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Background: The effect of individual saturated fatty acids (SFAs) on serum cholesterol levels depends on their
carbon-chain length. Whether the association with myocardial infarction (MI) also differs across individual
SFAs is unclear.We examined the association between consumption of individual SFAs, differing in chain lengths
ranging from 4 through 18 carbons, and risk of MI.
Methods:Weused data from 22,050 and 53,375 participants from EPIC-Norfolk (UK) and EPIC-Denmark, respec-
tively. Baseline SFA intakes were assessed through validated, country-specific food frequency questionnaires.
Cox regression analysis was used to estimate associations between intakes of individual SFAs and MI risk, for
each cohort separately.
Results: During median follow-up times of 18.8 years in EPIC-Norfolk and 13.6 years in Denmark, respectively,
1204 and 2260 MI events occurred. Mean (±SD) total SFA intake was 13.3 (±3.5) en% in EPIC-Norfolk,
and 12.5 (±2.6) en% in EPIC-Denmark. After multivariable adjustment, intakes of C12:0 (lauric acid) and
C14:0 (myristic acid) inversely associated with MI risk in EPIC-Denmark (HR upper versus lowest quintile:
0.80 (95%CI: 0.66, 0.96) for both SFAs). Intakes in the third and fourth quintiles of C4:0–C10:0 also associated
with lower MI risk in EPIC-Denmark. Moreover, substitution of C16:0 (palmitic acid) and C18:0 (stearic acid)
with plant proteins resulted in a reduction of MI risk in EPIC-Denmark (HR per 1 energy%: 0.86 (95%CI: 0.78,
0.95) and 0.87 (95%CI: 0.79, 0.96) respectively). No such associations were found in EPIC-Norfolk.
Conclusion: The results from the present study suggest that the association between SFA and MI risk depends on
the carbon chain-length of the SFA.

© 2018 Published by Elsevier B.V.
Keywords:
Saturated fatty acids
Diet
Cohort study
Myocardial infarction
1. Introduction

Limiting the intake of dietary saturated fatty acids (SFAs) is an im-
portant component of the dietary recommendations for the prevention
of coronary heart disease (CHD) [1–4]. A high intake of SFAs, compared
with carbohydrates is associated with higher serum LDL cholesterol
concentrations [5], which is an established risk factor for CHD. However,
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the link between SFAs and CHD has been heavily debated for years now,
because of inconsistent results from observational cohort studies [6–9].

One of the proposed explanations for the inconsistent findings in
meta-analyses of these cohort studies is that the association between
SFAs and CHD differs across types of SFAs, based on their carbon-atom
chain lengths. A recent meta-analysis of 52 controlled trials showed
that the effect of dietary SFA on serum cholesterol levels in humans dif-
fered depending on the chain-length [5]. Compared to carbohydrates,
lauric acid (C12:0), myristic acid (C14:0) and palmitic acid (C16:0)
increased LDL and HDL cholesterol, C12:0 improved the total to HDL
cholesterol ratio, and stearic acid (C18:0) had neutral effects [5]. This
suggests not all SFAmay be equally harmful with respect to CHD devel-
opment. Approaching SFAs as a whole in observational studies may
therefore have obscured the association with CHD risk.
turated fatty acids and the risk of myocardial infarction in a UK and a
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Four previous prospective cohort studies [10–13] indeed observed
differential associationswith CHDwhen individual SFAswere separated
in the analyses, but their findings are inconsistent. In the Nurses' Health
Study (NHS) [10,13] and the Health Professional Follow-up Study
(HPFS) [13], SFAs with chain lengths of 12 or more carbons were
associated with a higher CHD risk. In the Rotterdam study, C16:0 was
associated with an increased risk [12]. In the EPIC-NL cohort, the SFAs
with chain lengths up to 10 carbons, as well as the odd-chain SFAs,
pentadecylic acid (C15:0) and margaric acid (C17:0), were associated
with a lower CHD risk [11].

Addressing the associations of individual SFAswith CHD risk in other
populations will yield more insight into if and how individual SFAs
associate with CHD risk. Therefore, the objective of this study was to
investigate the association between individual SFAs and MI risk in a
UK and a Danish cohort.

2. Methods

2.1. Study population

For the present study, we used data from EPIC-Norfolk (European Investigation into
Cancer andNutrition-Norfolk cohort), and from the Danish Diet, Cancer andHealth cohort
(further referred to as EPIC-Denmark). Both cohorts are part of the international
multicentre EPIC study [14]. Detailed descriptions of the design and rationale of both
cohorts can be found elsewhere [15,16]. In brief, the recruitment of both cohorts took
place between 1993 and 1997. Participants for EPIC-Norfolk were recruited through 35
participating General Practices in the rural areas of Norfolk and market towns as well as
the city of Norwich, in the United Kingdom [15]. A total of 25,639 men and women,
aged 40 through 74 years, were enrolled in the study. Participants for EPIC-Denmark
were selected from the Copenhagen and Aarhus areas in Denmark, and were identified
through the Civil Registration System (CPR) [16]. Selection criteria were being born in
Denmark, being between 50 and 64 years of age, and being free of cancer. A total of
57,053 men and women were enrolled.

All participants gave written informed consent before enrolment into the study, and
ethical approval for the studies was obtained from the Norfolk and Norwich Hospital
Ethics Committee (EPIC-Norfolk) and from the relevant Scientific Committees and the
Danish Data Protection Agency (EPIC-Denmark).

We excluded participants who had a history of cancer (n= 1435 in EPIC-Norfolk;
n = 574 in EPIC-Denmark), a history of cardiovascular disease (EPIC-Norfolk, n =
1045) or myocardial infarction (EPIC-Denmark, n = 900), had missing or incomplete
dietary data (n = 547; n = 91), reported implausible energy intakes compared to
their estimated basal metabolic rate (n = 266; n = 554), or had missing data on
co-variables (n= 296; n= 1559), leaving 22,050 and 53,375 participants for analysis
in EPIC-Norfolk and EPIC-Denmark, respectively.

2.2. Dietary assessment

Baseline dietary data were obtained through validated, country specific Food
Frequency Questionnaires (FFQs), that allowed the participants to specify the food
consumption frequency during the preceding year [17,18]. For each participant, the
daily intakes of macro- and micronutrients were calculated using FETA [19], based on
McCance &Widdowson's food composition tables [20–29] (Norfolk) or the software pro-
gram FoodCalc [30] (EPIC-Denmark). Data on individual fatty acid intake were calculated
based on the fatty acids supplement to the McCance & Widdowson's The Composition of
Foods [31], or McCance and Widdowson's The Composition of Foods integrated dataset
(CoF IDS) [32], and on the Danish food composition tables from 1996 [33].

The FFQs were both previously validated [34–36] against weighed records. The
Norfolk FFQ was not validated for its ability to measure saturated fat, but for total fat,
the correlation coefficient was 0.55 in women [34]. For the Danish FFQ, the correlation
coefficients were 0.67 (men) and 0.48 (women) for total fat intake, and 0.46 (men) and
0.39 (women) for saturated fat intake [36].

For the present analyses, the intakes of individual saturated fatty acids (SFAs), and of
all other macronutrients were expressed as percentages of total energy intake (en%). For
both cohorts, we summed the intakes of butyric acid (C4:0) through capric acid (C10:0),
because of very low intakes and because they are all derived from dairy food sources.
For the same reasons, the intakes of C15:0 and C17:0 were also summed in EPIC-
Norfolk. In EPIC-Denmark, C15:0 was analysed individually because no data on C17:0
intake were available. C12:0 through C14:0 and C12:0 through C18:0 were also analysed
combined to facilitate comparisonwith a previous study [13]. Furthermore, for the Danish
cohort, trans fatty acids intake was available only from ruminant sources, and was there-
fore left out of the analyses.

2.3. Outcome assessment

Information on vital status was obtained by flagging the participants for death certifi-
cation at the United Kingdom Office of National Statistics (EPIC-Norfolk), and through
linkage with The Danish National Patient Register [37] and The Danish Register of Causes
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of Death [38] (EPIC-Denmark). Information on hospital admissions in Norfolk and
Denmark was obtained through linkage with the Norfolk Health Authority database
(ENCORE), and the Danish National Patient Register, respectively.

The cause of death or hospital admissionwere coded according to theninth revision of
the International Classification of Diseases (ICD) for Norfolk, and according to the eight
and tenth ICD revisions for Denmark. The outcome of interest in the present studywas in-
cident myocardial infarction (MI). This included both fatal and non-fatal events classified
with codes 410–410.99 (ICD-8 and ICD-9) and I21.0–121.9 (ICD-10). In the Danish cohort
also cardiac arrest cases (ICD-8 code: 427.27, and ICD-10 codes: I46.0–I46.9) were
included if the arrest was considered to be of cardiac origin after validation. Follow up
was up until 31 March 2015 (EPIC-Norfolk), and 31 December 2009 (EPIC-Denmark).

Follow-up rates were (very close to) 100% for both cohorts.

2.4. Assessment of other variables

Information on baseline non-dietary factors, including medical history, medication
use, smoking status, alcohol use, education level and physical activity level, was obtained
through general questionnaires. Smoking statuswas defined as never, former and current.
Education level was categorized as none, 0 level, A level, and having a degree (Norfolk), or
according to the number of years one attended school: 0–7 years, 8–10 years, N10 years
(Denmark). Alcohol intake, as obtained from the FFQ, was expressed according to the
following categories: none, 0–5, 5–15, 15–30, 30–45, and ≥45 g/d. Physical activity level
was obtained using a validated questionnaire and expressed according to the Cambridge
Physical Activity Index [39] into the following categories: active, moderately active, mod-
erately inactive, and inactive. Height, weight and waist circumference were measured
at the physical examination. Body mass index (BMI) was calculated as weight divided
by height squared (kg/m2), and divided into the following categories: b18.5, 18.5–23,
23–25, 25–30, 30–35, and ≥35 kg/m2. Hypertension was defined as diastolic blood
pressure N 90 mm/Hg, systolic blood pressure N 140 mm/Hg [40], use of antihypertensive
medication or self-reported high blood pressure (UK), or self-reported hypertension
(Denmark; yes/no/don't know). Hypercholesterolemia was defined as total cholesterol
N6.5 mmol/L [41] or use of lipid lowering drugs at baseline (UK), or self-reported medical
treatment or history hypercholesterolemia (Denmark; yes/no/don't know). Postmeno-
pausal status was defined as having no cycle for N5 years (UK) or self-reported natural
or surgical postmenopausal status (Denmark), and codes as yes/no/male. Hormone
replacement therapy was categorized into current, former and never (UK), or use of
hormones for menopause (Denmark; yes/no).

2.5. Data analysis

2.5.1. Main analysis
All analyseswere performed separately per cohort. SFA intakeswere dived into cohort

specific quintiles.We calculatedPearson correlations for SFA intakes.WeusedCox propor-
tional Hazard regression analysis to calculate Hazard Ratios (HR) with 95% confidence
intervals (CI) for the associations of SFAs with MI risk. In model 1, we adjusted HRs for
age (continuous), sex (male/female), total energy intake (kcal, excluding alcohol), BMI
(categories), education level (categories), physical activity level (categories), smoking
status (categories), hypertension (UK yes/no; Denmark yes/no/don't know), alcohol
intake (categories), use of post-menopausal hormones (UK current/former/never;
Denmark yes/no) and in the UK also for aspirin use (yes/no), multivitamin use (yes/no)
and family history of MI (yes/no). In model 2, we additionally adjusted for intakes of
PUFA (en%), protein (en%), the sum of all other SFAs (en%), and trans fatty acids (UK
only; en%). In model 3, we additionally adjusted for hypercholesterolemia (UK yes/no;
Denmark yes/no/don't know) as possible intermediate of the relationship between SFA
intakes and CHD [5].We also adjusted for postmenopausal status (categories), to facilitate
comparison with previous work [13]. P for trend was calculated by linearly including
quartile specific median FA intake in the model. We examined the possibly non-linear
relationships non-parametrically with restricted cubic splines [42], after limiting the
analysis to participants from the SFA intake percentile 1 to 99. Tests for non-linearity
used the likelihood ratio test, comparing the model with only the linear term to the
model with the linear and the cubic spline terms.

2.5.2. Additional analyses
Results for themain analysis (model 2) from the two cohorts were pooledwith a ran-

dom effects model. Additionally, we performed isocaloric substitution modelling by
adjusting for co-variables in model 1, plus total energy (en%, excluding alcohol) and
energy (en%) from PUFA,MUFA, protein (subdivided in plant and other protein), carbohy-
drates (UK; subdivided in starch carbohydrates and other carbohydrates) and SFA intakes.
By leaving the intake of a particular SFA of interest out of themodel, regression coefficients
of other macronutrients could be interpreted as the effect of isocalorically replacing the
SFA intake not in the model. We reported substitutions with PUFA, MUFA, plant protein
and starch carbohydrates (UK) or total carbohydrates (Denmark).

To investigate if food sources of the SFA intakes contributed to the observed associa-
tions, we investigated the association between SFA from meat and total dairy and MI in
both cohorts, and between SFA from cakes and cookies, cheese, hard fats and soft fats
and MI in the UK cohort, after adjustment for co-variables in model 2.

We tested for possible interactions in our main analyses, for age, sex, BMI, physical
activity and smoking by including an interaction term between the co-variable and SFA
intakes to adjustment model 2. If this interaction term was statistically significant, strati-
fied analyses were presented for this co-variable.
turated fatty acids and the risk of myocardial infarction in a UK and a
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We checked the Cox proportional hazards assumption by visually inspecting log-log
plots, and observed no deviation from the assumption.

Weperformeda series of sensitivity analyses for ourmain analysis. First,we repeatedour
analyses by ending the followup after eight years, to examinewhether the associationswere
different for a shorter follow up time. Second, to limit the possibility of reverse causation, we
repeated the analyses after exclusion of the first two years of follow up. Thirdly, we repeated
the analyses after exclusion of all participants who reported the use of lipid-lowering
medication at baseline as this associates with both SFA intake and MI. Also, we repeated
the analyseswhile adjusting for diabetes at baseline. Additionally, we examined the potential
mediation by ratio of blood total cholesterol: HDL-cholesterol levels among a selection of
EPIC-Norfolk participants (n = 19,974) by additionally adjusting for this ratio.

All statistical analyses were done using SAS 9.4 (SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Population characteristics

The mean (±SD) intakes per day of total SFA were 13.3 (±3.5) en%,
and 12.5 (±2.6) en% in EPIC-Norfolk and EPIC-Denmark, respectively.
Table 1
Baseline characteristics across quintiles of total SFA intake (en%) in EPIC-Norfolk.

Total SFA, en% Q1 Q2

8.5 (±1.3) 11 (±0.5)

Participants (n) 4410 4410
Age, y 58.3 (±8.7) 58.5 (±9.2)
Male (%) 35 42
BMI, kg/m2 26.5 (±4.0) 26.4 (±3.9)
Waist circumference, cm 86.6 (±12.2) 87.8 (±12.2)
Education level (%)

None 33 35
Degree 14 14

Current smoker (%) 8 9
Physically inactive (%) 26 28
Physically active (%) 20 20
Systolic blood pressure, mm Hg 134.7 (±18.5) 135.4 (±18.4)
Diastolic blood pressure, mm Hg 81.9 (±11.3) 82.5 (±11.2)
Hypertensiona (%) 15 15
Total cholesterol, mmol/L 6.1 (±1.2) 6.1 (±1.2)
HDL-cholesterol, mmol/L 1.5 (±0.4) 1.4 (±0.4)
LDL-cholesterol, mmol/L 3.9 (±1) 3.9 (±1)
Triglycerides, mmol/L 1.7 (±1.1) 1.8 (±1.1)
Hypercholesterolemiab (%) 34 31
Diabetes mellitus (%) 3 2
Family history of MI (%) 39 38
Postmenopausal (% among women) 36 33
HRT use (% among women)

Current 24 23
Former 12 12

Supplement use (%) 58 53
Aspirin use (%) 7 6
Daily dietary intakes

Alcohol, g 5 (1−13) 5 (1−11)
Energy, kcal 1787 (±502) 1987 (±555)
Fat, en% 25.7 (±4.1) 30.9 (±3.1)
Sum of C4:0–C10:0, en% 0.3 (0.2–0.4) 0.4 (0.3–0.5)
Sum of C12:0–C14:0, en% 1.2 (0.9–1.4) 1.6 (1.4–1.7)
Sum of C15:0 & C17:0, en% 0.8 (0.7–0.9) 1.1 (1–1.2)
Sum of C12:0–C18:0, en% 8.1 (7.2–8.8) 10.1 (9.7–10.5)
C12:0, en% 0.3 (0.2–0.4) 0.4 (0.3–0.5)
C14:0, en% 0.8 (0.6–0.9) 1.1 (0.9–1.2)
C16:0, en% 4.8 (4.3–5.2) 5.9 (5.6–6.2)
C18:0, en% 1.9 (1.7–2.1) 2.4 (2.2–2.6)
Cis-MUFA, en% 7.6 (±1.6) 8.8 (±1.5)
Cis-PUFA, en% 5.8 (±1.9) 6.2 (±2.1)
Trans fatty acids, en% 1.0 (±0.4) 1.3 (±0.4)
Carbohydrates, en% 55.4 (±6.9) 52.2 (±5.6)
Starch carbohydrates, en% 25.6 (±5.8) 24.7 (±4.8)

Protein, en% 18.3 (±3.4) 17.2 (±3.0)
Plant protein, en% 6.5 (±1.5) 5.5 (±1.2)

Cholesterol, mg 194 (±77) 244 (±87)
Fibre, g 21 (±8) 20 (±6)
Vitamin C, mg 149 (±72) 129 (±58)

All values are means (±SD) or median (quartile 1–quartile 4), unless indicated otherwise.
a Defined as diastolic blood pressure N90 mm/Hg, systolic blood pressure N 140 mm/Hg, use
b Defined as total cholesterol N6.5 mmol/L, or use of lipid-lowering drugs at baseline.

Please cite this article as: J. Praagman, et al., Consumption of individual sa
Danish cohort, Int J Cardiol (2018), https://doi.org/10.1016/j.ijcard.2018.1
In both cohorts the majority of SFA was represented by C16:0 (~52%),
C18:0 (~22%) andC14:0 (~10%) (Supplemental Fig. 1). High correlations
were observed for C4:0–C10:0with C14:0, andwith C15:0. Also, correla-
tions between C16:0 and C18:0 were high (Supplemental Table 1).

Participants (in both cohorts) with higher intakes of energy from
total SFA, as well as from all the individual SFAs (data not shown),
were more often male, had a lower BMI, were less educated, more
often a smoker, and less physically active. Moreover, higher intakes
of SFA were associated with higher intakes of total energy, MUFA,
trans-fat, and lower intakes of carbohydrates, fibre, vitamin C, and
alcohol (Tables 1 and 2).

3.2. Association between individual SFAs and MI risk

During median follow-up times of 18.8 (IQR 17.4, 20.2) years in
the UK and 13.6 (IQR 12.9, 14.3) years in Denmark, respectively,
1204 (5.5%) and 2260 (4.2%) MI events occurred.
Q3 Q4 Q5

12.5 (±0.4) 14.2 (±0.6) 17.6 (±2)

4410 4410 4410
58.4 (±9.3) 58.6 (±9.5) 59.7 (±9.4)
46 50 52
26.3 (±3.8) 26.3 (±3.9) 26.0 (±3.9)
88.0 (±12.2) 88.9 (±12.5) 88.8 (±12.4)

36 37 39
13 12 12
10 12 20
29 32 32
19 18 19
135.0 (±18.2) 135.3 (±18.1) 135.6 (±18.2)
82.5 (±11.1) 82.8 (±11.2) 82.7 (±11.2)
13 12 12
6.2 (±1.2) 6.2 (±1.1) 6.3 (±1.2)
1.4 (±0.4) 1.4 (±0.4) 1.4 (±0.4)
4.0 (±1) 4.0 (±1) 4.1 (±1.1)
1.8 (±1.1) 1.8 (±1.1) 1.8 (±1.1)
33 32 35
2 2 1
35 35 33
32 29 30

21 17 19
12 12 9
47 42 37
6 6 4

5 (1–11) 4 (1−10) 3 (1–10)
2087 (±581) 2155 (±617) 2229 (±642)
33.6 (±3.1) 36.1 (±3.3) 39.7 (±4.0)
0.5 (0.4–0.5) 0.5 (0.4–0.6) 0.7 (0.6–0.8)
1.8 (1.6–2.0) 2.2 (1.9–2.4) 3.0 (2.6–3.4)
1.3 (1.2–1.4) 1.6 (1.4–1.7) 2.1 (1.9–2.4)
11.5 (11.1–11.8) 12.9 (12.5–13.4) 15.4 (14.5–16.7)
0.5 (0.4–0.5) 0.5 (0.4–0.6) 0.7 (0.6–0.8)
1.3 (1.1–1.4) 1.5 (1.3–1.7) 2.1 (1.8–2.4)
6.6 (6.4–6.9) 7.4 (7.1–7.7) 8.6 (8.1–9.2)
2.7 (2.5–2.9) 3.0 (2.9–3.3) 3.6 (3.3–3.9)
9.4 (±1.6) 10.0 (±1.7) 10.5 (±1.8)
6.2 (±2.1) 5.9 (±2) 4.9 (±1.8)
1.5 (±0.5) 1.7 (±0.5) 1.9 (±0.6)
50.3 (±5.3) 48.5 (±5.2) 45.5 (±5.5)
23.9 (±4.3) 23.0 (±4.0) 21.6 (±4.1)
16.5 (±2.8) 16.1 (±2.8) 15.4 (±2.7)
5 (±1.1) 4.5 (±1.1) 4.1 (±1.1)
275 (±97) 310 (±109) 363 (±130)
19 (±6) 18 (±6) 16 (±6)
120 (±53) 113 (±50) 105 (±49)

of antihypertensive medication or self-reported high blood pressure.
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Table 2
Baseline characteristics across quintiles of total SFA intake (en%) in the Danish Diet Cancer and Health cohort.

Total SFA, en% Q1 Q2 Q3 Q4 Q5

8.8 (±1.2) 11.1 (±0.4) 12.5 (±0.4) 13.9 (±0.4) 16.2 (±1.3)

Participants (n) 10,675 10,675 10,675 10,675 10,675
Age, years 56.5 (±4.3) 56.5 (±4.3) 56.6 (±4.4) 56.7 (±4.4) 56.9 (±4.4)
Male (%) 42 47 49 50 50
BMI, kg/m2 26.2 (±3.9) 26.2 (±4) 26.0 (±4) 25.9 (±4.1) 25.7 (±4.2)
Waist circumference, cm 88.1 (±12.4) 88.9 (±12.6) 88.7 (±12.4) 88.6 (±12.6) 88.4 (±13.1)
Years of education (%)

7 years or less 30 31 32 34 36
8–10 years 47 47 46 46 44
N10 years 23 22 21 20 20

Current smoker (%) 26 30 33 36 45
Physically inactive (%) 10 10 10 11 13
Physically active (%) 35 35 35 35 33
Systolic blood pressure, mm Hg 141 (±21) 140 (±21) 140 (±20) 139 (±20) 138 (±20)
Diastolic blood pressure, mm Hg 84 (±11) 84 (±11) 83 (±10) 83 (±11) 82 (±11)
Hypertension (%) 20 17 16 14 13
Diabetes (%) 2.9 2.3 1.8 1.7 1.5
Postmenopausal status (% among women)a 78 76 78 78 80
HRT use (% among women) 29 30 29 29 28
Daily dietary intakes

Alcohol, g 17 (7–40) 15 (7–35) 14 (7–32) 12 (6–23) 9 (3–17)
Energy, kcal 2190 (±590) 2302 (±616) 2377 (±645) 2430 (±674) 2451 (±705)
Sum of C4:0–C10:0, en% 0.6 (0.5–0.8) 0.9 (0.7–1.1) 1.1 (0.9–1.3) 1.3 (1.1–1.6) 1.7 (4.1–2.1)
Sum of C12:0–C14:0, en% 1.1 (0.9–1.2) 1.4 (1.2–1.5) 1.6 (1.4–1.8) 1.8 (1.7–2.0) 2.2 (2.0–2.5)
Sum of C12:0–C18:0, en% 8.2 (7.4–8.8) 9.9 (9.6–10.2) 11.1 (10.8–11.4) 12.2 (11.9–12.6) 13.9 (13.3–14.7)
C12:0, en% 0.2 (0.2–0.3) 0.3 (0.2–0.3) 0.3 (0.3–0.4) 0.4 (0.3–0.5) 0.5 (0.4–0.6)
C14:0, en% 0.8 (0.7–1) 1.1 (1–1.2) 1.3 (1.1–1.4) 1.4 (1.3–1.6) 1.7 (1.6–1.9)
C16:0, en% 4.9 (4.5–5.3) 5.9 (5.7–6.1) 6.5 (6.3–6.8) 7.1 (6.9–7.4) 8.0 (7.7–8.5)
C15:0, en% 0.1 (0–0.1) 0.1 (0.1–0.1) 0.1 (0.1–0.1) 0.1 (0.1–0.1) 0.1 (0.1–0.2)
C18:0, en% 2.1 (1.8–2.3) 2.5 (2.4–2.7) 2.8 (2.7–3) 3.1 (2.9–3.3) 3.5 (3.3–3.8)
MUFA, en% 8.7 (±1.7) 10.3 (±1.5) 11.2 (±1.5) 11.9 (±1.5) 12.8 (±1.7)
PUFA, en% 5.2 (±1.6) 5.6 (±1.5) 5.6 (±1.4) 5.6 (±1.3) 5.2 (±1.2)
Carbohydrates, en% 47.9 (±7.7) 44.7 (±6.1) 43.3 (±5.4) 42.1 (±5) 40.4 (±4.6)
Protein, en% 16.2 (±2.6) 16.5 (±2.5) 16.5 (±2.4) 16.6 (±2.3) 16.7 (±2.3)
Plant protein, en% 5.2 (±1.1) 4.7 (±0.8) 4.5 (±0.8) 4.3 (±0.7) 4.1 (±0.8)

Cholesterol, mg 351 (±156) 417 (±166) 450 (±174) 482 (±189) 514 (±214)
Fibre, g 23 (±8) 22 (±7) 21 (±7) 21 (±7) 19 (±6)

All values are means (±SD) or median (quartile 1–quartile 4), unless indicated otherwise.
a Natural or chirurgical menopause.
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3.2.1. EPIC-Norfolk
After multivariable adjustment for lifestyle and dietary factors, a

higher intake of the sum of C4:0–C10:0 (Q5 0.85, 95%CI 0.63, 1.14),
C14:0 (Q5 0.78, 95%CI 0.55, 1.09), the sum of C15:0 and C17:0 (Q5
0.78, 95%CI 0.58, 1.06) and C18:0 (Q5 0.79, 95%CI 0.56, 1.13) were
weakly associated with lower MI risk, but none of these associations
were significant (Table 3). Further adjusting for hypercholesterol-
emia and menopausal status in model 3 did not affect associations
(Table 3). Restricting follow-up to the first eight years strengthened
the associations for the sum of C15:0 and C17:0 (Q5 0.57, 95% 0.34,
0.97), but otherwise did not change results. Excluding the first two
years of follow-up, excluding lipid lowering drug users, adjusting
for TC/HDL ratio (Supplemental Table 2), or adjusting for baseline
diabetes (data not shown), did not change the conclusions. No
evidence of a non-linear association between C4:0–C10:0 or C12:0–
C18:0 and MI was found (Supplemental Figs. 2 and 3). There
were no interactions for the intakes of C4:0–C10:0 and C12–C18:0
with sex, age, smoking, or BMI, whereas interaction by physical
activity was suggested (p = 0.01) for intake of C12:0–C18:0,
although nomeaningful differences were found in stratified analyses
(Supplemental Table 3).

In isocaloric substitution analyses (Table 4 and Supplemental
Table 4 – latter shows median intakes per SFA -), no statistically
significant associations were found with MI risk. Additional adjustment
for hypercholesterolemia and menopausal status did not change the
results of the substitution analyses (data now shown).
Please cite this article as: J. Praagman, et al., Consumption of individual sa
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Intakes of SFA from dairy, meat, cakes and cookies, cheese, soft fats
or hard fats were not associated with MI risk (Supplemental Table 5).

3.2.2. EPIC-Denmark
The multivariable adjusted HRs for the association of C4:0–C10:0

withMI risk in EPIC-Denmark, suggested an inverse association in espe-
cially quintile 3 and 4when compared to quintile 1 (Q3 0.87, 95%CI 0.75,
1.00; Q4 0.81, 95% CI 0.69, 0.94) (Table 3). This non-linear association
persisted (p for non-linearity 0.04) after excluding the lowest and
highest intake percentile of C4:0–C10:0 intake (Supplemental Fig. 2).
Other individual SFAs that associated with a lower risk of MI incidence
were C12:0 (Q5 0.80, 95%CI 0.66, 0.96), C14:0 (Q5 0.80, 95% CI 0.66,
0.96), and the sum of C12:0 and C14:0 (Table 3). No evidence for a
non-linear relationship between intake of the sum of C12:0 to C18:0
and MI incidence was found (Supplemental Fig. 3). The interaction
term for physical activity was borderline significant (p = 0.05) for the
analysis of C12:0 to C18:0, but stratified analyses suggested similar
associations across physical activity groups (Supplemental Table 3).
We did not observe evidence for interaction by sex, age, smoking, or
BMI for C12:0 to C18:0, nor for any interaction in the analysis of C4:0
to C10:0. Adjusting for possible intermediates in model 3 did not alter
conclusions (Table 3), nor did restricting follow-up to the first eight
years, excluding the first two years of follow-up (Supplemental
Table 2), or adjusting for baseline diabetes (data not shown).

Isocaloric substitution modelling of the sum of C12:0 to C14:0
(median intake 1.8 en%/day), C16:0 (7.4 en%/day), C18:0 (3.2 en%/day)
turated fatty acids and the risk of myocardial infarction in a UK and a
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Table 3
Hazard ratios (95%CI) for the associations between individual SFAs (in quintiles) and MI incidence risk.a

Q1 Q2 Q3 Q4 Q5 P for trend P for non-linearity

HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)

Sum of C4:0–C10:0
EPIC-Norfolk

Median intake (IQR) 0.3 (0.2–0.4) 0.5 (0.5–0.6) 0.7 (0.7–0.8) 1.0 (0.9–1.1) 1.6 (1.4–2.0)
Cases/subjects (n) 235/4410 247/4410 248/4410 221/4410 253/4410
Model 1 Ref 1.00 (0.84, 1.20) 1.00 (0.84, 1.20) 0.85 (0.71, 1.03) 0.90 (0.75, 1.07) 0.08 0.21
Model 2 Ref 0.99 (0.82, 1.19) 0.99 (0.81, 1.20) 0.83 (0.67, 1.04) 0.85 (0.63, 1.14) 0.15 0.25
Model 3 Ref 1.00 (0.83, 1.20) 0.99 (0.82, 1.20) 0.84 (0.67, 1.05) 0.86 (0.64, 1.16) 0.18 0.26

EPIC-Denmark
Median intake (IQR) 0.60 (0.47–0.71) 0.95 (0.88–1.02) 1.23 (1.16–1.30) 1.54 (1.45–1.64) 2.05 (1.87–2.33)
Cases/subjects (n) 491/10675 438/10675 423/10675 417/10675 491/10675
Model 1 Ref 0.94 (0.82, 1.06) 0.92 (0.81, 1.05) 0.88 (0.77, 1.01) 1.02 (0.90, 1.16) 0.56 0.06
Model 2 Ref 0.90 (0.79, 1.03) 0.87 (0.75, 1.00)⁎⁎ 0.81 (0.69, 0.94)⁎⁎ 0.90 (0.76, 1.06) 0.40 0.04⁎⁎

Model 3 Ref 0.90 (0.79, 1.03) 0.87 (0.75, 1.00)⁎⁎ 0.81 (0.70, 0.94)⁎⁎ 0.90 (0.76, 1.06) 0.42 0.09

C12:0
EPIC-Norfolk

Median intake (IQR) 0.3 (0.2–0.3) 0.4 (0.4–0.4) 0.5 (0.4–0.5) 0.6 (0.6–0.6) 0.8 (0.7–1.0)
Cases/subjects (n) 210/4410 210/4410 256/4410 268/4410 260/4410
Model 1 Ref 0.96 (0.79, 1.16) 1.11 (0.92, 1.33) 1.04 (0.86, 1.25) 0.96 (0.80, 1.16) 0.79 0.17
Model 2 Ref 0.96 (0.79, 1.17) 1.11 (0.91, 1.36) 1.05 (0.85, 1.30) 1.01 (0.79, 1.29) 0.82 0.25
Model 3 Ref 0.96 (0.79, 1.17) 1.11 (0.91, 1.36) 1.05 (0.85, 1.30) 0.99 (0.77, 1.28) 0.88 0.23

EPIC-Denmark
Median intake (IQR) 0.22 (0.18–0.25) 0.31 (0.29–0.33) 0.38 (0.36–0.40) 0.46 (0.44–0.48) 0.57 (0.53–0.63)
Cases/subjects (n) 473/10675 427/10675 446/10675 479/10675 435/10675
Model 1 Ref 0.94 (0.82, 1.07) 0.97 (0.85, 1.10) 1.03 (0.91, 1.17) 0.96 (0.84, 1.10) 0.97 0.51
Model 2 Ref 0.89 (0.78, 1.02) 0.89 (0.77, 1.03) 0.91 (0.78, 1.07) 0.80 (0.66, 0.96)⁎⁎ 0.05 0.53
Model 3 Ref 0.89 (0.78, 1.02) 0.89 (0.77, 1.03) 0.91 (0.78, 1.07) 0.79 (0.66, 0.96)⁎⁎ 0.05 0.61

C14:0
EPIC-Norfolk

Median intake (IQR) 0.8 (0.7–0.9) 1.1 (1.0–1.2) 1.3 (1.3–1.4) 1.6 (1.6–1.8) 2.2 (2.0–2.5)
Cases/subjects (n) 228/4410 236/4410 238/4410 237/4410 265/4410
Model 1 Ref 0.93 (0.77, 1.12) 0.92 (0.77, 1.11) 0.86 (0.71, 1.03) 0.86 (0.72, 1.04) 0.10 0.79
Model 2 Ref 0.90 (0.74, 1.09) 0.88 (0.71, 1.09) 0.80 (0.62, 1.03) 0.78 (0.55, 1.09) 0.16 0.75
Model 3 Ref 0.91 (0.75, 1.10) 0.88 (0.71, 1.10) 0.80 (0.62, 1.03) 0.78 (0.56, 1.11) 0.16 0.75

EPIC-Denmark
Median intake (IQR) 0.93 (0.81–1.01) 1.20 (1.14–1.25) 1.40 (1.35–1.45) 1.62 (1.56–1.69) 1.95 (1.84–2.12)
Cases/subjects (n) 436/10675 459/10675 430/10675 443/10675 492/10675
Model 1 Ref 1.03 (0.91, 1.18) 0.95 (0.83, 1.09) 0.96 (0.84, 1.10) 1.05 (0.92, 1.20) 0.74 0.63
Model 2 Ref 0.89 (0.78, 1.02) 0.89 (0.77, 1.03) 0.91 (0.78, 1.07) 0.80 (0.66, 0.96)⁎⁎ 0.03⁎⁎ 0.53
Model 3 Ref 0.96 (0.83, 1.10) 0.84 (0.72, 0.99)⁎⁎ 0.81 (0.68, 0.96)⁎⁎ 0.81 (0.65, 1.01) 0.02⁎⁎ 0.63

Sum of C12:0 & C14:0
EPIC-Norfolk

Median intake (IQR) 1.1 (0.9–1.2) 1.5 (1.4–1.6) 1.8 (1.8–1.9) 2.2 (2.1–2.4) 3.0 (2.7–3.4)
Cases/subjects (n) 215/4410 232/4410 257/4410 246/4410 254/4410
Model 1 Ref 0.97 (0.80, 1.17) 1.01 (0.84, 1.21) 0.92 (0.76, 1.11) 0.87 (0.72, 1.05) 0.09 0.78
Model 2 Ref 0.94 (0.78, 1.15) 0.97 (0.79, 1.20) 0.87 (0.69, 1.10) 0.81 (0.59, 1.09) 0.14 0.77
Model 3 Ref 0.94 (0.78, 1.15) 0.97 (0.79, 1.19) 0.87 (0.69, 1.09) 0.80 (0.59, 1.09) 0.12 0.75

EPIC-Denmark
Median intake (IQR) 1.2 (1.0–1.3) 1.4 (1.5–1.6) 1.8 (1.7–1.9) 2.1 (2.0–2.2) 2.5 (2.4–2.8)
Cases/subjects (n) 447/10675 461/10675 420/10675 457/10675 477/10675
Model 1 Ref 1.02 (0.90, 1.17) 0.92 (0.81, 1.06) 0.98 (0.86, 1.12) 1.03 (0.90, 1.17) 0.95 0.63
Model 2 Ref 0.95 (0.83, 1.09) 0.83 (0.71, 0.96)⁎⁎ 0.83 (0.70, 0.98)⁎⁎ 0.80 (0.66, 0.99)⁎⁎ 0.01⁎⁎ 0.48
Model 3 Ref 0.96 (0.83, 1.10) 0.84 (0.72, 0.99)⁎⁎ 0.81 (0.68, 0.96)⁎⁎ 0.81 (0.65, 1.01) 0.01⁎⁎ 0.62

Sum of C15:0 & C17:0
EPIC-Norfolk

Median intake (IQR) 0.2 (0.1–0.2) 0.2 (0.2–0.3) 0.3 (0.3–0.3) 0.4 (0.4–0.4) 0.5 (0.5–0.6)
Cases/subjects (n) 228/4410 220/4410 245/4410 241/4410 270/4410
Model 1 Ref 0.92 (0.76, 1.10) 0.91 (0.76, 1.09) 0.85 (0.71, 1.02) 0.85 (0.71, 1.02) 0.08 0.90
Model 2 Ref 0.89 (0.73, 1.08) 0.88 (0.71, 1.08) 0.80 (0.63, 1.02) 0.78 (0.58, 1.06) 0.19 0.87
Model 3 Ref 0.90 (0.74, 1.09) 0.88 (0.71, 1.08) 0.80 (0.63, 1.02) 0.78 (0.57, 1.07) 0.16 0.87

C15:0
EPIC-Denmark

Median intake (IQR) 0.06 (0.05–0.06) 0.08 (0.08–0.09) 0.10 (0.10–0.11) 0.12 (0.12–0.13) 0.16 (0.15–0.18)
Cases/subjects (n) 485/10675 449/10675 437/10675 433/10675 456/10675
Model 1 Ref 0.99 (0.87, 1.12) 0.97 (0.86, 1.11) 0.96 (0.85, 1.10) 1.02 (0.90, 1.16) 0.76 0.45
Model 2 Ref 0.94 (0.83, 1.08) 0.91 (0.78, 1.05) 0.86 (0.73, 1.01) 0.85 (0.70, 1.04) 0.11 0.41
Model 3 Ref 0.94 (0.82, 1.08) 0.91 (0.78, 1.05) 0.86 (0.73, 1.01) 0.85 (0.70, 1.04) 0.08 0.59

(continued on next page)
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Table 3 (continued)

Q1 Q2 Q3 Q4 Q5 P for trend P for non-linearity

HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)

C16:0
EPIC-Norfolk

Median intake (IQR) 5.0 (4.4–5.3) 6.1 (5.9–6.3) 7.0 (6.7–7.1) 7.7 (7.5–8.0) 9.1 (8.6–9.8)
Cases/subjects (n) 211/4410 211/4410 241/4410 253/4410 258/4410
Model 1 Ref 1.01 (0.84, 1.22) 1.01 (0.84, 1.22) 0.93 (0.77, 1.13) 0.94 (0.78, 1.14) 0.36 0.49
Model 2 Ref 0.99 (0.80, 1.21) 0.98 (0.77, 1.24) 0.90 (0.68, 1.18) 0.91 (0.63, 1.31) 0.53 0.67
Model 3 Ref 0.99 (0.80, 1.22) 0.98 (0.77, 1.24) 0.90 (0.68, 1.18) 0.91 (0.63, 1.31) 0.50 0.58

EPIC-Denmark
Median intake (IQR) 5.6 (5.1–5.9) 6.7 (6.4–6.8) 7.4 (7.2–7.5) 8.0 (7.9–8.2) 9.0 (8.7–9.4)
Cases/subjects (n) 347/10675 395/10675 419/10675 479/10675 620/10675
Model 1 Ref 1.02 (0.88, 1.18) 0.98 (0.85, 1.14) 1.03 (0.89, 1.18) 1.13 (0.99, 1.30) 0.06 0.23
Model 2 Ref 1.03 (0.88, 1.20) 0.99 (0.83, 1.18) 1.04 (0.86, 1.26) 1.15 (0.91, 1.45) 0.23 0.25
Model 3 Ref 1.03 (0.88, 1.21) 0.99 (0.83, 1.19) 1.04 (0.86, 1.26) 1.15 (0.91, 1.46) 0.14 0.33

C18:0
EPIC-Norfolk

Median intake (IQR) 2.0 (1.7–2.1) 2.5 (2.4–2.6) 2.8 (2.7–2.9) 3.2 (3.1–3.3) 3.8 (3.6–4.2)
Cases/subjects (n) 204/4410 251/4410 254/4410 250/4410 245/4410
Model 1 Ref 1.08 (0.89, 1.30) 1.04 (0.87, 1.26) 0.99 (0.82, 1.19) 0.90 (0.74, 1.10) 0.14 0.31
Model 2 Ref 1.03 (0.84, 1.26) 0.97 (0.77, 1.22) 0.90 (0.69, 1.17) 0.79 (0.56, 1.13) 0.13 0.42
Model 3 Ref 1.03 (0.84, 1.27) 0.97 (0.77, 1.22) 0.89 (0.68, 1.17) 0.78 (0.55, 1.12) 0.13 0.35

EPIC-Denmark
Median intake (IQR) 2.3 (2.1–2.5) 2.8 (2.7–2.9) 3.2 (3.1–3.3) 3.5 (3.4–3.6) 4.0 (3.9–4.3)
Cases/subjects (n) 345/10675 394/10675 458/10675 476/10675 587/10675
Model 1 Ref 1.01 (0.87, 1.17) 1.07 (0.93, 1.23) 1.02 (0.89, 1.18) 1.14 (0.99, 1.31) 0.06 0.56
Model 2 Ref 1.00 (0.86, 1.17) 1.05 (0.89, 1.25) 1.00 (0.83, 1.21) 1.11 (0.90, 1.37) 0.28 0.57
Model 3 Ref 1.00 (0.86, 1.18) 1.05 (0.89, 1.25) 1.00 (0.83, 1.21) 1.11 (0.90, 1.38) 0.19 0.65

Sum of C12:0–C18:0
EPIC-Norfolk

Median intake (IQR) 8.4 (7.4–9.1) 10.5 (10.1–10.8) 11.9 (11.6–12.3) 13.5 (13.1–14.0) 16.2 (15.2–17.6)
Cases/subjects (n) 209/4410 250/4410 241/4410 247/4410 257/4410
Model 1 Ref 1.05 (0.87, 1.26) 0.98 (0.81, 1.18) 0.94 (0.78, 1.14) 0.91 (0.75, 1.10) 0.16 0.22
Model 2 Ref 0.99 (0.81, 1.21) 0.90 (0.72, 1.13) 0.85 (0.66, 1.09) 0.78 (0.56, 1.09) 0.10 0.34
Model 3 Ref 0.99 (0.81, 1.21) 0.89 (0.71, 1.12) 0.83 (0.64, 1.08) 0.76 (0.54, 1.08) 0.08 0.27

EPIC-Denmark
Median intake (IQR) 9.3 (8.4–9.9) 10.5 (11.2–11.6) 12.5 (12.2–12.8) 13.7 (13.4–14.0) 15.4 (14.9–16.2)
Cases/subjects (n) 361/10675 414/10675 422/10675 491/10675 572/10675
Model 1 Ref 1.03 (0.89, 1.19) 0.98 (0.85, 1.12) 1.05 (0.92, 1.21) 1.08 (0.94, 1.23) 0.26 0.27
Model 2 Ref 1.03 (0.89, 1.19) 0.98 (0.84, 1.14) 1.06 (0.91, 1.23) 1.08 (0.91, 1.28) 0.38 0.24
Model 3 Ref 1.03 (0.89, 1.20) 0.98 (0.84, 1.14) 1.06 (0.91, 1.24) 1.08 (0.91, 1.29) 0.17 0.32

a Model 1 adjusts for age, sex, total energy intake, BMI, education level, physical activity level, smoking status, hypertension, alcohol intake and use of post-menopausal hormones and in
EPIC-Norfolk for aspirin use, multivitamin use, and family history ofMI;Model 2 additionally adjusts for the sum of the other SFAs, intakes of protein, PUFA, and in EPIC-Norfolk for trans-
fatty acids; Model 3 additionally adjusts for hypercholesterolemia andmenopausal status. P for trend was calculated by linearly including quartile specific median FA intake in themodel.
P for non-linearity was calculated by performing a likelihood ratio test comparing the model with only the linear term to the model that included cubic splines.
⁎⁎ Statistically significant at p b 0.05 level.
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and the sum of C12:0 to C18:0 (12.5 en%/day), byMUFA, PUFA, carbohy-
drates or plant protein, suggested that substituting any of these SFAs
by plant protein was inversely associated with MI incidence, although
this was not statistically significant for the sum of C12:0 and C14:0
(Table 4, Supplemental Table 4). Additional adjustment for hypercho-
lesterolemia and menopausal status did not change the results of the
substitution analyses (data now shown).

A higher intake of SFA from meat was associated with a higher risk
of MI incidence (HR per 1 en% 1.08, 95%CI 1.04, 1.12; Supplemental
Table 5).
3.2.3. Pooled results
We pooled results from the main analysis (model 2) between EPIC-

Norfolk and EPIC-Denmark. An inverse association was observed for
C14:0 (Q5 0.81, 95%CI 0.67, 0.97), the sum of C12:0 and C14:0, and
the sum of C15:0 and C:17:0 (Q5 0.83, 95%CI 0.70–0.98) with MI inci-
dence risk. For the intake of C4:0 to C10:0, pooled analysis yielded a
HR of 0.82 (95%CI 0.72, 0.93) in quintile 4, and a HR of 0.88 (95%CI
0.76, 1.03) in quintile 5. Substantial heterogeneity (in terms of I2) was
observed when pooling results for C12:0, C18:0 and the sum of C12:0
to C18:0 (Supplemental Table 6).
Please cite this article as: J. Praagman, et al., Consumption of individual sa
Danish cohort, Int J Cardiol (2018), https://doi.org/10.1016/j.ijcard.2018.1
4. Discussion

In the present study of two separate cohorts from the UK and
Denmark, a higher consumption of C12:0 and C14:0 associated with
a lower MI risk in Denmark. Intakes in the third and fourth quintile
of C4:0–C10:0 also associated to lower MI risk in Denmark. Other indi-
vidual SFAs were not associated with MI. In substitution analyses,
substituting C16:0 and C18:0 with plant protein associated with lower
risk of MI in Denmark. No associations were found in the UK cohort.

Differences in results between Denmark and the UK may have
occurred due to differences in underlying food sources and dietary
patterns (e.g. intake of SFA from total dairy and meat was higher in
Denmark compared to the UK) or lifestyles (e.g. the Danish cohort
smokedmore often andwasmore physically active than theUK cohort),
or differences in confounder definitions and availability (e.g. trans fat
intakewas only available for theUK cohort). Also, differences in samples
sizemay explainwhywe only found statistically significant associations
in EPIC-Denmark (n = 53,375), and not in EPIC-Norfolk (n = 22,050).
By pooling results of the two studies we intended to increase our ability
to find associations, and thereby further clarify which individual SFAs
associate with MI risk. However, these analyses should be interpreted
with caution because of the above described heterogeneity, which was
turated fatty acids and the risk of myocardial infarction in a UK and a
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Table 4
Hazard ratios (95%CI) for the associations between the substitution of individual SFAs (in en%/day) for (starch) carbohydrates, PUFA, MUFA and plant protein, and MI incidence risk in
EPIC-Norfolk and EPIC-Denmark.a

EPIC-Norfolk HR (CI) per 1 en% EPIC-Denmark HR (CI) per 1 en%

Replacing sum C12:0 & 14:0 with Replacing sum C12:0 & 14:0 with
cisMUFA 0.95 (0.81, 1.11) MUFA 1.08 (0.94, 1.23)
cisPUFA 0.99 (0.84, 1.16) PUFA 1.08 (0.95, 1.24)
Starch carbohydrates 0.98 (0.83, 1.15) Carbohydrates 1.08 (0.94, 1.24)
Plant protein 0.88 (0.73, 1.05) Plant protein 0.94 (0.81, 1.09)

Replacing C16:0 with Replacing C16:0 with
cisMUFA 0.99 (0.87, 1.13) MUFA 0.99 (0.90, 1.08)
cisPUFA 1.04 (0.91, 1.18) PUFA 0.99 (0.89, 1.11)
Starch carbohydrates 1.03 (0.92, 1.15) Carbohydrates 0.99 (0.91, 1.08)
Plant protein 0.93 (0.82, 1.04) Plant protein 0.86 (0.78, 0.95)⁎⁎

Replacing C18:0 with Replacing C18:0 with
cisMUFA 1.15 (0.93, 1.43) MUFA 1.00 (0.91, 1.11)
cisPUFA 1.20 (0.98, 1.47) PUFA 1.01 (0.90, 1.13)
Starch carbohydrates 1.19 (0.97, 1.45) Carbohydrates 1.01 (0.92, 1.11)
Plant protein 1.07 (0.87, 1.31) Plant protein 0.87 (0.79, 0.96)⁎⁎

Replacing sum C12:0–C18:0 with Replacing sum C12:0–C18:0 with
cisMUFA 1.02 (0.94, 1.10) MUFA 1.01 (0.96, 1.06)
cisPUFA 1.07 (0.99, 1.15) PUFA 1.02 (0.95, 1.09)
Starch carbohydrates 1.05 (0.99, 1.12) Carbohydrates 1.01 (0.97, 1.05)
Plant protein 0.94 (0.87, 1.02) Plant protein 0.87 (0.82, 0.94)⁎⁎

a Hazard ratios are adjusted for age, sex, total energy intake, BMI, education level, physical activity level, smoking status, hypertension, alcohol intake and use of post-menopausal
hormones, the sum of the other SFAs, energy from MUFA, PUFA, protein (plant and other sources), and carbohydrates (UK; starch and other sources), and in EPIC-Norfolk for aspirin
use, multivitamin use, family history of MI, and energy from trans-fatty acids.
⁎⁎ Statistically significant at p b 0.05 level.
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also reflected by the high level of heterogeneity (I2 values) for some of
the pooled fatty acid analyses (e.g. C12:0, C18:0).

Four other observational cohort studies, two from the Netherlands
and two from the US, investigated the association between individual
SFAs and CHD risk [10–13], with divergent and sometimes conflicting
results. When comparing our findings to those studies, our findings
seem to be most in line with the Dutch EPIC-NL study, such as the
inverse associations for C14:0 and C15:0 plus C17:0 (latter in pooled
analyses only) [11]. In contrast, C15:0 and C17:0 were not associated
with CHD risk [10,12,13] in the other studies, and C14:0 was either
not associated [10,12] or adversely associated with CHD risk [13]. The
finding that C4:0–10:0 associated with lower MI risk in quintiles 3 and
4 compared to 1 is to some extent also consistent with the EPIC-NL
study that found a linear inverse association for C4:0–10:0 [11],
whereas the other cohorts reported no associations [10,12,13]. The
lack of associations between intakes of C16:0, and C18:0 and MI risk
in our present study is in line with the EPIC-NL cohort as well, whereas
C16:0 associated with higher CHD risk in the other three cohorts
[10,12,13], as well as C18:0 in the US cohorts [10,13]. The inverse
association in our present study for C12:0 intake is not consistent with
results of all previous studies. The explanation for these divergent find-
ings between the cohort studies is not straightforward, and we discuss
possibilities below.

First, differences in food sources between European and US popula-
tions may (partly) explain differences in results. More specifically, the
study populations differ with respect to the consumption of dairy prod-
ucts and meat, the two major sources of SFA. In the US, the major food
sources of SFA are meat and mixed meals [43]. These food groups
make an important contribution to the dietary intakes of C16:0 and
C18:0, which were associated with an increased CHD risk in the US
cohorts [10,13], but not in the European EPIC cohorts [11,12]. On the
other hand, dairy products are a major SFA food source in the UK,
Denmark, and the Netherlands [44,45]. C4:0–C10:0, C12:0, C14:0,
C15:0, and C17:0, which in these European cohorts were often inversely
or neutrally associated with CHD, all largely come from dairy food
sources. In a previous cohort study, SFA from dairy foods and meat
were associated with respectively a lower and a higher CHD risk
[46]. In the present work we also showed that SFA from meat (in
Denmark) associated with higher MI risk, whereas SFA from dairy did
not associate with MI risk. These findings support that differences in
Please cite this article as: J. Praagman, et al., Consumption of individual sa
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underlying food sources could explain differences in results of SFAs on
MI risk between European an US populations.

Second, we used baseline measures of SFA intake only, whereas the
US cohorts used repeatedmeasures of diet. It is conceivable that dietary
intakes change over time [13], and that repeated dietary measures
probably yield a more accurate measure of SFA intake during follow
up, which might be another explanation for the divergent findings.
However, sensitivity analysis with a shortened follow-up time in our
study did not yield materially different results, compared to the original
analyses.

Third, differences in adjustment of dietary factors could impact the
interpretation of the results. For example in our main analyses, we
adjusted for intakes of energy, remaining SFAs, PUFAs, proteins and
trans fatty acids (latter UK only), whereas the most recent US study of
Zong et al. adjusted for energy intake only [13]. In additional substitu-
tion analyses that did take these macronutrients into account, findings
from the present study and of Zong et al. were more comparable,
although some differences remain. In the present study, we found that
substituting C16:0 and C18:0, and C12:0–C18:0 (which to a large extent
are C16:0 and C18:0)with plant protein associatedwith lower risk ofMI
in Denmark, supporting previous reports that defining the substituting
macronutrient is of importance in the relationship of SFAs with MI. In
line with this, Zong et al. found inverse associations of replacing C16:0
and C12:0–C18:0 with plant proteins, but not for C18:0. [13]. Zong
et al. [13] also found inverse associations for substituting C16:0 and
C12:0–C18:0 with PUFA and whole grain carbohydrates, whereas we
did not. This may be due to lack of our ability to disentangle between
types of PUFAs and because we investigated total or starch carbohy-
drates instead of whole grain carbohydrates in our study.

Regarding the non-linear association of C4:0–C10:0 with MI we
found, we should be careful with interpreting these results as non-
linear because the intake range was very low, with average intakes
around 1.5 energy% associating to lower MI risk and of around 2.0
energy% not. There is no (biological) explanation for why intakes of
C4:0–C10:0 of slightly higher than 1.5 energy% are less protective for
CHD, and these associations would have to be investigated in studies
with higher intakes of those SFAs to further conclude about how higher
intakes of C4:0–C10:0 associate with MI risk.

Taken together the evidence from our and the four previously per-
formed observational cohort studies [10–13], in general, there appears
turated fatty acids and the risk of myocardial infarction in a UK and a
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to be an inverse or neutral association between MI or CHD risk and
the shorter chain and odd chain SFAs (C4:0–C10:0, C12:0, C14:0,
C15:0, and C17:0) and a harmful or neutral association of the longer-
chain SFAs (C16:0 and C18:0) as evident from substitution analyses on
replacement of C16:0 and C18:0 with plant protein. These observations
could reflect a difference in the underlying dietary pattern, e.g. the
difference in consumption of dairy versus meat, but could also reflect
actual differences of SFAs effects on CHD risk markers. Because of the
high correlations between the SFAs, observational cohort studies alone
will not suffice in answering the question whether individual SFAs
have different associations with MI or CHD. Also in our study, high cor-
relations between several SFA subtypes exist, what made it unclear
whether the observed associations in our study pertain to all these
SFAs, or represent the association of one of them. At present, controlled
trials have been conducted for C12:0 and C14:0, but not for C4:0–C10:0
or C15:0 and C17:0. C12 and C14:0 were shown to increase serum LDL-
cholesterol as compared to carbohydrates [5], but had little (C14:0) or
beneficial (C12:0) effects on the ratio of total: HDL cholesterol, which
is considered to be a stronger CHD risk predictor than LDL-cholesterol
levels alone [47]. This could explain why in our study and previous
studies [10–12], C12:0 and C14:0 were not harmfully associated with
risk of MI or CHD.

Strengths of this study are the large sample sizes of the included
cohorts, with a long follow-up time and a large number ofMI endpoints.
Also, the extensive assessment of population characteristics at baseline
allowed us to adjust the observed associations for many potential con-
founders. Furthermore, because both cohorts are part of the interna-
tional EPIC cohort, they have a similar recruitment period (between
1993 and 1997). Limitations of this study are that we had no or limited
data on intake of C17:0 and trans fatty acids for the Danish cohort, and
therefore did not include these in the analyses for the Danish cohort,
and cannot exclude the possibility of residual confounding.

In conclusion, our study shows inverse associations of C12:0 and
C14:0, the third and fourth quintiles of intake of C4:0–C10:0, and
substituting C16:0 and C18:0 with plant proteins with risk of MI.
Taking into account the results of the present and previous observa-
tional cohort studies, we conclude that the association between SFA
and MI or CHD appears to differ for short- to medium-chain SFAs
versus the long-chain SFAs. The short- to medium SFAs, as well as
the odd-chain SFAs with 15 and 17 carbons, appear to be inversely
associated or not associated to MI risk, whereas the longer-chain
SFAs C16:0 and C18:0 may be adversely or not associated to MI risk.
Whether this difference is caused by the SFAs as such, by the differ-
ences in underlying dietary pattern, or by residual confounding in
observational studies is unclear, and cannot be solved using observa-
tional evidence alone. Therefore, for further examination of the effects
of the short-to medium-chain SFAs on MI risk, evidence from inter-
vention studies is needed.
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