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Abstract: The challenge for city authorities goes beyond managing growing cities, since as cities 10 
develop, their exposure to climate change effects also increases. In this scenario, urban water supply 11 
is under an unprecedented pressure and the sustainable management of the water demand in terms 12 
of practices including economic, social, environmental, production, and other fields is becoming a 13 
must for utility managers and policy makers. To help tackling these challenges, this paper presents 14 
a well-timed review of predictive methods for short-term water demand. For this purpose, over 100 15 
articles were selected from the articles published in water demand forecasting from 2010 to 2021 16 
and classified upon the methods they use. In principle, the results show that traditional time series 17 
methods and artificial neural networks are among the most widely used methods in the literature, 18 
used in 25% and 20% of the articles in this review. However, the ultimate goal of the current work 19 
goes further, providing a comprehensive guideline for engineers and practitioners on selecting the 20 
forecasting method to use among the plethora of available options. The overall document results 21 
into an innovative reference-tool, ready to support a demand-informed decision making for disrup- 22 
tive technologies such as those coming from the internet of things and cyber-physical systems, as 23 
well as from the use of digital twin models of the water infrastructure. On top of this, this paper 24 
includes a thorough review of how the sustainable management objectives have evolved in a new 25 
era of technological developments, transforming the data acquisition and treatment. 26 

Keywords: Water demand, sustainable management; water demand forecasting; predictive analyt- 27 
ics; water supply; smart water networks; digital water 28 
 29 

1. Introduction 30 
Water is a vital resource and an essential need for the survival of habitats and the 31 

continuation of human life [1]. Sustainable management for water supply is key to meet 32 
needs regarding health and wellbeing of society today at rural and urban environments, 33 
having a pivotal importance in health, economy, food production, irrigation, and energy 34 
balance [2]. In recent years, factors such as climate change, population growth, increasing 35 
urbanisation rates, and industrial development have had a significant impact on increas- 36 
ing water consumption while reducing the available water resources [1,3]. It is even pre- 37 
dicted that due to the increasing trend of water consumption and scarcity of resources, 38 
even international conflicts may occur for gain control of water resources [4]. This water 39 
stress scenario urges the need for accurate tools to sustainable management of the balance 40 
between demand and resources of drinking water.  41 

To this end, forecasting of future water demand leads to a better operation and man- 42 
agement of urban water supply. The simplest and most traditional means of forecasting 43 
future water demand has been to estimate current per-capita water consumption. This 44 
work with aiding to ensure the provision of water in a continuous way and with sufficient 45 
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quality and pressure [5]. In other words, water demand forecasting is straightforwardly 46 
related to a supply service with reduced operating costs, such as the electric energy re- 47 
quired for pumping [6]. To perform this task optimally, several components must be con- 48 
sidered that relate to the concept of water demand forecasting. Figure 1 shows a summary 49 
of the relationships of the main concepts that appear in the literature review developed 50 
herein. With central hubs at keywords such as ‘models’ and ‘water demand’, it is possible 51 
to observe a number of clusters arising between their related concepts. The violet cluster 52 
in Figure 1 deals with water supply operations and management (e.g., water demand, 53 
systems, efficiency, resources and management). Red cluster in Figure 1 shows topics re- 54 
lated to environmental factors that have proven to be most important in the development 55 
of water demand forecasting methods (this group includes keywords such as sustainabil- 56 
ity, climate change, temperature, rainfall, pollution, and water quality). Still at Figure 1: 57 
yellow, green and blue clusters represent the main methodologies found in the literature 58 
(artificial neural network, time series, regression, machine learning and genetic algo- 59 
rithms, among others). 60 

 61 

 62 
Fig 1. Co-occurrence network of keywords related to predictive models for urban water demand 63 

In a short-term scope, predictive models of urban water demand play an important 64 
role in optimal performance of pumps, wells and reservoirs, as well as in informing deci- 65 
sion-makers about the balance and allocation of water resources when it is necessary [7, 66 
8]. Furthermore, short-term water demand forecasting can be used in water pressure man- 67 
agement, leakage control, pumping operations, or system operations, among others [9]. 68 
On the other side, long-term forecasting of water demand plays an important role in de- 69 
signing structures, developing strategies, and planning and management of water supply 70 
[8, 10-12]. 71 

Revisiting the topic of predictive models for urban water demand forecasting is 72 
timely and of interest for both the urban water management community and the more 73 
general urban analytics research. Methods traditionally designed for sustainable urban 74 
water management, maintenance and operation, have now an expanded scope as urban 75 
water systems become into smart infrastructure where there is a convergence between the 76 
physical, critical water supply system and the digital infrastructure associated with a 77 



Sustainability 2022, 14, x FOR PEER REVIEW 3 of 30 
 

 

cyber-physical system, encompassing advanced metering infrastructure, sensors, and ac- 78 
tuators on the physical assets. 79 

This paper proposes a literature review of methods and validation measures for ur- 80 
ban water demand forecasting and its sustainable management. This opens an avenue for 81 
critical discussion on new challenges and approaches on the topic that have also been 82 
addressed throughout the paper. Among them, they highlight the role of the time-period 83 
to look further, the technology available for the methodology selection, or the role of pre- 84 
dictive models for anomaly detection. While predictive methods for water demand have 85 
historically been essential for an efficient urban water operation and management, the 86 
paradigm now is in a continuous expansion towards the development of innovative tools 87 
for a near real-time, intelligent operation and management of a smart and adaptive water 88 
distribution system infrastructure. 89 

The literature review has been conducted in a systematic way, including the works 90 
published from 2010 onward. The aim of using 2010 as starting date for the revision of 91 
papers is to focus only in the most recent research. However, outstanding work dates from 92 
before 2010. To mention a few, Alvisi et al. [5] proposed a time-series analysis framework 93 
for forecasting of short-term water demand. The paper of Bougadis et al. [6] integrates the 94 
prediction of peaks on the water demand time series into the infrastructure management 95 
and operations using neural networks, which were also applied as a predictive method in 96 
Jain et al. [7]. Other papers before 2010 focused on the use of autoregressive moving aver- 97 
age - ARIMA – models [8]. It was in 2010 when Herrera et al. [9] made a comparison of a 98 
selection of machine learning based methods for short-term prediction of water demand. 99 

The most used methods in the urban water demand forecasting literature are neural 100 
networks, support vector machines, traditional time series, regression models, random 101 
forests, and dynamic systems (see tables 2 and 3). Despite the high productivity of this 102 
research area, it has not yet been proposed a general model that can be successfully ap- 103 
plied to all water distribution systems [10,11]. This is since there is not a consensus on 104 
which method performs better than others and/or under which circumstances. However, 105 
what the literature agrees on is the need to not only use a method but adapt it to the op- 106 
erational and / or managerial objective for which the predictions should be useful. There 107 
is also an overall agreement on the need to use all the information available and as well 108 
as on designing an adequate experiment for sampling and collecting data to analyse fur- 109 
ther. To both ends, the forecasting time scope and the intent of such a predictive model 110 
should be as clearer as possible. 111 

The rest of the paper is organised as follows: Section 2 provides a brief overview of 112 
the systematic approach followed in this literature review. Section 3 reviews the methods 113 
and models found in the literature to predict water demand. This section also introduces 114 
the main indicators used to evaluate the model forecasting accuracy. Section 4 proposes a 115 
critical view of future research directions in water demand forecasting. Section 5 closes 116 
the paper by introducing a discussion on the state-of-the-art research aiming to support a 117 
series of conclusions that position the main work of the paper. Note that the use of pre- 118 
dictive model and forecasting model will be interchangeable throughout most of this pa- 119 
per. Forecasting models are predictive models that are based on historical data and with 120 
a focus on future events (demand in this case). Predictive models for water demand meet 121 
both criteria. Still, a difference may remain in terms of the model explainability, usually 122 
associated with forecasting models, that predictive models in this paper may not have. 123 

2. Systematic literature review: Methodology 124 
This section describes the process of conducting this research, including how to col- 125 

lect, filter and analyse articles. Accordingly, the process of conducting this research in- 126 
cludes three stages: collecting related research from various databases; evaluating and se- 127 
lecting research in accordance with the objectives of this study; and presenting the results 128 
of their review and analysis. Figure 2 shows the scheme of the systematic literature review 129 
process followed in this paper.  130 
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Fig 2. Scheme of the systematic review process and analyses considered 132 
 133 
The first stage of the systematic literature review involves the definition of keywords 134 

and databases to seek related papers. The keywords were selected in accordance with the 135 
objectives of this study. Those comprise urban water, water supply, water demand, water 136 
consumption, demand prediction, predictive methods, predictive models, forecasting, 137 
and short-term, among others. The databases used for this search are Web of Science, Sco- 138 
pus, ProQuest, GoogleScholar.com, Google.com, Science Direct, IEEE Xplore, MDPI.com, 139 
and ACM Digital Library. The search has been performed on these databases by combin- 140 
ing multiple keywords with Boolean operators “AND”, “OR” and “AND NOT” in the 141 
title, abstract, and keywords. Only publications post-2010 and in English were eligible 142 
within the search. It is worth mentioning the wide international representation of case- 143 
studies that come as a result of this literature review. In this regard, the top 5 countries 144 
that appear more often in the review are the following: Canada (13% of the total of papers 145 
in the literature review), Spain (10%), Brazil, China, and UK (each of them at 8%). Tables 146 
2 and 3 provide particular information about the location of the study areas used in part 147 
of this literature review. 148 

The second stage shows how the irrelevant articles were deleted. First, to identify the 149 
most updated publications all the articles published before 2010 were discarded. Then, 150 
articles were filtered based on irrelevant keywords. For example, articles related to 151 
groundwater, or articles related to the repair and maintenance of water supply networks 152 
were excluded. Finally, the articles were skimmed through their title and abstract to see 153 
whether the variables and forecasting methods used in them are in accordance with the 154 
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objectives of this study. Table 1 introduces the top 10 journals in which the articles used 155 
in this literature review were published. 156 

 157 
 158 
 159 

Table 1. Top 10 journals cited in the current literature review 160 

Journal name References Publisher 
Impact factor 

 (5-year) 

Best 

Quartile 

Procedia Engineering 12 Elsevier - - 
Water Resources Planning and Mgmt. 11 ASCE 3.563 Q2 
Water 8 MDPI 3.229 Q2 
Environmental Modelling & Software 7 Elsevier 6.036 Q1 
Hydrology 6 Elsevier 6.033 Q1 
Water Resources Management 4 Springer 3.868 Q2 
Water Supply 3 IWA Publishing 1.152 Q4 
Water Resources Research 2 Wiley 6.006 Q1 
Desalination 2 Elsevier 9.189 Q1 
Sustainable Cities and Society 2 Elsevier 7.308 Q1 

 161 
The third stage discusses about the methods and validation indicators that used in 162 

the studied articles. In addition, this stage includes a definition and classification of water 163 
demand forecasting methods, since the purpose of this paper is providing guidance to 164 
researchers and practitioners. Beyond just doing the systematic literature review, the doc- 165 
ument provides a critical view of the current and future challenges for water demand. 166 
This is of vital importance for water utilities seeking to leverage the emergence of new 167 
smart technologies for the operation and management of urban water infrastructure. 168 

3. Predictive methods and validation 169 
Most of the literature working on predictive models for water demand forecasting 170 

encompasses comparisons between multiple methodologies and an assessment about 171 
which performs better for the case studies the authors may have introduced [2,9,12,13]. 172 
This section reviews methods and models used for water demand forecasting during the 173 
years 2010 – 2021, in addition to provide information of validation methods, used to check 174 
the goodness of fit, or in other words to calculate the difference between observed values 175 
and the predicted values of any model as well as to their comparison and selection. Pre- 176 
viously to enumerate and describe the different predictive methods found in the litera- 177 
ture, it is worth mentioning the common factors all these methods will have, as they need 178 
to consider the peculiarities associated with urban water demand. These revolve around 179 
the exogenous factors affecting the historical time series data of water demand. 180 

 181 

3.1. Impact of exogenous factors in water demand models 182 
This section provides an overview of exogenous factors, or covariables, having an 183 

impact on predictive models of urban water demand. Such factors range from weather 184 
conditions to the geographic location of the study areas. Economic, socio-demographic, 185 
physical and technological covariables are also shown to be relevant actors in the devel- 186 
opment of methods for prediction of the urban water demand. According to the classifi- 187 
cation provided by Bich-Ngoc & Teller [14], the factors having an influence in predicting 188 
water demand are classified into six groups. These include climatic or weather, economic, 189 
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socio-demographic, households properties, technological and location or geographic fac- 190 
tors. A factor that is not included in the aforementioned categories is the calendar variable: 191 
weekdays, weekends, holidays and special events. The descriptions of such factors are the 192 
following:  193 

 Climatic or weather conditions (e.g., temperature, humidity, precipitation):  194 
There is almost an evident correlation between weather and water use and 195 
often this is co-founded to customer behaviour and a general seasonality ef- 196 
fect on outdoor activity. However, the exposure to severe weather periods 197 
will also have a significant impact in the water demand. Climatic variables 198 
are among the most used along with the historical past water consumption, 199 
and they have been considered in many studies. For example, Brentan et al. 200 
[15] examined the correlation between weather factors with water demand 201 
and showed that three factors temperature, relative humidity, and hour of 202 
the day are the most relevant variables for forecasting water demand. Also, 203 
Hu et al. [16] used temperatures, dew point, humidity, wind speed and at- 204 
mospheric pressure as input variables in the water demand forecasting 205 
model. 206 

 Economic inputs (e.g., water price, billing, income): One of the reasons why 207 
economic factors, such as price, can be naturally considered for water de- 208 
mand forecasting is due to a higher price may lead to a lower consumption 209 
[14]. In some studies, these factors have been considered too. For example, 210 
de Maria André & Carvalho [17] showed that some factors, including water 211 
price and household income have a positive effect on water demand, since 212 
an increase in these variables will increase water demand. 213 

 Social-demographic situation (e.g., population, household size, occupants 214 
age) and other household properties (e.g., house type and property value): 215 
In this regard, Hussien et al. [18] investigated the effect of social-demo- 216 
graphic factors such as the number of children, adult male members, adult 217 
female members, and elderly household occupation, as well as some physical 218 
property factors, such as household size, household type, the total built-up 219 
area of all floors, garden area per household, number of rooms, and number 220 
of floors on per capita of water consumption. Also, Bennett et al. [19] has 221 
been introduced the number of adults, children, and teenagers in a house- 222 
hold as independent variables for a model based on neural networks. 223 

 Geographical factors (e.g., urban density, type of location): In the literature, 224 
geographical factors have shown to have an impact on forecasting water de- 225 
mand and they should be considered further for efficient water supply plan- 226 
ning and management [20]. One of the main examples including geograph- 227 
ical factors for water demand forecasting is the work of Bao & Chen [21]. 228 
They used spatial econometric models to analyse the influencing factors in 229 
water consumption efficiency and found that urbanisation level is one of the 230 
most important covariables affecting water consumption among the socio- 231 
economic and eco-environmental Indicators. Among the more relevant 232 
works that include GFs in the methodology development for water demand 233 
forecasting, Benítez et al. [22] considered the type of location, including the 234 
city center site, the production site (industrial), and the residential site (sub- 235 
urb) to develop predictive models for water demand. 236 

 Technological factors (e.g., smart-meters, sensors, data loggers): Smart me- 237 
ters are the most widely used technology factor among the others. Hence, 238 
they have been included in multiple research on water demand forecasting 239 
models. In these studies, users' consumption information is collected hourly 240 
or even instantaneously through such smart meters and used as consump- 241 
tion input data in the forecasting models [13,23]. Other technology factors 242 
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such as high efficient fixtures and appliances [24] or alarming display moni- 243 
tors [25] have shown to also have an impact on water consumption. How- 244 
ever, such factors have rarely been used in water demand forecasting mod- 245 
els. 246 

 Calendar variables (weekdays, weekends, holidays, and special events): Alt- 247 
hough calendar information is inherently present in other factors such as 248 
weather, socio-demographic, and geographic factors, it is a good practice to 249 
specifically consider its effect on water demand models. Calendar variables 250 
can be considered as information at a finer granularity than other related fac- 251 
tors, having the potential to increase the accuracy of any predictive method. 252 
Among the studies that have specifically considered calendar factors high- 253 
light the works of Pesantez et al. [13]; Benítez et al. [22]; Antunes et al. [12]; 254 
Hu et al. [16]; Brentan et al. [15]; Liu et al. [26]; and Herrera et al. [9]. 255 

 256 
All the aforementioned factors need to be considered as inputs of the predictive 257 

methods. The particularities on using these factors will affect the way in which a predic- 258 
tive model is adapted from its general version. An additional challenge is not only using 259 
such factors individually but considering their interactions. For instance, how weather 260 
variables and population impact water demand in holidays destinations [27]. At a short- 261 
term level, water demand will depend on any important social event on live or on tv. Last, 262 
but not least, water demand is noticeable depending on policies such as the recent world- 263 
wide lockdown, given the COVID-19 crisis, that kept people at home with their conse- 264 
quent variation in the water demand profile [28]. 265 

3.2. Predictive methods for forecasting urban water demand 266 
There is a plethora of published research in forecasting methods for urban water de- 267 

mand. Tables 2 and 3 summarise the validation indicators and predictive methods used 268 
for the short and long-term demand prediction. These methods and indicators are further 269 
classified, reviewed and discussed. 270 

 271 
Table 2. Summary of factors affecting water consumption and short-term water demand forecast- 272 
ing models 273 

Authors (year) 
Study 
area 

Measures of ac-
curacy 

Time periods Methods 

H
ourly &

 less 

D
aily 

W
eekly 

M
onthly 

TS 

N
N

 

R
 / R

F 

H
yb 

SV
M

 

M
H

A
 

LM
 

SD
 

O
thers 

Shirkouhi et al. 
[29] 

Canada 
RRMSE, MAPE, 
NSE 

*     *  *  *   * 

Koo et al. [30] Korea 
RMSE, NRMSE, 
NSE, r & Resid-
ual 

*    * *       * 

Pandey et al. [31] 
Spain & 

India 
RMSE, MAE, 
MAPE 

*   * *   *     * 

Rezaali et al. [32] Iran 
RMSE, r, NSE, 
MAE,  MARE 

*     * *  *  *   

Du et al. [33] China 

MAPE, MAPE 
of peaks, r, ex-
plain variance 
score (EVS) 

 *    *        
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Authors (year) 
Study 
area 

Measures of ac-
curacy 

Time periods Methods 

H
ourly &

 less 

D
aily 

W
eekly 

M
onthly 

TS 

N
N

 

R
 / R

F 

H
yb 

SV
M

 

M
H

A
 

LM
 

SD
 

O
thers 

Hu et al. [34] China 
MAE, RMSE, 
NSE, r 

*     *   *     

Al-Ghamdi [35] 
Saudi 

Arabian 
RMSE  *    *        

Salloom et al. [36] China MAPE *     *        
Pesantez et al. 
[13] 

United 
States 

RMSE *    * * *  *     

Bata et al. [37] Canada MAPE, NRMSE * *   *  * *      

Xenochristou et 
al. [38] 

UK MAPE, MSE, R2  *     *       

Yousefi et al. [39] Canada 
CC,  RMSE, 
MAE 

* *     *   *   * 

Pacchin et al. [40] Italy MAE, RMSE *     *       * 
Villarin & Rodri-
guez-Galiano [41]  

Spain R2,  RMSE  *     *       

Perea et al. [42] Spain SEP, R2  *    *  *  *   * 
Maruyama & 
Yamamoto [43] 

Japan ARE  *  *   *       

Gharabaghi et al. 
[44] 

Canada 
MAPE, R2, VAF, 
AICc, UI & UII 

 *   *   *     * 

Banihabib & 
Mousavi-
Mirkalaei [45] 

Iran 
RMSE, MARE, 
MaxRE, MBE, 
R2 

 *   * *        

Benítez et al. [22] Spain 
MAPE, RMSE, 
FOB 

 *   *        * 

Candelieri et al. 
[46] 

Italy MAPE *    *   * *     

Hu et al. [16] 
Not men-

tioned 
MAE, MAPE  * *   *       * 

Kozłowski et al. 
[11]  

Poland R2  *   *         

Antunes et al. [12] Portugal RMSE, NSE  *    * *  * *    
Vijai & Sivakumar 
[2] 

EU 
RMSE, R2, MSE, 
MAE 

* *    * *  *  *   

Brentan et al. [47] Brazil SDe  *   *  *       
Sardinha-Lou-
renço et al. [48] 

Portugal R2, MAPE *    *        * 

Shabani et al. [49] Canada 
MAE, RMSE, 
R2, MAPE 

*    *   *  *    

Pacchin et al. [50] Italy RMSE, MAE *            * 
Oliveira et al. [51] Brazil MAPE, RMSE  *   *   *  *    
Gagliardi et al. 
[52] 

UK NSE *     *       * 

Brentan et al. [15] Brazil RMSE, MAE, R2 *    *   * *     
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Authors (year) 
Study 
area 

Measures of ac-
curacy 

Time periods Methods 

H
ourly &

 less 

D
aily 

W
eekly 

M
onthly 

TS 

N
N

 

R
 / R

F 

H
yb 

SV
M

 

M
H

A
 

LM
 

SD
 

O
thers 

Candelieri [23] Italy MAPE *    *    *     

Tiwari et al. [3] Canada 
R2, RMSE, Pdv , 
MAE, PI 

 *    *     *   

Arandia et al. [53] Ireland 
RMSE, NRMSE, 
MAPE 

 * *  *         

Walker et al. [54] Greece CC, Sde *     *  *  *    
Candelieri et al. 
[55] 

Italy MAPE *    *    *     

Hutton & Kape-
lan [56] 

UK MAPE *    *         

Al-Zahrani & 
Abo-Monasar [57] 

Saudi 
Arabia 

MAPE, R2  *   * *        

Vijayalaksmi & 
Babu [58] 

India 
RMSE, MAPE, 
CC 

 *    *        

Tiwari & Ada-
mowski [59]  

Canada 
R2, RMSE, Pdv , 
MAE, PI 

  * *  *  *     * 

Bakker et al. [60] 
Nether-

lands 
RE, MAPE, R2  *   *  *      * 

Romano & Kape-
lan [61] 

UK MAPE, MSE *    * *        

Okeya et al. [62] UK MAE *    *        * 

Bai et al. [63]  China 
NRMSE, CC, 
MAPE 

 *   *  *   *    

Candelieri & Ar-
chetti [64] 

Italy MAPE *    *    *     

Chen & Boccelli 
[65] 

Not men-
tioned 

AARE *    *         

Alvisi & 
Franchini [66] 

Italy NSE, RMSE *     *  *     * 

Sampathirao et al. 
[67] 

Spain 

Average 
PMSE24, Aver-
age PRMSE24, 
Number of Pa-
rameters 

*    * *  * *    * 

Bennett et al. [19]  Australia 

R2, ARE, AAE, 
RMSE, Mann-
Whitney Wil-
coxon (MW) P-
value 

 *   *         

Liu et al. [26] China AARE *        *     
Khan et al. [68] Australia Ac  *    * *  *     
Adamowski et al. 
[69] 

Canada 
R2, RMSE, 
RRMSE, E 

 *   * * *      * 

Azadeh et al. [70] Iran MAPE  *    * *      * 
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Authors (year) 
Study 
area 

Measures of ac-
curacy 

Time periods Methods 

H
ourly &

 less 

D
aily 

W
eekly 

M
onthly 

TS 

N
N

 

R
 / R

F 

H
yb 

SV
M

 

M
H

A
 

LM
 

SD
 

O
thers 

Odan & Reis [71] Brazil MAE, r *    * *        
Herrera et al. [72] Spain RMSE, MAE *    * *  *      
Herrera et al. [9] Spain RMSE, MAE *    * * *  *     
Adamowski & 
Karapataki [73] 

Cyprus 
R2, RMSE, 
AARE, MaxARE 

  *   * *       

Caiado [74] Spain MSE  *   *         

Wu & Yan [75] 
United 

Kingdom 
MSE, RMSE, 
MRE, MaxRE 

 *        *    

 274 

Table 3. Summary of factors affecting water consumption and medium-term and long-term water 275 
demand forecasting models 276 

Authors (year) 
Study 
area 

Measures of 
accuracy 

Time periods Methods 

M
onthly 

Q
uartly 

Yearly 

TS 

A
N

N
 

R
 / R

F 

H
yb 

SV
M

 

M
H

A
 

LM
 

SD
 

O
thers 

Shuang & Zhao 
[76] 

China 
MSE – MAE - 
R2 

  *   *  *    * 

Ristow et al. [77] Brazil MAPE *   *         

Karamaziotis et 
al. [78]  

Greece 
MAE, MASE, 
RMSE, MAPE 

*   *         

Sanchez et al. [79] 
United 
States 

ST   *   *      * 

Guo et al. [80]  China B, RE, MRE   *      *    

Rasifaghihi et al. 
[81]  

Canada 
Silhouette co-
efficient 

  * *  *      * 

Duerr et al. [82] 
United 
States 

RMSE, GINI, 
AWPI, ECPI, 
NOIS 

*   *  *    *   

Sharvelle et al. 
[83] 

United 
States 

MRE, bias 
fraction 
(BIAS), NSE  

*           * 

Haque et al. [84] Brazil 
R2, RMSE,  
MARE, NSE 

*     *       

Shabani et al. [85] Canada R2, RMSE *       *     

Yousefi et al. [86] Canada 
R2, RMSE, 
MAE 

*        *    

Nassery et al. [87] Iran 
ME, MAE, 
MAPE, RMSE 

* *         *  

Altunkaynak & 
Nigussie [88] 

Turkey RMSE, NSE *   * *  *      

Vani [89] India -   *        *  
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Fullerton Jr et al. 
[90] 

United 
States 

B, ST *   *         

Peña-Guzmán et 
al. [91] 

Colombia 
RMSE, AARE, 
R2 

*    *   *     

Shabani et al. [92] Canada 
R2, MAE, 
RMSE, NSE 

*       * *    

Shabri et al. [93] Malaysia 
RMSE, MAE, 
CC 

*    *   *     

Kofinas et al. [94] Greece 
R2 , MAPE, 
RMSE, MAE 

*   * *  *      

de Maria André & 
Carvalho [17] 

Brazil 
LM, Moran-I 
test, R2 

* *  *        * 

Yang et al. [95] 
Not men-

tioned 
-   *        *  

Almutaz et al. 
[96] 

Saudi 
Arabia 

SDe *           * 

Nasseri et al. [97] Iran B, NMSE, R2 *   *   *  *   * 

Qi & Chang [98] 
United 
States 

Compared 
with Real-
world water 
demand data 

  *        *  

Firat et al. [99] Turkey 
AARE, 
NRMSE, Ts 

*   * *        

Varahrami [100] Iran 
RMSE, MAE, 
MAPE 

*    *  *  *    

Mohamed & Al-
Mualla [101] 

Emirates 
AARE, ARE, 
SDARE 

*  *         * 

 278 
 279 

Figure 3 shows a classification of the main works based on the frequency of their use 280 
in the reviewed articles in tables 2 and 3 and the type of method used in these articles. The 281 
most widely used methods, presented below, include diverse types of artificial neural net- 282 
works (ANN), traditional time series (TS), regression (R), support vector machines (SVM), 283 
hybrid models (Hyb), metaheuristic algorithms (MHA), machine learning (ML), and sys- 284 
tem dynamics (SD).  285 
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 289 
The classification above is based on basic models that are also extended to particular 290 

approaches. For instance, methods based on neural networks encompass long short-term 291 
memory [33], radial basis function ANN [30], and gated recurrent unit [36]; all of them 292 
included in the ANN class. Methods based on time series encompassing probabilistically 293 
-exploratory TS [56] and exponential smoothing state-space models [77] were included in 294 
the TS class. The classification of other methods, such as SVM, Hyb., and others, is simi- 295 
larly done. Of course, other methods fall out of the main classifications and are conse- 296 
quently included in the class ‘others’. Among these methods, it is worth highlighting the 297 
homogeneous and non-homogeneous Markov chains [52], and the nonlinear local approx- 298 
imation method [39]. 299 

 300 
Artificial neural networks 301 

Artificial neural networks (ANNs) are machine learning models for clustering, clas- 302 
sification, and prediction. The simplicity in their overall design, and a high performance- 303 
level, made them to be one of the most widely used predictive methods in water demand. 304 
ANNs are inspired by how the human brain and nervous system work. An ANN is, then, 305 
an interconnected assembly of artificial neurons, arranged in a series of layers in which 306 
the elements from one layer are fully connected to the elements of the other. The data is 307 
presented to the ANN at the so-called input layer, transmitted to a hidden layer, where it 308 
is transformed, and again forwarded to compute an outcome (prediction in this case) at 309 
the output layer. At the output layer an estimation error is computed, and the ANN 310 
method uses a back-propagation process to learn how to optimally adjust the intercon- 311 
nections weights [9]. This is an iterative feed-forward training plus back-propagation val- 312 
idation process until convergence. In the literature, it is possible to find a myriad of com- 313 
binations and choices for the creation of different families of ANNs and combinations to 314 
other machine learning and statistical processes. 315 

One of the benefits of using ANNs is their accurate predictions with little or no prior 316 
knowledge of the problem. However, ANNs performance is significantly superior after 317 
their adaptation to the specific problem to solve and to the data available, rather than 318 
directly use the standard procedure. Such an adaptation may require bringing knowledge 319 
to the input layer in terms of historical data at relevant time-series lags, and information 320 
of covariables such as climate and calendar information. On the downside, ANNs face 321 
issues related to their lack of explainability, the large quantity of data often needed for 322 
their training and validation, and the risk of having a lack in generalisation of the findings 323 
out of the range of the observed data [10]. 324 
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Salloom et al. [36] used a new machine learning method named Gated Recurrent Unit 325 
(GRU) as a basic model for forecasting hourly water demand in Changzhou, China. The 326 
gated recurrent unit (GRU) is an effective chained deep learning model that considers the 327 
previous information and is suitable for sequence data analysis. It has a reset gate and 328 
update gate phases to avoid vanishing and exploding gradient problems, and it can de- 329 
termine which information should be passed to the output. The results of their study 330 
showed that this new method reduces the complexity of the prediction model six times 331 
that achieved in the literature while conserving the same accuracy. Hu et al. [34] also ap- 332 
plied the GRU for forecasting hourly water demand of District Metering Areas (DMA) in 333 
Shanghai, China. They compared the result of the GRU with SVM and traditional ANN 334 
and showed that the GRU-based models are more accurate than the two others model. 335 

 336 
Support vector machines  337 

Support vector machine (SVM) methods were introduced as a classification method 338 
in the mid 90s, firstly as an innovative approach for solving a single perceptron problem 339 
associated with an ANN. SVM gained generalisation power by working with kernel func- 340 
tions, enabling it to perform at least at the same accuracy level as an ANN for classification 341 
[85] and regression, support vector regression (SVR). The way in which such kernels (sim- 342 
ilarity function of the input space data) work for SVMs is by a mapping of the problem 343 
domain with complex, non-linear relationships, into a high dimensional space in which 344 
the computations needed to solve such a problem are easier and, ultimately, of a linear 345 
nature [102]. 346 

 Several studies have shown the excellent performance of SVR in water demand fore- 347 
casting. This is the case of Liu et al. [26] who used a set of SVR models to forecast daily 348 
demand patterns and to infer the factors of higher influence. Herrera et al. [103] worked 349 
with a multiple kernel regression for which single kernels were computed per each differ- 350 
ent type of input data and combined into a single, multi-kernel regression model [104]. 351 
Similarly, Shabani et al. [85] predicted the monthly water demand via SVM using a poly- 352 
nomial kernel function. In their study, several combinations of SVM models were tested 353 
to assess the impact of lag time in the inputs data and compared the performance of these 354 
models. Based on the results, it was found that different combinations of input variables 355 
affect the performance of the SVM model for forecasting. Candelieri & Archetti [64] and 356 
Candelieri et al. [55] introduced a 2-stages framework for hourly water demand forecast- 357 
ing. Firstly, the demand pattern was characterised through a time series clustering. Then, 358 
they run a SVR model to predict the water demand at each cluster previously found. They 359 
showed that by using this 2-stages framework, it is possible to make a reliable forecast of 360 
water demand and a consequently optimisation of the water supply operation and man- 361 
agement. In a further work, Candelieri et al. [46] developed a parallel global optimisation 362 
process for tuning the SVR hyperparameters to significantly reduce the forecasting errors 363 
of the final predictive model. 364 

There are multiple works about SVMs in combination with other machine learning 365 
methods. Despite that the current paper has a dedicated subsection to hybrid methodolo- 366 
gies, we emphasise here the relevance of such combinations in the application of SVM and 367 
SVR in urban water forecasting models. Shabri et al. [93] applied a combination of an em- 368 
pirical mode decomposition (EMD) and a least square support vector machine (LSSVM) 369 
model to the problem of monthly water demand forecasting. The proposed EMD-LSSVM 370 
model outperforms the EMD-ANN as well as the LSSVM and ANN models. Another ex- 371 
ample is the work of Peña-Guzmán et al. [91] in which the author used LSSVM to predict 372 
residential, industrial, and commercial monthly water demand. They proved that the 373 
LSSVM model was superior to an ANN model in terms of accuracy. Brentan et al. [15] 374 
applied a SVR model for hourly water demand forecasting. They added a Fourier time 375 
series process over the SVR model to improve the base prediction and to make it respon- 376 
sive to near real-time predictions. They showed that this procedure reduces the near real- 377 
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time prediction errors as well as any biases developed over time, common for fixed re- 378 
gression structures. 379 

 380 
Traditional time series analysis 381 

Time series (TS) models are broadly defined as those methods based on the analysis 382 
of historical data. Most of the demand forecasting methods fall into this category. In the 383 
following we use the term TS analysis to refer to the more traditional procedures to work 384 
in this topic. Those imply an analysis by decomposition of their main statistical elements; 385 
namely level, trend, seasonality, and noise. Traditional TS analyses do not reach the high 386 
accuracy levels that many of the machine learning based models may bring, due to tradi- 387 
tional TS struggle to capture nonlinear relationships for the demand forecasting. How- 388 
ever, a clear advantage of traditional TS relies on their great explainability. This cannot be 389 
overviewed, since one of the aims of the forecasting process is often related to getting a 390 
proper model explanation, fostering model confidence and an overall better informed de- 391 
cision-making process. 392 

The autoregressive integrated moving average (ARIMA) models are methods widely 393 
used in traditional TS analysis and forecasting. Several developments come associated 394 
with ARIMA models by adding certain parameters. To mention a few, SARIMA considers 395 
a stational component of the time series and ARIMAX adds exogenous covariables. In the 396 
case of water demand forecasting ARIMAX models are of main importance since they can 397 
include covariables such as weather factors and social demographic factors that showed 398 
to be key for the predictive performance of the models [105]. 399 

In the literature on urban water demand, there are multiple works that use traditional 400 
TS as the main forecasting method. Chen & Boccelli [65] developed an integrated TS fore- 401 
casting framework for hourly/quarter-hourly demands of a medium-size water supply 402 
system. The models used in their research were a fixed and an adaptive seasonal auto- 403 
regressive model, both were suitable for use in water utilities running SCADA. Okeya et 404 
al. [62] used a TS model to forecast water demands at 15-minute intervals in a water dis- 405 
tribution system. They used two data assimilation (DA) methods including a Kalman fil- 406 
ter, a linear quadratic estimation in principle designed to control sources of uncertainty in 407 
TS forecasting, and an ensemble Kalman filter. Their aim was to improve the real-time of 408 
water demand prediction and the estimation of hydraulic system states. Arandia et al. [53] 409 
used Kalman filter, as a DA, combined with a SARIMA model to predict water demand 410 
both for online and offline modes. They predicted quarterly, hourly and daily demands 411 
analysing the output in a variety of time resolutions. 412 

The use of ARIMA for water demand was key in the works of Banihabib & Mousavi- 413 
Mirkalaei [45], who proposed ARIMA and nonlinear auto regressive exogenous models 414 
for daily urban water consumption forecasting. Karamaziotis et al. [78] examined several 415 
methodologies, including ARIMA, exponential smoothing, and multilayer perceptrons. 416 
Fullerton Jr et al. [90] used a developed time series model named linear transfer function 417 
ARIMA to simulate the monthly frequency of water demand. They showed that the model 418 
performs well in predicting customers demand but falls in predicting consumption 419 
growth, since the model may need regular updates to address such a bias. 420 

Ristow et al. [77] developed two models based on time series for predicting monthly 421 
water demand of the four consumption categories, including residential, commercial, in- 422 
dustrial, and public, as well as total consumption in the city of Joinville, Brazil. One of the 423 
employed models was the exponential smoothing state-space models (ETS) and the other 424 
was performed through the Box–Jenkins methodology (ARIMA models). The result of 425 
their study showed that the seasonal ARIMA method (namely SARIMA) is performed 426 
more adequately to predict water consumption in these categories, except that residential 427 
category, and it can be applied to monthly urban water consumption forecasts. 428 

 429 
 430 
 431 
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Metaheuristic algorithms 432 
Metaheuristic or evolutionary algorithms (e.g., genetic and swarm-based algorithms) 433 

are a group of decentralised intelligence methods whose operations are inspired by natu- 434 
ral phenomena, usually through mimicking a collective behaviour of a system or organ- 435 
ism. Such a system behaviour brings intelligence and adaptation for the total of any sys- 436 
tem, which cannot be reached by the mere addition of its single parts. Metaheuristic algo- 437 
rithms search the solution space and often find near-optimal solutions to non-determinis- 438 
tic polynomial time problems [106], normally used for design and optimisation of water 439 
distribution systems. The main advantages of using metaheuristic are the ability (i) to 440 
search the entire solution space and thus find excellent quality solutions with a high prob- 441 
ability; (ii) to link to and combine with other methods; and (iii) to reach high flexibility to 442 
solve multi-objective problems related water systems operation and management [107]. 443 

In water demand forecasting, Romano and Kapelan [61] directly used metaheuristic 444 
algorithms to estimate water demand for the next 24h period. They particularly used evo- 445 
lutionary artificial neural networks. However, metaheuristic algorithms are often found 446 
in combination with other machine learning methods, such as ANN or SVM, to adjust 447 
their hyperparameters [102]. Varahrami  [100] presented two types of neural networks 448 
tuned with a GA to predict the monthly water demand. Wu & Yan [75] applied two ge- 449 
netic programming (GP) approaches, including tree-based genetic programming (TGP) 450 
and gene expression programming (GEP) for daily demand forecasting in a district me- 451 
tered area of a water distribution system. Nasseri et al. [97] predicted the monthly water 452 
demand using a method consisting of GP and extended Kalman filter (EKF). They used 453 
EKF to infer latent variables in a forecasting model that was formulated using GP. Shabani 454 
et al. [49] proposed an approach based on a two-stage learning process that couples GEP 455 
with time-series clustering for short-term water demand forecasting. In the proposed a 2- 456 
stages approach, time series clustering to organize daily water demand patterns and gene 457 
expression programming to model the demand of such clusters. The results proved that 458 
GEP can provide high accuracy while coupled with unsupervised learning algorithms. 459 

Bai et al. [63] proposed a model based on wavelet transformations to train a rele- 460 
vance-vector regression for predicting urban water demand at different scales, multiscale 461 
relevance-vector regression (MSRVR). Then, they used an adaptation of a particle swarm 462 
optimization (PSO) algorithm to optimise the parameters combination of such a model. 463 
The proposed MSRVR-PSO had better performance in predicting water demand than var- 464 
iations of ANN models specifically tailored for regression analysis. 465 

 466 
Regression 467 

Regression models estimate how changes in a group of independent variables may 468 
have an impact on the dependent variable, which is usually of interest. These models are 469 
suitable for predicting future demand, although such predictions should remain under a 470 
certain time stretch to keep their validity. This is due that the predictions are mainly ex- 471 
trapolations out of the regression input-domain where it is of main importance the struc- 472 
tural stability of the independent variables. That is to say, the assumption for which the 473 
relationship between the variables involved in the regression and their impact into the 474 
dependent variable is still the same as in the range of observed data. The use of regression 475 
methods is, hence, common for short-term demand forecasting. 476 

Bakker et al. [60] studied a multiple linear regression (MLR) model along with an 477 
adaptive heuristic algorithm searching to optimise a transfer function-noise (TFN) model 478 
(taking the independent variables at different time-lags). The authors used these methods 479 
for water demand forecasting of a benchmark of district metered areas for water utilities. 480 
The results showed a higher accuracy for the combined heuristic-TFN model than MLR 481 
at forecasting the one-day lead water demand. The interest of this outcome lies on the 482 
possibility to increase the predictive power without loss of model explainability. 483 
Maruyama & Yamamoto [43] also used MLR-based models to a better management of the 484 
daily water supply. Rasifaghihi et al. [81] used a Bayesian regression to forecast the daily 485 
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urban water consumption. In a Bayesian framework, the regression model is similar in 486 
structure to the frequentist, least-squares, regression analysis. However, the Bayesian 487 
model parameters have a certain probability distribution, and they are updated in the 488 
actual regression process by the likelihood of the observations. 489 

Haque et al. [84] applied the independent component regression (ICR). This is a 490 
method that brings to the analysis the capacity of separation of the input-domain into 491 
additive parts able to reconstruct the variable of interest (dependent variable) in a way in 492 
which it can be used for regression analysis. The authors used ICR as a main method to 493 
urban water demand forecasting. They compared the performance of ICR to other 2 re- 494 
gression methods: principal component regression (PCR, that is MLR with the principal 495 
components covariables as input) and MLR. The results showed ICR having the best per- 496 
formance in comparison to PCR and MLR. 497 

Among the multiple options for regression analysis in forecasting, SVR and random 498 
forest (RF) are the 2 methods of great success in the water demand literature. Having 499 
above a subsection specifically dedicated to SVR, it is necessary to introduce RF now. RF 500 
is an ensemble of decision tree (DT) models which split, in a recursive manner, the input- 501 
space into a tree-like hierarchy of subsets. This partitioning process ends up into the so- 502 
called leaves of the tree in which it takes place a subset classification or regression. An RF 503 
makes an ensemble of many DTs, each one computed after a random selection of inde- 504 
pendent variables. It has been proven that in many classification and regression tasks, RFs 505 
are outstanding predictive models [9]. 506 

Like many other forecasting methods, this technique has also been used to predict 507 
water demand and its performance has often been compared to other forecasting meth- 508 
ods. Brentan et al. [47] proposed an approach to distribution network modelling and wa- 509 
ter demand forecasting, using RFs to investigate the relationship between climatic varia- 510 
bles. As a result, they showed that this artificial dataset can be used as input data for ad- 511 
dressing hydraulic analysis further. Interestingly, Antunes et al. [12] and Pesantez et al. 512 
[13] developed an RF-based technique combined with other methods. They showed that 513 
a mixed technique presents a high level of efficiency and accuracy. However, Vijai & Si- 514 
vakumar [2] showed that ANNs had a better performance than other methods, including 515 
simple RF and other RF-based methods. 516 

 517 
Hybrid methods  518 

A hybrid method integrates various models (e.g., artificial neural networks and tra- 519 
ditional time series models; several regression methods; metaheuristic algorithms and ar- 520 
tificial neural networks) to use the advantage of each of these techniques as they are used 521 
simultaneously. Actually, theoretical and empirical results from various research works 522 
have shown that a combination of methods can effectively improve the accuracy of a pre- 523 
dictive model [48] and, in general, outperform the methods when used separately. For 524 
example, Herrera et al. [72] proposed a hybrid method based on a traditional ARIMA time 525 
series approach and ANNs to predict the municipal water demand. They used ARIMA to 526 
analyse the linear part of the problem as the basis of water demand time series, while the 527 
ANN modelled their residuals. The proposed hybrid model could predict demand more 528 
accurately than the ANN and the ARIMA models used separately. An added advantage 529 
of the use of this combination of ARIMA + ANN is that ARIMA will supply a suitable 530 
explanation for the linear part of the resulting model. Equivalent results were also found 531 
by Kofinas et al. [94], who estimated monthly urban water demand.  532 

Oliveira et al. [51] applied a double SARIMA model to predict water demand and 533 
used the Harmony Search (HS) algorithm to estimate the parameters of the SARIMA 534 
model, where HS had an effective role in improving the performance of the predictive 535 
model. Sardinha-Lourenço et al. [48] showed that a parallel combination of the heuristic 536 
model with an ARIMA model, and an efficient weighting calculation method, improved 537 
the performance of the predictive model. With respect to hybrid methods in which ANN 538 
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is involved, Odan & Reis [71] presented 2 models, ANN-H and DAN2-H, made by com- 539 
bination of a Fourier series with an ANN and with a dynamic ANN, respectively. They 540 
found that the dynamic ANN combination had the best performance for hourly demand 541 
forecasting. Azadeh et al. [70] proposed a hybrid model to predict daily water consump- 542 
tion for warm and cold days. They combined an ANN, a fuzzy linear regression (FLR), 543 
and an analysis of variance (ANOVA) to construct a hybrid model. They showed that the 544 
hybrid approach was suitable to predict demand under nonlinearity and uncertainty con- 545 
ditions. Another example is the work of Perea et al. [42], who successfully introduced a 546 
Bayesian framework for a hybrid model made by combination of a dynamic ANN and a 547 
GA. 548 

Other actors for the hybrid method were those proposed by Bata et al. [37], who 549 
worked in a model that consists of a regression tree (RT) over self-organizing maps (SOM). 550 
In this model, the SOM method was used to group the water outflow input data into clus- 551 
ters and the RT method predicted the water demand considering such groups. The output 552 
of the SOM clustering method was the input for RT. The outputs coming from the use of 553 
SOM significantly improved the performance of the standalone RT and SARIMA models. 554 

Also, Shirkouhi et al. [29] proposed a hybrid method for short-term urban water de- 555 
mand prediction in two cities of the Quebec province (Canada). They used the Genetic 556 
algorithm (GA) to optimization of the ANN model’s hyperparameters, and compared the 557 
performance of this model with the ARIMA model, and a pattern-based model named the 558 
fully adaptive forecasting (FAF) model. Based on the results, it was determined that the 559 
optimization of the hyperparameters of this ANN model with the Genetic algorithm can 560 
improve the accuracy of the prediction. 561 

Pandey et al. [31] improved two hybrid model for forecasting hourly and monthly 562 
water demands. The first model was combined the ensemble empirical mode decomposi- 563 
tion (EEMD) and difference pattern sequence forecasting (DPSF) methods, and the second 564 
was based on the combination of EEMD and DPSF, as well as ARIMA. They used two 565 
data sets, including hourly water consumption of a city in southeastern Spain and 566 
monthly water consumption of Nagpur, India, for evaluating the performance of these 567 
two models. They compared the results of these two methods with the predictions ob- 568 
tained from a number of available models, including PSF, ARIMA, DPSF, and ANN mod- 569 
els. The results showed that the EEMD-DPSF method is performed better than the other 570 
methods in terms of prediction accuracy. 571 

3.3. Model validation 572 
Validation indicators calculate the forecast error rate that is the difference between 573 

the forecast value and the actual value. Such indicators play, then, a key role in the vali- 574 
dation and selection of the forecasting method. Tables 2 and 3 summarise and classify the 575 
validation indices more often used in the literature (Figure 4). 576 

 577 
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Fig 4. Frequency of the validation indicators found in the literature on water demand forecasting 578 

Figure 4 shows that the highest percentage of use of validation indicators are related 579 
to the root mean squared error (RMSE), coefficient of determination (R2), mean absolute 580 
percentage error (MAPE), mean absolute error (MAE) and Nash-Sutcliffe efficiency (NSE) 581 
indices. The lower the RMSE, the better the fit of the model to the observed data. Note 582 
that RMSE is scale dependent and it is suitable, in principle, just to compare models using 583 
the same dataset. The ܴଶ is a non-dimensional number between 0 and 1, being the pro- 584 
portion of the observed variability explained by the predictive model. Hence, the closer 585 
ܴଶ is to 1, the better the model performance. MAPE considers the error in terms of pro- 586 
portions or percentages, also being a non-dimensional measure. The lower the MAPE 587 
value, the better the forecast. MAE criterion is similar to RMSE but considering the abso- 588 
lute value. Hence, MAE will be more tolerant than RMSE to individual errors in the sum- 589 
mation since their values are not squared. NSE represents the gain of using the model vs. 590 
using the mean. NSE = 1 is associated with the perfect fit. NSE = 0 indicates that the model 591 
has a similar performance as the mean of the historical time-series. Table A1 (Appendix 592 
A) includes a full list of the validation indicators in the literature.  593 

3.4. Peaks of water demand 594 
On a regular basis, both predictive and validation methods address the development 595 

of models by focusing on predictions for the mean or median. Being useful in most of the 596 
cases, this approach falls short when the management or operation issue is near or on the 597 
peaks of the water demand profile [59]. This is due to the mean/median based methods 598 
naturally tend to make predictions smoother at the peaks. At the same time, validation 599 
indicators usually refer to the mean/median, rather than to another - more extreme - quan- 600 
tile, as the loss function to minimise in the method which calls such a validation. Never- 601 
theless, the quantile regression approach is an underexplored methodology in the litera- 602 
ture of water demand. Quantile regression is a generalisation of the least-squares regres- 603 
sion conditioned on every quantile of the dependent variable, rather than conditional to 604 
the mean as happens in the classical regression models [108]. 605 

Depending on the time scale, peaks are related to factors such as climate/weather 606 
(rainfall, summer or warm periods). Adamowski and Karapati [73] compared MLR and 607 
ANN for estimating the peak of hourly urban water demand and its correlation to extreme 608 
weather events such as rainfall occurrence. Other works, as the article Vonk et al. [27], 609 
focused on climate variables and on socio-demographic information (garden area, num- 610 
ber of residents), including calendar-variables which may explain, for instance, periods of 611 
the year in which the city may receive/export tourism.  612 

Peak demand forecasts have shown in the literature to be key for a cost-effective 613 
management of a water distribution system, for instance by optimisation of water pump- 614 
ing schedules [109]. With a focus on the time series frequencies, another article about peak 615 
water demand is the work of Kozłowski et al. [11]. They proposed TS models based on 616 
trend and harmonic analysis to predict water consumption in a supply water system. Us- 617 
ing these models, they predicted daily water demand, as well as compared water con- 618 
sumption on different days of the week and consumption at different hours of the day, to 619 
determine peak days and peak hours of consumption. They evaluated these models with 620 
the statistical tests and concluded that they can effectively be used in water demand fore- 621 
casting and to design controllers for water supply pumps.  622 

4. Future directions for short-term water demand forecasting 623 
There are multiple challenges coming for sustainable management of water demand. 624 

Some of them are associated with the technologies available today and some others are 625 
coming due to the surge of climate change and the more frequent than ever extreme 626 
weather conditions happening worldwide. In all the cases, there is an urgent need for the 627 
development of efficient and accurate methodologies aiding utility managers and policy 628 
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makers in their decision-making process. If the output of water demand forecasting mod- 629 
els is accurate, practical applications of these results in the decision-making process can 630 
be used. For instance, the expected outcomes of these models will inform optimal water 631 
supply pumping schedule that come associated with a certain level of necessary precision 632 
for the models that is different to the requirements of models addressing predictive mod- 633 
els for household water consumption. Examples of other related problems for which a 634 
water demand prediction output is necessary as an input are water tank filling, leakage 635 
detection, smart metering, and billing. The problem also varies in its statistical objectives, 636 
since they vary from average to peak water demand, and from future prediction to data 637 
loss interpolation. This section discusses these aspects further. 638 

4.1. Upcoming challenges for water demand forecasting 639 
Methodologies related to water demand forecasting need to be adapted to new social, 640 

economic, environmental and technological challenges. Hence, the social, economic and 641 
hydraulic goals for which traditionally water demand forecasting has been developed 642 
need to be extended to be a main part in a digital and automated framework for the oper- 643 
ations and management of water utilities today. There are a few main upcoming charac- 644 
teristics for the latest trends in the water demand management. One is the presence of 645 
highly interconnected cyber-physical systems (CPSs), made of smart-meters, sensors and 646 
actuators for the monitoring and control of the physical assets in the urban water infra- 647 
structure at a near real-time. The paradigm shifts in the time-period factor presented in 648 
Section 3, since now there is an even shorter period than the hourly basis demand predic- 649 
tion. This change is fundamental to understanding new challenges for water demand fore- 650 
casting methods that now also become an essential part for tasks such as anomaly detec- 651 
tion to complement any intelligent control and predictive maintenance policies that water 652 
utilities may already have in place. Furthermore, CPSs come also associated with a net- 653 
work of data sources, coming from the such sensors and smart-meters, that requires not 654 
only the shift in the time-period but also the development of methods able to count on the 655 
complete information available in a multivariate stream of time-series signals and data. 656 

Near real-time models for water demand: CPSs endow water supply with features of 657 
a proper smart system. That is by using near real-time data for operation of variable speed 658 
pumps and dynamic control of valves, as well as reservoirs and water tanks. This will 659 
make it possible to have optimal water demand balance, minimise overpressure, and, con- 660 
sequently, to achieve water and energy savings. The benefits of a CPS expand to an online 661 
knowledge of the hydraulic state and asset condition; both being essential for optimal 662 
water supply performance.  663 

Data stream forecasting for water demand: Data-streams procedures to deal with wa- 664 
ter demand is a quite unexplored topic in the literature. However, there is an important 665 
research avenue, for instance, by exploring the benefits of multiple models for water de- 666 
mand considering simultaneously time series data per each of the district metered area 667 
(DMA) in which a water distribution system may be partitioned. In addition to modelling 668 
the interrelationship between such time series, other research could also be targeted in 669 
future. This is the case of development of transfer learning models considering patterns 670 
demands can be learned from one DMA to another of similar characteristics. 671 

Anomaly detection is a challenge suitable to be addressed by both near real-time and 672 
data-stream models. Related to water demand forecasting, anomaly detection procedures 673 
may discover patterns in the time series data that lead to a better operation and manage- 674 
ment for paradigms ranging from leakage detection to the replacement of malfunctioning 675 
valves and even to even deal with the new threats that represent the cyberattacks.  676 

Water demand management is in a constant adaptation to meet both the most tradi- 677 
tional challenges from a hydraulic point of view for an efficient water supply and the 678 
surge of big databases of decentralised time series data available in stream. Given this 679 
scenario of current and future outstanding challenges for water demand it comes the ques- 680 
tion about why the relative lack of success so far on the use of deep learning methods for 681 
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predictive methods of water demand. There are several reasons to answer this point. First, 682 
the accuracy shown so far by deep neural networks did not overcome sufficiently the re- 683 
sults coming from shallow methods such as ANNs, RFs, or SVR, to mention a few. A sec- 684 
ond reason is about the huge quantity of data usually required for a proper use of deep 685 
neural networks that has not been used in practice so far. Furthermore, deep neural net- 686 
works are initially designed to approach complex tasks that often do not match with the 687 
simplicity of working with water demand management in the traditional manner men- 688 
tioned above. The surge of working with a digital twin of the real infrastructure and the 689 
CPSs management, along with their associated big and interconnected data analyses, 690 
should give a boost to deep neural networks in the future. On top of this, the transition to 691 
5G will make the data transmission speed sufficient to use more ambitious methods such 692 
as those based in deep learning algorithms. 693 

4.2. So, what method should I use? 694 
There is not a universal response to the question of what method to use. However, 695 

the method to use can be selected among those showing better performance with respect 696 
to the data available for each case and the (operation, management) objectives to deal 697 
with. Only by answering the questions of the temporal scope needed and the exogenous 698 
factors considered in the database will help to narrow down the general forecasting 699 
method to use and, consequently, how this may be adapted to the specific working sce- 700 
nario. Additional questions will continue helping on the selection of a suitable forecasting 701 
methodology. That is, to answer the question of targeting the development of a model 702 
suitable for average or for peak water demand. Besides, if the objective is the creation of 703 
predictive models for water demand forecasting or, on contrary, the objective is to have 704 
an anomaly detection model, able to aid any predictive maintenance process for the water 705 
supply infrastructure. Other aspects to take into account are those related to the technol- 706 
ogy available since it is possible to have near real-time data and/or data coming from mul- 707 
tiple water-meters. Technology conditions are an opportunity to address more ambitious 708 
objectives of the forecasting methods which should be efficient (in case of near real-time 709 
work) and should allow parallel computation and learning from other models in a collab- 710 
orative manner (in case of data streams). The following bullet points summarise the steps 711 
discussed in this paragraph: 712 

1. Identification of the temporal scope and (exogenous) factors of influence at 713 
each particular use case. 714 

2. Objective of the analysis: Average vs peak demand. Anomaly detection vs 715 
future prediction. 716 

3. Technology available: Requirement of near real-time models. Solutions for 717 
multidimensional data streams. 718 

Table 4 shows a summary comparison of the main methods used for water demand 719 
forecasting in terms of data requirements for the methods to run, accuracy, interpretability 720 
of the model, computational efficiency of the algorithm implementation and adaptability 721 
to sudden changes in the water demand. Note that it is the view of the authors after being 722 
processed the results of the current literature review. Furthermore, some of the methods 723 
are classified in broad categories and may one of the methods of such a category not being 724 
well represented by the summary features of Table 4. This is the case, for instance, of a RF, 725 
classified as a regression method, and often providing ‘high’ accuracy predictive models.  726 

Table 4. Advantages and disadvantages of the main categories for predictive methods in water 727 
demand forecasting 728 

Method 
Data  

requirements 
Accuracy Interpretability Efficiency Adaptability 

ANN-like High High Low Low Medium 
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SVR-like High High Medium Low Medium 
ARIMA(X) Low Low High High Low 

Metaheuristics High Medium Low Low Low 
Regression Low Medium High High Low 

Hybrid High High Medium Medium High 
 729 

4.3. Recommended software: R, Python, Julia 730 
After the open discussion on “what model should I use?”, the other main question 731 

remaining for researchers and practitioners is about software. The Authors of the current 732 
literature review paper firmly believe that the decision about the model to use is also re- 733 
lated directly to the software of choice. There is a plethora of choices about software on 734 
the market. However, in the following bullet points, we only mention the main open- 735 
source options, namely those based on R, Python and Julia. 736 
 The R environment for statistical computing is a free software platform used for sta- 737 

tistics and data mining [110]. R is widely used for time series analysis and forecasting; 738 
such is the case of development of predictive models for water demand. The R com- 739 
munity is active in providing programming support and in the number and up-to-date 740 
quality of the so-called R packages, which are software libraries developed to run spe- 741 
cific methods and data analysis. Among them, they highlight the package “neuralnet” 742 
to work with ANN [111], “e1071” to work with SVR [112], or “randomForest” to work 743 
with RF [113]. An additional advantage of R working with water demand comes 744 
thanks to matching data analysis to the Epanet-toolkit R packages: “epanetReader” 745 
[114] and “epanet2toolkit” [115]. 746 

 Python is an interpreted, general-purpose programming language that can provide a 747 
multiplatform solution for scientific computing [116]. This is thanks to Python libraries 748 
such as “pandas” and “numpy” for data manipulation and basic analysis, and “scikit- 749 
learn” [117] for machine and statistical learning software development (including 750 
functions to work with ANN, SVR, RF and many more). Python also has the backup 751 
of a huge community supporting up-to-date libraries, creating an ideal framework for 752 
research and software development. Importantly, there is a Python library to run the 753 
Epanet-toolkit called “Epanettools” and a library called “WNTR” that is an Epanet 754 
compatible Python library for the simulation and analysis of water distribution sys- 755 
tems resilience, developed by the Sandia National Laboratories and the US Environ- 756 
mental Protection Agency (EPA) [118]. 757 

 Julia is a high-level programming language that naturally supports concurrent, paral- 758 
lel, and distributed computing [119]. This makes that, although Julia is a general-pur- 759 
pose language, it was originally designed for machine learning and statistical pro- 760 
gramming. Julia is a quite new language, and it is still far from the popularity of R or 761 
Python. However, it is foreseen a brilliant future for Julia given its properties of speed, 762 
using just-in-time compilers making it as fast as low-level compiled languages like C. 763 
In addition, Julia can be executed in R, Latex, Python, and C; while Julia can wrap R 764 
and Python code, thanks to the libraries “RCall” and “PyCall”, respectively. 765 

There is not a best choice among these software options. This should depend mostly 766 
on what software the researcher or practitioner may feel more comfortable and secure to 767 
work with and develop the water demand forecasting tools; eventually, along with their 768 
wrap for applications in water supply operation and management. 769 

5. Conclusions 770 

Regarding water demand forecasting methods used in the literature, it is not clear 771 
which one performs better than others. However, there are several straightforward points 772 
that may aid in a method selection process; since a common point for any method is the 773 
need to adapt both to the available data and to the problem to be solved. A first question 774 
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is about the temporal scope that the predictive model should target. Then, it is necessary 775 
to check the data available, including the exogenous information and covariables to add 776 
to the purely historical time series demand. The method selected also varies as the focus 777 
is on peak or average water demand estimations. Different predictive model objectives 778 
may also lead to a different method needed to their accomplishment. Hence, anomaly 779 
detection comes associated with different main procedures than forecasting for a better 780 
operation performance. Last but not least, technology available also plays a fundamental 781 
role in water demand forecasting; primarily in a working objective selection and, conse- 782 
quently, in the predictive method to be used.  783 

An interesting finding that emerges from the literature review is the success in using 784 
interpretable methods as predictive models of water demand. For the years in which the 785 
literature review is addressed, approximately 30% of the papers based their analysis on 786 
traditional time series (e.g., ARIMA models) and regression models (including multivari- 787 
ate regression, decision trees and random forests). The reason for its success is having a 788 
sufficient predictive ability for a range of the operations in water supply management, 789 
such as pumping schedule. Furthermore, companies and water utilities are naturally keen 790 
in including interpretable models in their decision-making process given their explaina- 791 
bility. Table 4 classifies these methods as having high computational efficiency and low 792 
data requirements, consequently they can also be used in near real-time analysis and pre- 793 
dictive models embedded on the edge. 794 

Overall, the most widely (and successfully) models used in the water demand fore- 795 
casting literature are those based on variations of artificial neural networks and on regres- 796 
sion methods (such as support vector and random forest regression). Hybrid models are 797 
less frequently used although they clearly perform better than any single methodology. 798 
This is foreseen that hybrid model's development as a research avenue in the years to 799 
come, since much more work is expected to be developed. The literature also shows that 800 
methods that use a parameter tuning phase with metaheuristic algorithms often provide 801 
a superior accuracy and final performance than those skipping such a parameter tuning 802 
(or working with a limited set of values to do it). A last conclusion coming out of this 803 
review is about the remarkable scarcity of works using deep learning (deep neural net- 804 
works) in the water demand forecasting literature. This might be since these methods have 805 
a high computational requirement and the overall performance from other alternatives is 806 
enough for many of the usual needs of water supply operations and management (Table 807 
4). As discussed in Section 4, it is foreseen a research avenue in deep neural networks 808 
development, as a main water demand forecasting methodology, coming from the surge 809 
of innovative technologies such as IoT, cyber-physical systems and digital twin models.  810 

 811 
 812 

Funding: This research received no external funding 813 
Institutional Review Board Statement: Not applicable. 814 
Informed Consent Statement: Not applicable. 815 
Data Availability Statement: Not applicable. 816 
Conflicts of Interest: The authors declare no conflict of interest.  817 

Appendix A  818 

Table A1. Abbreviation signs 819 

Validation indicators Signs Validation indicators Signs 

Mean Squared Error MSE comparing with benchmark B 

Root Mean Squared Error RMSE Lagrange multipliers tests LM 
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Relative Root Mean Square Error RRMSE Moran-I test MI 

Normalized Root Mean Square Error NRMSE Normal Mean Square Error NMSE 

Mean Absolute Percentage Error MAPE Pearson coefficient r 

Mean Absolute Error MAE Percentage deviation in peak Pdv 

Coefficient of Determination R2 Persistence Index PI 

correlation coefficient CC Fraction Out of Bounds FOB 

Nash-Sutcliffe coefficient NSE Mean Bias Error MBE 

Relative Error RE Mean absolute scaled error MASE 

Absolute Relative Error ARE Standard Error Prediction SEP 

Average Absolute Relative Error AARE variance accounted for VAF 

Average Absolute Error AAE Akaike’s Information Criterion AICc 

Maximal Root Error MaxRE Standard Deviation SDe 
standard deviation of the absolute 
relative error SDARE Accuracy Ac 

Mean Absolute Relative Error MARE Gini coefficient GINI 

Mean Relative Error MRE Theil’s coefficients UI & UII 

Efficiency Index E 
average prediction interval 
width AWPI 

Threshold statistic Ts 
average empirical coverage 
rate ECPI 

descriptive accuracy metrics and for-
mal statistical tests ST 

negatively-oriented interval 
score NOIS 

 820 
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