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Cubulating CAT(0) groups and Property (T) in
random groups

Calum James Ashcroft

This thesis considers two properties important to many areas of mathematics: those
of cubulation and Property (T). Cubulation played a central role in Agol’s proof of
the virtual Haken conjecture, while Property (T) has had an impact on areas such
as group theory, ergodic theory, and expander graphs. The aim is to cubulate some
examples of groups known in the literature, and prove that many ‘generic’ groups have
Property (T). Graphs will be central objects of study throughout this text, and so in
Chapter 2 we provide some definitions and note some results. In Chapter 3, we provide
a condition on the links of polygonal complexes that allows us to cubulate groups
acting properly discontinuously and cocompactly on such complexes. If the group is
hyperbolic then this action is also cocompact, hence by Agol’s Theorem the group is
virtually special (in the sense of Haglund–Wise); in particular it is linear over Z. We
consider some applications of this work. Firstly, we consider the groups classified by
[KV10] and [CKV12], which act simply transitively on CAT (0) triangular complexes
with the minimal generalized quadrangle as their links, proving that these groups are
virtually special. We further apply this theorem by considering generalized triangle
groups, in particular a subset of those considered by [CCKW20].

To analyse Property (T) in generic groups, we first need to understand the eigen-
values of some random graphs: this is the content of Chapter 4, in which we analyse
the eigenvalues of Erdös–Rényi random bipartite graphs. In particular, we consider p

satisfying m1p = �(log m2), and let G ≥ G(m1, m2, p). We show that with probability
tending to 1 as m1 tends to infinity: µ2(A(G)) Æ O(Ôm2p).

In Chapter 5 we study Property (T) in the �(n, k, d) model of random groups: as
k tends to infinity this gives the Gromov density model, introduced in [Gro93]. We
provide bounds for Property (T) in the k-angular model of random groups, i.e. the
�(n, k, d) model where k is fixed and n tends to infinity. We also prove that for d > 1/3,
a random group in the �(n, k, d) model has Property (T) with probability tending to 1
as k tends to infinity, strengthening the results of Øuk and Kotowski–Kotowski, who
consider only groups in the �(n, 3k, d) model.
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Chapter 1

Introduction

Gromov famously stated that group properties typically fall into two categories: flexibil-
ity properties and rigidity properties. Flexibility properties are those which guarantee
that a group has many di�erent attributes, whereas rigidity properties greatly restrict
the traits a group can possess. The notions of being cubulable, i.e. having a properly
discontinuous action on a CAT (0) cube complex, and of having Property (T) lie on
di�erent ends of this spectrum.

Indeed, being cubulable is an example of a ‘flexibility’ property. If a group is
cubulable, then it is a-(T)-menable (see e.g. [CMV04]), which is a strong negation of
having Property (T), and guarantees a proper continuous a�ne action on a real Hilbert
space. If we consider virtually special hyperbolic groups (a subclass of cubulable groups),
then these are, for example, large in the sense of Pride and residually finite; they are
even linear over Z and QCERF [HW08]. Famously, virtually special groups played a key
role in Agol’s proof of the virtual Haken conjecture [Ago13]: the fundamental group of
a closed hyperbolic 3-manifold is cubulable (with a cocompact action) [KM12, BW12],
and so by [Ago13] is virtually special.

Property (T), however, is an example of a ‘rigidity’ property: for a countable
discrete group it is, for instance, equivalent to every continuous a�ne isometric action
on a real Hilbert space having a fixed point, or the vanishing of H1(G, fi) for every
unitary representation fi. It is well known that many lattices in Lie groups and buildings
have Property (T); see e.g. [Kaû67]. Originally introduced by Kaûdan in 1967 [Kaû67],
Property (T) has become an extremely important property, not only with regards to
group theory, but also geometry, ergodic theory, and many other areas. Indeed, Kaûdan
used Property (T) to prove that lattices in many Lie groups are finitely generated
[Kaû67], and Margulis used Property (T) in SL(n,Z) to construct families of expander
graphs [Mar73] (see [GG81] for further analysis of the constants of expansion involved).



2 Introduction

Given a property of groups, P , there are two natural questions to ask.

Question 1. Given a specific group G, can one determine if G has P?

Note that typically the property P will be undecidable, and so we will be looking
for su�cient conditions to apply in practice.

Question 2. How common a property is P, i.e. does a generic group have P?

Both of these questions have some answers in regards to being cubulable or having
Property (T). Let us consider the first of the two questions. Given a group G acting
properly discontinuously and cocompactly on a simply connected triangular complex X,
if ⁄1(LkX(v)) > 1/2 for every vertex v of X, then G has Property (T) [Ø96, BS97] (c.f.
[Gar73], [Pan98], [Wan98], [Opp15]). If X is instead a CAT (0) polygonal complex, and
the edges of the links can be partitioned into ‘separated’ cutsets, then G is cubulable
[HW14, Example 4.3]. Øuk’s criterion has been fruitfully applied in many examples:
by contrast, Hruska–Wise’s criterion is rarely applicable, as we will discover.

The purpose of the first half of this thesis, contained in Chapter 3 and comprising
the content of [Ash20], is to improve Hruska–Wise’s criterion, and to provide a condition
on the links of polygonal complexes that is su�cient to ensure groups acting properly
discontinuously and cocompactly on such complexes act properly discontinuously on
a CAT (0) cube complex. These conditions recover [HW14, Example 4.3], and are
composed of two requirements: firstly, we must be able to find separated cut sets in
the links of our polygonal complexes, and then we must be able to assign weights to
these cutsets that satisfy the weight equations. The reader should consult Section 3.2.1
for the full and rigorous definitions.

Theorem A. Let G be a group acting properly discontinuously and cocompactly on a
simply connected CAT (0) polygonal complex X.

(i) If G\X is gluably weakly fi-separated, then G contains a virtually-free
codimension-1 subgroup (and therefore does not have Property (T )).

(ii) If G\X is gluably fi-separated, then G acts properly discontinuously on a
CAT (0) cube complex. If, in addition, G is hyperbolic, then this action is
cocompact. In particular, if G is hyperbolic, then it is virtually special, and so
linear over Z.

We apply this theorem to several examples in the literature. Firstly, we consider
the groups classified by [KV10] and [CKV12], which act simply transitively on CAT (0)
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triangular complexes with the minimal generalized quadrangle as their links, proving
that these groups are virtually special. There is little known about these groups: until
now they were not even known to be residually finite. We apply Theorem A to these
groups to deduce that they are virtually special.

Corollary B. Let X be a simply connected polygonal complex such that every face has
at least 3 sides, and the link of every vertex is isomorphic to the minimal generalized
quadrangle. If a group G acts properly discontinuously and cocompactly on X, then it
is virtually special; in particular it is linear over Z.

The full automorphism groups of Kac–Moody buildings of 2-spherical type of large
thickness have Property (T ) [DJ02, ER18]: neither [DJ02] nor [ER18] record whether
Property (T) fails at small thicknesses. Some of the groups considered in Corollary
B are cocompact lattices in a 2-spherical Kac–Moody building with small thickness
[CKV12]. Therefore, Corollary B complements [DJ02, ER18], providing an example of
the failure of Property (T ) in such buildings when the thickness is small: we believe
this to be the first such example.

Our final application of Theorem A is to the new census of 252 generalized triangle
groups introduced in [CCKW20]. Let Ck,2 be the cage graph on k edges, i.e. the
smallest k regular graph of girth 2. For finite-sheeted covering graphs �i # Ck,2, we
consider an associated pair of families of triangular complexes of groups Dj

0,k
(�1, �2, �3),

and Dj

k
(�1, �2, �3) (see Definitions 3.5.1 and 3.5.3). We remark that these complexes

of groups are not necessarily unique for given �1, �2, �3.
We consider explicitly the graphs used in [CCKW20]: we refer to them by their

Foster Census names (see [Fos88]). The only graph not in the Foster Census is G54, the
Gray graph, which is edge, but not vertex, transitive. We provide a way to cubulate
generalized triangle groups by considering the graph �1 alone in Theorem 3.5.5. Using
Theorem A and Theorem 3.5.5, we can deduce the following.

Corollary C. Let �i # Ck,2 be finite-sheeted covers, such that girth(�i) Ø 6 for each
i. Let G = fi1(Dj

0,k
(�1, �2, �3)) or G = fi1(Dj

k
(�1, �2, �3)) for some j.

(i) If �i œ {F24A, F26A, F48A} for each i, then G acts properly discontinuously
on a CAT (0) cube complex: if G is hyperbolic, then this action is also cocompact
and so G is virtually special.

(ii) If �1 œ {F40A, G54}, then G acts properly discontinuously on a CAT (0)
cube complex: if G is hyperbolic, then this action is also cocompact and so G is
virtually special.
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There are 252 groups considered in [CCKW20], of which they show that 168 do
not satisfy Property (T ). Our method recovers this result for 101 groups, and proves
that 30 new groups do not have Property (T ). We prove that each of the 131 groups
we consider has a proper action on a CAT (0) cube complex, and so, by e.g. [CMV04],
is a-(T)-menable. Furthermore, 125 of these groups are hyperbolic and have a proper
and cocompact action on a CAT (0) cube complex, and hence by [Ago13] are virtually
special.

If we instead consider the second of our two questions, then we must describe
what is meant by a ‘generic’ group: for the purpose of this thesis, a generic group
will be described by a choice from a family of models {�(n, k, d)}(n,k,d) depending on 3
parameters: n, the number of generators; k, the length of the relators; and d, the density
of the relators. Before we discuss the results of the second half of this thesis, perhaps
we should stop to ask: why study randomness, or the notion of a ‘generic’ object, in
mathematics? There are two obvious motivating reasons. Firstly, it allows one to
construct ‘exotic’ objects by proving they exist with non-zero probability, removing
the need to actually construct them. A classical example is the use of Baire-Category
theory to prove the existence of everywhere di�erentiable, nowhere monotone functions
[Wei76]. In the other direction, models of randomness provide both a ‘testing ground’
for conjectures, as well as give an idea of how common a given property is: for example,
almost all d-regular graphs on large sets of vertices are close to optimal expanders
[Fri08].

Gromov proposed two models of random groups in [Gro93] to study the notion of a
‘generic’ finitely presented group. There is some ambiguity in the literature between
the two models, and so we provide the full definitions here. Fix n Ø 2, k Ø 3, and
0 < d < 1 (remember that we call d the density). The (strict) (n, k, d) model is
obtained as follows. Let An = {a1, . . . , an}, and let Fn := F(An) be the free group
generated by An. Let C(n, k) be the set of cyclically reduced words of length k in Fn

(so that C(n, k) ¥ (2n ≠ 1)k). Uniformly randomly select a set R ™ C(n, k) of size
|R| = (2n ≠ 1)kd (we in fact take |R| = Â(2n ≠ 1)kd

Ê, but since we are dealing with
asymptotics this does not change any of the arguments), and let � := ÈAn | RÍ. We
call � a random group in the (strict) (n, k, d) model, and write � ≥ �(n, k, d). If we
keep n fixed and let k tend to infinity, then we obtain the Gromov density model, as
introduced in [Gro93], whereas if we fix k and let n tend to infinity we obtain the
k-angular model, as introduced in [ARD20]. The k-angular model was first studied
for k = 3 (the triangular model) by Øuk in [Ø03] and for k = 4 (the square model) by
Odrzygóüdü in [Odr16].
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The lax (n, k, d) model is obtained via the following procedure. Let C(n, k, f) be
the set of cyclically reduced words of length between k ≠f(k) and k +f(k) in Fn, where
f(k) = o(k). Uniformly randomly select a set R ™ C(n, k, f) of size |R| = (2n ≠ 1)kd,
and let � := ÈAn | RÍ. We call � a random group in the lax (n, k, d, f) model, and
write � ≥ �lax(n, k, d, f). We often drop reference to the function f and simply write
� ≥ �lax(n, k, d), as in many applications the choice of function has no e�ect on the
conclusions.

Random groups exhibit many interesting properties, depending on the density
chosen. All of the following statements hold asymptotically almost surely, i.e. with
probability tending to 1. Firstly, a random group in the density model at density
d < 1/2 is hyperbolic and torsion-free, while for d > 1/2 it is a quotient of Z2 [Gro93]
(c.f. [Oll04]). In fact, for d < 1/2 every reduced van Kampen diagram for the group
satisfies a linear isoperimetric inequality [Oll04]. This argument also transfers to the
k-angular model [ARD20]: see [Odr16] for the case of k = 4, as well as a generalisation
of the argument to a wider class of diagrams.

It is a seminal theorem of Øuk [Ø03] (c.f. [KK13]) that for d > 1/3 a random group
in the triangular model has Property (T) with probability tending to 1 (see [ALuS15]
for a further analysis of d æ 1/3), and furthermore, that with probability tending to 1
as k tends to infinity, a random group in the �(n, 3k, d) model has Property (T) for any
d > 1/3. For any choice of f = O(1), this immediately implies that a random group in
the lax (n, k, d, f) density model at density d > 1/3 has Property (T) [Ø03, KK13].

Groups in the density model are virtually special for d < 1/6 [OW11] and contain a
free codimension-1 subgroup for d < 5/24 [MP15]. As observed in [Odr19] this implies
that for any k Ø 3, a random group in the k-angular model at density d < 5/24 does
not have Property (T). Groups in the triangular model are free at densities less than
1/3 [ALuS15], groups in the square model are free at densities less than 1/4 [Odr16],
and groups in the k-angular model are free for d < 1/k [ARD20]. Furthermore, groups
in the square model are virtually special for d < 1/3 [Duo17, Odr18] and contain a
codimension-1 subgroup for d < 3/8 [Odr19]. Finally, groups in the hexagonal model
contain a codimension-1 subgroup for d < 1/3 and have Property (T) for d > 1/3
[Odr19]: in fact any group in the 3k-angular model has Property (T) for d > 1/3
[Mon21].

It is perhaps interesting to note that the above results display one of the most
fascinating behaviours of random groups: the sharp phase transition. Indeed, for
many properties P there is a density dP such that for d < dP a random group has
P with probability tending to 1, while for d > dP a random group does not have P
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with probability tending to 1. This is an example of a more general phenomenon: for
decreasing properties, i.e. ones preserved by removing relators, a threshold function
· exists. I.e. if (2n ≠ 1)kd = o(·), then a random group at density d has P, while if
(2n ≠ 1)kd = �(·), then a random group at density d does not have P. The proof of
this fact can be deduced similarly to the proof of the existence sharp phase transitions
for random graphs: see e.g. [FK16, Theorem 1.7].

The purpose of the second half of this thesis is to analyse Property (T) in random
groups: showing that Property (T) is ‘generic’ in many choices of models.

In order to do this, we take a detour in Chapter 4 to prove a result on the eigenvalues
of Erdös–Rényi random bipartite graphs (the below is not the full result, but we omit
some further technical results). This chapter is formed from [Ash21a].

Theorem D. Let m1 Ø 1, m2 = m2(m1) Ø m1, and p = p(m1) be such that
m1p = �(log m2). Then with probability tending to 1 as m1 tends to infinity:

µ2(A(G(m1, m2, p))) Æ O(Ôm2p), and max
i”=1,m1+m2

-----µi(G(m1, m2, p)) ≠ 1
----- = o(1).

We will apply this in Chapter 5 to study Property (T) in random groups, the
purpose of which is to prove the following two theorems, which originate in [Ash21b].

For k Ø 3, let dk := [k + (≠k mod 3)]/3k, i.e.

dk =

Y
____]

____[

1
3 if k = 0 mod 3,

k+2
3k

if k = 1 mod 3,

k+1
3k

if k = 2 mod 3.

Theorem E. Let k Ø 8, d > dk, and let �m ≥ �(m, k, d). Then

lim
mæŒ

P(�m has Property (T )) = 1.

We believe this to be the first result on Property (T) in any k-angular model for
any k not divisible by 3, and in fact provides bounds for Property (T) in the k-agonal
model for each k Ø 8. Indeed the result for k = 0 mod 3 follows by the work of
[Ø03, KK13] and [Mon21]. For k = 6 this bound agrees with the result of [Odr19].
Unfortunately, for k = 4 we have that dk = 1/2; for d > dk a random group in the
square model is trivial [Odr16], and so we obtain no new information. Therefore the
only cases we cannot deal with are k = 5, 7. Indeed it may be possible to extend the
above to simply require k Ø 3, but this would require further examination of double
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edges in certain graphs. The below figure demonstrates various density bounds for the
k-angular model (by trivial we mean a quotient of Zk).

k

dk

0.2

0.4

0.6

0.8

4 5 6 7 8 9 10 11

1/3

1/2

no (T)

trivial

v. special

codimension-1 subgroup

(T)? (T) (T)? (T) (T) (T) (T)

1Fig. 1.1 Density bounds for the k-angular model

Secondly, we can consider the density model. The following completes the analysis
of Property (T) in �(n, k, d) for d > 1/3.

Theorem F. Let n Ø 2, d > 1/3, and let �k ≥ �(n, k, d). Then:

lim
kæŒ

P(�k has Property (T )) = 1.

Note that this immediately implies for any infinite sequence, {ki}i, of increasing
positive integers, and �i ≥ �(n, ki, d), that limiæŒ P(�i has Property (T )), so that we
have strengthened the results of [Ø03, KK13].





Chapter 2

A graph theory primer

Graphs will be central objects of study throughout this text, and so in this chapter
we will provide some definitions and note some results: see, e.g. [Ser77], [Chu97], and
[Bol98] for further reading. The reader should observe that our notation for graphs
changes between Chapter 3 and Chapters 4 and 5. The reason for this is the following.
The first of these three chapters discusses discrete (often hyperbolic) finitely generated
groups: it is common in the literature to use G to denote such a group, and so to align
with the literature and those readers familiar with the area, we use the letter G for a
group and � for a graph. However, in graph theory it is more common to use G to
denote a graph. Furthermore, the study of Property (T) often considers lattices in Lie
groups, for which the letter � is used: therefore in Chapters 4 and 5 we will use the
letter � for a group and G for a graph.

2.1 Graphs and metric graphs
We will use Serre’s definition of graphs, as introduced in [Ser77].

Definition 2.1.1. A graph is a tuple G = (V, E, ÿ, ), where:

i) V is the set of vertices,

ii) E is the set of edges,

iii) ÿ : E æ V is the initial vertex map: we call ÿ(e) the origin or initial vertex of
e,

iv) : E æ E is a fixed point free involution.

We can define · : E æ V by ·(e) := ÿ(e), the terminus map.
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An orientation of G is a choice of partition E = E+
Û E≠ such that E+ = E≠: we

call an edge e positively (negatively) orientated if e œ E+ (e œ E≠).
We call a graph bipartite if there exists a partition V = V1 Û V2 such that for any

edge e, either ÿ(e) œ V1, ·(e) œ V2 or ·(e) œ V1, ÿ(e) œ V2.

Definition 2.1.2. Given two graphs G1 = (V1, E1, ÿ1, ), G1 = (V2, E2, ÿ2, ), we define
the union of G and GÕ as the graph G fi GÕ := (V fi V Õ, E Û E Õ, ÿ, ˜); we take the union
of vertices, and the disjoint union of edge sets (i.e. we assume that di�erent graphs
have disjoint edge sets). Here we define, for e œ Ei, ÿ(e) = ÿi(e), and

ẽ =

Y
_]

_[

e; e œ E1,

e; e œ E2.

Graphs, as set up, appear to be purely combinatorial objects. However, we may
apply topological methods to them, using the following.

Definition 2.1.3 (Realisation). Let G = (V, E, ÿ, ) be a graph. The realisation of G,
|G|, is defined as the topological space

|G| :=
A

V Û
h

eœE

e ◊ [0, 1]
BM

≥,

where ≥ is the equivalence relation generated by (e, 0) ≥ ÿ(e) and (e, t) ≥ (e, 1 ≠ t) for
e œ E, t œ [0, 1].

We can now define concepts like connectedness, etc of a graph as connectedness of
|G|. Of course G uniquely defines |G| and |G| nearly defines G (aside from vertices
of degree 2): therefore, we will typically refer to both G and |G| as the graph G. To
di�erentiate between the two, we will refer to an edge as oriented if we view it as an
edge in G, not as its image in |G|. Furthermore, we typically write e≠1 := e.

We can also define a metric graph as a pair (G, d) where G is a graph, and d is a
metric on |G|. Typically we will assign a graph G a metric by ‘assigning each edge
a length’: rigorously, for each e œ E+ we identify e ◊ [0, 1] as being isometric to the
interval [0, –e] for some –e > 0 and then give |G| the inherited path metric.

Importantly, we can also define maps of graphs. Firstly, for a vertex v of G we
define the link of v as the set LkG(v) = {e œ E : ÿ(e) = v}.

Definition 2.1.4. Let G = (V, E, ÿ, ) and GÕ = (V Õ, E Õ, ÿÕ, Õ) be graphs. A map from
G to GÕ is a function „ : V Û E æ V Õ

Û E Õ such that
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i) „(V ) ™ V Õ, „(E) ™ E Õ,

ii) for each e œ E: „(e)Õ = „(e) and ÿÕ(„(e)) = „(ÿ(e)).

For each vertex v, the map „ induces a set function „ú
v

: LkG(v) æ LkGÕ(„(v)): we call
the map an immersion if „ú

v
is injective for every v in V . A map „ is an isomorphism

if „ is a bijective immersion.

2.2 The eigenvalues of graphs
Let G = (V, E, ÿ, ) be a graph with vertex set V = {v1, . . . , vm}. It turns out that
many interesting properties of G can be deduced from certain matrices associated to
G. The adjacency matrix of G, A(G), is the m ◊ m matrix with A(G)i,j defined to be
the number of edges between vi and vj, i.e. A(G)i,j = |{e œ E : ÿ(e) = vi, · (e) = vj}|.
The degree matrix of G, D(G), is the diagonal matrix with entries D(G)i,i = deg(vi) :=
|{e œ E : ÿ(e) = vi}|. The normalised Laplacian of G, L(G), is defined by

L(G) = I ≠ D≠1/2AD≠1/2.

We note that L(G) is symmetric positive semi-definite, with eigenvalues

0 Æ ⁄0(L(G)) Æ ⁄1(L(G)) Æ . . . Æ ⁄m≠1(L(G)) Æ 2.

For i = 1, . . . , m, we define ⁄i(G) := ⁄i(L(G)). In particular, note that ⁄1(G) > 0 if
and only if the graph G is connected.

If M is a symmetric real m◊m matrix, then M has real eigenvalues, which we order
by ⁄0(M) Æ ⁄1(M) Æ . . . Æ ⁄m≠1(M). We define the reverse ordering of eigenvalues
µ1(M) Ø µ2(M) Ø . . . Ø µm(M), i.e. µi(M) = ⁄m≠i(M). Therefore we may also
define µi(G) = µi(L(G)). The reason we introduce this ordering is that ⁄i(G) has a
close connection to µi(A(G)).

Remark 2.2.1. Let M be a symmetric m ◊ m matrix. For i = 1, . . . , m :

µi(≠M) = ≠µm+1≠i(M).

This follows as {µi(≠M) : 1 Æ i Æ m} = {≠µi(M) : 1 Æ i Æ m}, and
µ1(M) Ø µ2(M) Ø . . . Ø µm(M), so that ≠µ1(M) Æ ≠µ2(M) Æ . . . Æ ≠µm(M).
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Remark 2.2.2. Let G be a graph. For i = 0, . . . , |V (G)| ≠ 1:

⁄i(G) = 1 ≠ µi+1(D(G)≠1/2A(G)D(G)≠1/2).

This follows as L(G) = I ≠ D(G)≠1/2A(G)D(G)≠1/2, so that

{⁄i(L(G)) : 0 Æ i Æ |V (G)|≠1} = {1≠µj(D(G)≠1/2A(G)D(G)≠1/2) : 1 Æ j Æ |V (G)|},

and

1 ≠ µ1(D(G)≠1/2A(G)D(G)≠1/2) Æ 1 ≠ µ2(D(G)≠1/2A(G)D(G)≠1/2) Æ . . .

. . . Æ 1 ≠ µ|V (G)|(D(G)≠1/2A(G)D(G)≠1/2).

We can always find an upper bound for |µi(A(G))|.

Lemma 2.2.3. Let G be a graph. Then maxi |µi(A(G))| Æ maxvœV (G) deg(v). If G is
bipartite, then

max
i

|µi(A(G))| Æ max
vœV1(G)
wœV2(G)

Ò
deg(v)deg(w).

Proof. The first result follows as ||A(G)||Œ = maxvœV (G) deg(v), and it is standard
that for any square matrix M , ||M ||Œ is an upper bound for the absolute values of the
eigenvalues of M . The second inequality follows from e.g. [HJ94, 3.7.2].

We have

A(G) =
Q

a 0 B

BT 0

R

b ,

for some matrix B. By definition, the set of eigenvalues of A are the set of singular
values of B, {‡j(B)}j. Therefore, maxi |⁄i(A(G))| = maxi |‡i(B)|. By [HJ94, 3.7.2],

max
i

|‡i(B)| Æ

Ò
||B||Œ||B||1 = max

vœV1(G)
wœV2(G)

Ò
deg(v)deg(w).

We note the following invaluable lemma, commonly known as Weyl’s inequality.

Lemma (Weyl’s inequality, [Wey12]). Let A and B be symmetric m ◊ m real matrices.
For i = 1, . . . , m: µi(A) + µm(B) Æ µi(A + B) Æ µi(A) + µ1(B).



Chapter 3

Link conditions for cubulation

3.1 Local properties for cubulating groups
Recently, a very fruitful route to understanding groups has been to find an action
on a CAT (0) cube complex. Indeed, an action without a global fixed point provides
an obstruction to Property (T ) [NR97], while a proper action is enough to guarantee
a-(T)-menability [CMV04]. Further properties, such as residual finiteness or linearity,
can be deduced if the cube complex is special [HW08]. Perhaps the most notable recent
use of cube complexes was in Agol’s proof of the Virtual Haken Conjecture [Ago13].

In this chapter we provide a condition on the links of polygonal complexes (including
those with triangular faces) that is su�cient to ensure a group acting properly discon-
tinuously and cocompactly on such a complex contains a virtually free codimension-1
subgroup. We provide stronger conditions that are su�cient to ensure a group acting
properly discontinuously and cocompactly on such a complex acts properly discontinu-
ously on a CAT (0) cube complex: in many applications (in particular for hyperbolic
groups) this action is also cocompact. We shall see that these conditions can be
practically checked in many examples, and can in fact be checked by computer search
if desired.

For a polygonal complex X and a vertex v we define the link of v, LkX(v) (or
simply Lk(v) when X is clear from context), as the graph whose vertices are the edges
of X incident at v, and two vertices e1 and e2 are connected by an edge f in Lk(v) if
the edges e1 and e2 in X are adjacent to a common face f . We can endow the link
graph with the angular metric: an edge f = (e1, e2) in Lk(v) has length –, where – is
the angle between e1 and e2 in the shared face f . We refer the reader to Section 3.2.1
for further definitions, such as that of a gluably fi-separated complex (this requires a
solution to a system of linear equations called the gluing equations). We note that in
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all of our applications, the gluing equations can be solved by considering only the links
of vertices of G\X.

It is well known that a group containing a codimension-1 subgroup cannot have
Property (T ) [NR98]. Furthermore, a hyperbolic group acting properly discontinuously
and cocompactly on a CAT (0) cube complex is virtually special [Ago13, Theorem 1.1]
(see Haglund-Wise [HW08] for a discussion of the notion of specialness): in particular
it is linear over Z and is residually finite.

Theorem A. Let G be a group acting properly discontinuously and cocompactly on a
simply connected CAT (0) polygonal complex X.

(i) If G\X is gluably weakly fi-separated, then G contains a virtually-free
codimension-1 subgroup (and therefore does not have Property (T )).

(ii) If G\X is gluably fi-separated, then G acts properly discontinuously on a
CAT (0) cube complex. If, in addition, G is hyperbolic, then this action is
cocompact. In particular, if G is hyperbolic, then it is virtually special, and so
linear over Z.

It is commonly far easier to check a local property than a global one, and so
local-to-global principles are frequently of great use. When working with complexes, it
is often most natural to consider local properties related to the links of vertices. In
terms of metric curvature, one of the best-known local-to-global principles is Gromov’s
Link Condition [Gro87, 4.2A]. Switching to group theoretic properties, Øuk [Ø96]
and Ballmann–åwiatkowski [BS97] independently provided a condition on the first
eigenvalue of the Laplacian of links of simplicial complexes that is su�cient to prove a
group acting properly discontinuously and cocompactly on such a complex has Property
(T ).

If X is a simply connected CAT (0) polygonal complex such that for any vertex v,
the edges of Lk(v) can be partitioned into ‘fi-separated’ cutsets, and G acts properly
discontinuously and cocompactly on X, then G is cubulable [HW14, Discussion following
Example 4.3]. Note that, as opposed to [HW14, Example 4.3], we do not require a
partition of the edges of links into cut sets: we can remove this assumption at the
expense of requiring that every cutset contains at least two elements, and that the
gluing equations are satisfied for the cutsets (these equations are trivially satisfied
for a collection of proper disjoint edge cutsets). Furthermore, we do not require that
the cutsets are two-sided: � ≠ C is allowed to contain arbitrarily many components.
Finally, we allow cutsets to be comprised of vertices or edges. Though we are not
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always able to cocompactly cubulate non-hyperbolic groups with this method, we can
still produce codimension-1 subgroups, and often a proper action on a cube complex.

3.1.1 Applications of the main theorem

We now provide some applications of Theorem A. Firstly, we consider the groups clas-
sified by Kangaslampi–Vdovina [KV10] and Carbone–Kangaslampi–Vdovina [CKV12]:
these are groups acting simply transitively on simply connected triangular complexes
with the link of every vertex isomorphic to the minimal generalized quadrangle. Recall
that until now these were not even known to be residually finite, and furthermore,
Corollary B complements [DJ02, ER18], providing an example example of the failure of
Property (T ) in Kac–Moody buildings of 2-spherical type when the thickness is small.

Corollary B. Let X be a simply connected polygonal complex such that every face has
at least 3 sides and the link of every vertex is isomorphic to the minimal generalized
quadrangle. If a group G acts properly discontinuously and cocompactly on X, then it
is virtually special; in particular it is linear over Z.

Again, we prove that if X and G are as above, then X can be endowed with a
CAT (0) metric such that G\X is gluably fi-separated. However, we show that that it
is not disjointly fi-separated, so that [HW14, Example 4.3] cannot be applied to such a
complex.

As a further application of Theorem A, we consider generalized triangle groups: see
Definitions 3.5.1 and 3.5.3. We apply Theorem A to polygonal complexes whose links
are the graphs used in [CCKW20]: we refer to them by their Foster Census names (see
[Fos88]). The only graph not in the Foster Census is G54, the Gray graph, which is
edge, but not vertex, transitive. Using Theorem A and Theorem 3.5.5 we can deduce
the following.

Corollary C. Let �i # Ck,2 be finite-sheeted covers such that girth(�i) Ø 6 for each
i. Let G = fi1(Dj

0,k
(�1, �2, �3)) or G = fi1(Dj

k
(�1, �2, �3)) for some j.

(i) If �i œ {F24A, F26A, F48A} for each i, then G acts properly discontinuously
on a CAT (0) cube complex: if G is hyperbolic, then this action is also cocompact
and so G is virtually special.

(ii) If �1 œ {F40A, G54}, then G acts properly discontinuously on a CAT (0)
cube complex: if G is hyperbolic, then this action is also cocompact and so G is
virtually special.
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Recall that [CCKW20] consider 252 groups, of which they show that 168 do not
satisfy Property (T ). Our techniques prove that each of the 131 groups we consider has
a proper action on a CAT (0) cube complex, and so, by e.g. [CMV04], is a-(T)-menable.
Furthermore, 125 of these groups are hyperbolic and have a proper and cocompact
action on a CAT (0) cube complex, and hence by [Ago13] are virtually special.

Wise’s malnormal special quotient theorem [Wis21] (c.f. [AGM16]) is one of the
most important theorems in modern geometric group theory. However, the proof of
this theorem is famously complex and so in Section 3.5.3 we apply Theorem A to
generalized triangle groups to recover partial consequences of the malnormal special
quotient theorem in Corollary 3.5.20. Although this theorem follows from Wise’s proof
of the MSQT, a far more general theorem, the proof of Corollary 3.5.20 is considerably
shorter and simpler, and provides an e�ective bound on the index of the fillings required.

3.1.2 Structure of the chapter

The main idea of the proof of Theorem A is the following. Since G\X is fi-separated,
we can find a collection of local geodesics in G\X that are locally separating at vertices
of G\X. The gluing equations provide us with a way to glue these local geodesics
together to find a locally geodesic locally separating subcomplex of G\X: by lifting
we find a geodesic separating subcomplex of X with cocompact stabilizer. We then
use the construction of Sageev [Sag95], generalized by Hruska–Wise in [HW14], to
construct the desired CAT (0) cube complex.

This chapter is structured as follows. In Section 3.2 we define hypergraphs, which
will be separating subspaces constructed in the polygonal complex, and show certain
subgroups of their stabilizers are codimension-1. We then prove Theorem A by
using Hruska–Wise’s [HW14] extension of Sageev’s [Sag95] construction of a CAT (0)
cube complex, and proving that there are ‘enough’ hypergraphs to ‘separate’ the
polygonal complex. In Section 3.3, we discuss how to find ‘separated’ cutsets of a
graph by computer search. In Section 3.4 we prove Corollary B by proving that
the minimal generalized quadrangle is weighted edge 3-separated and endowing the
polygonal complexes with a suitable CAT (0) metric. In Section 3.5 we prove Theorem
3.5.5 and Corollary C. We again apply Theorem A to prove Corollary 3.5.20 by
considering cutsets in covers of graphs.
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3.2 Cubulating groups acting on polygonal com-
plexes

This section is structured as follows. We first define the required conditions on graphs
and complexes in Section 3.2.1, and in Section 3.2.2 we discuss how to remove cut edges
from links. We provide some examples where our conditions can be readily verified for
graphs in Section 3.2.3 and for complexes in Section 3.2.4. We use these definitions in
Sections 3.2.5, 3.2.6, and 3.2.7 to build separating convex trees in polygonal complexes,
and in Section 3.2.8 we use these convex trees, and a construction due to [Sag95] and
[HW14], to prove Theorem A. Firstly, we introduce the relevant definitions for links.

3.2.1 Some separation conditions

We now define the notion of ‘separatedness’ of a graph. The combinatorial metric on a
graph � is the path metric induced by assigning each edge of � length 1.

Definition 3.2.1. Let � be a finite metric graph.

i) A vertex v (respectively edge e) is a cut vertex (respectively cut edge) if � ≠ {v}

(� ≠ {e}) is disconnected as a topological space.

ii) A set C ™ � is a cutset if � ≠ C is disconnected as a topological space.

iii) A cutset C is an edge cutset if C ™ E(�) and is a vertex cutset if C ™ V (�).

iv) An edge cutset C is proper if for any edge e œ C, the endpoints of e lie in
disjoint components of � ≠ C.

v) A vertex cutset C is proper if for any vertex u œ C, and any distinct vertices
v, w adjacent to u, the vertices v and w lie in distinct components of � ≠ C.

For an edge e in � let m(e) be the midpoint of e. For ‡ > 0 a set C ™ E(�) is
‡-separated if for all distinct e1, e2 œ C, d�(m(e1), m(e2)) Ø ‡. A set C ™ V (�) is
‡-separated if for all distinct v1, v2 œ C, d�(v1, v2) Ø ‡.

Remark 3.2.2. We note that proper cut sets are very natural to consider. Any minimal
edge cut set is proper, and more importantly, proper cutsets are preserved under
passing to finite covers. Finding proper edge cutsets is easy, but for a given graph �
there may not be any proper ‡-separated vertex cutsets: see for example the graph
F26A, considered in Lemma 3.5.15.
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Definition 3.2.3 (Edge separated). Let � be a finite metric graph and let ‡ > 0. We
will say that � is edge ‡-separated if � is connected, contains no vertices of degree
1, and there exists a collection of proper ‡-separated edge cutsets Ci ™ E(�) with
fiiCi = E(�) and |Ci| Ø 2 for each i. We say the graph is disjointly edge ‡-separated if
the above cutsets form a partition of the edges.

Note that to each edge cutset C we can assign a partition P(C) to fi0(� ≠ C): we
always require that such a partition is at least as coarse as connectivity in � ≠ C, and
each partition contains at least two elements. The canonical partition of C is that
induced by connectivity in � ≠ C.

Definition 3.2.4 (Strongly edge separated). A graph � is strongly edge ‡-separated
if � is edge ‡-separated and for every pair of points u, v in � with d�(u, v) Ø ‡ there
exists a proper ‡-separated edge cutset Ci with u and v lying in distinct components
of � ≠ Ci. We say the graph is disjointly strongly edge ‡-separated if the above cutsets
form a partition of the edges.

Definition 3.2.5. For four points u1, u2, v1, v2 on a graph �, we say a cutset C

separates {u1, u2} and {v1, v2} if each ui lies in a di�erent component of � ≠ C to each
vj, i.e [ui] ”= [vj] in H0(� ≠ C).

Using this, we can see that there is a more combinatorial condition that implies
strong edge separation.

Lemma 3.2.6. Let n Ø 2 and let � be a graph endowed with the combinatorial
metric such that girth(�) Ø 2n. Suppose that � is edge n-separated with cutsets
C = {C1, . . . , Cm}, and for every pair of vertices u, v in �, and any vertices uÕ, vÕ with
d�(u, v) Ø n and d(u, uÕ) = d(v, vÕ) = 1 there exists an n-separated cutset Ci separating
{u, uÕ

} and {v, vÕ
}. Then � is strongly edge n-separated with the same cutsets.

Proof. First note that as � is edge n-separated, it is connected and contains no vertices
of degree 1. Let u, v be two points in � with d(u, v) Ø n. If u, v are vertices, then we
are done. Suppose u and v both lie on edges: let e(u), e(v) be the respective edges, and
u1, u2, v1, v2 the endpoints of e(u), e(v) respectively. If v is a vertex, take v = v1 = v2.

As girth(�) Ø 2n, without loss of generality d(u1, v1) Ø n: taking Ci to be the cutset
separating u1, u2 and v1, v2, we see that Ci separates u and v.

Definition 3.2.7 (Weakly vertex separated). Let � be a finite metric graph and let
‡ > 0. We will say that � is weakly vertex ‡-separated if: � is connected and contains
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no vertices of degree 1, and there exists a collection of ‡-separated vertex cutsets
Ci ™ V (�) such that fiiCi = V (�) and |Ci| Ø 2 for each i.

Again, to each vertex cutset C we can assign a partition P(C) to fi0(� ≠ C): we
always require that such a partition is at least as coarse as connectivity in � ≠ C and
each partition contains at least two elements. The canonical partition of C is that
induced by connectivity in � ≠ C.

Definition 3.2.8 (Vertex separated). Let � be a finite metric graph and let ‡ > 0.
We will say that � is vertex ‡-separated if:

i) � is connected and contains no vertices of degree 1,

ii) there exists a collection of ‡-separated vertex cutsets Ci ™ V (�) such that
fiiCi = V (�) and |Ci| Ø 2 for each i,

iii) for any vertex v and any distinct vertices w, wÕ adjacent to v there exists a
‡-separated vertex cutset Ci such that w and wÕ lie in distinct components of
� ≠ Ci,

iv) and for any points u and v in � with d(u, v) Ø ‡, there exists a cutset Ci with
u and v lying in distinct components of � ≠ Ci.

Note that, importantly, in general we do not require vertex cutsets to be proper. We
say the graph is disjointly vertex separated if the above cutsets form a partition of the
vertices, and each cutset is proper.

Remark 3.2.9. The reason we do not require vertex cutsets to be proper is the following.
For edge cut sets we could weaken the definition of edge separated to require a condition
similar to iii) above: i.e. that the endpoints of each edge are separated by some cutset.
However such a cutset can always be made minimal, and therefore proper, by removing
unnecessary edges: the same is not true for vertex cutsets.

Once again, this definition is not as di�cult to verify as it may seem.

Lemma 3.2.10. Let n Ø 2, and let � be a graph endowed with the combinatorial
metric, such that � is connected, contains no vertices of degree 1, and girth(�) Ø 2n.
Suppose there exists a collection of n-separated vertex cutsets C = {C1, . . . , Cm} so that

i) fiiCi = V (�),

ii) |Ci| Ø 2 for each i,
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iii) for each vertex v and distinct w, wÕ adjacent to v there exists a n-separated
cutset with w and wÕ lying in distinct components of � ≠ C,

iv) and furthermore that for any pair of vertices u, v with d�(u, v) Ø n there exists
a cutset Ci with u and v lying in distinct components of � ≠ Ci.

Then � is vertex ‡-separated with the collection of cutsets C.

Proof. It su�ces to show that for any pair of points u, v with d(u, v) Ø n there exists
a cutset Ci separating them. If u and v are vertices, then we are finished. Otherwise,
let e(u), e(v) be the edges that u and v lie on. Let u1, u2 and v1, v2 be the endpoints of
e(u), e(v) respectively. If v is a vertex simply take v1 = v2 = v. Then without loss of
generality, as girth(�) Ø 2n and d(u, v) Ø n, we have that d(u1, v1) Ø n. Let Ci be
the cutset separating u1 and v1: this cutset must also separate u and v.

Finally, we define weighted ‡-separated.

Definition 3.2.11 (Weighted ‡-separated). Let ‡ > 0 and let � be an edge ‡-separated
graph (respectively strongly edge ‡-separated, weakly vertex ‡-separated, vertex ‡-
separated) with ‡-separated cutsets C = {C1, . . . , Cm}. We call � weighted edge
‡-separated (respectively strongly edge ‡-separated, weakly vertex ‡-separated, vertex
‡-separated) if there exists an assignment of positive integers n(Ci) to the cutsets in C

that solves the weight equations: for any edges (respectively edges, vertices, vertices)
–, — of �,

ÿ

CiœC:–œCi

n(Ci) =
ÿ

CiœC:—œCi

n(Ci).

Note that though the above equations at first appear to be di�cult to solve, we
can always (after extending C if necessary) find solutions for a graph with an edge
(respectively vertex) transitive automorphism group (see Section 3.2.3).

Next we extend these definitions to CAT (0) polygonal complexes. This requires
some care to ensure that the subcomplexes we build will actually be separating. A
polygonal complex is a 2-dimensional polyhedral complex and is regular if all polygonal
faces are regular polygons. For a polygonal complex X and a vertex v we define the
link of v, LkX(v) (or simply Lk(v) when X is clear from context), as the graph whose
vertices are the edges of X incident at v, and two vertices e1 and e2 are connected by
an edge f in Lk(v) if the edges e1 and e2 in X are adjacent to a common face f . We
can endow the link graph with the angular metric: an edge f = (e1, e2) in Lk(v) has
length –, where – is the angle between e1 and e2 in the shared face f .

We first define the following graph, which appeared in e.g. [Wis04] and [OW11].
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Definition 3.2.12 (Antipodal graph). Let Y be a regular non-positively curved polyg-
onal complex. Subdivide edges in Y and add vertices at the midpoints of edges: call
these additional vertices secondary vertices, and call the other vertices primary. Every
polygon in Y now contains an even number of edges in its boundary. Construct a
graph �Y as follows. Let V (�Y ) = V (Y ) and join two vertices v and w by an edge,
labelled f , if v and w exist and are antipodal in the boundary of a face f in Y : add as
many edges as such faces exist. This is the antipodal graph for Y .

Remark 3.2.13. We note that for a secondary vertex s of Y , LkY (s) is a cage graph
with edges of length fi. Hence, if Y does not contain any free faces, LkY (s) is weighted
edge fi-separated, with a single fi-separated cutset E(LkY (s)).

Note that as the complex is regular, the edges of �Y pass through the midpoints of
edges in LkY (v) for vertices v. There is a canonical map �Y æ Y ; we map a vertex
v of �Y to the corresponding vertex of Y , and we map an edge e labelled by f to
the local geodesic between the endpoints of e lying in the face f . We note that edge
cutsets in LkY (ÿ(e)) correspond to vertex sets in Lk�Y (ÿ(e)). Similarly, vertex cutsets
in LkY (ÿ(e)) correspond to vertex sets in Lk

Y (1)(ÿ(e)).

Definition 3.2.14. Let Y be a non-positively curved polygonal complex, and let � be
one of Y (1) or �Y . Assign � an arbitrary orientation. For each oriented edge e of � and
each chosen fi-separated cutset C in Lk(ÿ(e)), choose a set of partitions of fi0(Lk(ÿ(e))≠

C), {Pi(C)}i. For v œ V (�), we define Cv = {C : C is a fi-separated cutset, C ™

V (Lk�(v))}, for e an edge we define C(e) := {C œ Cÿ(e) : e œ C}, and

C =
€

eœE±(�)
C(e).

Similarly we can define CP(e) := t

CœC(e)
{(C, Pi(C))}i, and

CP =
€

eœE±(�)
CP(e).

For our purposes, given a polygonal complex Y and a point y œ Y , the star of y,
StY (y) or just St(y), is the intersection of a closed ‘ ball around y with Y , where ‘ > 0
is any suitably small constant.

Before we introduce the full definition of ‘equatable partitions’, we provide the
following example.

Example 3.2.15. Let Y be a non-positively curved polygonal complex, and let X be
the universal cover of Y . Suppose that we wish to build a separating subcomplex of X
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by cutting along an edge e ™ X(1), which has endpoints v and w. Choose cutsets C

containing e in Lk(v) and C Õ containing e≠1 in Lk(w), and pick appropriate partitions.
Moving in along e to points vÕ and wÕ, the partitions of Lk(v) ≠ C and Lk(w) ≠ C Õ give
partitions of St(vÕ) ≠ vÕ and St(wÕ) ≠ wÕ. It is easy to check if these induced partitions
match up correctly, as St(vÕ) ≥= St(wÕ).

Below we provide an example where these partitions line up correctly. The di�erent
elements of the partition are marked by di�erent colours.

v w
v0 w0

e

1

Fig. 3.1 Equatable partitions of C and C Õ

Now, if the partitions do not match up correctly, then we may be able to move
from v to w and back, to find a path between points lying in di�erent elements of
fi0(Lk(v) ≠ C): this is precisely the problem we wish to avoid.

v w
v0 w0

e

1

Fig. 3.2 Non-equatable partitions of C and C Õ
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Therefore, we are required to introduce the following. It is extremely similar to the
‘splicing’ of Manning [Man10]: we will use this for a similar purpose to that of [CM11].

Definition 3.2.16 (Equatable partitions). Let Y be a non-positively curved polygonal
complex, and let � be one of Y (1) or �Y . Let v, w be two vertices of � connected
by an oriented edge e, so that v = ÿ(e) and w = ·(e). Let (Cv, Pv) œ CP(e) and
(Cw, Pw) œ CP(e≠1).

Let vÕ, wÕ be points on e in an ‘-neighbourhood of v, w respectively, so that there
are canonical mappings

iv : St(vÕ) Òæ Lk(v),
iw : St(wÕ) Òæ Lk(w),

„ : St(vÕ)
≥=
≠æ St(wÕ).

Therefore we have induced mappings

iv : St(vÕ) ≠ vÕ Òæ Lk(v) ≠ Cv,

iw : St(wÕ) ≠ wÕ Òæ Lk(w) ≠ Cw,

„ : St(vÕ) ≠ vÕ ≥=
≠æ St(wÕ) ≠ wÕ.

For u = v, w let Pu be the set of partitions of fi0(Lk(u) ≠ Cu), and let PuÕ be the set
of partitions of fi0(St(uÕ) ≠ uÕ). There are induced maps

ÿv : Pv æ PvÕ ,

ÿw : Pw æ PwÕ ,

Â : PvÕ Òææ PwÕ .

We say that (Cv, Pv) and (Cw, Pw) are equatable along e, written

(Cv, Pv) ≥e (Cw, Pw)

if Â(ÿv(Pv)) = ÿw(Pw). Note that this also defines an equivalence relation on CP(e): for
(C, P ), (C Õ, P Õ) œ CP(e), we write

(C, P ) ¥e (C Õ, P Õ)

if ÿv(P ) = ÿv(P Õ). This defines an equivalence relation on CP(e), and so defines an
equivalence class [C, P ]e. We define [[C, P ]]e≠1 to be the equivalence class of cutset
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partitions in CP(e≠1) equatable to (C, P ) along e: by definition this is independent of
choice of (C Õ, P Õ) œ [C, P ]e.

These constructions are designed so that we can ‘splice’ the local cutsets along each
edge. Though this definition is somewhat complicated, note the following remark.

Remark 3.2.17. Let e, v, w, Cv, Cw be as above. If both Cv, Cw are proper with canonical
partitions Pv, Pw, then (Cv, Pv) ≥e (Cw, Pw).

This follows as the induced partitions of St(vÕ) ≠ vÕ and St(wÕ) ≠ wÕ are just the
partitions induced by connectivity, and by properness every element of the induced
partition of St(vÕ) ≠ vÕ (respectively St(wÕ) ≠ wÕ) contains a unique vertex. Similarly,
if C1, C2 œ C(e) are proper, with canonical partitions P1, P2, then (C1, P1) ¥e (C2, P2).

Definition 3.2.18 (Gluably ‡-separated). Let Y be a non-positively curved polygonal
complex. We call Y gluably edge ‡-separated (respectively gluably (weakly) vertex
‡-separated) if :

i) Y is regular (respectively Y is allowed not to be regular),

ii) the link of every vertex in Y is edge (respectively (weakly) vertex) ‡-separated,

iii) for every fi-separated cutset C in Lk(v) there exists a series of partitions
{Pi(C)} of fi0(Lk(v) ≠ C) such that for any distinct pair of points x, y œ Lk(v)
separated by C, x and y are separated by some Pi(C),

iv) and there exists a strictly positive integer solution to the gluing equations:
letting � = �Y (respectively � = Y (1)), we can assign a positive integer µ(C, P )
to every pair

(C, P ) œ CP :=
€

eœE±(�)
CP(e)

such that for every oriented edge e of � and every (C, P ) œ CP(e),

ÿ

(CÕ,P Õ)œ[C,P ]e
µ(C Õ, P Õ) =

ÿ

(CÕ,P Õ)œ[[C,P ]]e≠1

µ(C Õ, P Õ).

Definition 3.2.19 (Gluably ‡-separated). Let Y be a non-positively curved polygonal
complex. We call Y :

i) gluably weakly ‡-separated if it is gluably weakly vertex ‡-separated,

ii) and gluably ‡-separated if it is gluably edge or gluably vertex ‡-separated.
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Remark 3.2.20. Again, note that in the definition of a gluably (weakly) vertex ‡-
separated complex, we do not require that the complex Y is regular. If the link
of each vertex in the complex Y is disjointly ‡-separated, then we can solve the gluing
equations by taking only the canonical partition P (C) for each cutset C, and setting
µ(C, P (C)) = 1 for all cutsets C, so that Y is gluably ‡-separated.

3.2.2 Removing cut edges

We now show that the existence of cut edges is not too much of an issue.

Lemma 3.2.21. Let G be a group acting properly discontinuously and cocompactly on
a simply connected CAT (0) polygonal complex X, such that the link of every vertex
in X is connected. There exists a simply connected CAT (0) polygonal complex X Õ

such that G acts properly discontinuously and cocompactly on X Õ and the link of any
vertex vÕ in X Õ is a subgraph of Lk(v) for some vertex v in X. Furthermore for any
vertex v of X Õ, either LkXÕ(v) is connected and contains no cut edges, or LkXÕ(v) is
disconnected.

Proof. First note that we can assume that X contains no vertices of degree 1 in its
links. A vertex of degree one corresponds to a free face: pushing in this free face
and endowing the resulting complex X Õ with the inherited path metric, we see that
Gromov’s Link condition is still satisfied, and so X Õ is CAT (0).

Now, let Y = G\X, and let v0, . . . , vm be the vertices of Y . Let v be a vertex in X,
and suppose there exists a cut edge f in Lk(v). Let e1 and e2 be the endpoints of f :
in X e1, e2 are edges adjacent to v and occurring consecutively in the boundary of the
face f . Suppose that, in X, the endpoints of e1 are v and w. Construct a new complex
X Õ as follows: let v1 and v2 be two copies of v and connect these vertices to w with
the edges e1

1 and e2
2 respectively. Since f is a cut edge in Lk(v) there is a canonical

way to attach edges and faces to v1 and v2 that agrees with the connected components
of Lk(v) ≠ f .

Now, we assume that f is attached to v1. Then the face f is a free face, which we
can push in to remove the vertex of degree 1, e1

1 in Lk(v1), so that Lk(v1) and Lk(v2)
are connected subgraphs of Lk(v) ≠ f , and the links of any other vertices x incident to
the face f are transformed to a proper subgraph of Lk(x) with the edge f removed.

We can repeat this process finitely many times, applied to the set of vertices Gvi

each time, to find the polygonal complex X Õ desired.
Finally, metrize each polygon in X Õ with the metric inherited from X and endow

X Õ with the resulting path metric. Since the link of each vertex in X is a subgraph of
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the link of some vertex in X, it follows that X Õ is non-positively curved by Gromov’s
Link condition. X Õ is also simply connected, and hence CAT (0).

3.2.3 Examples of separated graphs

Our definitions of weighted ‡-separated graphs required assigning weights to cutsets
such that certain equations hold. In this subsection we prove that as long as the
automorphism group of a graph is transitive on vertices (or edges, depending on
whether cutsets are formed of vertices or edges), then these equations can always be
solved. Note that Aut(�) is the group of automorphisms of � as a metric graph.

Lemma 3.2.22. Let ‡ > 0 and let � be (weakly) vertex ‡-separated. If Aut(�) is
vertex transitive then � is weighted (weakly) vertex ‡-separated.

Proof. Assume that � is vertex ‡-separated, with ‡-separated vertex cutsets C =
{C1, . . . , Cn}. The proof is similar for weakly separated graphs. Let H = Aut(�). For
each C œ C, let

H(C) := {“C : “ œ H},

counted with multiplicity, i.e. if “1C = “2C and “1 ”=H “2, then both “1C, “2C appear
in H(C). Note that for every C Õ

œ H(C), C Õ is a ‡-separated vertex cutset.
Fix some vertex v œ C, and let w œ V (�) be any vertex. Since H acts vertex

transitively, there exists h œ H such that hv = w. Therefore

{“ œ H : v œ “C} = {“ œ H : w œ h“C} = {h≠1“Õ
œ H : w œ “ÕC},

and hence |{“ œ H : v œ “C}| = |{“ œ H : w œ “C}|. Let

C̃ Õ :=
h

CœC
H(C),

again with multiplicity. By the above, it follows that for any two vertices v, w œ V (�),

|{C œ C̃ Õ : v œ C}| = |{C œ C̃ Õ : w œ C}|.

Let C
Õ be the underlying set of C̃ Õ, and for C œ C

Õ, let

n(C) = |{C Õ
œ C̃ Õ : C = C Õ

}|,

i.e. n(C) is the multiplicity of C in C̃ Õ. It is easily seen that the above weights solve
the gluing equations.
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As C ™ C
Õ, it follows that � is vertex separated with respect to these cutsets: by the

above argument it follows that � is weighted vertex ‡-separated with cutsets C
Õ.

Similarly, we can prove the following.

Lemma 3.2.23. Let ‡ > 0 and let � be (strongly) edge ‡-separated. If Aut(�) is edge
transitive then � is weighted (strongly) edge ‡-separated.

3.2.4 Examples of solutions of the gluing equations

Recall that we call an edge cutset C proper if the endpoints of any edge e in C lie in
separate components of � ≠ C, and a vertex cutset C proper if any every v œ C the
vertices adjacent to v each lie in separate components of � ≠ C.

Lemma 3.2.24. Let Y be a finite regular non-positively curved polygonal complex and
suppose the link of each vertex is weighted edge fi-separated. There exists a system of
strictly positive weights that solve the gluing equations for Y .

Proof. Since edge cutsets are proper, any two cutsets are equatable along a shared
edge. Therefore we may associate to each cutset C exactly one partition P (C), namely
that of connectivity in � ≠ C. In particular for any oriented edge e œ E±(�Y ) and any
(C, P (C)) œ CP(e), [C, P (C)]e = CP(e).

First, note that for an oriented edge e of �Y , and v = ÿ(e), C(e) = C(e) fl Cv. Since
the link of each vertex in Y is weighted edge fi-separated, for each vertex v œ Y there
exists a positive integer Nv > 0 and a system of strictly positive weights nv(C) for
C œ Cv such that for any edge e in LkY (v),

ÿ

CœC(e)
nv(C) =

ÿ

CœC(e)flCv

nv(C) = Nv.

Let M = r
vœV (Y ) Nv, and for a cutset C œ Cv, define m(C) = Mnv(C)/Nv. It follows

that for an edge e in LkY (v),

ÿ

CœC(e)
m(C) = M

Nv

ÿ

CœC(e)
nv(C) = M

Nv

Nv = M.

Finally, taking µ(C, P (C)) = m(C), these weights immediately solve the gluing equa-
tions.

Similarly, we can prove the following.
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Lemma 3.2.25. Let Y be a finite non-positively curved polygonal complex, such that
the link of each vertex is weighted vertex fi-separated, and every cutset is proper. There
exists a system of strictly positive weights that solve the gluing equations for Y .

3.2.5 Hypergraphs in fi-separated polygonal complexes

We now begin to construct our separating subcomplexes. We provide an explicit
example of the construction in Example 3.2.29. Suppose X is a simply connected
CAT (0) polygonal complex, and G acts properly discontinuously and cocompactly on
X, so that G\X is (weakly) gluably fi-separated. If G\X is gluably edge fi-separated,
let � = �G\X , and if it is (weakly) gluably vertex fi-separated, let � = (G\X)(1).
Assign an arbitrary orientation to �. Recall that for an oriented edge e of �, we
let C(e) = {C œ C : e œ C} (note that for any oriented edge e, C(e) is non-
empty, as G\X is gluably fi-separated). For every vertex v and fi-separated cutset
C in Lk(v) let {Pi(C)} be the required set of partitions of fi0(Lk(v) ≠ C), and let
CP(e) = t

CœC(e)
{(C, Pi(C)}i, CP = t

eœE±(�)
CP(e). By assumption, we can assign positive

integer weights µ(C, P ) to each cutset (C, P ) œ CP so that for every oriented edge e of
�:

ÿ

(CÕ,P Õ)œ[C,P ]e
µ(C Õ, P Õ) =

ÿ

(CÕ,P Õ)œ[[C,P ]]e≠1

µ(C Õ, P Õ).

We now construct a second graph � as follows. Let

V (�) =
h

(C,P )œCP
{u1

(C,P ), . . . , uµ(C,P )
(C,P ) }.

The gluing equations imply that for each positively oriented edge e of � and each
equivalence class [C, P ]e ™ CP(e) there exists a bijection

„e :
h

(CÕ,P Õ)œ[C,P ]e
{u1

(CÕ,P Õ), . . . , uµ(CÕ
,P

Õ)
(CÕ,P Õ) } æ

h

(CÕ,P Õ)œ[[C,P ]]e≠1

{u1
(CÕ,P Õ), . . . , uµ(CÕ

,P
Õ)

(CÕ,P Õ) }.

For each positively oriented edge e and each equivalence class [C, P ]e of CP(e)
choose such a bijection, „e, and add the oriented edges

{(ui

(CÕ,P Õ), „e(ui

(CÕ,P Õ))) : (C Õ, P Õ) œ [C, P ]e, 1 Æ i Æ µ(C Õ, P Õ)}.
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Note that for each (C, P ) œ CP , Lk�(ui

(C,P )) is isomorphic to C as labelled oriented
graphs. Furthermore, each edge in � labelled by e connects two vertices of the form
ui

(C,P ) uj

(CÕ,P Õ) with (C, P ) ≥e (C Õ, P Õ), i.e. every edge connects vertices with equatable
partitions along that edge. There is an immersion � # � that sends ui

(C,P ) to the
vertex vC such that C ™ Lk�(vC) and maps an edge labelled by e to the edge e in �.

Let �1, . . . , �m be the connected components of �, and let �1, . . . , �m be the images
of these graphs in G\X under the map

�i # � æ G\X.

We see that each �i is locally geodesic as the cut sets are fi-separated in G\X.

Definition 3.2.26. If G\X is gluably edge fi-separated, a lift of �i from G\X to the
CAT (0) complex X is called a edge hypergraph in X, and otherwise it is a vertex
hypergraph in X.

Note that hypergraphs come with two pieces of information at each vertex v in X:
the cutset C and partition P . We say � passes through the above objects.

Remark 3.2.27. In the above construction for every vertex v œ G\X, every fi-separated
edge cutset C in LkG\X(v) and chosen partition P of fi0(LkG\X(v) ≠ C), and every lift
ṽ of v to X, there exists a hypergraph passing through (C, P ) in LkX(ṽ).

Importantly, our construction ensures the following.

Proposition 3.2.28. Let X satisfy the requirements of Theorem A, and let � be a
hypergraph in X. Then StabG(�) acts properly discontinuously and cocompactly on �.

Proof. As there are finitely many images �i in G\X, there are finitely many hypergraphs
containing a specific edge: since G acts cocompactly on X, the result follows.

Let us now consider an example.

Example 3.2.29. Let Y be the genus 2 surface, which can be considered as a polygonal
complex with a single vertex, and the fundamental polygon below. In particular the
fundamental polygon is an octagon, which is metrized as a unit Euclidean octagon.
There is a single vertex v in Y , whose link is an octagon with each edge of length 3fi/4.
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Fig. 3.3 The polygonal complex Y

d�1

ba�1

cb�1
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d c�1

3⇡/4

1

Fig. 3.4 The link of Y , LkY (v)

The antipodal graph for Y is then just a rose.

1

Fig. 3.5 The antipodal graph �Y

There is a partition of the edges of LkY (v) into four fi-separated cutsets

C1 = {(a, b≠1), (c, d≠1)}, C2 = {(a≠1, b≠1), (c≠1, d≠1)}, C3 = {(a≠1, b), (c≠1, d)},

C4 = {(a, d), (d, c)}.

The weight equations for these cutsets can be solved by giving each cutset weight 1,
and so the auxiliary graph that we construct, �, is the disjoint union of four circles. In
the below figure we also show an example of �1.
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u{(a,b�1),(c,d�1)} u{(a�1,b�1),(c�1,d�1)}

u{(a�1,b),(c�1,d)} u{(a,d),(d,c)}

1

Fig. 3.6 The graph �
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Fig. 3.7 An example of embedding
�1

Then any lift �1 of �1 to H
2 is simply an infinite two-ended geodesic line; clearly

H
2

≠ �1 consists of two components.

3.2.6 Hypergraphs are separating

We now analyse the structure of the hypergraphs, and show they are in fact separating.

Lemma 3.2.30. Let G\X be a simply connected (weakly) gluably fi-separated CAT (0)
polygonal complex, and let � be a hypergraph in X. Then � is a leafless convex tree.

Proof. For each i, as the cutsets are fi-separated, the image of �i # G\X is locally
geodesic: therefore � is locally geodesic in X. As X is CAT (0), local geodesics are
geodesic, and geodesics are unique, so that � is a convex tree. Since |C| Ø 2 for any
v œ V (�G\X) and C œ Cv, � contains no primary vertices of degree 1. If � is a vertex
hypergraph, it is immediate that � is leafless. If � is an edge hypergraph, as there
are no vertices of degree 1 in the link of a primary vertex in X, there are no cut edges
in the link of a secondary vertex and so every edge cut set in the link of a secondary
vertex contains at least two elements. It follows that edge hypergraphs are leafless.

Definition 3.2.31. Let �i be a hypergraph in X and x, y œ X be distinct points in
X. We say �i separates x and y if x and y lie in distinct components of X ≠ �i. We
write #�(x, y) for the number of edge (or vertex) hypergraphs separating x and y.

We now consider separating points: we prove the following lemma. We call a path “

transverse to � if |“ fl�| = 1. If x is a point on an edge e of �, then there is a canonical
partition of Lk(x) ≠ � obtained from the partitions of Lk(v) ≠ � and Lk(w) ≠ �, where
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v, w are the endpoints of � (since these are equatable along e the induced partitions
are the same).

Lemma 3.2.32. Let � be a hypergraph in X, and “ = [p, q] be a geodesic transverse
to �. If “ fl � = {x} and p and q lie in di�erent elements of the partition of Lk(x) ≠ �,
then p and q lie in di�erent components of X ≠ �.

Before we prove this, we need to define some technology.

Definition 3.2.33 (Hypergraph retraction). Let X be a CAT (0) space and � a
hypergraph in X. The projection map

fi� : X æ �

maps every point in X to its nearest point in �. Since � is convex, this map is a
deformation retraction. That is, we have a homotopy fi”

� from the identity to fi�.

Let � be a hypergraph, e an edge of �, and ‘ > 0 be such that the length of any
edge in � is greater than 2‘. Define int‘(e) as the set of points in e lying at distance
(in X) at least ‘ from the endpoints of e. Recall that m(e) is the midpoint of e.

Definition 3.2.34 (�-balanced paths). Let � be a hypergraph in X and ‘ > 0. For
points p, q lying in the same component of X ≠ �, a (�, ‘)-balanced path from p to q is
a path ‡ starting at p and ending at q such that:

i) ‡ ™ N‘(�) ≠ �,

ii) for any edge e of � and any y, yÕ
œ int‘(e), |(fi�)≠1(y) fl ‡| = |(fi�)≠1(yÕ) fl ‡|

and is even,

iii) and if ‡Õ is a subpath of ‡ starting and ending in N‘(v) for some vertex v of �,
then for any edge e of � and any y, yÕ

œ int‘(e), |(fi�)≠1(y) fl ‡| = |(fi�)≠1(yÕ) fl ‡|

and is even.

Given such a path, we define

M�,‘(‡) = 1
2

ÿ

eœE(�flfi�(‡))
max

yœint‘(e)
|(fi�)≠1(y) fl ‡| = 1

2
ÿ

eœE(�flfi�(‡))
|(fi�)≠1(m(e)) fl ‡|.

Note that this is e�ectively the length of ‡.

By considering the retraction map, we see that, under certain circumstances, such
paths exist.
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Lemma 3.2.35. Let � be a hypergraph in X, v a vertex of �, ‘ > 0, and let p, q œ

N‘(v)≠� be points lying in the same component of X ≠�. There exists a (�, ‘)-balanced
path between them.

Proof. Let “ be a path from p to q not intersecting �. By taking ” close to 1, we
have that ‡” := fi”

�(“) ™ N‘(�) ≠ �. Since ‡” maps to a path in �, which is a tree, it
immediately follows that by taking ” close to 1, and after a small homotopy, for any
y œ �, |(fi�)≠1(y) fl ‡”| is even, and in particular finite. Furthermore, for any edge e of
� and y, yÕ

œ int‘(e), we can ensure that |(fi�)≠1(y) fl ‡”| = |(fi�)≠1(yÕ) fl ‡”|. Finally,
after a small homotopy, we can also ensure that if ‡Õ is a subpath of ‡” starting and
ending in N‘(v) for some vertex v of �, then for any edge e of � and any y, yÕ

œ int‘(e),
|(fi�)≠1(y) fl ‡| = |(fi�)≠1(yÕ) fl ‡| and is even.

We can now prove Lemma 3.2.32.

Proof of Lemma 3.2.32. Let Ÿ be the length of the shortest edge in X(1): since G acts
properly and cocompactly, Ÿ > 0. Choose ‘ << Ÿ/4. For a path ‡, let l‘(‡) = Âl(‡)/‘Ê.

Note that if x is a vertex and u, v lie in two distinct components of a partition of
Lk(x) ≠ �, then for any path ‡ connecting u and v, l‘(‡) Ø 1.

We may assume x is a vertex. If not, let x lie on an edge e of � with endpoints
u, v. We remark that the partitions of Lk(u) ≠ � and Lk(v) ≠ � are equatable along
e. First, shrink the path ‡ to lie in N‘(x): let this path be ‡Õ with endpoints s, t.
Then without loss of generality, s and p lie in the same element of the partition of
Lk(x) ≠ �, and t and q lie in the same element of the partition of Lk(x) ≠ �. Now,
slide the path ‡Õ along e to N‘(u) to find a path ‡ÕÕ with endpoints sÕ, tÕ satisfying
the requirements of Lemma 3.2.32. We see that p and sÕ lie in the same element of
the partition of Lk(u) ≠ �, and q and tÕ lie in the same element of the partition of
Lk(u) ≠ �. Furthermore, p and sÕ lie in the same component of X ≠ �, and q and tÕ

lie in the same component of X ≠ �.
Let P be the partition of Lk(x) through which � passes. Let P1 be the element of P

containing p and P2 the element of P containing q. We may assume that p, q œ N‘(�):
otherwise, choose wi lying in Pi such that wi œ N‘(�). Then w1 and p lie in the same
component of X ≠ � and w2 and q lie in the same component of X ≠ �. Suppose p

and q lie in the same component of X ≠ �. We first choose pÕ
œ P1, qÕ

œ P2 and ‡ a
(�, ‘)-balanced path between pÕ and qÕ so that the pair (M�,‘(‡), l‘(‡)) is minimal by
lexicographic ordering amongst all such pÕ, qÕ, ‡. We induct on M�,‘(‡).

If M�,‘(‡) = 0, then pÕ and qÕ are connected by a path lying in N‘(x) ≠ �, a
contradiction. If M�,‘(‡) = 1, then ‡ passes along exactly one edge e of �: it follows
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that the partitions of X ≠ � at the endpoints of e are not equatable along e, or that
P1 = P2, a contradiction.

Otherwise M�,‘(‡) = m Ø 2. Suppose the first and last edges of � traversed by
‡ are the same edge e. Note that we may always travel along ‡ to put ourselves in
the situation assumed above: this is analogous to the classical situation of pushing
to a leaf in a tree for graph theory arguments. In particular, if this is not true, then
move along ‡, starting at qÕ, until we return to N‘(x). Let s be the point we reach
in N‘(x). If s is in the same component as qÕ in P then M�,‘(‡|[pÕ,s]) Æ M�,‘(‡), and
l(‡|[pÕ,s]) < l(‡) ≠ ‘, so that

(M�,‘(‡|[pÕ,s]), l‘(‡|[pÕ,s])) < (M�,‘(‡), l‘(‡)),

a contradiction as pÕ, qÕ, ‡ were chosen so this pair was minimal. If s is in the same
component as pÕ in P , and is not equal to pÕ, then M�,‘(‡|[s,qÕ]) Æ M�,‘(‡), and
l‘(‡|[s,qÕ]) < l‘(‡), so that again

(M�,‘(‡|[s,qÕ]), l‘(‡|[s,qÕ])) < (M�,‘(‡), l‘(‡)),

a contradiction. Therefore, if s ”= pÕ, then s lies in a di�erent component to qÕ in P :
we have M�,‘(‡|[s,qÕ]) Æ M�,‘(‡). Since s is not in the same component as pÕ, and we
have chosen ‘ su�ciently small, we can see that there is no path of length less than ‘

between s and pÕ, so that l(‡|[s,qÕ]) Æ l(‡)≠‘. Furthermore, by the definition of M�,‘(‡),
M�,‘(‡|[s,qÕ]) Æ M�,‘(‡) ≠ 1, and hence by induction s must lie in a separate component
of X ≠ � to qÕ, a contradiction as qÕ is connected to s by a path not intersecting �.
Therefore by induction we have that s = pÕ.

Let y be the endpoint of e distinct from x, let – be the the point obtained by
pushing pÕ along ‡ to N‘(y), and similarly — be the the point obtained by pushing qÕ

along ‡ to N‘(y). Let ‡Õ be the subpath of ‡ connecting – and —.
If – and — lie in the same component of the partition of Lk(y) ≠ �, then the

partitions are not equatable along e, a contradiction. Otherwise M�,‘(‡Õ) < M�,‘(‡),
and so by induction – and — lie in distinct components of X ≠�. As pÕ is connected to –

by a path not intersecting �, and qÕ to —, we see that pÕ and qÕ lie in distinct components.
Since p is connected to pÕ and q is connected to qÕ by a path not intersecting �, the
result follows.
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3.2.7 Hypergraph stabilizers and wallspaces

We now want to use the construction of a cube complex dual to a system of walls,
as found in [HW14]. For a group this was first introduced by Sageev [Sag95]: for
wallspaces the procedure was first used in [NR03] and [Wis04], before being described
in terms of wallspaces in [Nic04] and [CN05].

The definition of a wallspace found in [HW14] is slightly more general than the one
we require: we may restrict to the case that X is endowed with a metric.

Definition 3.2.36 (Walls). Let X be a metric space. A wall is a pair {U, V } such
that X = U fi V . The open halfspaces associated to the wall are U ≠ (U fl V ) and
V ≠ (U fl V ). We say a wall betwixts a point x if x œ U fl V , and separates the points
x, y if x and y lie in distinct open halfspaces. If W is a collection of walls, we write
#W(x, y) for the number of walls in W separating x and y.

Definition 3.2.37 (Wallspace). A wallspace is a pair (X, W), where X is a connected
metric space and W is a collection of walls in X such that;

i) for any x œ X, finitely many walls in W betwixt x,

ii) for any x, y œ X, #W(x, y) < Œ,

iii) and there are no duplicate walls that are genuine partitions.

We say a group G acts on a wallspace (X, W) if G acts on X and G · W = W .

Definition 3.2.38 (� walls). Let � be a vertex or edge hypergraph in X, with disjoint
components X ≠ � = {U i

�}i. For each U i

�, let V i

� = X ≠ U i

�. The set of � walls is the
set

W� =
I

{U i

�, V i

�} : U i

� a component of X ≠ �
J

.

The hypergraph wallspace is the set of walls

W = fi�W�,

where we remove any duplicate walls.

We now show that the pair (X, W) is a wallspace. There are several easy but
technical steps to this.
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Lemma 3.2.39. Let X be a polygonal complex satisfying the requirements of Theorem
A, and let � be a hypergraph in X with components X ≠� = ÛiU i

�. Let H� = StabG(�),
and for any i, let H�,i = StabH�(U i

�). Then H�,i acts cocompactly on ˆU i

�.

This Lemma follows immediately from the proof of [HW14, Theorem 2.9]. We
include the argument here for completeness. For a set A in a metric space (X, d), we
define the frontier of A as the set ˆfA = {x œ X |0 < d(x, A) Æ 1}. The choice of the
constant 1 here is not specific: any choice of ‘ > 0 would work.

Proof. Note that H� acts cocompactly on � and so on ˆf �. Furthermore H� preserves
the partition of ˆf� into U i

� fl ˆf�. Hence H�,i acts properly discontinuously and
cocompactly on ˆfU i

�, and therefore on ˆU i

�.

Lemma 3.2.40. There are finitely many G-orbits of walls in W.

Proof. There are finitely many G-orbits of hypergraphs �, and there are finitely many
H� orbits of U i

�. The result follows.

Lemma 3.2.41. The pair (X, W) is a wallspace.

Proof. First, we note that, since the set of walls is acted upon cofinitely by G, and
each wall has a cocompact stabilizer, for any point x there are finitely many walls
betwixting x. In a similar manner we can observe #W(x, y) < Œ for any x and y.

Therefore, we have constructed a wallspace for X: we can understand separation in
the wallspace as follows. Recall that we write #�(x, y) for the number of hypergraphs
separating x and y, and #W(x, y) for the number of walls separating x and y.

Lemma 3.2.42. Let (X, W) be the wallspace constructed for Lemma 3.2.41. Then
#W(x, y) Ø #�(x, y).

Proof. Note that if a hypergraph � separates x and y, by taking i such x œ U i

�, it
follows that W i

� separates x and y. The result follows.

Next, we discuss transverse walls.

Definition 3.2.43 (Transverse). Two walls W = {U, V } and W Õ = {U Õ, V Õ
} are

transverse if each of the intersections U fl U Õ, U fl V Õ, V fl U Õ, V fl V Õ are nonempty.

There is an easier formulation for this definition.

Lemma 3.2.44. Two distinct walls W i

�, W j

�Õ are transverse if and only if ˆU i

� fl ˆU j

�Õ

is non-empty. In particular the walls are transverse only if � fl �Õ is non-empty.

Using this we can now move on to cubulating groups acting on polygonal complexes.
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3.2.8 Cubulating groups acting on polygonal complexes

We now understand the structure of the hypergraph stabilisers and the separation in
the wallspaces (X, W).

For a metric polygonal complex X, let D(X) be the maximal circumference of a
polygonal face in X. We will be considering G acting properly discontinuously and
cocompactly on a polygonal complex X so that D(X) = D(G\X) is finite.

Lemma 3.2.45. Let X be a simply connected CAT (0) polygonal complex with G\X

gluably edge fi-separated. Let “ be a finite geodesic in X of length at least 4D(X).
There exists an edge hypergraph � that separates the endpoints of any finite geodesic
extension of “.

Proof. Since “ is of length at least 4D(X), we can find a subgeodesic ” of “ of length
at least 2D(X) that starts at a point v œ X(1) and ends at w œ X(1).

If ” passes through the interior of a 2-cell f then, as ” is of length at least 2D(X),
it meets the boundary ˆf at two points u1, u2. The sides of the polygonal faces are
geodesic, and geodesics are unique in CAT (0) spaces, so that there must exist a vertex
w in ˆf lying between u1 and u2.

Choose a cutset C in Lk(w) containing f , and let P be a chosen partition of
fi0(Lk(w) ≠ C) so that the endpoints of f lie in di�erent elements of P (this must
exist by assumption). Let � be any hypergraph passing through (C, P ) in Lk(w): by
Lemma 3.2.32, � separates the endpoints of the subpath of ” between u1 and u2: as
geodesics in X are unique, it follows that � intersects any geodesic extension of ”

exactly once, and so separates the endpoints of any geodesic extension of ”.
Otherwise ” lies strictly in X(1): ” is of length at least 2D(X) and so it must

intersect at least two primary vertices. Therefore ” contains an edge of the form [u1, u2]
for some primary vertices u1, u2: this edge must be geodesic. Furthermore, the geodesic
[u1, u2] contains a secondary vertex s. Let P be a partition of Lk(s)≠E(Lk(s)) so that
the endpoints of [u1, u2] lie in di�erent elements of P (this must exist by assumption).
Let � be the hypergraph passing through (E(Lk(s)), P ) in Lk(s): it follows by Lemma
3.2.32 that � separates the endpoints of any finite geodesic extension of ”.

Similarly, we have the following.

Lemma 3.2.46. Let X be a simply connected CAT (0) polygonal complex with G\X

gluably vertex fi-separated. Let “ be a finite geodesic in X of length at least 4D(X).
There exists a vertex hypergraph � that separates the endpoints of any finite geodesic
extension of “.
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Proof. Again, since “ is of length at least 4D(X), we can write “ = “1 · ” · “2, where
each “i is of length at least D(X)/2, and ” is a path of length between D(X) and
2D(X) that starts at a point v œ X(1) and ends at w œ X(1).

First suppose that ” contains a nontrivial subpath, ”Õ, which contains exactly one
point of X(1), u, in its interior. Let e be the edge of X containing u. Since ”Õ is
geodesic, we see that ÿ(”Õ) and ·(”Õ) lie in two distinct faces F, F Õ, both adjacent to e.
In Lk(ÿ(e)), F, F Õ are two edges adjacent to e, and so, as G\X is gluably fi-separated.
there exists a fi-separated cutset C – e and partition P of fi0(Lk(ÿ(e)) ≠ C) with F, F Õ

lying in distinct elements of P . Let � be any hypergraph passing through (C, P ) in
Lk(ÿ(e)): by Lemma 3.2.32 � separates the endpoints of ”Õ, and hence the endpoints
of “.

Otherwise, we may observe that ” contains a subpath lying completely in X(1): as
” is of length at least D(X), it must therefore contain a vertex of X. We have not
subdivided X, and so v is a primary vertex of X. Let ”1, ”2 be the two subpaths of “

incident to v: as “ is geodesic, dLk(v)(”1, ”2) Ø fi. Let C be the vertex cutset such that
“1 and “2 lie in di�erent components of Lk(v) ≠ C and let P be a chosen partition of
fi0(Lk(v) ≠ C) separating “1 and “2 (this exists as G\X is gluably vertex fi-separated).
Let � be any vertex hypergraph passing through (C, P ) in Lk(v): by Lemma 3.2.32
this separates “1 and “2, and so separates the endpoints of “.

We now turn our attention to finding codimension-1 subgroups. We first note the
following lemma concerning CAT (0) geometry.

Lemma 3.2.47. Let Y be a CAT (0) space and let “1, “2 be infinite one-ended geodesics
starting from the same point. If there exists r > 0 such that “1 ™ Nr(“2), then “1 = “2.

Proof. Let p be the common start point of “1, “2 and let ◊ = \p(“1, “2). Since “1 ™

Nr(“2), for all t > 0 there exists tÕ(t) > 0 such that d(“1(t), “2(tÕ)) Æ r. However,
d(“1(t), p) æ Œ as t æ Œ, so that d(“2(tÕ(t)), p) æ Œ as t æ Œ. Consider the
Euclidean comparison triangle for the geodesics “1(t) and “2(tÕ(t)): this has third side
length at most r, and so has angle at p of ◊(t) æ 0 as t æ Œ. However, ◊ Æ ◊(t) for
all t, and so ◊ = 0. It follows that “1 = “2 in a closed neighbourhood of p, and so the
set {t : “1(t) = “2(t)} is clopen. The result follows.

Using this we can prove that hypergraph stabilizers have subgroups that are
codimension-1 in G. Let G be a group with finite generating set S and let � be the
Cayley graph of G with respect to S. A subgroup H of G is codimension-1 if the graph
H\� has at least two ends, i.e. for some compact set K, H\� ≠ K contains at least
two infinite components.
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Lemma 3.2.48. Let G be a group acting properly discontinuously and cocompactly on
a simply connected CAT (0) polygonal complex X such that G\X is (weakly) gluably
fi-separated. Let � be a hypergraph in X. For any component U� of X ≠ �, the group

HU = StabStab(�)(U�)

is virtually free, and is quasi-isometrically embedded and codimension-1 in G.

This again follows by [HW14, Theorem 2.9]: we provide a direct proof for complete-
ness.

Proof. We prove this in the case that � is an edge hypergraph: the case for vertex
hypergraphs is identical. By Lemma 3.2.30, � is a convex tree. Since ˆU� ™ �, ˆU� is
a convex tree. By Lemma 3.2.39, HU acts properly discontinuously and cocompactly
on ˆU�: it follows that HU is virtually free and quasi-isometrically embedded in
G. Furthermore, by Lemma 3.2.32 X ≠ � consists of at least two path-connected
components, {U i

�}. Let V� = X ≠ U�.
Let e1 and e2 be vertices that lie in distinct components of Lk(v) ≠ C such that,

in X, e1 is an edge lying in U� fi v and e2 an edge lying in V� fi v. We construct two
geodesics “1 and “2: let the first edge of “1 be e1, and let w be the endpoint of e1

distinct from v. Since the links of vertices have no vertices of degree 1 and have girth
at least 2fi, it follows that there exists a vertex or edge, a1, in � = Lk(w) so that
d�(e1, m(a1)) Ø fi, and so we can extend e1 to a geodesic [v, m(a1)]. We can continue
in this fashion to construct a one-ended geodesic “1 that, by Lemma 3.2.32, lies in
U� fi v and (as geodesics are unique in X) intersects � exactly once. Construct the
geodesic “2 similarly, with first edge e2 so that “2 intersects � exactly once and lies in
V� fi v.

By Lemma 3.2.47, it follows that for any r > 0, “1, “2 ”™ Nr(ˆU�). Therefore
HU\X ≠ HU\ˆU� consists of at least two infinite components: HU\U� and HU\V�.
As G is quasi-isometric to X, and HU is quasi-isometric to ˆU�, the result follows.

We will use Hruska–Wise’s [HW14] generalisation of Sageev’s construction of a
CAT (0) cube complex dual to a collection of codimension-1 subgroups, as introduced
in [Sag95].

Definition 3.2.49 (Orientation). Let (X, W) be a wallspace and W = {U, V } a wall.
An orientation of W is a choice c(W ) = (

Ω≠≠≠
c(W ),

≠≠≠æ
c(W )) of ordering of the pair W . An

orientation of W is an orientation of each wall W in W .
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A 0-cube in the dual cube complex C(X, W) corresponds to a choice of orientation
c of W such that that for any element x œ X, x lies in

Ω≠≠≠
c(W ) for all but finitely many

W œ W, and
Ω≠≠≠
c(W ) fl

Ω≠≠≠
c(W Õ) ”= ÿ for all W, W Õ

œ W. Two 0-cells are joined by a 1-cell
if there exists a unique wall to which they assign opposite orientations. Inductively
add an n-cube to C(X, W) whenever its skeleton exists.

Sageev analysed the properness and cocompactness of the group action on C(X, W)
in [Sag97], and this was generalized by Hruska–Wise in [HW14]. We will use the
following, as they are the easiest criteria to verify in our setting.

Theorem. [HW14, Theorem 1.4] Suppose G acts on a wallspace (X, W), and the action
on the underlying metric space (X,d) is metrically proper. If there exists constants
Ÿ, ‘ > 0 such that for any x, y œ X,

#W(x, y) Ø Ÿd(x, y) ≠ ‘,

then G acts metrically properly on C(X, W).

Theorem. [HW14, Lemma 7.2] Let G act on a wallspace (X,W). Suppose there are
finitely many orbits of collections of pairwise transverse walls in X. Then G acts
cocompactly on C(X, W).

This is su�cient to prove Theorem A.

Proof of Theorem A. If G\X is gluably weakly fi-separated, then by Lemma 3.2.48,
G contains a virtually free codimension-1 subgroup.

Now suppose G\X is a gluably fi-separated complex. X is locally finite, and G

acts properly discontinuously on X, so acts metrically properly on X. Construct the
hypergraph wallspace for X. Then by Lemmas 3.2.45 and 3.2.46,

#�(p, q) Ø dX(p, q)/4D(X) ≠ 1.

By Lemma 3.2.42, this implies that

#W(p, q) Ø dX(p, q)/4D(X) ≠ 1 :

by [HW14, Theorem 1.4] it follows that G acts properly discontinuously on the cube
complex C(X, W).

Now suppose that G is hyperbolic, so that X is also hyperbolic. As hypergraphs
are convex and hypergraph stabilisers are cocompact, by [GMRS98] (c.f. [Sag97]) there
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is an upper bound on the number of pairwise intersecting hypergraphs. For any point
x œ � there is a finite upper bound on the number of components of X ≠ � intersecting
x, and so by Lemma 3.2.40, we see there is an upper bound on the size of a collection
of pairwise transverse walls. As G acts cofinitely on the set of walls, it follows that the
hypothesis of [HW14, Lemma 7.2] are met, and so G acts cocompactly on the CAT (0)
cube complex C(X, W): by [Ago13, Theorem 1.1], we conclude that G is virtually
special.

3.3 Finding separated cutsets by computer search
In this short section, we discuss how to find separated cutsets by computer search. Let
� be a finite metric graph, and let I(�) = V (�) or E(�). Define dI(x, y) = d�(x, y) if
x, y œ V (�) and dI(x, y) = d�(m(x), m(y)) if x, y œ E(�). Let ‡ > 0. The ‡-separated
cutsets of � that lie in I(�) can be found in the following way: we can define a dual
graph �̄ by V (�̄) = I(�), and

E(�̄) = {(x, y) œ I(�)2 : x ”= y and dI(x, y) < ‡}.

Finding ‡-separated cut sets in � then corresponds to finding independent vertex sets
in �̄ and checking if they are cut sets in �. Importantly, finding independent vertex
sets can be done relatively e�ciently.

See https://github.com/CJAshcroft/Graph-Cut-Set-Finder for the implementation
of the above algorithm, and for the code used to find cutsets in the following sections.

3.4 Triangular buildings
In the following section, we prove Corollary B. In [KV10] and [CKV12] all groups
acting simply transitively on triangular buildings whose links are the minimal gen-
eralized quadrangle (see Figure 3.8) were classified. We apply Theorem A to these
groups, proving they are virtually special by considering the separation of the minimal
generalized quadrangle.

%20https://github.com/CJAshcroft/Graph-Cut-Set-Finder
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Fig. 3.8 The minimal generalized quadrangle.

xi xj adjacent to xi

1 2 14 30
2 1 3 19
3 2 4 24
4 3 5 11
5 4 6 28
6 5 7 15
7 6 8 20
8 7 9 25
9 8 10 30
10 9 11 17

xi xj adjacent to xi

11 4 10 12
12 11 13 21
13 12 14 26
14 1 13 15
15 6 14 16
16 15 17 23
17 10 16 18
18 17 19 27
19 2 18 20
20 7 19 21

xi xj adjacent to xi

21 12 20 22
22 21 23 29
23 16 22 24
24 3 23 25
25 8 24 26
26 13 25 27
27 18 26 28
28 5 27 29
29 22 28 30
30 1 9 29

Table 3.1 Edge incidences for the minimal generalized quadrangle

Lemma 3.4.1. Let � be the minimal generalized quadrangle equipped with the combi-
natorial metric. Then � is weighted (strongly) edge 3-separated.

Proof. By a computer search, we find the following exhaustive list of 3-separated edge
cut sets in �:

C1 = {(x1, x2), (x4, x5), (x7, x20), (x9, x10), (x12, x13), (x15, x16), (x18, x27),
(x22, x29), (x24, x25)},
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C2 = {(x1, x2), (x4, x11), (x6, x15), (x8, x9), (x13, x26), (x17, x18), (x20, x21),
(x23, x24), (x28, x29)},

C3 = {(x1, x14), (x3, x4), (x6, x7), (x9, x10), (x12, x21), (x16, x23), (x18, x19),
(x25, x26), (x28, x29)},

C4 = {(x1, x14), (x3, x24), (x6, x7), (x9, x10), (x12, x21), (x16, x23), (x18, x19),
(x25, x26), (x28, x29)},

C5 = {(x1, x30), (x3, x4), (x6, x15), (x8, x25), (x10, x17), (x12, x13), (x19, x20),
(x22, x23), (x27, x28)},

C6 = {(x1, x30), (x3, x24), (x5, x28), (x7, x8), (x10, x11), (x13, x26), (x15, x16),
(x18, x19), (x21, x22)},

C7 = {(x2, x3), (x5, x6), (x8, x25), (x10, x11), (x13, x14), (x16, x23), (x18, x27),
(x20, x21), (x29, x30)},

C8 = {(x2, x3), (x5, x28), (x7, x20), (x9, x30), (x11, x12), (x14, x15), (x17, x18),
(x22, x23), (x25, x26)},

C9 = {(x2, x19), (x4, x5), (x7, x8), (x10, x17), (x12, x21), (x14, x15), (x23, x24),
(x26, x27), (x29, x30)},

C10 = {(x2, x19), (x4, x11), (x6, x7), (x9, x30), (x13, x14), (x16, x17), (x21, x22),
(x24, x25), (x27, x28)}.

� is connected and contains no vertices of degree 1. The cutsets sets are 3-
separated, and fiiCi = E(�). In fact, each cutset is minimal, and so is certainly proper.
Furthermore, every edge appears in exactly two cutsets: assigning each cutset weight 1
we see that the weight equations are satisfied, and so � is weighted edge 3-separated.

In fact, by a computer search we can see that � satisfies the conditions of Lemma
3.2.6, and so is weighted strongly edge 3-separated.

Note that Ci fl Cj is nonempty for all i and j, so that we are not able to use [HW14,
Example 4.3]. However, we can apply Theorem A to prove groups acting properly
discontinuously and cocompactly on triangular buildings with the minimal generalized
quadrangle as links are virtually special.

Proof of Corollary B. Let X be a simply connected polygonal complex such that every
face has at least 3 sides and the link of every vertex is isomorphic to the minimal
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generalized quadrangle, �, and let G be a group acting properly discontinuously and
cocompactly on X. Since � has girth 8, X can be endowed with a CAT (≠1) metric, so
that G is hyperbolic. Endow X with the metric that makes each k-gonal face a regular
unit Euclidean k-gon, so that X is regular and the length of each edge in the link of a
vertex is at least fi/3. As � is weighted edge 3-separated with the combinatorial metric,
it follows that the links of X are weighted edge fi-separated. Hence by Lemma 3.2.24,
G\X is gluably fi-separated. Furthermore, by Gromov’s link condition, X is CAT (0).
Therefore, G is hyperbolic and acts properly discontinuously and cocompactly on a
simply connected CAT (0) polygonal complex X with G\X gluably fi-separated, so
acts properly discontinuously and cocompactly on a CAT (0) cube complex by Theorem
A, and hence is virtually special by [Ago13, Theorem 1.1].

3.5 Application to generalized triangular groups
In this section we prove Theorem 3.5.5 in Section 3.5.1, Corollary C in Section 3.5.2,
and Corollary 3.5.20 in Section 3.5.3.

3.5.1 Cubulating generalized ordinary triangle groups

We now consider generalized ordinary triangle groups, constructed in [LMW19] to
answer a question of Agol and Wise: note that the case of k = 2 corresponds to classical
ordinary triangle groups.

The first complex of groups we define uses the notation from [CCKW20] to more
easily align with their work. See e.g. [BH99] for further discussion of complexes of
groups.

Definition 3.5.1 (Generalized triangle groups). Consider the following complex of
groups over T , the poset of all subsets of {1, 2, 3}. Let X1, X2, X3 be the vertex groups,
and A1, A2, A3 the edge groups, with the face group trivial, and homomorphisms
„i,i+1 : Ai æ Xi+1, „i,i≠1 : Ai æ Xi≠1 for i = 1, 2, 3 taken mod 3. Now, consider the
coset graph

�Xi(„i≠1,i(Ai≠1), „i+1,i(Ai+1)).

Fix k Ø 2 and let each Ai = Z/k. For graphs �i, let

{Dj

k
(�1, �2, �3)}j
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be the family of complexes of groups obtained by choosing Xi and „i,i±1 such that for
each i

�Xi(„i≠1,i(Ai≠1), „i+1,iAi+1) ≥= �i.

A group
Gj

k
(�1, �2, �3) = fi1(Dj

k
(�1, �2, �3))

is called a (k-fold) generalized triangle group.

Bridson and Haefliger considered the developability of a complex of groups in [BH99,
III.C]. The following is well known: see e.g. [CCKW20, Theorem 3.1].

Proposition 3.5.2. Suppose that girth(�i) Ø 6 for each i. Then Gj

k
(�1, �2, �3) acts

properly and cocompactly on a triangular complex Xj

k
(�1, �2, �3) such that the link of

each vertex is isomorphic to � œ {�i}i. If girth(�1) > 6, then G is hyperbolic.

Definition 3.5.3 (Generalized ordinary triangle groups). Consider the following
complex of groups. Fix k Ø 2, and identify the boundaries of k 2-simplices to construct
a simplicial complex K with three vertices v1, v2, v3, three edges e1, e2, e3, and k 2-
simplices. Then Lk(vi) ƒ Ck,2, the cage graph on k edges, i.e. the smallest k regular
graph of girth 2.

Let Pi = fi1(Lk(vi)), and let G0,k be the free group on 2k ≠ 2 letters. Note that
we can view G0,k as the fundamental group of the following complex of groups. The
underlying complex is K, the vertex groups are P1, P2, P3, and the edge groups are
trivial. Now, let �i # Lk(vi) be finite-sheeted normal covering graphs, with associated
normal subgroups Qi E Pi. Let D be a complex of groups with underlying complex K

and (finite) vertex groups Vi = Pi/Qi. Since there are choices for the above complex,
we will let Dj

0,k
(�1, �2, �3), j = 1, . . . , be the finite exhaustive list of possible complexes

of groups achieved by the above construction. Form the (k-fold) generalized ordinary
triangular group

Gj

0,k
(�1, �2, �3) = fi1(Dj

0,k
(�1, �2, �3)) = G0,k/ÈÈQ1 fi Q2 fi Q3ÍÍ.

Note that in this definition the graphs �i are covers of Ck,2 so that they are
connected, contain no cut edges, and have girth at least 2. We use the following
proposition, the first part of which is as stated in [LMW19, Proposition 3.2], both
parts of which follow by an application of [BH99, Theorem III.C.4.17].

Proposition 3.5.4. [LMW19, Proposition 3.2][BH99, Theorem III.C.4.17]
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If girth(�i) Ø 6 for each i, then Gj

0,k
(�1, �2, �3) acts properly discontinuously and

cocompactly on a simply connected simplicial complex Xj(�1, �2, �3) with links isomor-
phic to �, where � œ {�1, �2, �3}. If, furthermore, girth(�1) > 6, then G0,k(�1, �2, �3)
is hyperbolic.

Theorem A, along with Proposition 3.5.2 and Proposition 3.5.4 above, allow us
to cubulate Gj

k
(�1, �2, �3) and Gj

0,k
(�1, �2, �3) when given enough information about

each of �1, �2, �3. The purpose of this subsection is to provide a way to prove such
a group acts properly discontinuously on a CAT (0) cube complex by considering �1

alone. Again, see Section 3.2.1 for the relevant definitions.

Theorem 3.5.5. Let �i # Ck,2 be finite-sheeted covers such that girth(�i) Ø 6 for
each i, and let G = Gj

0,k
(�1, �2, �3) or G = Gj

k
(�1, �2, �3). If �1 is weighted strongly

edge 3-separated, then G acts properly discontinuously on a CAT (0) cube complex. If,
in addition, G is hyperbolic, then this action is cocompact.

Now, fix j, let G = Gj

k
(�1, �2, �3) or G = Gj

0,k
(�1, �2, �3), and let X = Xj

k
(�1, �2, �3)

be as in Proposition 3.5.2 or Proposition 3.5.4. Note that the antipodal graph �G\X is
the disjoint union of three components �1, �2, �3, such that for any vertex v œ �i

either v is secondary, or LkG\X(v) ≥= �i. Suppose �1 is a weighted strongly edge
3-separated graph, and endow X with the metric that turns each triangle into a unit
equilateral Euclidean triangle: X is CAT (0) with this metric. Then for each v œ V (�1),
LkG\X(v) is a strongly edge fi-separated graph. Since cutsets are proper, we can assign
to every cutset the canonical partition: as discussed in Section 3.2.4 this is su�cient
for cubulation, and therefore we omit the reference to partitions for the remainder of
this section. As in Section 3.2.5 construct the graphs �1, . . . , �m as images of

�i # �1 æ G\X.

In particular, if a vertex v has LkX(v) = �1, we have a hypergraph passing through
every fi-separated edge cutset in LkX(v) = �1. As in Section 3.2.7, we can again build
the system of hypergraph walls.

We now analyse the separation of this complex by hypergraphs.

Lemma 3.5.6. Suppose that �1 is weighted strongly edge 3-separated, and let “ be a
geodesic in X of length at least 100. There exists a hypergraph � that separates the
endpoints of any finite geodesic extension of “.
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Proof. Since “ has length at least 100, we may write “ = — · “1 · “2 · “3 · ” such that
1 Æ l(“i) Æ

Ò
3/2, l(—), l(”) Ø 40 and the endpoints of each “i lie in X(1). We may

assume that either:

case a) “2 contains an edge of X(1) of the form [u, v],

case b) or “2 contains a subpath that intersects X(1) at exactly two points x, y

in ˆT for some 2-cell T .

Now consider case a). There are two subcases to consider.

Case a.i) u and v have links isomorphic to �2 and �3 respectively (or vice versa),

Case a.ii) or v has link isomorphic to �1.

In case a.i), “2 contains a secondary vertex x that is opposite to some w with LkX(w) ≥=
�1. By Lemma 3.2.32, the hypergraph passing through x and w therefore separates
the endpoints of “Õ, and so the endpoints of any geodesic extension of “.

In case a.ii), consider the path “3. If “3 is not an edge then “3 satisfies the hypothesis
of case b) using “3 in place of “2. Otherwise we may assume that “2 · “3 = [u, v] · [v, w]
for two edges. Now, dLk(v)([u, v], [v, w]) Ø fi as “2 · “3 is geodesic: let C be the cutset
separating [u, v] and [v, w] in Lk(v) ≥= �1 (this exists as �1 is strongly 3-separated): by
Lemma 3.2.32 the hypergraph passing through C in Lk(v) separates the endpoints of
“.

⇤
wx

u

v

�2

1

Fig. 3.9 Strongly edge separated analysis: Case a.i)
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�2

u

w

�3

⇤

v

1

Fig. 3.10 Strongly edge separated analysis: Case a.ii)

For case b) there are three subcases:

case b.i) the two paths in ˆT from x to y each contain one of the vertices u, v

such that u is primary with Lk(u) ≥= �1, and v is secondary and antipodal to u

in ˆT ,

case b.ii) one of the two paths in ˆT from x to y contains both of the vertices
u, v where u is primary with Lk(u) ≥= �1, and v is secondary and opposite to u,

case b.iii) or “2 = [x, y] for some geodesic between x œ X(1) and a primary
vertex y that satisfies Lk(y) ≥= �1.

In case b.i), by Lemma 3.2.32 the hypergraph passing through u and v separates the
endpoints of “2 and so the endpoints of “.

Consider case b.ii). Let Tx, Ty be the two 2-cells adjacent to T containing the
vertex x and y respectively, with “ passing through both Tx, Ty. Note that x and y lie
on di�erent edges of ˆT . Suppose that “1 passes through x and “3 passes through y:
we may see that by a simple Euclidean geometry argument for angles that either “1 or
“3 satisfies case b.i).

In case b.iii) extend “2 through y until we meet X(1) at a third point z: without
loss of generality this can be written “2 · “3 = [x, y] · [y, z]. Now, as “ is geodesic, we
have dLk(y)([x, y], [y, z]) Ø 3. Let C be the cutset in Lk(y) ≥= �1 such that [x, y] and
[y, z] are separated by C (this exists as �1 is strongly 3-separated), and let � be the
hypergraph passing through C in Lk(y). By Lemma 3.2.32 � separates the endpoints
of “.
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⇤
v

x

u

y

�2

1

Fig. 3.11 Strongly edge separated analysis: Case b.i)

TTx

Ty

uv

x y

�2

v0

⇤

1

Fig. 3.12 Strongly edge separated analysis: Case b.ii)

�2

�3

⇤

y

x

z

1

Fig. 3.13 Strongly edge separated analysis: Case b.iii)

We can now prove Theorem 3.5.5.

Proof of Theorem 3.5.5. By Proposition 3.5.4, the group G acts properly discontin-
uously and cocompactly on a simply connected simplicial complex X. Endow this
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complex with the Euclidean metric: by Gromov’s link condition X is CAT (0) and has
three types of vertices {vi} where Lk(vi) = �i.

If �1 is strongly 3-separated, then by Lemma 3.5.6, we have

#W(p, q) Ø dX(p, q)/100 ≠ 1.

The results then follow by [HW14, Theorem 5.2] and [HW14, Lemma 7.2] similarly to
the proof of Theorem A, using Lemma 3.5.6 in place of Lemma 3.2.45.

3.5.2 Small girth generalized triangle groups

To prove Corollary C, we now analyse the separation of various small girth graphs
considered in [CCKW20]. These graphs arise in the work of [CM95, CD02, CMMP06]
and are regular bipartite graphs with girth 6 or 8, diameter 3 or 4, and an edge regular
subgroup of the automorphism group. In particular, we have the following.

Lemma. [CM95] Let � be one of {F24A, F26A, F40A, F48A}. Then Aut(�) acts
vertex transitively.

Lemma. [CCKW20, Sections 4.2, 4.3] Let � be one of {F24A, F26A, F40A, F48A, G54}:
there exists a subgroup H(�) Æ Aut(�) that acts freely and transitively on E(�) and
preserves the bipartition of �.

We make the following definitions. These are stronger definitions than weighted
3-separated, but allow us to solve the gluing equations more easily, and therefore prove
Lemma 3.5.19.

Definition 3.5.7 (Cubic graphs). Let � be a finite graph. It is cubic if it is connected,
bipartite, and trivalent.

Definition 3.5.8 (†-separated graphs). Let � be a graph. We say that � is †-separated
if:

i) � is cubic,

ii) girth(�) = 6 or 8,

iii) and � is disjointly weighted vertex 3-separated by proper cutsets, (so that
� ≠ C consists of exactly three components for each C).

Definition 3.5.9 (Good cubic graphs). A cubic graph is good if girth(�) = 6 or 8,
diam(�) Æ 4, Aut(�) acts vertex transitively, and there exists a group H(�) Æ Aut(�)
that acts freely and transitively on E(�) and preserves the bipartition of �.



3.5 Application to generalized triangular groups 51

In the above definition, for any vertex v of �, H(�)v is of order three and so
cyclically permutes the neighbours of v. Fix a vertex v0 œ V (�). For each pair of
vertices v ”= w, choose an element “v,w œ Aut(�) with “v,wv = w, such that

i) “v,w = “v,v0“v0,w,

ii) “v,w = “≠1
w,v

,

iii) and if v, w œ V1 or v, w œ V2, then “v,w œ H(�).

For each v œ V (�) we will let neighbours of v be defined as w1(v), w2(v), w3(v), so that
“v0,vwi(v0) = wi(v). We also assign to H(�)v a generator hv such that hvw1(v) = w2(v),
hvw2(v) = w3(v), and so on, i.e. hv = “v0,vhv0“v,v0 .

Definition 3.5.10 (ú-separated cutsets). Let C be a vertex cutset in a graph �. We
say C is a ú-separated cutset if C is 3-separated, �≠C contains exactly two components,
and for any vertex w œ C, there are two vertices v, vÕ adjacent to w such that v and vÕ

lie in distinct components of � ≠ C.

Definition 3.5.11. Let � be a good cubical graph, and let C be a collection of
ú-separated cutsets. For v œ V (�), we define

ú(v, i, j)

to be the set of all ú-separated cutsets C – v such that wi(v) and wj(v) lie in the same
connected component of � ≠ C. We further define

C(v, i, j) := C fl ú(v, i, j).

Definition 3.5.12 (ú-separated graph). Let � be a graph. We say that � is ú-separated
if:

i) � is a cubic graph,

ii) � is weighted vertex 3-separated by a set C of ú-separated cutsets (and hence
for any vertex v and any i ”= j, C(v, i, j) is non-empty),

iii) there exists an integer M and positive integers n(C) for each C œ C such that
for any vertex v and any i ”= j,

ÿ

CœC(v,i,j)
n(C) = M

3 .
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For ease, we prove the following lemma.

Lemma 3.5.13. Let � be a good cubic graph. Let V1 Û V2 be the bipartite partition
of vertices, and choose v1 œ V1. Suppose that there exists a ú-separated cutset A with
v1 œ A œ ú(v1, 1, 2). Then � is ú-separated.

Proof. We need to show three separate things. Firstly we show that there exists a
collection C of ú-separated cutsets so that � is vertex 3-separated by C. Recall that we
defined the element “ = “v1,v2 , the element of Aut(�) taking v1 to v2 := w1(v1) œ V2.

Let H := H(�) be the group acting edge-regularly on � and preserving the bipartite
partition. Let B = “ · A, A = H · A, B = H · B, and C = A fi B.

By assumption, C(v1, 1, 2) is non-empty. For any vertex v, “v1,vC(v1, 1, 2) = C(v, 1, 2),
and furthermore, hvC(v, 1, 2) = C(v, 2, 3) = h≠1

v
C(v, 1, 3). Therefore C(v, i, j) is non

empty for all v and all i ”= j. In particular for any vertex v and w, wÕ adjacent to v

there exists a cutset separating w and wÕ.
Now let u, v be vertices distance at least 3 apart. Note that d(u, v) Æ 4 as

diam(�) Æ 4. Assume d(u, v) = 3, and let

p = (u, u1)(u1, u2)(u2, v)

be any edge path between u and v.
Now, suppose without loss of generality that u = w1(u1) and u2 = w2(u1). Then

choosing a cutset C œ C(u1, 1, 3), u and u2 lie on separate components of � ≠ C. Since
C is 3-separated, and u1 œ C, it follows that u, v are not elements of C. As u is
adjacent to u1 and v is adjacent to u2, it follows that u and v lie in di�erent components
of � ≠ C.

If d(u, w) = 4, then we repeat the argument for

p = (u, u1)(u1, u2)(u2, u3)(u3, v)

and for C the cutset containing u2 and separating u1 and u3. It now follows by Lemma
3.2.10 that � is vertex 3-separated.

Finally we wish to find the positive integers M and n(C). This immediately implies
the weight equations can be solved, and so � is weighted vertex 3-separated with
respect to C. The proof is similar to the proof of Lemma 3.2.22 concerning vertex
transitive automorphism groups.
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Let C̃ = H · A fi H · B counted with multiplicity. Let u, v œ V1. For i = 1, 2, 3, we
have “u,v(wi(u)) = wi(v). It follows that for C œ C̃,

C œ C(u, i, j) ≈∆ “u,vC œ C(v, i, j).

Similarly

C œ C(u, 1, 2) ≈∆ huC œ C(u, 2, 3) ≈∆ h2
u
C œ C(u, 1, 3).

Let n(C) = |{C Õ
œ C̃ : C Õ = C}|, i.e. n(C) is the multiplicity of C in C̃. By applying

“v1,v and hv1 , we see that for any v œ V1 and i ”= j, iÕ
”= jÕ:

ÿ

CœC(v1,i,j)
n(C) =

ÿ

CœC(v,iÕ,jÕ)
n(C).

Therefore there exists an integer M1 such that for for any v œ V1 and i ”= j:

ÿ

CœC(v,i,j)
n(C) = M1

3 .

Similarly there exists an integer M2 such that for any v œ V2 and i ”= j:

ÿ

CœC(v,i,j)
n(C) = M2

3 .

Now finally we wish to show that M1 = M2. However, this follows immediately by
construction, as B = “ · A, and C = A fi B.

Using this, we investigate the separation of several graphs.

xi xj adjacent to xi

0 1 2 3
1 0 4 5
2 0 6 8
3 0 7 9
4 1 11 14
5 1 10 13
6 2 12 16
7 3 12 15

xi xj adjacent to xi

8 2 11 18
9 3 10 17
10 5 9 21
11 4 8 20
12 6 7 19
13 5 19 23
14 4 19 22
15 7 20 23

xi xj adjacent to xi

16 6 21 22
17 9 20 22
18 8 21 23
19 12 13 14
20 11 15 17
21 10 16 18
22 14 16 17
23 13 15 18

Table 3.2 Edge incidences for F24A
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Lemma 3.5.14. The graph F24A is †-separated.

Proof. By a computer search we find all 3-separated vertex cutsets in F24A:

C1 = {x0, x10, x11, x12, x22, x23},
C2 = {x1, x8, x9, x15, x16, x19},
C3 = {x2, x4, x7, x13, x17, x21},
C4 = {x3, x5, x6, x14, x18, x19}.

We note diam(F24A) = 4. As the above are disjoint and proper, it follows easily
that F24A is †-separated.

xi xj adjacent to xi

0 1 2 3
1 0 4 7
2 0 6 9
3 0 5 8
4 1 10 13
5 3 11 14
6 2 12 15
7 1 11 16
8 3 12 17

xi xj adjacent to xi

9 2 10 18
10 4 9 22
11 5 7 20
12 6 8 21
13 4 23 24
14 5 24 25
15 6 23 25
16 7 21 23
17 8 22 24

xi xj adjacent to xi

18 9 20 25
19 20 21 22
20 11 18 19
21 12 16 19
22 10 17 19
23 13 15 16
24 13 14 17
25 14 15 18

Table 3.3 Edge incidences for F26A

Lemma 3.5.15. The graph F26A is ú-separated.

Proof. We can take v1 = x0, wi = xi. Using the notation as in Lemma 3.5.13 we find
A = {x0, x10, x12, x14, x20, x23}. The result follows by Lemma 3.5.13.

We defer the collection of cutsets found for F40A to Section 3.6. The graph F40A

has the following edge incidences.

Table 3.4 Edge incidences for F40A

xi xj adjacent to xi xi xj adjacent to xi xi xj adjacent to xi

0 1 2 3 14 7 23 33 27 18 21 34
1 0 4 5 15 6 22 32 28 13 19 36
2 0 6 7 16 9 25 33 29 12 18 36
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3 0 8 9 17 8 24 32 30 11 21 37
4 1 10 12 18 6 27 29 31 10 20 37
5 1 11 13 19 7 26 28 32 15 17 38
6 2 15 18 20 8 26 31 33 14 16 38
7 2 14 19 21 9 27 30 34 23 24 27
8 3 17 20 22 11 15 35 35 22 25 26
9 3 16 21 23 10 14 34 36 28 29 39
10 4 23 31 24 13 17 34 37 30 31 39
11 5 22 30 25 12 16 35 38 32 33 39
12 4 25 29 26 19 20 35 39 36 37 38
13 5 24 28

Lemma 3.5.16. The graph F40A is weighted strongly edge 3-separated.

Proof. We require a large number of cutsets for this proof: they can be found in Section
3.6.

In particular, we find a collection of cutsets {Ci}i such that for any vertices w1, w2

with d(x0, w1) Ø 3 and d(w1, w2) = 1 there exists some Ci separating {x0, x1} and
{w1, w2} (this can be easily checked by computer). Similarly for any vertices w1, w2

with d(x1, w1) Ø 3 and d(w1, w2) = 1 there exists some Ci separating {x0, x1} and
{w1, w2}. By passing to subsets of Ci we may assume each of these cutsets are minimal
and therefore proper.

As Aut(F40A) acts edge and vertex transitively, it follows by Lemma 3.2.6 that
F40A is strongly edge 3-separated. Hence, by Lemma 3.2.23, F40A is weighted
disjointly strongly edge 3-separated.

Table 3.5 Edge incidences for F48A

xi xj adjacent to xi xi xj adjacent to xi xi xj adjacent to xi

0 1 2 3 16 5 27 31 32 21 41 43
1 0 4 5 17 4 26 30 33 20 41 42
2 0 6 8 18 9 25 35 34 19 40 44
3 0 7 9 19 8 24 34 35 18 39 45
4 1 11 17 20 7 28 33 36 43 45 46
5 1 10 16 21 6 29 32 37 42 44 47
6 2 13 21 22 11 13 14 38 39 40 41
7 3 12 20 23 10 12 15 39 31 35 38
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8 2 15 19 24 11 19 43 40 30 34 38
9 3 14 18 25 10 18 42 41 32 33 38
10 5 23 25 26 15 17 47 42 25 33 37
11 4 22 24 27 14 16 46 43 24 32 36
12 7 23 29 28 13 20 45 44 29 34 37
13 6 22 28 29 12 21 44 45 28 35 36
14 9 22 27 30 17 40 46 46 27 30 36
15 8 23 26 31 16 39 47 47 26 31 37

Lemma 3.5.17. The graph F48A is †-separated.

Proof. By a computer search we find all 3-separated vertex cutsets in F48A:

C1 = {x0, x16, x17, x18, x19, x20, x21, x22, x23, x36, x37, x38},
C2 = {x1, x6, x7, x14, x15, x24, x25, x30, x31, x41, x44, x45},
C3 = {x2, x5, x9, x11, x12, x26, x28, x32, x34, x39, x42, x46},
C4 = {x3, x4, x8, x10, x13, x27, x29, x33, x35, x40, x43, x47}.

The above are disjoint and proper, and it can be seen that F48A is †-separated.

We defer the collection of cutsets found for G54 to Section 3.6.

Table 3.6 Edge incidences for G54

xi xj adjacent to xi xi xj adjacent to xi xi xj adjacent to xi

0 1 25 53 18 17 19 43 36 7 35 37
1 0 2 30 19 18 20 48 37 12 36 38
2 1 3 15 20 19 21 33 38 37 39 51
3 2 4 44 21 8 20 22 39 26 38 40
4 3 5 11 22 21 23 29 40 39 41 47
5 4 6 52 23 16 22 24 41 34 40 42
6 5 7 31 24 23 25 49 42 13 41 43
7 6 8 36 25 0 24 26 43 18 42 44
8 7 9 21 26 25 27 39 44 3 43 45
9 8 10 50 27 14 26 28 45 32 44 46
10 9 11 17 28 27 29 35 46 45 47 53
11 4 10 12 29 22 28 30 47 40 46 48
12 11 13 37 30 1 29 31 48 19 47 49
13 12 14 42 31 6 30 32 49 24 48 50
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14 13 15 27 32 31 33 45 50 9 49 51
15 2 14 16 33 20 32 34 51 38 50 52
16 15 17 23 34 33 35 41 52 5 51 53
17 10 16 18 35 28 34 36 53 0 46 52

Lemma 3.5.18. The Gray Graph G54 is weighted strongly edge 3-separated.

Proof. We require a large number of cutsets for this proof: they can be found in Section
3.6. In particular, we find a collection of 3-separated cutsets {Ci}i such that each Ci

contains one of the edges

(x0, x1), (x0, x53), (x24, x25), (x25, x26).

Therefore, as each cutset is 3-separated, they cannot contain the edge (x0, x25), and so
for each cutset, x0 and x25 lie in the same component of G54 ≠ Ci.

We also show that for any point v with d(x0, v) Ø 3 and any neighbour w of v,
there exists some Ci separating {x0, x25} and {v, w}. Furthermore, for any point v

with d(x25, v) Ø 3 and any neighbour w of v, there exists some Ci separating {x0, x25}

and {v, w}. By passing to subsets of Ci we may assume each of these cutsets are
minimal and therefore proper. Now, let p = (u, w1)(w1, w2) . . . (wn, v) be some path
with 2 Æ n Æ 5 of length between 3 and 6. Let uÕ be adjacent to u and vÕ be adjacent
to v.

Note again that Aut(G54) acts transitively on the set of edges. If we can map
u to x0 by some element “ œ Aut(G54), then we may also map uÕ to x25 by “, and
then for some i, Ci separates x0, x25 and “v, “vÕ: “≠1Ci then separates u, uÕ and v, vÕ.
Otherwise, we map u to x25 by “, so that “uÕ = x0. The result follows similarly.

Therefore, G54 is strongly edge 3-separated, and as it has an edge transitive
automorphism group, it is weighted strongly edge 3-separated by Lemma 3.2.23.

We finally need to prove the following.

Lemma 3.5.19. Let Y be a finite triangle complex such that each triangle is a unit
equilateral Euclidean triangle. Suppose that the link of each vertex is either ú-separated
or †-separated with the combinatorial metric (we allow a mixture of these). Then Y is
gluably fi-separated.

Proof. It is clear that Y is non-positively curved and regular. By Lemma 3.2.24, if the
link of each vertex is †-separated with the combinatorial metric then we are finished.



58 Link conditions for cubulation

Otherwise, let {vk} be the vertices such that Lk(vk) is ú-separated with the com-
binatorial metric, and {wl} be the vertices such that Lk(wl) is †-separated with the
combinatorial metric. Note that a 3-separated cutset in Lk(x) under the combinatorial
metric is a fi-separated cutset in Lk(x) under the angular metric.

For each proper fi-separated cutset C in Lk(wl) we may assign the three partitions
P1(C), P2(C), P3(C) corresponding to placing two components of Lk(wl) ≠ C in the
same element of the partition. For each cutset C in Lk(vk) assign the unique partition
of connectedness of Lk(vk) ≠ C.

Since the links are †-separated and ú-separated, by assumption for each vertex
x œ Y there exists a positive integer Nx > 0 and a system of strictly positive weights
nx(C) for C œ Cx such that for any vertex e in LkY (x),

ÿ

CœC(e)
nx(C) =

ÿ

CœC(e)flCx

nx(C) = Nx.

Furthermore, if Lk(vk) is ú-separated, then for any vertex y œ V (Lk(vk)) and i ”= j

ÿ

CœCvk (y,i,j)
nvk

(C) = Nvk

3 .

Let M = r
xœV (Y ) Nx, and for a cutset C œ Cx, define

‹(C) = Mnx(C)/Nx.

It follows that for a vertex e in LkG\X(x),

ÿ

CœC(e)
‹(C) = M

Nx

ÿ

CœC(e)
nx(C) = M

Nx

Nx = M.

Now, take µ(C, P (C)) = ‹(C). It follows that for any oriented edge e of Y (1) starting
at some wl and any partition (C, P ) œ CP(e):

ÿ

(CÕ,P Õ)œ[C,P ]e
µ(C Õ, P Õ) =

ÿ

(CÕ,P Õ)œ[C,P ]e
‹(C Õ) = 1

3
ÿ

CÕœC(e)
‹(C Õ) = 1

3M.

Similarly, by the definition of ú-separated, for each vk, each edge e starting at vk, and
(C, P (C)) œ C(e),

ÿ

(CÕ,P Õ)œ[C,P ]e
µ(C Õ, P Õ) =

ÿ

(CÕ,P Õ)œ[C,P ]e
‹(C Õ) = 1

3
ÿ

(CÕ,P Õ)œC(e)
‹(C Õ) = 1

3M,
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and so the gluing equations are solved.

The results of Corollary C now follow from [CCKW20, Theorem 3.1], Proposition
3.5.4, the above lemmas concerning the separation of the graphs considered, Theorem
A, and Theorem 3.5.5.

3.5.3 Cubulating Dehn fillings of generalized ordinary trian-
gle groups

We now apply Theorem A to the generalized triangle groups of [LMW19], in particular
retrieving consequences of the malnormal special quotient theorem of Wise [Wis21].

Corollary 3.5.20. Let �i # Ck,2 be finite n(i)-sheeted normal covering graphs. There
exist finite-sheeted normal covering graphs �̇i # �i of index at most

41+4kn(i)

such that for any collection of finite-sheeted covering graphs �i # �i that factor as
�i # �̇i # �i, and any j, the group Gj

0,k
(�1, �2, �3) is hyperbolic and acts properly

discontinuously and cocompactly on a CAT (0) cube complex.

We consider covers of ‡-separated graphs: we restrict our consideration to graphs
with the combinatorial metric. We note the following lemma.

Lemma 3.5.21. Let p : �̃ # � be a covering graph. Let e œ E(�) and let ẽ1, ẽ2 œ p≠1(e)
be distinct. Then

d�̃(m(ẽ1), m(ẽ2)) Ø girth(�).

We now show that covers of ‡-separated graphs are also ‡-separated.

Lemma 3.5.22. Let � be a weighted (disjointly) edge ‡-separated graph with girth(�) Ø

‡ and p : �̃ # � a finite-sheeted covering graph. Then �̃ is also weighted (disjointly)
edge ‡-separated, and girth(�̃) Ø girth(�).

Proof. It is clear that girth(�̃) Ø girth(�), and that �̃ is connected and contains
no vertices of degree 1. Let C1, . . . , Cm ™ E(�) be the ‡-separated cut sets of �.
Let C̃i = p≠1(Ci): by Lemma 3.5.21, and by noting that for all x, y œ �̃ we have
d�̃(x, y) Ø d�(p(x), p(y)), we see that C̃i is a collection of proper min{girth(�), ‡}-
separated cut sets. Furthermore |C̃i| Ø |Ci| Ø 2. As girth(�) Ø ‡, these are ‡-separated
and fiiC̃i = E(�̃). Therefore, �̃ is edge ‡-separated.
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If � is disjointly separated, it is clear that �̃ is disjointly separated. Finally, defining
n(C̃i) = n(Ci), it can be seen that the weight equations are satisfied, so that �̃ is
weighted (disjointly) edge ‡-separated.

Using the above, we wish to show that given any graph �, there exists a finite-sheeted
3-separated covering graph �̃ # �.

Definition 3.5.23. Let � be a graph and m Ø 0. The Zm cover of �,

pm : Zm(�) # �,

is the mb1(�)-sheeted normal cover corresponding to the kernel of the canonical map
fi1(�) æ H1(�,Zm).

The use of this is the following.

Lemma 3.5.24. Let � be a finite connected graph with no cut edges and let m Ø

1. The covering graph Z2m(�) is weighted disjointly edge girth(�)-separated and
girth(Z2m(�)) = 2m(girth(�)).

Proof. Let e œ E(�). We claim p≠1
2m(e) is a proper girth(�)-separated cut set in Z2m(�).

By Lemma 3.5.21, p≠1
2m(e) is girth(�)-separated. It su�ces to show that if two points x

and y are joined by a path q containing one edge of p≠1
2m(e), then any path qÕ between

them contains an edge of p≠1
2m(e). Now suppose not: consider such a path qÕ not

containing any edge of p≠1
2m(e), and consider the loop qqÕ. Then p2m(qqÕ) is trivial in

the map to H1(�,Z2m), so is homotopic to a curve containing e an even number of
times, a contradiction.

Therefore the set Ce = {p≠1
2m(e) : e œ E(�)} is a disjoint collection of proper

girth(�)-separated edge-cut sets such that any edge in Z2m(�) appears exactly one cut
set: the weight equations are trivially satisfied and so Z2m(�) is weighted disjointly
girth(�)-separated.

Any loop in Z2m(�) projects to a loop homotopic to a product of loops where each
loop is traversed 2m times, and so girth(Z2m(�)) = 2m(girth(�)).

Using this, we prove the following.

Proof of Corollary 3.5.20. Let �i # Ck,2 be n(i)-sheeted normal covering graphs . Let
�̇i := Z2(Z2(�)): these are

22≠(22≠2n(i)+kn(i)+2)n(i)+(21≠2n(i)+kn(i)+1)kn(i)
Æ 41+kn(i)2kn(i)

Æ 4
A

44kn(i)
B
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sheeted covering graphs, which, by Lemma 3.5.24, are weighted disjointly edge 3-
separated under the combinatorial metric and have girth at least 8. Furthermore, it is
clear that �̇i # Ck,2 are normal covers. Suppose �i # �i factors as �i # �̇i # �i. By
Proposition 3.5.4, noting that girth(�i) Ø girth(�̇i) > 6, the group Gj

0,k
(�1, �2, �3)

is hyperbolic. The �i are covers of �̇i, so by Lemma 3.5.22 are also weighted edge
3-separated under the combinatorial metric. The result now follows from Lemma 3.2.24,
Proposition 3.5.4, and Theorem A.

3.6 Large collections of cutsets
In this section we provide the selection of cutsets described in Lemmas 3.5.16 and
3.5.18. Throughout, we use the notation ei,j = (xi, xj).

3.6.1 F40A

We find the following cutset for F40A.
{e1,5, e2,7, e3,9, e10,23, e12,25, e15,22, e17,24, e18,27, e20,26, e28,36, e30,37, e33,38} ,

{e1,4, e2,6, e3,8, e11,22, e13,24, e14,23, e16,25, e19,26, e21,27, e29,36, e31,37, e32,38} ,

{e0,3, e4,12, e5,13, e6,18, e7,19, e16,33, e17,32, e20,31, e21,30, e22,35, e23,34, e36,39} ,

{e0,2, e4,10, e5,11, e8,20, e9,21, e14,33, e15,32, e18,29, e19,28, e24,34, e25,35, e37,39} ,

{e0,1, e6,15, e7,14, e8,17, e9,16, e10,31, e11,30, e12,29, e13,28, e26,35, e27,34, e38,39} ,

{e2,7, e3,8, e4,10, e5,13, e15,32, e16,33, e26,35, e27,34, e29,36, e30,37} ,

{e2,6, e3,9, e4,12, e5,11, e14,33, e17,32, e26,35, e27,34, e28,36, e31,37} ,

{e1,5, e3,8, e6,15, e7,19, e10,31, e21,30, e24,34, e25,35, e29,36, e33,38} ,

{e1,5, e2,6, e8,17, e9,21, e12,29, e19,28, e22,35, e23,34, e31,37, e33,38} ,

{e1,4, e3,9, e6,18, e7,14, e11,30, e20,31, e24,34, e25,35, e28,36, e32,38} ,

{e1,4, e2,7, e8,20, e9,16, e13,28, e18,29, e22,35, e23,34, e30,37, e32,38} ,

{e0,3, e5,11, e6,15, e10,31, e12,25, e14,33, e17,24, e19,26, e21,27, e36,39} ,

{e0,3, e4,10, e7,14, e11,30, e13,24, e15,32, e16,25, e18,27, e20,26, e36,39} ,

{e0,2, e5,13, e8,17, e10,23, e12,29, e15,22, e16,33, e19,26, e21,27, e37,39} ,

{e0,2, e4,12, e9,16, e11,22, e13,28, e14,23, e17,32, e18,27, e20,26, e37,39} ,

{e0,1, e7,19, e8,20, e10,23, e13,24, e15,22, e16,25, e18,29, e21,30, e38,39} ,

{e0,1, e6,18, e9,21, e11,22, e12,25, e14,23, e17,24, e19,28, e20,31, e38,39} .
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3.6.2 G54

We find the following cutsets for G54.
{e0,53, e2,3, e13,14, e16,17, e21,22, e24,49, e26,39, e28,35, e30,31} ,

{e0,1, e3,4, e6,31, e8,21, e10,17, e12,13, e19,48, e23,24, e26,27, e35,36, e38,51, e40,41, e45,46} ,

{e0,1, e3,4, e6,31, e8,21, e10,17, e12,13, e19,48, e23,24, e26,27, e35,36, e40,41, e45,46, e50,51} ,

{e0,1, e3,4, e6,31, e8,21, e10,17, e12,13, e19,48, e23,24, e26,27, e35,36, e40,41, e45,46, e51,52} ,

{e0,1, e3,4, e6,31, e8,21, e10,17, e14,15, e19,48, e23,24, e28,29, e33,34, e37,38, e42,43, e45,46} ,

{e0,1, e3,4, e6,31, e8,21, e10,17, e14,15, e19,48, e23,24, e28,29, e33,34, e38,39, e42,43, e45,46} ,

{e0,1, e3,4, e6,31, e8,21, e10,17, e14,15, e19,48, e23,24, e28,29, e33,34, e38,51, e42,43, e45,46} ,

{e0,1, e3,4, e6,31, e9,50, e12,13, e15,16, e18,43, e20,33, e22,29, e26,27, e35,36, e40,41, e45,46} ,

{e0,1, e3,4, e6,31, e12,13, e15,16, e18,43, e20,33, e22,29, e26,27, e35,36, e40,41, e45,46, e49,50} ,

{e0,1, e3,4, e6,31, e12,13, e15,16, e18,43, e20,33, e22,29, e26,27, e35,36, e40,41, e45,46, e50,51} ,

{e0,1, e3,44, e5,52, e7,8, e10,11, e13,42, e15,16, e19,48, e22,29, e26,27, e31,32, e34,35, e37,38} ,

{e0,1, e3,44, e5,52, e7,8, e10,11, e13,42, e15,16, e22,29, e26,27, e31,32, e34,35, e37,38, e47,48} ,

{e0,1, e3,44, e5,52, e7,8, e10,11, e13,42, e15,16, e22,29, e26,27, e31,32, e34,35, e37,38, e48,49} ,

{e0,1, e3,44, e5,52, e7,36, e9,50, e11,12, e14,15, e17,18, e20,21, e23,24, e28,29, e31,32, e39,40} ,

{e0,1, e3,44, e5,52, e7,36, e9,50, e11,12, e14,15, e17,18, e20,21, e23,24, e28,29, e31,32, e40,41} ,

{e0,1, e3,44, e5,52, e7,36, e9,50, e11,12, e14,15, e17,18, e20,21, e23,24, e28,29, e31,32, e40,47} ,

{e0,1, e3,44, e5,52, e9,50, e13,42, e17,18, e20,21, e23,24, e26,27, e31,32, e34,35, e37,38, e40,47} ,

{e0,1, e3,44, e5,52, e9,50, e13,42, e17,18, e20,21, e23,24, e26,27, e31,32, e34,35, e37,38, e46,47} ,

{e0,1, e3,44, e5,52, e9,50, e13,42, e17,18, e20,21, e23,24, e26,27, e31,32, e34,35, e37,38, e47,48} ,

{e0,53, e2,3, e5,6, e8,9, e11,12, e16,17, e19,20, e24,49, e27,28, e32,45, e38,51, e40,47, e42,43} ,

{e0,53, e2,3, e5,6, e8,9, e11,12, e16,17, e19,20, e24,49, e28,29, e32,45, e38,51, e40,47, e42,43} ,

{e0,53, e2,3, e5,6, e8,9, e11,12, e16,17, e19,20, e24,49, e28,35, e32,45, e38,51, e40,47, e42,43} ,

{e0,53, e2,3, e5,6, e8,9, e13,14, e16,17, e19,20, e22,29, e24,49, e26,39, e32,45, e34,41, e36,37} ,

{e0,53, e2,3, e5,6, e8,9, e13,14, e16,17, e19,20, e24,49, e26,39, e28,29, e32,45, e34,41, e36,37} ,

{e0,53, e2,3, e5,6, e8,9, e13,14, e16,17, e19,20, e24,49, e26,39, e29,30, e32,45, e34,41, e36,37} ,

{e0,53, e2,3, e5,6, e10,11, e13,14, e18,43, e21,22, e26,39, e32,45, e34,41, e36,37, e47,48, e50,51} ,

{e0,53, e2,3, e5,6, e10,11, e13,14, e18,43, e22,23, e26,39, e32,45, e34,41, e36,37, e47,48, e50,51} ,

{e0,53, e2,3, e5,6, e10,11, e13,14, e18,43, e22,29, e26,39, e32,45, e34,41, e36,37, e47,48, e50,51} ,

{e0,53, e2,3, e7,8, e10,11, e13,14, e16,23, e18,43, e20,33, e26,39, e28,35, e30,31, e47,48, e50,51} ,

{e0,53, e2,3, e7,8, e10,11, e13,14, e18,43, e20,33, e22,23, e26,39, e28,35, e30,31, e47,48, e50,51} ,

{e0,53, e2,3, e7,8, e10,11, e13,14, e18,43, e20,33, e23,24, e26,39, e28,35, e30,31, e47,48, e50,51} ,

{e0,53, e2,3, e7,36, e11,12, e14,27, e16,17, e21,22, e24,49, e30,31, e33,34, e38,51, e40,47, e42,43} ,

{e0,53, e2,3, e7,36, e11,12, e16,17, e21,22, e24,49, e26,27, e30,31, e33,34, e38,51, e40,47, e42,43} ,

{e0,53, e2,3, e7,36, e11,12, e16,17, e21,22, e24,49, e27,28, e30,31, e33,34, e38,51, e40,47, e42,43} ,



3.6 Large collections of cutsets 63

{e0,53, e2,15, e4,5, e9,10, e12,37, e18,19, e21,22, e24,49, e26,39, e28,35, e30,31, e41,42, e44,45} ,

{e1,2, e4,5, e7,8, e10,17, e12,37, e14,27, e20,33, e22,29, e24,25, e41,42, e44,45, e47,48, e50,51} ,

{e1,2, e4,5, e7,8, e12,37, e14,27, e16,17, e20,33, e22,29, e24,25, e41,42, e44,45, e47,48, e50,51} ,

{e1,2, e4,5, e7,8, e12,37, e14,27, e17,18, e20,33, e22,29, e24,25, e41,42, e44,45, e47,48, e50,51} ,

{e1,2, e4,5, e7,8, e12,37, e14,27, e17,18, e22,29, e24,25, e31,32, e34,35, e39,40, e46,53, e50,51} ,

{e1,2, e4,5, e7,8, e12,37, e14,27, e18,19, e22,29, e24,25, e31,32, e34,35, e39,40, e46,53, e50,51} ,

{e1,2, e4,5, e7,8, e12,37, e14,27, e18,43, e22,29, e24,25, e31,32, e34,35, e39,40, e46,53, e50,51} ,

{e1,2, e4,5, e7,36, e9,10, e12,13, e16,23, e18,19, e25,26, e28,29, e33,34, e38,51, e40,47, e44,45} ,

{e1,2, e4,5, e7,36, e9,10, e13,14, e16,23, e18,19, e25,26, e28,29, e33,34, e38,51, e40,47, e44,45} ,

{e1,2, e4,5, e7,36, e9,10, e13,42, e16,23, e18,19, e25,26, e28,29, e33,34, e38,51, e40,47, e44,45} ,

{e1,2, e4,5, e7,36, e9,10, e13,42, e16,23, e20,21, e25,26, e28,29, e31,32, e38,51, e46,53, e48,49} ,

{e1,2, e4,5, e7,36, e9,10, e16,23, e20,21, e25,26, e28,29, e31,32, e38,51, e41,42, e46,53, e48,49} ,

{e1,2, e4,5, e7,36, e9,10, e16,23, e20,21, e25,26, e28,29, e31,32, e38,51, e42,43, e46,53, e48,49} ,

{e1,2, e6,31, e8,21, e11,12, e16,23, e18,19, e25,26, e28,29, e33,34, e40,47, e44,45, e49,50, e52,53} ,

{e1,2, e6,31, e8,21, e12,13, e16,23, e18,19, e25,26, e28,29, e33,34, e40,47, e44,45, e49,50, e52,53} ,

{e1,2, e6,31, e8,21, e12,37, e16,23, e18,19, e25,26, e28,29, e33,34, e40,47, e44,45, e49,50, e52,53} ,

{e1,2, e6,31, e9,10, e14,27, e20,33, e22,29, e24,25, e35,36, e38,39, e41,42, e44,45, e47,48, e52,53} ,

{e1,2, e6,31, e10,11, e14,27, e20,33, e22,29, e24,25, e35,36, e38,39, e41,42, e44,45, e47,48, e52,53} ,

{e1,2, e6,31, e10,17, e14,27, e20,33, e22,29, e24,25, e35,36, e38,39, e41,42, e44,45, e47,48, e52,53} ,

{e1,30, e3,4, e7,8, e12,13, e15,16, e18,43, e24,25, e27,28, e32,45, e34,41, e38,39, e47,48, e52,53} ,

{e1,30, e3,4, e7,36, e10,17, e14,15, e19,20, e22,23, e25,26, e32,45, e40,47, e42,43, e49,50, e52,53} ,

{e1,30, e3,4, e8,9, e12,13, e15,16, e18,43, e24,25, e27,28, e32,45, e34,41, e38,39, e47,48, e52,53} ,

{e1,30, e3,4, e8,21, e12,13, e15,16, e18,43, e24,25, e27,28, e32,45, e34,41, e38,39, e47,48, e52,53} ,

{e1,30, e3,4, e10,17, e14,15, e19,20, e22,23, e25,26, e32,45, e35,36, e40,47, e42,43, e49,50, e52,53} ,

{e1,30, e3,4, e10,17, e14,15, e19,20, e22,23, e25,26, e32,45, e36,37, e40,47, e42,43, e49,50, e52,53} ,

{e1,30, e3,44, e5,6, e8,9, e11,12, e14,15, e17,18, e22,23, e25,26, e33,34, e38,51, e46,53, e48,49} .





Chapter 4

On the eigenvalues of Erdös–Rényi
random bipartite graphs

4.1 The spectra of regular graphs and random graphs
It is well known that many models of random graphs are expanders. In particular,
if A is the adjacency matrix of a graph G on m vertices, we define the ordering
of the eigenvalues of A by µ1(A) Ø µ2(A) Ø . . . Ø µm(A) (we keep this ordering
convention for the eigenvalues of any symmetric matrix). We further define µ(A) =
max{|µ2(A)|, |µm(A)|}. We are concerned with how large µ(A) can be, relative to
the average degree of G. A set of strongly related quantities are the eigenvalues
µi(G) := µi(I ≠ D≠1/2AD≠1/2), where D is the degree matrix of G.

The Alon–Boppana bound states that for a d-regular graph, µ(A) Ø 2
Ô

d ≠ 1
≠ o(1) [Alo86]. A major result due to Friedman is that random d-regular graphs are
almost Ramanujan, i.e. for any ‘ > 0, µ(A) Æ 2

Ô
d ≠ 1 + ‘ with probability tending to

1 as m tends to infinity [Fri08]. Bordenave provided a new proof of the result, as well
as giving a o(1) specific term with µ(A) Æ 2

Ô
d ≠ 1 + o(1) [Bor15].

We note that for p su�ciently large, and G ≥ G(m, p) the Erdös–Rényi random
graph, G is almost mp-regular with probability tending to 1 as m tends to infinity.
When mp = �(log6 m), such a graph also satisfies µ(A) Æ 2[1 + o(1)]Ômp [FK81]:
these results were then extended to a more general model of random graphs with given
expected degree sequence by [CLV04]. Furthermore, there exists a constant c > 0 such
that for p Ø c log m/m, almost surely the random graph satisfies µ(A) Æ O(Ômp)
[FO05] and max

i”=m

|1 ≠ µi(G(m, p))| Æ O(1/
Ô

mp) [CO07].
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Switching to random bipartite graphs, since the eigenvalues of bipartite graphs
are symmetric around zero, we need only consider µ2(A). The analogue of the Alon–
Boppana bound for a (dL, dR)-regular bipartite graph is µ2(A) Ø

Ô
dL ≠ 1+

Ô
dR ≠ 1≠‘

for ‘ > 0 and the number of vertices su�ciently large [FL96, LS96]. Furthermore, the
bound is almost attained for random (dL, dR)-regular graphs: with probability tending
to 1 as the number, m, of vertices tends to infinity, for sequences ‘m, ‘Õ

m
æ 0 and for

G a random (dL, dR)-regular graph, µ2(A) Æ
Ô

dL ≠ 1 +
Ô

dR ≠ 1 + ‘m, and

µ+(A) = min
i

{µi(A) > 0} Ø

Ò
dL ≠ 1 +

Ò
dR ≠ 1 ≠ ‘Õ

m
[BDH18].

There are many other results concerning the eigenvalues of random bipartite graphs:
both [DJ16] and [Tra20] study the spectral distribution of random biregular bipartite
graphs, and show it converges to certain laws when |V1|/|V2| tends to a limit – ”= 0, Œ,
though each of the two considers a di�erent range of (dL, dR). Finally, the second
eigenvalue of the matrix D ≠ A is considered for certain random biregular bipartite
graphs in [Zhu20].

For m2 = m2(m1) Ø m1, and 0 Æ p = p(m1) Æ 1, we define the Erdös–Rényi random
bipartite graph G(m1, m2, p) as the graph with vertex partition V1 = {u1, . . . , um1} and
V2 = {v1, . . . , vm2}, and edge set obtained by adding each edge (ui, vj) independently
with probability p. We write G ≥ G(m1, m2, p) to indicate that the graph G is obtained
by this process.

To our knowledge, there are no results in the literature on the eigenvalues of
G(m1, m2, p): while we do not show such graphs almost attain the Alon–Boppana
bound, we are still able to prove that they are within a multiplicative constant of this
bound, and so µi(G) is close to 1 for any i ”= 1, m1 + m2.

Theorem D. Let m1 Ø 1 and m2 = m2(m1) Ø m1 and let G ≥ G(m1, m2, p)

i) There exists constants c0, c > 0 such that if m1p Ø c0 log m1,

m2p Ø
c0 log m2

1 ≠ log 2/ log(m1 + m2)
, and p Æ [(m1 + m2)2 log5(m1 + m2)]≠1/3,

then with probability tending to 1 as m1 tends to infinity: µ2(A(G)) Æ c
Ô

m2p.

ii) If m1p = �m1(log6(m1)) and m2p = �m1(log6(m2)), then with probability
tending to 1 as m1 tends to infinity:

µ2(A(G)) Æ 2[1 + om1(1)]
AÒ

(m1 + m2)p + Ô
m1p + Ô

m2p

B

.



4.1 The spectra of regular graphs and random graphs 67

iii) If p satisfies either of the above and, in addition, m1p = �m1(log m2), then
with probability tending to 1 as m1 tends to infinity:

max
i”=1,m1+m2

-----µi(G) ≠ 1
----- = om1(1).

4.1.1 Notation and definitions

We now briefly discuss some notation and assumptions. We are dealing with asymptotics,
and so we frequently arrive at situations where m is some parameter tending to infinity
that is required to be an integer: if m is not integer, we will implicitly replace it by
ÂmÊ. Since we are dealing with asymptotics, this does not a�ect any of our arguments.

Definition 4.1.1. Given m1 : N æ N a function such that m1(m) æ Œ as m æ Œ,
we write m2 = m2(m1) to mean that m2(m) = f(m1(m)) for some function f , and
f(m1(m)) æ Œ as m æ Œ, i.e. m2 only depends on m1, and tends to infinity as m1

tends to infinity.

The following are standard.

Definition 4.1.2. Let f, g : N æ R+ be two functions. We write

1. f = o(g) if f(m)/g(m) æ 0 as m æ Œ,

2. f = O(g) if there exists a constant N Ø 0 and M Ø 1 such that
f(m) Æ Ng(m) for all m Ø M , and

3. f = �(g) if g = o(f).

We write f = om(g) etc to indicate that the variable name is m. Typically we will
deal with functions m2 = m2(m1), and f = f(m1, m2). We will write f = om1(g) etc
to mean that the function f Õ(m1) = f(m1, m2(m1)) = om1(gÕ(m1)), where gÕ(m1) =
g(m1, m2(m1)).

Definition 4.1.3. Let M(m) be some model of random groups (or graphs) depending
on a parameter m, and let P be a property of groups (or graphs). We say that P holds
asymptotically almost surely with m (a.a.s.(m)) if

lim
mæŒ

P(G ≥ M(m) has P) = 1.

Again, we will regularly have to deal with cases where m2 = m2(m1) is fixed,
M(m1, m2) is some model of random groups (or graphs) depending on parameters m1
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and m2, and P is a property of groups (or graphs). We say that P holds asymptotically
almost surely with (m1) (a.a.s.(m1)) if

lim
m1æŒ

P(G ≥ M(m1, m2(m1)) has P) = 1.

Typically, we will only use the above in proofs or in the statements of auxiliary technical
lemmas.

Finally, we will often be working with bipartite graphs: the vertex partition of a
bipartite graph G will always be written V (G) = V1(G) Û V2(G).

4.2 Almost regularity of Erdös–Rényi random graphs
and their eigenvalues

In this section, we introduce some models of random graphs, and then prove the
standard fact that they are almost regular.

Definition 4.2.1 (Erdös–Rényi random graph). Let m Ø 1 and 0 Æ p := p(m) Æ 1.
The Erdös–Rényi random graph G(m, p) is the random graph model with vertex set
{u1, . . . , um} and edge set obtained by adding each edge (ui, uj) independently with
probability p. For a random graph G we write G ≥ G(m, p) to indicate that the
distribution of G is that of G(m, p).

Given a model of random graphs M, and a random matrix M , we write M ≥ A(M)
to indicate that the distribution of M is the same as that obtained by sampling a
graph G ≥ M and then taking its adjacency matrix.

Definition 4.2.2 (Almost regular graphs). Let {Gm}
Œ
m=1 be a collection of graphs.

We say that the graphs Gm are almost dm-regular if for every Gm its minimum and
maximum degree are [1 + om(1)]dm.

Definition 4.2.3 (Almost regular bipartite graphs). Let {Gm}
Œ
m=1 be a collection of

bipartite graphs. We say that the graphs Gm are almost (d(1)
m

, d(2)
m

)-regular if for every
Gm the minimum and maximum degree of vertices in V1(Gm) are [1 + om(1)]d(1)

m
and

the minimum and maximum degree of vertices in V2(Gm) are [1 + om(1)]d(2)
m

.

We now analyse the regularity of random bipartite graphs. For this we will use the
Cherno� bounds: for X ≥ Bin(m, p) and ” œ [0, 1],

P(|X ≠ mp| Ø ”mp) Æ 2 exp(≠mp”2/3).
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Lemma 4.2.4. Let m2 = m2(m1) Ø m1 and p = p(m1) be such that
m1p = �m1(log m2). Then a.a.s.(m1) G(m1, m2, p) is almost (m2p, m1p)-regular.

Proof. First note we may write m1p = Ê log m2 for some Ê æ Œ as m1 æ Œ (so that
m2p Ø Ê log m2). Let G ≥ G(m1, m2, p). Let v œ V1(G), w œ V2(G). By the Cherno�
bounds, for a fixed vertex v in V1:

P(|deg(v) ≠ m2p| Ø ‘m2p) Æ exp(≠‘2m2p/3).

Let ‘ = Ê≠1/3 = om1(1). The probability that there exists a vertex in V1 with degree
too large or small is:

P(÷ v œ V1 : |deg(v) ≠ m2p| Ø ‘m2p) Æ m1 exp(≠‘2m2p/3)
Æ m1 exp(≠Ê1/3 log m1/3)

= m
≠�m1 (1)
1 .

Similarly:

P(÷ w œ V2 : |deg(w) ≠ m1p| Ø ‘m1p) Æ m2 exp(≠‘2m1p/3)
Æ m2 exp(≠Ê1/3 log m2/3)

= m
≠�m1 (1)
2 .

We can prove the corresponding result for the Erdös–Rényi random graph in an
identical manner.

Lemma 4.2.5. Let p be such that mp = �m(log m). Then a.a.s.(m) G(m, p) is almost
mp-regular.

4.3 The spectra of Erdös–Rényi random bipartite
graphs

In this section we now analyse the spectra of Erdös–Rényi random bipartite graphs.
We use the following results.

Theorem 4.3.1. [FO05] There exists constants c0, c such that for

c0 log m/m Æ p Æ (m2 log5 m)≠1/3
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and G ≥ G(m, p), a.a.s.(m) maxi”=1 |µi(A(G))| Æ c
Ô

mp.

The standard reference for the following result is [FK81], while an extension of the
result to a more general model of random graphs may be found in [CLV04].

Theorem 4.3.2. [FK81, Chu97] Let p > 0 be such that mp = �m(log6(m)), and let
G ≥ G(m, p). Then a.a.s.(m), maxi”=1 |µi(A(G))| Æ 2[1 + om(1)]Ômp.

We now prove Theorem D.

Proof of Theorem D. Let G ≥ G(m1, m2, p), let A = A(G), and D = D(G). Let GÕ

be the graph obtained by adding to G each (non-loop) edge in V 2
1 with probability p

and each (non-loop) edge in V 2
2 with probability p. Then GÕ

≥ G(m1 + m2, p). The
adjacency matrix of GÕ is of the form

A(GÕ) =
Q

aA1 A2

AT

2 A3

R

b ,

where A1 is the adjacency matrix of a G(m1, p) graph, A3 is the adjacency matrix of a
G(m2, p) graph, and the matrix Q

a 0 A2

AT

2 0

R

b

is the adjacency matrix of G.
Let us deal with case i) first, so that we assume

m1p Ø c0 log m1, m2p Ø
c0

1 ≠ log 2/ log(m1 + m2)
log m2,

and hence

(m1 + m2)p Ø m2p Ø
c0

1 ≠ log 2/ log(m1 + m2)
log m2

Ø
c0

1 ≠ log 2/ log(m1 + m2)
log((m1 + m2)/2)

= c0
1 ≠ log 2/ log(m1 + m2)

(log(m1 + m2) ≠ log 2)

= c0 log(m1 + m2).

Let

AÕ
1 =

Q

aA1 0
0 0

R

b , A = A(G(m1, m2, p)) =
Q

a 0 A2

AT

2 0

R

b , AÕ
3 =

Q

a0 0
0 A3

R

b .
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By Theorem 4.3.1, we see that a.a.s.(m1):

max
i”=1

|µi(A(GÕ))| Æ c
Ò

(m1 + m2)p.

By a further application of Theorem 4.3.1, we see that with probability tending to
1 as m1 (and hence m2 Ø m1) tends to infinity:

| max
i”=1

µi(A1)| Æ c
Ô

m1p, | max
i”=1

µi(A3)| Æ c
Ô

m2p;

this clearly holds for AÕ
1, AÕ

3 also. Hence

µ1(≠AÕ
1) = ≠µm1+m2(AÕ

1) Æ c
Ô

m1p,

and similarly µ1(≠AÕ
3) Æ c

Ô
m2p. Therefore, by Weyl’s inequality, with probability

tending to 1 as m1 tends to infinity:

µ2(A) = µ2

A

A(GÕ) ≠ AÕ
1 ≠ AÕ

3

B

Æ µ2(A(GÕ)) + µ1(≠AÕ
1) + µ1(≠AÕ

3)

Æ c

AÒ
(m1 + m2)p + Ô

m1p + Ô
m2p

B

.

In case ii), by assumption, m1p = �m1(log6 m1) and m2p = �m1(log6 m2), so that
(m1 + m2)p = �m1(log6(m1 + m2)). We apply Theorem 4.3.2 to deduce that with
probability tending to 1 as m1 tends to infinity,

max
i”=1

|µi(A(GÕ))| = 2[1 + om1(1)]
Ò

(m1 + m2)p,

and

| max
i”=1

µi(AÕ
1)| = 2[1 + om1(1)]Ôm1p, | max

i”=1
µi(AÕ

3)| = 2[1 + om1(1)]Ôm2p,

and the calculation follows similarly.
If, furthermore, m1 = �m1(log m2), then by Lemma 4.2.4, G is almost (m2p, m1p)-

regular with probability tending to 1 as m1 tends to infinity, i.e. the minimum and
maximum degree of vertices in V1(G) are [1 + om1(1)]m2p and the minimum and
maximum degree of vertices in V2(G) are [1 + om1(1)]m1p. Therefore, we see that there
exists a matrix

K =
Q

a 0 H

HT 0

R

b
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with
Ò

||H||Œ||H||1 = om1(1) such that

1
Ô

m1m2p2 A = D≠1/2AD≠1/2 + K.

Since maxj |µj(K)| Æ

Ò
||H||Œ||H||1, we see that for i = 1, . . . , m1 + m2:

µi

A
1

Ô
m1m2p2 A

B

= µi

A

D≠1/2AD≠1/2
B

+ om1(1).

As 1≠µi(G) = µm1+m2≠i+1(D≠1/2AD≠1/2) for i = 1, . . . , m1+m2, the result follows.



Chapter 5

Property (T) in density-type
models of random groups

5.1 Property (T) in random groups
Let us first recall the two models of random groups proposed by Gromov in [Gro93] to
study the notion of a ‘generic’ finitely presented group. Fix n Ø 2, k Ø 3, and 0 < d < 1
(the density). The (strict) (n, k, d) model is obtained as followed. Let An = {a1, . . . , an},
and let Fn := F(An) be the free group generated by An. Let C(n, k) be the set of
cyclically reduced words of length k in Fn (so that C(n, k) ¥ (2n ≠ 1)k). Uniformly
randomly select a set R ™ C(n, k) of size |R| = (2n ≠ 1)kd, and let � := ÈAn | RÍ. We
call � a random group in the (strict) (n, k, d) model, and write � ≥ �(n, k, d). If we
keep n fixed and let k tend to infinity, then we obtain the Gromov density model, as
introduced in [Gro93], whereas if we fix k and let n tend to infinity we obtain the
k-angular model, as introduced in [Ash21b]. The k-angular model was first studied
for k = 3 (the triangular model) by Øuk in [Ø03] and for k = 4 (the square model) by
Odrzygóüdü in [Odr16].

The lax (n, k, d) model is obtained via the following procedure. Let C(n, k, f) be
the set of cyclically reduced words of length between k ≠f(k) and k +f(k) in Fn, where
f(k) = o(k). Uniformly randomly select a set R ™ C(n, k, f) of size |R| = (2n ≠ 1)kd,
and let � := ÈAn | RÍ. We call � a random group in the lax (n, k, d, f) model, and
write � ≥ �lax(n, k, d, f). We often drop reference to the function f and simply write
� ≥ �lax(n, k, d), as in many applications the choice of function has no e�ect on the
conclusions.

We first consider the case of the k-angular model. It is a seminal theorem of Øuk
[Ø03] (c.f. [KK13]) that for d > 1/3 a random group in the triangular model has
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Property (T) with probability tending to 1 (see [ALuS15] for the analysis as d æ 1/3).
As observed in [Odr19] the case of k divisible by 3 is easier, as we may use the work of
[Ø03] and [KK13] to observe Property (T) at densities greater than 1/3: see [Mon21]
for the proof that 3k-angular has Property (T) for any d > 1/3. This idea was in fact
extended in [Mon21] to passing from Property (T) in �(n, k, d) to �(n, lk, d) for l Ø 1.
For k Ø 3, let

dk := k + (≠k mod 3)
3k

,

i.e.

dk =

Y
____]

____[

1
3 if k = 0 mod 3,

k+2
3k

if k = 1 mod 3,

k+1
3k

if k = 2 mod 3.

Below, we analyse Property (T) in the k-angular model. We believe this to be the
first result on Property (T) in the k-angular model for any k not divisible by 3, and in
fact provides bounds for Property (T) in the k-angular model for each k Ø 8. Note
that we do not get a lower bound than is already known for the Gromov model.

Theorem E. Let k Ø 8, let d > dk, and let �m ≥ �(m, k, d). Then

lim
mæŒ

P(�m has Property (T )) = 1.

Secondly, we can consider the density model. Again, there is some ambiguity
between the strict model and the lax model in the literature. Indeed, many cubulation
results, such as those of [OW11] and [MP15], refer to groups in the strict model, whilst
results on Property (T) typically refer to groups in the lax model. In particular,
the following result is due to Øuk [Ø03] and Kotowski–Kotowski [KK13] (again, see
[ALuS15] for finer analysis of �(n, 3, d) as d æ 1/3). There is an alternative proof of
the below in [DM19, Corollary 12.7]

Theorem. [Ø03, KK13] (c.f. [DM19, Corollary 12.7]) Fix n Ø 2, let d > 1/3, and let
�k ≥ �(n, 3k, d). Then

lim
kæŒ

P(�k has Property (T )) = 1.

Note that the above results only apply to groups whose relator length is divisible
by 3. However, this result has two important consequences: firstly it provides an
infinite number of hyperbolic torsion free groups with Property (T), since such groups
are torsion free with probability tending to 1, and the Euler characteristic of such a
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group is dependent only on n, k, and d [Oll04]. Secondly, it proves that groups in the
�lax(n, k, d) model have Property (T), using the following argument, which is stated in
[Ø03, KK13].

Lemma. Fix n Ø 2, let d > 0, and let ki be a sequence of increasing integers such that
|ki+1 ≠ ki| is uniformly bounded. If

lim
kiæŒ

P(� ≥ �(n, ki, d) has Property (T)) = 1,

then for any dÕ > d, letting f(l) := maxi |ki+1 ≠ ki|,

lim
læŒ

P(� ≥ �lax(n, l, dÕ, f) has Property (T )) = 1.

Proof. Let C = maxi |ki+1 ≠ ki|, and let f(l) = C. For each l choose ki(l) such that
l ≠ C Æ ki(l) Æ l + C. Then for su�ciently large l, and for �l = ÈAn | RÍ ≥ �lax(n, l, dÕ),
we see that for any d < dÕÕ < dÕ, with probability tending to 1 as l tends to infinity,

|R fl C(n, ki(l))| Ø (2n ≠ 1)d
ÕÕ

ki(l) .

Hence, by choosing a random subset RÕ
™ R fl C(n, ki(l)) of size (2n ≠ 1)kd, and

setting �Õ
i(l) := ÈAn | RÕ

Í, we see that there exists an epimorphism �Õ
i(l) ⇣ �l, and

�Õ
i(l) ≥ �(n, ki(l), d). Since �Õ

i(l) has Property (T) with probability tending to 1 as i(l)
tends to infinity, and Property (T) is preserved by epimorphisms, the result follows.

However, we note that the question of Property (T) remains open for the strict
model. If limkæŒ P(� ≥ �(n, k, d) has Property (T)) = 1, then we must also have
that limiæŒ P(� ≥ �(n, pi, d) has Property (T)) = 1, where pi denotes the ith prime.
Since the results of [Ø03, KK13] do not apply in this regime, we are inspired to further
analyse the question of Property (T) for �(n, k, d).

We now briefly explain the approach taken by [Ø03, KK13] to prove their theorem.
Firstly, one takes n Ø 2, d > 1/3, and considers �m ≥ �(m, 3, d) (in fact we require all
relators to be positive words, i.e. words containing no inverse letters). It can then be
proved that

lim
mæŒ

P(�m has Property (T)) = 1.

The proof of the above is very involved, and requires passing via an alternate model,
the permutation model: we omit the definition of this model as we do not require it.

One fixes dÕ > d, and finds for each k an integer m(k, n) and a surjection �m(k,n) ⇣
�Õ

k
, where �Õ

k
≥ �(n, 3k(m, n), dÕ) (technically this is a surjection onto a finite index
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subgroup of �Õ
k
). The result then follows by preservation of Property (T) under

epimorphisms and taking finite index extensions.
A natural approach to extend the results to the strict model using the techniques of

Øuk and Kotowski–Kotowski would be to fix l Ø 3, let �(m,l) ≥ �(m, l, d), and consider
m æ Œ. Then for each n Ø 2 and k Ø 3 find an integer m(k, l, n) and

�Õ
k

≥ �(n, lk, dÕ)

with �(m(k,l,n),l) ⇣ �Õ
k(m,n,l), as in [Mon21]. However, if we consider the model �(n, pi, dÕ),

then we must have in the above that lk = pk where pk is the kth prime number, which
necessarily forces m(k, l, n) = n, and therefore we cannot use statements of the form
limmæŒ P(�m has Property (T)), as m must be bounded.

To address this, we therefore must deal with the model �(n, k, d) directly. The
approach is to use the work of Ballmann–åwiπtkowski [BS97] and Øuk [Ø96] (c.f. [Ø03]),
in which a spectral condition for Property (T) was provided independently. This will be
used to provide an alternate criterion for Property (T) in terms of the first eigenvalue
of a graph we define relative to �, �k(�). The bulk of this chapter then analyses the
eigenvalues of these random graphs.

The following completes the analysis of Property (T) in �(n, k, d) for d > 1/3.

Theorem F. Let n Ø 2, d > 1/3, and let �k ≥ �(n, k, d). Then

lim
kæŒ

P(�k has Property (T )) = 1.

Note that this immediately implies for any infinite sequence, {ki}i, of increasing
positive integers, and �i ≥ �(n, ki, d) that:

lim
iæŒ

P(�i has Property (T )),

so that we strengthen the results of [Ø03, KK13].
We could also consider the case of d æ 1/3 in a manner similar to that of [ALuS15].

For n Ø 2, k Ø 3, and 0 < p < 1, we can define the random group model �p(n, k, p):
let � = ÈAn | RÍ, where R is obtained by adding each word in C(n, k) with probability
p. Since Property (T) is an increasing property (one preserved by epimorphisms), it
is easy to switch between �p(n, k, p) and �(n, k, (2n ≠ 1)kp) in a manner analogous
to switching between the Erdös–Rényi random graph G(m, p) and the random graph
G(m, M), since the number of relators in R is |R| = (1 + o(1))(2n ≠ 1)kp almost surely,
for p su�ciently large. In fact, we do analyse Property (T) in �p(n, k, p) in Theorems
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5.5.2 and 5.5.6, and then use these to prove Theorems E and F. However, we believe
that the notation and constants involved in the statements of Theorems 5.5.2 and 5.5.6
add unnecessary complexity to the statement of Theorems E and F, and so we leave
these to Section 5.5.

5.1.1 Structure of the chapter

Our proof of Theorems E and F are greatly inspired by the work of [Ø03, KK13, ALuS15].
The idea of the proof is the following: for a finitely presented group � we find a graph
�(�), and using work of [Ø96], [BS97], we prove that if ⁄1(�(�)) > 1/2, then �
has Property (T). This graph loosely corresponds to the ‘link of depth k/3’ of the
presentation complex for �. For random groups this graph �(�) can be written as the
union of a graph �2 and two graphs �1, �3 (which will be bipartite for k ”= 0 mod 3).
If we allowed all freely reduced words as relators, then these graphs would have the
marginal distributions of Erdös–Rényi random graphs. Since we restrict to only having
cyclically reduced words as relators, these graphs will not allow some edges, and so
will have the marginal distributions of reduced random graphs. We need to analyse
the eigenvalues of these graphs, and then prove the union of these graphs has high
eigenvalue with large probability.

The chapter is structured as follows. In Section 5.2 we provide a spectral criterion
for Property (T), related to the graph �k. Sections 5.3 and 5.4 are more geared towards
graph theory, and allow us to analyse the eigenvalues of specific random graphs and of
unions of graphs. In Section 5.5 we apply these results to prove the main theorems of
this chapter.

5.2 A spectral criterion for Property (T)
In this section we deduce a spectral criterion for Property (T): we first remind the
reader of some of the relevant definitions. We focus only on finitely generated discrete
groups: for a further exposition the reader should see, for example, [BdlHV08].

Let � be a finitely generated group with finite generating set S, let H be a Hilbert
space, and let fi : � æ U(H) be a unitary representation of �. We say that fi has
almost-invariant vectors if for every ‘ > 0 there is some non-zero u‘ œ H such that for
every s œ S, ||fi(s)u‘ ≠ u‘|| < ‘||u‘||.
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Definition 5.2.1. We say that � has Property (T) if for every Hilbert space H, and
for every unitary representation fi : � æ U(H) with almost-invariant vectors, there
exists a non-zero invariant vector for fi.

It is standard that the choice of generating set does not matter. We now note
the following well known results concerning Property (T): for proofs see, for example,
[BdlHV08]. We will use these results implicitly throughout.

Lemma. Let � be a finitely generated group, and let H be a finite index subgroup of
�: � has Property (T) if and only if H has Property (T).

Lemma. Let � be a finitely generated group with Property (T) and let �Õ be a homo-
morphic image of �. Then �Õ has Property (T).

5.2.1 The spectral criterion

Now, let � = ÈAn | RÍ be a finite presentation of a group and let Rk be the set of
words in R of length k. Define the graph �3(An | R) by V (�3(An | R)) = An Û A≠1

n

and for each relator r = r1r2r3 œ R3 add the edges (r1, r≠1
3 ), (r2, r≠1

1 ), (r3, r≠1
2 ).

The use of this graph is the following, proved independently by [Ø96] (c.f. [Ø03])
and [BS97]. The result is often stated for a model of �3 without multiple edges, and is
often known as Øuk’s criterion for Property (T).

Theorem 5.2.2. [Ø96, BS97, Ø03] Let � = ÈAn | RÍ be a finite presentation. If
⁄1(�3(An | R)) > 1/2, then � has Property (T).

We now apply this to recover an alternate spectral criterion for Property (T).
However, before we introduce the graph �k, we first note a result regarding finite index
subgroups of free groups. For the free group Fn := F(An) and for l Ø 1, we define
W(n, l) to be the set of freely reduced words of length l in Fn. We now prove that
these sets always generate finite index subgroups of Fn.

Lemma 5.2.3. Let l Ø 1. Then [Fn : ÈW(n, l)Í] < Œ.

(In fact it is easily seen that for any l Ø 1, [Fn : ÈW(n, l)Í] Æ 2).

Proof. Note that W(n, l) = Sl(Fn), the sphere of radius l in Fn. Hence

[Fn : ÈW(n, l)Í] Æ |BFn(id, l ≠ 1)| = 2n(2n ≠ 1)l≠2,

since Fn = BFn(id, l ≠ 1)ÈSl(Fn)Í.
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We now introduce the graph to which our spectral criterion will apply.

Definition 5.2.4. Let G = ÈAn | RÍ be a finite presentation of a group and let k Ø 3.
We define the graph �k(An | R), as follows, depending on k mod 3.

k = 0 mod 3 : Let V (�k(An | R)) = W(n, k/3). For each relator
r = r1 . . . rk œ Rk, write r = rxryrz with rx, ry, rz œ W(n, k/3), and add the
edges (rx, r≠1

z
), (ry, r≠1

x
), (rz, r≠1

y
).

k = 1 mod 3 : Let �k(An | R) be the graph with

V (�k(An | R)) = W

A

n,
k ≠ 1

3

B
h

W

A

n,
k + 2

3

B

.

For each relator r = r1 . . . rk œ Rk write r = rxryrz with rx, ry œ W(n, k≠1
3 ) and

rz œ W(n, k+2
3 ), and add the edges (rx, r≠1

z
), (ry, r≠1

x
), (rz, r≠1

y
).

k = 2 mod 3 : Let �k(An | R) be the graph with

V (�k(An | R)) = W

A

n,
k ≠ 2

3

B
h

W

A

n,
k + 1

3

B

.

For each relator r = r1 . . . rk œ Rk write r = rxryrz with rx, ry œ W(n, k+1
3 ) and

rz œ W(n, k≠2
3 ), and add the edges (rx, r≠1

z
), (ry, r≠1

x
), (rz, r≠1

y
).

We can prove the following.

Lemma 5.2.5. Let � = ÈAn | RÍ be a finite presentation and let k Ø 3. If
⁄1(�k(An | R)) > 1/2, then � has Property (T).

We note that this lemma is not particularly e�ective when given a specific finite
presentation of a group: for the above spectral condition to hold, we heuristically
require that degree of each vertex is large. Since each relator adds at most three edges
to �k, we heuristically require |R| >> (2n ≠ 1)(k+(≠k mod 3))/3 for the above to be
satisfied. However, this is exactly the regime we consider for random groups.

Proof. We prove this for k = 2 mod 3: the other cases are similar. First, for ease, let
�Õ = ÈAn | RkÍ. Since � is a homomorphic image of �Õ, it su�ces to prove that �Õ has
Property (T). Let „ : Fn ⇣ �Õ be the canonical epimorphism induced by the choice of
presentation for �Õ. Let W = W(n, (k ≠ 2)/3) Û W(n, (k + 1)/3), W = „(W), and let
H = ÈW Í�Õ : by Lemma 5.2.3 we have that [�Õ : H] < Œ.
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For each r œ Rk, write r = rxryrz where rx, ry œ W(n, (k + 1)/3) and rz œ

W(n, (k ≠ 2)/3). Let T = {rxryrz : r œ Rk} and let

�̃ := F(W)
M

ÈÈT ÍÍ = ÈW | T Í.

It is clear that there is an epimorphism Â : �̃ ⇣ H, so that �Õ is a finite index
extension of a quotient of �̃. Next, we note that �k(An | R) ≥= �3(W | T ). By Theorem
5.2.2, if ⁄1(�k(An | R)) = ⁄1(�3(W | T )) > 1/2, then �̃ has Property (T). Since
Property (T) is preserved under epimorphisms and passing to finite index extensions,
it follows that if ⁄1(�k(An | R)) > 1/2, then � has Property (T).

5.3 The spectra of almost regular graphs and the
unions of regular graphs

In this section we analyse the spectral theory of almost regular graphs, as well as
some results on the eigenvalues of Erdös–Rényi random graphs. We also prove a result
concerning the eigenvalues of the union of a well connected graph and two bipartite
graphs. We first note the following lemmas.

Lemma 5.3.1. Let m2 = m2(m1) and p = p(m1) be such that min{m1, m2}p =
�m1(log max{m1, m2}). Then a.a.s.(m1)

µ1(A(G(m1, m2, p))) Æ [1 + om1(1)]pÔ
m1m2.

Proof. By Lemma 4.2.4, a.a.s.(m1) the maximum degree of a vertex in V1 is (1 +
om1(1))m2p, and the maximum degree of a vertex in V2 is (1 + om1(1))m1p. By Lemma
2.2.3,

max
i

|µi(A(G(m1, m2p)))| Æ max
vœV1(G)
wœV2(G)

Ò
deg(v)deg(w) Æ [1 + om1(1)]

Ò
m1m2p2

with probability tending to 1 as m1 tends to infinity.

Similarly we can deduce the leading value of G(m, p).

Lemma 5.3.2. Let m Ø 1 and p = p(m) be such that mp = �m(log m). Then a.a.s.(m)
µ1(A(G(m, p))) Æ [1 + om(1)]mp.
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5.3.1 The spectra of almost regular graphs

We now analyse the spectra of almost regular graphs in more detail than in Chapter 4.
We note the following results.

Lemma. [KK13, Lemma 4.4] Let dm æ Œ and let Gm be almost dm-regular. Then
1

dm
µ2(A(Gm)) = (1 + om(1))(1 ≠ ⁄1(Gm)). In particular, if µ2(A(Gm)) = om(dm) then

⁄1(Gm) = 1 ≠ om(1).

Lemma. [KK13, Lemma 4.5] Let Gm be an almost dm-regular graph and let GÕ
m

be a
graph on the same vertex set whose maximum degree is om(dm). Then:

i) Gm fi GÕ
m

is almost dm regular,

ii) and ⁄1(Gm) = ⁄1(Gm fi GÕ
m

) + om(1).

Again, recall that ⁄1(G) = 1 ≠ µ2(D≠1/2AD≠1/2). We now prove the corresponding
result for bipartite graphs: our proofs are di�erent to [KK13], and rely on Weyl’s
inequality.

Lemma 5.3.3. Let d(1)
m

, d(2)
m

æ Œ and let Gm be almost (d(1)
m

, d(2)
m

)-regular. For
i = 1, . . . , |V (Gm)|:

1
Ò

d(1)
m d(2)

m

µi(A(Gm)) = µi(D≠1/2(Gm)A(Gm)D≠1/2(Gm)) + om(1).

In particular, if µ2(A(Gm)) = om

AÒ
d(1)

m d(2)
m

B

, then ⁄1(Gm) = 1 ≠ om(1).

Proof. As Gm is almost (d(1)
m

, d(2)
m

)-regular, we see that for

A = A(Gm) =
Q

a 0 A1

AT

1 0

R

b , D = D(Gm),

there exists a matrix K with norm ||K||Œ = om(1) such that

1
Ò

d(1)
m d(2)

m

A = D≠1/2AD≠1/2 + K.

Since |µi(K)| Æ ||K||Œ = om(1) for all i, the first statement of the Lemma follows
easily by Weyl’s inequality. The second statement follows from Remark 2.2.2.
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Lemma 5.3.4. Let d(1)
m

, d(2)
m

æ Œ, and let Gm be almost (d(1)
m

, d(2)
m

)-regular. Let GÕ
m

be a bipartite graph on the same vertex set as Gm with the same vertex partitions, such
that the maximum degree of v œ Vi(GÕ

m
) is om(d(i)

m
). Then:

i) Gm fi GÕ
m

is almost (d(1)
m

, d(2)
m

) regular,

ii) and ⁄1(Gm) = ⁄1(Gm fi GÕ
m

) + om(1).

Proof. Part i) is immediate. For part ii), we see that A(Gm fi GÕ
m

) = A(Gm) + A(GÕ
m

):
since the maximum degree of a vertex v œ Vi(GÕ

m
) = Vi(Gm) is o(d(i)

m
), we have by

Lemma 2.2.3 that maxi |µi(A(GÕ
m

))| Æ om

AÒ
d(1)

m d(2)
m

B

, and hence

max
i

-----µi

A
1

Ò
d(1)

m d(2)
m

A(GÕ
m

)
B----- = om(1).

By Weyl’s inequality,

µ2

A
1

Ò
d(1)

m d(2)
m

(A(Gm) + A(GÕ
m

))
B

Æ µ2

A
1

Ò
d(1)

m d(2)
m

A(Gm)
B

+ µ1

A
1

Ò
d(1)

m d(2)
m

A(GÕ
m

)
B

= µ2

A
1

Ò
d(1)

m d(2)
m

A(Gm)
B

+ om(1).

Similarly

µ2

A
1

Ò
d(1)

m d(2)
m

(A(Gm) + A(GÕ
m

))
B

Ø µ2

A
1

Ò
d(1)

m d(2)
m

A(Gm)
B

+ om(1),

and the result follows by Remark 2.2.2 and Lemma 5.3.3.

5.3.2 The spectra of unions of regular graphs

The purpose of this subsection is to analyse the spectral distribution of unions of three
graphs with relatively high first eigenvalue. This is already known when all three
graphs share the same vertex set: see e.g. [Ø03].
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Lemma 5.3.5. Let G1, G2, G3 be d-regular graphs on the same vertex set, and suppose
⁄1(Gi) Ø 1 ≠ ci for each i. Then

⁄1(G1 fi G2 fi G3) Ø 1 ≠
c1 + c2 + c3

3 .

We now wish to extend this to the case where the graphs are relatively well
connected, and they do not share the same vertex set. We first recall (a partial
consequence of) the Courant-Fischer Theorem, as follows.

Theorem (Courant-Fischer Theorem). Let M be a symmetric m ◊ m matrix with first
eigenvalue µ1(M) and corresponding eigenvector e. Then

µ2(M) = max
x‹e

||x||=1

ÈMx, xÍ = max
x‹e

x”=0

ÈMx, xÍ

Èx, xÍ
.

Using this, we can prove the following.

Lemma 5.3.6. Let G1, G2, G3 be graphs such that:

i) G2, G3 are bipartite, with V (G1) = V1(G2) = V1(G3) and V2(G2) = V2(G3),

ii) G1 is 2d1-regular, and G2, G3 are (d1, d2)-regular,

iii) and for i = 1, 2, 3 there exists 0 Æ ci Æ 1 with ⁄1(Gi) Ø 1 ≠ ci.

Then
⁄1(G1 fi G2 fi G3) Ø 1 ≠

Ô
2c1 + c2 + c3

2
Ô

2
.

Proof. Let 1l be the all 1 vector with l entries, and let G = G1 fiG2 fiG3. For i = 1, 2, 3,
let �i = D≠1/2

i
AiD

≠1/2
i

, where Di = D(Gi) and Ai = A(Gi) (here we view G1 as a graph
on V1 Û V2). Let D = D(G), A = A(G), and consider � = D(G)≠1/2A(G)D(G)≠1/2, so
that

� = 1
2�1 + 1

2
Ô

2
�2 + 1

2
Ô

2
�3 :

each of �, �1, �2, �3 is symmetric and hence self-adjoint. We remark again that
µ2(�i) = 1 ≠ ⁄1(Gi). Recall that m2d2 = m1d1, so that d2 = m1d1/m2.

Now, we consider the first eigenvalues of the matrices � and �i. The eigenvector
corresponding to µ1(�) = 1 is

D1/21m1+m2 =
Q

a2
Ô

d11m1
Ô

2d21m2

R

b .
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The eigenvector corresponding to µ1(�2) = 1 and µ1(�3) = 1 is

D1/2
2 1m1+m2 = D1/2

3 1m1+m2 =
Q

a
Ô

d11m1
Ô

d21m2

R

b .

The eigenvector corresponding to µ1(�1) = 1 is

D1/2
1 1m1+m2 =

Q

a
Ô

2d11m1

0

R

b .

Let „ be a vector with ||„|| = 1, „ · D1/21m1+m2 = 0, and µ2(�) = È�„, „Í, which
exists by the Courant-Fischer Theorem. We may write

„ =
Q

a–1m1 + u

—1m2 + v

R

b ,

where u · 1m1 = v · 1m2 = 0. As

„ · D1/21m1+m2 = 2
Ò

d1–m1 +
Ò

2d2—m2 = 2
Ò

d1–m1 +
Ò

2d1m1/m2—m2,

we see — = ≠
Ô

2m1–/
Ô

m2. Let

„1 =
Q

a–1m1

—1m2

R

b , „2 =
Q

au

v

R

b ,

so that „1 ·D1/21m1+m2 = „2 ·D1/21m1+m2 = 0. Write “ = ||„1||
2, with ||„2||

2 = 1≠“.

Note that 0 Æ “ = –2m1 + —2m2 = 3–2m1 Æ 1. We now calculate:

È�1„1, „1Í =
Q

a–1m1

0

R

b ·

Q

a–1m1

—1m2

R

b = –2m1.

Secondly

È�1„1, „2Í =
Q

a–1m1

0

R

b ·

Q

au

v

R

b = –1m1 · u = 0.



5.3 The spectra of almost regular graphs and the unions of regular graphs 85

Since �1 is self-adjoint, È„1, �1„2Í = È�1„1, „2Í = 0. Also, since u · D1/2
1 1m1 = 0, we

have by the Courant-Fischer Theorem:

È�1„2, „2Í = È�Õ
1u, uÍ Æ µ2(�1)||u||

2 = c1||u||
2

Æ c1||„2||
2 = c1(1 ≠ “),

where �Õ
1 is D(G1)≠1/2A(G1)D(G1)≠1/2 with G1 considered as a graph on the vertex

set V1.

We now perform the same calculations for �2. Firstly, for some matrix B2

�2„1 = 1
Ô

d1d2

Q

a 0 B2

BT

2 0

R

b

Q

a–1m1

—1m2

R

b =

Q

cccca

—

Û
d1
d2

1m1

–

Û
d2
d1

1m2

R

ddddb
=

Q

cccca

—

Û
m2
m1

1m1

–

Û
m1
m2

1m2

R

ddddb
,

so that

È�2„1, „1Í =

Q

cccca

—

Û
m2
m1

1m1

–

Û
m1
m2

1m2

R

ddddb
·

Q

a–1m1

—1m2

R

b = 2–—
Ô

m1m2.

Next, by the Courant-Fischer Theorem, È�2„2, „2Í Æ c2||„2||
2 = c2(1 ≠ “) (since

„2 · D1/2
2 1m1+m2 = 0). Furthermore,

È�2„1, „2Í =

Q

cccca

—

Û
m2
m1

1m1

–

Û
m1
m2

1m2

R

ddddb
·

Q

au

v

R

b = —

Û
m2
m1

1m1 · u + –

Û
m1
m2

1m2 · v = 0,

since 1m1 · u = 1m2 · v = 0. Finally, since �2 is symmetric and hence self-adjoint, we
see that

È�2„2, „1Í = È„2, �2„1Í = 0.

We can perform similar calculations for �3. Putting this all together, we have

È�1„, „Í Æ –2m1 + c1(1 ≠ “),

È�2„, „Í Æ 2–—
Ô

m1m2 + c2(1 ≠ “),
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È�3„, „Í Æ 2–—
Ô

m1m2 + c3(1 ≠ “).

We calculate
1

Ô
2

–—
Ô

m1m2 = ≠–2
Û

m1
m2

Ô
m1m2 = ≠–2m1.

Therefore

È�„, „Í = 1
2È�1„, „Í + 1

2
Ô

2
È�2„, „Í + 1

2
Ô

2
È�3„, „Í

Æ
1
2c1(1 ≠ “) + 1

2–2m1 + 1
Ô

2
–—

Ô
m1m2 + 1

2
Ô

2
c2(1 ≠ “)

+ 1
Ô

2
–—

Ô
m1m2 + 1

2
Ô

2
c3(1 ≠ “)

= 1
2–2m1 ≠ 2–2m1 + 1 ≠ “

2
Ô

2
(
Ô

2c1 + c2 + c3)

= ≠3
2 –2m1 + 1 ≠ “

2
Ô

2
(
Ô

2c1 + c2 + c3)

= ≠
1
2“ + 1 ≠ “

2
Ô

2
(
Ô

2c1 + c2 + c3)

Æ

Ô
2c1 + c2 + c3

2
Ô

2
,

since 0 Æ “ Æ 1. As „ was chosen with µ2(�) = È�„, „Í, we see that

µ2(�) Æ

Ô
2c1 + c2 + c3

2
Ô

2
,

and hence
⁄1(G) = 1 ≠ µ2(�) Ø 1 ≠

Ô
2c1 + c2 + c3

2
Ô

2
.

We can apply this in specific cases to obtain an explicit bound.

Lemma 5.3.7. Let Gi, ci be as above. Suppose c1 = ‘, c2 = c3 = ‘ + 1/3 for some
‘ < 1/100. Then ⁄1(G1 fi G2 fi G3) Ø 3/4.

Proof. We may apply Lemma 5.3.6 to deduce that

⁄1(G1 fi G2 fi G3) Ø 1 ≠
(
Ô

2 + 2)‘ + 2/3
2
Ô

2
Ø 1 ≠

2/3 + (2 +
Ô

2)/100
2
Ô

2
Ø

3
4 .
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5.4 The spectra of reduced random graphs
We have almost understood the spectral distribution of �k(An | R) for ÈAn | RÍ in
the �(n, k, d) model. However, there is one small complication which arises from the
fact that we insist upon using cyclically reduced words as relators: the random graphs
�k(An | R) will not allow edges between certain types of words. Therefore we need to
introduce a slightly altered model of random graphs.

Some of the results contained within this section are already known. Indeed, [DM19,
Section 11,12] provides far more general results concerning the eigenvalues of reduced
random graphs: we provide alternate proofs of the results we require (again we stress
that the results of [DM19] are far more general than the results we obtain) as the
proofs provide an introduction to the proof strategies of alternate results we require
that are not covered by [DM19]. We indicate in the text the results already known.

5.4.1 Reduced random graphs

The following subsection analyses the spectra of a certain model of random graphs.

Definition 5.4.1. Fix n, l Ø 1, and let 0 < p < 1. For i = 1, . . . , n, let ai+n := a≠1
i

,
and for i = 1, . . . , 2n let

Si = {w1 . . . wl œ W(n, l) : w1 = ai} = {(w1 . . . wl)≠1
œ W(n, l) : wl = a≠1

i
}.

For v œ W(n, l), let i(v) be the unique integer such that v œ Si(v). The reduced
random graph Red(n, l, p) is the random graph obtained with vertex set W(n, l), and
edge set constructed as follows.

Let i = 1, . . . , 2n. For each pair of vertices v, w œ W(n, l), add (each of) the edges:

• (v, w) labelled by i(v) with probability p(v, w),

• (w, v), labelled by i(w) with probability p(w, v), where:

p(s, t) =

Y
_]

_[

p if i(s) ”= i(t),

0 if i(s) = i(t).

Note that |W(n, l)| = 2n(2n ≠ 1)l≠1. Furthermore, we can break Red(n, l, p) into a
union of graphs Ri, where for i = 1, . . . , 2n each Ri is a bipartite graph with vertex
set V1 = Si, V2 = W(n, l) \ Si, and each edge is added with probability p. Note
that Ri ≥ G((2n ≠ 1)l≠1, (2n ≠ 1)l, p): therefore, for p satisfying (2n ≠ 1)lp = �l(l),
a.a.s. each graph Ri is almost ((2n ≠ 1)l≠1p, (2n ≠ 1)lp)-regular. Hence for p satisfying
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(2n ≠ 1)lp = �l(l), a.a.s. the graph Red(n, l, p) is almost 2(2n ≠ 1)lp-regular. Next we
prove the following.

Lemma 5.4.2. Let n, l Ø 1, let p be such that (2n ≠ 1)lp = �l(log(2n ≠ 1)l), and let
G ≥ Red(n, l, p). There exists a random graph

GÕ
≥ G(2n(2n ≠ 1)l≠1, 2p ≠ p2)

such that a.a.s.(l),

µ1(A(G) ≠ A(GÕ)) Æ Ol

A

max
I

l, (2n ≠ 1)lp2,
Ò

(2n ≠ 1)l≠1p

JB

.

Proof. Let �i be the random graph with vertex set Si and each edge added with
probability 2p ≠ p2, so that �i ≥ G((2n ≠ 1)l≠1, 2p ≠ p2). By our assumptions on p, we
see by Theorems 4.3.1 and 4.3.2 that a.a.s.(l) for all i (there are 2n such i, so we take
the intersection of the 2n events)

max
j ”=1

|µj(A(�i))| Æ Ol

AÒ
(2n ≠ 1)l≠1p

B

.

Let H = t
i

(Ri fi �i). The probability that at least one edge connects two vertices
v, w œ Si is 2p ≠ p2. If v œ Si and w œ Sj for i ”= j the probability that at least one
edge connects v and w is 1 ≠ (1 ≠ p)2 = 2p ≠ p2. Hence, by collapsing duplicate edges
in H we obtain GÕ

≥ G(2n(2n ≠ 1)l≠1, 2p ≠ p2). Next, note that

A(GÕ) = A(G) +
ÿ

Ai + K,

where K takes into account the double edges obtained from the unions, and Ai

is the adjacency matrix of the graph Gi which has vertex set V (G) and edge set
E(�i). Since the edge sets of each �i are pairwise disjoint, one can easily see that
µ1(≠

q
i Ai) = maxi µ1(≠Ai).

Using the Cherno� bounds for the degrees, we can see that if (2n ≠ 1)lp2 = �l(l),
then a.a.s.(l) ||K||Œ = Ol((2n ≠ 1)lp2). Otherwise, we may deduce that ||K||Œ =
Ol(log(2n ≠ 1)l) = Ol(l).

Recall that µ1(≠Ai) Æ maxj ”=1 |µj(Ai)|. Hence by Weyl’s inequality:

µ1(A(G) ≠ A(GÕ)) = µ1(≠K ≠
ÿ

Ai)
Æ µ1(≠K) + µ1(≠

ÿ
Ai)
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= Ol

A

max
I

||K||Œ, µ1

A

≠
ÿ

Ai

BJB

= Ol

A

max
I

||K||Œ, max
i

{µ1(≠Ai)}
JB

Æ Ol

A

max
I

l, (2n ≠ 1)lp2,
Ò

(2n ≠ 1)l≠1p

JB

.

Similarly we define the following.

Definition 5.4.3. Fix n Ø 1, l Ø 3, 0 < p < 1. Let ai+n := a≠1
i

. For i = 1, . . . , 2n, let

S Õ
i

= {w1 . . . wl œ W(n, l) : w1 = ai},

and
T Õ

i
= {(w1 . . . wl+1)≠1

œ W(n, l + 1) : wl+1 = a≠1
i

}.

The reduced random bipartite graph BRed(n, l, p) is the random graph with vertex
set V1 = W(n, l), V2 = W(n, l + 1), and for each v œ S Õ

i
and vertex w œ V2 ≠ T Õ

i
, the

edge (v, w) is added with probability p. The graph BRi is the random bipartite graph
obtained as a subgraph with vertex set V1 = Si and V2 = W(n, l + 1) ≠ Ti.

Again, for large p, i.e. (2n ≠ 1)lp = �l(l), the graph BRed(n, l, p) is almost
((2n ≠ 1)l+1p, (2n ≠ 1)lp)-regular. We can approximate this graph by an Erdös–Rényi
random bipartite graph, similarly to the case of Red(n, l, p).

Lemma 5.4.4. Let G ≥ BRed(n, l, p), where (2n ≠ 1)lp = �l(log(2n ≠ 1)l). There
exists a random graph GÕ

≥ G(2n(2n ≠ 1)l≠1, 2n(2n ≠ 1)l, p) such that a.a.s.(l),

µ1(A(G) ≠ A(GÕ)) Æ (1 + ol(1))(2n ≠ 1)l≠1/2p.

Proof. This follows similarly to the proof of Lemma 5.4.2 for Red(n, l, p).
For i = 1, . . . , 2n, let �i be the random graph with vertex set V1 = Si, V2 = Ti and

each edge added with probability p, so that �i ≥ G((2n ≠ 1)l≠1, (2n ≠ 1)l, p).
Then

GÕ = G fi
€

i

�i ≥ G(2n(2n ≠ 1)l≠1, 2n(2n ≠ 1)l, p).

We see that µ1(A(G) ≠ A(GÕ)) = µ1(≠ q
i Ai), where Ai is the adjacency matrix of

the graph with vertex set V (G) and edge set E(�i). Since the edge sets of the �i are
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pairwise disjoint, (and the graphs are bipartite, so their spectrum is symmetric around
0) we see that

µ1(≠
ÿ

i

Ai) Æ max
i

µ1(≠Ai) = max
i

µ1(Ai) Æ (1 + ol(1))(2n ≠ 1)l≠1/2p,

by Lemmas 2.2.3 and 4.2.4.

We may analyse the eigenvalues of reduced random graphs, as follows.

Lemma 5.4.5. [DM19, Theorem 11.8, 11.9] Let n Ø 2, and p be such that p = ol(1)
and (2n ≠ 1)lp = �l(l). Let G ≥ Red(n, l, p). Then a.a.s.(l) ⁄1(G) Ø 1 ≠ ol(1).

Proof. Let GÕ be the graph from Lemma 5.4.2, so that GÕ
≥ G(2n(2n ≠ 1)l≠1, 2p ≠ p2)

and
µ1(A(G) ≠ A(GÕ)) Æ Ol

A

max
I

l, (2n ≠ 1)lp2,
Ò

(2n ≠ 1)l≠1p

JB

.

Let DÕ = D(G), and AÕ = A(GÕ). Note that G is almost 2(2n ≠ 1)lp regular, and hence,

µ1(D≠1/2(A ≠ AÕ)D≠1/2) Æ Ol

A
1 + ol(1)

(2n ≠ 1)lp
max

I

l, (2n ≠ 1)lp2,
Ò

(2n ≠ 1)l≠1p

JB

= ol(1).

Next, by our assumption on p, 2n(2n ≠ 1)lp = �l(l) = �l

A

log 2n(2n ≠ 1)l≠1
B

, so

that by Theorems 4.3.1 and 4.3.2, a.a.s.(l),

µ2

A

DÕ≠1/2AÕDÕ≠1/2
B

= ol(1).

Next, D(G)≠1/2AD(G)≠1/2 = (2≠p)n
2n≠1 DÕ≠1/2AÕD≠1/2 + K, where ||K||Œ = ol(1). Hence

µ1(K) = ol(1). Therefore, by Theorems 4.3.1 and 4.3.2, and Weyl’s inequality, a.a.s.(l)

µ2(D≠1/2AD≠1/2) = µ2(D≠1/2AÕD≠1/2 + D≠1/2AD≠1/2
≠ D≠1/2AÕD≠1/2)

Æ µ2(D≠1/2AÕD≠1/2) + µ1(D≠1/2(A ≠ AÕ)D≠1/2)

= µ2

A
(2 ≠ p)n
2n ≠ 1 DÕ≠1/2AÕDÕ≠1/2 + K

B

+ ol(1)

Æ
(2 ≠ p)n
2n ≠ 1 µ2

A

DÕ≠1/2AÕDÕ≠1/2
B

+ µ1(K) + ol(1)

Æ
(2 ≠ p)n
2n ≠ 1 µ2

A

DÕ≠1/2AÕDÕ≠1/2
B

+ ol(1)
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= ol(1).

The result follows by Remark 2.2.2.

Lemma 5.4.6. Let n Ø 2, and p be such that p = ol(1) and (2n ≠ 1)lp = �l(l). Let
G ≥ BRed(n, l, p). Then a.a.s.(l)

⁄1(G) Ø 1 ≠ 1/(2n ≠ 1) ≠ ol(1).

We note that we cannot prove that the above bound is sharp, but it is su�cient for
our needs.

Proof. Let GÕ be the graph from Lemma 5.4.4, so that GÕ
≥ G(2n(2n ≠ 1)l≠1, 2n(2n ≠

1)l, p), and µ1(A(G) ≠ A(GÕ)) Æ Ol

A

(2n ≠ 1)l≠1/2p

B

. By Lemma 5.4.4,

µ1(D≠1/2(A ≠ AÕ)D≠1/2) Æ [1 + ol(1)] 1
2n ≠ 1 .

Next, D(G)≠1/2AÕD≠1/2 = 2n

2n≠1DÕ≠1/2AÕDÕ≠1/2 + K, where

K =
Q

a 0 H

HT 0

R

b

and
Ò

||H||Œ||H||1 = ol(1). Hence µ1(K) = ol(1). Therefore, by Theorem D, and using
Weyl’s inequalities similarly to the proof of Lemma 5.4.5,

µ2(D≠1/2AD≠1/2) = µ2(D≠1/2AÕD≠1/2 + D≠1/2AD≠1/2
≠ D≠1/2AÕD≠1/2)

Æ µ2(D≠1/2AÕD≠1/2) + µ1(D≠1/2(A ≠ AÕ)D≠1/2)

Æ µ2

A
2n

2n ≠ 1DÕ≠1/2AÕDÕ≠1/2 + K

B

+ 1
2n ≠ 1 + ol(1)

Æ
2n

2n ≠ 1µ2(DÕ≠1/2AÕDÕ≠1) + µ1(K) + 1
2n ≠ 1 + ol(1)

= 1
2n ≠ 1 + ol(1).

The result follows by Remark 2.2.2.
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5.4.2 Regular subgraphs of random graphs

We now need an auxiliary result concerning regular subgraphs of random graphs. Recall
that a subgraph H of G is spanning if V (H) = V (G). We first note the following.

Theorem. [SU84] Suppose mp = Ê(m) log(m) for some Ê(m) æ Œ. Let ” Ø Ê≠◊ for
some 0 < ◊ < 1/2, and let G ≥ G(m, p). Then a.a.s.(m), G contains a (1 ≠ ”)mp-
regular spanning subgraph.

We wish to prove the analogue for random bipartite graphs. We do this similarly
to [FKS16, Theorem 1.4], which proves the result in the regime m1 = m2. We note
that [FKS16, Theorem 1.4] assumes that ” > 0 is constant, however, their techniques
also work for suitable choices of ” = om(1).

Theorem. [FKS16, Theorem 1.4] Let m Ø 1 and p = p(m) > 0 be such that mp =
Ê(m) log m for some Ê æ Œ as m æ Œ. Let ” Ø Ê≠◊ for some ◊ < 1/2, and
G ≥ G(m, m, p). Then a.a.s.(m) G contains a ((1 ≠ ”)mp, (1 ≠ ”)mp)-regular spanning
subgraph.

In the k-angular model, we have m1 = m2/n, where n æ Œ, so we need to extend
the above to a more general setting. We will use the following theorem, commonly
known as the Ore-Reyser theorem: see for example [Ore59] or Tutte [Tut81]. Recall
that for a graph G, and disjoint sets A, B ™ V (G), we define eG(A, B) to be the
number of edges in G between the sets A and B.

Theorem (Ore-Reyser Theorem). Let G be a bipartite graph and let d1, d2 Ø 0. G

contains a (d1, d2)-regular spanning subgraph if and only if d1|V1| = d2|V2|, and for all
A ™ V1 and B ™ V2: d1|A| Æ eG(A, B) + d2(|V2| ≠ |B|).

Using the above, we can prove the following: this follows almost identically to the
proof of [FKS16, Theorem 1.4], with very minor changes.

Theorem 5.4.7. Let m2 = m2(m1) Ø m1 and let p = p(m1) > 0 be such that
m1p = Ê(m1) log m2 for some Ê æ Œ as m1 æ Œ. Let ” Ø Ê≠◊ for some ◊ < 1/2,
and G ≥ G(m1, m2, p). Then a.a.s.(m1) G contains a ((1 ≠ ”)m2p, (1 ≠ ”)m1p)-regular
spanning subgraph.

Again, the proof of this follows extremely similarly to the proof of [FKS16, Theorem
1.4]; we include it for completeness.
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Proof. Let d1 = (1 ≠ ”)m2p and d2 = (1 ≠ ”)m1p. We wish to prove that a.a.s.(m1) for
all A ™ V1 and B ™ V2:

0 Æ eG(A, B) + d2(m2 ≠ |B|) ≠ d1|A|

= eG(A, B) + d1(m1 ≠ |A| ≠ m1|B|/m2).

If we are able to prove this, then we may conclude the desired result by the Ore-Reyser
theorem. Note that if |A| + m1|B|/m2 Æ m1 then we are immediately finished. Let us
suppose otherwise; we now analyse di�erent cases.

To begin, let n1 := m1/ log log m1. We may now assume that |A|+m1|B|/m2 > m1.
Suppose first that |A| Æ n1, then (m2(m1 ≠ |A|)/m1) + 1 Æ |B| Æ m2. Note that
eG(A, B) has the distribution Bin(|A||B|, p). We may apply the Cherno� bounds to
deduce that

P(eG(A, B) Æ (1 ≠ ”)|A||B|p) Æ exp
A

≠”2
|A||B|p

2

B

.

For
|A| = a Æ n1, |B| = b Ø

m2(m1 ≠ a)
m1

,

and m1 su�ciently large, this is bounded above by

exp
A

≠”2am2(m1 ≠ a)p/m1
2

B

Æ exp
A

am2p
≠”2(m1 ≠ n1)

2m1

B

Æ exp
A

≠ ”2 m2ap

4

B

.

Therefore the probability that there exists such sets with eG(A, B) Æ (1 ≠ ”)|A||B|p is
bounded above by

n1ÿ

a=1

m2ÿ

b=(m2(m1≠a)/m1)+1

A
m1
a

BA
m2
b

B

e≠”
2
m2ap/4

Æ

n1ÿ

a=1

m2a/m1ÿ

b=1

A
m1
a

BA
m2
b

B

e≠”
2
m2ap/4

3
using

A
m2
b

B

Æ

A
m2

m2a/m1

B

for b Æ m2a/m1

4
Æ

n1ÿ

a=1

m2a

m1

A
m1
a

BA
m2

m2a/m1

B

e≠”
2
m2ap/4

3
using

A
m1
a

B

Æ

A
m2

m2a/m1

B

as m2/m1 Ø 1
4

Æ

n1ÿ

a=1

m2a

m1

A
m2

m2a/m1

B2

e≠”
2 m2

m1
am1p/4

Æ m2
2

n1ÿ

a=1

A
m2

2e
2

m2
2a2/m2

1
e≠�(log m2)

B am2
m1

= m
≠�m1 (1)
2 ,



94 Property (T) in density-type models of random groups

since ”2m1p Ø Ê1≠2◊ log m2 for some ◊ < 1/2. The case is similar for |B| Æ n2 := m2/

log log m2. Next we may assume that |A| Ø n1 and that |B| Ø n2. First assume that
|A| Æ m1|B|/m2, so that |B| Ø m2/2. The probability there exists such A, B with
eG(A, B) Æ (1 ≠ ”)|A||B|p is bounded above by

m1ÿ

a=n1

m2ÿ

b=m2/2

A
m1
a

BA
m2
b

B

e≠”
2
abp/2

Æ

m1ÿ

a=n1

m2ÿ

b=m2/2

A
m1
a

BA
m2
b

B

e≠”
2
n1m2p/4

Æ 2m1+m2e≠”
2
m1m2p/(4 log log m1)

= om1(1),

since ”2m1p/ log log m1 Ø Ê1≠2◊ log m2/ log log m1 = �m1(1). Similarly, if |A| Ø m1|B|/

m2, the probability that there exists A, B with eG(A, B) Æ (1 ≠ ”)|A||B|p is bounded
above by

m2ÿ

b=n2

m1ÿ

a=m1/2

A
m1
a

BA
m2
b

B

e≠”
2
abp/2

Æ

m2ÿ

b=n2

m1ÿ

b=m1/2

A
m1
a

BA
m2
b

B

e≠”
2
n2m1p/4

Æ 2m1+m2e≠”
2
m1m2p/(4 log log m2)

= om1(1),

since ”2m1p = �m1(log m2).
Now, consider A ™ V1, B ™ V2. If |A| + m1|B|/m2 Æ m1, then it is immediate that

0 Æ eG(A, B) + d1(m1 ≠ |A| ≠ m1|B|/m2).

Otherwise, we have proved that a.a.s.(m1) eG(A, B) Ø (1≠”)|A||B|p, so that a.a.s.(m1)

eG(A, B) + d1(m1 ≠ |A| ≠ m1|B|/m2)
Ø (1 ≠ ”)|A||B|p + (1 ≠ ”)m2p(m1 ≠ |A| ≠ m1|B|/m2)
= (1 ≠ ”)|A||B|p + (1 ≠ ”)m1m2p ≠ (1 ≠ ”)|A|m2p ≠ (1 ≠ ”)m1|B|p

= (1 ≠ ”)p(|A||B| + m1m2 ≠ |A|m1 ≠ |B|m2)
= (1 ≠ ”)p(m1 ≠ |A|)(m2 ≠ |B|)
Ø 0,

since |A| Æ m1 and |B| Æ m2. The result now follows by the Ore-Reyser theorem.
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5.4.3 Regular subgraphs in reduced random graphs

Finally, we need to address the issue of vertex degrees: in order to use Lemma 5.3.5
and Theorem 5.3.6, we need our graphs to be regular, and to have large eigenvalue.
Therefore we need to show that Red(n, l, p), BRed(n, l, p) contain regular spanning
subgraphs with large first eigenvalue.

Lemma 5.4.8. Let n Ø 2, and let p be such that (2n≠1)lp = �l(log(2n≠1)l+1) = �l(l)
and p = ol(1). Let G1 ≥ Red(n, l, p) and G2 ≥ Bred(n, l, p). There exists ‘ = ‘(p) =
ol(1) such that for all ol(1) = ” Ø ‘, a.a.s.(l) there exist spanning subgraphs Hi Æ Gi

such that

i) H1 is 2(1 ≠ ”)(2n ≠ 1)lp-regular, with ⁄1(H1) Ø 1 ≠ ol(1),

ii) and H2 is ((1 ≠ ”)(2n ≠ 1)l+1p, (1 ≠ ”)(2n ≠ 1)lp)-regular, with
⁄1(H2) Ø 1 ≠

1
2n ≠ 1 + ol(1).

Proof. The first part of i) and ii), i.e. the existence of the regular subgraphs, follows
from [SU84] and Lemma 5.4.7. By [KK13, Lemma 4.5] and Lemma 5.3.4, ⁄1(Hi) =
⁄1(Gi) + ol(1), since the Gi is formed from Hi by the addition of graphs of suitably
small degrees. The result follows by Lemmas 5.4.5 and 5.4.6.

Similarly we can prove the following.

Lemma 5.4.9. Let n Ø 2, k Ø 3 and let p be such that (2n ≠ 1)lp = �n(log(2n ≠ 1)l+1)
and p = on(1). Let G1 ≥ Red(n, l, p) and G2 ≥ Bred(n, l, p). There exists ‘ = ‘(p) =
ol(1) such that for all ol(1) = ” Ø ‘, a.a.s.(n) there exist spanning subgraphs Hi Æ Gi

such that

i) H1 is 2(1 ≠ ”)(2n ≠ 1)lp-regular, with ⁄1(H1) Ø 1 ≠ on(1),

ii) and H2 is ((1 ≠ ”)(2n ≠ 1)l+1p, (1 ≠ ”)(2n ≠ 1)lp)-regular, with
⁄1(H2) Ø 1 ≠ on(1).

5.5 Property (T) in random quotients of free groups
Finally, we may prove Theorems E and F. We in fact provide the full proof for Theorem
F, and indicate how to alter the proof of this theorem in order to prove Theorem E.
However, we first define a slightly di�erent model of random groups: this model is
often called the binomial model of random groups.
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Definition 5.5.1. Let n Ø 2, k Ø 3, and let 0 < p = p(n, k) < 1. The random group
model �p(n, k, p) is the model obtained as following. We let � = ÈAn | RÍ, where R is
obtained by adding each word in C(n, k) with probability p.

We in fact prove the following theorem.

Theorem 5.5.2. Let n Ø 2, and let p be such that (2n ≠ 1)2k/3p = �k(k). Let
�k ≥ �p(n, k, p). Then limkæŒ P(�k has Property (T )) = 1.

Assuming this, we may prove Theorem F.

Proof of Theorem F. Fix n Ø 2 and d > 1/3. Choose 1/3 < dÕ < d, and let

�Õ
k

= ÈAn | RÕ
Í ≥ �p(n, k, (2n ≠ 1)kd

Õ≠k).

It is easily seen that a.a.s.(k) |RÕ
| = (1 + ok(1))(2n ≠ 1)kd

Õ
. Choose a random subset

R with RÕ
™ R ™ W(n, k) and |R| = (2n ≠ 1)kd, and let �k = ÈAn | RÍ. Then

�k ≥ �(n, k, d), and there is a clear epimorphism �Õ
k
⇣ �k. Since Property (T) is

preserved under epimorphisms, the result follows by Theorem 5.5.2.

Let � be a random group in the �p(n, k, p) model. We consider the three cases.

k = 0 mod 3. Let lk = Lk = k/3. We may define the graphs �1, �2, �3 where:

V (�1) = V (�2) = V (�3) = W(n, k/3),

and for each relator r = rxryrz with rx, ry, rz œ W(n, k/3), we add the edge
(rx, r≠1

z
) to �1, (ry, r≠1

x
) to �2 and (rz, r≠1

y
) to �3.

k = 1 mod 3. Let lk = (k ≠ 1)/3 and Lk = (k + 2)/3. Again, we may write each
relator r = rxryrz for rx, ry œ W(n, (k ≠ 1)/3) and rz œ W(n, (k + 2)/3). We
again split the graph �k(An | R) into �1, �2, �3, where:

V (�1) = V (�3) = W(n, (k ≠ 1)/3) Û W(n, (k + 2)/3),

and V (�2) = W(n, (k ≠ 1)/3). For each relator r = rxryrz, we add the edge
(rx, r≠1

z
) to �1, (ry, r≠1

x
) to �2, and (rz, r≠1

y
) to �3.

k = 2 mod 3. Let lk = (k + 1)/3 and Lk = (k ≠ 2)/3. Again, we may write each
relator r = rxryrz for rx, ry œ W(n, (k + 1)/3) and rz œ W(n, (k ≠ 2)/3). We
again split the graph �k(An | R) into �1, �2, �3, where:

V (�1) = V (�3) = W(n, (k ≠ 2)/3) Û W(n, (k + 1)/3),
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and V (�2) = W(n, (k + 1)/3). For each relator r = rxryrz, we add the edge
(rx, r≠1

z
) to �1, (ry, r≠1

x
) to �2, and (rz, r≠1

y
) to �3.

Next we show there aren’t too many double edges in the graphs �i, similarly to
[ALuS15].

Lemma 5.5.3. Let n Ø 2, and let p be such that

i) (2n ≠ 1)2k≠Lkp3 = ok(1),

ii) and (2n ≠ 1)2k+lkp4 = ok(1).

Let Gk ≥ �p(n, k, p), and let �i be described as above. For i = 1, 2, 3 a.a.s.(k) there
is no pair of vertices u, v with at least three edges between them in �i, and the set of
double edges in �i forms a matching, i.e. the endpoints of the double edges are all
distinct.

Note that for 1/3 < d < 5/12, p(d) = (2n ≠ 1)kd≠k satisfies the above conditions.

Proof. We prove this for i = 1. Throughout, note that k = 2lk + Lk. The probability,
P3, that there exists a pair of vertices u, v with at least three edges between u and v is
bounded above by

P3 Æ (2n ≠ 1)lk+Lk(2n ≠ 1)3lkp3

= (2n ≠ 1)2k≠Lkp3

= ok(1).

The probability, Pdoub that there are vertices u, v, w with double edges between u and
v and u and w is bounded by

Pdoub = (2n ≠ 1)lk(2n ≠ 1)2Lk(2n ≠ 1)4lkp4

= (2n ≠ 1)2k+lkp4

= ok(1).

This is su�cient to prove our main theorem.

Proof of Theorem 5.5.2. Let �k = ÈAn | RÍ ≥ �p(n, k, p), and consider �k := �k(An | R).
Since Property (T) is preserved by epimorphisms, we may assume that p Æ (2n≠1)kd≠k
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for some d < 4/9: for any 1/3 < d < 4/9, p(n, k, d) = (2n ≠ 1)kd≠k satisfies the
conditions of Lemma 5.5.3 and the conditions of Theorem 5.5.2.

As above we may write �k = �1 fi �2 fi �3. Now, after collapsing edges, we find
�Õ

1, �Õ
3 with the marginal distribution of

Y
____]

____[

Red(n, k/3, (2n ≠ 1)k/3p) : k = 0 mod 3,

BRed(n, (k ≠ 1)/3, (2n ≠ 1)(k≠1)/3p) : k = 1 mod 3,

BRed(n, (k ≠ 2)/3, (2n ≠ 1)(k+1)/3p) : k = 2 mod 3.

Similarly, by collapsing double edges we find �Õ
2 with the marginal distribution of

Y
____]

____[

Red(n, k/3, (2n ≠ 1)k/3p) : k = 0 mod 3,

Red(n, (k ≠ 1)/3, (2n ≠ 1)(k+2)/3p) : k = 1 mod 3,

Red(n, (k + 1)/3, (2n ≠ 1)(k≠2)/3p) : k = 2 mod 3.

Furthermore, letting �Õ = �Õ
1 fi �Õ

2 fi �Õ
3, then as usual we can see that

µ1

A

D(�Õ)≠1/2
C

A(�k) ≠ A(�Õ)
D

D(�Õ)≠1/2
B

= ok(1).

By Lemma 5.4.8, there exists some ” = ok(1) such that a.a.s.(k): �Õ
2 has a 2(1≠”)d2-

regular spanning subgraph, �2, with ⁄1(�2) > 1 ≠ ok(1); if k ”= 0 mod 3 then �Õ
1, �Õ

3
contain ((1 ≠ ”)d1, (1 ≠ ”)d2)-regular spanning subgraphs �1, �3, with ⁄1(�1), ⁄1(�3) Ø

1 ≠ 1/(2n ≠ 1) + ok(1); and if k = 0 mod 3 then �Õ
1, �Õ

3 contain 2(1 ≠ ”)d-regular
spanning subgraphs �1, �3, with ⁄1(�1), ⁄1(�3) Ø 1 ≠ ok(1).

As n Ø 2, we may apply Lemmas 5.3.5 and 5.3.7 to deduce that a.a.s.(k):

⁄1(�1 fi �2 fi �3) > 3/4.

We see that

µ1(A(�Õ
1 fi �Õ

2 fi �Õ
3) ≠ A(�1 fi �2 fi �3)) Æ

” + ok(1)
1 ≠ ”

||A(�1 fi �2 fi �3)||Œ

= ok(1)||A(�1 fi �2 fi �3)||Œ.

Hence, letting � = �1 fi �2 fi �3, we see that a.a.s.(k):

⁄1(�Õ) = 1 ≠ µ2(D≠1/2(�Õ)A(�Õ)D≠1/2(�Õ))
= 1 ≠ µ2(D≠1/2(�Õ)[A(�) + A(�Õ) ≠ A(�)]D≠1/2(�Õ))
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Ø 1 ≠ µ2(D≠1/2(�Õ)A(�)D≠1/2(�Õ))
≠ µ1(D≠1/2(�Õ)(A(�Õ) ≠ A(�))D≠1/2(�Õ))

= 1 ≠

A
1

1 ≠ ”
+ ok(1)

B

µ2(D≠1/2(�)A(�)D≠1/2(�))

≠

A
1

1 ≠ ”
+ ok(1)

B

µ1(D≠1/2(�)(A(�Õ) ≠ A(�))D≠1/2(�))

Ø 1 ≠
1
4

A
1

1 ≠ ”
+ ok(1)

B

≠

A
1

1 ≠ ”
+ ok(1)

B
”

1 ≠ ”

= 3[1 + ok(1)]
4 .

Since ⁄1(�k) = ⁄1(�Õ)+ok(1), it follows by Theorem 5.2.5 that a.a.s.(k) G has Property
(T). However, as Property (T) is preserved under epimorphisms, it follows immediately
that a.a.s.(k) a random group �k ≥ �(n, k, d) has Property (T) for any p with

(2n ≠ 1)2k/3p = �k(k).

To prove Theorem E, we wish to prove the corresponding result for the k-angular
model: the approach to achieve this is similar.

Lemma 5.5.4. Let n Ø 2, and let p be such that there exists M Ø 1 with

i) (2n ≠ 1)(M+1)lk+LkpM = on(1),

ii) (2n ≠ 1)2lk+MLkpM = on(1),

iii) (2n ≠ 1)(2M+1)lk+MLkp2M = on(1),

iv) (2n ≠ 1)3Mlk+Lkp2M = on(1),

v) (2n ≠ 1)(M+1)lk+2MLkp2M = on(1)

Let Gk ≥ �p(n, k, p), and let �i be described as above. For i = 1, 2, 3 a.a.s.(n) there is
no pair of vertices u, v with at least M edges between them, and no vertex is connected
to more than M other vertices by double edges.

Proof. We first prove this for i = 1, 3. Throughout, note that k = 2lk + Lk. The
probability, PM,1, that there exists a pair of vertices u, v with at least M edges between
u and v is bounded above by

PM,1 Æ (2n ≠ 1)lk+Lk(2n ≠ 1)MlkpM
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= (2n ≠ 1)(M+1)lk+LkpM

= ok(1).

The probability, Pdoub,1 that there are vertices u œ V1 and v1, . . . , vM œ V2 with double
edges between u and each vi is bounded by

Pdoub,1 = (2n ≠ 1)lk(2n ≠ 1)MLk(2n ≠ 1)2Mlkp2M

= (2n ≠ 1)(2M+1)lk+MLkp2M

= ok(1).

The probability, PÕ
doub,1 that there are vertices u œ V2 and v1, . . . , vM œ V1 with

double edges between u and each vi is bounded by

P
Õ
doub,1 = (2n ≠ 1)Mlk(2n ≠ 1)Lk(2n ≠ 1)2Mlkp2M

= (2n ≠ 1)Lk+3MlkpM

= ok(1).

Let’s now switch to �2. Then the probability, PM,2, that there exists a pair of
vertices u, v with at least M edges between u and v is bounded above by

PM,2 Æ (2n ≠ 1)2lk(2n ≠ 1)MLkpM

= ok(1).

Finally, the probability, Pdoub,2, that there are vertices u and v1, . . . , vM with double
edges between u and each vi is bounded by

Pdoub,2 = (2n ≠ 1)(M+1)lk(2n ≠ 1)2MLkp2M

= ok(1).

Remark 5.5.5. Let d > 0 and pd = (2n ≠ 1)kd≠k. Then pd satisfies the conditions above
for some M if respectively:

i) lk + kd ≠ k < 0, so that d < (lk + Lk)/k,

ii) Lk + kd ≠ k < 0, so that d < 2lk/k,

iii) 2lk + Lk + 2kd ≠ 2k < 0, i.e. d < 1/2 since 2lk + Lk = k,
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iv) 3lk + 2kd ≠ 2k < 0, so that d < (k + Lk ≠ lk)/2k, and

v) lk + 2Lk + 2kd ≠ 2k < 0, so that d < (k + lk ≠ Lk)/2k.

This reduces to d < (k ≠ 1)/2k. For k Ø 8, this is satisfied whenever d < 7/16. For
k Ø 8, we have dk Æ 10/30 < 7/16, and so we can find d satisfying the requirements of
the above lemma and Theorem 5.5.6.

We can now prove the following.

Theorem 5.5.6. Let n Ø 2, k Ø 8. Let p be such that

(2n ≠ 1)2lkp = �n

A

log(2n ≠ 1)Lk

B

, and (2n ≠ 1)lk+Lkp = �n

A

log(2n ≠ 1)lk

B

.

Let �k ≥ �p(n, k, p). Then limnæŒ P(�k has Property (T )) = 1.

We remark that for d > dk the above is satisfied.

Proof. This follows similarly to the proof of Theorem 5.5.2. We may assume that p

also satisfies the requirements of Lemma 5.5.4 for some M . The main replacement
is in the fact that the �i have a very small proportion of disallowed edges so can be
treated as having the marginal distribution of an (bipartite) Erdös–Rényi random
graph. We then find regular spanning subgraphs, and repeat the above argument,
using Lemma 5.5.4 in place of Lemma 5.5.3. This guarantees us that by collapsing
double edges, we remove at most M2 edges adjacent to each vertex, and the argument
follows similarly.

We then apply the above to prove Theorem E, as in the case for the density model.
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