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Abstract We give an introductory review of gauge/gravity duality, and associated
ideas of holography, emphasising the conceptual aspects. The opening sections gather
the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory,
that we need for presenting, in Sect. 5, the central and original example: Maldacena’s
AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in
applications to condensedmatter systems, QCD, and hydrodynamics. Sections 8 and 9
discuss the possible extensions of holographic ideas to de Sitter spacetime and to black
holes. Section 10 discusses the bearing of gauge/gravity duality on two philosophical
topics: the equivalence of physical theories, and the idea that spacetime, or some
features of it, are emergent.
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1 Introduction

In the last twenty years, gauge/gravity duality, and associated holographic ideas, have
come to dominate fundamental physics. The basic idea is that a theory, typically a
gravity theory, defined on a D-dimensional space or spacetime (‘the bulk’) can be
equivalent to a theory, typically a gauge theory, defined on a (D − 1)-dimensional
space or spacetime that forms the bulk’s boundary. (That the physics of the bulk is
adequately encoded in the boundary is reminiscent of holography: hence the use of
the term.) This equivalence is expressed by a correspondence (‘dictionary’) between
the concepts (in particular, states and quantities) of one theory, and those of the other.
Much of the interest in such examples arises from the facts that:

(i) the concepts that the dictionary declares to ‘translate’ into each other can be strik-
ingly different: for example, a direction in the bulk spacetime is translated as the
direction of the renormalization group flow in the boundary theory;

(ii) one theory’s strong coupling regime, where problems are hard to solve by pertur-
bative methods, can be translated into the other theory’s weak coupling regime,
where problems are easier to solve; and vice versa: suggesting that each theory
can be used to help solve problems in the other.

The aim of this paper is to give an introductory review of these developments, empha-
sising the conceptual aspects.

The original example, conjectured by [63], concerns a gravity theory (a string
theory) on an anti-de Sitter spacetime, being equivalent to a gauge theory (a conformal
field theory) on its boundary: hence the name, ‘AdS/CFT conjecture’. More precisely,
Maldacena conjectured that type IIB string theory on a AdS5 × S5 background is
equivalent to N = 4 four-dimensional super-Yang Mills field theory. This example
has been much studied and has been very fruitful; the opening sections of the paper
gather the ingredients that we need in order to present it. We stress that although there
is by now a great deal of evidence in favour of it, still it remains a conjecture.1 We will
present anti-de Sitter spacetime (Sect. 2), conformal field theory (Sect. 3) and string
theory (Sect. 4); and then in Sect. 5, the AdS/CFT conjecture itself.

Sections 6 and 7 develop the ideas of this example, also in application to condensed
matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible
extensions of holographic ideas to de Sitter spacetime and to black holes. We stress
that, again in these sections, the dualities discussed are (for the most part) heuristic
and-or conjectural. Section 10 discusses the bearing of gauge/gravity duality on two
philosophical topics: the equivalence of physical theories, and the idea that spacetime,
or some features of it, are emergent. In this section (and implicitly throughout the
paper), we will take a theory to be given by a state-space, equipped with various
structures, especially a set of quantities and a dynamics; and a duality to be a bijective
structure-preserving mapping between theories thus understood. Two theories being

1 That it is hard to prove is of course hardly surprising, since it links weak and strong coupling regimes.
Section 8 of [45], deals with a number of quantum corrections. For a discussion of some non-perturbative
results in gauge/gravity dualities, see [37, Sect. 4]. Recent progress in non-perturbative calculations is
reported in e.g. [28], and references therein.
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equivalent will then be a matter of their ‘saying the same thing’ under the duality
mapping. Section 11 concludes.

Thus, broadly speaking, the first half of the paper develops the AdS/CFT conjecture
in enough detail to articulate the conceptual issues involved. The second half of the
paper considers applications and generalizations of the ideas developed in the first
half: especially to spacetimes other than anti-de Sitter, and to black holes.

We should stress two main limitations of our discussion. (i) We downplay the many
‘spin-offs’ in condensed matter physics and other fields that gauge/gravity duality
has spawned: in effect, we restrict ourselves to cases closely related to AdS/CFT—to
classical conformal symmetry and cases close to it. (ii) Obviously, there is a large
literature on the topic of each section, and research on each topic is still ongoing. We
do not in any way aim to give a complete survey of the field, which would require
a book. Happily, there now is an excellent book: [2]. Let us also here mention some
earlier excellent pedagogic expositions: by Maldacena himself [64,66,67]; and by
others [54,71,74,83].

The paper can be read in two ways. (i) Readers wishing to learn some of the
physics involved, as well as the conceptual issues, can read the paper linearly. (ii)
Readers interested mainly in the conceptual and philosophical issues that arise in
gauge/gravity dualities (or dualities in general—since gauge/gravity dualities exem-
plify many general issues) can read the introductory sections and then skim through
later sections. Sections 6.2, 10 and 11 contain the philosophical meat.

2 AdS Spacetime

Anti-de Sitter spacetime is a maximally symmetric spacetime with negative curvature
and Lorentzian signature. A maximally symmetric spacetime of dimension D is one
that has the maximum number of Killing vectors, D(D + 1)/2: which also implies
that the spacetime has constant curvature. For a maximally symmetric spacetime, the
Riemann tensor can be written as:2

Rμνλσ = − 1

�2

(
gμλgνσ − gμσ gνλ

)
, (1)

where � is called the ‘AdS radius of curvature’. One can show that for a spacetime
satisfying (1) the Weyl tensor identically vanishes and the space is conformally flat.
Contracting indices, one also readily sees that the solutions of (1) are also solutions of
Einstein’s equations in D dimensions with cosmological constant � = − (D−1)(D−2)

2�2
.

A D-dimensional space of constant curvature is best constructed as a slice of
an embedding (D + 1)-dimensional flat space. Think, for instance, of how a two-
sphere can be seen as a submanifold of R

3. In a similar way, we can construct
D-dimensional anti-de Sitter spacetime as a hyperboloid in a (D + 1)-dimensional
embedding Minkowski space with two time directions:

2 For a more detailed exposition of the geometrical properties of AdS, see [2, Sect. 2.3].
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− X2
0 − X2

D +
D−1∑

i=1

X2
i = −�2 . (2)

Solving this constraint, and calculating the induced metric on the surface from the flat
(D + 1)-dimensional Minkowski metric, we get the AdS metric. It is not hard to find
a system of coordinates (ρ, τ,	i ) that covers the entire hyperboloid:

X0 = � cosh ρ cos τ

X D = � cosh ρ sin τ

Xi = � sinh ρ 	i (i = 1, . . . , D − 1) , (3)

where 	i is a unit vector parametrising a (D − 2)-sphere, satisfying
∑D−1

i=1 	2
i = 1.

This is analogous to solving the constraint for the two-sphere inR3, where the sines and
cosines in one of the angles are replaced by the corresponding hyperbolic quantities in
(3), owing to the non-compactness of the hyperboloid (2). The range of the coordinates
is thus ρ ∈ [0,∞), τ ∈ [0, 2π). The AdS line element

ds2 = �2
(
− cosh2 ρ dτ 2 + dρ2 + sinh2 ρ d	2

D−2

)
. (4)

is obtained by substituting the above constraint in the embedding flat Minkowski
metric.

Thisway of constructingAdShas the advantage that the symmetry group is apparent
from the defining equation (2): namely, SO(2, D − 1), the symmetry group of the
hyperboloid. From the solution (3), one also readily sees how this symmetry group
leaves the metric invariant.

Euclidean AdS space, which is most often used in work on AdS/CFT, can be
constructed in the same way. We simply change one of the minus signs in (2) and
modify (3) accordingly. The resulting line element then has Euclidean signature.

The following transformation makes the metric conformal to R × SD−1: tan θ :=
sinh ρ, so that

ds2 = �2

cos2 θ

(
−dτ 2 + dθ2 + sin2 θ d	2

D−2

)
. (5)

Notice that θ only has half of the range: [0, π
2 ) instead of [0, π). Therefore, we do

not quite have a full SD−1 here, but only its northern hemisphere. As one approaches
the equator, θ → π

2 , the line element (5) diverges; this is no problem because the
spacetime is non-compact and the equator was not part of the spacetime to begin with
(notice the semi-open interval for θ ).Whereas the rest of the line element is completely
regular, the conformal factor (roughly representing the volume of the space) diverges
as one approaches the boundary θ → π/2. The boundary is timelike and corresponds
to the region ρ → ∞ in which all of the X ’s in (3) diverge. This is precisely the
asymptotic infinity of the hyperboloid, as expected. The conformal map thus maps the
asymptotic infinity to a finite parameter distance.
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In Minkowski space, which is conformally mapped to a diamond with lightlike
boundaries, it is enough to specify the fields on a spatial slice. This slice is causally
connected, bymeans of null rays, to the entire spacetime, and the values of the fields on
the slice determine the time evolution. As we have seen, however, the AdS boundary
is not lightlike, but timelike: in order to have a well-defined Cauchy problem, we
need to specify the boundary conditions at spacelike infinity rather than on some
spatial surface—since light rays reach the boundary in finite time. As we shall see in
Sect. 6, the specification of the boundary conditions is one of the key ingredients in
the AdS/CFT dictionary.

At spacelike infinity, the line element (5) is conformal to the standard line element
on R× SD−2. This will turn out to be the metric of the CFT, and the conformal factor
is indeed irrelevant because of the conformal symmetry of the CFT.

Since the metric in the CFT is the induced boundary metric up to a conformal
factor, it is very convenient to write the metric in a form that is conformally flat. This
is achieved with the following coordinate transformation:

X0 = 1

2r

(
r2 + �2 + gi j xi x j

)

X D = 1

2r

(
r2 − �2 + gi j xi x j

)

Xi = �

r
xi , i = 1, . . . , D − 1 , (6)

where gi j is the (D − 1)-dimensional Lorentzian or Euclidean flat metric: gi j xi x j =
−t2 + ∑D−2

i=1 x2i in the Lorentzian case, and gi j xi x j = ∑D−1
i=1 x2i in the Euclidean

case. Since r will play a key role in what follows (as: (i) parametrising the boundary;
(ii) governing RG flow) we invert the expression for it in (6):

r = �2

X0 − X D
. (7)

One easily checks that the Lorentzian case is a solution of (2), and the Euclidean case a
solution of the same equation with only one negative sign on the left-hand side. These
coordinates only cover a local patch of the spacetime, with r > 0. As we noticed after
(5), the boundary is the asymptotic region of the hyperboloid (2). We see from either
(6) or (7) that this corresponds to r → 0. The metric is then:

ds2 = �2

r2

(
dr2 + gi j dxidx j

)
, (8)

The vector xi (i = 1, . . . , d := D − 1) parametrises the boundary coordinates since
the boundary is now at r → 0. As we see, this metric is conformal to the flat metric
on R

D (again, only half of it because r > 0), with either Lorentzian or Euclidean
signature. The boundary metric is then the flat metric on R

D−1. These coordinates
are called Poincaré coordinates, as they represent a higher-dimensional version of the
Poincaré half-plane (cf. [41], pp. 213ff.)
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3 Quantum and Conformal Field Theories

Quantum field theories3 are theories that describe the dynamics of fields, which are
objects that permeate all of spacetime. The elementary quanta of excitation of these
fields can then be interpreted as particles. For example, electrons can be thought of as
the ripples of the electron field.

Relativistic quantum field theories enjoy, by definition, Poincaré invariance: that
is, invariance under the transformations

xμ → xμ + aμ , (9)

xμ → Mμ
ν xν , (10)

representing translations with constant parameter aμ and rotations/Lorentz boosts
with Lorentz transformation matrix M . The operators that generate the infinitesimal4

translations and rotations (and boosts) are Pμ and Lμν ; for example,5 Pμ = −i ∂μ.
Conformal field theories are, in short, theories that are invariant under a larger

group of spacetime transformations called conformal transformations. The group of
conformal transformations is generated by the Poincaré transformations (9) and (10),
as well as the two additional transformations:

xμ → λ xμ , (11)

xμ → xμ − bμx2

1 − 2b · x + b2x2
, (12)

respectively called dilatations (with parameter λ) and special conformal transforma-
tions (with parameters bμ). Dilatations are easy to visualize as simply ‘stretching
out’ spacetime; special conformal transformations are less easy to visualize but can
be thought of as resulting from the effect of ‘inverting’ the spacetime coordinates
(xμ → xμ/x2) twice, with a translation in between. An alternative but equivalent for-
mulation of conformal invariance is invariance under all coordinate transformations
x → x ′(x) such that the metric transforms as:

gμν(x) → g′
μν(x ′) = �(x) gμν(x), (13)

for an arbitrary function �(x); Poincaré invariance would be the restriction to � = 1.
The operators or fields in a relativistic quantum field theory6 must fall into repre-

sentations of the Poincaré group. This means we can choose a basis of fields in the

3 Some lecture notes on conformal field theories are [42,43] or [24]; see e.g. [60] for lecture notes on
superconformal field theories.
4 The infinitesimal transformation on the coordinates is given by: x ′μ = xμ + ωa

∂xμ

∂ωa
, where ωa are

infinitesimal parameters. The operator Oa generating the transformation of the field φ to φ′ is defined as
the operator that acts on φ such that: φ′(x) = φ(x) − iωa (Oaφ(x)) .

5 In units where h̄ = c = 1, which we use throughout this paper.
6 Typically, operators/fields in a relativistic quantum field theory are referred to as fields; confusingly, the
convention is to use the name operator when talking about operators/fields in conformal field theories.
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theory that are eigenfunctions of the Lorentz operators Lμν . For example, for such a
field φ at the origin:

[Lμν, φ(0)] = Sμν φ(0), (14)

where we call S the spin matrix of the field φ. Similarly, in a conformal field theory,
operators fall into representations of the conformal group; we can choose a basis of
operators that are eigenfunctions, not only of the Lorentz operators Lμν , but also of the
dilatation operator D and the special conformal transformation operator Kμ. Again,
using an operator φ as an example:

[Lμν, φ(0)] = Sμν φ(0), (15)

[D, φ(0)] = −i�φ(0), (16)

[Kμ, φ(0)] = κμ φ(0). (17)

The number � is called the scaling dimension (or simply dimension) of φ.
The algebra of conformal transformations implies that all operators are either pri-

mary with κμ = 0 or descendants if κμ �= 0. All descendants can be thought of as
‘derivatives’ of primary operators, in the sense that they can be written (schematically)
as ∂nφ for some primary operator φ. Using conformal invariance, the properties of
descendant operators follow more or less immediately from those of the primaries;
this means that a study of conformal field theories is typically a study of its primary
operators. Gauge invariant primary operators in a CFT are completely classified by
their quantum numbers Sμν and �.

One can imagine field theories that are invariant under an even larger group of trans-
formations than conformal symmetry: namely, by including supersymmetry. These
superconformal field theories are invariant under the (bosonic) conformal transforma-
tions Pμ, Lμν, D, Kμ as well as the (fermionic) supersymmetry transformations Q
and superconformal transformations S. These fermionic operators Q, S will carry a
spinor index α as well as an internal index A. The latter runs from 1 toN ; forN = 1
we have a theory with minimal supersymmetry, while for N > 1 we have extended
supersymmetry. When N > 1 there are always additional (bosonic) symmetries,
called R-symmetries. The R-symmetry generators commute with the (bosonic) con-
formal symmetry generators and have the effect of rotating the supercharges’ internal
index A. In theories with minimal supersymmetry, we can apply the supersymmetry
transformation to each field once, and obtain its supersymmetric partner. When there
is extended supersymmetry, starting with a particular field we can apply N super-
symmetry transformations to obtain each time a new field. Theories with extended
supersymmetry thus contain more fields and higher spin values, because the super-
charge increases the spin by 1/2.

Again, operators in a superconformal field theory fall into representations of the
superconformal algebra, which are composed of multiple representations of the con-
formal algebra. A superconformal primary operator is an operator φ which satisfies:
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[Kμ, φ(0)] = 0, (18)

[S, φ(0)] = 0. (19)

Certain special superconformal primary operators called chiral primary operators have
special properties, such as having their scaling dimension � protected from quantum
corrections—this means one can compute� at small coupling (e.g. using perturbation
theory) and be assured the result is valid at large coupling as well.

In a relativistic quantum field theory, one is typically interested in studying the S-
matrix, which describes the scattering of particles. However, to be able tomeaningfully
define an S-matrix, one needs to be able to ‘separate’ the particles at temporal and
spatial infinity, so as to give the initial and final states of the scattering process. In a
conformal field theory, we can never really separate particles in such a way at infinity
because of the conformal invariance—intuitively, this is because we can always use
a dilatation transformation to bring the particles closer together again. Hence, for
conformal field theories, there is no meaningful way to define a S-matrix. Instead, one
is forced to study the correlation functions of operators 〈O1 · · ·On〉. While perhaps
less intuitively satisfying than the S-matrix description, correlation functions contain
all of the physical information of a field theory (just like the S-matrix does).

Conformal invariance greatly restricts the possible form of correlation functions of
operators. The two-point function of two primary operators, O1 and O2, is forced to
be:

〈O1(x)O2(y)〉 =
{

|x − y|−2�1 , if �1 = �2,

0 otherwise;
(20)

so it is completely determined by the scaling dimensions �1,2 of the scalar operators
O1,2. Similarly, the three-point function of primaries is restricted to be:

〈O1(x)O2(y)O3(z)〉 = C123 × |x − y|−�12 |y − z|−�23 |x − z|−�13 , (21)

where �i j = �i + � j − �k (with k defined as �= i and �= j). We see that the
three-point function depends on a real-number coefficient C123 as well as the scaling
dimensions of the operators; this coefficient C123 contains dynamical information
about the theory. It can be proven that all of the four- and higher-point functions in
a CFT are essentially fixed by conformal invariance once the scaling dimensions and
three-point coefficients Ci jk are known. Thus, the physics of operators in a CFT is
completely fixed by specifying its (primary) operator content, their scaling dimensions,
and all of their three-point coefficients.

Another important feature of conformal field theories is the state-operator corre-
spondence. This is the fact that any state in a CFT is in one-to-one correspondencewith
an operator of the CFT that is local, i.e. defined at each point. Loosely speaking, this
correspondence tells us that every state in the theory can be obtained by acting with a
local operator on the vacuum. For example, the vacuum itself trivially corresponds to
the identity operator acting on the vacuum. The state-operator correspondence implies
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that complete knowledge of the spectrum of primary operators in a CFT is equivalent
to knowing the full spectrum of states in the theory.

One superconformal field theory that is of central importance when discussing
AdS/CFT is four-dimensionalN = 4 SU(N ) super YangMills (SYM) theory. SU(N )

Yang-Mills is the field theory of a gauge field with non-Abelian gauge group SU(N );
one can then couple 6 (real) scalars and 4 (complex Weyl) fermions to the gauge field
to obtain a theory with N = 4 extended supersymmetry. The resulting complicated,
supersymmetric gauge theory can be proven to be exactly conformal. All of the relative
interactions between the gauge field, scalars, and fermions are completely fixed by
supersymmetry; the only overall tunable parameter in the theory is the gauge coupling
gYM (and a theta angle θYM).

Studying Yang-Mills theories (non-Abelian gauge theories) is, in general, very
hard. The prime example is quantum chromodynamics (QCD), the theory of strong
interactions, which is SU(3)Yang-Mills theory coupled to fermions. QCD is confining
at low energies—we only see baryons (e.g. protons) and mesons (e.g. pions) instead of
loose quarks and gluons. Confinement is an extremely difficult phenomenon to study,
since it is an inherently strong-coupling phenomenon and thus not accessible to the
usual perturbation techniques used in field theory.N = 4 SYM is not confining (since
it is conformal and thus does not have an energy-dependent physics) but is nevertheless
difficult to study if the gauge coupling gYM is large. However, [90] realizedYang-Mills
theories simplify when the gauge group rank N is taken to be very large. In the ’t Hooft
limit, one formally takes N → ∞ while keeping the ’t Hooft coupling λ := g2

YMN
fixed. In this limit, it can be shown that all Feynman diagrams except so-called planar
diagrams contribute (to, for example, correlation functions) at only sub-leading order
in N and thus can be ignored—greatly simplifying the theory.7

4 String Theory

While we aim to introduce the AdS/CFT correspondence with as little string theory
background as possible, it is useful to briefly review a few core concepts of string
theory that are essential to understand the conjecture and its motivation.8

String theory, as its name suggests, is basically a theory of strings: one-dimensional
extended (rather than pointlike) objects; when a string moves, it sweeps out a world-
sheet rather than a world-line. Strings can be closed (i.e. a loop) or open; the closed
string massless excitations can be shown to include e.g. gravity, while open string
excitations include e.g. gauge field dynamics. The strings can only interact by com-
bining or splitting, with an interaction strength set by the closed string coupling gs .
There is also an open string coupling go, but this is simply related to the closed string
coupling as gs ∼ g2

o—essentially this is because two open strings can combine into

7 For an introduction of the ’t Hooft limit, see Sect. 1.7.5 of [2]. Reference [17] is a conceptual discussion
of the ’t Hooft limit.
8 There are numerous books that introduce string theory at various levels. Canonical and fairly comprehen-
sive volumes introducing string theory at the graduate level include [46] and [75]. A volume also suitable
for advanced undergraduates due to its more pedagogical approach is e.g. [103]. There are also various
excellent lecture notes on string theory, e.g. [94].
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(or arise from the splitting of) one closed string. It is interesting to note that gs is not
a parameter of string theory that needs to be fixed externally;9 gs is set dynamically
by the expectation value of the dilaton φ, a massless scalar field in the closed string
spectrum, through gs = 〈eφ〉.

Besides strings, string theory also contains other objects called Dirichlet-branes10

or D-branes. A D-brane of a specific dimension is also called a Dp-brane, where p
indicates that the brane spans p spatial dimensions (and thus has a (p+1) dimensional
spacetime world-volume).

D-branes are essentially objects on which open strings have their endpoints. The
dynamics of the open string endpoints is then equivalent to the dynamics of the D-
branes themselves, making the branes truly dynamical objects in their own right.
The excitations of the open string endpoints transverse to the brane translate into
fluctuations of the brane itself in the ambient spacetime, while excitations of the open
strings parallel to the brane give dynamics for a gauge field living in the world-volume
of the brane itself—this gauge field becomes non-Abelian when multiple D-branes are
stacked on top of each other. The gauge field coupling constant is related to the string
coupling constant as g2

YM ∼ gs ; (again, this is because gs is the closed string coupling
and we need two open strings with coupling constant go ∼ gYM to be able to form
one closed string). Which gauge field describes the dynamics of a particular D-brane
depends on the type of D-brane considered. For example, for N coincident D3-branes,
the relevant world-volume gauge theory is four-dimensional N = 4 SU(N ) super
Yang Mills theory.11

Two of themost studied versions of string theory are themaximally supersymmetric
type IIA and type IIB string theories in 10 spacetime dimensions. Both theories contain
closed strings as well as D-branes of different dimension (and thus also open strings).
IIA contains Dp-branes with p even while IIB contains Dp-branes with p odd.

Type IIA and IIB string theories are very closely related by T -duality. T -duality is
an inherently stringy phenomenon that occurs when a spatial direction is compact. It
relates type IIA (resp. IIB) string theory compactified on a spatial direction with radius
R to type IIB (resp. IIA) string theory compactified on a spatial direction with radius
α′/R (α′ = l2s is the square of the fundamental string length). The winding modes of
IIA (resp. IIB) strings along this compact direction are mapped to momentum modes
of the IIB (resp. IIA) string along the transformed direction. Finally, Dp-branes of one
theory are mapped to D(p ± 1)-branes of the dual theory.

Studying the full dynamics of string theory is a very hard problem, so often a low-
energy limit is used to simplify things. In such a low-energy limit, one can essentially
neglect the effects of the strings’ finite length and approximate them by point particles.
The low-energy limit of the closed string sector of type IIA/B string theory is described

9 Indeed, the only fundamental tunable parameter in string theory is α′ = l2s , the string length squared.
10 The name refers to the fact that open strings that end on D-branes have Dirichlet boundary conditions,
which mean that the string endpoints are stuck on the branes.
11 Strictly speaking, the gauge group is U(N ) instead of SU(N ). The U(N ) gauge theory is essentially
equivalent (up to global ZN identifications) to a free U(1) gauge field and a SU(N ) gauge theory. The U(1)
part is related to the motion of the center of mass of the stack of D3-branes and can typically be considered
as decoupled from the SU(N ) gauge theory.
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by type IIA/B supergravity, a supersymmetric theory of Einstein gravity in 10 dimen-
sions coupled to a number of extra fields. In this low-energy supergravity description,
we can construct and study solutions (such as black holes) of the theory just as we
would in familiar classical gravity theories. For example, this low-energy limit also
explicitly contains strings12 and D-branes, which are represented by particular solu-
tions of the supergravity theory. Such supergravity solutions can only be trusted as long
as they stay within the low-energy limit. This is the case as long as α′/�2 
 1, where
α′ = l2s is the string length (squared) and � is the (local) radius of curvature of the
supergravity solution—if this constraint is violated, the finite string length effects can-
not be neglected consistently and the low-energy supergravity approximation breaks
down.

5 The AdS/CFT Duality Introduced

To introduce the AdS/CFT correspondence, we will in this section present its first
and most-studied example. We will do this in a mostly heuristic fashion, following
the ideas in the original presentation by [63]. Reference [1] is a comprehensive early
presentation.

Namely, this example is the duality between:

(i) N = 4 four-dimensional (4D) super Yang Mills (SYM) field theory (introduced
in Sect. 3); and

(ii) type IIB string theory on an AdS5 × S5 background (cf. Sects. 2 and 4).

This duality arises from describing the low energy dynamics of a stack of N coincident
D3-branes in a flat background in type IIB string theory—in two different ways. Here
N is, for the moment, just an integer: the number of coincident D3-branes. We will
shortly see that, according to the AdS/CFT duality, it corresponds to the rank N of the
gauge group SU(N ); and that it must be taken to be large, as in the ’t Hooft limit at
the end of Sect. 3.

First of all, let us consider the low-energy limit, where we only keep the massless
states, and the dynamics of the D-branes decouples from the ambient spacetime: the
excitations far away from the brane completely decouple from the excitations close to
the brane—this is called the decoupling limit.

As we said in Sect. 4, the dynamics of the D-branes in this low-energy limit will
be entirely described by the excitations of the open string endpoints on the D-branes.
This gives a field theory that lives on the four-dimensional (4D) world-volume of
the D3-branes: in this case, it will be N = 4 4D super-Yang-Mills theory (SYM), a
much-studied superconformal field theory.

On the other hand, it is known that there exists a supergravity solution that describes
D3-branes (see the discussion at the end of Sect. 4). When we zoom in to the region
close to the D3-branes, this supergravity solution precisely becomes AdS5 × S5. This
procedure of ‘zooming in’ is also a decoupling limit and represents the fact that the

12 Note that the strings we can describe in solutions of supergravity are a bit different from the closed strings
that make up the background (about which we have just said we can ignore their finite length!); heuristically,
these strings described by supergravity solutions are longer strings, extending over macroscopic lengths.
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excitations near the branes (i.e. those in the AdS space) decouple completely from the
excitations in the (asymptotically flat) region far away from the branes. Note that in
this AdS5 description, the D3-branes are considered to be ‘dissolved’ into the closed
string sector. This means that the branes’ effects remain and are taken into account in
the curved geometry; but the branes themselves and the relevant open string degrees
of freedom (e.g. the gauge field on the brane) can no longer be seen explicitly in the
(closed string) geometry. This is sometimes called a geometric transition of the branes.

TheAdS/CFTduality (also known as: correspondence) is now simply the conjecture
that—evenwhen the coupling is not low—these two theories are equivalent: (i)N = 4
SYM and (ii) string theory on AdS5 × S5.

But if the two theories are indeed equivalent, calculations in one theory should
in principle give the same result as calculations in the other. It is this that gives the
conjectured equivalence such promise. It relates the regime where one theory is hard
to calculate in, to the regime where the other theory is easy (well: easier!) to calculate
in; as follows. Calculations in the AdS5 × S5 supergravity solution can only be trusted
as a good approximation to the full string theory when the characteristic length scale
of the solution is large compared to the string scale. But the radii of both the S5

and the AdS5 factor spacetimes are proportional to gs N ; where, as before, gs is the
string coupling and N is the number of coincident D3-branes in the original D3-
brane picture (i.e. before the decoupling limit is taken). So this translates into the
condition that gs N � 1. That is: if this condition is not satisfied, we cannot trust the
supergravity approximation; we must take stringy corrections into account. On the
other hand, the relevant parameter in N = 4 super-Yang-Mills theory, with which
we can do perturbation theory, is also proportional to gs N . Remember from Sect. 4
that gs ∼ g2

YM, so this is the ’t Hooft parameter. This means that we can only trust
perturbation theory calculations when gs N 
 1, i.e. of weak ’t Hooft coupling;
otherwise non-perturbative effects become important.

Here, as an important aside, we should also mention another restriction on the
number N . It is important for the above discussion that N is large—in fact, strictly
speaking, the correspondence as described above is only valid in the limit N → ∞
(cf. the discussion of the ’t Hooft limit in gauge theories at the end of Sect. 3). In
principle, one can calculate 1/N corrections to the correspondence described above:
for example, these correspond to quantum corrections in the AdS5 geometry, which
only in the N → ∞ limit is captured by classical supergravity. Thus, we emphasize
the (somewhat subtle) difference in the bulk between stringy corrections, which are
classical corrections due to the fact that a string has finite size (as opposed to pure
gravity where the graviton is a point particle of zero size) and are suppressed if gs N �
1; and quantum corrections, which are due to the quantum nature of string theory and
are suppressed if N � 1.

We see that the regime where we can trust the perturbation calculations in the field
theory (gs N 
 1) and where we can trust the AdS5 supergravity solution (gs N � 1)
do not overlap. This is good news. For by studying a supergravity solution, we can
gain insight into the very difficult non-perturbative physics of strongly coupledN = 4
SYM. Conversely, perturbative calculations in this theory can—once ‘translated’ to
the string theory on the AdS5 × S5 background—give us results going beyond the
supergravity approximation.
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This complementarity of regimeswherewe can reliably perform calculationsmakes
the AdS/CFT correspondence an extremely powerful tool. But it also means it is very
difficult to actually prove the correspondence, by performing calculations in both
descriptions at a fixed coupling and comparing them.

To close this heuristic introduction of AdS/CFT, let us mention a few interesting
entries in the AdS/CFT correspondence’s ‘dictionary’, i.e. its mapping between the
theories: specifically for the above example of AdS5 × S5 and N = 4 SYM. First of
all, one can see that the spacetime symmetries of the gravity solution correspond to
symmetries in the field theory. The spacetime symmetry transformations of AdS5 cor-
respond to the conformal symmetry transformations of the dual field theory. Indeed,
as mentioned in Sect. 2, the symmetry group of AdS5 is SO(2, 4) [which is the sym-
metry group of the quadric (2)]. But SO(2, 4) is also the conformal group in four
dimensions: in the language of Sect. 3, this is the extension of the Poincaré group with
the two additional generators D and Kμ; cf. (11–12) and (16–17). On the other hand,
the SO(6) symmetry generators of S5 correspond to the R-symmetry (see Sect. 3)
transformations of the field theory (see e.g. [63] and [1, Sect. 3]).

A second example is the correspondence of the radial coordinate r in AdS5 [intro-
duced in (8)], which corresponds to a coarse-graining parameter of the renormalization
group (RG) flow in the field theory, in the sense that moving along this coordinate
further away from the boundary is like going to longer wavelengths and thus smaller
energies in the field theory (see e.g. [31]).

Finally, we note that the n-point correlation functions of the CFT (again, see the dis-
cussion in Sect. 3) can be calculated by a very explicit procedure in the AdS spacetime
by a method of connecting the points in the correlation function in the AdS spacetime
by bulk-to-boundary propagators (see e.g. [100, Sect. 2]). We will also touch on this
point in Sect. 6 when we discuss the precise construction of the dictionary and how to
calculate correlation functions holographically.

6 Development

In the previous sectionwe presented theAdS/CFT correspondence in the heuristic way
that goes back to the work of [63]. The correspondence as presented in Sect. 5 is valid
only when the metric is exactly AdS as in (8) or is very close to it, and the additional
curvature of the geometry produced by the fields can be neglected. In this section,
we describe progress in the search for a more general and more rigorous formulation
of the AdS/CFT correspondence. Such a formulation will have to specify, at the very
least:

(1) What are the physical quantities that characterize both sides of the duality?
(2) How are these quantities related to each other by the duality?

These questions will be the focus of Sect. 6.1. Then in Sect. 6.2, we will focus on
whether a natural requirement for a theory of gravity, viz. background-independence,
is satisfied.
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6.1 AdS/CFT in More Detail

We take a theory to be given by a state-space, equipped with various structures, espe-
cially a set of quantities13 and a dynamics; and we take a duality to be a bijective
structure-preserving mapping between theories thus understood. This will be made
more precise in Sect. 10.1. But we can already apply these construals to AdS/CFT:
beginning on the gravity or bulk side, and then considering the CFT/boundary theory.
We will also first consider the vacuum case, i.e. pure gravity (Sects. 6.1.1 and 6.1.2);
and then consider how the correspondence can incorporate matter fields (Sect. 6.1.3).

6.1.1 The Bulk Theory

The states in the bulk are the states in a specific theory of quantum gravity: they
consist of the configurations of the metric and matter fields that are compatible with
the equations of motion. The quantities are the operators that are invariant under
the symmetries. Usually, these are calculated perturbatively; e.g., by quantising the
fluctuations about a pure AdS5 solution.

Let us first discuss the equations of motion and then get back to the operators. The
low-energy approximation to the bulk equations of motion is given by Einstein’s equa-
tions with a negative cosmological constant. As we will see shortly, the leading order
in the low-energy approximation is enough to write down the most basic quantities.

So we need to solve Einstein’s equations with a negative cosmological constant.
This will give us the states. However, we are looking for general states, therefore the
metric has to be much more general than (8).

It was shown by Fefferman and Graham (1985) that, for any space that satisfies
Einstein’s equations with a negative cosmological constant, and given a conformal
metric at infinity, the line element can be written in the following form:

ds2 = Gμν dxμdxμ = �2

r2

(
dr2 + gi j (r, x) dxidx j

)
, (22)

where gi j (r, x) is now an arbitrary function of the radial coordinate r . The remain-
ing coordinates xi (i = 1, . . . , d := D − 1) parametrise the boundary, which is of
dimension d and, as in AdS, located at r → 0. The conformal metric at the boundary
is g(0)i j (x) := gi j (0, x).

Solving Einstein’s equations now amounts to finding gi j (r, x) given some initial
data. As explained in Sect. 2, because of the presence of the timelike boundary, choos-
ing a spatial Cauchy surface at some initial time would not completely specify our
problem. Instead, we have to provide boundary conditions. Thus it is best to specify
the metric g(0)i j at the conformal boundary. Because Einstein’s equations are second
order, we also need to provide a second boundary condition for the metric. This is
done as follows. Fefferman and Graham (1985) showed that gi j (r, x) has a regular

13 Our word ‘quantities’ denotes what, in the physics literature, especially in quantummechanics, are often
called ‘observables’. We follow [12] in regarding the latter as a ‘bad word’.
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expansion in a neighbourhood of r = 0:

gi j (r, x) = g(0)i j (x) + r g(1)i j (x) + r2g(2)i j (x) + · · · , (23)

One substitutes this into Einstein’s equations and solves themwith the given boundary
data. We summarize the main results here [36, Sect. 2], in the absence of matter fields,
i.e. pure gravity:

• The coefficients in the above expansion, apart from g(0)(x) and g(d)(x) (the coef-
ficients of the terms with powers r0 and rd , respectively, where d = D −1), are all
determined algebraically from Einstein’s equations. They are given by covariant
expressions involving g(0) and g(d) and their derivatives.

• The coefficients g(0)(x) and g(d)(x) are not determined by Einstein’s equations
(only the trace and divergence of g(d) are determined): they are initial data.

• We recover pure AdS (Lorentzian or Euclidean) when g(0)i j (x) is chosen to be flat
(i.e. a flat Minkowski or Euclidean metric). In that case all higher coefficients in
the series (23) vanish and we are left with (8).

• The case includingmatter fields (scalars, gauge fields, etc.) can be treated similarly;
for details, cf. Sect. 6.1.3.

Notice that g(0) and g(d) are, a priori, arbitrary and unrelated. However, for a specific
solution the requirement of regularity of the solution in the deep interior can provide
a relation between the two, which is in general non-algebraic.14 For the sake of cal-
culating quantities, however, it is not necessary to be able to state this relationship
explicitly: it is sufficient to assume its existence.

Having given a systematic solution of Einstein’s equations that takes into account
the boundary conditions, we now have to construct the quantities. The basic quantity in
a quantum theory of gravity is the path integral evaluated as a function of the boundary
conditions. That is, in Euclidean signature, with G as in (22):

Zstring[g(0)] :=
∫

gi j (0,x) ≡ g(0)i j (x)

DGμν exp (−S[G]) . (24)

In the absence of matter fields, this is in fact the basic quantity. All other quantities
can be obtained by functional differentiation with respect to the (arbitrary) metric,
g(0)i j (x).

In the leading semi-classical approximation (i.e. large N and large ’t Hooft cou-
pling), the above is approximated by the (on-shell) supergravity action:

Zstring[g(0)] 
 e−Sclass[g(0)] . (25)

The Hilbert space structure of AdS/CFT is not known beyond various limits and
special cases. But if one is willing to enter a non-rigorous discussion, then a good case
can bemade that: (i) the two theories can be cast in the language of states, quantities and

14 This holds for Euclidean signature. For the corresponding statement when the signature is Lorentzian,
see [84, Sect. 3].
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dynamics; and (ii) when this is done, they are duals in the sense of Sect. 10.1 (especially
comment (1)). We make this case in Sect. 4.2 of [37]. Here we just emphasise that the
main conceptual point, as regards (i), is that the gravity partition function [Eq. (24)
for pure gravity, and (33) below with matter fields] does not—and should not!—give
correlation functions of bulk operators. It gives boundary correlation functions (of
canonical momenta). Accordingly, the evidence in favour of (ii) is largely a matter of
a detailed match (in symmetries; and in quantum corrections to the dynamics as given
by a functional integral) between two Hilbert spaces, equipped with operators, both
associated with the boundary.

6.1.2 The Boundary Theory and the Bulk-Boundary Relation

Let us now motivate how the bulk geometry is related to the CFT quantities so that we
can set up the bulk-to-boundary dictionary. The bulk diffeomorphisms that preserve
the form of the line element (22) modify g(0)i j (x) only by a conformal factor. Thus,
the relevant bulk diffeomorphisms are those that induce conformal transformations of
the metric on the boundary. Since the conformal group is also the symmetry group
of the CFT, it is natural to identify the boundary metric, defined up to conformal
transformations, with the classical backgroundmetric in the CFT,which is also defined
only up to such transformations. Thus, the correspondence relates g(0)i j (x), up to a
conformal factor, with the background metric in the CFT, and the latter need not be
flat. We will now use this to set up the AdS/CFT correspondence.

The AdS/CFT correspondence, in the formulation proposed by [100] (see also
[48]), declares Eq. (24) to be equal to the generating functional ZCFT[g(0)] for
(dis-)connected correlation functions, whose logarithm gives (minus) the generating
functional for connected correlation functions in the CFT:

WCFT[g(0)] := − log ZCFT[g(0)] . (26)

ZCFT[g(0)] is the partition function of the theory, defined on an arbitrary background
metric g(0). Thus, AdS/CFT is the statement:

Zstring[g(0)] ≡ ZCFT[g(0)] . (27)

This identification is natural because on both sides of the correspondence, and to the
order towhich the approximation is valid, this is the unique scalar quantity satisfying all
the symmetries and depending on g(0), and nothing else. It also makes sense because,
as discussed in Sect. 6.1.1, g(0) is the asymptotic value of the bulk metric (22) on the
bulk side as well as the classical background metric in the CFT, with their symmetry
groups identified (as discussed at the end of Sect. 5).

In the semi-classical limit, the left-hand side of (27) is approximated by the semi-
classical action (25). So using (26) we have the semi-classical correspondence:

Sclass[g(0)] 
 WCFT[g(0)] . (28)
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In practice one wants to calculate, not only the generating functional for connected
correlation functions (28), but also the correlation functions themselves. As in any
quantum field theory, the first functional derivative gives the expectation value of the
stress-energy tensor, 〈Ti j (x)〉CFT, in the CFT with metric g(0)(x):

〈Ti j (x)〉CFT = 2√
g(0)

δWCFT[g(0)]
δgi j

(0)

. (29)

This is related, through (28), to the variation of the bulk quantum effective action
with respect to the asymptotic value of the metric, which is the (properly renormal-
ized) gravitational quasi-local Brown-York stress-energy tensor �i j ([19]) defined
at the conformal boundary. Roughly speaking, the Brown-York stress-energy tensor
describes the flux of gravitational energy and momentum at infinity. Using (23) it
can be shown that it is given by the coefficient g(d)(x), up to known local terms [36,
Sect. 3]:

�i j (x) = 2√
g(0)

δSclass[g(0)]
δgi j

(0)(x)
= d �d−1

16πGN
g(d)i j (x) + (local terms) , (30)

where the local terms involve powers of the curvature. The semi-classical bulk-
boundary correspondence for the one-point function is thus:

�i j (x) ≡ 〈Ti j (x)〉CFT . (31)

For any given solution of Einstein’s equations, both quantities are basically given by
g(d), which is easily computed from the near-boundary expansion (23).

Wementioned, in the second bullet point after (23), that g(d) is the second coefficient
that Einstein’s equations leave undetermined. The bulk-to-boundary correspondence
thus gives two alternative interpretations for g(d) [9, Sect. 1]: (i) as the Brown-York
stress-energy tensor associated with the boundary, in the bulk theory as in (30); (ii) as
the 1-point function of the stress-energy tensor in the CFT, through the correspondence
(31).

Correlation functions of the boundary stress-energy tensor 〈Ti j (x1) Tkl(x2) · · ·〉 can
be obtained by taking further functional derivatives in (30).15 From it, the CFT corre-
lation functions can be obtained using (31).

6.1.3 Matter Fields

The situation for matter fields is similar. We first consider a scalar field φ. Similarly
to the bulk metric (cf. the discussion of (23) in Sect. 6.1.1), one solves the equation
of motion perturbatively in the distance r to the boundary:

φ(r, x) = r�−φ(0)(x) + r�−+1φ(1)(x) + . . . + r�+φ(2�+−d)(x) + . . . , (32)

15 For higher correlation functions, higher-curvature corrections may contribute terms of the same order
in (24) and thus have to be taken into account in the effective action.
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where �± = d
2 ±

√
d2

4 + m2�2 and m is the mass of the field. Plugging this into
the equations of motion, one finds that all the coefficients φ(1)(x), φ(2)(x), etc., are
determined algebraically in terms of the two coefficients φ(0)(x) and φ(2�+−d)(x). But
these are themselves not determined by the equations: they correspond to boundary
conditions.

As in the case of pure gravity, the first coefficient in the expansion,φ(0), corresponds
to a fixed source that couples to a gauge invariant operatorO�+(x) of dimension �+.
The second coefficient, φ(2�+−d), then corresponds to the expectation value of that
operator 〈O�+(x)〉 forwhichφ(0) is a source in the path integral. This can be calculated
from the bulk as follows. Take the analogue of (24) for the scalar field16,

Zstring[φ(0)] =
∫

φ(0,x) =φ(0)(x)

Dφ exp (−S[φ]) 
 exp
(−Sclass[φ(0)]

)
. (33)

The AdS/CFT correspondence now declares (cf. (27)) that this is equal to the gener-
ating functional in the CFT:

ZCFT[φ(0)] =
〈
exp

(
−

∫
dd x φ(0)(x)O�+(x)

)〉
=: exp (−WCFT[φ(0)]

)
(34)

The expectation value is then calculated by functional differentiation as usual, and it
can be shown [using the bulk calculation: i.e. (32) and (33)] that the result is indeed
φ(2�+−d):

〈O�+(x)〉φ(0) = −δW [φ(0)]
δφ(0)(x)

= (2�+ − d) φ(2�+−d)(x) . (35)

This formalism can be generalised to other kinds of matter fields than a scalar field φ.
The coupled gravity-matter system, including the back-reaction, can also be treated
in the same way [36, Sect. 5].

6.2 Background-Independence

In the previous subsection we concentrated on the most general form of the AdS/CFT
dictionary rather than concrete examples. With this dictionary in hand, we can now
discuss the extent to which we have a good theory of quantum gravity. Are the
basic quantities, Zstring[g(0)] and its derivatives (or, if we include matter fields,
Zstring[g(0), φ(0)]), the kinds of quantities we expect from a theory of quantum gravity?
In particular, the quantities must be invariant under the symmetries of the theory. For a
theory of gravity, this is often taken to lead to the important requirement that the theory
be ‘background-independent’. In this section we will concentrate on this question.

16 Here, we are for simplicity taking the metric to be fixed and suppressing it in the notation; also, the final
approximate equation is the analogue of (25).
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As pointed out in [13], background-independence is not a precise notion with a
fixed meaning. “[S]peaking very roughly and intuitively, a theory is background-
independent if and only if its most perspicuous formulation is generally covariant”
([13]). Intuitively speaking, this notion contains two aspects (see also [44]): (1)
general covariance; (2) absence of ‘absolute or unphysical structures’, i.e. struc-
tures that are themselves not subject to the equations of motion. These two
principles will be explicated in (i)–(ii) below, which is called the minimalist con-
ception of background-independence. Furthermore, there is an extended conception
of background-independence, which will in addition add (iii) below: roughly, the con-
dition that: (3) the boundary conditions also be background-independent.17

Before proceeding, let us cash out the difference between the minimalist and
the extended conceptions of background-independence, for gauge/gravity duali-
ties, in a simple way as follows. The minimalist conception is the requirement
of the background-independence of the bulk theory, i.e. the gravity theory in the
(d + 1)-dimensional spacetime: so it is the sense in which general relativity is
itself background-independent. The extended conception, on the other hand, is the
requirement that the duality itself be background-independent, i.e. that the boundary
conditions, which, as seen in Sect. 6, are the main ingredients of the ‘dictionary’
between the two dual sides, i.e. constituting what is physical for both sides of the
duality, be free from such background-dependence.

As stressed in [33, Sect. 2.3], the minimalist and extended conceptions of
background-independence have different aims. The minimalist conception is a min-
imal consistency requirement of a theory quantum gravity. Because the standard for
the minimalist conception of background-independence is low, this notion is closely
modelled on general relativity’s own background-independence. The extended con-
ception, on the other hand, does aim at the construction of new theories of quantum
gravity, according to some high standards. Thus this conception is a heuristic prin-
ciple for the construction of new theories. Both conceptions, when used in theory
construction, are only one out of several principles which one may wish one’s the-
ory to satisfy. Thus a quantum theory of gravity should also satisfy usual standards
of quantum theories, such as unitarity. In case of an incompatibility between several
principles, one may have to weigh the different principles against each other and judi-
ciously assess which is the more important principle to uphold. Another option is, of
course, to drop any theory that does not satisfy all of one’s principles at once: but
usually there is little motivation for such a priori approach to theory construction. Our
understanding of the minimalist and the extended conceptions is thus that the former
is the more essential principle to be preserved, while the latter can easily yield to other
principles.

17 An earlier version of this paper only mentioned the minimalist conception of background-independence.
In order to clarify the notion, and also in the light of [35] and [77], we have added an exposition of the
extended conception of background-independence, from [33]. For a careful treatment of diffeomorphism
invariance, see [34].
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6.2.1 Minimalist vs. Extended Background-Independence

More precisely, we maintain, following [33, Sect. 2.3], that minimalist background-
independence should consist of the following two requirements18:

(i) There is a generally covariant formulation of the dynamical laws of the theory
that does not refer to any background metric, background or unphysical fields,19

‘Dynamical laws’ is here understood as in Sect. 6.1, i.e. in terms of an action
and a corresponding path integral measure (alternatively, a set of classical equa-
tions of motion with systematic quantum corrections); and ‘background’ refers
to fields whose values are not determined by corresponding equations of motion.
‘Unphysical fields’ refers to fields whose degrees of freedom are not considered
to be physical, by the theory’s own lights.

(ii) The states and the quantities are invariant (or covariant, where appropriate) under
diffeomorphisms, and also do not refer to any background metric.
The first condition corresponds to the general conception of background-
independence as in the works quoted above. The second condition is novel, since
those works focus on the equations of motion without defining the physical ‘quan-
tities’ of interest. The rationale for adding a covariance/invariance condition on
the states and the quantities, and not only on the dynamics, is the conception of
a theory as a triple of states, quantities, and dynamics, that we will introduce in
Sect. 10.1. Roughly speaking, the idea is that a lack of covariance/invariance, or
dependence on a background, of the states and the quantities, is a threat to the
background-independence of the entire theory: for it would mean that some of
the states or quantities would depend on a particular background, or would not
satisfy usual standards of covariance. As we will see, gauge/gravity dualities give
insight into what those states and quantities in a theory of quantum gravitymay be.

As mentioned above, the extended conception of background-independence adds
an additional requirement:

(iii) Any putative initial or boundary conditions needed to solve the theory must also
be obtained dynamically from the theory, i.e. the dynamics of the theory must
be such that no externally imposed initial or boundary conditions are required.
That is, the same conditions of background-independence which were imposed
in (i)-(ii) on the states, quantities, and dynamics of the theory (for gauge/gravity
duality: theywere imposed on the theory on the gravity side of the duality), should
also be imposed on any boundary conditions that the theory (its states, quantities,
or dynamics) may depend on. Furthermore, the theory must be covariant under
all smooth coordinate transformations, including ‘large’ ones.

Since, in the case of gauge/gravity dualities, the boundary values of the bulk fields
contain the dynamical information about the dual theory, the requirement of extended

18 Reference [13] makes background-independence dependent upon an interpretation of a theory. Our
notion is closer to that of Pooley (2015), but also differs from his, in that we consider quantum theories.
19 An earlier version of this paper did not contain the addition of ‘unphysical fields’. We thank James
Read for pointing out the necessity of explicitly ruling out unphysical fields, e.g. for cases of some special
theories which philosophers have considered. See the discussion in [35,77].
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background-independence amounts to the requirement that the duality itself should be
background-independent (in the senses (i)–(ii)).

6.2.2 Is Gauge/Gravity Duality Background-Independent on Either of the Two
Conceptions?

We now proceed to argue that, in fact, the conditions (i) and (ii), for minimal
background-independence, are satisfied for gauge/gravity dualities.20 We will briefly
discuss condition (iii), for extended background-independent, in the last paragraph of
this subsection.

The first condition (i), is automatically satisfied because the semi-classical limit
of the bulk theory is general relativity (with a negative cosmological constant, and
specific matter fields) with a systematic series of quantum corrections: all of which
are generally covariant and contain no background fields.

As to the second condition (ii), there are two kinds of possible threats:

(a) dependence of either the states or the quantities on a choice of background metric;
(b) failure of covariance of the states and the quantities.

As for (a) naïvely, there seems to be an explicit dependence in both the states and
the quantities (24) on the boundary condition for the metric, g(0)i j (x). As we saw,
the coefficients of the solution (23), including g(d), depend on g(0). Dependence on a
boundary condition, however, is not a breach ofminimalist background-independence:
the laws must be invariant (or covariant, where appropriate) under the symmetries of
a theory, but the boundary conditions need not be: applying a diffeomorphism to the
boundary condition gives us, in general, a new solution. So one naturally expects
that physical quantities will depend on a choice of g(0). In fact, any theory whose
laws are given by differential equations will require initial or boundary conditions.
One could speak here of a spontaneous breaking of the symmetry, in the sense of
dependence of the quantities on a particular choice of solution. It is, however, important
to realise that this boundary condition is arbitrary. The boundary conditions thus
determine the parameter space of the theory. Thus, point (a) is not a threat to the
minimalist conception of background-independence. This conclusion is unmodified
by the addition of matter fields in (33), for these are covariant as well.

The second threat, (b), is more subtle. It amounts to the question whether the states
and the quantities are properly invariant (covariant) under the diffeomorphism sym-
metries of the theory. Given that the boundary conditions (in particular: g(0)i j (x)) are
the only parts of the metric that the states and quantities depend on (as per our answer
to (a)), this reduces to the question whether the states and the quantities are properly
invariant (covariant) under conformal transformations at infinity. In other words, the
question is whether the conformal symmetry is respected. By construction, this must
be so away from the boundary. The path integral (24) is invariant under conformal
transformations; but only up to divergences coming from the infinite volume of the
spacetime [53, Sect. 2]. This divergence needs to be regularized and renormalized. But
for even d, there is no renormalization scheme that preserves all of the bulk diffeo-

20 The ensuing discussion summarises [33, Sect. 2.3].
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morphisms, and the anomaly cannot be removed.21 For odd d, on the other hand, there
is no anomaly. The anomaly for even d is precisely matched by the anomaly of the
CFT when coupled to a curved background g(0)i j (x). The stress-energy tensor, rather
than transforming as a tensor, picks up an anomalous term.22 This is explicitly seen
by taking the trace of equations (30)–(31); the trace of the right-hand side of (30) is
known and turns out to compute this conformal anomaly. However, this anomaly does
not lead to any inconsistencies of the theory. Also, since the anomaly only depends on
g(0)i j (x), this is not a threat to minimalist background-independence; for, as we saw
in the case of (a), it is only covariance with respect to the bulk metric—and not the
boundary metric—that is needed.

In conclusion: although for even d the observables depend on the choice of con-
formal class and so are not diffeomorphism-invariant because of the anomaly; this
anomaly has to do with the transformation properties of the metric at infinity, which is
fixed (by boundary conditions) and not dynamical. But, on the minimalist conception,
there is no reason of principle why the observables should be invariant under these
transformations at the quantum level, since the boundary value of themetric is not being
integrated over in the path integral. Thus the theory is also background-dependent in
sense (ii).

An interesting further lesson from (b) is that the claim (dating from [62] and often
seen in the literature about background-independence) that covariance is ‘cheap’,
i.e. that it is easily realised in any theory if only the right variables are chosen, is
false. In classical theories with boundaries, as well as in CFT’s, there is an anomaly
that breaks diffeomorphism invariance and cannot be removed. Thus, we learn from
gauge/gravity dualities a general lesson for background-independence: namely, that it
is essential to: (i) consider not only equations of motion, but also quantities; (ii) one
must specify the relevant class of diffeomorphisms.

Finally, let us discuss whether gauge/gravity duality satisfies condition (iii), which
is the additional condition for extended background-independence. From the above
discussion, it is clear that the answer is no, at least for the standard formulations of the
duality, because a choice of boundary conditions is required. Though the boundary
conditions are arbitrary (and in that sense there is an independence from them), they
must be fixed externally (by hand), i.e. solving the equations requires a choice of
boundary conditions, which is arbitrary and is not made in a dynamical way. Second,
in addition to the dependence on the boundary conditions, there is also the lack of
covariance of the quantities, for even values of d (i.e. for 3-, 5- or 7-dimensional bulk
theories), which as discussed above is due to the diffeomorphism anomaly. However,
as pointed out in [33, Sects. 2.3.4 and 3.6] and [35,77], there are some cases in
which it is possible to effectively integrate the generating functional of the theory,
(24) (against appropriate boundary terms) over its set of boundary conditions, so that
there is no longer any dependence on them. Through the correspondence (27), this
then corresponds to coupling the CFT to dynamical gravity, so that the CFT itself

21 On pain of getting a stress-energy tensor that is not conserved, and so breaking a different part of the
symmetry algebra: see [38].
22 For the general expression, see [36, Sect. 4]. The two-dimensional transformation law is also in [9,
Sect. 3.1].
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becomes a theory of gravity, with its own conception of background-independence.
Thus interpreted, the extended conception of background independence amounts to
the background-independence of the duality itself, as we claimed above. For details,
see the one but last paragraph23 of Sect. 2.3.4 in [33]. As discussed in these references,
it is possible in some cases to couple gauge/gravity dualities to dynamical gravity on
the boundary in this way: whether, and it what sense precisely, this should also be seen
as necessary, is still an open problem.

7 Holography: More General Examples

As we saw in Sect. 5, the AdS/CFT correspondence between N = 4 superconfor-
mal Yang-Mills and string theory on AdS5 × S5 is obtained by a careful study of
the dynamics of D3-branes in the appropriate limits. More generally: analysing brane
dynamics can provide very strong evidence for particular instances of the AdS/CFT
correspondence, where the field theory and dual supergravity theory can both be
exactly identified.

For example, another well-studied duality is that arising from a configuration of D1
and D5-branes, where the D1-branes are coincident with (one direction of) the D5-
branes. The corresponding CFT lives on this (1+1)-dimensional D1–D5 intersection
and is called the D1-D5 CFT; the relevant supergravity solution is AdS3 × S3 × X4,
where X4 is some compact four-dimensional manifold that the D5-branes are wrapped
around (see [63]).

We will return to the D1–D5 system again in Sect. 9, when we discuss the three-
charge D1-D5-P black hole and its dual CFT description.

One can investigate the AdS/CFT correspondence further than these brane-
motivated instances. For many practical purposes, it is not really necessary to know
the entire content of the dual field theory, but only specific sectors and properties of
it. We take this up in Sects. 7.1 and 7.2.

7.1 ‘Bottom-Up’ and ‘Top-Down’ Approaches to Condensed Matter and QCD

One area where the AdS/CFT correspondence is illuminating, even though we do
not fully know the dual field theory, is in studies of strongly coupled CFTs that are
motivated by condensed matter systems or quantum chromodynamics (QCD).

Certain systems in condensed matter are suspected to be strongly coupled in nature,
making their study very difficult using conventional field theory approaches. AdS/CFT
provides a way of studying such strongly coupled phenomena. For example, certain
high-temperature superconductors are expected to be described by a strongly coupled
field theory. Typically, it is not really possible to construct an exact brane-motivated
duality for the field theory of a given condensed matter system. However, one can
still study the qualitative behaviour of such strongly-coupled field theories, e.g. super-
conductivity, by using the AdS/CFT correspondence. One introduces into the bulk

23 The last but one paragraph of Sect. 2.3.4 of [33] wrongly quotes [36] for cases of more general boundary
conditions. It should read: De Haro (2009)!
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theory only the ingredients which are necessary to obtain superconductivity in the
field theory: for supergravity, this is simply a gauge field and a charged scalar field.
One can remain agnostic about the remaining details and field content of the field the-
ory (and of the supergravity theory) since these will typically not affect the qualitative
behaviour.24

In such a holographic model of superconductivity, one can distinguish two
phases depending on the temperature. For high temperatures, the dominant phase
will be a (hairless) charged25 black hole. The charged scalar field is simply zero
everywhere in this supergravity solution—this is dual to the field theory’s normal
(non-superconducting) phase. Below a critical temperature, the supergravity solution
that will dominate is that of a charged, “hairy” black hole. The hair of the black hole
refers to the fact that the charged scalar field nowhas a non-trivial profile. The non-zero
value of the scalar field at infinity is dual to a vacuum expectation value for a scalar
field in the dual field theory—the charged scalar condensate that is the order parameter
for the superconducting phase. Further properties of these holographic superconduct-
ing phases can also be calculated holographically; and they match what one would
expect in a superconductor. However, in these holographic superconductors, there do
not seem to be any readily identifiable quasiparticles present that are responsible for
the conducting properties; this is unlike the standard BCS low-coupling description of
superconductivity where these quasiparticles are the Cooper pairs of electrons. Holo-
graphic superconductivity may thus provide an interesting viewpoint on the behaviour
of recent experimental high-temperature superconductors, which indeed do not seem
to be well-captured by the standard BCS theory.

The type of model just described is called ‘bottom-up’, since one simply introduces
into the bulk theory the ingredients needed to study the relevant phenomenon in the
field theory, even though the exact duality is not known (or needed). In contrast, studies
of strongly coupled dynamics using brane-motivated dualities, which give the exact
field content of the two dual theories, are called ‘top-down’ models.

Another example of a strongly coupled field theory where both top-down and
bottom-up models are used to model it is quantum chromodynamics (QCD). QCD
is notoriously hard to study in the regime we are typically interested in, i.e. its con-
fining phase where it confines quarks and gluons to nucleons such as protons and
neutrons. This is because in these regimes, QCD is strongly coupled—invalidating
pertubation theory approaches. Even though the exact holographic dual to QCD is not
known, one can use the AdS/CFT correspondence to study certain aspects of strong
coupling in theories closely related to QCD. Of course, only qualitative results can be
obtained, sincewe cannot study the exact holographic dual ofQCD26; but these already
provide valuable insights into otherwise calculationally intractable phenomena. For
example, confinement and the transition between confinement and de-confinement in

24 Holographic superconductivity was first introduced by [49].
25 The black hole (hairy or not) must be charged in order to give the dual field theory a finite charge density.
26 There are a number of reasons why we are not able to study the exact holographic dual of QCD. First of
all, QCD is not conformal—although holography has been extended to include some non-conformal field
theories as well. An example of one of the more serious problems is that, for QCD, N = 3, while we saw
that quantum corrections are only suppressed in holography if N � 1.

123



Found Phys (2016) 46:1381–1425 1405

strongly coupled gauged theories can be studied with holography.27 Holographically,
this phase transition is the transition between a black hole geometry (de-confining
phase) and the so-called AdS-soliton (confining phase); one can prove that the AdS-
soliton indeed describes a confining phase by calculating the behaviour of Wilson
loops in this background.28

One can try to study other properties of QCD by constructing various models in
holography. The top-downmodel introduced by [81] is a holographic theory involving
a strongly-coupled gauge theory with a large number of colors (gluons), with flavors
(quarks) introduced. This theory exhibits confinement; also for example, the spectrum
of meson masses has been calculated in this theory and been compared to QCD.
Another top-down holographic model is the D3-D7 model, first introduced by [59],
and later expanded upon in a number of ways (see e.g. [16]). This model only has
a deconfining phase and is used to study aspects of the quark-gluon plasma. This
(deconfined) quark-gluon plasma is exactly the state of QCD matter that is formed
at the Relativistic Heavy Ion Collider (RHIC) and LHC experiments with heavy-ion
collisions. It is very difficult to study the quark-gluon plasma with traditional QCD
methods as the theory is strongly coupled (even though it is deconfined); holography
has provided an opportunity to study aspects of such phases ofmatter—even thoughwe
are not studying the holographic dual to QCD itself. We will return to the quark-gluon
plasma and its viscosity as calculated holographically at the end of Sect. 7.2.

7.2 Hydrodynamics and Holography

In the same spirit as Sect. 7.1’s bottom-up approaches to qualitative properties of
strongly-coupled field theories, it is also possible to use the ideas of holography to
study the hydrodynamic approximation to a field theory. We begin by recalling the
hydrodynamic description of a classical fluid.

Hydrodynamics is an approximation to the dynamics of a fluid, where one averages
over themanymicroscopic degrees of freedom to obtain amacroscopic description that
depends on only a fewmacroscopic quantities such as the local (timelike) four-velocity
uμ, density ρ, and pressure P . This approximation will only be valid if the fluid is
approximately homogeneous, i.e. these macroscopic quantities vary slowly over the
fluid.29 The hydrodynamic approximation can be improved by including terms with
more and more derivatives of uμ; in other words, hydrodynamics is a perturbative
expansion in the number of derivatives of uμ. At each level in derivatives, all the
possible terms that one can construct with n derivatives introduce new constants. For

27 Holographic confinement was first noticed by [101].
28 AWilson loop in field theory is the (path-ordered) exponential of the integral of the gauge field around a
loop in spacetime. For a field theory to be confining, one expects aWilson loop to scale with (the exponential
of) the area that the loop encloses. A Wilson loop is holographically dual to a string worldsheet area in the
bulk that ends on the Wilson loop in the boundary.
29 To be a bit more precise, the length scale lhydro at which we are using hydrodynamics should be much
larger than the mean free path lmfp of the fluid particles: so lhydro � lmfp.
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example, at first order in derivatives, we have for the energy-momentum tensor:

T μν = [
ρ uμuν + P (uμuν + gμν)

] + [−2η σμν − ζ θ(uμuν + gμν)
]
, (36)

where σμν and θ are particular terms30 containing one derivative of uμ. Thus at zeroth
order in derivatives, there are no unspecified coefficients31 beyond the local functions
uμ, P, ρ. But at first order, we see that two new coefficients need to be specified: the
shear viscosity η and the bulk viscosity ζ . At second order, we would see an additional
fifteen independent coefficients.

All of these coefficients in the derivative expansion are in principle fixed by the
microscopic details of the theory: they are an input in the hydrodynamical approx-
imation. But if the underlying microscopical field theory is strongly coupled, it can
be practically impossible to calculate, from within the theory, the hydrodynamical
coefficients such as the two viscosities.

However, once again, holography can help in this regard. Using the AdS/CFT
correspondence, the hydrodynamical expansion of the energy-momentum tensor T μν

corresponds to an (also derivative) expansion of the (asymptotically) AdS metric Gμν

(as in equation (22)) on the gravity side. The coefficients of the derivative expansion
of Gμν on the gravity are completely fixed by the (classical) equations of motion for
the metric; using the correspondence then gives the hydrodynamical coefficients of
T μν .

In this way, one can easily prove32 that for any conformal field theory dual to
Einstein gravity, we have:

η

s
= 1

4π
, (37)

where s is the entropy density of the fluid.
This result attracted attention33 in the experimental world of heavy ion collisions.

In these collisions, the quarks and gluons of the ions briefly coalesce in a quark-
gluon plasma, which is thought to be a strongly coupled fluid. The experimentally
measured ratio of η/s of the quark-gluon plasma is extremely low—comparable to
1/(4π)—this cannot be explained using any conventional (weak coupling) description
or intuition. Thus the AdS/CFT correspondence provided a tantalizing model in which
the shear viscosity of a strongly coupled fluid could be calculated from first principles;
moreover, the calculation seems to agree qualitatively with the experimental results
about the quark-gluon plasma.

30 For completeness: σμν = ∇(μuν) + u(μaν) − 1
3 θ(uμuν + gμν), θ = ∇μuμ, aμ = uν∇νuμ.

31 However, one does need to supplement the equations of motion with a equation of state that determines
P(ρ).
32 This was originally calculated for N = 4 SYM in [76] and generalized to any CFT with an Einstein
gravity dual in [61] and [20]; reviews of the viscosity/entropy ratio in holography are e.g. [85] and [30].
33 See e.g. [82] for a review from an experimental point of view.
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8 Holographic Theories of de Sitter Space?

Current cosmological observations suggest that we live in a universe with an acceler-
ating expansion (see e.g. [73]). This means that, to a good approximation, our universe
can be described by a spacetime with a positive cosmological constant, an approxima-
tion that becomes better and better towards the future, as the universe keeps expanding
and the matter content becomes relatively less important. So, to the extent that we are
interested in global questions, independent of the detailed matter content of the uni-
verse, a spacetime with a positive cosmological constant provides a good model for
the future of our universe.

Just as pure anti-de Sitter space is the maximally symmetric solution of Einstein’s
equations with a negative cosmological constant (see Sect. 2, Eq. 1), de Sitter space
(henceforth: dS) is the maximally symmetric solution of Einstein’s equations with
a positive cosmological constant. If a holographic description could carry over to
such spacetimes, this would open up the prospect of doing holography for our actual
universe!

One such proposal is the so-called dS/CFT correspondence, where it is assumed that
aCFTdescription of de Sitter spacetime exists. Clearly, dS/CFTwould be amuchmore
realistic model of the universe than AdS/CFT; because of its possible cosmological
importance, the dS/CFT proposal deserves to be given serious thought.

In Sect. 8.1, we will review some of the difficulties that face any theory of gravity
in de Sitter space. None of these are specific to dS/CFT; they are features of the de
Sitter space itself, which constitues a time-dependent background. Then in Sect. 8.2,
we will review the progress that has so far been made in solving these problems, and
in developing a holographic description of de Sitter space.

8.1 de Sitter Spacetime and Its Difficulties

Let us briefly describe the main features of de Sitter spacetime: features by which it
resembles its cousin AdS, but with positive cosmological constant. Similarly to AdS
in D dimensions (see Eq. (2)), dSD is best introduced via a quadratic equation in a
(D + 1)-dimensional embedding spacetime with one timelike direction:

− Y 2
0 +

D∑

i=1

Y 2
i = �2 . (38)

This now resembles the equation for a sphere of radius � (positive curvature), rather
than a hyperboloid (negative curvature), save for the presence of one timelike direction.
As in theAdScase (see (3)), the above embedding equation can be solved by a judicious
choice of coordinates, to find the following global coordinates:

ds2 = −dt2 + �2 cosh2(t/�) d	2
D−1 , (39)

with 	D−1 representing a (D − 1)-sphere. The topology of this solution is that of a
cylinder, with t parametrising the symmetry axis. The spatial volume of the universe
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is set by the factor (� cosh(t/�))D−1, and there is both a contracting phase and an
expanding phase. As time passes from t → −∞ to t = 0, the size of the universe
shrinks to a sphere of radius �; after this phase, the universe expands, its volume
growing without bound as t → ∞. Notice that, unlike AdS space, the spatial slices
of dS space are compact for any finite value of t : at any given t , the spatial geometry
is that of a sphere.

An alternative set of coordinates that covers a local patch between t = 0 and t → ∞
is the following:

ds2 = �2

η2

(
−dη2 + dx2

)
, (40)

which is the analog of (8) for AdS. In these coordinates, η = 0 parametrises future
timelike infinity (where the volume of the space is infinite), which is now a spacelike
boundary of the manifold.

We now describe some of the challenges presented by de Sitter space. Again, none
of these are specific to a particular holographic proposal: rather, they are intrinsic
difficulties about this time-dependent background that any theory of quantum gravity
will have to resolve:

• The geometry is time-dependent and there is no positive conserved energy (there
are no timelike Killing vectors).

• The space is expanding, hence each observer has a horizon surrounding them. In
other words, because of the rapid expansion, each observer can only see part of
the space. This horizon leads to an Unruh effect of particle creation in any state
of a quantum field, with a temperature T = h̄c

2πkB�
. Similarly to the case of black

holes (see Sect. 9), there is an entropy associated with this temperature, and it is
equal to one quarter of the horizon area, in Planck units. Unlike black hole entropy,
however, this entropy is associated with an observer’s cosmological event horizon
surrounding them. The physical interpretation of the microstates associated with
this horizon is therefore rather unclear. See e.g. [86].

• There is no standard theory with unbroken supersymmetry on dS as a back-
ground. However, de Sitter space has been found in some supergravity orM-theory
constructions. Usually these involve a warped product of de Sitter space with a
non-compact ‘internal’ space, or unconventional supergravity theories, which have
some kinetic terms with the ‘wrong’ sign or have other unconventional features;
see e.g. [26,56,58]. Also, de Sitter space is not known to be a stable solution of
string theory, though it can be realized in string theory as a meta-stable solution:
see [57].

8.2 The Possible dS/CFT Correspondence

It has been conjectured that there is a CFT describing quantum gravity in four-
dimensional de Sitter space. Because of the causal structure, this CFT should live
at timelike future infinity (η = 0 in the coordinates (40)) rather than at spatial infinity.
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Clearly, if such a CFT exists, its properties would be quite different from those of the
dual in AdS/CFT. We will discuss two related proposals in Sects. 8.2.1 and 8.2.2.

8.2.1 Analytic Continuation

As it turns out, interesting information can be extracted by analytic continuation from
Euclidean AdS4. By ‘analytic continuation’, we mean �AdS → −i�dS, which cor-
responds to � → −�.34 Under such analytic continuation, the timelike boundary
r = ε of AdS (in coordinates (8)) gets mapped to the spacelike de Sitter boundary
η = ε (in coordinates (40)), where ε → 0 is a cutoff introduced to regulate the large-
volume divergences: see the discussion of (ii)(b) in Sect. 6.2. Under this proposal, the
analytically continued AdS4/CFT3 partition function, ZCFT[φ(0), ε] of (34), can be
interpreted as the late-time wave-function in de Sitter space:

�[ϕ(0); ε] = 〈ϕ(0); ε|0〉 := A (
ZCFT[φ(0); ε]) , (41)

where A is the operation of taking the analytic continuation. The de Sitter time η =
ε → 0 is close to timelike future infinity, so the result of this is the overlap between:
on the one hand, the Bunch-Davies (Hartle-Hawking)35 vacuum for de Sitter space
|0〉, which acts as a boundary condition in the past; and the final state 〈ϕ(0); ε| in the
future, where the fields are held fixed. In a similar way to how fields are held fixed at
the spatial boundary of AdS, fields are now to be fixed at future timelike infinity.36

The specific connection to Euclidean AdS given here is due to [65,68]. Thus the
current proposal has been called the Hartle-Hawking-Maldacena proposal; though the
general dS/CFTproposalwas anticipated byStrominger [87],Witten [102], and others.

The dS/CFT proposal is particularly attractive because it means that many of
the ideas and techniques available in AdS/CFT can be carried over, with appropri-
ate modifications, to de Sitter space. Furthermore, the prospect that our universe is
(approximately) described by a three-dimensional CFT is in itself an interesting one;
for, at least in certain regimes, the CFT is expected to be simpler than a theory of
quantum gravity. If, as suggested in footnote 36, the CFT contains dynamical gravity,
then this will be a simpler theory at any rate (conformal, and three-dimensional). More
specifically: in the holographic proposal, the absence of Killing vectors and the time
dependence (i.e. first bullet point in Sect. 8.1) are not a problem, since one is interested
in the late-time quantities, including the quasilocal energy as defined there. Also, as
regards Sect. 8.1’s second bullet point: the CFT may suggest natural interpretations
for the microstates associated to the entropy. Thirdly, as to the third bullet point: it may
be simpler to try to define the ultraviolet behaviour of a CFT (or, indeed, to directly
embed it in string theory or M-theory) than that of quantum gravity in de Sitter space.
Needless to say, the proposal is still a conjecture and it is not known whether such a
CFT exists.

34 Depending on the coordinates chosen, one also needs to analytically continue one of the coordinates.
35 This is the unique wave-function obtained by analytic continuation from the 4-sphere.
36 There is evidence that one may also need to integrate over these final configurations. If so, the boundary
theory will be a theory of gravity, rather than an ordinary CFT.
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8.2.2 Higher Spin Theories

There is a related, but in principle very different, proposal for dS4/CFT3 (see e.g. [5]).
The idea is to consider not just any theory of quantum gravity in de Sitter space, but
a specific one: the theory of higher spins developed by Vasiliev and others ([96,97]).
This is a theory of massless higher spins (of any helicity, including those higher than
2) with unbroken symmetry. There are no-go theorems against the existence of such
interacting theories in flat space, but it turns out that the no-go theorems do not hold
in spaces with positive or negative cosmological constant, where the theories do exist
and contain an infinite number of such fields with all possible spins.37

In AdS4/CFT3, there is good evidence that the CFT3 dual of the Vasiliev higher-
spin theory is a known field theory, namely the O(N ) vector model. The analytic
continuation � → −� mentioned in Sect. 8.2.1 yields N → −N on the CFT side
(since N = 1

GN h̄ �
). This latter ‘analytic continuation’ can effectively be realized by

changing the group O(N ) to Sp(N ). The proposal is then that the Vasiliev higher-spin
theory in the bulk of dS4 (with certain boundary conditions) is dual to the Sp(N ) vector
model (or a model with another gauge group, depending on the boundary conditions)
where thefields are anti-commuting. For the ‘non-minimal’Vasiliev higher spin theory,
one encounters (([5–7])) three-dimensional Chern-Simons theory with gauge group
U(N ), rather than the vector model.

The higher-spin proposal seems appealing because it advances concrete CFT’s—
namely the Sp(N ) and U(N ) models—to correspond to specific choices of theories
and boundary conditions in de Sitter space. In these theories, concrete calculations—
classical and quantum—can be carried out, and have been carried out, though
comparisons with the bulk remain qualitative (see e.g. [72]). The proposal has most
of the virtues of the analytic continuation proposal in Sect. 8.2.1, since it is itself the
analytic continuation of the higher-spin theories in the context of AdS/CFT. One draw-
back is that an action principle for the Vasiliev theory is not known; only its equations
of motion are known—so the quantities (41) cannot be calculated independently on
the bulk side. The main theoretical difference from the proposal in Sect. 8.2.1 is that
there is no embedding in string theory or M theory,38 and the bulk theories involved
(theories with an infinite number of higher-spin fields) are significantly more involved
than classical general relativity.

9 Black Holes and Holography

In gravitational physics, black holes have long been enigmatic objects. Almost a cen-
tury after Schwarzschild’s discovery of the first black hole solution in general relativity,
their properties are still not completely understood. Holography offers us an interest-
ing new avenue to try to obtain new insights into the true nature of black holes in

37 String theories contain a tower of massive string modes with spins higher than 2. It has thus been
conjectured that the higher spin theories correspond to the high-energy limit of string theories [47,98],
where the string tension and hence the string mass goes to zero.
38 Unless higher-spin theories are indeed related to the high-energy limit of string theory, as in the suggestion
quoted in footnote 37.
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string theory. In Sect. 9.1, we recall the Bekenstein-Hawking formula for black hole
entropy, and then review how Strominger and Vafa’s counting of a particular black
hole’s microstates anticipated the AdS/CFT correspondence. Then in Sect. 9.2, we
sketch some proposals for extending gauge/gravity ideas to other black holes.39

9.1 Black Hole Entropy and Microstates

One of a black hole’s most confusing properties is its entropy. Using a thought exper-
iment that considers the total entropy of a system before and after matter travels into
a black hole, Bekenstein [11] and Hawking [50,51] argued that: (i) a black hole must
be assigned an entropy; (ii) this black hole entropy should be the maximum entropy
possible for a system; (iii) the amount of entropy that the black hole carries must be
proportional to the area ABH of its event horizon:

SBH = kBc3

h̄G

ABH

4
, (42)

where we havemade the factors h̄, G, c, kB explicit to show how all these fundamental
constants are combined in this simple, but beautiful and important, formula.

The formula (42) for the black hole entropy is confusing for a number of reasons.
First of all, one expects entropy to be an extensive quantity that scales with the volume
of a system instead of with its area, since the degrees of freedom of a system are
expected to scale with the volume of the system. Thus it seems that (42) already gives
us a hint that, fundamentally, the degrees of freedom for gravity live on an area (instead
of in a volume)—as would be expected from holographic ideas.

A thermodynamic entropy is traditionally explained by a statistical mechanical
counting of possible microstates for the given macrostate. The entropy S of a given
systemwith fixedmacroscopic charges is then given by counting the number (or phase
space volume) 	 of microstates that this system can be in:

S = kB log	. (43)

Assigning an entropy to a black hole thus implies that we should consider our descrip-
tion of the black hole as a thermodynamic coarse-graining of some sort of statistical
mechanical description. Applying this conclusion to string theory: this implies we
should be able to find microstates of a black hole in string theory: so it is natural to
wonder what these microstates could possibly look like, and what their properties are.

In this quest, a first important breakthrough was made by Strominger and Vafa
(1996). They managed to count the microstates of a three-charge D1-D5-P (P being
a momentum charge) supersymmetric black hole in string theory. This is not just a
particular black hole; it is also special in being extremal: we will turn to non-extremal

39 There are many reviews and lecture notes on different aspects of black holes. Black holes and their
properties in general relativity are discussed in the excellent lecture notes of [95]. Some reviews for the
hunt for microstate geometries, and the fuzzball proposal (Sect. 9.1) are [14,15,70]. Kerr/CFT and other
similar approaches (Sect. 9.2) are reviewed in [29].
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black holes in Sect. 9.2.40 In holographic terminology, Strominger and Vafa were
able to perform a combinatoric counting of the relevant CFT microstates that should
correspond to the black hole in the dual gravity theory. In other words, they could
identify the microstates of the black hole exactly—at least in the CFT description
dual to the black hole. Then, their combinatoric CFT computation gave them the
microscopic entropy (43), which matched beautifully with the known result for the
entropy (42) of the three-charge black hole in the dual supergravity theory.

Interestingly, Strominger and Vafa (1996) performed their holographic microstate
counting before the advent of [63] and his introduction of AdS/CFT holography.
They were influenced by earlier ideas by e.g. [91] about interpreting black holes in
string theory. Thus various works, including [91] and Strominger and Vafa (1996), set
the stage for the Maldacena’s AdS/CFT proposal. In hindsight, the Strominger–Vafa
calculation can be seen as a prime example of the AdS/CFT correspondence, where
the CFT living on the D1-D5 branes is identified with the asymptotically AdS3 black
hole solution of the D1-D5 branes.

While itwas possible in this andother specific examples to identify (or at least count)
microstates explicitly in the dual CFT, this does not mean that these microstates are
readily identifiable in the dual gravity description. In principle, supergravity black hole
microstates should be horizonless (so that they each carry zero entropy) and smooth
(since they should be well-behaved solutions). However, it is not at all clear that
generic microstates of a black hole will be smooth or otherwise well-behaved in the
supergravity approximation. It could be that the microstate geometries are inherently
stringy in nature, so that a good description requires the intricate machinery of the full
string theory. The search for (well-behaved) supergravity microstates and for ways
of counting them is an active area of research and often goes under the name of the
‘fuzzball proposal’.

9.2 Kerr/CFT and Non-extremal Black Holes

The three-charge black hole considered in the Strominger–Vafa calculation (described
in Sect. 9.1) is asymptotically flat. However, holography is possible because we can
zoom in to the near-horizon region of the black hole and throw away the asymptotically
flat part of the solution, leaving us with an asymptotically AdS3 × S3 × X4 spacetime
(where X4 is a compact four-dimensional manifold). This ‘zooming-in’ procedure is
completely analogous to the decoupling limit described in Sect. 5 for D3-branes and
AdS5 × S5: it is essentially a low-energy limit, where the excitations far away from
the branes decouple from the excitations near the branes.

The fact that such a decoupling limit is possible is a feature that is shared by many
other extremal black holes where we have a clear picture of how the black hole arises
from (various species of) branes. In most such cases, the field theory on the branes

40 An extremal black hole is a black hole that, loosely speaking, has the maximal amount of charge possible
for a given mass. What this charge exactly is depends on the black hole. In perhaps the simplest example of
an electrically charged, spherically symmetric black hole (the Reissner-Nordstrom black hole), this means
that in geometric units, the mass is equal to the charge, M = Q. Of course, it is not a coincidence that this
“maximal charge” condition is often precisely the BPS bound defining supersymmetric states.
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in question is then dual to the AdS space that arises in the near-horizon limit of the
black hole geometry. This readily provides an interpretation and description in the
dual CFT of the extremal black hole considered. However, we emphasise that there
is no universally accepted way to provide a CFT dual to a general extremal black
hole, especially when no brane picture is readily available. The Kerr solution (or Kerr-
Newman, when charges are turned on as well) is a solution describing a rotating black
hole. The angular momentum of this black hole can be taken to be maximal to get an
extremal solution.However, even for this extremalKerr(-Newman) solution, there is no
immediate brane description available. Accordingly, ‘the Kerr/CFT correspondence’
is a generic name for attempts to provide CFT dualities for larger, general classes of
black holes.

Furthermore, extremal black holes are not very realistic. Generic, non-extremal
black holes are expected to radiate thermally in thewell-known phenomenon ofHawk-
ing radiation, by which we can associate a temperature to the black hole. However,
extremal black holes have zero Hawking temperature and are thus not expected to radi-
ate. If a black hole is very close to being extremal, the non-extremality can be viewed
as a small perturbation; this translates into a slight deformation of the decoupling-limit
AdS space. However, for a fully non-extremal black hole, it becomes impossible to
perform any meaningful decoupling limit; the excitations near the black hole become
inexorably entangled with the excitations far away.

Nevertheless, a fewmeaningful hints pointing towards holographic descriptions for
these black holes also exist. In the program of hidden conformal symmetry (introduced
in Castro et al. (2010)), it was realized that general, non-extremal rotating black holes
exhibit sl(2)× sl(2) symmetry in a certain low-energy limit of the equation of motion
for a probe scalar field moving on the black hole solution as background. Such a
symmetry is reminiscent of CFTs, but is globally broken to U(1) ×U(1), making the
symmetry ‘hidden’.

A separate but related approach is that of subtracted geometries. Cvetic and Larsen
(2011) argued that the thermodynamics of a general, non-extremal black hole in 4D
or 5D is independent of a particular warp factor in the metric that controls its (asymp-
totically flat) asymptotics. Thus, one can imagine changing this warp factor by hand
to have different asymptotics, without actually modifying the black hole itself. Cvetic
and Larsen considered a particular choice for this warp factor that allowed an imme-
diate uplift to a higher-dimensional AdS3 × Sd spacetime (with d = 2, 3 depending
on the initial black hole), thus immediately suggesting a dual CFT description of the
black hole. It is not entirely clear how relevant this CFT description can be for the
original, asymptotically flat black hole—see e.g. [8].

These approaches are certainly very suggestive, but it should be emphasized again
that no convincing suggestions exist for how to treat general non-extremal black holes
holographically. Suffice it to say that, if holography is indeed valid for all gravitational
theories, there should always exist a theory without gravity in which the black hole,
its dynamics, and its microstates are completely and equivalently described. However,
this dual theory may in general be a very complicated theory that bears almost no
resemblance to the CFT descriptions of extremal black holes that are currently well
understood.
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10 Philosophical Aspects

This section discusses how gauge-gravity duality bears on two philosophical topics:
(i) how physical theories should be individuated, and thus the conditions under which
two apparently different theories are really the same (Sect. 10.1); (ii) the conditions
under which one theory, or a feature of the world described by a theory, can be said to
be emergent (Sect. 10.2).41

10.1 The Equivalence of Theories

From Sect. 1 onwards, we have described our versions of gauge/gravity duality as
involving what we called ‘equivalent theories’. And in Sect. 6.1, this was made a bit
more precise. Namely, we took a theory to be given by a state-space, equipped with
various structures, especially a set of quantities and a dynamics; and we took a duality
to be a bijective structure-preserving mapping between theories thus understood. The
idea was thus that two theories being equivalent is a matter of their ‘saying the same
thing’, as shown by the duality mapping. See, in particular, the last paragraph of
Sect. 6.1.1.

We will now briefly develop this construal of duality, with five comments: each
leads in to the next. But the first two are general, while the others are specific to
gauge-gravity duality (though some remarks clearly apply equally to other dualities
in string theory). For all five comments, two points apply: (i) we will assume the
duality holds exactly (a substantive assumption, since the dualities we have reviewed
are unproven!), so that whether the dual theories are equivalent is indeed an issue; (ii)
there are more details in the references cited in footnote 41.

(1) PrecisionThis construal of duality can bemade precise, with simple formal defini-
tions of what a theory, and a duality, are. We define a theory as a triple, 〈S,Q, D〉,
consisting of: a state-space S (classically, some sort of phase space; and in a
quantum theory, a Hilbert space); a set of quantities Q (classically, some class
of real-valued functions on phase space, and in a quantum theory, typically some
class of self-adjoint operators); and a dynamics D, which we will express in the
‘Schrödinger-picture’, i.e. as a time-evolution of states. States and quantities are
assignments of values to each other. So there is a natural pairing, and we write
〈Q; s〉 for the value of Q in s. In classical physics, we think of this as the system’s
intrinsic possessed value for Q, when in s; in quantum physics, we think of it as
the (orthodox, Born-rule) expectation value of Q, for the system in s. Agreed:
one could add other components to this construal of ‘theory’, additional to these
three: such as a set of symmetries (of various kinds: dynamical, gauge), and a set
of parameters. But we will not need to do so.
We then take a duality to be an isomorphism, in the obvious sense, between two
theories 〈S1,Q1, D1〉 and 〈S2,Q2, D2〉. By this,wemeanbijectionsds : S1 → S2
and dq : Q1 → Q2, between the theories’ sets of states, and sets of quantities,
respectively, that “mesh” appropriately with: (i) the assignment of values 〈Q; s〉

41 Our views on these topics are given in more detail in: [33], [37] for (i); and [33], [39] for (ii).
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; and (ii) the dynamics. Thus for (i), we require, in an obvious notation:

〈Q1; s1〉1 = 〈dq(Q1); ds(s1)〉2 , ∀ Q1 ∈ Q1, s1 ∈ S1. (44)

For (ii), we require that ds commutes with (is equivariant for) the two theories’
dynamics; i.e. the group actions DSchi of IR on Si :

ds(s1(t)) ≡ ds(DSch1(t, s1)) = DSch2(t, ds(s1)) , ∀ t ∈ IR, s1 ∈ S1. (45)

Equations (44) and (45) appear to be asymmetric between T1 and T2. But in fact
they are not, thanks to the maps d being bijections.
Thus we have adopted the definition of ‘duality’ that is obvious and simple, given
our conception of ‘theory’. One could strengthen the definition in various ways:
for example, to require that ds be unitary for quantum theories etc. And of course,
there is a whole tradition of results relating the requirement of matching values
(44) to such strengthenings: the obvious one in quantum physics being Wigner’s
theorem that the map’s preserving all the transition probabilities implies its being
unitary or anti-unitary. But we do not need to pursue such strengthenings.

(2) Beware: ‘disjoint but isomorphic’ At this point, a warning is needed. Formal
isomorphisms of the kind just discussed cannot guarantee that two theories are
equivalent in the sense we have intended: that they ‘say the same thing’, in the
sense of asserting (a) the very same properties and relations about (b) the very
same subject-matter. For it seems that the world could contain two distinct, indeed
non-overlapping, subject-matters—or in other words: sectors or realms—each of
whose constituent objects have distinctive properties and relations, that are not
instantiated in the other subject-matter—and yet the pattern of instantiation of
the two sets of properties and relations could be formally the same, so that there
is a duality isomorphism of the kind defined in (1). That is: although the subject-
matters are utterly different, two theories of the two subject-matters could be
duals—even while each theory is wholly true about its subject-matter.
To sum up: ‘saying the same thing’ , as in (a) and (b), is a matter of semantics, of
what words refer to. And what a word refers to is settled by various (usually com-
plex) conventions rooted in the contingent history of how the word was first used,
and how that usage developed—matters which are very unlikely to be captured
by formal isomorphisms of the kind defined in (1)!
Agreed: we can still claim that theories that are duals in the sense of (1) can be
equivalent: they can ‘say the same thing’. More positively: by explicitly appealing
to the notion of reference, we can characterize when they will do so. Namely: they
do so—they are equivalent—provided the conventional reference in each theory
of one of its words w is the same ‘hunk of reality’ as the conventional reference
in the other theory of the word w′ that corresponds to w in the duality mapping
(the ‘dictionary’).
So much for generalities. We now discuss how gauge-gravity duality illustrates
the themes in (1) and (2): comment (3) discusses the definitions in (1); comments
(4) and (5) discuss the warning in (2).
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(3) AdS/CFT exemplifies the definition of ‘duality’ We maintain that AdS/CFT, as
summed up in Sect. 6.1’s (24) and (27) for pure gravity, and in (33) and (34) for
matter fields, does exemplify comment (1)’s abstract definition of ‘duality’.
To justify this claim would obviously require some work: for Sect. 6.1’s bulk
and boundary theories are not given to us with a precisely defined state-space,
set of quantities, or dynamics. It would also obviously require some flexibility—
some generosity!—about what counts as a justification in the present state of
knowledge. For at present, no one knows how to rigorously define these theories:
not just the string theories on the bulk side, but also the conformal field theories
on the boundary side. For example, to rigorously define the generating functional
in a quantum field theory, as in the r.h.s. of (34), requires knowledge of the full
non-perturbative structure of the theory, which is at present available only for very
few quantum field theories (mainly: topological QFT’s, and field theories in two
dimensions).

(4) The consensus despite the warning The consensus in the string theory community
is that, despite our warning in (2), and the disparity of the apparent subject-matters
of the two theories in AdS/CFT (Sects. 5 and 6)—e.g. their differing about the
dimension of spacetime, andwhether it is curved—the two theories are equivalent.
A bit more precisely (and—to repeat—assuming that the AdS/CFT duality holds
exactly): the consensus is that the two theories ‘make exactly the same claims’—
not just about observational matters but also about unobservable, i.e. theoretical,
matters. As the physics jargon has it: they ‘describe the same physics’.42

And many—indeed, we think: most—philosophical commentators endorse this
consensus, including for our case of gauge/gravity duality; e.g. [32, Sect. 6.2],
[33, Sect. 2.4], [39, Sect. 3.3.2], [55, Sects. 2.1, 2.2], [69], [78, Sects. 2.3, 5.3],
[80].

(5) Theories of the universe, and the internal point of viewThere is anobvious explana-
tion for why string theorists disregard the warning in (2), and adopt the consensus
reported in (4). For string theory is often taken to be aiming to provide a ‘theory
of everything’, i.e. a theory of the whole universe. And in that kind of scientific
enterprise, the idea of distinct but isomorphic subject-matters tends to fall by the
wayside. For such a theory, there will be, ex hypothesi, only one subject-matter to
be described, viz. the universe. Besides, the theory will probably also aim to state
enough about the relations between the many sub-systems of the universe, so that
no two sub-systems will get exactly the same description; so that even at the level
of sub-systems, there will not be distinct but isomorphic subject-matters.43

42 Besides, this consensus is held not only for AdS/CFT, and the more speculative gauge-gravity dualities
of Sects. 7 to 9: but also for other remarkable dualities in string theory, such as T-duality. As wementioned in
Sect. 4, this is a duality in which the two theories apparently differ about the radius of a compact dimension
of spacetime. Roughly speaking: where one theory says the radius is R, the other says it is 1/R: a recent
philosophical reference is [55, Sects. 2.1, 2.2].
43 We should also note another aspect of the consensus reported in (4). Many string theorists hope that
pressing the idea that the two dual theories are equivalent, despite their striking differences, will help them
to formulate a better theory (the much-sought M theory!) that will underly the present theories in something
like the way a gauge-invariant formulation of a theory underlies its various gauge-fixed formulations. For
a more detailed comparison of dualities and gauge symmetries, cf. [37].
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Finally, we note that in the context of seeking a theory of the whole universe, one
might go further than setting aside the possibility of distinct but isomorphic subject-
matters. One might also hold that the interpretation of our words, i.e. of the symbols
in the theory, must be fixed ‘from within the theory’. And this last phrase is taken to
imply that the interpretation will be the same on the two sides of a duality: i.e. the
same for a word w in the theory on one side, and for the word w′ that corresponds to
w according to the ‘dictionary’. This view is endorsed, under the label ‘internal point
of view’, in [33, Sect. 2.4] and [39, Sect. 3.3.2].

10.2 Spacetime and Gravity as Emergent?

We have seen that gauge/gravity dualities relate theories with completely different
properties: in the case of AdS/CFT, a higher-dimensional theory of gravity is related
to a lower dimensional quantum field theory. This disparity prompts one to ask two
questions:

(a) Does the additional spatial dimension in the higher-dimensional theory somehow
‘emerge’ from the low-dimensional theory?

(b) Does the force of gravity itself, not present in the low-dimensional theory, ‘emerge’
in the high-dimensional theory?

Indeed, claims of ‘emergent spacetime’ and ‘emergent gravity’ abound in the literature
about gauge/gravity dualities. What should we make of these claims?

In this section, we will: argue that for emergence, the duality concerned can only be
approximate (Sect. 10.2.1); and then discuss twoways inwhich, using approximations,
spacetime and-or gravity could be emergent (Sect. 10.2.2).

10.2.1 Emergence vs. Duality

Of course, ‘emergence’ does not have a very precise meaning, even in technical phi-
losophy. But the main idea is that a theory, or a ‘level of description’, is emergent
from another if it has features that: (i) are not readily, or perhaps not even in principle,
deducible or explainable from the other theory or level; but nevertheless (ii) are some-
how grounded, or rooted, in the other theory. Similarly if we construe emergence in
terms of ontology, rather than human descriptions: e.g. classes of phenomena, or of
properties or behaviour, that a system or set of systems exhibits.44

In this section, we will construe emergence along these lines, though a little more
precisely, following [21, Sect. 1.1], [22, Sects. 1, 3]. Namely: an emergent theory
describes “properties or behaviour of a system which are novel and robust relative
to some appropriate comparison class”. ‘Novel’ here means “not deducible from the
comparison class”, and “showing features (maybe striking ones) absent from the com-
parison class”. And ‘robust’ means that the emergent properties or behaviour are not
destroyed if small changes are made in the comparison class. (Here, ‘smallness’ is
to be measured in terms of the comparison class: so something like a quantitative

44 [10] is a fine anthology about emergence.
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measure needs to be provided.) As we will see, dualities provide relevant comparison
classes.

This conception of emergence, like the initial vaguer idea of emergence, is obviously
asymmetric: if theory B emerges from theory A, then theory A cannot emerge from
theory B. (It is also non-reflexive: A cannot emerge from A, since there can be no
novelty and robustness of behaviour as described by a theory, in comparison to itself.)
On the other hand, duality is a symmetric relation: ifA is dual toB, thenB is dual toA.45

It thus follows from the mere logic of the terms—not just that the presence of
duality is insufficient for emergence—but that on the contrary: duality in fact precludes
emergence. Imagine, for instance, that we accept that string theory inAdS5×S5 is dual
toN = 4SYMtheory onR4; andwewant to claim that the additional radial direction46

within the AdS5 emerges from the SYM theory. But then the duality prevents us from
considering gravity and the additional spatial direction as novel properties. For it
implies that those properties correspond to other, well-defined, properties on the CFT
side, and thus no novel behaviour can arise: there is merely a reformulation of the
properties or behaviour. Furthermore, the purportedly novel behaviour could not be
robust: for the properties of the new space that appears depend very sensitively on
the dual properties in the CFT (which provides the comparison class). Thus, duality
precludes emergence.

What, then, is one to make of the literature’s claims of ‘emergent spacetime’ and
‘emergent gravity’? This discussion indicates that we need to somehow ‘break’ the
duality in order to be left with an asymmetric relation. This is also suggested by the
concept of robustness: we need to introduce some contrast between ‘macroscopic’
and ‘microscopic’ theories; or (better, because scale-independent) between ‘coarse-
grained’ and ‘fine-grained’ theories. Then we can hope to capture both the asymmetry
and the robustness in terms of the coarse-grained theory being independent of the
fine-grained details.

Such asymmetric relationships do obtain when we consider particular approxima-
tions of the theories that are duals: the approximative relationwill introduce a notion of
coarse-graining. For instance, in the low-energy limit of theAdS5×S5 string theorydis-
cussed in Sects. 2, 5 and 6 we get structures, such as the classical AdS5 geometry, that
did not figure in the high-energy theory (where there was only an asymptotically AdS5
space) and can only be defined within a particular approximation (involving large N ).
These properties are thus: (i) novel, i.e. not defined in the high-energy (fine-grained)
string theory; (ii) robust, i.e. stable against small changes in the high-energy theory.

10.2.2 Two Ways for Spacetime or Gravity to be Emergent

Motivated by this example, we can now distinguish two ways in which spacetime
and-or gravity might emerge, in the framework of dualities. For each way, we will

45 This symmetry is a feature of the usual usage in physics, in particular in gauge/gravity duality, as we
saw in the previous sections: as well as, of course, our definition of duality in Sect. 10.1. And most usage
also supports duality being a reflexive and transitive, and so an equivalence, relation: as is implied by our
definition.
46 Alongside the S5.
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first focus on the emergence of theories, and then on the emergence of properties and
behaviour. This distinction is developed in more detail in [33, especially Sect. 3.2];
cf. also [39, Sects. 3.3.2, 3.3.3, 4.2 and 4.3]. Once we have the distinction in hand, we
will be able to sketch answers to questions (a) and (b) above.

(i) Emergence across a duality Here, the idea is that one theory is dual to another,
which itself has a coarse-graining scheme, based on some parameter indicating
scale (especially length or, inversely, energy). So it is at most for one level of
fine-graining in the second theory, that the duality is exact; and maybe the duality
is not exact at any level. In such a scenario, features of the first theory can be
novel relative to those of the second: either because the duality is approximate at
all levels (indeed, perhaps with very different duality maps); or because although
exact at one level, we have reason to consider the second theory at another level,
where the duality is approximate, so that the features of the first theory show
novelty. Besides, these features can be robust in the sense of being independent
of various fine-grained details of the second theory.
Applied to gauge/gravity duality, the idea is thus that a theory G (for ‘gravity’) that
is is higher-dimensional and contains gravity, is dual to a theory F (for ‘fundamen-
tal’) that is low-dimensional and contains no gravity—but has a coarse-graining
scheme. Thanks to the coarse-graining scheme, the duality is exact for at most at
one level of fine-graining of F; and so, as explained above, there is scope for G to
be emergent from F.
The ‘bottom-up’ approaches of Sect. 7 may exemplify this idea. That is: they may
furnish examples of general relativity (theory G) emerging in this way from con-
densedmatter theory (theoryF). There is no exact duality, but the spacetimepicture
appearing is novel and robust: it is independent of the details of the condensedmat-
ter theory. For instance, it was remarked, about (37), that the viscosity-to-entropy
ratio is independent of the CFT under consideration. And it is the approximate
duality itself that provides the relevant comparison class required for robustness:
a family of CFT’s at different values of the couplings.

(ii) Emergence on both sides of a duality Here, the idea is that each side of the duality
has a coarse-graining scheme, so that there can be emergence independently on
the two sides. And in principle, levels on one side could be paired by duality
with levels on the other: in which case, there would be a sequences of dualities
parametrised by the pairs of levels being mapped to each other.

Applied to gauge/gravity duality, this means that theory G emerges from theory G’ via
an approximative relation that leads to the appearance of novel and robust spacetime
structures; and on the other (boundary) side of the duality, theory F emerges from
theory F’. So there are parallel cases of emergence on both sides: F and G emerge out
of F’ and G’, respectively. The emergent behaviour is independent of the duality (or
dualities): there would be emergence even if there were no duality. The duality (or
dualities) imply only that we get two emergent behaviours—and perhaps with very
different appearances and structures on the two sides.

For instance, the classical AdS spacetime geometry (in theory G: general relativity)
emerges from the situation in which there is no classical spacetime geometry (in the
fine-grained string theory: theory G’), but only the fundamental quantum fields living
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on the string. In [39, Sects. 3.3.3, 4.2] the ‘renormalization groupflow’was identified as
a coarse-graining mechanism through which a particular energy regime of a quantum
field theory is explored. And it was argued that in this regime, emergent behaviour can
arise.47 In the bulk there is a similar process through which the radial direction can be
seen to be emergent. Such limits have also been considered in [89, Sect. 3.3, 4].

In [33, Sect. 3.2] it was argued that these two forms of emergence:

(A) correspond to two different ways in which dualities can be broken by coarse-
graining: and the two ways correspond to different properties of the duality
isomorphism;

(B) exhaust the possibilities for emergence from dualities via coarse-graining.

Furthermore: because emergence is now associated with approximate duality rather
than with specific gauge/gravity dualities, these two forms of emergence may apply
to other dualities.

With the distinction between these two forms of emergence, (i) and (ii), in hand,
let us now go back to our original questions (a) and (b).

Regarding (b), the emergence of gravity—By construction, gravity emerges in both
kinds of emergence. Forgeneral relativity (appropriately coupled tomatter) is shown to
emerge in both (i) and (ii); hence,with it, the gravitational force. This is straightforward
in (i), where the fundamental theory F is clearly not a theory of gravity but, say, a
quantum field theory. In (ii), the verdict is more subtle: for G now emerges from the
fine-grained theoryG’ (say, string theory); and the lattermight, at the fundamental level
either (1) be, or (2) not be, a theoryof gravity.And the answer to that question, of course,
depends on a fundamental formulation of string theory, which is still lacking. (1) If
string theory is at the fundamental level not a theory of gravity, then onemust of course
explicate in what sense it is not, i.e. one needs a first-principles account of what counts
as a theory of ‘gravity’. But that gravity is indeed emergent is then straightforward. (2)
On the other hand: if string theory is a theory of gravity at the fundamental level, then
it is only Einsteinian gravity that emerges after coarse-graining. Either way, gravity
(in the sense of a specific law of gravity) emerges in an uncontroversial sense.

Regarding (a), the emergence of one dimension of space—In (i), this is uncontro-
versial, since theory G has one more dimension than theory F; and G emerges from
F a la (i). In (ii), the verdict is again subtle: for G does not emerge from F but from
G’; and the number of dimensions in G and G’ is the same. Thus, in (ii) there is no
emergence of a dimension of space in this sense; (though there could be emergence of
all space, and time, dimensions: namely if the fundamental theory G’ is not a spatio-
temporal theory to begin with). Space thus only emerges uncontroversially within the
first scheme, (i).

Finally, a remark about the emergence of spacetime and gravity, in the context of
cosmology. Recall from the start of Sect. 8.2 that in de Sitter space, the holographic
direction (i.e. the radial direction, with gravity) is timelike rather than spacelike, as
is seen e.g. in (40). Thus, if dS/CFT exists and emergence is realised in sense (i)

47 Similar points apply to a conventional quantum field theory [23, Sect. 4.3], [18, Sects. 3.1, 4.2]: the
dwindling contribution of the non-renormalizable terms, as the renormalization group flows to the infra-
red, makes renormalizability emergent.
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above: then for dS/CFT, it is time, rather than space, that is emergent. And in both
(i) and (ii), Einsteinian gravity emerges as time moves forward. Indeed [88, Abstract]
has argued that “the monotonic decrease of the Hubble parameter corresponds to
the irreversibility of renormalization group flow.” Thus, both in (i) and in (ii), time
evolution is the coarse-graining process that leads to emergent structures.

11 Conclusion

In this paper we have surveyed the ‘landscape’ of gauge/gravity duality: the key idea
being that a theory of gravity in D dimensions is dual to a theory without gravity in
D − 1 dimensions. At the centre of the landscape is the AdS/CFT duality, reviewed
in Sects. 5 and 6. The ingredients of this duality—AdS spacetime, conformal field
theories, and string theory—were reviewed in Sects. 2 to 4. Then we reviewed various
other proposals for gauge/gravity dualities, including proposals for condensed matter
theory andother real-world strongly coupledfield theories (Sect. 7), deSitter spacetime
(Sect. 8) and black holes (Sect. 9). Finally in Sect. 10, we discussed the general ideas
of (i) two theories being equivalent to each other, and (ii) spacetime or gravity as
described by one theory being emergent from another.

The wide range of this discussion, and the fact that countless research problems are
still open, makes it clear that it would be very premature to attempt any systematic
conclusions. So we end simply, by emphasising some themes that seem to us central
to the conceptual aspects of the subject; as follows.

(1) Background-independence in AdS/CFT (Sect. 6.2)—AdS/CFT is background-
independent in a suitably minimalist sense. The minimalist sense is strong enough
for AdS/CFT to qualify as a candidate theory of quantum gravity when the cos-
mological constant is negative. But, against the received view going back to
Kretschmann, general covariance is sometimes broken by anomalies even in clas-
sical theories; andwhen discussing background-independence onemust be careful
to identify the relevant class of diffeomorphisms.

(2) The problems and prospects for de Sitter holography (Sect. 8.2)—The space-
like nature of the holographic boundary raises interesting philosophical questions
about the nature of the physical quantities (sometimes called ‘meta-observables’)
that figure in the dS/CFT proposal, since all of these quantities are not accessible
to any single observer. This seems to provide further physical reason to distrust
the traditional positivist inference from unverifiability to meaninglessness.

(3) The problems and prospects for black hole holography, especially for non-
extremal cases (Sect. 9.2): The puzzles involving black holes (concerning their
entropy and microstates, and the information paradox) may be clarified or under-
stood better by holographic methods, even though it remains difficult to provide
descriptions for non-extremal black holes.

(4) The relations between emergence and duality (Sect. 10.2)—Despite the fact that
the presence of a duality between two theories prima facie precludes emergence
of one theory from the other, duality combined with coarse-graining can make up
for emergence. Emergence can occur in two very different ways, according to two
different ways of applying coarse-graining.
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