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A new second-order numerical scheme based on an operator splitting is proposed for 
the Godunov–Peshkov–Romenski model of continuum mechanics. The homogeneous part 
of the system is solved with a finite volume method based on a WENO reconstruction, 
and the temporal ODEs are solved using some analytic results presented here. Whilst it 
is not possible to attain arbitrary-order accuracy with this scheme (as with ADER-WENO 
schemes used previously), the attainable order of accuracy is often sufficient, and solutions 
are computationally cheap when compared with other available schemes. The new scheme 
is compared with an ADER-WENO scheme for various test cases, and a convergence study 
is undertaken to demonstrate its order of accuracy.
© 2017 The Author. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Background

1.1. Motivation

The Godunov–Peshkov–Romenski model of continuum mechanics (as described in 1.2) presents an exciting possibility of 
being able to describe both fluids and solids within the same mathematical framework. This has the potential to streamline 
development of simulation software by reducing the number of different systems of equations that require solvers, and 
cutting down on the amount of theoretical work required, for example in the treatment of interfaces in multimaterial prob-
lems. In addition to this, the hyperbolic nature of the GPR model ensures that the nonphysical instantaneous transmission of 
information appearing in certain non-hyperbolic models (such as the Navier–Stokes equations) cannot occur. Parallelization 
also tends to be easier with hyperbolic models, allowing us to leverage the great advances that have been made in parallel 
computing architectures in recent years.

At the time of writing, the GPR model has been solved for a variety of fluid and solid problems using the ADER-WENO 
method (Dumbser et al. [8], Boscheri et al. [4]). ADER-WENO methods (described in 1.3) are extremely effective in producing 
arbitrarily-high order solutions to hyperbolic systems of PDEs, but in some situations their accompanying computational cost 
may prove burdensome. A new method is presented in this study that is simple to implement and computationally cheaper 
than a corresponding ADER-WENO method if only second order accuracy is required. This may prove useful in the design 
of simulation software addressing problems in which not just accuracy but also speed and usability are of paramount 
importance.
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1.2. The GPR model

The GPR model, first introduced in Peshkov and Romenski [23], has its roots in Godunov and Romenski’s 1970s model of 
elastoplastic deformation (see Godunov and Romenski [14]). It was expanded upon in Dumbser et al. [8] to include thermal 
conduction. This expanded model takes the following form:

∂ρ

∂t
+ ∂ (ρvk)

∂xk
= 0 (1a)

∂ (ρvi)

∂t
+ ∂(ρvi vk + pδik − σik)

∂xk
= 0 (1b)

∂ Aij

∂t
+ ∂ (Aik vk)

∂x j
+ vk

(
∂ Aij

∂xk
− ∂ Aik

∂x j

)
= − ψi j

θ1(τ1)
(1c)

∂ (ρ J i)

∂t
+ ∂ (ρ J i vk + T δik)

∂xk
= − ρHi

θ2 (τ2)
(1d)

∂ (ρE)

∂t
+ ∂ (ρE vk + (pδik − σik) vi + qk)

∂xk
= 0 (1e)

ρ , v, p, δ, σ , T , E , q retain their usual meanings. θ1 and θ2 are positive scalar functions, chosen according to the properties 
of the material being modeled. A is the distortion tensor (containing information about the deformation and rotation of 
material elements), J is the thermal impulse vector (a thermal analogue of momentum), τ1 is the strain dissipation time, 
and τ2 is the thermal impulse relaxation time. ψ = ∂ E

∂ A and H = ∂ E
∂ J .

The following definitions are given:

p = ρ2 ∂ E

∂ρ
(2a)

σ = −ρ AT ∂ E

∂ A
(2b)

T = ∂ E

∂s
(2c)

q = ∂ E

∂s

∂ E

∂ J
(2d)

To close the system, the equation of state (EOS) must be specified, from which the above quantities and the sources can be 
derived. E is the sum of the contributions of the energies at the molecular scale (microscale), the material element1 scale 
(mesoscale), and the flow scale (macroscale):

E = E1 (ρ, p) + E2 (A, J ) + E3 (v) (3)

The EOS used in this study (and described in the following passages) is taken from Dumbser et al. [8]. It should be noted, 
however, that this is just one particular choice, and there are many others that may be used.

For an ideal or stiffened gas, E1 is given by:

E1 = p + γ p∞
(γ − 1)ρ

(4)

where p∞ = 0 for an ideal gas.
E2 is chosen to have the following quadratic form:

E2 = c2
s

4
‖dev (G)‖2

F + α2

2
‖ J‖2 (5)

cs is the characteristic velocity of propagation of transverse perturbations. α is a constant related to the characteristic 
velocity of propagation of heat waves:

ch = α

ρ

√
T

cv
(6)

G = AT A is the Gramian matrix of the distortion tensor, and dev (G) is the deviator (trace-free part) of G:

1 The concept of a material element corresponds to that of a fluid parcel from fluid dynamics, applied to both fluids and solids.
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dev (G) = G − 1

3
tr (G) I (7)

E3 is the usual specific kinetic energy per unit mass:

E3 = 1

2
‖v‖2 (8)

The following forms are chosen:

θ1 (τ1) = τ1c2
s

3 |A| 5
3

(9a)

θ2 (τ2) = τ2α
2 ρT0

ρ0T
(9b)

τ1 = 6μ

ρ0c2
s

(10a)

τ2 = ρ0κ

T0α2
(10b)

The justification of these choices is that classical Navier–Stokes–Fourier theory is recovered in the stiff limit τ1, τ2 → 0
(see Dumbser et al. [8]). This results in the following relations:

σ = −ρc2
s G dev (G) (11a)

q = α2T J (11b)

− ψ

θ1(τ1)
= − 3

τ1
|A| 5

3 A dev (G) (11c)

− ρH

θ2 (τ2)
= − Tρ0

T0τ2
J (11d)

The following constraint also holds (see Peshkov and Romenski [23]):

det (A) = ρ

ρ0
(12)

The GPR model and Godunov and Romenski’s 1970s model of elastoplastic deformation in fact relie upon the same equa-
tions. The realization of Peshkov and Romenski was that these are the equations of motion for an arbitrary continuum – not 
just a solid – and so the model can be applied to fluids too. Unlike in previous continuum models, material elements have 
not only finite size, but also internal structure, encoded in the distortion tensor.

The strain dissipation time τ1 of the HPR model is a continuous analogue of Frenkel’s “particle settled life time” Frenkel 
[12]; the characteristic time taken for a particle to move by a distance of the same order of magnitude as the particle’s 
size. Thus, τ1 characterizes the time taken for a material element to rearrange with its neighbors. τ1 = ∞ for solids and 
τ1 = 0 for inviscid fluids. It is in this way that the HPR model seeks to describe all three major phases of matter, as long as 
a continuum description is appropriate for the material at hand.

The evolution equation for J and its contribution to the energy of the system are derived from Romenski’s model of 
hyperbolic heat transfer, originally proposed in Malyshev and Romenskii [19], Romenski [26], and implemented in Romenski 
et al. [25,24]. In this model, J is effectively defined as the variable conjugate to the entropy flux, in the sense that the latter 
is the derivative of the specific internal energy with respect to J . Romenski remarks that it is more convenient to evolve J
and E than the heat flux or the entropy flux, and thus the equations take the form given here. τ2 characterizes the speed 
of relaxation of the thermal impulse due to heat exchange between material elements.

1.3. The ADER-WENO method

The ADER-WENO method was used in Dumbser et al. [8], Boscheri et al. [4] to solve the GPR system. It produces arbi-
trarily high-order solutions to hyperbolic systems of PDEs and has been shown to be particularly effective for a wide range 
of systems (e.g. the classical Euler equations of gas dynamics, the special relativistic hydrodynamics and ideal magnetohy-
drodynamics equations, and the Baer-Nunziato model for compressible two-phase flow – see Balsara et al. [1], Zanotti and 
Dumbser [28]). The first step in the process – the WENO method – will be used later in this study and is therefore discussed 
in detail here. The remaining steps are described qualitatively, with references for further information given.

WENO (Weighted Essentially Non-Oscillatory) methods are used to produce high order polynomial approximations to 
piece-wise constant data. Many variations exist. In this study, the method of Dumbser et al. [11] is used.

Consider the domain [0, L]. Take K , N ∈ N. The order of accuracy of the resulting method will be N + 1. Take the set of 
grid points xi = i·L

K for i = 0, . . . , K and let �x = L
K . Denote cell [xi, xi+1] by Ci . Given cell-wise constant data u on [0, L], 

an order N polynomial reconstruction of u in Ci will be performed. Define the scaled space variable:
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χ i = 1

�x
(x − xi) (13)

Denoting the Gauss–Legendre abscissae on [0,1] by {χ0, . . . ,χN}, define the nodal basis of order N: the Lagrange inter-
polating polynomials {ψ0, . . . ,ψN } with the following property:

ψi
(
χ j
)= δi j (14)

If N is even, take the stencils:⎧⎪⎨
⎪⎩

S1 =
{

Ci− N
2
, . . . , Ci+ N

2

}
S2 = {Ci−N , . . . , Ci}
S3 = {Ci, . . . , Ci+N}

(15)

If N is odd, take the stencils:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S1 =
{

C
i−
⌊

N
2

⌋, . . . , C
i+
⌈

N
2

⌉}

S2 =
{

C
i−
⌈

N
2

⌉, . . . , C
i+
⌊

N
2

⌋}
S3 = {Ci−N , . . . , Ci}
S4 = {Ci, . . . , Ci+N}

(16)

The data is reconstructed on S j as:∑
p

ψp

(
χ i (x)

)
ŵi j

p (17)

where the ŵi j
p are solutions to the following linear system:

1

�x

xk+1ˆ

xk

∑
p

ψp

(
χk (x)

)
ŵi j

p dx = uk ∀Ck ∈ S j (18)

where uk is the value of u in Ck . This can be written as M j ŵi j = u[ j0: jN ] where { j0, . . . , jN} indexes the cells in S j . In this 
study reconstructions with N = 2 are used. The matrices of these linear systems are given in 6.3, along with their inverses, 
which are precomputed to accelerate the solution of these systems.

Define the oscillation indicator matrix:

�mn =
N∑

α=1

1ˆ

0

ψ
(α)
m ψ

(α)
n dχ (19)

and the oscillation indicator for each stencil:

o j = �mn ŵi j
m ŵi j

n (20)

The full reconstruction in Ci is:

wi (x) =
∑

p

ψp

(
χ i (x)

)
w̄i

p (21)

where w̄i
p = ω j ŵ i j

p is the weighted coefficient of the pth basis function, with weights:

ω j = ω̃ j∑
k ω̃k

ω̃ j = ζ j(
o j + ε

)r (22)

In this study, r = 8, ε = 10−14, ζ j = 105 if S j is a central stencil, and ζ j = 1 if S j is a side stencil, as in Dumbser et al. [7].
The reconstruction can be extended to two dimensions by taking:

υ i = 1

�y
(y − yi) (23)

and defining stencils in the y-axis in an analogous manner. The data in Ci is then reconstructed using stencil S j as:
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∑
p,q

ψp

(
χ i (x)

)
ψq

(
υ i (x)

)
w̃i j

pq (24)

where the coefficients of the weighted 1D reconstruction are used as cell averages:

M j w̃i j
p = w̄[ j0: jN ]

p ∀p ∈ {0, . . . , N} (25)

The oscillation indicator is calculated for each p in the same manner as the 1D case. The reconstruction method is easily 
further extensible to three dimensions, now using the coefficients w̄ pq of the weighted 2D reconstruction as cell averages.

The next process in the ADER-WENO method is to perform a Continuous Galerkin or Discontinuous Galerkin spatio-
temporal polynomial reconstruction of the data in each cell, using the WENO reconstruction as initial data at the start of 
the time step (see Balsara et al. [1] and Dumbser et al. [5] respectively for implementations of these two variations). The 
order of this reconstruction in time is usually taken to be the same as the spatial order, and the same basis polynomials 
are used. The process involves finding the root of a non-linear system, and this process is guaranteed to converge in exact 
arithmetic for certain classes of PDEs (see Jackson [16]). This root finding can be computationally expensive relative to the 
WENO reconstruction, especially if the source terms of the PDE system are stiff.

The final step in the ADER-WENO method is to perform a finite volume update of the data in each cell, using the 
boundary-extrapolated values of the cell-local Galerkin reconstructions to calculate the flux terms, and the interior values 
of the Galerkin reconstructions to calculate the interior volume integrals. See Dumbser et al. [7] for more details.

2. An alternative numerical scheme

Note that (1a), (1b), (1c), (1d), (1e) can be written in the following form:

∂ Q

∂t
+ ∇ · F ( Q ) + B ( Q ) · ∇ Q = S ( Q ) (26)

As described in Toro [27], a viable way to solve inhomogeneous systems of PDEs is to employ an operator splitting. That is, 
the following subsystems are solved:

∂ Q

∂t
+ ∇ · F ( Q ) + B ( Q ) · ∇ Q = 0 (27a)

d Q

dt
= S ( Q ) (27b)

The advantage of this approach is that specialized solvers can be employed to compute the results of the different subsys-
tems. Let Hδt, Sδt be the operators that take data Q (x, t) to Q (x, t + δt) under systems (27a) and (27b) respectively. A 
second-order scheme (in time) for solving the full set of PDEs over time step [0,�t] is obtained by calculating Q �t using a 
Strang splitting:

Q �t = S
�t
2 H�t S

�t
2 Q 0 (28)

In the scheme proposed here, the homogeneous subsystem will be solved using a WENO reconstruction of the data, followed 
by a finite volume update, and the temporal ODEs will be solved with appropriate ODE solvers. This new scheme will be 
referred to here as the Split-WENO method.

2.1. The homogeneous system

A WENO reconstruction of the cell-averaged data is performed at the start of the time step (as described in 1.3). Focusing 
on a single cell Ci at time tn , we have wn (x) = wn

p�p (χ (x)) in Ci where �p is a tensor product of basis functions in 
each of the spatial dimensions. The flux in C is approximated by F (x) ≈ F

(
w p
)
�p (χ (x)). w p are stepped forwards half a 

time step using the update formula:

w
n+ 1

2
p − wn

p

�t/2
+ F

(
wn

k

) · ∇�k
(
χp
)+ B

(
wn

p

) · (wn
k∇�k

(
χp
))= 0 (29)

i.e.

w
n+ 1

2
p = wn

p − �t

2�x

(
F
(

wn
k

) · ∇�k
(
χp
)+ B

(
wn

p

) · (wn
k∇�k

(
χp
)))

(30)

where χp is the node corresponding to �p . This evolution to the middle of the time step is similar to that used in the 
second-order MUSCL and SLIC schemes (see Toro [27]) and, as with those schemes, it is integral to giving the method 
presented here its second-order accuracy.
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Integrating (27a) over C gives:

Q n+1
i = Q n

i − �tn

(
P

n+ 1
2

i + D
n+ 1

2
i

)
(31)

where

Q n
i = 1

V

ˆ

C

Q (x, tn)dx (32a)

P
n+ 1

2
i = 1

V

ˆ

C

B
(

Q
(

x, tn+ 1
2

))
· ∇ Q

(
x, tn+ 1

2

)
dx (32b)

D
n+ 1

2
i = 1

V

˛

∂C

D
(

Q − (s, tn+ 1
2

)
, Q + (s, tn+ 1

2

))
ds (32c)

where V is the volume of C and Q −, Q + are the interior and exterior extrapolated states at the boundary of C , respec-
tively.

Note that (27a) can be rewritten as:

∂ Q

∂t
+ M ( Q ) · ∇ Q = 0 (33)

where M = ∂ F
∂ Q + B . Let n be the normal to the boundary at point s ∈ ∂C . For the GPR model, M̂ = M ( Q (s)) · n is a 

diagonalizable matrix with decomposition M̂ = R̂�̂R̂−1 where the columns of R̂ are the right eigenvectors and �̂ is the 
diagonal matrix of eigenvalues. Define also F̂ = F · n and B̂ = B · n. Using these definitions, the interface terms arising in 
the FV formula have the following form:

D
(

Q −, Q +)= 1

2

(
F̂
(

Q +)+ F̂
(

Q −)+ B̃
(

Q + − Q −)+ M̃
(

Q + − Q −)) (34)

M̃ is chosen to either correspond to a Rusanov/Lax–Friedrichs flux (see Toro [27]):

M̃ = max
(

max
∣∣∣�̂ (Q +)∣∣∣ ,max

∣∣∣�̂ (Q −)∣∣∣) (35)

or a simplified Osher–Solomon flux (see Dumbser and Toro [9,10]):

M̃ =
1ˆ

0

∣∣∣M̂ (Q − + z
(

Q + − Q −))∣∣∣dz (36)

where∣∣∣M̂∣∣∣= R̂
∣∣∣�̂∣∣∣ R̂−1 (37)

B̃ takes the following form:

B̃ =
1ˆ

0

B̂
(

Q − + z
(

Q + − Q −))dz (38)

It was found that the Osher–Solomon flux would often produce slightly less diffusive results, but that it was more compu-
tationally expensive, and also had a greater tendency to introduce numerical artefacts.

P
n+ 1

2
i , Dn+ 1

2
i are calculated using an N + 1-point Gauss–Legendre quadrature, replacing Q

(
x, tn+ 1

2

)
with wn+ 1

2 (x).

2.2. The temporal ODEs

Noting that dρ
dt = 0 over the ODE time step, the operator S entails solving the following systems:

dA

dt
= −3

τ1
|A| 5

3 A dev (G) (39a)

d J

dt
= − 1

τ2

Tρ0

T0ρ
J (39b)
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These systems can be solved concurrently with a stiff ODE solver. The Jacobians of these two systems to be used in an ODE 
solver are given in 6.1 and 6.2. However, these systems can also be solved separately, using the analytical results presented 
in Section 3, under specific assumptions. The second-order Strang splitting is then:

Q �t = D
�t
2 T

�t
2 H�t T

�t
2 D

�t
2 Q 0 (40)

where Dδt, T δt are the operators solving the distortion and thermal impulse ODEs respectively, over timestep δt . This allows 
us to bypass the relatively computationally costly process of solving these systems numerically.

3. GPR-specific performance improvements

3.1. The thermal impulse ODEs

Taking the EOS for the GPR model (3) and denoting by E(A)
2 , E( J )

2 the components of E2 depending on A and J respec-
tively, we have:

T = E1

cv
(41)

= E − E(A)
2 (A) − E3 (v)

cv
− 1

cv
E( J )

2 ( J )

= c1 − c2 ‖ J‖2

where:

c1 = E − E(A)
2 (A) − E3 (v)

cv
(42a)

c2 = α2

2cv
(42b)

Over the time period of the ODE (39b), c1, c2 > 0 are constant. We have:

d J i

dt
= −

(
1

τ2

ρ0

T0ρ

)
J i

(
c1 − c2 ‖ J‖2

)
(43)

Therefore:

d

dt

(
J 2

i

)
= J 2

i

(
−a + b

(
J 2

1 + J 2
2 + J 2

3

))
(44)

where

a = 2ρ0

τ2T0ρcv

(
E − E(A)

2 (A) − E3 (v)
)

(45a)

b = ρ0α
2

τ2T0ρcv
(45b)

Note that this is a generalized Lotka–Volterra system in 
{

J 2
1, J 2

2, J 2
3

}
. It has the following analytical solution:

J (t) = J (0)

√
1

eat − b
a

(
eat − 1

)‖ J (0)‖2
(46)

3.2. The distortion ODEs

3.2.1. Reduced distortion ODEs

Let k0 = 3
τ1

(
ρ
ρ0

) 5
3

> 0 and let A have singular value decomposition U�V T . Then:

G =
(

U�V T
)T

U�V T = V �2 V T (47)

tr (G) = tr
(

V �2 V T
)

= tr
(
�2 V T V

)
= tr

(
�2
)

(48)

Therefore:
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dA

dt
= −k0U�V T

(
V �2 V T − tr

(
�2
)

3
I

)
(49)

= −k0U�

(
�2 − tr

(
�2
)

3

)
V T

= −k0U� dev
(
�2
)

V T

It is a common result (see Giles [13]) that:

d� = U T dAV (50)

and thus:

d�

dt
= −k0� dev

(
�2
)

(51)

Using a fast 3 × 3 SVD algorithm (such as in McAdams et al. [20]), U , V , � can be obtained, after which the following 
procedure is applied to �, giving A (t) = U� (t) V T .

Denote the singular values of A by a1, a2, a3. Then:

� dev
(
�2
)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

a1

(
a2

1 − a2
1+a2

2+a2
3

3

)
0 0

0 a1

(
a2

1 − a2
1+a2

2+a2
3

3

)
0

0 0 a1

(
a2

1 − a2
1+a2

2+a2
3

3

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(52)

Letting xi = a2
i

det(A)
2
3

= a2
i(

ρ
ρ0

) 2
3

we have:

dxi

dτ
= −3xi (xi − x̄) (53)

where τ = 2
τ1

(
ρ
ρ0

) 7
3

t and x̄ is the arithmetic mean of x1, x2, x3. This ODE system travels along the surface � =
{x1, x2, x3 > 0, x1x2x3 = 1} to the point x1, x2, x3 = 1. This surface is symmetrical in the planes x1 = x2, x1 = x3, x2 = x3. 
As such, given that the system is autonomous, the paths of evolution of the xi cannot cross the intersections of these planes 
with � . Thus, any non-strict inequality of the form xi ≥ x j ≥ xk is maintained for the whole history of the system. By con-
sidering (53) it is clear that in this case xi is monotone decreasing, xk is monotone increasing, and the time derivative of x j
may switch sign.

Note that we have:⎧⎨
⎩

dxi
dτ = −xi

(
2xi − x j − xk

)= −xi

(
2xi − x j − 1

xi x j

)
dx j
dτ = −x j

(
2x j − xk − xi

)= −x j

(
2x j − xi − 1

xi x j

) (54)

Thus, an ODE solver can be used on these two equations to effectively solve the ODEs for all 9 components of A. Note that:

dx j

dxi
= x j

xi

2x j − xi − 1
xi x j

2xi − x j − 1
xi x j

(55)

This has solution:

x j =
c +

√
c2 + 4 (1 − c) x3

i

2x2
i

(56)

where

c = −
xi,0

(
xi,0x2

j,0 − 1
)

xi,0 − x j,0
∈ (−∞,0] (57)

In the case that xi,0 = x j,0, we have xi = x j for all time. Thus, the ODE system for A has been reduced to a single ODE, 
as x j (xi) can be inserted into the RHS of the equation for dxi

dτ . However, it is less computationally expensive to evolve the 
system presented in (54).
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Fig. 1. The (shaded) region to which xi , x j are confined in the evolution of the distortion ODEs.

3.2.2. Bounds on reduced distortion ODEs
If any of the relations in xi ≥ x j ≥ xk are in fact equalities, equality is maintained throughout the history of the system. 

This can be seen by noting that the time derivatives of the equal variables are in this case equal. If x j = xk then xi = 1
x2

j
. 

Combining these results, the path of the system in 
(
xi, x j

)
coordinates is in fact confined to the curved triangular region:{(

xi, x j
) : xi ≤ x0

i ∩ xi ≥ x j ∩ xi ≥ 1

x2
j

}
(58)

This is demonstrated in Fig. 1. By (54), the rate of change of xi at a particular value xi = x∗
i is given by:

−x∗
i

(
2x∗

i − x j − 1

x∗
i x j

)
(59)

Note that:

d

dx j

(
2x∗

i − x j − 1

x∗
i x j

)
= −1 + 1

x∗
i x2

j

= 0 (60)

⇒ x j = 1√
x∗

i

d2

dx2
j

(
2x∗

i − x j − 1

x∗
i x j

)
= −2

x∗
i x3

j

< 0 (61)

Thus, xi decreases fastest on the line xi = 1
x2

j
(the bottom boundary of the region given in Fig. 1), and slowest on the line 

xi = x j . The rates of change of xi along these two lines are given respectively by:

dxi

dτ
= −2xi

(
xi −

√
1

xi

)
(62a)

dxi

dτ
= −xi

(
xi − 1

x2
i

)
(62b)

These have implicit solutions:

τ = ( f
(√

xi
)+ g

(√
xi
))−( f

(√
x0

i

)
+ g

(√
x0

i

))
≡ F1

(
xi; x0

i

)
(63a)

τ = ( f (xi) − g (xi)) −
(

f
(

x0
i

)
− g

(
x0

i

))
≡ F2

(
xi; x0

i

)
(63b)
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where

f (xi) = 1

6
log

(
x2

i + xi + 1

(xi − 1)2

)
(64a)

g (xi) = 1√
3

tan−1
(

2xi + 1√
3

)
(64b)

As (53) is an autonomous system of ODEs, it has the property that its limit x1 = x2 = x3 = 1 is never obtained in finite time, 
in precise arithmetic. In floating point arithmetic we may say that the system has converged when xi − 1 < ε (machine 
epsilon) for each i. This happens when:

τ > F2

(
1 + ε; x0

i

)
(65)

This provides a quick method to check whether it is necessary to run the ODE solver in a particular cell. If the following 
condition is satisfied then we know the system in that cell converges to the ground state over the time interval in which 
the ODE system is calculated:

2

τ1

(
ρ

ρ0

) 7
3

�t > F2

(
1 + ε;max

{
x0

i

})
(66)

If the fluid is very inviscid, resulting in a stiff ODE, the critical time is lower, and there is more chance that the ODE system 
in the cell reaches its limit in �t . This check potentially saves a lot of computationally expensive stiff ODE solves. The same 
goes for if the flow is slow-moving, as the system will be closer to its ground state at the start of the time step and is 
more likely to converge over �t . Similarly, if the following condition is satisfied then we know for sure that an ODE solver 
is necessary, as the system certainly will not have converged over the timestep:

2

τ1

(
ρ

ρ0

) 7
3

�t < F1

(
1 + ε;max

{
x0

i

})
(67)

3.2.3. Analytical approximation
We now explore cases when even the reduced ODE system (54) need not be solved numerically. Define the following 

variables:

m = x1 + x2 + x3

3
(68a)

u = (x1 − x2)
2 + (x2 − x3)

2 + (x3 − x1)
2

3
(68b)

It is a standard result that m ≥ 3
√

x1x2x3. Thus, m ≥ 1. Note that u is proportional to the internal energy contribution from 
the distortion. From (53) we have:

du

dτ
= −18

(
1 − m

(
m2 − 5

6
u

))
(69a)

dm

dτ
= −u (69b)

Combining these equations, we have:

d2m

dτ 2
= −du

dτ
= 18

(
1 − m

(
m2 − 5

6
u

))
(70)

Therefore:⎧⎨
⎩

d2m
dτ 2 + 15m dm

dτ + 18
(
m3 − 1

)= 0
m (0) = m0

m′ (0) = −u0

(71)

We make the following assumption, noting that it is true in all physical situations tested in this study:

m (t) = 1 + η (t) , η � 1 ∀t ≥ 0 (72)

Thus, we have the linearized ODE:
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⎧⎨
⎩

d2η
dτ 2 + 15 dη

dτ + 54η = 0
η (0) = m0 − 1
η′ (0) = −u0

(73)

This is a Sturm–Liouville equation with solution:

η (τ ) = e−9τ

3

(
(9m0 − u0 − 9) e3τ − (6m0 − u0 − 6)

)
(74)

Thus, we also have:

u (τ ) = e−9τ
(

e3τ (18m0 − 2u0 − 18) − (18m0 − 3u0 − 18)
)

(75)

Once m�t = 1 + η

(
2
τ1

(
ρ
ρ0

) 7
3
�t

)
and u�t = u 

(
2
τ1

(
ρ
ρ0

) 7
3
�t

)
have been found, we have:

xi + x j + xk

3
= m�t (76a)(

xi − x j
)2 + (x j − xk

)2 + (xk − xi)
2

3
= u�t (76b)

xi x jxk = 1 (76c)

This gives:

xi =
3

√
6

(√
81�2 − 6u3

�t + 9�

)
6

+ u�t

3

√
6

(√
81�2 − 6u3

�t + 9�

) + m�t (77a)

x j = 1

2

⎛
⎝
√

xi (3m�t − xi)
2 − 4

xi
+ 3m�t − xi

⎞
⎠ (77b)

xk = 1

xix j
(77c)

where

� = −2m3
�t + m�t u�t + 2 (78)

Note that taking the real parts of the above expression for xi gives:

xi =
√

6u�t

3
cos

(
θ

3

)
+ m�t (79a)

θ = tan−1

⎛
⎜⎝
√

6u3
�t − 81�2

9�

⎞
⎟⎠ (79b)

At this point it is not clear which values of 
{

xi, x j, xk
}

are taken by x1, x2, x3. However, this can be inferred from the fact 
that any relation xi ≥ x j ≥ xk is maintained over the lifetime of the system. Thus, the stiff ODE solver has been obviated by 
a few arithmetic operations.

4. Numerical results

4.1. Strain relaxation

In this section, the approximate analytic solver for the distortion ODEs, presented in 3.2.3, is compared with a numerical 
ODE solver. Initial data was taken from Barton and Drikakis [2]:

A =
⎛
⎝ 1 0 0

−0.01 0.95 0.02
−0.015 0 0.9

⎞
⎠

−1

(80)
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Fig. 2. The components of the distortion tensor in the Strain Relaxation Test.

Fig. 3. The singular values of the distortion tensor and the energy in the Strain Relaxation Test.

Fig. 4. The components of the stress tensor in the Strain Relaxation Test.

Additionally, the following parameter values were used: ρ0 = 1, cs = 1, μ = 10−2, giving τ1 = 0.06. As can be seen in 
Fig. 2, Fig. 3, and Fig. 4, the approximate analytic solver compares well with the numerical solver in its results for the 
distortion tensor A, and thus also the internal energy and stress tensor. The numerical ODE solver was the odeint solver 
from SciPy 0.18.1, based on the LSODA solver from the FORTRAN library ODEPACK (see Oliphant [22]).
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Table 1
Initial conditions for the slow opposing shear flow test.

ρ p v A J

x < 0 1 1/γ (0,−0.1,0) I3 0
x ≥ 0 1 1/γ (0,0.1,0) I3 0

4.2. Stokes’ first problem

This problem is one of the few test cases with an analytic solution for the Navier–Stokes equations. It consists of two 
ideal gases in an infinite domain, meeting at the plane x = 0, initially flowing with equal and opposite velocity ±0.1 in the 
y-axis. The initial conditions are given in Table 1.

The flow has a low Mach number of 0.1, and this test case is designed to demonstrate the efficacy of the numerical 
methods in this flow regime. The exact solution to the Navier–Stokes equations is given by2:

v = v0 erf

(
x

2
√

μt

)
(81)

Heat conduction is neglected, and γ = 1.4, cv = 1, ρ0 = 1, cs = 1. The viscosity is variously taken to be μ = 10−2, 
μ = 10−3, μ = 10−4 (resulting in τ1 = 0.06, τ1 = 0.006, τ1 = 0.0006, respectively). Due to the stiffness of the source terms 
in the equations governing A in the case that μ = 10−4, the step (30) in the WENO reconstruction under the Split-WENO 

method was not performed, and w
n+ 1

2
p ≡ wn

p was taken instead. This avoided the numerical diffusion that otherwise would 
have emerged at the interface at x = 0.

The results of simulations with 200 cells at time t = 1, using reconstruction polynomials of order N = 2, are presented in 
Fig. 5. The GPR model solved with both the ADER-WENO and Split-WENO methods closely matches the exact Navier–Stokes 
solution. Note that at μ = 10−2 and μ = 10−3, the ADER-WENO and Split-WENO methods are almost indistinguishable. At 
μ = 10−4 the Split-WENO method matches the curve of the velocity profile more closely, but overshoots slightly at the 
boundaries of the center region. This overshoot phenomenon is not visible in the ADER-WENO results.

4.3. Viscous shock

This test is designed to demonstrate that the numerical methods used are also able to cope with fast flows. First demon-
strated by Becker [3], the Navier–Stokes equations have an analytic solution for Pr = 0.75 (see Johnson [17] for a full 
analysis). As noted by Dumbser et al. [8], if the wave has nondimensionalised upstream velocity v̄ = 1 and Mach num-
ber Mc , then its nondimensionalised downstream velocity is:

a = 1 + γ −1
2 M2

c
γ +1

2 M2
c

(82)

The wave’s velocity profile v̄ (x) is given by the roots of the following equation:

1 − v̄

(v̄ − a)a = c1 exp (−c2x) (83a)

c1 =
(

1 − a

2

)1−a

(83b)

c2 = 3

4
Re

M2
c − 1

γ M2
c

(83c)

c1, c2 are constants that affect the position of the center of the wave, and its stretch factor, respectively. Following the 
analysis of Morduchow and Libby [21], the nondimensional pressure and density profiles are given by:

p̄ = 1

v̄

(
1 + γ − 1

2
M2

c

(
1 − v̄2

))
(84)

ρ̄ = 1

v̄
(85)

2 In this problem, the Navier–Stokes equations reduce to vt = μvxx . Defining η = x
2
√

μt
, and assuming v = f (η), this becomes f ′′ + 2η f ′ = 0. The result 

follows by solving this equation with the boundary conditions v (±∞) = ±v0.
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Fig. 5. Results of solving Stokes’ First Problem (μ = 10−2,μ = 10−3,μ = 10−4) with an ADER-WENO scheme and a Split-WENO scheme (N = 2).

To obtain an unsteady shock traveling into a region at rest, a constant velocity field v = Mcc0 is imposed on the traveling 
wave solution presented here (where c0 is the adiabatic sound speed). Thus, if p0, ρ0 are the downstream (reference) values 
for pressure and density:

v = Mc0 (1 − v̄) (86a)

p = p0 p̄ (86b)

ρ = ρ0ρ̄ (86c)



528 H. Jackson / Journal of Computational Physics 348 (2017) 514–533
Fig. 6. Density, velocity, and pressure for the Viscous Shock problem, solved with an ADER-WENO scheme and a Split-WENO scheme (N = 2).

These functions are used as initial conditions, along with A = 3
√

ρ̄ I and J = 0. The downstream density and pressure are 
taken to be ρ0 = 1 and p0 = 1

γ (so that c0 = 1). Mc = 2 and Re = 100. The material parameters are taken to be: γ = 1.4, 
p∞ = 0, cv = 2.5, cs = 5, α = 5, μ = 2 × 10−2, κ = 28

3 × 10−2 (resulting in τ1 = 0.0048, τ2 = 0.005226̇).
The results of a simulation with 200 cells at time t = 0.2, using reconstruction polynomials of order N = 2, are presented 

in Fig. 6 and Fig. 7. The shock was initially centered at x = 0.25, reaching x = 0.65 at the final time. Note that the density, 
velocity, and pressure results for both methods match the exact solution well, with the ADER-WENO method appearing to 
produce a slightly more accurate solution. The results for the two methods for the stress tensor and heat flux are close.
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Fig. 7. Viscous stress and heat flux for the Viscous Shock problem, solved with both an ADER-WENO scheme and a Split-WENO scheme (N = 2).

Table 2
Initial conditions for the heat conduction test.

ρ p v A J

x < 0 2 1 0 3
√

2 · I3 0
x ≥ 0 0.5 1 0 1

3√2
· I3 0

Fig. 8. Results of solving the problem of Heat Conduction in Gas with both an ADER-WENO scheme and a Split-WENO scheme (N = 2).

4.4. Heat conduction in a gas

This is a simple test case to ensure that the heat transfer terms in the implementation are working correctly. Two ideal 
gases at different temperatures are initially in contact at position x = 0. The initial conditions for this problem are given in 
Table 2.

The material parameters are taken to be: γ = 1.4, cv = 2.5, ρ0 = 1, p0 = 1, cs = 1, α = 2, μ = 10−2, κ = 10−2 (resulting 
in τ1 = 0.06, τ2 = 0.0025). The results of a simulation with 200 cells at time t = 1, using reconstruction polynomials of 
order N = 2, are presented in Fig. 8. The ADER-WENO and Split-WENO methods are in perfect agreement for both the 
temperature and heat flux profiles. As demonstrated in Dumbser et al. [8], this means that they in turn agree very well 
with a reference Navier–Stokes–Fourier solution.

4.5. Speed

Both the ADER-WENO scheme and the Split-WENO scheme used in this study were implemented in Python3. All array 
functions were precompiled with Numba’s JIT capabilities and the root-finding procedure in the Galerkin predictor was 
performed using SciPy’s Newton–Krylov solver, compiled against the Intel MKL. Clear differences in computational cost be-
tween the ADER-WENO and Split-WENO methods were apparent, as is to be expected, owing to the lack of Galerkin method 
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Table 3
Wall time for various tests (all with 200 cells) under the ADER-WENO method and the Split-WENO method.

ADER-WENO Split-WENO Speed-up

Stokes’ First Problem (μ = 10−2) 265s 38s 7.0
Stokes’ First Problem (μ = 10−3) 294s 38s 7.7
Stokes’ First Problem (μ = 10−4) 536s 38s 14.1
Viscous Shock 297s 56s 5.3
Heat Conduction in a Gas 544s 94s 5.8

Table 4
Time steps taken for various tests (all with 200 cells) under the ADER-WENO method and the Split-WENO method.

Timesteps (ADER-WENO) Timesteps (Split-WENO)

Stokes’ First Problem (μ = 10−2) 385 442
Stokes’ First Problem (μ = 10−3) 386 443
Stokes’ First Problem (μ = 10−4) 385 442
Viscous Shock 562 645
Heat Conduction in a Gas 942 1077

in the Split-WENO scheme. The wall times for the various tests undertaken in this study are given in Table 3, comparing 
the combined WENO and Galerkin methods of the ADER-WENO scheme to the combined WENO and ODE methods of the 
Split-WENO scheme. All computations were performed using an Intel Core i7-4910MQ, on a single core. The number of time 
steps taken are given in Table 4. The differences between the methods in terms of the number of time steps taken in each 
test result from the fact that, for numerical stability, CFL numbers of 0.8 and 0.7 were required by the ADER-WENO method 
and the Split-WENO method, respectively.

Note that, unlike with the ADER-WENO scheme, the wall time for the Split-WENO scheme is unaffected by a decrease in 
the viscosity in Stokes’ First Problem (and the corresponding increase in the stiffness of the source terms). This is because 
the analytic approximation to the distortion ODEs obviates the need for a stiff solver. The large difference in ADER-WENO 
solver times between the μ = 10−3 and μ = 10−4 cases is due to the fact that, in the latter case, a stiff solver must be 
employed for the initial guess to the root of the nonlinear system produced by the Discontinuous Galerkin method (as 
described in Hidalgo and Dumbser [15]).

4.6. Convergence

To assess the rate of convergence of the Split-WENO method, the convected isentropic vortex convergence study from 
Dumbser et al. [8] was performed. The initial conditions are given as ρ = 1 + δρ , p = 1 + δp, v = (1,1,0) + δv , A = 3

√
ρ I , 

J = 0, where:

δT = − (γ − 1) ε2

8γπ2
e1−r2

(87a)

δρ = (1 + δT )
1

γ −1 − 1 (87b)

δp = (1 + δT )
γ

γ −1 − 1 (87c)

δv = ε

2π
e

1−r2
2

⎛
⎝ − (y − 5)

x − 5
0

⎞
⎠ (87d)

The 2D domain is taken to be [0,10]2. ε is taken to be 5. The material parameters are taken to be: γ = 1.4, cv = 2.5, 
ρ0 = 1, p0 = 1, cs = 0.5, α = 1, μ = 10−6, κ = 10−6 (resulting in τ1 = 2.4 × 10−5, τ2 = 10−6). Thus, this can be considered 
to be a stiff test case.

The convergence rates in the L1, L2, L∞ norms for the density variable are given in Table 5 and Table 6 for WENO re-
construction polynomial orders of N = 2 and N = 3, respectively. As expected, both sets of tests attain roughly second order 
convergence. For comparison, the corresponding results for this test from Dumbser et al. [8] – solved using a third-order 
P2P2 scheme – are given in Table 7 for comparison.

5. Conclusions

In summary, a new numerical method based on an operator splitting, and including some analytical results, has been 
proposed for the GPR model of continuum mechanics. It has been demonstrated that this method is able to match current 
ADER-WENO methods in terms of accuracy on a range of test cases. It is significantly faster than the other currently available 
methods, and it is easier to implement. The author would recommend that if very high order-of-accuracy is required, and 
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Table 5
Convergence rates for the Split-WENO method (N = 2).

Grid Size ε (L1) ε (L2) ε (L∞) O (L1) O (L2) O (L∞)

20 2.87 × 10−3 7.15 × 10−3 6.21 × 10−2

40 5.81 × 10−4 1.62 × 10−3 1.73 × 10−2 2.30 2.14 1.85
60 1.98 × 10−4 5.39 × 10−4 5.94 × 10−3 2.65 2.70 2.63
80 1.23 × 10−4 3.47 × 10−4 3.41 × 10−3 1.67 1.52 1.92

Table 6
Convergence rates for the Split-WENO method (N = 3).

Grid Size ε (L1) ε (L2) ε (L∞) O (L1) O (L2) O (L∞)

10 1.01 × 10−2 2.58 × 10−2 1.27 × 10−1

20 1.68 × 10−3 4.02 × 10−3 2.93 × 10−2 2.59 2.68 2.11
30 5.34 × 10−4 1.57 × 10−3 1.70 × 10−2 2.83 2.32 1.34
40 3.32 × 10−4 8.94 × 10−4 7.55 × 10−3 1.65 1.95 2.82

Table 7
Convergence rates for the ADER-DG PNPM method (N, M = 2).

Grid Size ε (L1) ε (L2) ε (L∞) O (L1) O (L2) O (L∞)

20 9.44 × 10−3 2.20 × 10−3 2.16 × 10−3

40 1.95 × 10−3 4.50 × 10−4 4.27 × 10−4 2.27 2.29 2.34
60 7.52 × 10−4 1.74 × 10−4 1.48 × 10−4 2.35 2.35 2.61
80 3.72 × 10−4 8.66 × 10−5 7.40 × 10−5 2.45 2.42 2.41

computational cost is not important, then ADER-WENO methods may present a better option, as by design the new method 
cannot achieve better than second-order accuracy. This new method clearly has applications in which it will prove useful, 
however.

In a similar manner to the operator splitting method presented in Leveque and Yee [18], the Split-WENO method is 
second-order accurate and stable even for very stiff problems (in particular, the reader is referred to the results of the 
μ = 10−4 variation of Stokes’ First Problem in 4.2 and the convergence study in 4.6). However, it will inevitably suffer from 
the incorrect speed of propagation of discontinuities on regular, structured grids. This is due to a lack of spatial resolution 
in evaluating the source terms, as detailed in Leveque and Yee [18]. This issue can be rectified by the use of some form of 
shock tracking or mesh refinement, as noted in the cited paper. It is noted in Dumbser et al. [6] that operator splitting-based 
methods can result in schemes that are neither well-balanced nor asymptotically consistent. The extent to which these two 
conditions are violated by the Split-WENO method – and the severity in practise of any potential violation – is a topic of 
further research.

It should be noted that the assumption (72) used to derive the approximate analytical solver may break down for 
situations where the flow is compressed heavily in one direction but not the others. The reason for this is that one of the 
singular values of the distortion tensor will be much larger than the others, and the mean of the squares of the singular 
values will not be close to its geometric mean, meaning that the subsequent linearization of the ODE governing the mean 
of the singular values fails. It should be noted that none of the situations covered in this study presented problems for 
the approximate analytical solver, and situations which may be problematic are in some sense unusual. In any case, a stiff 
ODE solver can be used to solve the system (54) if necessary, utilizing the Jacobians derived in the appendix, and so the 
Split-WENO method is still very much usable in these situations, albeit slightly slower.

It should be noted that both the ADER-WENO and Split-WENO methods, as described in this study, are trivially paral-
lelizable on a cell-wise basis. Thus, given a large number of computational cores, deficiencies in the Split-WENO method in 
terms of its order of accuracy may be overcome by utilizing a larger number of computational cells and cores. The compu-
tational cost of each time step is significantly smaller than with the ADER-WENO method, and the number of grid cells that 
can be used scales roughly linearly with number of cores, at constant time per iteration.

6. Appendix

6.1. Jacobian of distortion ODEs

The Jacobian of the source function is used to speed up numerical integration of the ODE. It is derived thus:

∂ dev (G)i j

∂ Amn
= δin Amj + δ jn Ami − 2

3
δi j Amn (88)

Thus:
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∂ (A dev (G))i j

∂ Amn
= ∂ Ait

∂ Amn
dev (G)t j + Ait

∂ dev (G)t j

∂ Amn
(89)

= δimδtn

(
Akt Akj − 1

3
Akl Aklδt j

)
+ Ait

(
δtn Amj + δ jn Amt − 2

3
δt j Amn

)

= δim Akn Akj − 1

3
δimδ jn Akl Akl + Ain Amj + δ jn Aik Amk − 2

3
Aij Amn

Thus:

J A ≡ −3

τ1

∂
(

det (A)
5
3 A dev (G)

)
i j

∂ Amn
(90)

= −3

τ1
det (A)

5
3

(
5

3
(A dev (G))i j A−T

mn + Ain Amj + δ jnG ′
im + δimG jn − 1

3
δimδ jn Akl Akl − 2

3
Aij Amn

)

= 1

τ1
det (A)

5
3

(
−5 (A dev (G)) ⊗ A−T + 2A ⊗ A − 3 (A ⊗ A)1,3 + ‖A‖2

F (I ⊗ I)2,3 − 3
(
G ′ ⊗ I + I ⊗ G

)2,3
)

where G ′ = A AT and Xa,b refers to tensor X with indices a, b transposed.

6.2. Jacobian of thermal impulse ODEs

As demonstrated in 3.1, we have:

d J i

dt
= J i

2

(
−a + b

(
J 2

1 + J 2
2 + J 2

3

))
(91)

where

a = 2ρ0

τ2T0ρcv
(E − E2A (A) − E3 (v)) (92a)

b = ρ0α
2

τ2T0ρcv
(92b)

Thus, the Jacobian of the thermal impulse ODEs is:⎛
⎝ b

2

(
3 J 2

1 + J 2
2 + J 2

3

)− a
2 b J1 J2 b J1 J3

b J1 J2
b
2

(
J 2

1 + 3 J 2
2 + J 2

3

)− a
2 b J2 J3

b J1 J3 b J2 J3
b
2

(
J 2

1 + J 2
2 + 3 J 2

3

)− a
2

⎞
⎠ (93)

6.3. WENO Matrices for N = 2

M1 =

⎛
⎜⎜⎝

2
√

5
3 + 245

18 − 236
9

245
18 − 2

√
5
3√

5
3 + 65

18 − 56
9

65
18 −

√
5
3

5
18

4
9

5
18

⎞
⎟⎟⎠ (94a)

M2 =

⎛
⎜⎜⎝
√

5
3 + 65

18 − 56
9

65
18 −

√
5
3

5
18

4
9

5
18

65
18 −

√
5
3 − 56

9

√
5
3 + 65

18

⎞
⎟⎟⎠ (94b)

M3 =

⎛
⎜⎜⎝

5
18

4
9

5
18

65
18 −

√
5
3 − 56

9

√
5
3 + 65

18

245
18 − 2

√
5
3 − 236

9 2
√

5
3 + 245

18

⎞
⎟⎟⎠ (94c)

M−1
1 =

⎛
⎜⎜⎝

1
60

(
2 − 3

√
15
) √

3
5 − 1

15
1

60

(
62 − 9

√
15
)

− 1
24

1
12

23
24

1
60

(
3
√

15 + 2
)

−
√

3
5 − 1

15
1

60

(
9
√

15 + 62
)
⎞
⎟⎟⎠ (95a)
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M−1
2 =

⎛
⎜⎜⎝

1
60

(
3
√

15 + 2
)

14
15

1
60

(
2 − 3

√
15
)

− 1
24

13
12 − 1

24
1

60

(
2 − 3

√
15
)

14
15

1
60

(
3
√

15 + 2
)
⎞
⎟⎟⎠ (95b)

M−1
3 =

⎛
⎜⎜⎝

1
60

(
9
√

15 + 62
)

−
√

3
5 − 1

15
1

60

(
3
√

15 + 2
)

23
24

1
12 − 1

24
1

60

(
62 − 9

√
15
) √

3
5 − 1

15
1

60

(
2 − 3

√
15
)
⎞
⎟⎟⎠ (95c)
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