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Imprinting methylation 
predicts hippocampal 
volumes and hyperintensities 
and the change with age in later life
Marlene Lorgen‑Ritchie1, Alison D. Murray2, Roger Staff3, Anne C. Ferguson‑Smith4, 
Marcus Richards5, Graham W. Horgan6, Louise H. Phillips7, Gwen Hoad1, Chris McNeil2, 
Antonio Ribeiro8 & Paul Haggarty1*

Epigenetic imprinting is important for neurogenesis and brain function. Hippocampal volumes 
and brain hyperintensities in late life have been associated with early life circumstances. 
Epigenetic imprinting may underpin these associations. Methylation was measured at 982 sites 
in 13 imprinted locations in blood samples from a longitudinal cohort by bisulphite amplicon 
sequencing. Hippocampal volumes and hyperintensities were determined at age 64y and 72y using 
MRI. Hyperintensities were determined in white matter, grey matter and infratentorial regions. 
Permutation methods were used to adjust for multiple testing. At 64y, H19/IGF2 and NESPAS 
methylation predicted hippocampal volumes. PEG3 predicted hyperintensities in hippocampal grey 
matter, and white matter. GNASXL predicted grey matter hyperintensities. Changes with age were 
predicted for hippocampal volume (MEST1, KvDMR, L3MBTL, GNASXL), white matter (MEST1, 
PEG3) and hippocampal grey matter hyperintensities (MCTS2, GNASXL, NESPAS, L3MBTL, MCTS2, 
SNRPN, MEST1). Including childhood cognitive ability, years in education, or socioeconomic status as 
additional explanatory variables in regression analyses did not change the overall findings. Imprinting 
methylation in multiple genes predicts brain structures, and their change over time. These findings are 
potentially relevant to the development of novel tests of brain structure and function across the life-
course, strategies to improve cognitive outcomes, and our understanding of early influences on brain 
development and function.

Brain development in early life and across the life course is modulated by both genetic and environmental fac-
tors. Adverse childhood experiences are associated with adult brain structure1,2 and also with the presentation 
of adult psychiatric disorders and cognitive deficits3. Early life stress affects important neurodevelopmental 
processes, including neurogenesis, synaptic overproduction and pruning, and myelination during specific, sensi-
tive periods4. The hippocampus in particular is known to be sensitive to early life stress5 and adult hippocampal 
volumes in late life have been associated with childhood socioeconomic status6. Childhood socioeconomic 
status was also associated with the prevalence of deep white matter and periventricular hyperintensities in a 
non-demented cohort in late mid-life7 and hyperintensities are associated with cognitive decline in adults8. The 
mechanisms underlying these effects are unknown but may act through foetal and/or early life programming.

Epigenetic imprinting9 is known to be important for neurogenesis, brain function and behaviour10–14 and a 
number of characteristics of imprinting make it particularly relevant to the study of early life effects. Imprints as 
a class are also generally stable over time, and for some imprints the original signal persists in a wide range of cell 
types many divisions and decades later15,16. This and the known sensitivity of some imprints to some aspects of 
the early environment17–19 suggests a potential mechanism through which the early environment may influence 
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later biological structure and function. These characteristics also make imprints particularly amenable to study 
in longitudinal cohort designs where only blood samples may be available and it may not be possible to analyse 
tissues such as the brain.

We have previously reported on the link between selected imprints and cognitive ability20, but to our knowl-
edge no previous studies have looked specifically at the role of epigenetic imprinting in brain integrity. In this 
study we hypothesize that associations exist between imprint methylation and hippocampal volume and the 
prevalence of brain MRI hyperintensities in the seventh decade of life in a well-characterised cohort born in 
1936 and recruited at 64 years of age21. The potential role of childhood socioeconomic circumstance, cognitive 
ability, and years spent in education was assessed. The selected imprints studied were NAP1L5, ZAC1, MEST1, 
H19/IGF2, IGF2, KvDMR, IGDMR, SNRPN, PEG3, MCTS2, L3MBTL, NESPAS and GNASXL, all of which are 
primary imprinting control regions, with the exception of IGF2 which is a secondary somatic imprint22. Methyla-
tion status was determined by next generation bisulphite amplicon sequencing covering 982 methylation sites.

We report results separately for deep brain white matter, periventricular white matter, grey matter and 
infratentorial hyperintensities as associations between brain hyperintensities and impaired cognition are depend-
ent upon the location of lesions within the brain23.

Results
The subject characteristics are shown in Table 1. The baseline sample consisted of 47.3% females and the follow-
up of 49.4% females. All participants imaged at follow-up (age 72.8 ± 0.6) were also imaged at baseline (age 
68 ± 0.7). Summary statistics for participant hippocampal volumes, total Scheltens’ scores and hyperintensities 
in different brain regions are shown in Table 2. 

The correlation between outcome variables was assessed prior to the imprinting analysis (Fig. 1). Hippocam-
pal volume was positively correlated with total intracranial volume and the number of grey matter hyperinten-
sities specific to the hippocampus. Total intracranial volume was also positively corelated with the number of 
grey matter hyperintensities specific to the hippocampus, and with the number of periventricular white matter 
hyperintensities. The number of white matter hyperintensities was strongly positively correlated with the number 
of periventricular white matter hyperintensities, and also grey matter hyperintensities, infratentorial hyperin-
tensities, and hippocampal grey matter hyperintensities. Periventricular white matter hyperintensities were also 
positively correlated with grey matter and infratentorial hyperintensities. Grey matter hyperintensities were 
positively correlated with infratentorial and hippocampal grey matter hyperintensities, and these variables were 

Table 1.   Summary statistics for participant characteristics; weight (kg), height (cm), body mass index (BMI; 
kg/m2), adult socioeconomic status (Scottish Index of Multiple Deprivation decile; SIMD), number of years 
spent in education and childhood (Moray House Test (MHT) score) and adult (National Adult Reading Test 
(NART) score) cognitive ability.

Characteristic Mean SD n

Weight (kg) 74.2 12.9 225

Height (cm) 166.3 8.7 225

BMI (kg/m2) 26.8 4.0 225

SIMD (decile) 7.0 3.0 231

Years in education 11.2 2.0 237

MHT score 45.0 10.6 236

NART score 110.5 8.9 235

Table 2.   Summary statistics for participant hippocampal volume (HipV—mm3), total Scheltens’ 
score, number of deep white matter hyperintensities (WMH), number of periventricular white matter 
hyperintensities (PVWMH), number of grey matter hyperintensities (GMH), number of infratentorial 
hyperintensities (IFTH) and number of hippocampal grey matter intensities (HipGMH) at the time of MRI 
image collection. Only individuals with information on sex, total intracranial volume and age are included. 
Medians and interquartile ranges (IQRs) are additionally reported for variables with non-normal distributions.

Variable

Baseline Follow-up

Mean SD n Median IQR Mean SD n Median IQR

Hippocampal Volume (mm3) 8116.4 840.7 237 7980.2 953.1 146

Total Scheltens’ score 15.2 9.2 224 18.0 9.3 148

WMH 7.2 4.8 224 8.2 4.7 148

PVWMH 4.8 2.1 224 5.9 2.0 149

GMH 2.2 2.6 224 1 3 2.6 3.1 149 1 4

IFTH 1.1 1.9 224 0 1 1.2 2.0 149 0 2

HipGMH 0.3 0.8 224 0 0 0.6 0.9 149 0 1
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also positively correlated with each other. Sex (coded 0 for females, and 1 for males) was positively associated 
with hippocampal and total intracranial volume, and with the number of periventricular hyperintensities, i.e. 
these 3 variables were increased in males compared to females.

For the imprint analysis, linear regression was carried out for individual CpG positions against hippocampal 
volumes and Scheltens’ scores for different brain matter regions with adjustment for sex, total intracranial vol-
ume and age at baseline MRI. The analysis was repeated for the change in hippocampal volumes and Scheltens’ 
scores between baseline and follow-up with additional adjustment for time between MRI scans. The individual 
regression coefficients for each CpG were plotted consecutively to identify coherent blocks of significance. An 
example plot in which extensive significance was observed is presented in Fig. 2 for the methylation of imprints 
on chromosome 20 and the change in brain structure between scans. Equivalent figures for all the imprints and 
outcomes are in the supplementary material (Figures S1-S9). Statistically significant results are shown in red 
when the coefficient is of positive sign and blue when negative.

Permutation analysis was applied to groups of contiguous significance (see “Materials and methods”). The 
probability of the observed blocks of contiguous significance arising due to chance was determined from 1000 
permutations of the methylation data. Summary graphical presentations of the data are shown in Figs. 3 and 4. 
Only outcomes for which at least one imprint was significant were included in the figures. Results which passed 
the threshold for statistical significance are shown in the heatmap type figure with positive correlations shown 
in red and negative in blue with the level of significance indicated by the colour intensity (see legend). Where 
there was more than one block of significance located in different regions of the same imprint these are shown 
separately. For each significant result represented in the figures the number of significant contiguous CpG sites 
is shown within the symbol.

Associations between methylation levels, and hippocampal volumes and hyperintensity prevalence at baseline 
MRI collection which met the significance criteria following permutation analysis are shown in Fig. 3. H19/IGF2 
methylation was negatively associated with hippocampal volume (− 26.5, p = 0.012), in particular the left hip-
pocampus (− 13.3, p = 0.012) while NESPAS was negatively associated with right hippocampal volume (− 20.9, 
p = 0.001). GNASXL was negatively associated with the number of hyperintensities in grey matter (− 0.102, 
p = 0.004) while PEG3 was negatively associated with the number of white matter hyperintensities (− 0.130, 
p = 0.005), periventricular white matter hyperintensities (− 0.070, p = 0.005) and the number of grey matter 
hyperintensities specific to the hippocampus (− 0.026, p = 0.005).

Figure 1.   Correlation between hippocampal volume (HipV), total intracranial volume (TICV), number of deep 
white matter hyperintensities (WMH), number of periventricular white matter hyperintensities (PVWMH), 
number of grey matter hyperintensities (GMH), number of infratentorial hyperintensities (IFTH), number 
of hippocampal grey matter intensities (HipGMH) and sex at the time of baseline MRI image collection 
(age ~ 67–70). Colour gradients represent level of significance with most intense colour indicating the highest 
level of significance. Only individuals with information on sex, total intracranial volume and age are included. 
Created using STATA/MP version 15 (StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: 
StataCorp LLC).
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Significant associations with change in hippocampal volumes and hyperintensities between baseline and 
follow-up which met the significance criteria following permutation analysis are shown in Fig. 4. MEST1 (+ 22.2, 
p = 0.007), L3MBTL(b) (+ 18.3, p = 0.018) and GNASXL (+ 28.7, p = 0.005) methylation were positively associated 

Figure 2.   Example coefficient plot for associations between imprint methylation and change in hippocampal 
volumes and hyperintensities on chromosome 20 (MCTS2, L3MBTL, NESPAS, GNASXL) in ABC36 participants 
between baseline and follow-up image collection. The schematic at the top of each column of figures shows 
the genomic location of the individual CpG sites in the context of function on the maternally and paternally 
inherited alleles (indicated by male and female symbols). The y axes represent the change in hippocampal 
volume (in mm3) or the change in number of lesions per percent methylation and the x axes genomic location 
on chromosome 20 (GRCh37, release 84, version of March 2016). Positions significant at p < 0.05 are shown in 
blue when coefficients are negative and in red when positive. Regressions were adjusted for sex, total intracranial 
volume, age at baseline (in days) and time between MRI scans (in days). Created using STATA/MP version 15 
(StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC).
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with change in total hippocampal volume. MEST1 was exclusively associated with right hippocampal volume 
change (+ 14.1, p = 0.007) while GNASXL was associated with change in both right (+ 17.0, p = 0.005) and left 
(+ 12.4, p = 0.008) volumes. L3MBTL(b) was also associated with changes in both right (+ 10.5, p = 0.018) and 
left (+ 8.4, p = 0.002) hippocampal volumes while KvDMR methylation was positively associated with change 
in left hippocampal volume only (+ 10.3, p = 0.013). MEST1 was also positively associated with a change in the 
number of white matter hyperintensities at two distinct regions (MEST1(a): + 0.131, p = 0.007; MEST1(b); + 0.112, 
p = 0.007). PEG3 was also positively associated with change in white matter hyperintensity prevalence (+ 0.095, 
p = 0.004), and MCTS2 with grey matter hyperintensities in the hippocampus (+ 0.041, p < 0.001). Change in the 
number of infratentorial hyperintensities was associated with a number of imprints, particularly those located 
on chromosome 20, where NESPAS showed a negative association (− 0.036, p < 0.001), as did GNASXL (− 0.079, 
p = 0.005) and L3MBTL(a) (− 0.056, p = 0.018), while MCTS2 showed a positive association (+ 0.067, p = 0.004). 
SNRPN methylation showed a negative association (− 0.085, p = 0.004) and MEST1 positive associations at 2 
distinct regions (MEST1(d): + 0.097, p < 0.001; MEST1(e): + 0.090, p = 0.009), and a less significant negative 
association at a third block upstream (MEST1(c): − 0.096, p = 0.012).

MEST1 associations with change in hippocampal volume and white matter hyperintensities occurred at the 
same genomic location, but the associations with infratentorial regions were in different regions of MEST1. 
L3MBTL associations with hippocampal volume and infratentorial hyperintensities also occurred in different 
regions within the imprint. MCTS2 associations with change in hippocampal GMH and IFTH occurred in the 
same genomic location and were consistently positive. GNASXL was linked to hippocampal volumes and IFTH, 
although in the latter case the IFTH associations were in the opposite direction. Some of the associations covered 
a large number of contiguous CpGs (e.g. MCTS2 and GMH and IFTH) and, in general, the higher the number of 
significant contiguous CpGs, the lower the likelihood of this arising by chance and greater the level of significance 
following permutation correction. Contiguous blocks of significance can also arise by chance because of correla-
tion between adjacent CpGs. The permutation analysis specifically took account of the structure of the data and 
the autocorrelation between CpGs and this can be seen in cases where it reduced the level of significance despite 
there being a high number of contiguous CpGs (e.g. L3MBTL and hippocampal volumes).

No impacts upon patterns of significance were observed when regressions included childhood cognitive 
ability at age 11 or years spent in education or childhood or adult socioeconomic status as additional explana-
tory variables.

Figure 3.   Heatmap showing significant blocks of association between imprint methylation and hippocampal 
volumes (in mm3) and hyperintensities at baseline MRI imaging following permutation analysis in ABC36 
participants (HipV = hippocampal volume; LHipV = left hippocampal volume; RHipV = right hippocampal 
volume; WMH = white matter hyperintensities; PVWMH = periventricular hyperintensities; GMH = grey 
matter hyperintensities; HipGMH = grey matter hyperintensities specific to the hippocampus). Blue indicates 
negative associations and red positive. Colour gradients represent level of significance with most intense colour 
indicating the highest level of significance. Numbers of significant CpG sites in the association block are shown. 
Imprints are organised in chromosomal order along the x-axis. Created using STATA/MP version 15 (StataCorp. 
2017. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC).
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Discussion
Hippocampal volumes and hyperintensities are influenced by both genetics24,25 and the environment5, and 
sometimes the effects of both have been reported in the same study26. Epigenetic mechanisms are relevant to 
both genetic and environmental effects as epigenetic states important to brain structure and function can be 
both modifiable by the environment and heritable, in their own right or as a result of genetic variation. One 
class of epigenetics—imprinting—is thought to be particularly important for neurogenesis, brain function and 
behaviour11–14. The fact that imprints are set early in development also makes this class of epigenetic signatures 
particularly relevant to the study of early life effects on brain development.

This study focused on imprinting methylation as a predictor of hippocampal volumes and hyperintensities 
and their change with age in later life. We used next generation sequencing to assess CpG methylation across 
multiple sites within important imprinted regions. There were numerous examples of single isolated CpGs being 
significantly related to brain structures but these were rejected on the basis of biological implausibility. We only 
report findings based on contiguous blocks of significance across multiple CpGs which survived permutation 
adjustment for multiple testing and correlation between adjacent sites.

The hippocampus plays an important role in learning and memory consolidation, affective behaviours, and 
mood regulation27 and hippocampal atrophy is accelerated in patients with Alzheimer’s disease23,28,29. We report 
that methylation within the imprinted genes, H19/IGF2 and NESPAS predicted hippocampal volumes at baseline 
MRI measurement in the seventh decade of life. As with most studies of imprinting, the magnitude of meth-
ylation changes are modest18,19,30–32 but they have the potential to contribute to important biological effects20. 
Prenatal exposures resulting in a 1% change in methylation at the IGF2 DMR correspond to an approximately 
twofold change in IGF2 transcription33 and small changes in imprinting methylation also have the potential to 
influence the wider genome through short- and long-range interactions. Baseline hippocampal volumes in this 
cohort were found to differ by approximately 500 mm3 between individuals who went on to develop Alzheimer’s 
disease compared to those who did not28. A 1% change in H19/IGF2 methylation predicted a 26 mm3 difference 
in total hippocampal volume and the population variation (two standard deviations) in methylation levels was 
4%, equivalent to a fifth of the full Alzheimer’s effect. Methylation within MEST1, KvDMR, L3MBTL and GNASXL 
all predicted changes in hippocampal volume with age between baseline and follow-up. The hippocampus is 
known to be sensitive to early life stress5 and adult hippocampal volumes in late life have been associated with 
childhood socioeconomic status6. There is some evidence from human34 and animal studies35 that epigenetic 
change in non-imprinted genes may be relevant to the link between early life adversity and hippocampal devel-
opment but the evidence for imprinted genes has so far been indirect or inferred. Offspring methylation within 
the imprinted gene MEST has been linked to exposure to maternal stress36, which has in turn been linked to 

Figure 4.   Heatmap showing significant blocks of association between imprint methylation and change in 
hippocampal volumes (in mm3) and hyperintensities between MRI imaging at baseline and follow-up in 
ABC36 participants following permutation analysis (HipV = hippocampal volume; LHipV = left hippocampal 
volume; RHipV = right hippocampal volume; WMH = white matter hyperintensities; HipGMH = grey matter 
hyperintensities specific to the hippocampus; IFTH = infratentorial hyperintensities). Blue indicates negative 
assoctions and red positive. Colour gradients represent level of significance with most intense colour indicating 
the highest level of significance. Numbers of significant CpG sites in the association block are shown. Imprints 
are organised in chromosomal order along the x-axis and vertically aligned squares cover the same CpG blocks. 
Created using STATA/MP version 15 (StataCorp. 2017. Stata Statistical Software: Release 15. College Station, TX: 
StataCorp LLC).
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hippocampal volumes, and there is some genetic evidence that the imprinted gene L3MBTL may work with a 
subnetwork of genes to influence hippocampal volume, microstructure and asymmetry37.

White matter hyperintensities in the brain are the consequence of cerebral small vessel disease and are 
important risk factors for cognitive and functional impairment dementia, stroke, worse outcomes after stroke, 
gait instability, late-life depression, and death23,38,39. There is also evidence for early life effects on these important 
indicators of function; particularly hyperintensities in white matter7. At baseline, PEG3 methylation predicted 
the number of sub-cortical and deep white matter hyperintensities (frontal, temporal, parietal, occipital, internal 
capsule), periventricular white matter hyperintensities (frontal horns, bodies, occipital horns), and the number 
of grey matter hyperintensities specific to the hippocampus, while GNASXL methylation predicted total grey 
matter hyperintensities (caudate nucleus, putamen, globus pallidus, thalamus, hippocampus). Multiple imprints 
predicted the rate of change in hyperintensities with age between baseline and follow-up. Changes in white matter 
hyperintensities were predicted by MEST1 and PEG3 and changes in hippocampal grey matter hyperintensities 
by MCTS2. The number of imprints and regions predicting the rate of change in infratentorial hyperintensities 
(cerebellum, midbrain, pons, medulla) was striking, covering methylation within GNASXL, NESPAS, L3MBTL, 
MCTS2, SNRPN, and MEST1 which showed significance in three different regions. The concentration of this effect 
in imprints within chromosome 20 was notable. All three imprints at the 20q13 locus (L3MBTL: q13.2; GNASXL: 
q13.32 and NESPAS: q13.32) demonstrated reduced methylation with increasing prevalence of hyperintensities 
and MCTS2 – also on chromosome 20 but at location 20q11.21—showed a positive association.

This is the first study looking specifically at the role of epigenetic imprinting in brain hyperintensities and 
hippocampal volumes but, as with hippocampal volumes, there is some indirect or inferred evidence pointing 
to a possible role for imprints. H19 expression is important in neuronal apoptosis and glial cell activation in the 
hippocampus in animal models40,41. Hyperintensities are associated with cognitive impairment and the GNAS 
locus has been linked to cognitive impairment syndromes42,43, while MEST1 and SNRPN predict cognitive abil-
ity in childhood20. SNRPN has also been associated with dendritic spine development during postnatal brain 
development44,45. The neurodegenerative disease of multiple sclerosis is characterised by hyperintensities in 
the infratentorial region46 and a susceptibility locus for multiple sclerosis has been identified at 20q13 which 
contains L3MBTL and GNAS47.

We focused on imprints as a class because of their known role in brain development and function and in 
some cases common patterns emerge, such as the consistent direction of all the effects on hyperintensities and 
hippocampal volumes at baseline and the generally opposite direction of effect on the changes with age. There 
are also examples of individual imprints affecting more than one outcome, such as PEG3 predicting three of 
the four measures of hyperintensity. However, while imprints can be grouped together as a class of epigenetic 
phenomena, individual imprints have their own specific roles and functions, as discussed above, and the pro-
cesses that lead to the establishment of a biological structure or function and those that determine its response 
to ageing are not necessarily the same. Even within a structure such as the hippocampus different processes may 
be active in different regions; e.g. asymmetric hippocampal volumes29 and atrophy have been identified with 
ageing48 and with increasing severity of Alzheimer’s disease49. It should also be noted that the significant findings 
are those that survived the application of a rigorous permutation test and where for example there were similar 
directions of effect in both sides of the hippocampus, only the findings on one side may have met the stringent 
level of significance imposed by the permutation analysis. In some imprints multiple regions of significance were 
observed; for example in MEST1 where four regions were significantly linked to the same direction of ageing 
effect in the hippocampus and two measures of hyperintensity. Even within an imprint there are regions that 
cover different transcription factor binding sites and where methylation at different sites has different effects 
(e.g. the H19/IGF2 locus in mouse models50,51) and a fifth region in MEST1 was oppositely linked to one of the 
measures of hyperintensity.

We present evidence linking hippocampal volumes and hyperintensities, and their change over time, to con-
tiguous extensive blocks of methylation within multiple imprints. Epigenetic imprinting in general is known to 
be important for neurogenesis, brain function and behaviour11,12,14 and we have identified specific imprints, and 
specific locations within those imprints, where contiguous blocks of methylation predict brain structure and its 
change over time. Shared mechanisms, driven by genomic imprinting, have the potential to connect early life 
exposures with brain structure and function and cognitive decline in old age.

Some strengths and limitations of the current study should be noted. The ABC36 longitudinal cohort is well-
characterised and includes non-demented, community dwelling participants from a small geographical area 
who were born in same year, 1936. The longitudinal nature of the cohort study provides invaluable MRI data 
from single individuals across time in old age. As with many cohort studies, participants who underwent brain 
MRI were healthier and had higher cognitive ability than the cohort as a whole and it excludes anyone who died 
before recruitment age 64 years28.

Genetic effects can also influence epigenetic status through variation in the underlying genomic sequence 
of the region being measured52, or in proximal elements53, or by influencing the epigenetic machinery required 
for setting and maintaining imprints. An effect of the underlying genetic sequence within the imprinted regions 
studied here can be ruled out as an explanation for the findings as SNPs were specifically excluded from the 
regions analysed. It is possible that genetic effects operating at a distance could influence the relationships but 
the imprint specific direction of effect is not consistent with genetic variation within the general epigenetic 
read–write machinery. The significant results presented here were unaffected by inclusion of childhood or adult 
socioeconomic status, childhood cognitive ability, or the number of years spent in education as additional 
explanatory factors in regression analyses. This suggests that the links to function are biological rather than a 
consequence of indirect effects of imprints on behaviour and environmental exposures which then influence 
hippocampal volumes and hyperintensities.
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Hippocampal volumes and hyperintensities are important corollaries of brain function and cognitive abil-
ity and an improved understanding of the factors that shape them would help improve the brain health of a 
substantial portion of older populations and reduce cognitive decline and Alzheimer disease. Innovative MRI 
studies have provided important advances in this field39. Epigenetic status within the imprinted genes provides 
a new front in our understanding of how the early environment can influence brain structure and function and 
new knowledge on which to develop novel strategies to improve brain health.

Methods
Cohort study design.  Participants were members of the Aberdeen Birth Cohort of 1936 (ABC1936) 
from whom DNA was collected (n = 485)21. Ethical approval for the study was obtained from the Multi-Cen-
tre Research Ethics Committee for Scotland (MREC/01/0/56) and Grampian Research Ethics Committee 
(LREC/01/0299). The research was conducted in compliance with the Helsinki Declaration and all participants 
gave written, informed consent.

Almost all children born in 1936 and attending school in Scotland were tested at age 11 (± 0.5) years for 
general cognitive ability54. The test administered was a version of the Moray House Test No. 12, which was con-
currently validated against the Terman-Merrill revision of the Binet Scales with a coefficient of approximately 
0.8. Aberdeen survivors were traced and recruited to the study at mean age 64 years. Participants also gave blood 
samples at this age, and weight and height were measured by trained research nurses. In 2004, a target number 
of 250 members of ABC36, selected at random, were invited to undergo brain MRI. 249 participants agreed 
and were scanned at a mean age 68.6 years. 166 of participants agreed to a follow-up MRI scan at a mean age 
of 72.8 years. 149 participants were able to comply with imaging procedures and have MRI scans at both waves 
of collection7,23,28.

As described by Murray et al.23, participants who agreed were imaged using a 1.5 T GE CVi/NVi MR scanner 
(General Electric Medical Systems, Milwaukee, WI) between 2003 and 2005 using T2 axial (TR/TE 4900/81.4, 
slice thickness 5 mm, space 1.2 mm), fluid attenuation inversion recovery axial (FLAIR) (TR/TE 9002/1.33, TI 
220, slice thickness 5 m mm, space 1.2 mm) and 3D T1 weighted spoiled gradient recalled acquisition (SPGR) 
(TR/TE 20/6 ms, flip angle 35°, number of slices 124, effective slice thickness 1.6 mm, matrix 256 × 192, in-plane 
resolution 1 × 1 mm) sequences. Complete T2 and FLAIR MRI data were available in 243 and completed 3DT1 
data in 233, the smaller number being due to movement during the relatively longer volumetric acquisition. 
3DT1 images were analysed using FreeSurfer to extract total intracranial, whole brain and hippocampal vol-
umes (http://surfe​r.nmr.mgh.harva​rd.edu/). T2 and FLAIR images were analysed suing Scheltens’ scale55 which 
attributes scores based on hyperintensity size and number in the sub-cortical and deep white matter (WMH; 
fontal, temporal, parietal, occipital, internal capsule), periventricular white matter (PVH; frontal horns, bodies, 
occipital horns), deep grey matter (GMH; caudate nucleus, putamen, globus pallidus, thalamus, hippocampus) 
and infratentorial regions (IFTH; cerebellum, midbrain, pons, medulla).

DNA extraction and BIS conversion.  DNA extraction was carried out as described in56. DNA was 
extracted from blood samples (n = 485) using QIAamp DNA Blood Mini QIAcube kits (Qiagen, Crawley, UK), 
automated on a QIAcube (Qiagen, Crawley, UK). The DNA was quantified with SYBR Green on a Rotor-Gene Q 
(Qiagen, Crawley, UK) using DNA standards (Life Technologies, Paisley, UK). The DNA samples were dispensed 
into 96-well plates and treated with sodium bisulphite using Zymo EZ DNA Methylation-Gold Bisulphite kits 
(Zymo Research, California, USA) as described elsewhere20.

Assay design.  Germline DMRs were identified as those consistently identified as such across a number of 
publications16,22,57–59 (Table S1). FASTA sequences were used to design specific assays using PyroMark Assay 
Design Software (version 2.0, Qiagen, Crawley, UK). The optimum target size for all assays was 250 bp along 
with a Tm difference ≤ 2 °C between forward and reverse primers. CpG positions were avoided where possible in 
assay design, but where they could not be, inclusion was directed toward the 5′ end of the primer as a degener-
ate Y (or R for reverse primers) base. Assays were designed to avoid sequence variants in the primers. Primers 
sequences are shown in Table S2.

PCR amplification.  PCR products were generated using ZymoTaq DNA polymerase kits (Zymo Research) 
according to the manufacturer’s protocols. Forward and reverse primers were used at a final concentration of 
0.75 µM each with 10 ng of bisulphite treated DNA in a final volume of 25 µl. Thermocycling conditions were as 
follows: 95 °C for 15 min, followed by 50 cycles of 95 °C for 30 s, annealing temperature (see Table S2) for 30 s, 
and 72 °C for 30 s, and a final extension for 7 min at 72 °C.

Library preparation.  For each individual, 2 µL of PCR product from each assay was added to an ampli-
con pool. Amplicon pools were quantified using the Thermo Fisher Scientific Quant-iT dsDNA High Sensitiv-
ity Assay (Thermo Fisher Scientific, Waltham, MA, USA). Fluorescence was measured using a BMG Labtech 
FLUOstar Omega microplate reader (BMG Labtech GmbH, Ortenberg, Germany). The amplicon pools were 
prepared for sequencing and barcoded using the NEB Ultra II DNA Library Prep Kit for Illumina (New England 
Biolabs, Ipswich, MA, USA) and the NEBNext Multiplex Oglios for Illumina (Dual Index Primers Set 1 and 
2). The prepared libraries were quantified using the Thermo Fisher Scientific Quant-iT dsDNA High Sensitiv-
ity Assay with fluorescence measured on a BMG Labtech FLUOstar Omega microplate reader. The libraries 
were analysed for quality and size on an Agilent 2200 TapeStation with the High Sensitivity D1000 ScreenTape. 
Equimolar pooling of the resultant barcoded libraries was conducted and qPCR based quantification using the 
KAPA Complete Kit for Illumina Library Quantification (Roche Diagnostics, Risch-Rotkeuz, Switzerland) was 

http://surfer.nmr.mgh.harvard.edu/


9

Vol.:(0123456789)

Scientific Reports |          (2021) 11:943  | https://doi.org/10.1038/s41598-020-78062-2

www.nature.com/scientificreports/

completed on a Thermo Fisher Scientific QuantStudio 6 Flex Real-Time PCR System. The final library pools 
were sequenced on an Illumina MiSeq System employing v3 MiSeq chemistry and 300 bp paired-end reads. Base 
calls and FASTQ output files were produced on the MiSeq instrument. Two flow cells were run due to barcode 
number restraints.

Quality control of sequencing data.  Assessment of the number of sequencing reads and quality of the 
data were made for all samples using FastQC (version 0.11.5)60 and MultiQC (version 0.9.dev0)61 using default 
parameters. Raw reads from each of the samples were filtered to remove poor quality sequences and stringently 
trimmed to remove contaminating adapter sequences as well as any unwanted bias from their ends using Trim 
Galore! (version 0.4.0)62 as well as Trimmomatic (version 0.35)63. A phred score of 30 was used as the overall 
quality threshold. Custom scripts developed by Centre for Genome-Enabled Biology and Medicine’s (CGEBM’s) 
specialist Dr Antonio Ribeiro were utilised for the automation/parallelisation of the different operations across 
all the samples.

Methylation calling.  Methylation calling was carried out following the Bismark Bisulfite Mapper 
workflow64. In order to automate/parallelise the execution of the distinct stages of the workflow across all the 
samples, additional custom scripts were again developed by CGEBM’s Dr Antonio Ribeiro. For the mapping 
of the paired-end reads stage, Bowtie265 as well as SAMtools version 0.1.1966,67 were employed over a mock 
genome built to comprise the targeted regions described in Table S1. The mock genome was based on the human 
genome build GRCh37, release 84, version of March 2016. A sub-set of samples were also aligned against the 
whole genome as verification of the mock genome approach. Additional Bismark-related parameters were set up 
as –un --ambiguous --non_bs_mm --non_directional –I 0 –X 1000, following recommendations from Bismark’s 
developer Felix Krueger (via personal communication). Due to the nature of the samples/library preparation, 
the deduplication of reads step was not performed. In the subsequent methylation extraction stage, Bismark and 
SAMtools were employed with paired-end-related parameters –p --no_overlap as well full reporting associated 
ones --report --no_header --bedGraph --zero_based --CX --buffer_size 50% --scaffolds --cytosine_report --CX 
--zero_based.

Methylation reporting.  Since Bismark reporting output format did not fulfil our requirements, a set of 
bespoke scripts were developed by CGEBM’s Dr Antonio Ribeiro to produce output formats more appropriate 
for subsequent downstream analysis. In this set of scripts, one component was responsible for the automation 
of the process across all samples while the other handled the formatting task. Specifically, the latter combines 
the information available in Bismark’s methylation extractor output files for coverage as well as for cytosines per 
context and per possible strand with the sequences of the targeted regions (in FASTA format) plus correspond-
ing VCF files. As outputs, two distinct types of tabulated reports are generated: one detailing the methylation 
calling occurrences, with per-base resolution, and, the other breaking down the sequencing reads which sup-
ported such events. For the preparation of the aforementioned VCF files, Tabix tool version 0.2.5 (r964)68 was 
applied over the ENSEMBL’s “Homo_sapiens.vcf.gz” genetic variation information file69 respective to the human 
genome build GRCh37, release 84, version of March 2016.

Statistical analyses.  Statistical analysis was carried out using STATA/MP version 15 (Stata Corp, College 
Station, Texas, USA). Kernel density plots were drawn for each individual CpG position to identify any unusual 
methylation distributions that could be explained by nearby SNPs. These positions (n = 46 out of 982 CpGs) 
were excluded from further analyses. CpG methylation values were included in analyses only when there was 
at least 250 × cover on each strand (original top (OT) and complementary to original top (CTOT) or original 
bottom (OB) and complementary to original bottom (CTOB)). Methylation values less than 10% or greater than 
90% were rare (< 1% of total) and sporadic but where they occurred they were excluded as unreliable or indica-
tive of loss of imprinting. Mean methylation at each DMR is reported in Table S3.

Linear regressions were carried out for baseline and follow-up MRI at individual CpG positions against 
hippocampal volumes (mm3) and Scheltens’ scores (counts) for different brain matter regions with adjustment 
for sex, total intracranial volume and age at baseline MRI collection (in days). The analysis was repeated for the 
change in hippocampal volumes and Scheltens’ scores between baseline and follow-up MRI scans with additional 
adjustment for time between scans (in days). MRI variables were normally distributed, with the exceptions of 
total grey matter, hippocampal grey matter and infratentorial hyperintensities at baseline which were highly 
skewed toward scores of 0. Poisson regression with robust standard errors was additionally carried out for these 
variables to confirm positive results from linear regression and showed highly similar patterns of association 
with stronger p-values. Methylation was the explanatory variable in all regressions. The role of MHT score at 
age 11, the number of years spent in education, adult (aSES) and childhood socioeconomic status (cSES) in 
understanding these relationships was assessed by including these variables individually in further analyses. The 
Scottish Index of Multiple Deprivation (SIMD) decile was used as the measure of socioeconomic circumstances 
at the time of blood sampling. cSES was calculated as the standardized first component derived by PCA using 
overcrowding variables (sanitation sharing and room sharing) and also father’s occupation (coded 1 to 9 where 
1 is higher managerial and 9 is never worked or long term unemployed). To maintain the number of individu-
als in these adjusted regressions, missing values were imputed using means. The results of all regressions were 
visualised in spike plots showing the magnitude, direction of association, and occurrence of statistical signifi-
cance for each imprint in relation to the physical genomic location of the CpG. Significance at the p < 0.05 level 
was shown in red for positive associations and blue for negative associations. Regression results were plotted 
only when a minimum of n = 100 individuals were present in the regression analysis at an individual position.
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Permutation analysis.  Regression analysis of multiple individual CpG sites increases the likelihood of 
significance arising by chance and, even if individual sites are truly statistically significant, the biological inter-
pretation of such isolated CpG signals is not clear. Therefore, the focus here was in identifying blocks of signifi-
cance covering multiple contiguous CpGs. Potential blocks of significance were identified for groups of adjacent 
significant CpGs with no more than one non-significant site between them. We used permutation analysis to 
assess the likelihood of important blocks of significance occurring by chance and the likelihood is reported in 
the results section. Adjustment for multiple testing in this case is complicated by the fact that there may be corre-
lation in the methylation level between adjacent CpG sites. The autocorrelation structure was maintained in the 
permutation analysis by retaining the original methylation signal and regressing each CpG against a randomly 
generated normally distributed data set. This process was repeated 1000 times. Mean coefficients were derived 
by taking the mean across coefficients at individually significant CpGs within identified blocks of significance.

Data availability
Applications to access the study data should be made to the Aberdeen Birth Cohort steering committee 
(c.mcneil@abdn.ac.uk).
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