represent the mean values of the average length 

of αS aggregates among the ten cells at defined time points. *P < 0.05, **P < 0.01, two-

tailed t-test. 
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Figure 6.6 | αS aggregate amplification in respect of time. At each time point, ten cell images 

were acquired from ten random fields of view using AD Paint. The images for single cells 

were analysed and quantified with a custom-made Python script. The dot distribution 

shows that the cells initially contain a low level of αS aggregates, and a fraction of them 

gradually accumulate αS aggregates with time after seed transduction, while aggregates 

remain undetectable in control cells. The red lines represent the average of the number or 

the total localisation of αS aggregates among the ten cells at defined time points. *P < 0.05, 

**P < 0.01, ***P < 0.001, two-tailed t-test. 
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To better study the αS amplification in those transmitted cells, I separated the transmitted 

cell group from the non-transmitted cell group by setting a threshold according to the 

localisation value. Among all cells, those cells observed with upper 25% localisation 

values (i.e. higher than the third quartile Q3 in statistics) were categorised as ‘transmitted 

cells’, while the cells with lower 25% localisation values (i.e. lower than the first quartile 

Q1 in statistics) were categorised as ‘non-transmitted cells’. Based on this analysis, the 

aggregation kinetics of the transmitted cells can be plotted as shown in Figure 6.7. The 

number of αS aggregates per cell increased with time and reached a maximum at 40-48 

hr post-transduction, followed by a decrease at 72 hr. The total localisation per cell had a 

similar pattern and reached a plateau without further decrease. The results suggested 

that the formation of αS aggregates had reached a maximum level in 2 days post-

transduction when a large fraction of them formed large inclusions, which is consistent 

with the observation that large inclusions occurred at 72 hr in Figure 6.2.  

Figure 6.7 | Kinetic analysis of endogenous αS aggregation in cultured cells after seed 

transduction. The number (a) or the localisations (b) of αS aggregates as a function of time 

after seed transduction. The seeded cells are divided into two categories: non-transmitted 

and transmitted cells. At each time point, ten cell images from random fields of view were 

acquired. Those cells containing the lower 25% (i.e. lower than the first quartile Q1 in 

statistics) localisation values are grouped as the non-transmitted cells, while the cells 

containing the upper 25% (i.e. higher than the third quartile Q3 in statistics) localisation 

values are grouped as the transmitted cells. Analysis of the transmitted cells shows that 

both the overall localisation and number of αS aggregates per cell increase with time and 

reach a plateau around 48 hr. The error bars represent standard deviations from three 

independent experiments with different batches of αS seeds and cells. 
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Next, to estimate the spreading of αS aggregates among cells, the percentage of the cells 

that were developing aggregates was analysed as a function of time. This was achieved by 

determining the fraction of cells containing more aggregates than the initially seeded cells 

(i.e. localisation value above the third quartile Q3 at time=0). As shown in Figure 6.8, the 

initially seeded cells accounted for ~30% at time=0, and the cells containing αS 

aggregates increased to ~80% of the total cell population in 2 days post-transduction 

with spreading half-time of 23 hr. The spreading plateau after 2 days may result from 

either the aggregate-induced cell death or simply the accumulation of by-products during 

cellular metabolism as the cell medium was not replaced.  

  

Figure 6.8 | Fraction of cells developing αS aggregates. The fraction of cells developing 

αS aggregates is shown as a function of time. The upper 25% (i.e. higher than the third 

quartile Q3 in statistics) localisation value at time=0 was arbitrarily used as a 

threshold to calculate the fraction of transmitted cell at each time point. 
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6.4 Summary of the chapter 

In this chapter, the amplification of αS aggregates has been quantitatively measured in 

cultured cells with AD Paint imaging. The preliminary results suggest that after seed 

transduction, αS aggregates are accumulated rapidly around the nucleus within 2 days, 

and formation of large aggregate inclusions can be seen along the plasma membrane as 

time advances. This is in agreement with previous findings that in the presence of αS 

fibrillar seeds, the accumulation of exogenous αS fibrils takes place inside the cytoplasm 

within close proximity of the nucleus at early times381, and that abundant large αS 

inclusions occupy the cytoplasm and displace the nucleus at later times373. The use of 

super-resolution microscopy enables detailed observation of αS aggregation compared to 

conventional confocal microscopy. The average aggregate length of αS is ~90 nm and does 

not show obvious change with time. In contrast, large inclusions are typically >1 μm, 

which are likely to be the early formation of Lewy bodies that are normally observed to 

be 5-25 μm in diameter. Ultrastructure of the large αS inclusions from immunoelectron 

microscopy also reveals that they are composed of small filamentous structures that are 

~100 nm in size373, which is consistent with the present finding. 

Current observation of the αS aggregation kinetics in cells is found to be slower than that 

from previous seeding experiments368,380. This may result from the use of non-transfected 

cells in this study, in which the endogenous αS expression level is typically lower by 

several folds compared to transfected cells. Current data suggest that exogenous αS seeds 

are able to induce αS aggregate amplification by recruiting endogenous monomers. In 

comparison with my previous in vitro measurements of WT αS aggregation in Chapter 5.2 

(t2 =48 days), the αS replication rate in cells appears to be substantially faster. This 

discrepancy may be partially due to the proteasomal system in cells. Based on the 

observation of the disaggregase activity of the proteasome in Chapter 5.5, the proteasome 

may disaggregate non-ubiquitinated αS fibrils in the cytosol and thus produce a large 

amount of small-sized fibrillar segments, acting as new seeds for further amplification. 

This partially explains the observation that the average aggregate length of αS in the cells 

remains short ~90 nm.  

In addition, the results also show that αS aggregates are likely to spread to neighbouring 

cells in a reasonably fast manner, despite the fact that the cell line used is physiologically 

different from primary neurons and proliferates with time. In this sense, it might lead to 

under-estimation of the αS spreading rate. The current data cannot rule out that the 

spreading of aggregates observed is through cell proliferation rather than cell-to-cell 

transmission, although it is rather unlikely due to the relatively slow doubling time of SH-
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SY5Y cells (55 hr; CLDB database) compared to the observed spreading rate (half time = 

23 hr). To take into account of proliferation and apoptosis of cells, further experiments 

with non-proliferating cells, such as iPS neurons, are required. 
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Chapter 7 | Concluding remarks and future 

directions 

This dissertation summarises work done in the last four years on understanding prion 

and prion-like aggregation at the molecular level. The single-molecule techniques have 

shown the ability to unravel the molecular details of the self-assembly process of PrP and 

αS and the structural diversity of the aggregated species. This study highlights some of 

the key determinants in prion and prion-like replication and provides quantitative 

insights into the spreading of protein aggregates in the brain. 

 

7.1 The basis of prion-like spreading 

The current study has utilised a single-aggregate TIRF imaging method to observe PrP 

and αS aggregation under native conditions, revealing a possible aggregation mechanism 

which is described by an elongation-fragmentation reaction. Despite fragmentation 

having been considered important for sustained replication in protein aggregation, this is 

the first time that the mechanism has been directly confirmed. The rate of PrP 

fragmentation is revealed to be proportional to fibril length, and this process induces the 

generation of PK-sen segments, possibly due to destabilisation of the fibrillar structure. 

This suggests that large-sized PrP aggregates are more likely to fragment, thus producing 

more seeds for further amplification. In previous studies with PrP 27-30 purified from 

prion-infected hamster brains, sonication of large fibrillar PrP27-30 has been shown to 

decrease the average fibril length and increase the ability to convert PrPC 242. In another 

study, sonication of PrP27-30 in the presence of phospholipids can increase scrapie 

infectivity levels382. Consistent with the current observation that the small-sized 

fragments of PrP fibrils are capable of being seeds and elongating to new fibrils in vitro, 

these findings together suggest that fibril fragmentation may play a key role in the 

generation of the infectious form of PrP aggregates. 

The results also show that WT αS fibrils fragment with a substantially slower rate 

compared with PrP fibrils. It suggests that the difference in aggregation rates among 

proteins can be quantitatively compared with the same spreading model. Through the 

measurements of kinetic parameters for PrP and other protein aggregates under similar 

experimental conditions, their aggregation characteristics can be summarised by plotting 

their elongation rate constant (ke) against the fragmentation rate constants (kf) 
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measured in vitro (Figure 7.1). Since the doubling time t2 for protein aggregation depends 

on the product of ke and kf, the higher kekf  leads to higher aggregation rate that falls in 

the ‘dangerous zone’ (red), while the opposite direction represents low replication rate, 

or ‘safe zone’ (canary yellow). This plot provides a quantitative approach to explain the 

potential of proteins aggregates replicating through an elongation-fragmentation 

mechanism. Interestingly, PrP aggregates (measured in solution) is located in the 

dangerous zone, showing unusually high values for ke and kf. Therefore, it is predicted to 

replicate much faster than other proteins. Together with the kinetic data of WT and P301S 

tau obtained from Kundel et al192, the disease-related mutant forms of tau and αS 

aggregates, P301S tau and A53T αS, are possible to achieve efficient aggregation through 

the combination of fast ke and slow kf, compared to their WT forms which have slow rate 

constants. On the other hand, as discussed in Chapter 5, the kinetic difference between 

the S and NS strain of A53T αS lies on the fragmentation rate. 

Figure 7.1 | Elongation-fragmentation relationship. The elongation rate constant (ke) of 

prion-like proteins is plotted against their fragmentation rate constants (kf) measured 

in vitro. The higher product of ke and kf  leads to higher replication rate that falls in 

the ‘dangerous zone’ (red), while the opposite direction represents low replication 

rate, or ‘safe zone’ (canary yellow). The kinetic data of WT and P301S tau are obtained 

from Kundel et al 192. Note that ke and kf are measured as the rate constants per 

monomer. 



 

 

120 7.1 The basis of prion-like spreading 

Prion strains are defined as prion isolates that encode the same polypeptide sequence 

and yet cause distinct heritable clinico-pathological phenotypes and incubation periods 

when transmitted to identical hosts25,383. Inoculation of different prion strains in mice 

usually results in different and reproducible incubation periods384–386. Accumulating 

biochemical and biophysical evidence have associated the diversity of prion strains with 

different conformational states of PrPSc 331,383,387–391. The structural fragility of yeast 

prions has been found to determine the strength of their strain phenotype184. In this sense, 

prion strains may adopt different conformations and hence replicate at different rates, 

resulting in different incubation times in vivo. With the kinetic approach described in 

Chapter 3, the difference of the replication rate among prion strains can be explained by 

the concept of doubling times. Considering that a given prion strain (F) has faster t2 (i.e. 

higher ke or kf value) than a slow strain (S), based on Equation 1, the resulting PrP 

replication for prion strain F would be substantially greater than that of prion strain S 

(see Chapter 2.8.5 for calculations). For example, if strain F has 10% lower t2 (i.e. 

approximately 20% higher in kekf), after the same duration of Tspreading in mice, a 5-fold 

excess of strain F aggregates will be produced. Therefore, small differences in kinetic rate 

constants or replication efficiency would appear to be able to contribute to an explanation 

of the diversity in prion strains. The minor change in fragmentation/elongation rates is 

likely to result in a substantial difference in the accumulation of protein aggregates. In αS 

studies, although the strain is not well-defined, the A53T αS aggregates have been shown 

to adopt in two distinct conformations under different buffer conditions, S and NS, and 

result in different incubation periods in mice355. In Chapter 5.4, the kinetic measurements 

of the S and NS strains suggest the S and NS strain has distinct kinetic rate constants 

despite the same batch of protein samples.  

The observation of the difference in rate constants between WT and mutant forms, or 

between the A53T αS strains, can be associated with a difference of their physical 

conformations. The A53T mutation of αS was demonstrated to play a dominant role in 

increasing the growth rate of A53T αS fibrils by altering the propensity of secondary 

structure formation392, which is consistent with the current finding. The combination of 

P301 and S320 mutation in tau increases the structural propensities for aggregation393, 

which at least partially explains the increased ke of P301S tau. Another study in two 

variants (strains) of superoxide dismutase-1 (SOD1) aggregates with distinct growth 

kinetics, generated under different experimental conditions, has shown that the strains 

possess distinct structural properties394. It was found that the structurally fragile strain 

of SOD1 aggregates has a higher tendency of fragmentation and causes rapid aggregation 

in vivo. This result agrees with the current finding from the measurements of A53T αS 

strains. 
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Due to the exponential nature of fibril fragmentation, a simple model has been established 

and enables the estimation of aggregate spreading in the brain. Despite the spreading of 

aggregates in vivo depends on many factors as discussed in Chapter 3, the hypothetical 

model has shown the ability to estimate the spreading time of PrP and αS in the brain. 

Together with a previous study on tau filament replication192, this suggests that 

exponential replication through fragmentation can be the basis for prion-like spreading 

in the pathogenesis of these diseases. By applying the rate constants obtained into the 

same kinetic model, the spreading time of the two strains of A53T αS was estimated in 

the brain and comparable to the results from animal experiments355. 

The aggregation kinetics in vivo is determined by multiple factors as discussed in Chapter 

3.7. These key factors include post-translational modifications, cellular clearance 

mechanisms, and the disaggregase function of the proteasome that is currently studied. 

The conformations between intracellular and recombinant protein aggregates may also 

differ due to hyper-phosphorylation or glycosylation. These factors are likely to 

determine the spread of aggregates in vivo by either altering t2 or replication efficiency, 

thus generating a discrepancy between theoretical values and in vivo observations. 

However, these factors could not be included in the spreading model, because the 

aggregation kinetics were modelled based on experimental measurements. From the 

results, the discrepancy is constrained in a reasonable range and the relative ratios of the 

estimations are similar to the data from mouse experiments, the elongation-

fragmentation mechanism is likely to be one of the key determinants for protein 

aggregation. While not covered the cellular factors, the kinetic approach provides insights 

into the key factors that will likely affect spreading rates of protein aggregates. 
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7.2 PrP forms a range of oligomers during aggregation 

Structural information in early PrP aggregation is provided by a combination of several 

biophysical and biochemical assays. The early-formed PrP oligomers have been 

characterised under semi-denaturing conditions with respect to time and shown to 

comprise of five species with distinct structures and sizes: (1) ThT-inactive oligomers, (2) 

PK-sen low-ThT intensity oligomers (SL), (3) PK-sen high-intensity oligomers (SH), (4) 

PK-res low-intensity oligomers (RL), and (5) PK-res high-intensity oligomers (RH). PrP 

aggregates are found to form into two oligomeric species with distinct molecular sizes (i.e. 

L is <300 kDa and H is >300 kDa), and they undergo a PK-sen  PK-res structural 

conversion, despite the surface hydrophobicity remains unchanged. The number of the 

PK-res species, RL and RH, increases over time, while that of the PK-sen, SL and SH, and 

ThT-inactive oligomers remains stable. 

It is not surprising that in the absence of a PrPSc template, the aggregation of recombinant 

PrP results in a range of abnormal β-sheet-rich isoforms. Many biochemical works have 

been carried out to generate and characterise PrP oligomers in vitro, although these 

oligomers were often obtained under various aggregation conditions and from different 

versions of PrP. PrP oligomers can be obtained by incubating truncated mouse PrP (90-

231) with 1 M GdnHCl, 3 M urea, 150 mM NaCl and then dialysing against 10 mM sodium 

acetate (pH 3.7)395,396. In the dialysis step, PrP was demonstrated to form soluble 

oligomers at low pH (<5.5) or to assemble into amyloid fibrils at mildly acidic pH 

(>5.5)395. Alternatively, PrP oligomers have been generated by denaturing and then 

reducing truncated human PrP (91-231) with 6 M GdnHCl and DTT (pH 8.0), then 

refolding the protein under an acidic condition (pH 4.0)397–399. Interestingly, the same 

group found that the N-terminus of mouse PrP (23-231) reduces the structural 

complexity and maintains a distinct conformation of oligomers with ~280kDa, despite 

the lack of toxicity and infectivity295. However, the above two versions of PrP oligomers 

have been shown to be kinetically stable and do not form fibrils. The conditions used 

above are different to what is currently used in this thesis, which is kinetically favoured 

the formation of amyloid fibrils. It is possible that after the dialysis and structure refolding, 

recombinant PrP is more likely to be trapped in kinetic local maxima. Furthermore, the 

truncated versions of PrP, the lack of co-factors may together contribute to the chance of 

being trapped in local maxima as well. 

Since the semi-denaturing condition used in this thesis allows the formation of amyloid 

fibrils, at least a part of the oligomeric species I observed is likely to be on-pathway 

intermediates during fibril formation. A previous study reports that off-pathway PrP 
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oligomers do not bind to ThT400, which is different from the currently observed ThT-

inactive species. The ThT-inactive species described in Chapter 4 shows a structural 

transition to a more hydrophobic conformation during the measurement period. Instead 

of being an end product that should accumulate its number over time, the unchanged 

number of the ThT-inactive species suggests that ThT-inactive species may be at 

equilibrium with other aggregate species, such as the PK-sen species, or monomers, 

which suggested to be on the pathway to the formation of fibrils. Furthermore, as 

discussed in Chapter 4.4, RL shares a similar ThT intensity profile with SL (and likewise, 

in the RH and SH pair) in the ThT intensity distribution, and the increase of the fraction of 

the PK-res species was at the same rate as that of the decrease of the PK-sen species 

(Figure 4.5d). Hence, it is highly likely that the PK-sen species undergo a structural 

conversion to PK-res species under the current condition. 

It is unknown which PK-res species (i.e. RL and RH), or both, are capable of growing into 

mature fibrils, and the possibility that one of the PK-res species is an off-pathway product 

in the aggregation kinetics cannot be ruled out. It is noted that only the early stage of PrP 

fibril formation was included in the quantitative kinetic model in Figure 4.8, and no fibrils 

were detected during this time period. According to the working model, L (<300 kDa) 

and H (>300 kDa) species are kinetically similar and share similar primary nucleation 

rate and conversion rate. Apart from the molecular size (based on the observation from 

ThT intensity distribution), it is difficult to distinguish them from other structural 

approaches, such as surface hydrophobicity or PK resistance, indicating a similar 

conformation between L and H species. From studies of the purified hamster PrPSc, the 

oligomeric species appear to form two forms with different molecular sizes. The 

molecular weight of the most infectious PrP aggregates was found to be around 600 

kDa242,330, while the smaller oligomeric species comprising 4-6 PrP molecules (~100-150 

kDa) was not infectious242,401. The current work provides a link PrP oligomers between 

in vitro and in vivo observations, and it would be interesting to examine the seeding 

ability of L and H species observed. 

Cell death induced by protein aggregation has been suggested to come from various 

causes, including apoptosis200,215,216, hyper-activity of the excitatory amino acid 

transmitters (e.g. glutamate)217–220, ER stress221–223, autophagy224–229, and non-specific 

membrane disruption6,181,231–236. The commonly used colourimetric methods for 

measuring cytotoxicity include MTT assay, LDH assay, and alamarBlue assay (detecting 

mitochondrial enzymatic activity, detecting lactate dehydrogenase released from the 

disrupted plasma membrane, and measuring cell metabolic activity for resazurin, 

respectively). However, the colourimetric assays often require a large amount of protein 

samples. In addition, they are relatively insensitive to examine the effect induced by low-
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abundant oligomeric aggregates. To solve this problem, an ultra-sensitive single-vesicle 

assay has been applied to examine the disruption of lipid membranes induced by protein 

aggregates. The results for PrP oligomers show that at the early stage of aggregation, the 

PK-sen species, SL and SH, perhaps ThT-inactive oligomers as well, are more likely to be 

capable of disrupting lipid membranes than the PK-res species, RL and RH. This is not to 

say that these species are necessarily toxic to cells, but the single-vesicle assay provides a 

direction for further cytotoxicity studies.   
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7.3 Prion-like spreading in cells 

The current data of SH-SY5Y cells with fibrillar αS seeding has suggested that αS 

aggregates can be internalised by cells and that amplification of endogenous αS 

aggregates develops in a time-dependent manner. It is observed that the proportion of 

SH-SY5Y cells containing αS aggregates increases with time, which suggested that αS 

aggregates are likely to spread to neighbouring cells in a reasonably fast manner. This is 

consistent with previous studies368,373,374,381,402–405 and supports that cell-to-cell 

transmission is the underlying mechanism for the spread of αS in cells. However, to enter 

neighbouring cells, a transmission route is required for the aggregates. Different routes 

of internalisation have been proposed for various neurodegenerative diseases, such as 

direct release and penetration through the plasma membrane, lipid raft-dependent 

micropinocytosis, endocytosis, or synaptic transmission through exosomes or nanotubes 

that connect two cells250,378. Therefore, it is worthwhile to utilise AD Paint imaging to 

study the cellular localisations of αS aggregates and how these aggregates might move 

between cells, such as measurements of the aggregate level in the cell medium. 

The SH-SY5Y neuroblastoma cells used in the study is physiologically different from 

neurons and proliferates with time. Hence, the spreading rate of aggregates in Figure 6.8 

might be under-estimated. The current data cannot rule out that the spread of aggregates 

observed is through cell proliferation rather than cell-to-cell transmission as discussed in 

Chapter 6.4, although it is an unlikely event due to the relatively slow doubling time of the 

number of SH-SY5Y cells (55 hr; CLDB database), compared to the observed spreading 

rate (half time = 23 hr). The combination of cell seeding AD Paint imaging appears to be 

a good system for investigating protein aggregation in cells. It would be important to take 

into account of cell proliferation and extend the experiment to non-proliferating cells, 

such as iPSC (induced pluripotent stem cells)-derived neurons. In addition, the current 

study is based on the use of MJFR-14-6-4-2 antibody that recognises the filament form of 

αS. It is possible that the observed αS amplification was due to cellular uptake of αS seeds 

over time. Despite the fact that the low-amount seeds were included in the lipid-based 

reagent Bioporter that can be removed by cell rinsing and were generally undetectable at 

time=0, to rule out the possibility, an alternative anti-αS antibody that recognises 

phosphorylated S129 residue can be used406. S129 residue has been shown selectively 

and extensively phosphorylated in pathological lesions in vivo 407,408, and it would be a 

good candidate to distinguish the endogenous αS aggregates from the seeds that are 

generated with recombinant αS.  

Compared to the previous αS seeding experiment in SH-SY5Y cells381, the aggregation 



 

 

126 7.3 Prion-like spreading in cells 

kinetics currently observed in cells is found to be slower and does not yet form large Lowy 

body-like inclusions. This may result from the use of non-transfected cells in this study, in 

which the endogenous αS expression level is typically lower by several folds compared to 

transfected cells. However, when compared to in vitro aggregation experiments in 

Chapter 5, αS aggregation in cells shows a substantially higher amplification rate. The rate 

discrepancy may be partly explained by S129 phosphorylation of αS aggregates in cells, 

which has been shown to promote αS aggregation and generate more insoluble 

aggregates than non-phosphorylated αS in vitro 409. The physiological nature of SH-SY5Y 

cells is also likely to cause a different aggregation pattern compared to primary neurons. 

The cell line was obtained as a neuroblastoma derivative and thus has cancerous 

properties that influence its differentiation fate, viability, growth performance, metabolic 

properties and genomic stability. Furthermore, the possible disaggregation effects of the 

proteasome may also contribute to the discrepancy. It is hypothesised that the aggregates 

can be disassembled to many smaller-sized templates for further replication in cells. This 

can be tested by measuring the aggregation kinetics with inhibition of the proteasomal 

activity in cells. If the proteasomal disaggregation plays an important role in αS 

aggregation in cells, the addition of proteasome inhibitors, such as MG132 or carfilzomib, 

would reduce the amount of αS aggregates observed in cells. 

The seeded αS aggregates are found to accumulate inside the cytoplasm within close 

proximity of the nucleus at early times. At later stages, abundant large αS inclusions, 

develop in the cytoplasm and displace the nucleus. These findings are consistent with 

previous seeding experiments with cell lines373,381. Apart from large inclusions that are 

typically > 500 nm in size, the quantitative analysis has shown that the average length of 

the small-sized aggregates (<500 nm) do not show obvious changes over time and 

remained ~90 nm on average, which suggested that αS aggregates in cells did not form 

long fibrillar species. This average length is in agreement with a previous finding from 

immunoelectron microscopy that the large αS inclusions are composed of small 

aggregates of ~100 nm373. Consistently, a recent study using dSTORM super-resolution 

imaging also reports that seeded αS aggregates in SH-SY5Y cells appear to be ~80-100 

nm in the endosomal system349. However, large inclusions were not observed in this study, 

possibly due to a relatively low amount of seeds in the cell line and thus most of them 

efficiently degraded in lysosomes. In addition, the small size currently observed may 

suggest that it is the critical length of αS aggregates entering a cell through endocytosis 

(the size of endosomes and lysosomes ranges between 50-400 nm410), or may reflect that 

most of the aggregates degraded in lysosomes. Similar studies are needed in non-

transfected neurons, where the αS expression level is higher at presynaptic terminals and 

the formation of PD-like αS inclusions is more efficient than neuroblastoma cells374,403. 
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7.4 Directions for future research 

The phenomenon of protein aggregation is fundamentally important in scientific 

disciplines ranging from biology and medicine to physics and chemistry. Although this 

subject has been investigated for over 30 years, many issues remain unclear. To establish 

a more convincing link between aggregate species and pathogenesis, I have been studying 

protein aggregation in cultured cells, as well as the role of the proteasome. Still, many 

questions remain to be answered. In the above discussion in this chapter, I have reviewed 

the current results and how the work might be continued. The possible directions that 

stem from the current study can be summarised as: (i) verifying the work of endogenous 

αS aggregation and exploring the likely mechanism of aggregate spreading in neurons, (ii) 

studying how the cellular clearance machinery fails to disassemble the misfolded 

aggregates, especially the cellular response after inhibiting the proteasomal activity, and 

(iii) characterising the damaging pathways of the toxic aggregate species to neurons. (iv) 

extending the cell study to other neurodegenerative proteins, such as PrP and tau. The 

findings from the above work should contribute to our understanding of aggregation 

mechanisms in cells and establish a realistic framework for studying disease spreading in 

the brain. Furthermore, the described approach may also benefit the design of potential 

treatments for dementia in the future.  
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