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Abstract

The increased availability of observation data from engineering systems in operation poses the question of how to
incorporate this data into finite element models. To this end, we propose a novel statistical construction of the finite
element method that provides the means of synthesising measurement data and finite element models. The Bayesian
statistical framework is adopted to treat all the uncertainties present in the data, the mathematical model and its finite
element discretisation. From the outset, we postulate a statistical generating model which additively decomposes data
into a finite element, a model misspecification and a noise component. Each of the components may be uncertain and is
considered as a random variable with a respective prior probability density. The prior of the finite element component
is given by a conventional stochastic forward problem. The prior probabilities of the model misspecification and
measurement noise, without loss of generality, are assumed to have zero-mean and known covariance structure. Our
proposed statistical model is hierarchical in the sense that each of the three random components may depend on one
or more non-observable random hyperparameters with their own corresponding probability densities. We use Bayes
rule to infer the posterior densities of the three random components and the hyperparameters from their known prior
densities and a data dependent likelihood function. Because of the hierarchical structure of our statistical model, Bayes
rule is applied on three different levels in turn. On level one, we determine the posterior densities of the finite element
component and the true system response using the prior finite element density given by the forward problem and the
data likelihood. In this step, approximating the prior finite element density with a multivariate Gaussian distribution
allows us to obtain a closed-form expression for the posterior. On the next level, we infer the hyperparameter posterior
densities from their respective priors and the marginal likelihood of the first inference problem. These posteriors are
sampled numerically using the Markov chain Monte Carlo (MCMC) method. Finally, on level three we use Bayes
rule to choose the most suitable finite element model in light of the observed data by computing the respective model
posteriors. We demonstrate the application and versatility of statFEM with one and two-dimensional examples.
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1. Introduction

Most engineering systems, such as structures and machines, are designed using deterministic mathematical mod-
els, indeed their finite element discretisations, which depend on material, geometry, loading and other parameters with
significant uncertainties. Traditionally, these uncertainties have been taken into account through codified safety fac-
tors. Although this approach has been perfected over the centuries, it is known, for instance in structural engineering,
that the response of the actual system and the model prediction often bear no resemblance to each other [1, Ch. 9].
More accurate and reliable predictions are essential towards the design of more efficient systems and for making ratio-
nal decisions about their operation and maintenance. To achieve this, the uncertainties in the model parameters must
be taken into account [2, 3]; even so, the predicted uncertainties in the model response can be significant rendering
them practically useless. Fortunately, modern engineering systems are more and more equipped with sensor networks
that continuously collect data for their in-situ monitoring, see e.g. [4, 5]. The available data includes, for example,
strains from fibre-optic Bragg sensor networks or digital image correlation, temperatures from infrared thermography
and accelerations. Incorporating this readily available measurement data into finite element models provides a means
to infer the uncertain true system behaviour.

To this end, we propose a statistical construction of the finite element method, dubbed as statFEM, which allows
one to make predictions about the true system behaviour in light of measurement data. Adopting a Bayesian view-
point, all uncertainties in the data and model parameters are treated as random variables with suitably chosen prior
probability densities, which consolidate any knowledge at hand. Starting from some prior probability densities, Bayes
rule provides a coherent formalism to determine their respective posterior densities while making use of the likeli-
hood of the observations. The selected model determines the probability, or the likelihood, that the observed data was
produced by the model. See, e.g., the books [6–10] for an introduction to Bayesian statistics and data analysis. Fol-
lowing Kennedy and O’Hagan’s seminal work on calibration of computer models [11], we decompose the observed
data y into three random components, namely a finite element component u, a model misspecification component d
and a measurement noise component e, see Figure 1. We refer to this decomposition as the statistical generating
model, or in short the statistical model, and have additional models corresponding to each of the random components,
i.e. u, d and e. The three random variables depend in turn on random parameters with corresponding probability
densities. Following standard statistics terminology, we refer to the unknown random parameters as hyperparameters.
Evidently, the proposed statistical construction has an inherent hierarchical structure, see e.g. [9, Ch. 5]. That is, each
of the random variables u, d and e depend in turn on a set of random hyperparameters.

We obtain the prior probability density for the finite element component u by solving a traditional probabilistic for-
ward problem in the form of a stochastic partial differential equation. The source, or forcing, term and the coefficients
of the differential operator can all be random. Any unknown variables used for parameterising the respective random
fields, e.g., for describing their covariance structure, are treated as hyperparameters. We solve the finite element dis-
cretised forward problem with a classical first-order perturbation method [12]. For the misspecification component d,
we assume a Gaussian process prior, which for the purposes of illustration is assigned a square exponential kernel,
and treat the respective covariance parameters as hyperparameters. The measurement noise e is, as usual, assumed
to be independent and identically distributed. It is possible to determine with Bayes rule the joint posterior density
of all random variables, i.e. u, d and e and their hyperparameters, and to obtain subsequently the posterior densities
of the individual random variables by marginalisation. This leads, however, to a costly very high-dimensional infer-
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Figure 1: Statistical model underlying statFEM. The observation data y is decomposed as y = z + e = ρPu + d + e, where ρ is a random
hyperparameter, P is a suitable projection operator and other variables are all random vectors. Each of the random vectors depend on additional
random hyperparameters which have been omitted in this diagram.
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ence problem for which advanced sampling schemes are being developed, see e.g. [13–16]. We circumvent the need
for costly sampling by using approximate inference, that is, by exploiting the hierarchical structure of the proposed
construction and applying Bayes rule on three different levels in turn. The overall approach is akin to the empirical
Bayes or evidence approximation techniques prevalent in machine learning, see [17, 18], [19, Ch. 3] and [8, Ch. 5].
Ultimately, we infer, or in other words learn, from the data y the posterior densities of u, d and e and their respective
hyperparameters. Moreover, we assess the suitability of different finite element models by computing their Bayes
factors [6, 20]. The posteriors are, depending on the level, either analytically approximated or numerically sampled
with MCMC. We refer to [21] on mathematical foundations of Bayesian inverse problems for the necessary theory in
defining the probability measures required in statFEM.

The seemingly innocuous decomposition of the data y according to Figure 1, as proposed in [11], provides a
versatile framework for statistical inference and has been extensively used in the past. The choice of the models
for each of the components u, d, and e and the numerical techniques for the treatment of the resulting inference
problem leads to a rich set of approaches. In [11] and most subsequent papers, including [22, 23], the component u
representing the simulation model is obtained from a given black-box computer code (simulator). The deterministic
model response u is approximated with a standard Gaussian process emulator, or surrogate model, [24] using multiple
evaluations of the simulator. Obviously, instead of Gaussian process regression any other technique for creating
surrogates can be used [25, 26]. The essential advantage of using a surrogate model as a forward model for u is that
the inferential framework becomes independent from the complexities of the specific problem considered. Calibration
aims to determine the parameters of the deterministic forward model, including its constitutive parameters and forcing
and their spatial distributions. However, in many engineering systems the forward model is not deterministic. For
instance, the loading of a bridge under operation is inherently random. Similarly, the constitutive parameters of a
mechanical part, say a connecting rod in an engine, will indeed be random over its different realisations. The aim of
calibration in such cases is, as proposed in this paper, to determine the hyperparameters characterising the random
loading or the constitutive parameters. The importance of a random misspecification component d in calibration is
meanwhile well-established [27–29].

StatFEM complements the conventional probabilistic finite element method and the Bayesian treatment of inverse
problems. As mentioned, we solve the forward problem via a probabilistic finite element method. Over the years, a
wide range of techniques have been proposed to solve stochastic partial differential equations using finite elements.
They differ in terms of discretisation of the prescribed random inputs, like the forcing or the diffusion coefficient,
and the approximation of the solution in the probability domain. For insightful reviews see [30–35]. In this paper,
we assume that the random forcing term and the coefficients of the differential operator are both Gaussian processes.
When only the forcing is random, the resulting finite element solution is also Gaussian and the solution probability
measure can be readily obtained. However, when the coefficients of the differential operator are random, the solution
is usually not a Gaussian and it becomes more taxing to solve the forward problem. In addition to the spatial domain
the probability domain has to be also discretised or in some way approximated. We choose a perturbation method to
approximate the solution in the probability domain [12], but could use any one of the other well-known techniques,
like Monte-Carlo [14], Neumann-series [36] or polynomial-chaos expansions with their Galerkin and collocation
implementations [37–40]. In contrast to forward problems, inverse problems are considerably more challenging to
formulate and to solve, because the same observation can usually be generated by different sets of model parameters.
Adopting a Bayesian viewpoint and treating the model parameters as random can resolve the ill-posedness of the
inverse problem. See [41–43] for an introduction to Bayesian inversion and [21] for a detailed mathematical analysis.
Bayesian inversion is closely related to the calibration framework proposed by Kennedy and O’Hagan [11]. However,
in Bayesian inversion literature the model misspecification errors are usually not considered. Different from statFEM,
in both Bayesian inversion and [11] the forward model mapping the random parameters to the observations is usually
deterministic. Despite the principal differences between statFEM and Bayesian inversion they share a number of algo-
rithmic similarities in terms of implementation. Therefore, many of the numerical techniques developed for efficiently
solving large-scale inverse problems, like the treatment of non-local covariance operators [44, 45], representation of
random fields [13] or the sampling of posteriors [46], can all be adapted to statFEM.

The outline of this paper is as follows. In Section 2 we review the solution of stochastic partial differential
equations with random coefficients and sources with the finite element method. We then introduce in Section 3 the
proposed statistical construction of the finite element method. After introducing the underlying statistical generating
model we detail the computation of the posterior densities of the finite element solution, the true system response,
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the hyperparameters and the finite element model itself. This is followed in Section 4 by the study of one and
two-dimensional Poisson problems with the proposed approach. Amongst others, we study the convergence of the
computed posterior densities to the true densities used for generating the synthetic observation data with an increasing
number of observations. We also illustrate how statFEM reduces to a conventional Bayesian inverse problem when
the assumed statistical model is simplified.

2. Probabilistic forward model

The forward problem consists of a stochastic partial differential equation with both a random coefficient and
forcing. The coefficient and forcing fields are both assumed to be Gaussian processes. We solve the finite element
discretised forward problem with a classical first-order perturbation method so that its solution is also a Gaussian [12].
However, we can use in statFEM any of the established discretisation techniques which can yield the second-order
statistics, i.e. mean and covariance, of the solution field; see e.g. the reviews [30–33, 35].

2.1. Governing equations

As a representative stochastic partial differential equation we consider on a domain Ω ⊂ Rd with d ∈ {1, 2, 3} and
the boundary ∂Ω the Poisson equation

−∇ · (µ(x)∇u(x)) = f (x) in Ω (1a)
u(x) = 0 on ∂Ω , (1b)

where u(x) ∈ R is the unknown, µ(x) ∈ R+ is a random diffusion coefficient and f (x) ∈ R is a random source term.
To ensure that the diffusion coefficient µ(x) is positive we introduce κ(x) such that µ(x) = exp(κ(x)). In the follow-

ing, this new function κ(x) is referred to as the diffusion coefficient with a slight abuse of terminology. The diffusion
coefficient κ(x) is modelled as a Gaussian process

κ(x) ∼ GP
(
κ(x), cκ(x, x′)

)
(2)

with the mean

E[κ(x)] = κ(x) (3)

and the covariance

cov
(
κ(x), κ(x′)

)
B E

[
(κ(x) − κ(x))

(
κ(x′) − κ(x′)

)]
= cκ(x, x′) . (4)

Although the specific form of the kernel cκ(x, x′) is inconsequential for the presented approach, we assume for the
sake of concreteness a squared exponential kernel of the form

cκ(x, x′) = σ2
κ exp

(
−
‖x − x′‖2

2`2
κ

)
(5)

with the scaling parameter σκ ∈ R+ and lengthscale parameter `κ ∈ R+. However, we stress that this will be a
modelling choice in an actual application based on what is understood about the structure and form of the diffusion
coefficient.

Similarly, the random source term f (x) is modelled as a Gaussian process

f (x) ∼ GP
(

f (x), c f (x, x′)
)

(6)

with the mean

E[ f (x)] = f (x) (7)
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Figure 2: One-dimensional Poisson problem d2u/ dx2 = f (x) with a random source with a mean f (x) = 1 and covariance kernel parame-
ters σ f = 0.1 and ` f = 0.4. The five lines in (a) represent samples drawn from (6) with the corresponding solutions shown in (b). The shaded
areas are the 95% confidence regions obtained from (6) and (9), respectively.

and the covariance

c f (x, x′) = cov
(
f (x), f (x′)

)
= E

[(
f (x) − f (x)

) (
f (x′) − f (x′)

)]
= σ2

f exp

−‖x − x′‖2

2`2
f

 (8)

with the respective scaling and lengthscale parameters σ f ∈ R+ and ` f ∈ R+.
In Figure 2 an illustrative one-dimensional Poisson example, d2u/ dx2 = f (x), with a random source and cor-

responding solution are shown. The diffusion coefficient κ(x) = 1 is chosen as non-random. The source has the
mean f (x) = 1 and the parameters of the exponential covariance kernel are chosen with σ f = 0.1 and ` f = 0.4. The
solution u(x) is given by the push forward measure of the Gaussian process on the forcing, which due to the linearity
of the differential operator is also a Gaussian process,

u(x) ∼ GP
(
u(x), cu(x, x′)

)
= GP

(
g(x, x′) ∗ f (x′), g(x, x′′) ∗ c f (x′′, x′′′) ∗ g(x′′′, x′)

)
, (9)

where g(x, x′) is the Greens function of the Poisson problem and ∗ denotes convolution, see e.g. [21, 47]. Due to the
smoothing property of the convolution operation the lengthscale of the kernel cu(x, x′) is larger than ` f . Furthermore,
the source and the solution are both C∞ smooth owing to the squared exponential kernel used for the source f (x).

2.2. Finite element discretisation
We discretise the weak form of the Poisson equation (1) with a standard finite element approach. Specifically, the

domain Ω is subdivided into a set {ωe} of non-overlapping elements

Ω =

ne⋃
e=1

ωe (10)

of maximum size

h = max
e

diam(ωe) . (11)

The unknown field u(x) is approximated with Lagrange basis functions φi(x) and the respective nodal coefficients ui

of the nu non-Dirichlet boundary mesh nodes by

uh(x) =

nu∑
i=1

φi(x)ui . (12)
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The discretisation of the weak form of the Poisson equation yields the discrete system of equations

A(κ)u = f , (13)

where A(κ) ∈ Rnu×nu is the system matrix, κ ∈ Rne is the vector of diffusion coefficients, u ∈ Rnu is the vector of nodal
coefficients and f ∈ Rnu is the nodal source vector.

The diffusion coefficient vector κ is given by the Gaussian process (2). We assume that the diffusion coefficient is
constant within each element and collect all element barycentre coordinates in the matrix X(c) =

{
x(c)

e

}ne

e=1
. Thus, the

diffusion coefficient vector is given by the multivariate Gaussian density

κ ∼ p(κ) = N
(
κ
(
X(c)

)
, Cκ

(
X(c), X(c)

))
, (14)

where the mean vector κ and the covariance matrix Cκ are obtained by evaluating the mean (3) and covariance ker-
nel (4) at the respective element barycentres. The system matrix A is assembled from the element system matrices
given by

Ae
i j (κe) =

∫
ωe

exp(κe)
∂φi(x)
∂x

·
∂φ j(x)
∂x

dωe , (15)

where κe is the diffusion coefficient of the element with the index e. And, the components of the source vector are
given by

fi =

∫
Ω

f (x)φi(x) dΩ . (16)

As introduced in (6), the source is a Gaussian process with the expectation (7) and covariance (8). This implies for
the components of the source vector, owing to the linearity of expectation (see e.g. [8]) and Fubini’s theorem,

E[ fi] = E
[∫

Ω

f (x)φi(x) dΩ

]
=

∫
Ω

E
[
f (x)

]
φi(x) dΩ =

∫
Ω

f (x)φi(x) dΩ = f i (17a)

cov( fi, f j) = E
[∫

Ω

(
f (x) − f (x)

)
φi(x) dΩ

∫
Ω

(
f (x′) − f (x′)

)
φ j(x′) dΩ(x′)

]
=

∫
Ω

∫
Ω

φi(x)E
[(

f (x) − f (x)
) (

f (x′) − f (x′)
)]
φ j(x′) dΩ(x) dΩ(x′)

=

∫
Ω

∫
Ω

φi(x)c f (x, x′)φ j(x′) dΩ(x) dΩ(x′) . (17b)

The components of the covariance matrix (C f )i j = cov( fi, f j) are obtained by interpolating the covariance kernel with
finite element basis functions, i.e.,

(C f )i j =
∑

k

∑
l

∫
Ω

∫
Ω

φi(x)φk(x)c f (xk, x′l)φl(x′)φ j(x′) dΩ(x) dΩ(x′) . (18)

Hence, the source vector is given by the multivariate Gaussian density

f ∼ p( f ) = N
(

f , C f

)
. (19)

For a globally supported covariance kernel c f (x, x′), such as the used squared exponential kernel, the covariance
matrix C f is dense. It is non-trivial to efficiently compute and assemble its components. To obtain a more easily
computable covariance matrix, notice that in (18) the two integrals over the products of basis functions yield indeed
two mass matrices. Replacing the two mass matrices with their lumped versions we obtain the approximation

(C f )i j ≈

(∫
Ω

φi(x) dΩ

)
c f (xi, x j)

(∫
Ω

φ j(x) dΩ

)
. (20)
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Each of the brackets here corresponds to a source vector with a uniform prescribed source f (x) = 1, c.f. (16). The
covariance kernel c f (xi, x j) is evaluated at the nodes corresponding to basis functions φi(x) and φ j(x). The introduced
approximation makes it possible to assemble and compute the covariance matrix C f with standard finite element data
structures. For a review on similar and other approximation techniques for computing finite element covariance
matrices see [30, 31].

Finally, we can write the probability density for the finite element solution vector u for a given diffusion coefficient
vector κ. Solving the discrete system of equations (13) gives

u = A(κ)−1 f . (21)

The right-hand side represents an affine transformation of the source vector f with the multivariate Gaussian den-
sity (19) such that

u ∼ p(u|κ) = N
(
A(κ)−1 f , A(κ)−1C f A(κ)−T

)
. (22)

The corresponding unconditional density p(u) is obtained by marginalising the joint density p(u, κ) = p(u|κ)p(κ),
which yields

p(u) =

∫
p(u|κ)p(κ) dκ . (23)

It is possible to evaluate this integral numerically using, e.g., MC, MCMC or (sparse) quadrature, however it is
impractical for large scale problems given that κ ∈ Rne is usually a high-dimensional vector. Instead, we use a
perturbation method to compute a first order approximation to the density p(u) [12]. By explicitly denoting the
dependence of the solution u on the random diffusion coefficient κ and source f , we can write the series expansion

u(κ, f ) = u(κ, f ) +

ne∑
e=1

∂u(κ, f )
∂κe

(κe − κe) + . . . = u(0) +

ne∑
e=1

u(1)
e λe + . . . , (24)

where the coefficients u(0), u(1)
e , . . . are obtained by successively differentiating the system equation (13) with respect

to the element diffusion coefficients. The two coefficients relevant for a first order approximation are given by

u(0) = A(κ)−1 f (25a)

u(1)
e = −A(κ)−1 ∂A(κ)

∂κe
u(0) . (25b)

Hence, we obtain for the approximate mean and covariance

u = E
u(0) +

∑
e

u(1)
e λe

 = A(κ)−1 f (26a)

Cu = E
u(0) +

∑
e

u(1)
e λe

 ⊗ u(0) +
∑

e

u(1)
e λe

 − u ⊗ u . (26b)

Note that the expectation is over both κ and f . After lengthy but straightforward algebraic manipulations we obtain

Cu = A(κ)−1C f A(κ)−T +
∑

e

∑
d

(Cκ)ed A(κ)−1 ∂A(κ)
∂κe

A(κ)−1
(
C f + f ⊗ f

)
A(κ)−T ∂A(κ)T

∂κd
A(κ)−T . (27)

Finally, we can approximate the density of the finite element solution (23) with the multivariate Gaussian density

p(u) = N
(
u, Cu

)
. (28)

It is clear that the true density p(u) according to (23) is usually not a Gaussian. The approximation (28) is only
valid when the scaling parameter σκ of the variance is relatively small. However, when the diffusion coefficient κ is
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Figure 3: One-dimensional Poisson problem − d(µ du/ dx) / dx = 1 with a random diffusion coefficient µ(x) = exp(κ(x)) with a
mean κ(x) = ln (0.7 + 0.3 sin(2πx)) and the covariance kernel parameters σκ = 0.1 and `κ = 0.25. The five lines in (a) represent samples drawn
from (2) with the corresponding solutions shown in (b). The shaded areas are the 95% confidence regions obtained from (2) and Monte Carlo
sampling.

deterministic the density p(u) is a Gaussian as can be seen in (22). Furthermore, we can deduce from (27) that there is
a fundamental difference in how the source and diffusivity covariance matrices C f and Cκ contribute to Cu. The source
covariance C f is always multiplied twice with the inverse of the system matrix, which increases the smoothness of the
covariance operator. In contrast, the diffusivity covariance Cκ contributes directly with no such smoothing.

In Figure 3 an illustrative one-dimensional Poisson problem, − d(µ(x) du(x)/ dx) / dx = 1, with a random diffusion
coefficient and corresponding finite element solution are shown. The source f (x) = 1 is chosen as non-random. The
diffusion coefficient µ(x) = exp(κ(x)) has the mean κ(x) = ln (0.7 + 0.3 sin(2πx)) and the parameters of the exponential
covariance kernel are chosen with σκ = 0.1 and `κ = 0.25. The one-dimensional problem is discretised with 128 linear
finite elements. To assess the accuracy of the approximate mean u and covariance Cu according to (26), we compare
both with the empirical mean uMC and covariance CMC

u obtained by Monte Carlo sampling (23). As depicted in
Figure 4 the first-order perturbation and the Monte Carlo results are in good agreement for relatively large σκ.
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Figure 4: Relative perturbation error of the approximate mean u and covariance Cu obtained from (26) for the one-dimensional Poisson prob-
lem with a random diffusion coefficient shown in Figure 3. Only the covariance scaling parameter σk is varied. The empirical mean uMC and
covariance CMC

u are obtained by Monte Carlo sampling (23) and can be considered as exact. The errors are measured in the Frobenius norm.
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3. Bayesian inference

In this section, we first introduce following [11, 22, 23] the statistical generating model for the true process
underlying the observed data. Each of the random variables in this model depends on parameters, like the covariance
lengthscale and scaling parameters in the forward model, which may be chosen to be known or unknown with only
their prior densities given. The unknown random parameters are referred to as the hyperparameters. We sequentially
apply Bayes rule on three different levels to infer, or learn, from the observed data all the random variables and
hyperparameters. On level one, in Section 3.2, we derive the posterior finite element and true system response densities
with the finite element density derived in Section 2.2 serving as a prior. On level two, in Section 3.3, the posterior
densities and point estimates of the hyperparameters are obtained. Finally, on level three, in Section 3.4, we rank
different finite element models, e.g., with different mesh sizes or modelling assumptions, based on their ability to
explain the observed data.

3.1. Statistical generating model for the observations

In statFEM the observed data vector y ∈ Rny is, as graphically illustrated in Figure 5, additively composed in three
components

y = z + e = ρPu + d + e . (29)

That is, the observed data vector is equal to the unknown true system response z ∈ Rny and a random observation
error, i.e. noise, e ∈ Rny . In turn, the true system response is characterised with the parameter ρ ∈ R+ scaled projected
finite element solution Pu and the mismatch error, or model inadequacy, d ∈ Rny . The matrix P ∈ Rny×nu projects the
finite element solution to the observed data space and consists of the finite element basis functions φi(x) evaluated at
the ny observation points. Of course, the observations in y can correspond to almost any physical quantity of interest,
like the flux ∇uh(x), which can be obtained from the solution uh(x) by applying a linear operator. In such cases the
projection matrix P is the discretisation of the linear operator in question.

Although the mismatch error d is not known, we approximate its distribution using a Gaussian Process

d ∼ p(d|σd , `d) = N(0, Cd) , (30)

and choose as a kernel the squared exponential kernel

cd(x, x′) = σ2
d exp

−‖x − x′‖2

2`2
d

 (31)

with the parameters σd ∈ R+ and `d ∈ R+. The covariance matrix Cd ∈ Rny ×Rny is obtained by evaluating the kernel
at the ny observation locations. It is straightforward to consider other covariance kernels or a linear combination of
covariance kernels, see e.g. [24, Ch. 4].

Furthermore, as usual, we assume that the observation error e has the multivariate Gaussian density

e ∼ p(e) = N(0, Ce) (32)

with the diagonal covariance matrix Ce = σ2
e I.

All the variables in the decomposition (29) are Gaussians so that the observed data vector y has the conditional
density

p(y|u) = N(ρPu, Cd + Ce) . (33)

This density is the likelihood of observing the data y for a given finite element solution u. The likelihood depends in
addition to the scaling parameter ρ on a number of parameters, including the introduced kernel scaling and lengthscale
parameters, not all of which are known from the outset, see Figure 5. The linear summation Cd + Ce in the likelihood
indicates an identifiability issue, as discussed in detail in [11, 22]. We enforce weak identifiability by employing prior
distributions on the hyperparameters defining each Cd and Ce, see also Section 3.3.
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Figure 5: Graphical model of statFEM. The coloured circles represent the (possibly unknown) parameters and the empty circles denote the random
variables that are either observed or derived. The parameters of the forward problem introduced in Section 2 are shown in blue and the parameters
of the statistical generating model (29) are shown in red. Usually, some or all of the parameters in the shaded circles are known and need not
be inferred. The remaining unknown random hyperparameters are inferred from the observations y and the finite element solution u using the
statistical generating model.

In passing, we note that in a non-Bayesian context the unknown hyperparameters are determined by maximising
the likelihood (33) and the obtained values are referred to as MLE estimates. Clearly, the likelihood

p(y|u) ∝ exp
(
−

1
2

(ρPu − y) (Cd + Ce)−1 (ρPu − y)
)

(34)

has its maximum at y = ρPu. Hence, MLE prefers models which match the observation vector y as closely as possible
irrespective of the true system response and measurement errors. As widely discussed in the literature, this gives rise
to overly complex models prone to overfitting, see [6, 8, 19, 43, 46].

3.2. Posterior finite element and true system response densities
We use Bayes rule to update the finite element density of the forward problem (28) with the available observed

data in line with the postulated statistical model (29). All the hyperparameters are assumed to be known or, in other
words, all the mentioned densities are conditioned on the hyperparameters.

3.2.1. Single observation vector
To begin with, we consider only one single observation vector y. The posterior finite element density p(u|y)

conditioned on observed data y is given by

p(u|y) =
p(y|u)p(u)

p(y)
(35)

with the likelihood p(y|u) in (33), the prior p(u) in (28) and the marginal likelihood, or the evidence,

p(y) =

∫
p(y|u)p(u) du , (36)
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which ensures that the posterior p(u|y) is a probability distribution integrating to one. The likelihood p(y|u) is a
function of u and measures the fit of the statistical generating model (29) to the given observation y. On the other hand,
the prior p(u) reflects our knowledge of the system before any observations are made. The marginal likelihood p(y)
is the probability of observing the known (fixed) observation y averaged over all possible finite element solutions u.
Marginal likelihood plays a key role in Bayesian statistics as will be detailed in the following sections. As shown in
the Appendix A.2, the posterior density is a multivariate Gaussian and is given by

p(u|y) = N(u|y, Cu|y) , (37a)

where

u|y = Cu|y

(
ρPT (Cd + Ce)−1 y + C−1

u u
)

and Cu|y =
(
ρ2 PT(Cd + Ce)−1 P + C−1

u

)−1
. (37b)

Likewise, the marginal likelihood is a Gaussian and can be obtained by analytically evaluating (36), or more easily by
revisiting the decomposition (29). All the variables in (29) are multivariate Gaussians so that the marginal likelihood
simply reads

p(y) = N
(
ρPu, Cd + Ce + ρ2 PCu PT

)
. (38)

In (37), we can see when Cd + Ce is small in comparison to Cu (in some norm) the mean u|y tends to y/ρ and
the covariance Cu|y to (Cd + Ce)/ρ2. However, when Cd + Ce is relatively large the mean u|y tends to u and the
covariance Cu|y to Cu. These bounds are reasonable reminding ourselves that the density of the unobserved true
system response z = ρPu + d is given by

p(z|y) = N
(
ρPu|y, ρ2 PCu|y PT + Cd

)
. (39)

With the mentioned bounds, for relatively small Cd + Ce the mean of z tends to y and its covariance to 2Cd + Ce. In
contrast, for large Cd + Ce the mean tends to ρu and the covariance to Cu + Cd.

In terms of implementation, usually the number of observations points is significantly smaller than the unknowns
in the finite element method, i.e. ny � nu. Hence, the required inversion of large dense matrices of size nu × nu in (37)
can be avoided by using the Woodbury matrix identity, see Appendix A.2.

3.2.2. Multiple observation vectors
In engineering applications usually the same sensors are used to repeatedly sample a set of observation vec-

tors {yi}
no
i=1. For notational convenience we collect the set of observation vectors in a matrix Y ∈ Rny×no . The posterior

finite element density p(u|Y) conditioned on all the observations Y is once again given by

p(u|Y) =
p(Y|u)p(u)

p(Y)
. (40)

The physically sensible assumption of statistical independence between the no observations yields the likelihood

p(Y|u) = p(y1|u)p(y2|u) · · · p(yno |u) =

no∏
i=1

p(yi|u) (41)

and the marginal likelihood, or the evidence,

p(Y) =

∫ no∏
i=1

p(yi|u)p(u) du . (42)

Following the same steps as in the preceding Section 3.2.1 we obtain the posterior density

p(u|Y) = N(u|Y , Cu|Y ) , (43a)
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where

u|Y = Cu|Y

ρPT (Cd + Ce)−1
no∑
i=1

yi + C−1
u u

 and Cu|Y =
(
ρ2no PT(Cd + Ce)−1 P + C−1

u

)−1
. (43b)

Ostensibly, with an increase in the number of observation vectors no the covariance Cu|Y tends to zero and, in turn,
the mean u|Y tends to the empirical mean of the observations

∑
yi/no. For later reference, we note that the marginal

likelihood is because of the statistical independence assumption between the observations given by

p(Y) =

no∏
i=1

p(yi) , (44)

where p(yi) is the marginal likelihood (36) of each of the readings.

3.3. Hyperparameter learning

The marginal likelihood p(Y) given in (44), or p(y) in (36), is critical for determining the hyperparameters of the
statistical model (29). To begin with, we collect the parameters introduced so far in the vector

w B
(
ρ σκ `κ σr `r κ1 κ2 . . . κne σd `d σe

)T
∈ Rnw . (45)

Some of these parameters may be known or unknown with only their prior densities given. To sidestep the issue of
non-identifiability of the parameters it is important that the priors are informative. In the following, w includes only
the unknown hyperparameters so that its dimension varies depending on the considered problem. The hyperparameters
are estimated from the observed data by applying the Bayes formula one more time. To this end, note that the marginal
likelihood p(Y) in (44) is indeed conditioned on the hyperparameter vector w so that we write more succinctly p(Y|w).
Consequently, the Bayes formula for obtaining the posterior density of the parameter vector reads

p(w|Y) =
p(Y|w)p(w)∫

p(Y|w)p(w) dw
. (46)

As usual, the prior p(w) encodes any information that we might have prior to making the observation Y. In choos-
ing p(w) it is justified to assume that all the hyperparameters are statistically independent such that

p(w) =

nw∏
i=1

p(wi) . (47)

Moreover, the normalisation constant in the denominator of (46) can be omitted when only a point-estimate is needed
or when the posterior is sampled with MCMC. In that case it is sufficient to consider just

p(w|Y) ∝ p(Y|w)p(w) . (48)

It bears emphasis that this posterior is in contrast to the posterior (35) analytically intractable. The optimal hyperpa-
rameter vector w∗ referred to as the maximum posteriori (MAP) estimate is given by

w∗ = arg max
w

p(Y|w)p(w) . (49)

This, often non-convex, optimisation problem can be numerically solved with conventional algorithms, see e.g. [48].
Alternatively, as in this paper, we can use the expectation of the parameter vector

w = E[w] =

∫
wp(w|Y) dw , (50)
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as a point estimate. The expectation is obtained by sampling p(w|Y) using MCMC, see Appendix A.3, and then
computing the empirical mean

w ≈
1
N

∑
i

w(i) with w(i) ∼ p(w|Y) . (51)

The empirical variance of the samples w(i) represents the uncertainty in the obtained point estimate. In contrast to sam-
pling, the optimisation problem (49) does not yield such a variance estimate. Evidently, the two estimates (49) and (51)
will have different values and either one or both of them might be sufficient to characterise p(w|Y). When p(w|Y) is
multimodal, usually, both are inadequate. In such cases it is better to take the entire distribution p(w|Y) and to
marginalise out w whenever a distribution depends, i.e., is conditioned, on w.

3.4. Model comparison and hypothesis testing
The marginal likelihood p(Y) in (44), or p(y) in (36), plays also a key role in Bayesian model comparison, see

e.g. [6, 20]. Without loss of generality, we consider in the following finite element models which differ only in terms of
mesh resolution, specifically, maximum element size h. However, the same approach can be applied to finite element
models that have, for instance, differing domain geometries or boundary conditions or are based on fundamentally
different mathematical models.

We aim to compare the fidelity of two finite element models, i.e. the two meshesM1 andM2, in explaining the
observed data Y. As previously mentioned, the marginal likelihood p(Y) is obtained by averaging the likelihood p(Y|u)
over all possible finite element solutions u. The marginal likelihood is conditioned on the specific mesh used for
computing u so that we denote it either with p(Y|M1) or p(Y|M2). Because the true system response z is unknown it
is from the outset unclear which of the two models is sufficient to explain the observed data Y. Obviously, the model
with the finer mesh yields the more accurate finite element solution. However, in light of inherent observation errors
and model inadequacy the coarser mesh may indeed be sufficient to explain the observed data. To quantify the fidelity
of the two models, we compute their posterior densities using Bayes formula, i.e.,

p(M1|Y) =
p(Y|M1)p(M1)

p(y|M1)p(M1) + p(Y|M2)p(M2)
, (52a)

p(M2|Y) =
p(Y|M2)p(M2)

p(y|M1)p(M1) + p(Y|M2)p(M2)
, (52b)

where the two priors p(M1) and p(M2) encode our subjective preference for either one of the models or any prior
information available. If we do not have any prior information, we can choose them with p(M1) ∝ 1 and p(M2) ∝ 1.
Furthermore, for model comparison rather than the absolute values of the two posteriors their ratio, referred to as the
Bayes factor,

p(M1|Y)
p(M2|Y)

=
p(Y|M1)p(M1)
p(Y|M2)p(M2)

, (53)

is more meaningful. A ratio larger than one indicates a preference forM1 and a value smaller a preference forM2 [20].

3.5. Predictive observation density
We can use the posterior finite element density derived in Section 3.2 and the likelihood according to our statistical

model to compute the predictive observation density at locations where there are no observations. The unknown
predictive distribution at the nỹ non-observed locations of interest are collected in a vector ỹ ∈ Rnỹ . First, we consider
the conditional joint distribution

p(ỹ, u|Y) = p(ỹ|u, Y)p( u|Y) = p(ỹ|u)p( u|Y) , (54)

where we used the statistical independence of the random vector ỹ and the observation matrix Y. Then, marginalising
out the finite element solution we obtain for the predictive observation density

p(ỹ|Y) =

∫
p(ỹ|u)p( u|Y) du . (55)
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The likelihood is given in (33) and the posterior finite element density in (43), or (37) in case of a single reading.
Denoting the matrices corresponding to the nỹ non-observed locations with P̃ ∈ Rnỹ×nu , C̃d ∈ Rnỹ×nỹ and C̃e ∈ Rnỹ×nỹ ,
the likelihood reads

p(ỹ|u) = N
(
ρP̃u, C̃d + C̃e

)
. (56)

In (55), both terms in the integrand are Gaussians so that the integral can be analytically evaluated, c.f. Appendix A.2
and the references therein, yielding

p(ỹ|Y) = N
(
ρP̃u|Y , C̃d + C̃e + ρ2 P̃Cu|Y P̃T

)
. (57)

The mean is the with ρ scaled mean of the posterior finite element density and the covariance is the sum of all
contributions to the overall uncertainty in prediction.

4. Examples

In this section, we apply statFEM to one- and two-dimensional Poisson problems. All examples are discretised
with a standard finite element approach using linear Lagrange basis functions. After establishing the convergence
of the probabilistic forward problem we study the convergence of the posterior densities with an increasing number
of observation points ny and readings no. In addition, we illustrate how statFEM reduces to conventional Bayesian
inversion when the statistical model (29) is simplified to y = u + e and the mapping of the model parameters to the
finite element solution becomes deterministic. Usually, the finite element covariance matrix Cu given by (26) becomes
ill-conditioned when the covariance lengthscale for the source ` f or for the diffusion coefficient `κ is larger than the
characteristic element size h. Therefore, in all the examples, we use instead of Cu the stabilised covariance matrix
Cu + 0.001(σ2

f + σ2
κ)I.

4.1. One-dimensional problem
We seek the solution of the one-dimensional Poisson-Dirichlet problem

−
d

dx

(
µ(x)

du
dx

)
= f (x) in Ω = (0, 1) (58a)

u(x) = 0 on x = 0 and x = 1 , (58b)

where either the diffusion coefficient µ(x) or the source f (x) is random. As mentioned, to ensure that the diffusion
coefficient µ(x) is positive we consider the auxiliary variable κ(x) = ln (µ(x)). That is, in MCMC sampling κ(x) ∈ R is
the unknown variable and the positive diffusion coefficient is µ(x) = exp(κ(x)), see Appendix A.3.

4.1.1. Convergence of the forward finite element density for random source
To establish the convergence of the discretised probabilistic forward problem, we consider the Poisson-Dirichlet

problem (58) with a deterministic diffusion coefficient µ(x) = 1 and a random source with a mean f (x) = 1, covariance
scaling parameter σ f = 0.2 and a lengthscale parameter ` f ∈ {0.25, 0.5, 1.0}. The exact solution u(x) is a Gaussian
process (9) with a mean u(x) and covariance cu(x, x′). The required Greens function g(x, x′) can be easily analytically
obtained.

According to (22) the density of the finite element solution is a multivariate Gaussian p(u) = N(u, Cu) with
a mean u = A−1 f and covariance Cu = A−1C f A−T. The mean is identical to the solution of a Poisson-Dirichlet
problem with a deterministic source and as such its convergence characteristics are well studied, see e.g. [49].
Therefore, we focus here on the convergence of the covariance. The covariance of the finite element approxima-
tion uh(x) =

∑
i φi(x)ui = φ(x)Tu is given by

cuh (x, x′) = cov(uh(x), uh(x′)) = E


∑

i

φi(x) (ui − ui)


∑

j

φ j(x′)(u j − u j)




=
∑

i

∑
j

φi(x)φ j(x′)E
[
(ui − ui)( u j − u j)

]
= φ(x)TCuφ(x′) .

(59)
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Figure 6: One-dimensional problem. Convergence of the finite element variance cuh (x, x) of the forward problem. Source covariance matrix C f
either exact (18) or approximate (20).

In Figure 6a the L2 norm of the approximation error of the variance ‖cuh (x, x) − cu(x, x)‖ as a function of the element
size h is shown. The covariance C f of the source is computed either according to (18) or its approximation (20)
and using 10 quadrature points per element. In both cases, the error converges with a rate of around two irre-
spective of the lengthscale parameter ` f . However, the approximation (20) leads to a smaller error than the exact
expression (18), especially for smaller ` f . Figure 6b depicts the variance cu(x, x) and its finite element approxima-
tion cuh (x, x) for ` f = 0.5 on successively finer meshes. As expected, the finite element approximation converges to
the exact solution when the mesh is refined.

4.1.2. Posterior finite element density and system response for random source
We assume that the true system response is given by the Gaussian process

z(x) ∼ GP
(
z(x), g(x, x′′) ∗ cz(x′′, x′′′) ∗ g(x′′′, x′)

)
(60)

with a mean

z(x) =
1
5

sin(πx) +
1

50
sin(7πx) (61)

and a squared exponential covariance kernel

cz(x, x′) = 0.0225 exp
(
−2(x − x′)2

)
. (62)

Of course, this true system response z(x) is in practice not known. Irrespective of z(x) we choose a finite element
model with a deterministic diffusion coefficient µ(x) = 1 and a random source with a mean f (x) = π2/5 and squared-
exponential covariance parameters σ f = 0.3 and ` f = 0.25. The uniform finite element discretisation consists of 32
elements. The system response z(x) and the finite element solution uh(x), i.e. their mean and 95% confidence regions,
are depicted in Figure 7. The finite element solution is able to roughly capture the overall true system response but
not its details.

In practice, the true response is not known and we can only observe y = z + e at the ny observation points.
We consider the ny ∈ {4, 11, 33} observation points shown in Figure 8. We sample at each of the ny observation
points no ∈ {1, 10, 100, 1000} repeated readings. Hence, we sample a synthetic observation matrix Y ∈ Rny×no from
the Gaussian process

y(x) ∼ GP
(
z(x), g(x, x′′) ∗ cz(x′′, x′′′) ∗ g(x′′′, x′) + 2.5 · 10−5δxx′

)
, (63)
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Figure 7: One-dimensional problem. Finite element solution uh(x) and the true system response z(x). The solid lines represent the respective means
and the shaded areas the 95% confidence regions.

Figure 8: One-dimensional problem. Location of the ny ∈ {4, 11, 33} observations points of the data vector y.

where δxx′ is the Kronecker delta and σ2
e = 2.5 · 10−5 is the observation noise. See Appendix A.1 for sampling from

a Gaussian process.
Before computing the posterior finite element density p(u|Y), we first determine the (unknown) hyperparameters

of the statistical generating model (29). In this example, amongst the parameters summarised in the graphical model in
Figure 5, only the scaling parameter ρ and the mismatch covariance parameters σd and `d are assumed to be unknown.
We collect these hyperparameters in the vector w = (ρ, σd, `d)T. The posterior density of the hyperparameters is given
by p(w|Y) ∝ p(Y|w)p(w), see (48). To make the inference problem more challenging we assume a non-informative
prior p(w) ∝ 1 so that the posterior is proportional to the likelihood, i.e. p(w|Y) ∝ p(Y|w). We sample p(w|Y) using
a standard MCMC algorithm while enforcing the positivity of the hyperparameters by sampling on the log scale,
see Appendix A.3. For each combination of ny and no, we run 20000 iterations with an average acceptance ratio
of 0.287. In Figure 9 the obtained normalised histograms for p(ρ|Y), p(σd |Y) and p(`d |Y) for ny = 11 are depicted.
We can observe that the standard deviations become significantly smaller with increasing no. In Tables 1, 2 and 3
the empirical mean and standard deviations of these three plots and other ny and no combinations are given. When
either ny, no or both are increased, the standard deviation becomes smaller. Depending on the considered application
it may be easier to increase either ny or no.

With the density of the hyperparameters p(w|Y) at hand, it is possible to evaluate the posterior density of the
finite element solution p(u|Y) given by (43). As discussed in Section 3.3, we use the empirical mean w = E[w] of
the hyperparameters w ∼ p(w|Y) as an point estimate in evaluating the posterior density p(u|Y). The obtained pos-
terior densities for different combinations of ny and no are depicted in Figure 10. Each observation sampled from
the Gaussian process (63) is depicted with a dot. It is remarkable that already a single set of readings can achieve
a significant improvement of the finite element mean. In all cases the 95% confidence regions become smaller with
increasing number of readings no. When both ny and no are increased the posterior mean u|Y converges to the true
process mean z(x) and the covariance Cu|Y converges to zero. In the corresponding Figure 11 the obtained posterior
densities p(z|Y) for the inferred true system response according to (39) are shown. As expected with increasing ny

and no the inferred density p(z|Y) converges to the, in this example known, true density given by the Gaussian pro-
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Figure 9: One-dimensional problem with random source. Posteriors of the parameters ρ, σd and `d for ny = 11 and no ∈ {1, 10, 100, 1000}
sampled with MCMC.

no = 1 no = 10 no = 100 no = 1000

ny = 4 0.80118 ± 0.16823 0.78730 ± 0.03518 0.79015 ± 0.01208 0.77836 ± 0.00380
ny = 11 0.85740 ± 0.11607 0.78549 ± 0.03349 0.76662 ± 0.00961 0.77024 ± 0.00312
ny = 33 0.76473 ± 0.11476 0.79153 ± 0.03072 0.77200 ± 0.00980 0.77135 ± 0.00311

Table 1: One-dimensional problem with random source. Empirical mean and standard deviation of p(ρ|Y).

no = 1 no = 10 no = 100 no = 1000

ny = 4 0.04610 ± 0.02150 0.02292 ± 0.00328 0.02310 ± 0.00128 0.02340 ± 0.00046
ny = 11 0.01823 ± 0.00471 0.01734 ± 0.00164 0.01784 ± 0.00051 0.01782 ± 0.00017
ny = 33 0.02976 ± 0.01463 0.01969 ± 0.00186 0.01860 ± 0.00053 0.01874 ± 0.00018

Table 2: One-dimensional problem with random source. Empirical mean and standard deviation of p(σd |Y).

no = 1 no = 10 no = 100 no = 1000

ny = 4 0.23291 ± 0.06648 0.08071 ± 0.03899 0.17373 ± 0.01346 0.17703 ± 0.00527
ny = 11 0.04447 ± 0.01359 0.05925 ± 0.00696 0.06505 ± 0.00215 0.06610 ± 0.00075
ny = 33 0.08967 ± 0.01828 0.07577 ± 0.00496 0.07309 ± 0.00164 0.07436 ± 0.00052

Table 3: One-dimensional problem with random source. Empirical mean and standard deviation of p(`d |Y).

cess (60). Only very few ny and no yield a very good approximation to the true process mean z(x). While the overall
shape of the inferred and the true process confidence regions are in good agreement there are some differences close
to the boundaries. These are related to the assumed covariance structure for the model mismatch vector d. The chosen
squared exponential kernel is unable to provide a better approximation to the covariance of the true process.

4.1.3. Posterior finite element density and system response for random diffusivity
We consider the case when the diffusion coefficient is random and the source is deterministic. We aim to compute

the posterior finite element and true system densities p(u|Y) and p(z|Y) for observation matrices Y sampled from the
Gaussian process (63). The source is chosen to be f (x) = π2/5 and the diffusion coefficient is given by the Gaussian
process

κ(x) ∼ GP
(
1.0, 0.0225 exp

(
−8(x − x′)2

))
. (64)
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ny = 4, no = 1 ny = 4, no = 10 ny = 4, no = 100 ny = 4, no = 1000

ny = 11, no = 1 ny = 11, no = 10 ny = 11, no = 100 ny = 11, no = 1000

ny = 33, no = 1 ny = 33, no = 10 ny = 33, no = 100 ny = 33, no = 1000

Figure 10: One-dimensional problem with random source. Finite element density p(u|Y) conditioned on observation data (black dots). The blue
lines represent the mean u and the red lines the conditioned mean u|Y . The shaded areas denote the corresponding 95% confidence regions. In each
row the number of sensors ny and each column the number of readings no is constant.

ny = 4, no = 1 ny = 4, no = 10 ny = 4, no = 100 ny = 4, no = 1000

ny = 11, no = 1 ny = 11, no = 10 ny = 11, no = 100 ny = 11, no = 1000

ny = 33, no = 1 ny = 33, no = 10 ny = 33, no = 100 ny = 33, no = 1000

Figure 11: One-dimensional problem with random source. Inferred true system density p(z|Y) conditioned on observation data (black dots). The
blue lines represent the mean u and the black lines the conditioned mean z|Y . The shaded areas denote the corresponding 95% confidence regions.
In each row the number of sensors ny and each column the number of readings no is constant.
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Figure 12: One-dimensional problem with random diffusivity. The diffusion coefficient is a Gaussian process with a mean κ(x) = 1 and covari-
ance kernel parameters σκ = 0.15 and `κ = 0.25. The five lines in (a) represent samples drawn from the Gaussian process (64) conditioned on
κ(11/64) = κ(23/64) = 1.0. The corresponding lines in (b) show the solution. The shaded areas denote the corresponding 95% confidence regions.

The diffusion coefficient within each element is assumed to be constant. Hence, this Gaussian process is discre-
tised by sampling the diffusion coefficient κ ∈ Rne at the element centres X(c) to yield the multivariate Gaussian
density p(κ) = N(κ, Cκ). When the diffusion coefficient in some of the finite elements is known it can be taken into
account by conditioning the density p(κ) on those known values, see Appendix A.1. In this example, we assume that
the diffusion coefficient κ(x = 11/64) = 1.0 and κ(x = 23/64) = 1.0 are known. In Figure 12 five samples of the so
conditioned diffusion coefficient and the 95% confidence region are shown. The corresponding finite element solutions
are obtained by solving the forward problem with the given diffusion coefficient distribution. Evidently, the mapping
between the diffusion coefficient κ and the finite element solution u is nonlinear. As discussed in Section 2.2, we
approximate this mapping with a first order perturbation method yielding the approximate density p(u) = N(u, Cu),
see (28).

As in Section 4.1.2, we first determine the unknown hyperparameters of the statistical generating model before
computing the posterior densities p(u|Y) and p(u|Z). The unknowns in this example are again the scaling parameter ρ
and the mismatch covariance parameters σd and `d, which are collected in the vector w = (ρ, σd, `d)T. We sample
the posterior p(w|Y) ∝ p(Y,w)p(w) using standard MCMC and a non-informative prior p(w) ∝ 1. We consider
no ∈ {1, 10, 100, 1000} repeated readings sampled from (63) at the ny ∈ {4, 33} locations shown in Figure 8.

We evaluate next the posterior finite element density p(u|Y). In Figure 13 the posterior and the prior finite element
densities are compared for different ny and no combinations. The prior mean and the 95% confidence region are
slightly asymmetric due to the asymmetry of the diffusion coefficient, see Figure 12a. When ny and no are low the
posterior mean u|Y and the 95% confidence regions are asymmetric as well. However, with increasing ny and no the
posterior mean converges to the symmetric true process mean z(x) and the posterior covariance converges to zero. The
inferred true system density p(z|Y) is shown in Figure 14. It can be observed that for ny = 33 observation locations
and increasing number of readings no that both the mean u|z and the covariance Cz|Y of the inferred posterior show
good agreement with the known true system density. These results assert the success of statFEM in inferring the true
system density given a reasonable amount of observation data.

4.1.4. Posterior diffusion coefficient density
We contrast now statFEM to conventional Bayesian treatment of inverse problems. In statFEM our primary aim

is to infer the posterior finite element and true system densities p(u|Y) and p(z|Y). While in inverse problems the aim
is to infer the posterior densities of certain model parameters, like the posterior diffusion coefficient density p(κ(a)|Y).
The vector κ(a) represents the coefficients, or the parameters, used for discretising the diffusion coefficient. Commonly
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ny = 4, no = 1 ny = 4, no = 10 ny = 4, no = 100 ny = 4, no = 1000

ny = 33, no = 1 ny = 33, no = 10 ny = 33, no = 100 ny = 33, no = 1000

Figure 13: One-dimensional problem with random diffusivity. Finite element density p(u|Y) conditioned on observation data (black dots). The
blue lines represent the mean u and the red lines the conditioned mean u|Y . The shaded areas denote the corresponding 95% confidence regions. In
each row the number of sensors ny and each column the number of readings no is constant.

ny = 4, no = 1 ny = 4, no = 10 ny = 4, no = 100 ny = 4, no = 1000

ny = 33, no = 1 ny = 33, no = 10 ny = 33, no = 100 ny = 33, no = 1000

Figure 14: One-dimensional problem with random diffusivity. Inferred true system density p(z|Y) conditioned on observation data (black dots).
The blue lines represent the mean u and the black lines the conditioned mean z|Y . The shaded areas denote the corresponding 95% confidence
regions. In each row the number of sensors ny and each column the number of readings no is constant.

used approaches for discretising the diffusion coefficient can be expressed in the form

κ(x) =
∑

i

ψi(x)κ(a)
i = ψ(x)Tκ(a) , (65)

where ψ(x) is a set of basis functions and κ(a) are their coefficients. Usually, the ψ(x) are chosen as either the Lagrange,
B-spline, Karhunen-Loeve or Gaussian process basis functions, see [13, 44, 46].

In this example, we discretise the diffusion coefficient using Gaussian process basis functions. Specifically, κ(a)

are the diffusion coefficient values at the anchor points with the coordinates x(a) = (0, 0.25, 0.5, 0.75, 1)T. We obtain
the basis functions ψ(a) by conditioning a Gaussian process on the anchor point coefficients κ(a), see (A.5) in Appendix
A.1. The chosen Gaussian process has a zero mean and a squared exponential kernel with σκ(a) = 1 and `κ(a) = 0.32.
The obtained basis functions are infinitely smooth owing to the chosen squared exponential kernel and their shape is
controlled by `κ(a) .

The vector of the element centre diffusion coefficients κ(X(c)) required for finite element analysis is obtained by
evaluating (65). When the source f is deterministic, as is usually the case in inverse problems, the finite element
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density (22) conditioned on the anchor point coefficients κ(a) is given by

p(u|κ(a)) = δ
(
u − A

(
κ(a)

)−1
f
)
, (66)

where δ(·) denotes a Dirac measure. That is, the forward problem in conventional inverse problems is deterministic.
On the contrary, in statFEM the forward problem has always a well defined distribution as given by (28). The marginal
likelihood corresponding to (66) is according to (36) given by

p(y|κ(a), . . . ) =

∫
p(y|u, . . . )p(u|κ(a)) du = N

(
ρPA

(
κ(a)

)−1
f , Cd + Ce

)
, (67)

where we made in contrast to (38) the conditioning of the marginal likelihood on the anchor point coefficients and
other hyperparameters, represented by dots, explicit.

In this example we choose a deterministic source f (x) = 1 and consider ny = 33 observation points located at each
of the nodes of the uniform finite element mesh with ne = 32 elements and no ∈ {1, 5, 25, 50} repeated readings. We
sample the synthetic observation matrix Y ∈ Rny×no from the Gaussian

p(y|κ(a), . . . ) = N

(
PA

(
κ(a)

z

)−1
f , 0.012I

)
, (68)

where κ(a)
z = {ln 0.7, ln 1, ln 0.7, ln 0.4, ln 0.7} are the true coefficients at the respective anchor points x(a). In the

underlying statistical generating model (29) the hyperparameters have been chosen with ρ = 1, σd = 0 and σe = 0.01.
In addition, ρ and σd are chosen to be deterministic, i.e. their priors and posteriors are fixed to the given values,
and σe is a random variable. Under these conditions the statistical generating model reduces to y = u + e as is usually
assumed in inverse problems.

In hyperparameter learning we consider w = (κ(a)T
, σe)T as the unknown parameters to be inferred from the obser-

vation matrix Y sampled from (68). According to (48) the hyperparameter posterior is given by p(w|Y) ∝ p(Y|w)p(w).
We choose as priors the Gaussian densities

p(κ(a)) = N
(
(ln 0.8, ln 1.1, ln 0.8, ln 0.5, ln 0.8)T, 0.0025 I

)
, p(σe) = N(0.0075, 4 · 10−6 ) . (69)

Notice that the mean of the priors are different from the true generating process parameters used in (68) for sampling
the synthetic observations. We sample the posterior p(w|Y) with MCMC using 50000 iterations with an acceptance
ratio of around 0.3. Each no requires one MCMC run so that in total four runs are performed. The inferred densi-
ties p(w|Y) are shown in Figure 15. The red vertical lines indicate the mean of the priors and the black lines the mean
of the true generating process. Even with only one set of readings, no = 1, the mean of the posteriors are visually very
different from the mean of the priors. When no becomes larger the mean of the posteriors converge indeed towards the
true generating process parameter values and the standard deviation of the posteriors become smaller. In Figure 16
the mean of the true diffusion coefficient µz(x) and the inferred diffusion coefficient µ(x) over the domain are shown.
The anchor points and their coefficients are denoted by black dots. As visually apparent with increasing number of
readings the inferred diffusion coefficient converges towards the true diffusion coefficient.

4.1.5. Finite element mesh selection
We consider Bayesian model comparison for selecting a finite element mesh which can best explain the observed

data. That is, for a given observation matrix Y(i) we are looking for the finite element mesh M j with the highest
posterior probability p(M j|Y(i)). In this example, we examine four different uniform finite element meshes {M j}

4
j=1

with the respective finite element sizes h1 = 1/4, h2 = 1/8, h3 = 1/16 and h4 = 1/32. Furthermore, we choose a
deterministic diffusion coefficient with µ(x) = 1 and a random source with the mean

f (x) =
π2

5
sin(πx) +

49π2

50
sin(7πx) (70)

and the covariance parameters σ f = 0.2 and ` f = 0.25.
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Figure 15: One-dimensional conventional Bayesian inverse problem. Posteriors of the parameters w = (κ(a)T
, σe)T for no ∈ {1, 5, 25, 50} obtained

with MCMC. The red vertical lines indicate the mean of the prior and the black lines the true generating process parameters.
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Figure 16: One-dimensional conventional Bayesian inverse problem. Comparison of the inferred diffusion coefficient µ(x) with the true diffusion
coefficient µz(x) (dashed black line). The five black dots denote the anchor points for µz(x).

Four synthetic observation matrices
{
Y(i)

}4

i=1
are sampled from the marginal likelihood (38) with the scaling pa-

rameter ρ = 0.8, the mismatch covariance parameters σd = 0.005 and `d = 0.3, and the sensor noise σe = 0.005.
Each meshMi has the corresponding observation matrix Y(i) ∈ Rny×no with ny ∈ {11, 33} observation locations and
no = 100 readings. See Figure 8 for the location of the observation points. Thus, each column of Y(i) is sampled from
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Figure 17: Comparison of one-dimensional models. Mesh log-posterior probability p(M j |Y(i)) over the inverse element size 1/h for the four

different meshes {M j}
4
j=1 and data sets

{
Y(i)

}4

i=1
. In each plot the legend on the left refers to ny = 11 and on the right to ny = 33 observation

locations.

the marginal likelihood

p (y|Mi) = N
(
0.8Pu(Mi), 0.64PCu(Mi)P> + Cd + Ce

)
, (71)

where the finite element mean u(Mi) and covariance Cu(Mi) are obtained with the meshMi.
As in preceding sections, prior to computing the posterior probabilities p(M j|Y(i)) we first infer the hyperparam-

eters w = (ρ, σd, `d)T of the statistical generating model. In doing so we choose a non-informative prior p(w) ∝ 1.
The determined hyperparameters have very similar values like the ones in the generating density (71), confirming
the consistency of the proposed approach. Once the hyperparameters are known we compute the posterior probabili-
ties p(M j|Y(i)) ∝ p(Y(i)|M j)p(M j) with the marginal likelihood p(Y(i)|M j) given in (44). Assuming a non-informative
prior p(M j) ∝ 1 we have p(M j|Y(i)) ∝ p(Y(i)|M j).

Figure 17 shows the log-posterior probability log p
(
M j|Y(i)

)
of the four different meshes and the four different

observation matrices. Considering that there are two different observation arrangements ny ∈ {11, 33}, there are in
total 2 × 16 M j and Y(i) combinations. The bars in Figure 17 indicate the standard deviations of log p

(
M j|Y(i)

)
obtained by sampling each 50 times. Clearly, the maximum of log p(M j|Y(i)) is always where j is equal to i. That
is, for a given data set the most probable mesh is the one with which the data has been generated. We can use this
information to choose the most suitable mesh for a given data set. When two meshes have a similar log-posterior
probability we can choose for computational efficiency the coarser one. To explain Figure 17, note that an observation
matrix generated with a coarse mesh will lack the higher frequencies of the solution field. For such an observation
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Figure 18: Plate with a hole.

matrix there is no need to use a complex computational model with a finer mesh. Consequently, Bayesian inference
allows us to identify the simplest possible model as stipulated by the well-known Occam’s razor principle [6, Ch. 28].

4.2. Plate with a hole
As a two-dimensional example, we study a Poisson problem on a unit-square with a circular hole shown in Fig-

ure 18a. The boundary conditions on the five edges are chosen as indicated in the figure. In this example only the
source f (x) is chosen as random. We discretise the weak form with the finite element mesh shown in Figure 18b
consisting of 208 standard linear triangular elements and 125 nodes.

4.2.1. Posterior finite element density and system response for random source
The deterministic diffusion coefficient is assumed to be µ(x) = 1.0 and the random source f (x) is a Gaussian pro-

cess with a mean f (x) = 1.0 and a squared exponential covariance kernel with the parameters σ f = 0.3 and ` f = 0.15.
As introduced in Section 2.2, the density of the source vector f is given by the multivariate Gaussian p( f ) = N( f , C f )
and the density of the finite element solution by p(u) = N(A−1 f , A−1C f A−T). In Figure 18b a representative source
distribution and its respective finite element solution are depicted. As visually apparent and discussed in Section 2.2
the solution field uh(x) is significantly smoother than the source field f (x) owing to the smoothing property of the
inverse differential, i.e. Laplace, operator.

We consider as the true system response z(x) the solution of a second much finer finite element model. The fine
mesh is obtained by repeated quadrisection of the coarse mesh shown in Figure 18b and has 53248 elements. The
random source of the fine finite element model is a Gaussian process

g(x) ∼ GP
(
g(x), cg(x, x′)

)
(72)

with the mean

g(x) =
1
2

+
1
2

sin (π‖x‖) + 3 sin (7π‖x‖) (73)

and the squared exponential covariance kernel with the parameters σg = 0.1and `g = 0.2. The density of the corre-
sponding finite element solution on the fine mesh is given by

z = N
(
z, Cz

)
= N

(
A−1

g g, A−1
g Cug A−T

g

)
, (74)

The true system response z(x) =
∑

i φi(x)zi and the finite element solution uh(x) =
∑

i φi(x)ui are compared in Fig-
ure 19. Both fields are plotted along the diagonal of the domain, i.e. the line with x(2) = x(1). As described above the
source terms and meshes chosen for z(x) and uh(x) are very different. Their difference represents the model mismatch.
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Figure 19: Plate with a hole. Finite element solution uh(x) and the true system response z(x) along the diagonal of the domain with x(2) = x(1). The
solid lines represent the respective means and the shaded areas the 95% confidence regions.

Figure 20: Plate with a hole. Location of the ny ∈ {32, 64, 125} observations points for the data vector y chosen according to a Sobol sequence.
The observation points are located at the finite element nodes marked with dots.

We sample the synthetic observation matrix Y ∈ Rny×no from the multivariate Gaussian

y = N
(
A−1

g g, A−1
g Cg A−T

g + 2.5 · 10−5I
)

(75)

with the observation noise σ2
e = 2.5 · 10−5. The selected ny ∈ {32, 64, 125} observation points are all located at the

finite element nodes, see Figure 18b. They are distributed according to a Sobol sequence so that the set observation
points are nested [50]. We sample at each of the ny sample points no = {1, 10, 100, 1000} repeated readings.

As for the one-dimensional example in Section 4.1.2, only the parameters w = (ρ, σd, `d)T of the statistical
generating model are assumed to be unknown. Choosing an uninformed prior p(w) ∝ 1 we sample the posterior
density of the hyperparameters p(w|Y) using a standard MCMC algorithm, see Appendix A.3. For each combination
of ny and no we run 50000 iterations with an average acceptance ratio of 0.254. In Figure 21 the obtained histograms
for p(ρ|Y), p(σd |Y) and p(`d |Y) for ny = 64 are depicted. The observed overall trends are very similar to the one-
dimensional example. The standard deviations become smaller with increasing no. In Tables 4, 5 and 6 the mean
and standard deviations of these three plots and other ny and no combinations are given. As to be expected when
either ny, no or both are increased the standard deviation becomes smaller.

The inferred posterior finite element densities p(u|Y) computed according to (43) for different number of obser-
vation points ny and readings no are shown in Figure 22. We used again the empirical averages w = E[w] of the
hyperparameters as point estimates. As for the one-dimensional example, the posterior mean u|Y converges with in-
creasing ny and no to the true system response mean z. At the same time, the posterior covariance Cu|Y converges to
zero. Obviously, the finite element solution space cannot represent the true system response so that some differences
between u|Y and z remain, see, e.g., the plot for ny = 125 and no = 1000. In Figure 23 the inferred true system
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Figure 21: Plate with a hole. Posteriors of the parameters ρ, σd and `d for ny = 64 and no ∈ {1, 10, 100, 1000} obtained with MCMC.

no = 1 no = 10 no = 100 no = 1000

ny = 32 0.81665 ± 0.09841 0.81056 ± 0.02826 0.80928 ± 0.00943 0.81085 ± 0.00289
ny = 64 0.81051 ± 0.10648 0.81710 ± 0.02713 0.79831 ± 0.00853 0.80026 ± 0.00278
ny = 125 0.78432 ± 0.08124 0.82240 ± 0.02761 0.79888 ± 0.00861 0.79806 ± 0.00271

Table 4: Plate with a hole. Empirical mean and standard deviation of p(ρ|Y).

no = 1 no = 10 no = 100 no = 1000

ny = 32 0.00678 ± 0.00229 0.00498 ± 0.00043 0.00546 ± 0.00016 0.00545 ± 0.00005
ny = 64 0.00595 ± 0.00145 0.00521 ± 0.00038 0.00527 ± 0.00011 0.00530 ± 0.00003
ny = 125 0.00444 ± 0.00058 0.00503 ± 0.00024 0.00463 ± 0.00008 0.00469 ± 0.00002

Table 5: Plate with a hole. Empirical mean and standard deviation of p(σd |Y).

no = 1 no = 10 no = 100 no = 1000

ny = 32 0.28759 ± 0.17127 0.06962 ± 0.01399 0.08344 ± 0.00447 0.08644 ± 0.001188
ny = 64 0.08726 ± 0.02194 0.08049 ± 0.00637 0.08141 ± 0.00228 0.080011 ± 0.00066
ny = 125 0.06002 ± 0.00752 0.06870 ± 0.00429 0.06949 ± 0.00133 0.06949 ± 0.00041

Table 6: Plate with a hole. Empirical mean and standard deviation of p(`d |Y).

response densities p(z|Y) according to (39) are shown. The two means z|Y and u|Y are identical. In comparison to
the true system covariance Cz, the obtained posterior covariance Cz|Y is slightly smaller towards the centre and larger
towards the boundary of the plate. To achieve a better match between Cz and Cz|Y it is necessary to model the mis-
match covariance differently. The used squared exponential kernel (31) depends on a scalar scaling parameter σd. A
possible remedy would involve the modelling of σd as a spatially varying field.

5. Conclusions

We introduced the statistically constructed finite element method, statFEM, that provides a means for coherent
synthesis of observation data and finite element discretised mathematical models. Thus, statFEM can be interpreted
as a physics-informed machine learning or Bayesian learning technique. The mathematical models used in engineer-
ing practice are highly misspecified due to inherent uncertainties in loading, material properties, geometry, and the
many inevitable modelling assumptions. StatFEM enables the fusion of observation data from in-situ monitoring of
engineering systems with the possibly severely misspecified finite element model. This is conceptually different from
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ny = 32, no = 1 ny = 32, no = 10 ny = 32, no = 100 ny = 32, no = 1000

ny = 64, no = 1 ny = 64, no = 10 ny = 64, no = 100 ny = 64, no = 1000

ny = 125, no = 1 ny = 125, no = 10 ny = 125, no = 100 ny = 125, no = 1000

Figure 22: Plate with a hole. Finite element density p(u|Y) conditioned on observation data sampled from the multivariate Gaussian density (75)
(black line). The blue lines represent the mean u and the red lines the conditioned mean u|Y . The shaded areas denote the corresponding 95%
confidence regions. In each row the number of sensors ny and each column the number of readings no is constant. All plots along the diagonal of
the domain with x(2) = x(1)

ny = 32, no = 1 ny = 32, no = 10 ny = 32, no = 100 ny = 32, no = 1000

ny = 64, no = 1 ny = 64, no = 10 ny = 64, no = 100 ny = 64, no = 1000

ny = 125, no = 1 ny = 125, no = 10 ny = 125, no = 100 ny = 125, no = 1000

Figure 23: Plate with a hole. Inferred true system density p(z|Y) conditioned on observation data sampled from the multivariate Gaussian den-
sity (75) (black line). The blue lines represent the mean u and the red lines the conditioned mean z|Y . The shaded areas denote the corresponding
95% confidence regions. In each row the number of sensors ny and each column the number of readings no is constant. All plots along the diagonal
of the domain with x(2) = x(1)
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traditional Bayesian inversion or calibration, which aim to learn the parameters, like the material and geometry, of
the model. In statFEM the probabilistic finite element model provides the prior density which is used in determining
the posterior densities of the random variables and hyperparameters of the postulated statistical generating model. As
numerically demonstrated, with increasing number of observations the obtained posterior densities converge towards
the true system density. Informally, choosing a more informative prior, or in some sense better finite element model,
enables us to approximate the true system density with less data. In engineering practice observational data is usually
scarce so that informative priors are important. When data is abundant instead of statFEM one could argue that a
purely data-driven approach, like Gaussian process regression, may be sufficient if the system under study is relatively
simple, see e.g. [51]. Building upon the Bayesian statistics framework, statFEM provides a wide range of techniques
to compare and interrogate models and data of different fidelity and resolution, which we only partially exploited in
this paper.

In closing, a number of possible extensions of statFEM are noteworthy. We used in this paper, purely for illustrative
purposes, the squared exponential kernel as a covariance kernel. Especially, for the mismatch variable the use of other
kernels or linear combination of kernels from Gaussian process regression literature appears promising, see e.g. [24,
Ch. 4]. Moreover, we obtained the prior density of the finite element solution by approximating the forward problem
in the random domain by a first-order perturbation method. Although this method has certain advantages, like ease
of extensibility to nonlinear and nonstationary problems [52], the random perturbations must be relatively small.
Advanced approaches for solving stochastic partial differential equations do not have this limitation and may provide
more informative priors. Furthermore, we apply in statFEM Bayes rule on several levels in turn which requires
that hyperparameter densities are replaced with point estimates. Alternatively, it is possible to obtain the density of
random variables and hyperparameters by marginalisation from a high-dimensional joint density. The joint density
can be sampled, for instance, with the Metropolis-within-Gibbs algorithm; see [13] for an application of this approach
in the Bayesian inversion context. A possible further extension of statFEM concerns the refinement of the postulated
statistical model to incorporate computational models of different fidelity by incorporating ideas from recursive co-
kriging [53–55]. This would allow, for instance, the synthesis of observation data with a detailed expensive to evaluate
3D elasticity model and an empirical engineering formula. Finally, extension of statFEM to time-evolving linear and
nonlinear Korteweg-de Vries equation has been considered in [56].
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Appendix A. Appendix

Appendix A.1. Gaussian process regression

The diffusion coefficient κ(x) ∼ GP(κ(x), cκ(x, x′)) is assumed to be a Gaussian process and is approximated as
constant in each finite element giving the multivariate Gaussian density (14), repeated here for convenience,

κ ∼ p(κ) = N
(
κ
(
X(c)

)
, Cκ

(
X(c), X(c)

))
.

A common operation is to condition this density on a set of prescribed coefficients κ(a) = {κ(a)
i }

na
i=1 at the respective

anchor points X(a) = {x(a)
i }

na
i=1. The joint probability of the anchor point diffusion vector κ(a) ∈ Rna and the element

diffusion vector κ ∈ Rne is given by

p(κ(a), κ) = N


κ

(
X(a)

)
κ
(
X(c)

) ,
Cκ

(
X(a), X(a)

)
Cκ

(
X(a), X(c)

)
Cκ

(
X(c), X(a)

)
Cκ

(
X(c), X(c)

)
 . (A.1)
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Figure A.24: Illustrative Gaussian process regression example. The coefficients κ(a) at the six anchor points (in red) are prescribed. The solid line
represents the conditioned mean κ|κ(a) and the shaded area the 95% confidence region obtained from the covariance Cκ|κ(a) .

The mean and the covariance matrix are obtained by evaluating the prescribed mean κ(x) and covariance kernel cκ(x, x′)
at the respective points. According to standard results, see e.g. [24, Chapter 2], the density of κ conditioned on κ(a) is
given by

κ|κ(a) ∼ p
(
κ|κ(a)

)
= N

(
κ|κ(a) , Cκ|κ(a)

)
, (A.2)

where

κ|κ(a) = κ
(
X(c)

)
+ Cκ

(
X(c), X(a)

)
Cκ

(
X(a), X(a)

)−1 (
κ(a) − κ

(
X(a)

))
, (A.3a)

Cκ|κ(a) = Cκ

(
X(c), X(c)

)
− Cκ

(
X(c), X(a)

)
Cκ

(
X(a), X(a)

)−1
Cκ

(
X(a), X(c)

)
. (A.3b)

If needed, we sample from this density by first computing the Cholesky decomposition Cκ|κ(a) = LLT and then sampling
the Gaussian white noise e ∼ N(0, I) to obtain

κ|κ(a) = κ|κ(a) + Le . (A.4)

As an example for Gaussian process regression, in Figure A.24 the approximation of κ(x) over a one-dimensional
domain Ω = [0, 1] is illustrated. The six prescribed anchor point coefficients κ(a) lie on the curve 1.5 + cos (3πx). The
prescribed mean is κ(x) = 1.5 and the parameters of the squared exponential kernel are σκ = 1 and `κ = 0.2. The
depicted conditioned mean and the 95% confidence region are obtained from (A.3a) and (A.3b).

Finally, the conditioned mean A.3a can be used to define the interpolating basis functions ψ(x). Specifically,
choosing the mean of the Gaussian process as κ(x) = 0 we can define

κ(x)|κ(a) = Cκ

(
x, X(a)

)
Cκ

(
X(a), X(a)

)−1
κ(a) = ψ(x)Tκ(a) . (A.5)

Appendix A.2. Computation of the posterior finite element density
In deriving the posterior finite element density p(u|y) and several other places we make use of the fact that the

product of two Gaussian densities is again a Gaussian, see e.g. [8, 19]. To see this, it is sufficient to focus on the
argument of the respective exponential function and to bring it into a quadratic form. The normalisation constant for
the so obtained Gaussian can be determined by inspection. The steps in obtaining the quadratic form are as follows

p(u|y) =
p(y|u)p(u)

p(y)
∝ p(y|u)p(u)

∝ exp
(
(ρPu − y)T (Cd + Ce)−1 (ρPu − y)

)
exp

((
u − u

)T C−1
u

(
u − u

))
= exp

(
uTBu − 2aTu + . . .

)
,

(A.6)
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where

B = ρ2 PT(Cd + Ce)−1 P + C−1
u

a = ρPT (Cd + Ce)−1 y + C−1
u u .

By completion of the square, the last expression in (A.6) is evidently proportional to

p(u|y) ∝ exp
((

B−1a − u
)T

B
(
B−1a − u

))
. (A.7)

After determining the normalisation constant by inspection the posterior is given by

p(u|y) =
1

√
(2π)nu |B|

exp
((

B−1a − u
)T

B
(
B−1a − u

))
. (A.8)

By comparison with (37) we can conclude

Cu|y = B−1 , u|y = Cu|ya . (A.9)

To avoid the inversion of large dense matrices, i.e. Cu, in evaluating p(u|y), we use the Sherman-Morrison-
Woodbury identity to obtain

Cu|y = Cu − Cu PT
(

1
ρ2 (Cd + Ce) + PCu PT

)−1

PCu (A.10a)

u|y = Cu|y

(
ρPT (Cd + Ce)−1 y + C−1

u u
)
. (A.10b)

Note that Cu ∈ Rnu×nu , P ∈ Rny×nu and Cd, Ce ∈ Rny×ny so that the bracket expression to be inverted is a dense matrix
of dimension ny × ny, where ny � nu in most applications. When a direct solver is used, it is possible to speed up the
computation of PCu PT, which involves according to (27), the evaluation of terms like

PA−1C f A−1 PT = RTC f R . (A.11)

Here, it is sufficient to factorise the sparse system matrix A only once and to obtain R by column-wise back and
forward substitution of P.

For completeness, we note that the posterior density p(u|y) can be alternatively obtained from the joint density
of p(u, y), see [11, 43]. The statistical model introduced in Section 3.1 is given by

y = ρPu + d + e , (A.12)

and the random vectors have the densities u ∼ N(u, Cu), d ∼ N(0, Cd) and e ∼ N(0, Ce). The joint density is defined
by

p(u, y) = N

((
u
y

)
,

(
E

(
(u − u) ⊗ (u − u)

)
E

(
(u − u) ⊗ (y − y)

)
E

(
(y − y) ⊗ (u − u)

)
E

(
(y − y) ⊗ (y − y)

))) , (A.13)

where the expectations must be taken over the random vectors u, d and e. After introducing the statistical model and
the densities of the random vectors we obtain the joint density

p(u, y) = N

((
u
ρPu

)
,

(
Cu ρCu PT

ρPCu ρ2 PCu PT + Cd + Ce

))
. (A.14)

The respective conditional density p(u|y) according to Section Appendix A.1 yields for the covariance Cu|y the same
expression as (A.10a) and for the mean u|y a slightly different expression than (A.10b).
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Appendix A.3. Markov chain Monte Carlo method (MCMC)
We obtain the posterior of the statistical generating model parameters, i.e. p(w|Y) ∝ p(Y|w)p(w), by sampling

with the MCMC Metropolis algorithm. To avoid numerical stability issues with products of small densities in the
likelihood p(Y|w) the logarithm of the posterior is considered. As the proposal density we choose a normal distribu-
tion q(w|v) = N(v, σ2

qI) with the algorithmic parameter σq.
For a given sample w(i) one MCMC iteration consists of the following steps:

S1. Sample w ∼ q(w|w(i)) .
S2. Compute acceptance probability

α = min
(
0, ln (p(w|Y)) − ln(p

(
w(i)|Y)

))
. (A.15)

S3. Generate a uniform random number u ∼ U[0, 1] .
S4. Set new sample to

w(i+1) =

w if ln(u) < α
w(i) if ln(u) ≥ α

. (A.16)

The non-negativity of the parameters collected in w can be enforced by choosing a prior density with non-negative
support or applying a parameter transformation. When the prior has a non-negative support any negative proposal w
will yield a zero posterior p(w|Y) and will be rejected in Step S4. As a result, all the collected samples {w(i)} will be
non-negative. The many redundant samples make this approach, however, inefficient. To avoid this, we consider the
parameter transformation w̃ = ln(w), where the logarithm is applied component-wise, and sample in the transformed
domain. Rather than rewriting the above algorithm, the transformation can be taken into account by simply replacing
the acceptance probability in Step S2 with

α = min

0, ln
(
p
(
exp(w)|Y

))
+

∑
j

w j − ln
(
p
(
exp(w(i))|Y

))
−

∑
j

w(i)
j

 , (A.17)

where the two additional terms represent the Jacobian of the transformation of the posterior density. The samples {w(i)}

are now in the transformed domain and have to be transformed back. The so obtained samples {exp(w(i))} are all
positive and have the desired distribution.

Moreover, in our computations we choose the algorithmic parameter σq for the proposal density q(w|v) so that
the acceptance ratio in Step S4 is around 0.25. There are a number of efficient algorithms available to automate the
selection of σq [57]. We discard the the first 25%− 30% of the obtained samples to account for the burn-in phase. For
further details on MCMC algorithms see [14].
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[27] J. Brynjarsdóttir, A. O’Hagan, Learning about physical parameters: the importance of model discrepancy, Inverse Problems 30 (2014) 1–24.
[28] Y. Ling, J. Mullins, S. Mahadevan, Selection of model discrepancy priors in Bayesian calibration, Journal of Computational Physics 276

(2014) 665–680.
[29] C. Jiang, Z. Hu, Y. Liu, Z. P. Mourelatos, D. Gorsich, P. Jayakumar, A sequential calibration and validation framework for model uncertainty

quantification and reduction, Computer Methods in Applied Mechanics and Engineering 368 (2020) 113172:1 – 113172:30.
[30] H. G. Matthies, C. E. Brenner, C. G. Bucher, C. G. Soares, Uncertainties in probabilistic numerical analysis of structures and solids —

stochastic finite elements, Structural Safety 19 (1997) 283–336.
[31] B. Sudret, A. Der Kiureghian, Stochastic finite element methods and reliability: a state-of-the-art report, Tech. Rep. UCB/SEMM-2000/08,

Department of Civil & Environmental Engineering, University of California, Berkeley, 2000.
[32] G. Stefanou, The stochastic finite element method: past, present and future, Computer Methods in Applied Mechanics and Engineering 198

(2009) 1031–1051.
[33] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, 2010.
[34] G. J. Lord, C. E. Powell, T. Shardlow, An Introduction to Computational Stochastic PDEs, Cambridge University Press, 2014.
[35] M. Aldosary, J. Wang, C. Li, Structural reliability and stochastic finite element methods, Engineering Computations 35 (2018) 2165–2214.
[36] F. Yamazaki, M. Shinozuka, G. Dasgupta, Neumann expansion for stochastic finite element analysis, Journal of Engineering Mechanics 114

(1988) 1335–1354.
[37] R. G. Ghanem, P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer, 1991.
[38] D. Xiu, G. E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos, Computer Methods in

Applied Mechanics and Engineering 191 (2002) 4927–4948.
[39] I. Babuska, R. Tempone, G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM

Journal on Numerical Analysis 42 (2004) 800–825.
[40] D. Xiu, J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM Journal on Scientific Computing

27 (2005) 1118–1139.
[41] J. T. Oden, R. Moser, O. Ghattas, Computer predictions with quantified uncertainty, part II, SIAM News 43 (2010) 1–4.
[42] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, SIAM, 2005.
[43] J. Kaipio, E. Somersalo, Statistical and Computational Inverse Problems, Springer, 2006.
[44] T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler, A computational framework for infinite-dimensional Bayesian inverse problems Part I: The

linearized case, with application to global seismic inversion, SIAM Journal on Scientific Computing 35 (2013) A2494–A2523.
[45] F. Lindgren, H. Rue, J. Lindström, An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial

differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (2011) 423–498.
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