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Abstract

Recent advances in the potential energy landscapes approach are high-

lighted, including both theoretical and computational contributions.

Treating the high dimensionality for molecular and condensed matter

systems of contemporary interest is important for understanding how

emergent properties are encoded in the landscape, and in calculating

these properties while faithfully representing barriers between different

morphologies. The pathways calculated in full dimensionality, which

are used to construct kinetic transition networks, may prove useful in

guiding such calculations. The energy landscape perspective has also

produced new procedures for structure prediction and analysis of ther-

modynamic properties. Basin-hopping global optimisation, with alter-

native acceptance criteria and generalisations to multiple metric spaces,

has been used to treat systems ranging from biomolecules to nanoal-

loy clusters and condensed matter. The Review also illustrates how

all this methodology, developed in the context of chemical physics, can

be transferred to landscapes defined by cost functions associated with

machine learning.

1



Contents

1. INTRODUCTION .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Visualisation of Landscapes and Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3. Recent Developments in Basin-Hopping Global Optimisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1. The Superposition Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2. Basin-Hopping with Alternative Thermodynamic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3. Generalised Basin-Hopping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Overcoming Broken Ergodicity Using Basin-Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5. Insight from Occupation Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1. Assignment of Heat Capacity Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.2. Quantifying the Complexity of a Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6. Energy Landscapes for Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1. INTRODUCTION

Analysis of potential energy surfaces (PESs) for molecular and condensed matter systems

can provide both fundamental insight into emergent observable properties, and computa-

tional tools that complement conventional simulation techniques. There are three basic

components to this framework, focussing on structure prediction, sampling thermodynamic

properties, and describing global dynamics. The unifying theme for calculations is the ex-

ploration of the PES using geometry optimisation to characterise local minima and the

transition states that connect them via steepest-descent pathways. These stationary points

are defined geometrically by vanishing forces with no imaginary normal mode frequencies

for local minima, and one for a transition state (1).

The geometry optimisation techniques employed in these calculations are well estab-

lished. Minima are obtained by local minimisation, and double-ended connections between

specified pairs are obtained by first running a doubly-nudged (2) elastic band (3, 4) (DNEB)

calculation. Transition state candidates are identified from images in the DNEB interpo-

lation corresponding to local maxima, and these configurations are accurately refined to

transition states using hybrid eigenvector-following (5–8); the connectivity is defined by

approximate steepest-descent pathways. The resulting databases of local minima and tran-

sition states constitute kinetic transition networks (9–12) when supplemented with uni-

molecular rate theory (13). Discrete path sampling provides a range of schemes for refining

such networks (14, 15); some recent applications to proteins and nucleic acids have recently

been discussed elsewhere (16).

This Review starts by considering the inherent problems involved in visualising high-

dimensional landscapes and pathways, especially the issues that arise in projecting the

full space onto low-dimensional reaction coordinates and order parameters (§2). The su-

perposition approach, where thermodynamic properties are calculated from a database of

local minima (17–22), is then summarised in §3.1. Some recent developments in basin-

hopping global optimisation are described in §3, highlighting schemes based on free energy

and alternative thermodynamic potentials (§3.2). The generalised basin-hopping approach,

where searches are extended over different metric spaces, is then outlined in §3.3. Super-

position theory again plays a key role in §4 and §5, in the calculation and interpretion of
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global thermodynamic properties. The basin-sampling approach (§4) couples results from

basin-hopping global optimisation with parallel tempering (83–85), providing equilibrium

thermodynamic properties for landscapes that feature broken ergodicity. In §5 the focus

shifts to occupation probabilities for local minima. This perspective enables heat capacity

features to be assigned as transitions between well-defined regions of the PES without the

need for a structure-based order parameter (§5.1), and provides a quantitative measure

of the complexity of the landscape in terms of a frustration index (§5.2). The ability to

decompose thermodynamic features, without reference to atomic structure, allows us to

analyse the corresponding quantities defined for abstract landscapes, where the stationary

points correspond to an arbitrary function that supports multiple minima. The landscapes

defined by cost functions, which play the role of potential energy in machine learning fits of

training data, constitute a particularly important application. One such machine learning

landscape is described in §6 for prediction of classifications corresponding to outcomes for

molecular geometry optimisation. These results highlight the versatility of optimisation

techniques from energy landscape theory: exploring, predicting and explaining the proper-

ties of atomstic, mesoscopic, and condensed matter systems can be extended to abstract

functions by defining thermodynamic and dynamical analogues, potentially yielding new

insight into emergent behaviour.

2. Visualisation of Landscapes and Pathways

The dimensionality of most molecular systems of interest poses immediate problems for

visualisation. Theory suggests a power law growth for the number of minimum energy

structures, N st
min(N), as a function of the number of atoms, N (23, 24). If the system is

large enough so that it can be divided into m equivalent subsystems of N atoms each, and

the subsystems are independent, then

N st
min(mN) = N st

min(N)m so that N st
min(N) = exp(ξN). (1)

A similar argument can be made for the number of transition states, defined as stationary

points with Hessian index one (1). If the rearrangement corresponding to a transition state

is localised in one subsystem, then a transition state of the mN -atom system occurs when

one of the subsystems is at a transition state and the rest are at a minimum, so

N st
ts (mN) = mN st

min(N)m−1N st
ts (N) and N st

ts (N) = N exp(ξN). (2)

The ratioN st
ts /N

st
min is therefore predicted to grow linearly with size, in reasonable agreement

with numerical results for small atomic clusters (24), which suggest that ξ is of order one.

The scaling of connectivity with N means that plots of potential energy surfaces in three

dimensions are usually only useful for low dimensional functions. For example, the surface

in Figure 1 is well populated with local minima, but actually corresponds to a function of

only two variables. Locating all the local minima, transition states, and pathways for such

a landscape is straightforward.

Disconnectivity graphs provide an alternative approach (25, 26), providing a visualisa-

tion that respects the potential or free energy (27, 28) barriers between states. Quantitative

results for thermodynamic and kinetic observables are obtained from the underlying kinetic

transition network (9–12). However, inspection of the corresponding disconnectivity graph

can immediately suggest likely properties, such as heat capacity features and separate re-

laxation time scales, as discussed below (19, 22, 29–37).
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Figure 1

A three-dimensional landscape corresponding to a function of two variables. The direct
connectivity between minima is limited by the low dimensionality.

Atomic clusters bound by simple potentials have provided a wealth of insight into such

features. The pairwise additive Lennard-Jones (LJ) function (38) is often employed, where

the potential energy for N atoms in an LJN cluster is

V = 4ǫ
∑

i<j

[(
σ

rij

)12

−
(

σ

rij

)6
]
, (3)

where rij is the distance between atoms i and j. ǫ and 21/6σ are the pair equilibrium well

depth and separation, respectively, and are used to define reduced units with ǫ = σ = 1,

and a reduced temperature kBT/ǫ.
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−170
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Figure 2

Disconnectivity graph for the LJ38 cluster. Structures corresponding to the lowest energy
incomplete Mackay icosahedron and the global minimum truncated octahedron are indicated near
the corresponding branches. Minima based on fcc packing are coloured red and the vertical axis is
the potential energy in ǫ.
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A disconnectivity graph for LJ38 is presented in Figure 2. The graph is constructed

using connectivity information from a database of local minima and transition states, where

the minima are partitioned into disjoint sets (superbasins) at a regular series of energy

thresholds. Minima are in the same superbasin if they can interconvert via a pathway where

the highest transition state is below the threshold. Energy increases up the vertical axis,

and the low energy terminus of each branch corresponds to the energy of a local minimum,

with a horizontal displacement chosen to minimise crossings. The branches join at the

lowest energy threshold where minima, or sets of minima, merge into the same superbasin.

Disconnectivity graphs have provided new insight into how observable properties are

encoded in the landscape. Efficient self-organisation is associated with a single funnel

structure, where relaxation to the global minimum can be achieved by downhill pathways

associated with relatively low barriers. This is the structure we associate with ‘magic num-

ber’ clusters, crystals, and functional biomolecules. However, the landscape for LJ38 in

Figure 2 corresponds to a double funnel system (26, 39), with low-lying minima based upon

an incomplete Mackay icosahedron (40) and fcc packing, separated by a relatively high

barrier. Such multifunnel landscapes can exhibit broken ergodicity, and have been exten-

sively investigated as benchmarks for global optimisation (41), thermodynamic sampling

(22, 32, 33, 37, 42–45) and rare event dynamics (14, 15, 46).

The landscapes visualised for structural glass-formers correspond to multi-funnel sys-

tems, with many competing amorphous minima separated by high barriers (47–50). Here

another level of organisation has been identified by separating different regions of the land-

scape in terms of cage-breaking processes required for atomic or molecular diffusion. In be-

tween the limits defined by efficient self-organisation and glass behaviour we have suggested

that intrinsically multifunctional systems will be associated with multifunnel landscapes

(51). For example, bistable molecules with the potential to act as switches are expected to

have double funnel landscapes (52, 53), and the intrinsically disordered PUMA protein has

a number of funnels corresponding to different secondary structure content, which might

be modulated by ligand binding (51). A quantitative frustration index, described in §5.2,
has been proposed to assess the complexity.

These examples illustrate how the ability to retain all the relevant degrees of freedom

can provide detailed insight into the origin of functional behaviour. In particular, the

double funnel character of the LJ38 landscape (Figure 2) leads to a heat capacity feature

corresponding to a low temperature solid-solid transition between the fcc and icosahedral

morphologies, along with two distinct relaxation time scales (54). Projecting a potential or

free energy landscape onto a few degrees of freedom can produce a misleading representation

if states are lumped together when they are actually separated by significant barriers (10,

55–59). One particular path between the two lowest minima for LJ38, consisting of ten local

minima and the nine transition states that connect them, was chosen to examine the effects

of projection in defining a reaction coordinate (59). The profile, defined geometrically in

terms of stationary points and steepest-descent paths, is shown in Figure 3, where the

potential energy is plotted as a function of the integrated path length.

Potentials of mean force were calculated using Monte Carlo sampling as a function of

the integrated path length, s, and projection onto the bond order parameter Q6 (60, 61).

Q6 provides a useful distinction between fcc and icosahedral packing, with smaller values

for icosahedra (Figure 4). Configurations were saved along the pathways, and used to

define a discretisation of the overall path (59). A Metropolis acceptance condition was

employed with the additional constraint that configurations had to remain within a distance
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Figure 3

A nine-step pathway linking the two lowest minima of LJ38, with potential energy V as a function
of the integrated path length s. The ten local minima are illustrated with the most tightly bound
atoms in blue, the least tightly bound in red, and the remainder in green.

d of at least one configuration, Xi, on the path. Once probabilities for the bins have

converged at a given temperature, T , we can compare the Landau free energies calculated

as F (s) = −kBT lnP (s) and F (Q6) = −kBT lnP (Q6). A biasing potential was constructed

to accelerate convergence, since the closest configuration on the saved path, n, is required,

and its potential energy, Vn, is known. Accept/reject steps can then be based on the

potential V (X) + W (X), where W (X) = −Vn(X), and we accumulate bin averages of

exp [W (X)/kBT ] for each bin. This approach is similar in spirit to umbrella sampling, and

enables the expectation value of an observable O(T ) to be calculated as (62)

〈O(T )〉 =
〈
O(T )eW (X)/kBT

〉
W

/
〈
eW (X)/kBT

〉
W

, (4)

where the subscript W implies that the biased potential is sampled.

Parallel runs, labelled r, with overlapping bins were used, and the statistics were com-

bined using weighted histogram analysis (63, 64) to obtain the best fit probability distribu-

tion P (s) by minimising (65)

χ2
1D =

∑

r

∑

s

Nrs [lnP (s)− lnPrsZr]
2 where Nrs =

∑

j∈s

1, (5)

and Prs =
Nrs

Nr
(unbiased) or Prs =

∑

j∈s

exp [W (Xj)/kBT ]

∑

j

exp [W (Xj)/kBT ]
(biased),

where Nr is the total number of MC steps for parallel run r, and the sums over j correspond

to the configurations in the Markov chain for that run. Direct minimisation was employed

using analytic derivatives with respect to lnP (s) and lnZr.

For the Q6 order parameter the statistics provide relative values within each block, and

contributions to the same value of Q6 can arise for different blocks. The required probability

6 David J. Wales



distribution was obtained having solved for P (s) with equation (5), using the average value

for Q6 in each bin; further details are provided in reference (59), including construction of

free energy surfaces and convergence checks. Results for F (s) as a function of temperature

and constraint distance are shown in Figure 4. The corresponding profiles generally exhibit

maxima and minima that correspond directly to the potential energy profile in Figure 3.

In contrast, when we project onto Q6 the minimum around s = 2.8 is missing, because

this order parameter does not discriminate between the first two low-lying minima with

icosahedral packing (Figure 4).

The problem with projecting the pathway onto Q6 is clear from the two views of the

free energy surface F (s,Q6) in Figure 5. The two minima corresponding to alternative

surface packings are separated by a high barrier on the s axis, but overlap in terms of Q6.

Such barriers, corresponding to orthogonal degrees of freedom, are commonly associated

with ‘friction’ when attempts are made to recover the dynamics from a one-dimensional

projection. Since the geometrical paths, including all degrees of freedom, are obtained as a

byproduct of constructing a kinetic transition network, they could be used to guide recon-

structions in lower dimensionality. This approach suggests a number of possible avenues

for future research. For example, it should be possible to examine the effect of increasing

temperature on the pathway entropy, where an increasing number of discrete paths make

significant contributions to the interconversion rate.

3. Recent Developments in Basin-Hopping Global Optimisation

The fastest variant of basin-hopping for treating atomic clusters with multifunnel landscapes

reported at the optbench benchmarking site (URL optbench.org) (66) corresponds to sym-

metrised steps (41). Further benchmarks have been reported and discussed recently (16)

for GPU hardware (67) and local rigid body formulations (68). In the present Review the

focus is on schemes that extend the sampling using different acceptance conditions. First

we summarise the superposition approach, which plays a key role, both in the remainder of

this section, and §4 and §5.

3.1. The Superposition Approach

In the superposition approach (17–22) an explicitly ergodic partition function is obtained

by summing over contributions from the catchment basins of local minima. Here it is

convenient to lump together local minima corresponding to permutation-inversion isomers

of a given structure, α, since the corresponding statistical weight is determined purely by

the order of the point group, oα, and the composition, with Ns atoms of element s, etc.:

nα =

(
2
∏

s

Ns!

)
/oα ≡ P/oα. (6)

The superposition partition function can now be written as a sum over structures:

Z(T ) =

Nst∑

α=1

nα∑

ζ=1

Zζ(T ) =

Nst∑

α=1

nαZα(T ) = P

Nst∑

α=1

Zα(T )/oα. (7)

This formulation is explicitly ergodic because it reproduces the equilibrium occupation

probability for each structure, irrespective of the barriers between the local minima. Zα(T )
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Figure 4

(Left) Free energy F as a function of the integrated path length s for the LJ38 pathway in Figure
3. Results for d = 0.4, 0.7 and 1.0 are shown separately, each including temperatures of
kBT/ǫ = 0.12, 0.2 and 0.3, with three different starting points for each d, T combination to check
convergence. For d = 0.4 the nine curves are practically coincident. (Right) Top: Q6 as a function

of the configurations characterising an interconversion pathway of LJ38. Middle: free energy F as
a function of Q6 for the same path. The results correspond are for d = 0.4, 0.7 and 1.0 and
kBT/ǫ = 0.12, 0.2 and 0.3. Bottom: as for the middle plot but illustrating F (Q6)/kBT for
comparison with previous work (43).

is the partition function of structure α at temperature T , which is identical for the catchment

basin associated with each of the nα permutation-inversion isomers.

For molecules that are not translating or rotating it is the internal vibrational degrees

of freedom that are of primary interest, and harmonic normal mode analysis gives

Zα(T ) =
(
kBT

hνα

)κ

e−Vα/kBT , (8)
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Figure 5

Free energy surface obtained from −kBT lnP (s)P (Q6|s) for constraint distance 0.4 and
kBT/ǫ = 0.12 (59). The positions of three low-lying minima are marked.

where κ = 3N − 6 is the number of vibrational degrees of freedom, N =
∑

s
Ns is the total

number of atoms, and να is the geometric mean vibrational frequency for minimum α. The

harmonic approximation neglects well anharmonicity, but corrections can be formulated in

various ways (18, 69–72).

3.2. Basin-Hopping with Alternative Thermodynamic Potentials

Usually, basin-hopping steps between local minima are accepted or rejected based on a

Metropolis-type condition using the potential energy difference Vnew−Vold between the new

and old local minima with a fictitious temperature, T , chosen to permit a suitable fraction of

uphill steps (29, 73, 74). Other choices are certainly possible, including downhill-only moves

(75) and Tsallis rather then Boltzmann weights (76). In this Review, we focus on schemes

that exploit the harmonic superposition approach described above, to provide alternative

ways to survey the energy landscape. The first of these methods is free energy basin-hopping

(FEBH) (77), where steps between local potential energy minima are accepted or rejected

based on the change in local harmonic free energy,

Fnew(T )− Fold(T ) = Vnew − Vold + kBT ln (onewν̄
κ
new/ooldν̄

κ
old) . (9)

Initial benchmarks for peptides showed that the global free energy minimum was located

faster using the FEBH scheme than by running conventional basin-hopping and calculating

the local free energies for saved minima in a post-processing phase (77).

Steps that change the number or identities of atoms correspond to grand and semi-grand

canonical basin-hopping (GCBH and SGCBH) (78). The accept/reject condition considered

for GCBH employed the local grand potential:

ξNα = V N
α − µN − kBT ln

n
(N)
α

√
8π |Iα|1/2 (kBT )3/2
h̄3(βhνN

α )κ(N)
, (10)

which included the rigid rotor partition function, with inertia tensor Iα. This factor was

found to have little effect on the results. Blocks of conventional BH steps were employed

www.annualreviews.org • Energy Landscapes 9



between changes of N , with an acceptance condition based on the lowest value of the grand

potential in the new block of local minima compared to the lowest value for the previous

block in the chain. The global minimum changes from dissociated states to clusters for

larger values of the chemical potential, µ, and lower temperatures, as illustrated in Figure

6. GCBH runs provide a useful overview of low-lying minima as a function of cluster size,

and the presence of a least probable size for a range of µ and T suggests an analogue of

first order nucleation (78), which requires further investigation.
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Figure 6

In GCBH runs for atoms interacting via the Lennard-Jones potential the most probable cluster
size (left) corresponds to the smallest or largest size permitted. However, the least probable size
can occur between the limits (right), analogous to a free energy barrier to nucleation (78).

For a binary semi-grand canonical potential we consider fixed N = NA +NB , variable

NA and NB , and an acceptance criterion based on the potential

ξNB
α = V NB

α −∆µNB − kBT ln
(kBT )

3/2n
(NA,NB)
α

√
8π |Iα|1/2

h̄3(βhνN
α )κ(N)

, (11)

where ∆µ = µB − µA is the chemical potential difference and n
(NA,NB)
α = 2NA!NB !/oα.

SGCBH runs for binary nanoalloy clusters highlighted the most favourable compositions

as a function of ∆µ. Results are shown for AgnPd55−n in Figure 7, which reveals distinct

steps around NAg = 12 and NAg = 42, where high symmetry arrangements are possible.

The steps are smoothed when wider sampling is used to calculate the probabilities (78).

3.3. Generalised Basin-Hopping

The generalised basin-hopping (GBH) approach was developed in the context of structure

prediction for nanoalloy clusters, where the additional problem of chemical ordering (79)

introduces an extra combinatorial dimension to the problem. Initial treatments focused

on biminima, defined as configurations that are local minima for two different metrics,

namely the usual continuous coordinate space, and the neighbourhood defined by swapping

the chemical identity of a pair of atoms and reminimising (80, 81). These treatments

are specific examples of a generalised formulation in terms of multiminima (82), defined

as configurations that are local minima with respect to multiple metrics, which could be

continuous, discrete, categorical, etc. For nanoalloy clusters, the minimal number of swaps

for atomic species defines a local neighbourhood of isomers related by a single exchange in

terms of the Hamming distance (82). Initial tests for nanoalloy clusters indicate that GBH
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Left: the most favourable composition for icosahedral AgnPd55−n as a function of ∆µ exhibits
steps at NAg = 12 and NAg = 42. Right: lumping probabilities for minima with the same

composition and including non-icosahedral structures smooths the steps (78).

is most efficient for systems with lower lattice mismatch, where segregation is favoured over

mixing, and fewer biminima exist. For Cu13AgnAu42−n clusters, a scheme that scanned

a subset of the local neighbourhood to check the biminimum property located the likely

global minima orders of magnitude faster than in previous work (82).

The GBH procedure is very flexible, and many problems might be formulated in terms

of this framework, beyond the chemical ordering challenge presented by homotop isomers

in nanoalloys. For example, neighbourhoods can be defined in terms of point mutations for

proteins and nucleic acids. New projects that exploit this capability are already in progress.

4. Overcoming Broken Ergodicity Using Basin-Sampling

Equilibrium sampling for systems exhibiting broken ergodicity is a challenging problem

for computer simulation, which arises whenever we encounter alternative low-energy states

separated by barriers that are high compared to the relevant thermal energy (19). Atomic

clusters with double-funnel potential energy landscapes, provide well-defined benchmark

examples, exhibiting solid-solid transitions at low temperatures (19, 22, 29–37). Obtaining

converged densities of states and the corresponding thermodynamic properties can be dif-

ficult, even for enhanced sampling techniques, such as the parallel tempering (PT) Monte

Carlo (83–85) multiple histogram (63, 64, 86, 87) approach.

Basin-sampling (BSPT) tackles the sampling problem by combining results from global

optimisation and parallel tempering calculations (44). Broken ergodicity is treated using

basin-hopping global optimisation §3 (29, 73, 74), while the configuration space correspond-

ing to high temperature is sampled by parallel tempering. Minimisation at regular intervals

is used to map configurations onto local minima and obtain a two-dimensional density of

states. An anharmonic form is optimised using a multihistogram approach for potential en-

ergy bins corresponding to local minima, connecting the results obtained for low and high

temperatures. This procedure provides accurate densities of states and thermodynamic

properties for benchmark atomic clusters exhibiting broken ergodicity (22, 32, 33, 37, 42–

45). It can also be used to calculate the potential energy density of local minima for

permutation-inversion isomers and structures, providing new information about the com-

plexity of the energy landscape as a function of system size.

Parallel tempering produces canonical probability distributions P (V, T ) ∝
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Ωc(V )e−V/kBT at the set of temperatures simulated. Here Ωc(V ) is the configura-

tional density of states; the momentum contribution is analytical and is added separately

after the multihistogram analysis. For each replica r with temperature Tr we count the

number of visits, Nir, to potential energy bins indexed as V I
i , where the superscript I

serves to distinguish instantaneous potential energies from quenched potential energies

obtained after local minimisation, denoted by Q, and i is the bin label. The statistics for

bin visits then provide an estimate for P (V I
i , Tr) as

P (V I
i , Tr) = Nir/Nr, (12)

where Nr =
∑

i
Nir is the total number of Monte Carlo steps for replica r.

To obtain optimal estimates for Ωc(V
I
i ) and Zc(Tr) (the configurational part of the

canonical partition function) we minimise (44)

χ2
1D =

∑

r

∑

i

Nir

[
lnΩc(V

I
i )− ln

(
Nire

V I
i
/kBTr

Zc(Tr)

)]2

, (13)

where the variables are Ωc(V
I
i ) and Zc(Tr). Once the best fit values Ω∗

c(V
I
i ) and Z∗

c (Tr) are

known we can calculate Zc(T ) for any temperature as Zc(T ) =
∑

i
Ω∗

c(V
I
i ) exp(−V I

i /kBT ).

At specified intervals the current configuration in each replica is quenched to a local

minimum without changing the coordinates in the Markov chain. The number of visits to

quench potential energy bin q from instantaneous potential energy bin i in replica r is Niqr:

a two-dimensional histogram. The corresponding canonical probability distribution is

P (V I
i , V

Q
q , Tr) = Niqr/Nr ∝ Ωc(V

I
i , V

Q
q )e−V I

i
/kBTr . (14)

We can now consider a two-dimensional best fit by minimising the statistic

χ2
2D =

∑

r

∑

i

∑

q

Niqr

[
lnΩc(V

I
i , V

Q
q )− ln

(
Niqre

V I
i
/kBTr

Zc(Tr)

)]2

, (15)

where the variables are the Ωc(V
I
i , V

Q
q ) if we set Zc(Tr) = Z∗

c (Tr). The analytic density

of states for a Morse potential suggests a model anharmonic function with two fitting

parameters for each quench bin, Aq and Bq:

lnΩc(V
I
i , V

Q
q ) = (κ′ + eAqViq) lnViq +Bq, (16)

where κ′ = κ/2− 1 and Viq = V I
i − V Q

q .

In the limit Viq → 0 the dependence on Viq reduces to the harmonic form: Ωc(V
I
i , V

Q
q ) ∝

V
κ/2−1
iq . The contribution to Ω(V I

i , V
Q
q ) from a given structure should also include the

weight nα = P/oα, and the vibrational factor 1/νκ
α. Hence, if quench bin q contains a

single minimum, α, we should recover a prefactor of lnnα/ν
κ
α + c = − ln oαν

κ
α + c′, where

the constants c and c′ are independent of the structure considered and the energy bin. For

each q fits were performed for different ranges of i to derive optimal parameters A∗
q and B∗

q .

For low-energy q bins all the minima will generally be sampled during a basin-hopping

global optimisation run, and we can therefore calculate the corresponding prefactors directly

from
∑

α∈q
(oαν

κ
α)

−1. Fitted B∗
q values are replaced up to a specified potential energy

threshold, retaining previously fitted A∗
q parameters to account for anharmonicity (44). A

12 David J. Wales
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Figure 8

Calculated values for lnMst(V ) and lnMst(V )/P as a function of potential energy for LJ75 (44).
The potential energy bin width was 1.18731 ǫ.

hybrid configurational density of states was obtained by combining the results of the one-

and two-dimensional fitting procedures (44).

LJ31 and LJ75 both exhibit broken ergodicity and a low temperature solid-solid phase

transition due to competition between the global minimum and alternative structures. For

LJ31 accurate heat capacity curves were obtained using 106 equilibration steps (discarded),

5 × 106 PT, and 5 × 106 BSPT steps (abbreviated as 1/5/5 in terms of millions of steps)

using 24 replicas spread geometrically through the temperature range 0.1 to 0.5 (Figure

9). The container radius was set to 2.5 reduced units and quenches in the BSPT phase

were performed every 30 steps. This run required 21.8 minutes of wall clock time on Intel

Xeon E5405 cpus (2.00GHz). All the replicas were started from the global minimum, and

only the lowest four minima were used to replace fitted B∗
q values. A BSPT simulation

starting from random configurations takes more than twice as long because PT is not an

efficient global optimisation procedure. For comparison, PT results for 24 replicas running

at geometrically distributed temperatures in the range 0.0125 to 0.6 required about 110.5

hours of wall clock time on the same hardware for 1010 steps. Previous work suggests that

this value should be sufficient for convergence (37).

Obtaining converged equilibrium thermodynamic properties for LJ75 represents a more

challenging test. Previous work indicates that even 1011 Monte Carlo steps are not enough

to converge the heat capacity using adaptive exchange parallel tempering (22, 42), and

3×109 steps were needed when an auxiliary harmonic superposition reference was employed

(37). Results for a BSPT run of 10/200/60 steps and 32 replicas exponentially spaced in

the temperature range 0.15 to 0.375 and a container radius of 3.0 are shown in Figure 9.

Quenches were performed every 30 steps in the BSPT phase, and the run required 22 hours

of wall clock time. These results were obtained when the lowest 13 minima were used to

replace the fitted B∗
q values (44).

The potential energy density of minima can also be obtained from the basin-sampling

approach, providing an alternative to schemes that compute average catchment basin vol-

umes using thermodynamic integration (88, 89). The mean vibrational contribution to the

prefactor in Ωc(V
I
i , V

Q
q ) is

〈1/νκ〉q =
∑

α∈q

(oαν
κ
α)

−1/
∑

α∈q

o−1
α . (17)
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For a complete sample, dividing
∑

α∈q
(oαν

κ
α)

−1 by 〈1/νκ〉q would give
∑

α∈q
o−1
α , which

is the number of distinct permutation-inversion isomers in bin q divided by P . The

fitted prefactors exp(B∗
q ) should be proportional to

∑
α∈q

(oαν
κ
α)

−1 so that exp(B∗
q ) ∝

〈1/νκ〉q
∑

α∈q
o−1
α . Calculating 〈1/νκ〉q from (17) using a sample of quench minima pro-

vides an estimate for MPI(V Q
q ), the number of permutation-inversion isomers in bin q, from

exp(B∗
q )/ 〈1/νκ〉q, up to a constant factor.

Assuming we have a complete sample of minima in the lowest bin, denoted 0, the number

of distinct permutation-inversion isomers in bin q is

MPI(V Q
q )

MPI(V Q
0 )

=
eB

∗

q 〈1/νκ〉0
eB

∗

0 〈1/νκ〉q
with MPI(V Q

0 ) = P
∑

α∈0

o−1
α ,

so that MPI(V Q
q ) = P

eB
∗

q 〈1/νκ〉0
eB

∗

0 〈1/νκ〉q

∑

α∈0

o−1
α . (18)

A similar analysis provides the number of structures (44):

M st(V Q
q ) =

eB
∗

q 〈1/o νκ〉0
eB

∗

0 〈1/o νκ〉q

∑

α∈0

1. (19)

In the absence of point group symmetry the distributions MPI(V ) and M st(V ) are the

same, aside from the factor of P .

The probability distributions calculated for LJ75 are shown in Figure 8 (44). The

presence of a shallow local minimum in the distributions around V = −385 ǫ appears to

be real. The more sparsely populated regions of potential energy may result from the

superposition of distributions that correspond to different morphologies (44).

5. Insight from Occupation Probabilities

5.1. Assignment of Heat Capacity Features

The superposition approach and basin-sampling have recently been used to decompose the

contributions of local minima to the heat capacity (90). The theory provides an assignment

that does not require any structural information, or specification of an order parameter.

Hence it provides an unbiased scheme, which can be used for the landscapes defined by any

continuous function with multiple minima, such as neural network fits §6.
Two examples will be described here for LJ31 and LJ75. The low temperature heat ca-

pacity peaks in Figure 9 are reproduced by the harmonic superposition approach, while the

melting transition requires basin-sampling (44). The analysis of CV is most straightforward

for the harmonic approximation, where the heat capacity can be written as

CV =
(
∂E

∂T

)

N,V
= κkB − z1(T )

2

kBT 2z0(T )2
+

z2(T )

kBT 2z0(T )
, (20)

with zr(T ) =
∑

γ

nγ (Vγ)
r

(
kBT

hνγ

)κ

e−Vγ/kBT . (21)

The configurational part of CV is obtained by subtracting κkB/2. The occupation proba-

bility for minimum α in the same approximation is

pα(T ) = nαe
−Vα/kBT /νκ

α

/∑

γ

nγe
−Vγ/kBT /νκ

γ , (22)
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Figure 9

CV calculated using basin-sampling (44) for LJ31 (top) and LJ75 (bottom).

so that zr(T ) = Z(T )
∑

γ

pγ(T ) (Vγ)
r = z0(T )

∑

γ

pγ(T ) (Vγ)
r , (23)

and
∂pα(T )

∂T
= −pα(T )

∂ lnZ(T )

∂T
+

κpα(T )

T
+

pα(T )Vα

kBT 2
≡ gα(T ), (24)

defining gα(T ), which can be written as

gα(T ) =
pα

kBT 2

(
Vα −

∑

γ

pγ(T )Vγ

)
≡ pα

kBT 2

(
Vα − 〈V 〉min

)
. (25)

Using equations (20) and (23) we have

CV = κkB −

(∑
γ
pγ(T )Vγ

)2

kBT 2

(∑
γ
pγ(T )

)2
+

∑
γ
pγ(T ) (Vγ)

2

kBT 2
∑

γ
pγ(T )

= κkB +

〈
V 2
〉
min

− 〈V 〉2min

kBT 2
. (26)

Since
∑

γ

gγ(T )
(
Vγ − 〈V 〉min

)
=
∑

γ

pγ
kBT 2

(
Vγ − 〈V 〉min

)2
=

〈
V 2
〉
min

− 〈V 〉2min

kBT 2
,

wehave CV − κkB =
∑

γ

gγ(T )
(
Vγ − 〈V 〉min

)
= kBT

2
∑

γ

gγ(T )
2 1

pγ(T )
. (27)
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Figure 10

Disconnectivity graphs coloured according to the overall occupation probability gradients for the
quench energy bin associated with each local minimum [equation (33)]. Minima are coloured for
contributions to the heat capacity that account for 99% of the contributions from positive (blue)

and negative (red) gradients (90). (a) LJ31 at kBT/ǫ = 0.0268, (b) LJ31 at kBT/ǫ = 0.329, (c)
LJ75 at kBT/ǫ = 0.082, (d) LJ75 at kBT/ǫ = 0.291. The lowest two minima are illustrated for
LJ31 in panels (a) and (b). For LJ75 the two lowest minima are illustrated in panel (c). The

graphs in panels (b) and (d) exclude all minima that do not contribute to components of the heat
capacity peak within the 99% threshold, and the global minimum does not appear for LJ75 in (d).
Instead the lowest minimum based on icosahedral packing is illustrated along with the
second-lowest minimum, both of which have a negative occupation probability gradient.

Hence we can separate contributions to CV from local minima with positive and negative

occupation probability gradients:

CV = κkB +

gγ(T )>0∑

γ

gγ(T )
(
Vγ − 〈V 〉min

)
+

gγ(T )<0∑

γ

gγ(T )
(
Vγ − 〈V 〉min

)
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≡ κkB + C+(T ) + C−(T ). (28)

Ranking the minima according to the fraction of C±(T ) they contribute provides an unbi-

ased way to assign a heat capacity peak to features of the potential energy surface.

To describe the melting peaks in CV accurately we need to account for anharmonicity.

The occupation probabilities of the potential energy bins, pi(T ), can be employed, using

the weights obtained by basin-sampling (§4) for W 1D
i and W 2D

iq to write

pi(T ) =
W 1D

i e−V I
i
/kBT

I bins∑

j

W 1D
j e−V I

j
/kBT

=

e−V I
i
/kBT

Q bins∑

q

W 2D
iq

I bins∑

j

e−V I
j
/kBT

Q bins∑

r

W 2D
jr

. (29)

The temperature derivative of pi(T ) is

gi(T ) ≡ ∂pi(T )

∂T
=

pi
kBT 2

(
V I
i −

〈
V I
〉
I bins

)
, (30)

where
〈
V I
〉
I bins

=
∑I bins

i
pi(T )V

I
i , and adding κkB/2 to the configurational heat capacity

provides expressions for CV (T ) (90) analogous to equation (27):

CV =
κkB
2

+ kB − ∆2e∆/kBT

kBT 2 (1− e∆/kBT )
2
+

I bins∑

i

gi(T )
(
V I
i −

〈
V I
〉
I bins

)
. (31)

CV can be written in terms of contributions from potential energy minima by reordering

sums over i and q:

I bins∑

i

gi(T )
(
V I
i −

〈
V I
〉
I bins

)
=

I bins∑

i

pi
kBT 2

(
V I
i −

〈
V I
〉
I bins

)2
= (32)

Q bins∑

q




I bins∑

gi(T )>0

(
V I
i −

〈
V I
〉
I bins

)2
W 2D

jq e−V I
i
/kBT

kBT
2

I bins∑

m

W 1D
m e−V I

m/kBT

+

I bins∑

gi(T )<0

(
V I
i −

〈
V I
〉
I bins

)2
W 2D

jq e−V I
i
/kBT

kBT
2

I bins∑

m

W 1D
m e−V I

m/kBT




≡
Q bins∑

q

[
c+q + c−q

]
.

The net contribution from quench bin q is assigned as positive or negative according to the

largest of c±q (90).

Figure 10 illustrates disconnectivity graphs for LJ31 and LJ75 with branches coloured

red and blue for the minima associated with 99% of the total contributions to CV at the

temperatures corresponding to the solid-solid and melting peaks. At low temperature, only

the global minimum has a significant negative occupation probability temperature gradient

in each case. However, for the melting peak the transition is widely delocalised over many

local minima. These assignments agree with previous intuition, but require no knowledge

of the underlying atomic structure.
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The frustration index calculated from renormalised probabilities, f̃(T ), for systems ranging from
magic number clusters to jammed packings of soft spheres, as described in the text (50).

5.2. Quantifying the Complexity of a Landscape

Occupation probabilities of local minima have also been used to quantify the degree of

frustration in an energy landscape by defining (50)

f(T ) =
∑

α6=gmin

peqα (T )

(
V †
α − Vgmin

Vα − Vgmin

)
. (33)

gmin labels the lowest minimum in the database, and V †
α is the potential energy of the

highest transition state on the lowest energy path between minimum α and gmin. Vgmin

corresponds to the global minimum for most of the databases considered, except for the

condensed matter systems, where the crystalline region of configuration space was intention-

ally excluded. The formulation of f(T ) was based on schemes introduced to suggest pairs

of minima for additional connection attempts in refining kinetic transition networks (91).

Figure 11 illustrates results for f̃(T ) based on harmonic approximations to the renormalised

occupation probabilities p̃eqα = peqα /(1 − peqgmin) obtained by removing the temperature de-

pendence of the global minimum. A reduced temperature is defined using Tm at the melting

peak in CV obtained with the same database in the harmonic approximation (50). This

representation enables us to compare ‘magic number’ clusters, which relax efficiently to a

well defined global minimum (LJ13 and LJ55) on the same scale as structural glass form-

ers (BLJ60 and BLJ256) and jammed packings of soft repulsive spheres (SS60 and SS256).

In between these limits we see atomic clusters with double funnel landscapes (LJ31, LJ38
and LJ75), a water cluster (H2O)20, the amyloidogenic GNNQQNY peptide dimer, and a

coarse-grained model of a 69-residue β-barrel protein, BLN69 (50).

f̃(T ) can provide a useful diagnostic of landscapes with qualitatively different organisa-
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tion, in terms of competing low energy structures. The ability to quantify our intuition of

frustration across such a wide range of systems in a single index may provide new insight

into how observable properties are encoded in the energy landscape.

Order Parameter

    0.500 

    0.618 

    0.735 

    0.853 

    0.970 

(a)

(b)

Figure 12

(a) Disconnectivity graph defined by a neural network fit to predict which of four local minima
will be reached on geometry optimisation. (b) For a grid of starting configurations, the outcome of
local minimisation is indicated by the gray, red, green and blue basins in the large triangle. The
central gray region corresponds to the equilateral triangle, and the coloured regions correspond to

the linear minima defined by the the central atom. For the triangles associated with seven selected
minima in panel (a), the same configurations are used to colour the pixels on the grid according to
the minimum with the highest predicted probability. The correspondence with the reference in (b)

is very good for the low-lying minima, but degrades systematically for higher-lying solutions.
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6. Energy Landscapes for Machine Learning

Part of the motivation for the theory developed in the previous section was provided by

intriguing properties discovered for the landscapes defined by neural networks in the con-

text of machine learning (ML) (92, 93). Here the network parameters take the place of

atomic coordinates, and local minima of the ML landscape correspond to alternative fits to

training data for a cost function that quantifies how well the network reproduces the known

outcomes. The ML landscape can be explored using the same methods that have been

developed for molecular potential energy surfaces, and analogues for thermodynamic prop-

erties and rate constants can be defined using second derivatives and harmonic densities of

states. Understanding the organisation of ML landscapes from this viewpoint (92–94) may

suggest ways to design better predictive tools.

The example considered here is a classification problem to predict which isomer will

result from local minimisation, given only the coordinates of the starting configuration

(92, 95). Here we must distinguish two landscapes: the first corresponds to the molecular

potential energy surface, which supports four distinct minima for the system in question,

and the second is the ML landscape of a neural network (NN) where the cost function

corresponds to the accuracy of the predicted outcome. Reliable predictions would be useful

for applications that involve systematic local minimisation to assign densities of states to

particular isomers or regions of configuration space, as for basin-sampling (44), described

in §4, and thermodynamic analysis of granular packings (88).

The triatomic cluster bound by pairwise Lennard-Jones (38) and three-body Axilrod–

Teller interactions, corresponding to instantaneous induced dipole-induced dipole terms,

exhibits one equilateral triangle minimum and three linear minima, which are distinguished

by the identity of the middle atom (96–98). In this example, the aim is to predict which min-

imum will be obtained by geometry optimisation given three initial interparticle distances

(92, 95). Neural networks were trained on a database of outcomes for random starting

configurations, and the ML landscapes defined by this problem were explored using the

geometry optimisation tools referred to in the Introduction §1.
Full details of the cost function and NN fitting can be found elsewhere (88). Here we

focus on how the prediction quality can be visualised for one particular ML landscape. The

disconnectivity graph in Figure 12 corresponds to a NN with an input layer of three nodes

(for the three interparticle distances, r12, r13, and r23), an output layer with four nodes

(for the four local minima), and a hidden layer between them, of three nodes. A pictorial

representation of how local minima on the ML landscape perform is provided by considering

a two-dimensional triangular grid, where each pixel maps on to a starting configuration in

the plane r12 + r13 + r23 = 3re, where re is the pair equilibrium bond length, 21/6σ. In

Figure 12b the pixels are coloured according to the outcome of local minimisation from the

corresponding geometry. The red, green and blue regions correspond to basins of attraction

for the three linear minima, and the gray region corresponds to runs that converge to the

equilateral triangle. For selected minima in the disconnectivity graph in Figure 12a, the

pixels are coloured according to the minimum with the highest predicted probability for the

same grid of starting configurations. The low-lying minima on the ML landscape generally

exhibit a close correspondence with the reference in Figure 12b; each of these solutions

could be used with some confidence to predict the outcome of local minimisation given

the starting geometry. However, the ML minima with larger residual cost functions show

systematically poorer performance.
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7. Conclusions

This Review has summarised some recent advances in the potential energy landscapes ap-

proach, and showed how this perspective can be extended to gain new insight into the

solution space of local minima defined by abstract functions that arise in applications such

as neural network fitting. Formulating observable properties in terms of local minima and

the transition states that connect them on the underlying potential energy surface provides

a powerful and flexible tool for developing both theory and computational methods. Calcu-

lating thermodynamic properties and kinetics within this framework, in combination with

statistical mechanics and unimolecular rate theory, enables us to treat broken ergodicity and

rare event dynamics from a viewpoint that is largely complementary to more conventional

techniques. Visualising the corresponding landscapes and pathways can produce insight

for designing self-assembly or multifunctional behaviour, along with the mechanisms cor-

responding to reaction coordinates that respect all the barriers in the full configurational

space.

The principal themes developed here show how the superposition approach can be used

to calculate accurate densities of states, and to analyse the resulting heat capacity features

as emergent properties of the underlying landscape. Occupation probabilities and their

temperature derivatives enable us to assign contributions to specific local minima or regions

of configuration space, and can also be used to design a quantitative measure of complexity

that places disparate systems on a common scale. Basin-hopping global optimisation can

be adapted for searches based on local free energy, or grand potentials that enable the

system size and composition to vary. Employing multiminima for an arbitrary combination

of metric spaces enables us to define neighbourhoods, which can be searched efficiently to

predict structure for alchemical or mutational transitions. The capability to transfer this

insight to landscapes beyond the domain of atomistic systems suggests exciting possibilities

for applications in different fields, such as machine learning.
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