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Abstract 

How do we define consciousness? Besides philosophical endeavours, the development 
of modern neuroimaging techniques fostered a principled way of quantifying the 
neural correlates of consciousness. Acquiring and analysing resting-state functional 
magnetic resonance imaging (fMRI) and electroencephalography (EEG) data, has 
allowed neuroscientists to noninvasively map the brain’s functional interactions (or 
functional connectivity). Based on data obtained during controlled loss of 
consciousness and in cases of patients with disorders of consciousness, it has now 
been suggested that multiple, functionally specialized/segregated areas need to interact 
and integrate information in order to support consciousness. Thus an emerging idea 
in neuroscience is that the brain needs to balance the coexistence of functional 
segregation and integration, a property often termed as brain complexity, in order to 
produce consciousness. A resulting hypothesis is that consciousness is abolished when 
the balance between segregation and integration is lost and brain complexity is 
attenuated. 
 
In that regard, I use complexity of functional connectivity, an aggregate measure of 
segregation and integration, as a marker of consciousness. This effort consists of two 
parts. First, I provide evidence that complexity in the healthy, awake brain is critical in 
the sense that it reflects a critical balance of segregation and integration designed to 
support efficient information communication. In turn, I provide evidence that loss of 
consciousness is associated with decreased complexity i.e. that functional connectivity 
departs from the critical complexity of the healthy, awake brain towards a more 
segregated configuration. 
 
The structure of this thesis follows accordingly. In the first experimental chapter (3), I 
show the importance of the critical balance of complexity in the healthy, awake brain 
by using a structure-to-function association model. Specifically, I show that 
complexity can be derived upon certain optimal, structural connections (computed as 
the Nash equilibrium between regions), which promote efficient communication in 
the brain from the regional to the whole-brain level.   
 
Chapter 4 focuses on capturing alterations of complexity in cases of sedation, 
anaesthesia and disorders of consciousness. Specifically, I show that as one goes from 
the awake state to anaesthetic-induced unconsciousness and disorders of 
consciousness, functional connectivity becomes less complex and more segregated. A 
refined approach that quantifies complexity in different parts of the brain allowed me 
to see whether this reduction in complexity is more evident in specific regions and 
networks. Under this framework, at the regional level I provide evidence that sparsely 
connected regions linking different parts of the brain play a critical role in whole-
brain complexity. At the network level I show the importance of the default mode 
network in whole-brain complexity.   
 
Even during rest, the brain is not static and displays rich temporal dynamics. Thus it 
is not only the complexity at each snapshot of time but also how complexity changes 
across time that can help us understand loss of consciousness. In chapter 5 I use a 
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dynamic framework to derive and characterize the dynamics of functional 
connectivity during loss of consciousness. In turn, I provide evidence that brains 
become less temporally complex as one goes from the awake state to anaesthetic-
induced unconsciousness and disorders of consciousness. 
 
Moreover, my goal is to see whether the principle of complexity reduction can be also 
applied to the developing brain. Towards this direction, in chapter 6 I use complexity 
on EEG connectivity data to examine anaesthetic-induced loss of consciousness in 
infants. Specifically, I show that complexity in anaesthetised infants aged 0-3 years is 
reduced compared to a state of emergence from anaesthesia, indicating its importance 
in supporting consciousness and brain function since infancy.  
 
Taken together, these findings show that while the complexity of the healthy, awake 
brain during rest is critically configured, the unconscious brain is characterized by 
reduced complexity. Based on the results presented in this work, I propose that 
consciousness can be assessed on the basis of complexity of resting-state functional 
connectivity data. 
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Chapter 1: Introduction 

Consciousness is the most familiar aspect of our lives but yet the most mysterious. 

There is something particularly compelling about consciousness. Although it is our 

most vivid experience we cannot reconcile it with what we know about the world. We 

understand how the autumn trees smell but we do not understand the experience that 

this smell creates for us. Despite this conundrum, conscious experience is part of the 

natural world, and like other phenomena that we observe around us, it necessitates an 

explanation. The three basic pillars for understanding consciousness can be 

summarized as follows: First what is consciousness and how can we pinpoint it to 

certain phenomena and experiences. Second why consciousness exists at all. The fact 

that consciousness can be generated by complex systems such as the brain is 

something that cannot be predicted by the brain’s computational features alone. The 

final question pertains to how consciousness emerges. If conscious experience is part 

of the natural world then can it be attributed to some kind of physical process, for 

example neuronal firing in the grey matter of the brain? In the next sections I will 

discuss these questions and how these relate to the development of the neuroscience 

of consciousness. 

 

1.1 What is consciousness 

When talking about consciousness, it is notoriously difficult to pin down any 

complete definition. We can say that a being is conscious if it is something it is like to 

be that being (Nagel, 1974). In other words, a mental state is conscious if there is an 

associated quality of experience or qualitative feel of what it is that we experience. The 

collections of these experiences or feels have been also phrased as qualia (Jackson, 

1982). The properties of qualia describe the phenomenology of consciousness. First 

they are subjective as they are private to the person experiencing them. This is also 

referred as the subjective quality of the experience. The qualia have also an internal 

property; there is something about “feeling like” a conscious agent. These and other 

properties are far from complete in describing the properties of consciousness. While 

many philosophers endorse the existence of qualia as valid phenomena (Chalmers, 

1995), others dismiss qualia as introspective illusions (Dennett, 1988). Regardless, the 
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diversity of qualia suggests that the phenomenology of consciousness is associated 

with a vivid, multifaceted experience. However, describing this phenomenology of 

consciousness does not entail why these phenomena exist at all. 

 

1.2 Why is consciousness 

Questions regarding why there should consciousness at all are characterized as the 

“hard” problem of consciousness (Chalmers, 1995; 1996). The fact that brains as 

complex systems can produce information and react to stimuli in sophisticated ways 

is no philosophical mystery. If one sees a red object, information will be passed from 

the neural pathways of retina all the way to the visual cortex invoking a certain neural 

activation that, in turn, can lead to reporting the colour of the object as red. However, 

these physical processes cannot entail why we are ever accompanied by the 

phenomenal experience of “redness”-how it “feels” to see a red colour. A commonly 

used example to address the distinction between how it feels and the physical process 

of “feeling/experiencing” regards a neuroscientist who, for years in complete isolation, 

became proficient at knowing the complete physical truth - everything in completed 

physics, chemistry, neuroscience, etc. After finally leaving the room, she experiences 

the red colour for the first time and that constitutes a completely new experience for 

her that goes beyond the physical truth she learned all these years (Jackson, 1982).  

  

To this end, answers for the hard problem of consciousness mostly address the 

question of whether we should even attempt to intertwine consciousness with physical 

phenomena and neuronal assemblies. This has been formulated as the explanatory 

gap, referring to the arduous task of explaining the phenomenology of consciousness 

in terms of physical phenomena (Alter and Walter, 2007). Some philosophers believe 

that this gap cannot be fulfilled and they use mental experiments to reject the idea of 

physicalism in consciousness (Chalmers, 1996). However, other philosophers claim 

that consciousness is functionally definable, meaning that if we understand everything 

about how consciousness emerges then we can understand why consciousness is 

produced and there will be nothing else to explain (Dennett, 2005). This leads me to 

the next section where I will focus on how consciousness is produced in the brain. I 
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will leave the philosophical endeavours for explaining why there should be 

consciousness at all as something that can be further discussed outside this thesis. 

 

1.3 Models of consciousness 

How consciousness is produced is usually referred to as the “easy” problem of 

consciousness not because it is easily tangible but because we know how to approach 

it using the empirical method (Chalmers, 1995). The goal is to create an accurate 

description of how the neural assemblies in the brain produce what one perceives as 

conscious experience. As I mentioned previously, bridging the phenomenology of 

consciousness with how the brain processes information to produce consciousness 

might provide new avenues for understanding consciousness; thus I will focus on this 

approach more extensively.  

 

1.3.1 Early approaches 

Early accounts regarded consciousness as part of the mind and discussed how its 

properties relate to its physical substrate and the body (also called the “mind-body 

problem”). Starting with ancient western philosophers, Aristotle in the 4th century BC 

believed that the mind could not be separated from the capacities of the body (Sihvola, 

2007). In the late 4th century/beginning of 3rd century BC, Democritus and Epicurus 

proposed that the mind arises from matter stating, "there is only atoms and the void” 

thus providing a fully physical representation of the mind on the premises of atoms 

and their interactions (Leszl, 2006). In the seventeenth century, Descartes took a 

different approach on the mind-body problem and argued that mental substance is 

distinct from matter. He considered consciousness as a part of the non-physical mind 

and thus something that can be separated from the body (“mind-body 

dualism”)(Hatfield, 2000). On the contrary, and perhaps based on the early physical 

theories proposed by the ancient Greek philosophers, Spinoza argued that anything 

that can be inferred from the mind will have its parallel in the body that it represents 

(Curley, 1986). Thus, Spinoza regarded consciousness as something related to the way 

the mind is represented in its physical substrate (like the human body) and not a 

separate entity. At the same time, Leibniz expanded on Spinoza’s notions of 
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consciousness as being a representation of the mind within the body and developed a 

theory of mind that was fully naturalized. In that regard, he claimed that the way 

distinct conscious experience arises relates to the functional organization of the body 

(Remnant and Bennett, 1996). 

 

1.3.2 Modern approaches-Global workspace 

The mind-body theories by Spinoza and Leibniz developed during the seventeenth 

century treated consciousness as a phenomenon to be explained in natural ways, and 

so they endeavoured to explain consciousness in terms of the underlying physical 

representations. This fostered functional accounts of consciousness that continue to 

this day, relating consciousness to its physical substrate and the brain. However, even 

after the onset of modern scientific psychology in the mid-nineteenth century, the 

mind was still largely equated with consciousness. Psychological theories argued that 

the conscious mind is characterized by a “stream” of thoughts i.e. a stream of 

consciousness. For example, William James, the father of modern psychology, argued 

that:  

 

‘‘Consciousness, then, does not appear to itself chopped up in bits. Such words as 

'chain' or 'train' do not describe it fitly as it presents itself in the first instance. It is 

nothing jointed; it flows” (James, 1890) 

 

Despite some advancement in the psychological aspect of consciousness and its 

association with the mind, the relationship of consciousness to the brain remained 

very much a mystery. In the 1980s and 1990s, with the renewed emphasis on 

explaining cognitive capacities such as memory, perception and language 

comprehension in the brain, there was a major resurgence of scientific interest in the 

relationship of consciousness to the neural machinery of the brain. In that regard, 

Posner (Posner and Snyder, 1975; Posner and Rothbart, 1998) and Shallice (Shallice, 

1972; 1988; Norman and Shallice, 1980) proposed that information is conscious when 

it is represented in an ‘‘executive attention’’ or ‘‘supervisory attentional’’ system. A 

more refined theory, involving how information processing at the brain-wide level 
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produces consciousness, was proposed by Baars. The basic idea is that information 

becomes conscious because it is globally available to the brain (Baars, 1988). 

Functionally specialized modules produce information that can become part of the 

global workspace and thereby shared by other modules in the brain. What we perceive 

as conscious content is what is being globally shared. One interesting account of this 

idea is that there is considerable amount of neural processing occurring at any given 

time in the brain that we are not aware of because it is not globally available. 

 

1.3.3 Neuroscientific approaches-Global neuronal workspace 

Fuelled by technological advances, interest in the neuroscientific study of 

consciousness substantially increased from around 1990 onwards. Publications of 

studies on neural correlates of consciousness appeared, in particular by Francis Crick 

and Christof Koch (Crick and Koch, 1990). They proposed that looking for neural 

correlates alone allows the neuroscience of consciousness to progress independently 

from philosophical disputes. Further discussions on the neuronal basis of 

consciousness emerged leading to the specific neuronal theories of consciousness. 

One of them is the global neuronal workspace (GNW) theory proposed by Dehaene 

and Naccache (Dehaene and Naccache, 2001) that emphasizes the role of integrated 

connectivity in order to mobilize the relevant neuronal modules that become available 

in the global workspace. This proposal claims the existence of long-range excitatory 

axons, particularly dense in prefrontal and cingulate regions alongside 

thalamocortical connections, that interconnect multiple specialized processed.  GNW 

neurons amplify and maintain a specific neural representation in the global 

workspace, making it conscious. Then long-distance axons of GNW neurons 

broadcast information to other specialized modules for brain-wide processing 

(Dehaene and Naccache, 2001). 

 

1.3.4 Dynamic core hypothesis: Segregation and integration 

Alternative neuroscientific approaches of consciousness relate not to whether there 

are specific groups of neurons but to what are the properties these should have in 

order to produce consciousness. The dynamic core hypothesis proposed that the 
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ability of the brain to sustain consciousness is tantamount to its ability to integrate 

information from different neuronal systems (Tononi and Edelman, 1998). In that 

regard, Tononi and Edelman proposed that information encoded by a group of 

neurons attains a conscious level only if it achieves a level of segregation (i.e. 

sufficiently specialized) and a level of integration with other neuronal groups (i.e. 

sufficiently functionally connected with the rest of the brain) (Tononi and Edelman, 

1998). Expanding on this idea, the integrated information theory (IIT) argues about 

the brain’s capacity to produce consciousness as a result of its ability to integrate 

information. The theory has been evolving since 2004 (Tononi, 2004), heralding the 

idea that the brain (and perhaps any biological system) can produce consciousness on 

the premise of the effect it has on itself (intrinsic cause-effect power). The level of this 

causal effect is defined over complicated spatiotemporal scales and can discriminate 

between different states of consciousness (Tononi, 2004). 

 

1.3.5 Neural coalitions and thalamocortical loops 

Other theories of consciousness emphasize the thalamocortical system as the one 

generating consciousness. Llinás and colleagues proposed, on the basis of earlier 

studies using MEG, that synchronous oscillations/rhythms in thalamocortical loops in 

different frequency bands create the conscious state (Llinás et al., 1998). In addition, 

these thalamocortical responses are modulated by brainstem inputs that regulate 

arousal pathways (Llinás et al., 1998). Synchronous oscillations between neurons have 

been involved in other theories of consciousness. For example, Crick and Koch 

suggested instead that consciousness might require competition among “coalitions” of 

neurons, in which winning coalitions determine the contents of consciousness at a 

given time (Crick and Koch, 2003). They pointed out that neuronal coalitions carry a 

similar notion to that of the dynamic core theory where all neurons need to be 

integrated. 

 

1.4 How do we assess consciousness 

1.4.1 The clinic as a starting point 

In parallel to the proposed theories describing how consciousness is produced, there is 
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a clinical need to assess and measure consciousness in order to help patients-for 

example assessing whether a patient is aware of her surroundings after brain injury or 

is unconscious during surgical anaesthesia. Consciousness, as measured and defined 

by clinicians, is a practical starting point in the discussion about measures and 

theories of consciousness. Early clinical studies of the level of consciousness started in 

the 1940s when scientists investigated the neural components regulating the brain’s 

sleep-wake mechanisms. Since then, new empirical studies emerged with the goal of 

capturing consciousness in a principled way that builds upon but moves beyond the 

study of wakefulness. Based on observations from anaesthesia and disorders of 

consciousness studies, the spectrum of conscious states proved to be complex, which 

led to the idea of systematizing the conscious state into two distinct components: 

arousal/wakefulness and awareness (Laureys, 2005). Arousal refers to one’s state of 

vigilance and sleep-wake cycle, whereas awareness indicates the ability to be aware of 

reporting something consciously. The combination of these two aspects of 

consciousness has defined a “map” of states of consciousness outlined in a two-

dimensional space: one axis being the level of wakefulness and the other axis being the 

level of awareness (Fig 1.1).  

 

 

 
Figure 1.1 - Simplified representation of different states of consciousness. States of consciousness 

can be mapped on a two-dimensional space: the first dimension being the level of awareness (the 

content of consciousness) and the second dimension being the level of wakefulness (the level of 

arousal/alertness). Adapted from Laureys (2005). 
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States range from low wakefulness and awareness, such as coma and general 

anaesthesia, to the highest level of awareness and wakefulness-the conscious awake. In 

this thesis, I will restrict my focus on two specific states of this consciousness map: 

pharmacologically-induced sedation/anaesthesia and disorders of consciousness and I 

will compare them to the conscious awake state. 

 

1.4.2 Sedation/anaesthesia 

Anaesthesia is defined as the controlled and reversible induction of unconsciousness 

(hypnosis), analgesia, and muscle relaxation (Mashour, 2004). At a small dose, 

anaesthetics first suppress thinking, focused attention, and working memory. As the 

dose increases, consciousness and voluntary responsiveness begin to fade signifying a 

transition to a sedative state and, if the anaesthetic dose is high enough, to a fully 

anaesthetized state. One example of anaesthetic widely used in the clinical setting is 

propofol, an intravenous anaesthetic agent with putative actions on the inhibitory 

GABAA receptor (Jevtovic-Todorovic, 2016). Anaesthetics like propofol hyperpolarize 

neurons by increasing inhibition and suppressing cerebral blood flow in multiple 

cortical regions (Alkire et al., 1995; Fiset et al., 1999) as well as blood flow in the 

thalamus and insula (Xie et al., 2011; Warnaby, et al., 2017). Evidence also exists that 

anaesthetics act on sleep-promoting pathways, thereby impairing arousal levels 

(Brown et al., 2010; Vacas et al., 2013). 

 

A question of particular clinical importance relates to how anaesthetics abolish 

consciousness. For example, anaesthetics are believed to act on midline areas (such as 

the premotor cortex, the medial prefrontal cortex, the anterior cingulate cortex and 

the thalamus) a process that has been associated with abolishing behavioural 

responsiveness but not necessarily with losing consciousness (Alkire et al., 2008). To 

this end, theoretical accounts have suggested that anaesthetics abolish consciousness 

because they alter the functional cross-talk between brain regions (i.e. its functional 

connectivity)(Alkire et al., 2008; Hudetz, 2012). I will return to this point at a later 

part of this chapter. 
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1.4.3 Disorders of consciousness 

Understanding how consciousness is lost during anaesthesia can help us understand 

clinical cases where brain injury has caused loss of consciousness. Such clinical cases 

can be classified in different states of unconsciousness based on the levels of arousal 

and awareness (Laureys, 2005). Coma is the state where patients exhibit minimal 

arousal and awareness. Patients that have awoken from a coma, but still have not 

regained awareness are considered to be in a vegetative state (Laureys, 2005). Patients 

in vegetative state can recover and attain a minimally conscious state when there is 

reproducible evidence of awareness (Boly and Seth, 2012).  

 

An initial way to assess consciousness in these patients is by collecting psychological 

and behavioural data (Naccache, 2017). These could include probing behavioural 

properties, the presence of which would unquestionably signal a conscious state 

(Naccache, 2006). These approaches are useful, particularly for assessing the level of 

awareness in the presence of some form of wakefulness. However, the difficulty in 

probing consciousness in cases where obtaining subjective reports is challenging, 

makes the use of these measures impractical (Naccache, 2017).  To circumvent this 

problem, passive methods of approximating awareness during impaired wakefulness 

are sometimes used. In this context, the next significant progress was made with the 

introduction of more advanced behavioural measures. Giacino and his colleagues 

defined, in 2002, the minimal conscious state as being a state in which: “cognitively 

mediated behaviour occurs inconsistently, but is reproducible or sustained long 

enough to be differentiated from reflexive behaviour” (Giacino et al., 2002). On this 

basis, a more refined behavioural measure was devised: the coma recovery scale 

(CRS). A revision of this score (CRS-R) provided a useful tool to clinicians to 

differentiate between minimally conscious state patients and other cases of disorders 

of consciousness (Gerrard et al., 2014). Despite its success (for example in cases that 

were mistakenly misclassified as vegetative or coma-Schnakers et al., 2009), studies 

have rendered the use of this measure important but not sufficient. This claim is based 

on the fact that a large set of cortically generated complex behaviours might escape 

conscious reports such as those collected by the CRS-R score (Naccache, 2017). On 

that note, recent approaches suggest that studying spontaneous patterns of brain 
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activity during rest, irrespectively of the behavioural capacity of the patient, might 

provide more information about the unconscious brain (Soddu et al., 2011). For 

example, investigating potential functional disconnections, in which case brain 

regions cannot communicate information, is now considered to be a fruitful approach 

for looking at different cases of disorders of consciousness (Monti, 2012). 

 

Together, the results from anaesthesia and disorders of consciousness suggest that, in 

order to help clinicians quantify and evaluate different states of consciousness, a 

fruitful approach maybe that of studying patterns of brain activity “at rest” (Raichle et 

al., 2010). Of particular importance is that this approach can reveal neural correlates 

of unconsciousness without relying on the behavioural capacity of each individual or 

other cognitive markers. In the next chapter I will focus on obtaining and analysing 

these resting-state patterns and describe some of their applications to loss of 

consciousness. 

 

1.4.4 Functional magnetic resonance 

The last decade has seen an unprecedented emergence of high-resolution 

neuroimaging techniques that have allowed us to non-invasively map the functional 

and structural core of the human brain (Raichle, 1998).  Neuroscientists can now 

manipulate the conditions of an experiment and analyse neuroimaging data in order 

to identify regions engaged during this manipulation (Posner and Raichle, 1994). For 

example, early studies by Petersen and colleagues used positron emission tomography 

(PET) to show regions activated during semantic processing (Petersen et al., 1988).  

An important milestone in this effort was the development of functional magnetic 

resonance (fMRI) imaging as an indirect measure of neural activity-it measures 

haemodynamic changes under the presence of a strong magnetic field (Logothetis et 

al., 2001). Soon after the development of fMRI, Ogawa and colleagues found that slow 

(<1 Hz) haemodynamic fluctuations (or blood oxygen level dependent–BOLD signal) 

have robust, reproducible oscillatory dynamics (Ogawa et al., 1990). These slow 

fluctuations have been further linked with electrophysiological recordings (Nir et al., 

2007) and neuronal spiking recordings in animals (Shmuel and Leopold, 2008) and 

humans (Fox and Raichle, 2007), showing that fMRI can be used as a tool to map the 
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neural correlates of brain function. Early applications of fMRI focused on looking at 

differences in brain activity (activations) only in the context of a “task condition”. 

Brain activity was calculated by contrasting task conditions to a non-task or control 

condition i.e. subtracting the two conditions. The control condition to which task data 

would be compared was initially a resting condition (or resting-state) but became 

more sophisticated as the technique developed (Price, 2012).  

 

 

1.4.5 Default mode function 

Despite the prevalence of the subtracting technique in the early fMRI experiments, it 

was soon realized that rest was not just a state where brain dynamics during tasks 

could be compared. In an almost unexpected manner, studies subtracting task from 

rest showed that the activity of a set of regions was higher in rest compared to task. 

The significance of these was initially neglected. Interest was revitalized when fMRI 

studies, propelled by a positron emission tomography (PET) meta-analysis (Shulman 

et al., 1997), showed that a set of regions, later termed the “default mode network” 

(DMN), was actually relatively deactivated during task (Raichle, 2015). The question 

remained of whether the dynamics of these regions-apparently evident during rest-

had specific neurobiological basis and was not an artefact of subtraction analysis. To 

show this, Raichle and colleagues utilized two important pieces of information from 

PET imaging. First, it had been previously shown that the transient increases in brain 

activity from a resting/baseline condition to a task activation, resulted in an increased 

amount of blood oxygen as the ratio of oxygen consumed to oxygen delivered (OEF) 

decreased (Fox and Raichle, 1986). Thus OEF was regarded as a marker of activation: 

if no activation existed, then OEF was uniform across the brain. In turn, a PET study 

showed that, during resting-state scanning, oxygen consumption and delivery 

depicted the highest level of deviation in the regions of the DMN while, at the same 

time, OEF was uniform across the brain (Gusnard and Raichle, 2001). Thus, although 

there was no activation during rest, as indicated by the uniform OEF, there was still 

high metabolic activity in the default mode regions. Further studies verified that 

resting-state fMRI is associated with the “activation” of the default mode regions and 

has been termed as so-called default mode function of the brain (Raichle et al., 2001; 
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Raichle, 2015). In light of this, the analysis of activity during rest paved the way for a 

large area of research known as resting-state fMRI and the corresponding analysis 

technique called functional connectivity. 

 

 

1.4.6 Functional connectivity 

As evident by the previous remarks, until the middle of the 1990s the major corpus of 

neuroscience research focused on task-induced activations. Although low frequency 

oscillatory dynamics had been observed since the first fMRI studies, their value was 

largely neglected (Frahm et al., 1993). Analysis of spatially coherent BOLD 

fluctuations during resting-state made a significant contribution towards 

understanding functional organization between regions. Functional connectivity 

became popular when Biswal and colleagues showed that functionally relevant regions 

in the motor cortex during rest were coupled in terms of their BOLD responses 

(Biswal et al., 1995). This showed that BOLD signals between these regions were 

functionally connected, potentially producing a motor “system” similar to the one 

obtained by the conventional subtractive activation analysis. Incentivized by these 

approaches, functional connectivity is now understood as a tool for looking at 

correlated BOLD responses at resting-state without the need of conventional 

subtractive techniques. 

 

1.4.7 Seed-based/ICA analysis 

Expanding on the technique used by Biswal and colleagues, seed-based functional 

connectivity can now assess the functional connectivity between the average signal 

from a set of predefined voxels (seed) and the rest of the brain.  Interestingly, using 

this seed-based analysis technique Greicius and colleagues also reported the temporal 

coherence of the default mode brain regions, suggesting their functional connectivity 

during resting-state scanning, and introduced the default mode network (DMN) 

terminology (Greicius et al., 2003). 

 

One problem with this technique is that it needs an a priori definition of a seed. 
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Although this can be particularly compelling during hypothesis-driven research, it can 

restrict the interpretation of the results or make false assumptions about the data 

(Cole et al., 2010). Independent component analysis (ICA), on the other hand, is a 

multivariate, data-driven technique, which aims to segregate the temporal signal into 

spatially and statistically distinct components with similar temporal dynamics. In 

comparison with seed-based functional connectivity, ICA requires few a priori 

hypotheses usually related to the number of components (Beckmann et al., 2005).  

 

Using ICA techniques it was found that different parts of the brain, at rest, were 

making up different functional systems or large-scale networks (LSNs) (Smith et al., 

2009; Bressler and Menon, 2010; Yeo et al., 2011). These include sensory networks like 

the visual and auditory networks, central executive networks (Cole et al., 2014a), and 

the DMN (Raichle, 2015). Interestingly, since its initial discovery the DMN is now 

robustly reproduced using these techniques across different cohorts showing a distinct 

spatial pattern including the ventral medial prefrontal cortex (MPFC), the dorsal 

medial prefrontal cortex, the posterior cingulate cortex (PCC) and adjacent precuneus 

plus the lateral parietal cortex (Binder et al., 1999; Mazoyer et al., 2001). The rich 

dynamics of resting-state activity have been also used to study relationships between 

LSNs. Fox and colleagues found that networks responsible for internal processing 

were anti-correlated with executive networks during resting-state, suggesting a 

specific toggling of information between different specialized systems (Fox et al., 

2005). This led to the stratification of networks into task-positive/executive and task-

negative/default mode networks that perform antithetic roles in information 

processing during different cognitive contexts (although this claim has been further 

refined-Spreng, 2012; Vatansever et al., 2017).  

 

1.4.8 Resting-state connectivity during loss of consciousness 

As mentioned previously, identifying different states of consciousness has been linked 

with studying resting-state activity and its functional connectivity. Similar to the 

trajectory that led to the emergence of resting-state connectivity, initial studies into 

the functional correlates of loss of consciousness started with PET. In cases of 

propofol-induced anaesthesia studies used PET to measure cerebral blood flow and 



Chapter 1: Introduction 

 37 

they showed reductions in a variety of regions such as the thalamus, the cuneus and 

precuneus, the PCC and the angular gyri (Alkire et al., 1995; Fiset et al., 1999). In 

similar fashion, earlier studies using PET showed significant alterations in patients 

with disorders of consciousness especially in the precuneous (Laureys et al., 2004) and 

the thalamus (Laureys et al., 2000b).  

 

With the emergence of resting-state connectivity, understanding brain dysfunction 

through aberrant functional connectivity has emerged as a promising method of 

translating fMRI into the clinical setting (Fox and Greicius, 2010; Rubinov and 

Bullmore, 2013). Studies investigating loss of consciousness have shown a radical 

reorganization of functional connectivity between certain regions or LSNs. During 

sedation, alterations in functional connectivity have been reported (Barttfeld et al., 

2015b), especially in higher-order networks such as the DMN (Stamatakis et al., 2010) 

while anaesthesia seems to also impair fronto-parietal connectivity (Boveroux et al., 

2010). On the contrary, the functional connectivity of primary sensory networks, such 

as the auditory or the visual network, seem to be left intact from the effect of the 

anaesthetic (MacDonald et al., 2015). The thalamus is another important region under 

consideration for altered functional connectivity during loss of consciousness. In that 

regard, thalamic functional connectivity with major higher-order LSNs appears to 

decrease during anaesthesia (Guldenmund et al., 2013).  

 

In cases of disorders of consciousness a variety of alterations in functional 

connectivity have been also observed. Studies have reported changes in DMN 

connectivity compared to healthy controls (Vanhaudenhuyse et al., 2010; Di Perri et 

al., 2016) as well as the fronto-parietal network (Crone et al., 2014). Disconnection 

between primary sensory areas and higher-order networks has been observed in 

patients with disorders of consciousness (Demertzi et al., 2015). Thalamocortical 

functional connectivity is also impaired in patients with disorders of consciousness 

while restoration of thalamocortical connectivity has been shown to align with 

emergence from the vegetative state (Laureys et al., 2000a).  
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1.4.9 Advantages/limitations 

While important pieces of information, analysing functional connectivity using seed-

based analysis or ICA analysis might have specific problems. Seed-based analysis 

comes with an a priori definition of a seed region whereas ICA has been criticized for 

the subjectivity in selecting the number of components to be produced (Beckmann et 

al., 2009). Contributing to this ambiguity, the previous results on functional 

connectivity during loss of consciousness show that changes in functional 

connectivity involve alterations between multiple regions or LSNs. Taken together, 

restricting the focus of functional connectivity analysis to a certain number of regions 

or LSNs might hinder understanding of multiple alterations that can explain loss of 

consciousness. 

 

1.4.10 Network/Graph-theoretic approach 

A different approach constructs appropriate models that can capture the connectivity 

of multiple regions rather than focusing on a restricted scope of connectivity.  Having 

roots in the fields of mathematics and physics, one popular way of modelling multiple 

interactions is using a complex network or graph (Bullmore and Sporns, 2009). 

Analysis of network properties offers a new way of looking at functional connectivity 

through the lens of network organization between multiple regions or LSNs. In the 

next section I will describe networks and their properties that have been used for 

modelling functional connectivity and I will provide examples of their applications in 

studying the organization of functional connectivity in cases of anaesthetic-induced 

unconsciousness and disorders of consciousness. 

 

Networks 

Theoretical approaches have discussed the idea of the “connected brain” where brain 

function is mediated by the way each brain component is connected to each other. 

This approach was influenced by connectionism and other theories of philosophical 

and psychological content (Catani et al., 2013). The study of brain networks finds its 

origins in the works of Santiago Ramon y Cajal who used light microscopy to discover 

that distinct anatomically defined units were well interconnected (Cajal, 1995). The 
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emergence of non-invasive neuroimaging techniques and the acquisition of structural 

and functional data made it easier to quantify structural connections and functional 

connections across the whole brain and investigate their properties.  

 

Analysis of networks and their properties has its roots in systems and graph theory, 

where a network is a complex system comprising a collection of nodes and edges 

(Bullmore and Sporns, 2009). Network properties capture their underlying 

organization and are defined in specific terms pertaining to the domain of graph-

theoretic analysis (Sporns, 2013). For example, the degree of each node represents the 

extent to which each node is connected to the rest of the network (number of 

connections of each node). Other examples include modularity, that quantifies how 

well a group of nodes can be grouped together to form a distinct module, and global 

efficiency that reflects how a network is communicating information efficiently across 

all its nodes (Fornito et al., 2016). In the case of brain networks, nodes correspond to 

the brain components under investigation and edges correspond to the relationships 

between these components. One particular example for defining nodes is by using a 

brain parcellation. Since the original work of Brodmann in 1909 (Brodmann, 1909), 

the brain has been parcellated into a certain number of regions of interest (ROIs) 

spanning different parts of the brain that are believed to have similar anatomical or 

functional basis. Other cortical and subcortical parcellations have since been 

developed using different data-driven techniques (Makris et al., 2005). Thus brain 

networks can be considered as networks connecting multiple cortical and subcortical 

regions covering the entire brain.  

 

Structural connectivity networks 

Brain networks can be broadly classified into two categories based on the type of 

connectivity: structural and functional connectivity networks (Fornito et al., 2016). 

Structural networks are considered when edges correspond to the underlying 

anatomical connections between regions. Structural connectivity networks were 

constructed as early as the 1990s in the primate cortex. Felleman and Van Essen 

compiled a structural connectivity matrix from the prior tract-tracing literature that 

summarized 305 axonal connections between 32 areas of the visual cortex in the 
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macaque monkey (Felleman and Van Essen, 1991). Similar analysis of the cat cortex 

showed that cortico-cortical connections were often organized into distinct systems 

(Scannel et al., 1995). With recent advances in diffusion imaging and tractography 

methods, white matter tracts between brain regions of interest have now been used to 

represent the human brain’s structural connectivity network. Converging evidence 

using diffusion imaging has shown that structural connectivity networks have a 

specific organization (Hagmann et al., 2008; Bullmore and Sporns, 2012). 

Fundamentally associated with this organization is the “heavy-tailed” shape of the 

degree distribution. Its shape shows that the degree property is not normally 

distributed but it rather includes the existence of highly connected regions (or hubs) 

and other less connected (sparsely connected) regions that, together, enable whole-

brain communication (Hagmann et al., 2008). In addition, structural networks have 

been shown to have a “small-world property” by combining high clustering and 

increased global efficiency (Watts and Strogatz, 1998; Bullmore and Sporns, 2009). 

This property allows whole-brain communication to be efficient while, at the same 

time, utilizing minimum wiring (Bassett and Bullmore, 2006). 

 

Functional connectivity networks  

In the case of functional connectivity networks, edges stand for correlations between 

the BOLD time series obtained from certain ROIs. The realization that functional 

connectivity also has a specific organization came later than structural connectivity 

networks. Initial studies of epileptiform activity in the macaque cortex showed that its 

network organization has small-world properties (Kötter and Sommer, 2000). With 

the increasing use of fMRI, functional connectivity networks began to emerge as 

means of representing whole-brain functional connectivity. Multiple studies have 

shown that fMRI functional connectivity networks have also specific organization 

(Bassett and Bullmore, 2006). Their degree distribution has been shown to have a 

“heavy-tailed” shape with the existence of highly and sparsely connected regions 

(Vértes et al., 2012). 
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Networks and loss of consciousness  

The value of network neuroscience emerged when neuroscientists started to ask how 

network properties alter between different conditions. Changes in network properties 

have been shown to capture differences in functional organization from task 

execution in health individuals (Vatansever et al., 2015a) to neurodegenerative 

disorders such as schizophrenia (Lynall et al., 2010). Networks also change their 

organization during loss of consciousness. The degree of highly connected regions 

(hubs) is decreased in patients with disorders of consciousness  (Crone et al., 2014) 

and anaesthesia (Schröter et al., 2012). The degree of non-hub regions has also been 

shown to change in patients with disorders of consciousness (Achard et al., 2010; 

Crone et al., 2014). In addition, modularity and global efficiency of functional 

connectivity networks is altered during loss of consciousness with networks becoming 

more fragmented (Schröter et al., 2012; Crone et al., 2014). Taken together, network 

analysis has revealed a diverse spectrum of changes in the organization of functional 

connectivity networks during loss of consciousness not previously seen with seed-

based or ICA methods. 

 

1.4.11 Dynamic functional connectivity 

Functional connectivity networks change not only between different conditions but 

also within conditions. Brains dynamically change even when they do no have to deal 

with incoming information reflecting the dynamic neuronal signalling that underlies 

brain activity (Rabinovich et al., 2012). Accordingly, functional connectivity networks 

and their properties are expected to change across time, showing that regions can 

dynamically connect or disconnect. Studies have used dynamic functional 

connectivity (dFC) methods in order to demonstrate changes in functional 

connectivity across time (Hutchison et al., 2013). These methods usually calculate 

multiple functional connectivity networks corresponding to different time windows. 

In turn, in order to find out whether network properties change across time, 

properties of each “windowed” network are calculated and contrasted against the 

properties of other “windowed” networks (Hutchison et al., 2013). 
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Identifying changes in functional connectivity in the temporal domain in experiments 

of loss of consciousness is important for several reasons. First theoretical models 

suggest that consciousness is also associated with the temporal repertoire of states the 

brain can access (Tononi, 2004; Carhart-Harris et al., 2014; Tagliazucchi et al., 2014). 

In that regard, loss of consciousness is associated with shrinking this repertoire and 

thus restricting brain access to a limited amount of information (Alkire et al., 2008). 

Second, temporal changes in functional connectivity can help us identify the dynamic 

transitions into and emergence from unconsciousness (Långsjö et al., 2012; Hudson et 

al., 2014). Third, it can allow us to scrutinize the state of unconsciousness at each time 

point. This is important, for example, in cases of anaesthesia where brain responses 

need to be monitored constantly under certain anaesthetic doses (Hudetz et al., 2015). 

In cases of disorders of consciousness, characterization of changes in functional 

connectivity might elucidate dynamics not previously seen by the static method. 

These dynamics might be able to sustain some kind of residual and behaviourally 

covert awareness that can help assess the state of consciousness in these patients (Naro 

et al., 2018).  

 

Under this dynamic connectivity framework, previous work has shown that the 

dynamics of functional connectivity change over time during anaesthesia indicating a 

reduced repertoire of functional configurations compared to the awake brain (Hudson 

et al., 2014; Barttfeld et al., 2015a). On a similar note, studies of dynamic functional 

connectivity in disorders of consciousness have shown a reconfiguration of between 

and within LSN connectivity across time (Di Perri et al., 2018).  

 

Although they provide important pieces of information, one major weakness of these 

dFC methods relates to whether they can fully capture the repertoire of brain 

dynamics (Hutchison et al., 2013). Recent approaches show that functional 

connectivity has much richer dynamics and can be described by the ongoing 

reconfiguration of connectivity and switching between different states that go beyond 

the temporal resolution of the windowed dynamic connectivity (Bressler and Tognoli, 

2006). One idea for unveiling the underlying rich dynamics regards finding coherent 

dynamic states without the need for an a priori definition of windows of time (Baker 
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et al., 2014). Appropriate mathematical analysis can provide a temporal 

decomposition of brain activity into a number of states/networks that characterize the 

recurrence of brain dynamics during the experiment (Vidaurre et al., 2017a). Thus, 

these alternative dFC models can identify how brain activity in the unconscious brain 

temporally organizes into discrete states with the potential of studying their rich 

dynamics not previously seen with windowed connectivity (Baker et al., 2014). In that 

regard, applying these techniques to characterize loss of consciousness is an important 

approach. 

 

1.4.12 Development and brain networks 

Functional connectivity networks do not only change in a short time scale but also 

with age. Starting from birth, symmetric brain regions of primary sensorimotor and 

visual networks are shown to be functionally synchronized (Gao et al., 2015). In 

contrast, the fronto-parietal and DMN networks are still in a premature, “scattered” 

stage and become functionally coherent later in the first year of life (Gao et al., 2009) 

propelled by cortical and subcortical maturation (Petanjek et al., 2011). Overall, the 

development of functional connectivity in the first year of life starts with the 

development of primary sensory systems followed by the development of higher-order 

and default mode systems; however different networks demonstrate unique timings 

and developmental trajectories. Thalamocortical connectivity is also different during 

infancy. For example, studies have found that neonatal thalamic functional 

connectivity is dominated by connections to the primary sensory 

sensorimotor/auditory/visual networks (Alcauter et al., 2014). At later stages in the 

first year of life, thalamocortical connectivity includes DMN and fronto-parietal 

networks (Alcauter et al., 2014). Beyond the first year, reorganization of functional 

connectivity persists and it does not attain adult-like level until later in childhood. For 

example, studies have shown that networks in younger children are less integrated 

compared to older children, suggesting that their inter-network communication is not 

fully developed (Fair et al., 2007b; Vértes and Bullmore, 2015). 

 



Chapter 1: Introduction 

 44 

1.4.13 Development and consciousness 

The developmental trajectory of the human brain can provide a unique window of 

information into studying the features of consciousness. At the very early stages of 

life, newborn infants display features characteristic of what may be referred to as basic 

consciousness. Based on evidence regarding the increasing integration of higher-order 

and default mode LSNs as well as the development of thalamocortical connectivity, 

theories suggest that consciousness develops from its basic level to an adult-like level 

during the first years of life (Lagercrantz and Changeux, 2009). Thus, it is now 

believed that the developmental trajectory is also reflective of a consciousness 

trajectory where the	 postnatal maturation of the brain allows the development of 

more complex circuitry that supports increased conscious processing (Rochat, 2003). 

So far I have discussed only one point in this trajectory, namely the adult 

consciousness. Investigating consciousness at the other end of the spectrum, the 

developing brain, might provide validation or extension of the results for the adult 

brain. For example, certain questions emerge as to whether loss of consciousness in 

the developing brain is associated with functional connectivity reorganization, even 

though it has not fully attained adult-like level. Due to ethical and practical reasons, 

studying loss of consciousness in the developing brain is an arduous task; thus only a 

limited number of studies have looked at loss of consciousness at that age range 

(Mongerson et al., 2017). Adding to this, the previous differences reported by others 

between adult and infant functional connectivity networks suggest that translating 

results from the adult to the infant brain is not trivial. In that regard, more tailored 

techniques and conclusive results are required to fully understand loss of 

consciousness in these stages of life.  

 

1.4.14 EEG 

Frequency decomposition 

Although dynamic functional connectivity methods applied to fMRI can capture the 

temporal dynamics of functional connectivity, they are inherently limited by the low 

temporal resolution of fMRI acquisition  (commonly one data point per 2 seconds). 

Electroencephalography (EEG) is another modality that records brain activity with a 
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high temporal resolution from a set of predefined number of electrodes/sensors 

spatially distributed across the scalp. EEG is believed to record postsynaptic potentials 

from deep layers of pyramidal cells (Cohen, 2017). Importantly, the high temporal 

resolution of EEG acquisition is able to capture the different frequencies at which 

neurons oscillate. Neuronal networks in the human brain demonstrate oscillatory 

activity believed to serve a variety of cognitive processes (Hutcheon and Yarom, 2000; 

Buzsáki and Draguhn, 2004). Neuronal oscillations measured by EEG usually cover a 

broad frequency spectrum. Current literature has defined canonical frequency bands 

as 1-4Hz (delta), 4-8Hz (theta), 8-12Hz (alpha), 12-30Hz (beta), and >30Hz (gamma) 

oscillations (Niedermeyer and da Silva, 2004). 

 

EEG networks 

Neuronal oscillations at different parts of the brain can be coherent either in terms of 

amplitude or phase and are believed to reflect communication. By oscillating at a 

specific frequency a neuronal group rhythmically opens the group's windows for 

communication with another neuronal group oscillating at the same frequency, and 

closes it for another neuronal group oscillating at a different frequency (Fries, 2005). 

This is regarded as the functional coherence between different brain regions and is a 

similar concept to functional connectivity between different BOLD signals. 

 

In EEG studies, measures of signal coherence across electrodes are used to capture 

brain communication at different frequencies (Nolte et al., 2004). Similar to 

functional connectivity networks, EEG networks can be used to show how coherence 

is organized across the brain (Micheloyannis et al., 2009). As the definition of 

coherence is frequency-specific, EEG networks at different frequencies can represent 

brain connectivity that corresponds to different communication mechanisms.  

 

EEG and loss of consciousness 

Under several consciousness frameworks, integration of information across neural 

systems in different frequencies plays an important role in the emergence of conscious 

states (Crick and Koch, 2003). Studies have shown that scalp EEG during conscious, 

waking behaviour demonstrates low-amplitude “desynchronized” patterns (Berger, 
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1929). However, during loss of consciousness these patterns oscillate at alpha 

frequencies and become coherent especially in the forebrain (Purdon et al., 2013). 

Simulations have shown that this is associated with coherent alpha oscillations 

between the thalamus and frontal parts of cortex (Contreras et al., 1996; Brown et al., 

2010; Ching et al., 2010). These alpha, coherent oscillations in the thalamocortical 

circuitry have been discussed in the context of consciousness because it is thought that 

awareness depends partly on how frontal and thalamic areas oscillate at these alpha 

rhythms (Llinás et al., 1998). Thus it is now believed that a relationship between the 

loss of consciousness and alpha oscillations exists (Gugino et al., 2001; Hughes and 

Crunelli, 2005). Expanding on this idea, studies using EEG connectivity have shown 

alterations in alpha frequency networks in anaesthesia (Chennu et al., 2016) and 

disorders of consciousness (Chennu et al., 2017) with network becoming more 

fragmented and less globally efficient. Thus the potential of using EEG networks can 

be important for further understanding of changes in functional connectivity during 

loss of consciousness otherwise not observed with fMRI techniques. 

 

1.5 Complexity 

1.5.1 Rationale 

The previous parts suggest that in order to advance the neuroscience of consciousness 

one could start from existing theories to inform the design of potential measures of 

consciousness such as the ones that build upon resting-state functional connectivity. 

How can one make this transition feasible? The described theories of consciousness in 

part 1.3 converge to a certain point: conscious processing requires neural activity in 

segregated networks and the projections among them in order to integrate 

information. This balance between functional integration and functional 

differentiation otherwise known as brain complexity is an important measure that can 

quantify the state of consciousness (Tononi et al., 1998; Tononi and Edelman, 1998; 

Sporns et al., 2000).  Towards this direction, theoretical and practical indices based on 

this principle have been designed to assess the joint presence of differentiation and 

integration in neural systems (Tononi et al., 1994). These metrics are only applicable, 

however, to simple systems of simulated elements or under highly restrictive 
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assumptions and have not been fully translated to testing human brain complexity. At 

the same time, in part 1.4 I argued that functional connectivity and graph theoretic 

approaches could provide a suitable scaffold for examining neural interactions in the 

brain as a whole.  Taken together, these two remarks provide the framework for a 

testable hypothesis: The complexity of functional connectivity networks can be used as a 

measure of the states of consciousness. In that regard, I introduce a novel framework by 

examining the complexity of functional connectivity and how it changes during loss of 

consciousness.  

 

1.5.2 Defining complexity 

Complexity, in simple terms, quantifies the diversity and non-uniformity that arises 

from the interactions of similar units (Bak and Paczuski, 1995). When applied to 

networks (where units correspond to nodes and interactions correspond to 

connections), complexity can be regarded as an aggregate measure of the richness (or 

repertoire) of network organization as it looks at the (statistical) distribution of 

network connectivity across different regions (Zamora-López et al., 2016).  

 

Complexity also captures the coexistence of integration and segregation by looking at 

the distribution of connectivity of specialized regions and how these integrate to shape 

network communication (Tononi et al., 1994; Sporns et al., 2000; Zamora-López et al., 

2016).  If a network is composed of functionally segregated elements, then integration 

is low and complexity is biased towards a more segregated configuration. On the other 

hand, if the system shows cooperative behaviour at the global level, then integration is 

high and the system has a complexity biased towards a more integrated configuration 

(Fig. 1.2). The complexity repertoire in between these two ends defines a landscape of 

network organization associated with different levels of segregation and integration. 

Complexity in the human brain reflects a specific balance of these two as functionally 

specialized groups of neurons distributed across the brain are integrated to produce 

coherent information (Tononi et al., 1994; Tononi et al., 1998). The importance of 

brain complexity lent the idea of developing practical concepts and measures for 

quantifying it, as I will describe more extensively in the next sections.     
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Figure 1.2 - Different levels of segregation/integration and brain network complexity. When each 

functional system processes information in a specialized way and independently from other systems, 

then brain is in segregated configuration. On the other hand, if functional systems show increased 

cooperative behaviour then they communicate information at the whole-brain level and the brain is at 

an integrated configuration. Brain network complexity is believed to be at a “sweet” spot by keeping a 

balance between segregation and integration. Adapted from Tagliazucchi and Chialvo (2012). 

 

1.5.3 Measures of complexity 

Previous theoretical and practical research towards quantifying brain complexity has 

led to the development of different measures. Some examples are neural complexity 

(Tononi et al., 1994), causal density (Seth et al., 2011), Φ from integrated information 

theory (Tononi, 2004; Balduzzi and Tononi, 2008; Oizumi et al., 2014), stochastic 

integrated information (Barrett and Seth, 2011) and Lempel-Ziv complexity (Casali et 

al., 2013). Many of these measures quantify complexity as follows. First, they define a 

partition of the brain network into segregated modules alongside their associated 

complexity characterized in terms of statistical connotation (for example distribution 

of connectivity in some specified neuronal groups). Second, they calculate integration 

of these modules in order to look at how these integrate to produce a complex brain 

network (Tononi et al., 1994). However, due to the vast number of possible partitions, 

depending on what is considered a segregated module, this approach makes the 
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computational cost for calculating complexity extremely high for networks of large 

size. 

 

To this end, one can overcome the obstacle of calculating segregation and integration 

over multiple partitions by looking at the randomness/predictability of the whole 

system (van Emden 1975; Grassberger, 2012), i.e. when talking about brains, by 

looking at how predictable/homogenous the distribution of brain connectivity is. A 

principled way of capturing brain complexity, in light of this randomness approach, is 

by quantifying the entropy of the degree distribution (Zhao et al., 2011; Mowshowitz 

and Dehmer, 2012). Entropy is a measure from information theory and captures the 

randomness/predictability of the degree distribution by looking at the coexistence of 

hubs and low-degree regions-a crucial feature of segregation and integration in 

functional connectivity networks (Bullmore and Sporns, 2012; Zamora-López et al., 

2016). Thus the previous repertoire of complexity can be now translated to a network 

degree entropy repertoire: from homogeneously connected networks/fully segregated 

networks to random networks/fully integrated networks. Specifically, a 

homogeneously connected network is a network in which all nodes have similar 

numbers of edges and connected with their nearest neighbours in a lattice-like 

structure. Because every node has approximately the same number of edges, the 

entropy of the degree distribution is low. At the same time, few edges are needed to 

communicate between nearby nodes, but many edges would be required to 

communicate with distant parts of the network i.e. it supports more segregated 

communication. The other extreme is the random network, in which edges are 

distributed randomly throughout the network. In this case, degree entropy is also low 

as one can easily predict their degree distribution. At the same time, in a random 

network information could reach distant nodes using a small number of edges, but 

reaching neighbouring nodes requires many more edges than on a lattice-like 

network. Thus a random network is biased towards an integrated configuration. 

Above and beyond these two configurations, brain networks keep a balance of 

segregation and integration and have specific degree entropy that is higher and more 

unpredictable compared to homogenously wired or random networks i.e. they show a 
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“sweet spot” of complexity (Tononi et al., 1998)(Fig. 1.3). I will return to this point in 

the next section. 

   

 
Figure 1.3 - Network degree entropy as a measure of brain complexity. When each functional system 

is uniformly connected to each other, then the degree distribution is homogenous thus having low 

degree entropy. Similarly, if functional systems show a very high number of connections between each 

other, then they are connected in random fashion-thus networks have low degree entropy. When a 

balance between integration and segregation exists, entropy is high as the degree distribution is highly 

unpredictable with the existence of a diverse pattern of connected systems. Adapted from Tagliazucchi 

and Chialvo (2012). 

 

1.5.4 Criticality of complexity 

Not any level of complexity can sustain conscious processing (Tononi, 2004). For 

example homogenously wired networks can perform less operations and do not 

possess the same capacity for information as brain networks (Brunel, 2016). Brain 

network complexity is critical in the sense that it can foster the richness of conscious 

experience through a specific balance of segregation and integration of information 

i.e. there is a particular “sweet spot” of complexity at which the brain functions 

(Tononi and Edelman, 1998; Deco and Jirsa, 2012). By this token, alterations in 

complexity signify departure from criticality that can potentially lead to brain 

dysfunction (Shew and Plenz, 2013; Tagliazucchi et al., 2016). 
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How does one show that complexity of functional connectivity is critical? Theories on 

criticality come from statistical physics. Critical systems exist on a state of “bistable” 

transition i.e. a product of competition between ordering and disordering collective 

tendencies (Christensen and Moloney, 2005). At that state, the parts of the system give 

rise to the system’s macroscopic properties that cannot be understood by considering 

only one part’s behaviour. Thus criticality can be viewed as the cooperative behaviour 

of all parts of the system and how this gives rise to system properties such as 

complexity (Bak, 1996). By transposing these ideas to brain networks, one can argue 

that the cooperative behaviour of brain regions can be associated with the emergence 

of segregation and integration tendencies and how these compete and balance each 

other to produce a complex brain (Tononi et al., 1998).  

 

Previous studies have shown that complexity of functional connectivity is derived 

from criticality by making a link to the brain’s underlying structural network 

(Tagliazucchi and Chialvo, 2012). It has been shown that if structural connectivity is 

endowed with certain dynamical properties reflecting these “bistable” transitions, then 

one can reproduce resting-state functional connectivity at a critical point of 

complexity (Sporns et al., 2000; Haimovici et al., 2013).  

 

Expanding on this approach, recent studies argue that the criticality of complexity can 

be shown if one understands the cooperative dynamics developed upon the 

underlying structural communication paths (Avena-Koenigsberger et al., 2017). 

Towards this direction, complexity is critical because it uses structural paths that 

promote communication information in a critically balanced and efficient way. Thus 

in the first experimental chapter of this thesis (chapter 3), I provide evidence that the 

complexity of functional connectivity in the healthy brain is critical because it is 

developed upon a balance (Nash equilibrium) of “optimal” structural connections. 

These are connections that represent the most efficient structural communication 

paths in the brain. Thus the criticality of complexity of functional connectivity can be 

explained on the premises of a balance of optimal connections that together support 

efficient communication in the brain from the local/regional level to the global/whole-

brain level i.e. a balance of segregation and integration. 
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1.5.5 Loss of consciousness and reduced complexity 

Alterations in complexity would imply departure from the balanced integration and 

segregation. My hypothesis is that any decrease in complexity would signify loss of 

consciousness. Why is this the case? Decrease in complexity can affect consciousness 

by biasing brain networks towards a more segregated/less integrated configuration. 

When integration is lost, specialized neuronal groups cannot communicate rapidly 

and effectively thus information cannot be consciously accessed (Tononi and 

Edelman, 1998; Tononi and Koch, 2015).  Initial evidence supporting this statement 

comes from magnetoencephalographic (MEG) studies of binocular rivalry indicating 

that awareness of a stimulus occurs when increased integration between brain regions 

takes place (Tononi et al., 1998). In addition, the GNW model suggests that 

information from functionally specialized regions fails to reach the global workspace 

(i.e. become conscious) unless it is sufficiently integrated via long-range excitatory 

axons (Dehaene and Changeux, 2011). The hypothesis that a segregated configuration 

is evident of the unconscious brain also finds fruitful ground in theories regarding the 

importance thalamocortical connectivity in maintaining consciousness.   Due to its 

extensive connectivity with the rest of the brain, alterations in thalamic connectivity 

cause the brain to become more fragmented, thus impairing whole-brain integration 

(Alkire et al., 2008).  Together, the previous remarks suggest that a decrease in 

complexity might provide a marker for loss of consciousness in light of the loss of the 

brain’s ability to integrate information. In-depth investigation of this hypothesis will 

be performed in chapter 4. 

 

1.5.6 Temporal complexity 

Similar rationale is followed for understanding the temporal changes in the properties 

of functional connectivity networks. Instead of focusing on functional connectivity 

networks and their properties at each time point, in chapter 5, I consider the 

distribution of functional connectivity across time (Baker et al., 2014). This 

distribution will reflect the probability of the brain being active at different states that 

I will derive from the BOLD data (Vidaurre et al., 2017a). I use this approach to 

characterize dynamic changes in functional connectivity as occupancy and switching 
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between different brain states, thus providing the means for exploring complexity of 

functional connectivity in the temporal domain. 

 

1.5.7 Development and complexity 

Finally, developmental changes show that network properties that have been observed 

to change during adult loss of consciousness cannot be directly translated to infant 

loss of consciousness. The lack of development in the functional connectivity of the 

infant brain is believed to restrict the infant brain from attaining a state of 

consciousness similar to the adult brain (Rochat, 2003). However, certain theoretical 

accounts suggest that, although consciousness in infants is not similar to that of the 

adults, it can still be conferred, to some extent, to the same balance of segregation and 

integration (Lagercrantz and Changeux, 2009). Investigation of this hypothesis 

necessitates a separate study focusing on the effects of anaesthesia in the complexity of 

the developing brain. Thus, in chapter 6 I will investigate the complexity of functional 

connectivity networks derived from EEG data in infants undergoing surgical 

anaesthesia. My goal is to demonstrate that decreases in complexity can discriminate 

between anaesthetized infants and infants emerging from anaesthesia in a similar way 

as in the adult anaesthesia. 

 

Taken together, extensive investigation of these hypotheses not only provides 

evidence for the importance of complexity in the neural correlates of consciousness, 

but also paves the way for future studies that can focus on clinical measures and 

applications for classifying different states of consciousness. 
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Chapter 2: Methods 

In this chapter I briefly outline the methods used in the experimental chapters of this 

thesis. Details for specific analyses and datasets used are provided in the 

corresponding experimental chapters. 

 

2.1 Principles of fMRI 

Functional connectivity will be extensively examined in this thesis as a means of 

understanding loss of consciousness. Functional connectivity is based on computing 

BOLD signal correlations. BOLD signals are obtained from fMRI data using MRI 

scanners. Here I describe the technology and methods involved in obtaining such 

data. 

 

2.1.1 MRI Physics 

The origins of MRI go back to Nobel Prize winning discovery by Felix Bloch in 1946 

on the properties of the atomic nucleus (Bloch et al., 1946).  He was the first to show 

that a charged particle such as the hydrogen atom possesses a magnetic field due to its 

spin around the axis. Based on this property, nuclear magnetic resonance 

spectrometers were developed to study the molecular basis of materials by looking at 

how local magnetic fields affect atomic nuclei. However, it was not until the 1970s 

where it was realized that different tissues in the human body have different magnetic 

resonance profiles (Damadian, 1971). MRI scanners were developed in order to 

produce images of the human body. Such scanners contain a large wire coil that can 

produce high magnetic fields through the application of an electrical current. In 

clinical and research settings the most commonly used scanners are limited to 1.5 or 3 

Tesla of magnetic field strength.  

Most of the human body is made up of water molecules which contain hydrogen. The 

images produced by an MRI scanner rely on the specific properties of the protons in 

the nucleus of the hydrogen atom. Based on Bloch’s theories (Bloch et al., 1946), 
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protons can be viewed as dipole magnets with an electrical charge and spin. In normal 

conditions, the protons in our body spin at different directions in a manner that 

equalizes their magnetic forces. Under the presence of a magnetic field of constant 

strength 𝐵! , protons jump into two, so-called energy states: one parallel to the 

magnetic field (low energy state) and one anti-parallel to the magnetic field (high 

energy state). As lower energy is parallel to the direction of the field, a slight majority 

of protons are parallel to the magnetic field. Because protons are unable to completely 

align with the magnetic field, they precess about their axis at a characteristic frequency 

known as the Larmor frequency. Each precession is characterized by a longitudinal 

and a transverse component showing the different directions of the precession. The 

net magnetization of all the protons is the sum of the longitudinal and transverse 

components. The net longitudinal magnetization is the sum of the magnetizations of 

the protons parallel to the magnetic field minus the sum of those that are in the anti-

parallel direction. The net traverse magnetization component relates to whether 

protons precess in the same phase. Net transverse magnetization of out phase protons 

is zero because protons cancel each other out whereas the net transverse 

magnetization of “in phase” protons is non-zero  (Blink 2004; Diechmann 2009; 

Stamatakis et al., 2017). I will simply refer to the transverse magnetization of “in 

phase” protons as the transverse magnetization.  

The net magnetization that occurs when the states of the spins are at equilibrium 

cannot be measured directly. What can be measured however is how net 

magnetization changes after it has been perturbed. To perturb the two 

magnetizations, a magnetic field 𝐵! that pulsates at a specific Larmor frequency is 

applied i.e. a radiofrequency signal (RF signal). This frequency is defined as 

     𝜔! = 𝛾𝐵! 

where 𝛾 is the gyromagnetic ratio (the ratio between the magnetic moment and 

angular momentum of a spin). An explanation for why the RF pulsates at this 

frequency will be provided later. In a typical MR experiment, a 60-90° pulse is applied, 

which shifts the magnetisation vector from the longitudinal plane (parallel to 𝐵!) to 

the transverse plane. Consequently, protons jump to the antiparallel direction (loss of 
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longitudinal magnetization) and they become coherent with the RF signal (increase in 

transverse magnetization). After the RF pulse stops, protons fall out phase 

corresponding to loss of transverse magnetization and protons lose their additional 

energy corresponding to recovery of longitudinal magnetization. These two processes 

take place at different time scales due to several environmental factors (Blink 2004; 

Diechmann 2009; Stamatakis et al., 2017). Most relevant for fMRI is the loss of the 

transverse component because it is recorded as an electromagnetic signal by using a 

receiver coil in the transverse plane (MR signal). If the excitation frequency of the RF 

pulse equals the Larmor frequency 𝜔!, then the signal has an exponential decay.  The 

pace at which the transverse magnetization is lost (T2) is fast due to inhomogeneities 

in the magnetic field and other effects. This is usually quantified by using a decay 

constant called T2*. Quantitatively, the relationship between T2 and T2* is given by 

 1/ (𝑇2∗) = (1/ 𝑇2)+  (1/ 𝑇2!) 

where T2! represents the dephasing effects caused by magnetic field inhomogeneities 

(as those induced by 𝐵! or from magnetic fields with varying strength/gradients that 

will be introduced later). The lost signal can be recovered using a new application 

(echo) of the RF signal. However, tissue-specific factors also contribute to signal loss, 

and their effect cannot be entirely reversed by the new application of the RF signal. In 

addition, some tissues produce larger and some produce smaller differences between 

the original and the echo signal intensities.  It is on this basis that different tissues can 

be imaged. The effect of decay transverse magnetization is called transverse relaxation 

and depends on the tissue type. If the RF signal is applied in sufficient time intervals 

(TE or echo time), the intensity will be different in different tissues (Blink 2004; 

Diechmann 2009; Stamatakis et al., 2017). The recovery of T1 magnetization also 

depends on tissue and environmental factors and can be used for imaging different 

types of tissue. T1 magnetization is enhanced when successive excitation occurs at 

time intervals not long enough to allow full recovery of longitudinal magnetization, 

i.e. short repetition times (TR). 

The T2* transverse magnetization decay depends on tissue susceptibility and, most 

importantly for fMRI studies, on the magnetic properties of haemoglobin. Since the 
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seminal work of Ogawa and colleagues, it was realized that exploiting the magnetic 

susceptibility of haemoglobin could provide a measurable signal at regions where 

neuronal activation would occur (Ogawa et al., 1990).  The haemoglobin molecule has 

magnetic properties that differ depending upon whether or not it is bound to oxygen 

(Pauling and Coryell, 1936). Deoxygenated haemoglobin has paramagnetic properties 

meaning that it causes a loss in the MR signal around its area. On the contrary, 

oxygenated haemoglobin has diamagnetic properties meaning that it does not affect 

the MR signal. However, if deoxygenated haemoglobin results in signal dropout how 

can we obtain increased signal when neuronal activation occurs? When neuronal 

activation occurs within a region this causes an increase in cerebral blood flow and the 

use of glucose but not a commensurate increase in the oxygen consumption rate (Fox 

and Raichle, 1986). This results in a decreased oxygen extraction and lower 

deoxygenated haemoglobin content per volume unit of brain tissue (Fox and Raichle, 

1986). Thus there is a decrease in the relative amount of deoxygenated haemoglobin 

and, due to the magnetic properties of deoxygenated haemoglobin, there is a higher 

T2* signal intensity (Huettel et al., 2004). Therefore, at a sufficient TE, increased 

signal will be obtained where there is high neuronal activity and lowered signal where 

there is low neuronal activity. This change in intensity is an indirect measure of 

neuronal activity or what is referred to as the blood oxygen level dependent (BOLD) 

signal (Poldrack et al., 2011). 
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Figure 2.1 - Principles of MRI image acquisition. (a) Under the presence of a homogenous magnetic 

field with strength 𝑩𝟎 the protons align themselves to the magnetic field in a parallel (low energy state) 

or antiparallel manner (high energy state). Because they cannot align fully, they precess about their axis 

at a specific frequency 𝝎𝟎 (Larmor frequency) that depends linearly on the strength of the magnetic 

field by the gyromagnetic ratio (γ). Longitudinal magnetization is due to a difference in the number of 

spins in parallel and anti-parallel state. Transverse magnetization is due to spins getting into phase 

coherence. Applying an RF signal with a specific frequency 𝝎𝟎 excites the protons to jump to a higher 

energy state (excitation phase). During excitation, longitudinal magnetization decreases and transverse 

magnetization appears. After excitation, transverse magnetization vanishes quickly (T2) while 

longitudinal magnetization (T1) recovers slowly (relaxation phase). Due to tissue-induced 

inhomogeneities in the magnetic field, these two processes allow imaging different types of tissue. The 

T2 decay is used to produce a measurable signal (MR signal) that is useful for functional imaging of 

neuronal activity. (b) The superimposition of other magnetic fields with varying magnetic strength 

allows parsing the signal from the three dimensions of the brain. A magnetic field with inhomogeneous 

intensity across different slices can be applied in the brain (𝑮𝒔 gradient) to encode spatial information 



Chapter 2: Methods 

 59 

at each slice of the brain (z-axis). (c) In turn, an additional gradient-named phased encoding gradient 

(𝑮𝒚 gradient)-is applied that forces protons to precess at the same frequency but different phases. This 

allows encoding protons along the second dimension of the brain (y-axis). Finally a frequency-

encoding gradient (𝑮𝒙 gradient) is applied to force protons to precess with different frequencies thus 

allowing encoding protons along the third dimension of the brain (x-axis). Parts of the figure was 

adapted from the MRC-CBU tutorial slides available here (http://imaging.mrc-

cbu.cam.ac.uk/methods/IntroductionNeuroimagingLectures). 

 

2.1.2 Spatial encoding 

One remaining problem is that of obtaining spatial information that can be eventually 

transformed to a 3-dimensional image. Under the presence of the magnetic field 𝐵!, 

different parts of the brain will have different Larmor frequencies slightly deviating 

from 𝐵!. Image formation in MRI requires the addition of spatially varying magnetic 

fields, known as gradients that will cause spins at different locations (in the three 

dimensional space of the brain) to precess at different frequencies and phases. 

The first gradient applied pertains to encoding the protons in specific slices of the 

brain i.e. encoding the z-axis of the three dimensional brain (slice-selection gradient). 

The scanner can select the particular slice to image by turning on the slice-select 

gradient and then altering the frequency of the RF signal to match the frequency at the 

desired slice position. Protons not in the slice will not get excited since their Larmor 

frequency will not match the frequency of the pulse and they will not jump to a higher 

energy state. After applying the slice-selection gradient (in other words knowing one 

spatial dimension), two further gradients are applied: one for phase and one for 

frequency encoding. The phase encoding gradient forces protons at all y locations to 

precess at the same frequency but different phases thus allowing encoding along the y-

axis. The frequency gradient is forcing to protons to precess at different frequencies in 

the x-axis thus allowing encoding their x spatial position. Together, these two 

gradients encode the protons in the two remaining spatial dimensions (Blink 2004; 

Diechmann 2009; Stamatakis et al., 2017). The total MR signal recorded associated 

with different frequencies and phases is mathematically represented in k-space. An 

inverse Fourier transform is then used to convert k-space data into images that we can 
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later process. As mentioned before, when this sequence ends, one needs to wait for the 

longitudinal magnetization to partially recover and reapply this sequence (TR, 

repetition time). Because this sequence is rather slow, advanced sequences like the 

echo-planar imaging (EPI) have been developed to obtain functional data faster 

(Mansfield, 1977). Moreover, EPI is susceptible to local changes in blood oxygenation 

due to the paramagnetic properties of haemoglobin, making it an ideal candidate for 

functional MRI (Ogawa et al., 1990).  

Taken together, the described procedure can result in either T1-weighted (i.e. relying 

on T1 relaxation) with more anatomical structural information or T2-weighted (i.e. 

relying on T2 relaxation) images that are more suited for fMRI. 

The effective spatial resolution of fMRI is at the order of millimetres and is related to 

the specificity of the spatial encoding gradients described above. Spatial resolution is 

described by what is known as “voxel size” meaning the size of the rudimentary 

volume elements or pixels that comprise the three-dimensional MRI images. The 

temporal resolution is limited by the delay between the neuronal activation and the 

peak of the neuronal response as well as the temporal resolution applied in MR 

sequences. In practice, there are trade-offs between spatial resolution and temporal 

resolution that can determine the final image size and resolution. Overview of the 

MRI acquisition principles and spatial encoding is described in Fig. 2.1. 

 

2.1.3 BOLD signal 

The dynamics of neuronal activity and their relationship to oxygen consumption and 

the BOLD signal is not straightforward. In this section I will describe shortly our 

understanding of the BOLD signal. 

During neuronal activation the brain reacts by increasing local blood flow, thus 

bringing in more oxygen and causing hyperoxygenation. Simultaneously, the local 

blood volume increases thus increasing the oxygen consumption and the level of 

deoxyhaemoglobin. These two processes are non-commensurate meaning that the 

increase in deoxyhaemoglobin is slower that the increase in local blood flow, resulting 
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in a net hyperoxygenation that lasts for about 4-6 seconds, and in an increased T2* 

intensity, thus a positive BOLD response. Subsequently, the oxygen consumption and 

blood flow returns to pre-activation conditions. Because blood flow response is 

slower, there is an undershoot in the observed BOLD signal after the event that 

triggered the haemodynamic response.  The dependence of BOLD signal on time after 

neuronal activation is called the haemodynamic response function (HRF) (Poldrack et 

al., 2011, Fig. 2.2). The HRF is slow, with a peak around 5 seconds followed by a 15-20 

seconds undershoot until it returns to baseline. In addition, the HRF can be treated as 

a linear time-invariant system. In other words, the response to a long sequence of 

neuronal activity can be determined by linearly adding the response to shorter trains 

of neuronal activity. This is particularly useful in explaining the statistical models and 

image processing employed later (Poldrack et al., 2011). 

 
Figure 2.2 - A double-gamma model of the haemodynamic response function. In response to a 

stimulus, the corresponding BOLD signal shows an initial dip, followed by a peak at around 5 seconds, 

and a prolonged return to baseline, that lasts at around 30 seconds. 

However the BOLD signal is a rather indirect measure of neuronal activity, being 

dependent on the coupling of vascular activity to metabolic demand that, in turn, is 

linked to neuronal activity (Logothetis et al., 2001). Current models suggest that 

presynaptic release of glutamate induces a BOLD response that generates local field 

potentials in post-synaptic neurons, meaning that BOLD signals reflect pre-synaptic 

activity, not post-synaptic firing (Goense and Logothetis, 2008). The post-synaptic 

targets include glial cells, the messenger systems of which cause arteriolar muscle to 

relax and initiate haemodynamics. However different accounts suggest that local 

blood flow can be altered prior to neuronal activation perhaps in anticipation of a 
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potential stimulus-response (Sirotin and Das, 2009). Although the controversy 

regarding the origins of BOLD signal is an important topic, in this thesis I will use the 

BOLD signal under the assumption that it is well-described proxy of neuronal activity. 

 

2.1.4 fMRI experiments 

Understanding BOLD responses associated with given experimental conditions 

consists the major aim of fMRI experiments. FMRI experimental designs can be 

broadly categorized in two categories: i) categorical referring to those experiments 

that compare conditions by subtracting one condition from another ii) parametric 

referring to the experiments looking for alterations in BOLD responses based on 

tailored experimental stimulus. Depending on stimulus delivery, there are broadly 

three subcategories of fMRI experiments: blocked, event-related, mixed blocked and 

event-related, and participant-dependent designs (Amaro and Barker, 2006). Blocked 

designs include experiments that compare task blocks to non-task blocks in order to 

isolate the BOLD response related to a certain task. Event-related experiments allow a 

more refined temporal decomposition of the BOLD usually in relation to a particular 

event of interest (for example correct responses vs. erroneous ones). In mixed blocked 

and event related experiments, the previous two types can be inter-mixed to produce 

an even finer temporal decomposition of BOLD response, by averaging responses 

during events and contrasting them between task and non-task blocks. Finally, a 

participant-dependent design is used in cases where the experimenter has no control, 

such as resting-state scanning. In summary, the major criterion in choosing a 

particular experimental design depends on the question of interest. In this thesis I 

focused only on resting-state scanning in order to see how spontaneous BOLD 

responses during rest can inform on the state of consciousness in anaesthetized 

individuals and patients. 
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2.2 Preprocessing fMRI data 

Prior to any fMRI statistical analysis a series of preprocessing steps are required in 

order to ensure the validity of the results. 

2.2.1 Slice-timing correction 

Because fMRI data is acquired slice by slice, there are slight differences in the timing 

the slices were obtained at within a single image. Thus it is the case that a functional 

slice is obtained at a point that is later in the HRF compared to other slices. Using 

interpolation techniques, slice-timing correction ensures that every point in a given 

functional image is the signal from the same point in the HRF (Sladky et al., 2011).  

 

2.2.2 Realignment/motion correction 

The realignment process corrects head movement or other types of movement caused 

by respiration or cardiac signals. Correcting for motion is important as it can lead to 

false activations as well as spurious functional connectivity estimations (Parkes et al., 

2018).  The correction algorithm deals with the displacement of the image in 6 

directions, x, y, z translations and x, y, z rotations. For this purpose a rigid-body 

transformation is used. Rigid-body transformations assume that the size/shape of the 

two images that are to be co-registered are identical (it is the same brain). One image 

can be superimposed upon the other by a combination of three translations and three 

rotations (Ashburner, 2009). Realignment is usually done in two steps: First, images 

are realigned to the first image and a mean image of these is computed. Second, 

images are realigned again in a second pass to the mean image. Computer algorithms 

can identify the set of parameters that provide the best match to the reference image 

by using a cost function (for example using a voxel-by-voxel intensity subtraction 

criterion) (Ashburner, 2009). 

Even after realignment a considerable amount of the variance in the data can be 

accounted for by the effects of movement. Thus the translational and rotational 

(motion) parameters used to realign the images are incorporated as confounds in any 

statistical models used later. 
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2.2.3 Co-registration and normalization 

The next preprocessing step involves the spatial transformation of fMRI images to a 

standard space, a process known as spatial normalization. In order to allow for within 

and between group comparisons the individual functional images need to be warped 

to a standard Euclidean space (Fox, 1995). The two most widely used spaces in the 

neuroscience community are Talairach (Talairach and Tournoux, 1988) and Montreal 

Neurological Institute (MNI) spaces (Evans et al., 1993). The Talairach space is based 

on a stereotaxic atlas of the human brain (postmortem brain of a single subject) 

published by Talairach and Tournoux, whereas the MNI space is based on an average 

brain template coming from the MRI scans of several hundred individuals.  

Since structural images such as T1-weighted images contain more spatial information 

(higher resolution) they are utilised when spatially normalising fMRI images.  A 

preliminary step to assist with this process is to transform (or co-register) the T1 

structural image of each individual to their lower resolution, mean functional image 

discussed earlier. This registration is similar to the rigid-body transformation 

employed for motion correction but it requires a more complicated cost function due 

to the different nature of these images (high-resolution structural versus low-

resolution functional (Wells et al., 1996). 

In turn the co-registered structural image is segmented into different tissue types 

(grey matter, white matter, cerebrospinal fluid/CSF). The grey matter segmentation, 

alongside tissue probability maps in standard space, is used for better normalisation of 

the co-registered structural image. The normalisation parameters estimated are then 

applied to realigned functional images. This has been labelled as the “unified 

segmentation method”, in which case the segmentation and normalisation stages are 

combined into a single process (Ashburner and Friston, 2005).  

 

2.2.4 Smoothing 

After normalization, a standard process is to smooth the functional data. This is done 

in order to normalize the statistical distribution of the data at the group level, thus 
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increasing the likelihood of finding meaningful statistical results (as in the case of 

parametric statistics that are often used in fMRI analysis). Usually a 3-dimensional 

Gaussian kernel with a specified full-width (FWHM) in mm is used (Ashburner, 

2009). Overviews of the preprocessing pipeline is described in Fig. 2.3. 

 

Figure 2.3 - Preprocessing functional MRI data. Slice-timing correction accounts for the fact that 

each slice in a functional slice is obtained at a point that is later in the HRF compared to other slices. 

After slice-timing correction, functional images are realigned within each subject to account for motion 

correction. The images are then normalized to a standard template in order to wrap all individual 

brains to the same space. Finally images are smoothed using a kernel (here a 3-dimensional Gaussian 

kernel is shown with a specified full width) in order to normalize the data for subsequent cross-subject 

comparisons. 

2.2.5 Functional connectivity 

Functional connectivity regards the temporal correlations between the BOLD data 

derived from different seeds or regions (Biswal et al., 1995). As addressed in the 

introduction, the functional connectivity work presented in this thesis considered a 

whole-brain approach by regarding the time courses from a number of regions of 

interest (ROIs)/parcellation spanning the entire brain. After defining ROIs (I refer the 

reader to the experimental chapters for more details on which parcellation was used), 
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sophisticated toolboxes such as the CONN toolbox (Whitfield-Gabrieli and Nieto-

Castanon, 2011) can be used to extract and correlate BOLD signals from each ROI 

using the preprocessed functional data. Prior to this and besides the aforementioned 

preprocesing steps, the functional data requires additional processing in order to deal 

with noise and spurious correlations. In that regard, it is common that the 

preprocessed functional data are highpass filtered for dealing with scanner noise. 

Physiological and motion related noise are dealt with by using the anatomical 

CompCor technique, which removes the first 5 principal components of the signal 

from white matter and CSF masks, as well as the motion parameters and their first-

order temporal derivatives (Behzadi et al., 2007). Functional connectivity values are 

then derived as Pearson’s r pairwise linear correlations between the BOLD signals of 

each ROI and are z-fisher transformed in order to make the distribution of 

correlations normal. This process results in functional connectivity data for each 

individual. 

 

2.2.6 Dynamic functional connectivity 

The previous analysis of functional connectivity assumes that the strength of 

interactions between regions is constant over time. As described previously, 

correlation coefficients between regions are calculated from the time series of the 

entire scan. Although a convenient framework, given the dynamic nature of brain 

(Rabinovich et al., 2012) it might be of interest to obtain a more refined 

representation of the temporal changes in functional connectivity (Hutchison et al., 

2013). The idea that the temporal analysis of functional connectivity might provide 

information about the underlying brain dynamics comes from studies combining 

fMRI and high temporal resolution modalities such as EEG (Allen et al., 2012). These 

studies have shown that functional connectivity changes are commensurate to 

changes in the electrophysiological recordings indicating a temporal variability on a 

time scale of seconds to tens of seconds (Chang et al., 2013). 

 

In that regard, the question of what is the most appropriate method in order to 

measure the temporal variations of functional connectivity gains high importance. 
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The majority of literature in this area uses the “sliding window” method to estimate 

variations in functional connectivity (Hutchison et al., 2013). By using this method, 

functional connectivity is estimated within pre-specified and overlapping “windows of 

time” that have fixed length. Expanding on this framework, other methods looking at 

windowed connectivity but not requiring ad hoc definitions of windows and window 

lengths have been developed. For example, dynamical conditional correlation analysis 

uses maximum likelihood methods to estimate the appropriate parameters that can 

inform us on time-varying variances and correlations between BOLD signals 

(Lindquist et al., 2014).  

These are important studies and have provided useful evidence for the brain’s rich 

dynamics. However, building upon literature from other modalities having much 

higher resolution than fMRI (for example EEG “microstates”, Khanna et al., 2015 or 

attractor neural networks, Conklin and Eliasmith, 2005), new methods have emerged 

that talk about a richer repertoire of dynamics not previously seen by windowed 

connectivity. Broadly speaking, these methods suggest that brain dynamics are 

characterized by a certain number of discrete states that recur during different time 

points during the scan (Baker et al., 2014). These models also assess the transitions 

between these states allowing us to quantify the brain’s switching rate between 

different states (Baker et al., 2014). 

 

Hidden Markov model 

One representative model that is going to be used in this thesis to study the dynamics 

of loss of consciousness (chapter 5) is the Hidden Markov model (HMM)(Vidaurre et 

al., 2017a; 2017b). Compared to other models that also assume the existence of 

discrete states (for example as these derived from some form of clustering analysis, 

Barttfeld et al., 2015a), this model was chosen due to its sophistication on capturing 

the occurrence of states and the between-state transitions, its tractable inference, and 

its reduced computational workload. 

The HMM uses the BOLD data obtained using standard preprocessing methods. 

Using notation, HMM assumes that for the BOLD data of length T and for an ad hoc 
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defined number of states K, there is a number of hidden state variables s={𝑠!,… , 𝑠!} 

(and their parameters 𝛩) that describe the dynamics of the BOLD data.  

A posterior distribution model is used to represent this assertion. It assumes that the 

BOLD data 𝑦 at each time point is obtained as the joint probability of being on each 

state and their relative transition probabilities between them. Formally 

𝑃 𝑦, 𝑠,𝛩 = 𝑃 𝑠! 𝜋!  × 

𝑃 𝑠! 𝑠!!!,𝜋! 𝑃 𝑦! 𝑠! ,𝜃 𝑃 𝜋! 𝑃 𝜋! 𝑃(𝜃)
!

!

 

where P π! , P π! , P(θ) are chosen to be non-informative priors, P(s!) is the initial 

state probability,  P(s!|s!!!,𝜋!) is the state transition probability, and P(y!|s!, θ) is the 

posterior observation probability. The HMM parameters Θ={𝜋! ,𝜋!,𝜃} consist of 𝜋! 

which parameterizes the initial state probability, 𝜋!  that determines the K×K state 

transition probability matrix, and θ which describes the observation probability. The 

state transition probability is assumed to depend only on the previous state 

(Markovian property) i.e.  

 

                                              𝑃 𝑠! 𝑠!,… , 𝑠!!! = 𝑃 𝑠! 𝑠!!! = 𝜋!    

The observed model probability for each state 𝑘 ∈ 𝐾 is assumed to follow a Gaussian 

distribution with mean 𝜇!  and covariance 𝛴!  that represent the activity and 

connectivity of each state respectively. This can be denoted as 

 

𝑃 𝑦! 𝑠! = 𝑘,𝜃  ~ 𝒩(𝜇! ,𝛴!) 

 

The prior distributions over the HMM parameters 𝛩 = {𝜋!,𝜋! ,𝜃} and the posterior 

distributions are chosen to be conjugate, i.e. they come from the same type of 

probability distribution (usually Gaussian). This choice makes the model tractable to 

certain kinds of inference. 
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The next goal is to infer the hidden variables and their parameters. One method for 

doing this is to use variational Bayes (VB) inference that deals efficiently with 

complicated probabilistic models (Wainwright and Jordan, 2008). Using VB one can 

obtain the hidden variables and parameters and, in turn, the posterior observed 

probability 𝑃 𝑦! 𝑠! = 𝑘,𝜃  that fully describes the BOLD data. Practically speaking, 

the inference allows us to compute at which state each time the brain is and the state’s 

parameters. This gives us the methodological toolbox to quantify useful quantities 

about the temporal dynamics of the brain: for example, how much time is spent on 

each state or how often does the brain switch between states. Details will be given in 

chapter 6.  

 

2.2.7 Software 

The aforementioned preprocessing pipeline for all the experiments described in this 

thesis was implemented in the Statistical Parametric Mapping (SPM) Version 12.0 

toolbox publicly available here 

(http://www.fil.ion.ucl.ac.uk/spm/)  

The toolbox utilized the MATLAB Version 12a platform   

(http://www.mathworks.co.uk/products/matlab/ 

Functional connectivity was calculated using the CONN toolbox (Whitfield-Gabrieli 

and Nieto-Castanon, 2012) publicly available here 

(http://www.nitrc.org/projects/conn) 

The HMM model was built on top of the HMM-MAR toolbox (Vidaurre et al., 2017a; 

2017b) publicly available here 

(http://github.com/OHBA-analysis/HMM-MAR/wiki)  
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2.3 Principles of diffusion imaging 

Diffusion imaging estimates white matter local diffusion direction from 

measurements of water diffusion. Importantly, white matter tractography pieces 

together this information to infer structural connections between brain regions. Thus 

diffusion imaging and tractography offer unique avenues for understanding the 

brain’s structural connectivity. In chapter 3, I used structural connectivity in order to 

provide a suitable model for explaining the critical complexity of functional 

connectivity.  Thus in this section I will describe the basic premises of diffusion 

imaging and structural connectivity. 

 

2.3.1 Diffusion in the brain 

Diffusion imaging profiles the motion of water molecules in the brain. Each molecule 

experiences a “random walk,” known as Brownian motion, as it moves through a 

substrate. Though the motions of individual molecules are unpredictable, the position 

of the molecules on average can be modelled according to Einstein’s law (Einstein, 

1956). However, Einstein’s law works only in the case where the motion of the 

molecules is unimpeded i.e. isotropic diffusion. If molecules are impeded in one or 

more directions, the diffusion is anisotropic and Einstein’s law fails to predict the 

position of the molecules. Examples of anisotropic diffusion can be found in the 

human body, with the most relative to the brain example being the diffusion in the 

axons. Specifically, because of the hydrophobic and tubular structure of the axons, 

water diffuses much more rapidly along the axon than across its membrane (Sen and 

Basser, 2005). 

 

2.3.2 Diffusion weighted imaging 

Imaging the diffusion of water molecules created new challenges for MRI. To sensitize 

MRI images to diffusion a modified MR sequence needs to be used. As introduced 

previously with MR imaging, an adequately applied strength-varying magnetic field 

(or gradient) can influence the phase of the spins, with the degree of influence 
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depending on the strength of the field. Obtaining diffusion weighted imaging (DWI) 

data requires an additional gradient in order to encode the diffusion information 

(Hagmann et al., 2006). This gradient consists of two pulses separated by a certain 

time interval in the acquisition process (diffusion time interval). The first of the two 

gradient pulses in this sequence introduces a phase shift depending on the strength of 

the gradient at the position of the spin. Before the application of the second gradient 

pulse, which induces a phase shift dependent on the spin position, a 180° RF pulse is 

applied to reverse the phase shift induced by the first gradient pulse. Since the 

diffusion-encoding gradient causes the phase shift to vary with position, the spins that 

remain in the same location along the axis of the gradient during the two pulses will 

return to their initial state. However, spins that have shifted will experience different 

field strength in the second pulse. Thus they will not return to their position but they 

will experience a total phase shift resulting in a decreased intensity of the measured 

MR signal. The longer the displacement distance is, the higher the phase shift and the 

greater the decrease in signal will be. Hence, the resultant image shows low signal 

intensity in regions where diffusion along the gradient is high (Hagmann et al., 2006). 

Similar to the k-space of the MRI data, the result of the application of gradients in 

different directions and with different intensities at specific moments of the 

acquisition, results in different values of the signal that can be represented in a 

coordinate system (q-space). Inverse Fourier methods applied to the q-space result in 

images depicting diffusion in different directions at each brain position. To describe 

the parameters applied in sampling from the q-space, the term “b value” is often used. 

The b value is proportional to the product of the diffusion time interval and the 

square of the strength of the diffusion gradient (Hagmann et al., 2006). 

 

2.3.3 Calculating diffusion directionality 

DWI allows the estimation of the diffusion direction in each voxel in the brain. One 

particular problem DWI faces is that it is not able to fully capture the diffusion 

characteristics. Diffusion is a three-dimensional phenomenon with a direction and 

shape. In that regard, diffusion can be described by a 3×3 diffusion tensor 𝐷 that fully 
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characterizes diffusion in 3-dimensional space, under certain Gaussian assumptions 

(Batchelor et al., 2005).  

𝐷 =
𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧
𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧
𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

 

where each number 𝐷!"  corresponds to the diffusion rates in each combination of 

direction (𝑖, 𝑗). If the diffusion data is sampled in sufficient directions, then a diffusion 

tensor model can be fitted to the diffusion data by solving a model tensor equation 

with 6 degrees of freedom (equal to the number of free variables in the diffusion 

tensor). Diffusion tensor imaging (DTI) is a specialized diffusion imaging technique 

that implements this approach. In DTI, diffusion gradients are applied in multiple 

directions to fully sample the diffusion tensor in space. Specifically, a series of 

diffusion-weighted images are obtained in which the q-space is sampled in at least six 

(equal to the number of unknowns in the diffusion tensor 𝐷) different directions plus 

a non–diffusion-weighted reference image (𝑏!). In general, a b value of approximately 

1000 sec/mm2 is used for sampling from the q-space. It is worth noting that, whereas 

only 6 encoding directions are needed to estimate this diffusion vector, a larger 

number of spatially uniformly distributed encoding directions is usually acquired in 

order to mitigate the noise effects on the diffusion parameters. One major limitation 

of DTI is its inability to describe fibre directionality in regions where two or more 

fibre populations with different orientations are present (e.g., crossing fibres regions). 

The fibre crossing confound in DTI has prompted efforts to develop diffusion 

imaging methods capable of resolving fibre crossing (Alexander, 2011). Using q-space 

imaging (QSI), investigators have found that in regions of fibre crossing the diffusion 

function possesses significant multimodal structure (Tuch et al., 2003). They have 

suggested that, in order to resolve this complicated diffusion process, a gradient 

sampling on a three-dimensional lattice is required (Tuch et al., 2003). However, there 

are some disadvantages associated with these techniques. First QSI is time-intensive. 

Second, QSI requires large pulsed field gradients in order to perform sufficient 

sampling of diffusion. To address the sampling burden of QSI, investigators have 

proposed an alternative approach based on sampling on a spherical shell (or 

combination of shells) in a so-called diffusion wave-vector space, an approach 
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referred to as high angular resolution diffusion imaging (HARDI) (Tuch et al., 2002). 

Methods such as q-ball imaging (QBI), have been developed to reconstruct diffusion 

directionality from HARDI data (Tuch, 2004). Other approaches that also use 

sophisticated tensor models to deal with fibre crossing include diffusion spectrum 

imaging (DSI) (Wedeen et al., 2008) or hybrid diffusion imaging (Wu and Alexander, 

2007). 

 

2.3.4 Tractography and structural connectivity 

Once the diffusion tensor is obtained from the data, quantitative measures can capture 

the degree of anisotropy of the diffusion.  One such measure is the fractional 

anisotropy (FA), a value between 0 and 1 that is calculated using the eigenvalues of the 

diffusion tensor (Alexander, 2011). A value of zero means that diffusion is 

unrestricted in all directions whereas a value of one means that diffusion is restricted 

among all directions. Values in between 0 and 1 imply that diffusion is restricted 

among specific directions. 

Thus, FA estimates the principal direction of diffusion in the 3-dimensional space. In 

that regard, white matter tractography techniques estimate the connectivity patterns 

between different brain regions from the continuity in the local estimates of diffusion 

direction at each voxel. These algorithms include the selection of a starting point or 

seed, which can be either a voxel or a precise location defined by Cartesian 

coordinates in the brain space, and then iteratively reconstruct structural connectivity 

by estimating the diffusion directions towards other regions or voxels. Tractography 

algorithms can be classified largely into deterministic and probabilistic categories. 

Deterministic algorithms provide a unique trajectory for each seed point (Jones et al., 

2005) whereas probabilistic algorithms generate multiple possible trajectories and 

select the “best” fit using a cost function (Koch et al., 2002). The limited number of 

diffusion gradients and degrees of freedom make tractography prone to error 

especially in the case of crossing fibres. To this end, more advanced methods have 

been implemented that deal with the uncertainty of fibre detection more efficiently 

(Behrens et al., 2007). 
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It is worth noting that the fibres quantified with tractography are often considered to 

represent individual axons or nerve fibres. However, a more precise account would 

regard these as lines of fast diffusion that follow the local diffusion maxima and that 

only generally reflect the axonal architecture. Notwithstanding these limitations, 

tractography algorithms have been extensively used these in order to assess white 

matter connectivity between different parts of the brain (Lazar, 2010).  

Together, diffusion data in combination with tractography algorithms can provide 

information about the structural connectivity between brain regions. An overview of 

this process is described in Fig. 2.4. 

 

2.3.5 Software 

I used dsi-studio (Yeh et al., 2013) publicly available here 

 (http://dsi-studio.labsolver.org/) 

in order to perform diffusion image preprocessing and tractography.  

 

Figure 2.4 - Diffusion image acquisition and structural connectivity. (a) Diffusion data is obtained 

by exploiting the diffusion properties of water along the white matter axons. Diffusion can be described 

by a diffusion tensor that fully characterizes the diffusion direction in 3-dimensional space.  Based on 

the complexity of the diffusion tensor, different techniques are applied in order to reconstruct diffusion 
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directions in white matter (DTI, DSI, etc.). (b) White matter tractography links this information 

together to infer structural connectivity between different brain locations. Tractography algorithms 

construct diffusion-based trajectories from one brain region to another potentially resembling the 

underlying white matter connections. (c) Tractography methods can be combined with a brain 

parcellation (for example, as the one that comes from T1 data) in order to produce structural 

connections between ROIs. 

2.4 Network analysis 

2.4.1 Network properties 

After computing functional connectivity values, I applied network analysis techniques 

in order to study network organization and its complexity. Here I will describe their 

basic premises.  

A network (graph) is a collection of nodes and edges. Nodes can be defined arbitrarily 

(for example regions of interest or EEG electrodes/sensors) and edges stand for 

connections between nodes that can be either structural or functional (Fornito et al., 

2016). A useful representation of a network is by using a two-dimensional matrix with 

the size of the two dimensions equal to the number of nodes. Each entry (𝑖, 𝑗) in the 

matrix reflects an edge between nodes 𝑖 and 𝑗. Prior to analysis of its properties, a 

network is usually thresholded. This is done in order to remove spurious edges as well 

as to make them sparse, a prerequisite for the computation of many network 

properties (Fornito et al., 2016). There is no consensus as to what is the most 

appropriate technique for thresholding a network. A popular technique uses the 

proportional thresholding technique meaning that a percentage of the most important 

connections are maintained for each individual.  This way, the number of connections 

is maintained the same across individuals thus avoiding the problem of finding any 

statistical differences in network properties just because of the different number of 

edges. Choice of the percentage number is usually arbitrary. Studies suggest a lower 

threshold to prevent networks from being severely fragmented (Power et al., 2011) 

and an upper threshold to avoid introducing more, potentially noisy, edges into the 

network (Bassett and Bullmore, 2006). In turn, subsequent network properties are 

averaged over this range of thresholds. After thresholding, the resulting network 

matrix consists only of the strongest connections. Subsequently, this weighted 
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correlation matrix can be converted to a binary matrix in order to improve 

computational power.  

After these processing steps, network properties can be investigated using tools from 

graph theory. The most fundamental property is the degree of the network 

representing the number of connections of each node towards the rest of the network 

(Rubinov and Sporns, 2010; van den Heuvel and Sporns 2013). Degree is a 

fundamental property of interest because it correlates with most of the network 

properties (Orsini et al., 2015). In addition, the shape of the degree distribution can 

discriminate between types of networks having different organization. For example 

networks that have random organization are fundamentally different in their degree 

distribution from networks that exhibit some form of clustering (for example modular 

or brain networks) (Newman et al., 2001; Vértes et al., 2012). 

Other properties can be defined depending on which aspect of network organization 

is examined.  For example, modularity is a measure expressing how well a network 

can be decomposed into different modules or communities. Modularity is defined as 

the number of links within a module over the links in the network. In order to identify 

network modules, different algorithms are applied usually by maximizing a cost 

function (Lancichinetti and Fortunato, 2012). Additional properties include the 

average shortest path length that is related to the global efficiency of the network in 

the sense that the smaller the shortest path length the quicker information will be 

transmitted globally in the network (Fig. 2.5).   
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Figure 2.5 - Functional connectivity network analysis. (a) BOLD signals from different ROIs are 

pairwise correlated to obtain a value 𝑟 of functional connectivity between them. (b) Repeating this 

process for all the pairs of ROIs results in a functional connectivity network with nodes being ROIs and 

edges being pairwise correlations. A thresholding technique is applied in order to keep the strongest 

correlations and remove any spurious correlations. Depending on the analysis planned, the matrix can 

be also binarized in order to represent an unweighted network where the presence of an edge is denoted 

by 1 and its absence by 0. (c) After the network is obtained, different properties can be quantified. At 

the local/regional level, degree is the number of connections each region has towards the rest of the 

network. In turn, modularity is a measure of how well nodes are organized in modules that are strongly 

connected within them and sparsely connected with each other. At the global/whole-brain level the 
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length of the shortest path between every region in the brain is the minimum number of steps it takes 

to reach one region from another and is related to the global efficiency of the network. 

2.4.2 Complexity of functional connectivity networks 

Complexity of functional connectivity networks is central to this thesis and will be 

introduced here. 

 

From complexity to entropy 

Quantifying complexity in systems has their roots in the physics literature. 

Complexity has been used by physicists to ascribe a quantitative property to 

phenomena of which a complete description is infeasible due to their large of 

parameters and properties (van Emden, 1975). Phenomena which in the physics 

literature are considered as complex are, among others, chaotic dynamical systems, 

fractals, networks and cellular automata. A common feature of these and other 

examples is the following: their properties show a specific pattern somehow situated 

between randomness and rigidness (Grassberger, 2012). In that regard, complexity 

measures have been developed in order to quantify how close a system is to 

randomness (Bai et al., 2014). A measure of randomness complexity, (or simply 

complexity) broadly used in physics and information theory is Shannon entropy (or 

simply entropy)(Shannon and Weaver, 1949). Increased entropy implies high 

complexity as the system cannot be easily predicted whereas low entropy implies less 

complexity and more predictability (Shannon, 1948). Formal definitions follow below. 

 

Complexity of networks 

The notion of complexity (and its measure entropy) can be applied to networks, and, 

by extension, to functional connectivity networks. Since the initial investigations of 

network properties in functional connectivity networks, it is has been shown that the 

shape of the degree distribution is not random. On the contrary, it emphasizes the 

coexistence of highly connected regions (hubs) and other sparsely connected regions, 

reflecting a balance between segregation and integration. Thus one way of capturing 
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the complexity of functional connectivity networks is by measuring the entropy of the 

degree distribution (Mowshowitz and Dehmer, 2012; Zamora-López et al., 2016). 

Formally, the degree distribution 𝑃 can be obtained from the histogram of the degree 

sample of each network. In turn, entropy of the degree distribution can be obtained by 

calculating the following sum i.e.: 

𝐻 =  −  𝑝! log𝑝!
!∈!

 

where 𝑝!  reflects the probability of a specific degree value occurring in the degree 

sample. Estimating entropy in an unbiased way, i.e. estimating the true entropy of the 

distribution based on a limited-size sample is an important problem with many 

applications (Harris, 1975). Standard estimators calculate entropy by using the 

frequency estimates of the sample. Let 𝐹 = (𝐹(1),𝐹(2),… ) the fingerprint of the 

sample of size 𝑘 where 𝐹(1) is the number of degree values appearing once, 𝐹(2) is 

the number of degree values appearing twice and so on. Then entropy can be defined 

as 𝐻 =  −  𝑝! log𝑝!!∈!! = −  !
!
𝐹 𝑖 log 𝑖/𝑘! .  

In chapter 3, I will use entropy to show how complexity can be derived from 

structural connectivity. In chapter 4, I will refine quantification of entropy by focusing 

on the degree distribution of hubs and sparsely connected regions separately in order 

to see if there are more localized changes in complexity during loss of consciousness. 

 

2.4.3 Software 

I used the Brain Connectivity toolbox (BCT) publicly available here  

 (http://sites.google.com/site/bctnet/) 

for thresholding networks and calculating their degree samples. In-house made scripts 

were used for additional network properties and for calculating entropy as described 

in the experimental chapters. 
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2.5 Electroencephalography  

Electroencephalography (EEG) has been instrumental in assessing brain activity with 

high temporal resolution. In chapter 6, I used EEG-based network to study the 

complexity in anaesthetized infants. In this section I will describe the premises of 

obtaining and processing EEG data. 

 

2.5.1 EEG signals 

Origin 

Neurons communicate information by means of electrochemical signals passing 

through the synapses (Hormuzdi et al., 2004). At the synapses, neuronal activity is 

transferred chemically from one neuron to another via neurotransmitters that are 

released from the presynaptic cell and attached to specific receptors located on the 

postsynaptic cells. This process induces excitatory and inhibitory postsynaptic 

potentials and associated currents around the synapses (Kirschstein and Köhling, 

2009). Currents derived from synapses move through the dendrites and cell body to a 

trigger zone in the axon base and pass through the membrane to the extracellular 

space along the way. These extracellular currents generated by populations of neurons 

generate an electric potential (and electric field), a vector whose amplitude is 

measured in volts per distance. It is worth noting that the neurons that contribute to 

the EEG signal are mostly the pyramidal neurons of the cortex. These are arranged in 

palisades with the apical dendrites aligned perpendicularly to the cortical surface. In 

that regard, the cumulative summation of their electrical potential has a specific 

direction and, thus, is more easily measured in the scalp (Spruston, 2008). Taken 

together, due to their unique orientation and their increased number, the aggregate 

electrical field of pyramidal neurons in deep cortical layers reaches the scalp as a 

measurable signal (Buzsáki et al., 2012; Cohen, 2017).  
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Recording 

Properly placed electrodes can record the EEG signal with submillisecond time 

resolution. EEG measurements employ recording systems consisting of electrodes 

with conductive media, amplifiers with filters, analog to digital (A/D) converters and 

recording devices. Electrodes read the signal from the head surface. When neuronal 

activity takes place, there is a potential change in the scalp that can be measured by 

using a basic electric circuit between the signal (active) electrode and a reference 

electrode. An extra electrode, called ground electrode, is needed for getting differential 

voltage by subtracting the voltages showing at active and reference points. In turn, 

amplifiers allow the microvolt signals to be accurately, digitized by enhancing the 

signal. Finally, a converter changes signals from analog to digital form, and a 

computer device stores and displays obtained data. Electrodes usually follow a 

conventional placement and cover frontal, temporal, central, parietal, and occipital 

parts of the scalp. Their number varies: from devices with few electrodes (< 10) to 

high-density EEG devices  (> 100 electrodes). 

 

Preprocessing 

Raw EEG data is obtained with a high sampling rate (usually at 1024Hz). Due to 

inherit artefacts (eye blinks, line noise artefacts, etc.) and artefacts induced during 

recording (movement), a preprocessing pipeline is usually applied. Although there is 

no standard preprocessing pipeline, steps include downsampling (usually at 256Hz), 

filtering, line noise removal and noisy channel rejection (Puce and Hämäläinen, 

2017). These methods can be complemented by visual inspection in order to assist 

with noisy data detection. 

When the length of EEG data is sufficient, an additional method is used for artefact 

detection called independent component analysis (ICA). This method takes into 

consideration that the recorded EEG data comes from a number of linearly mixed 

independent components attributed to neurophysiological and non-

neurophysiological sources. In that regard, ICA separates the EEG data by finding 

components that are maximally independent (Puce and Hämäläinen, 2017). If the 
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EEG data is noisy, then some of the components will correspond to non-

neurophysiological signals such as eye blinks. Thus by visually inspecting each 

component, one can reject those that are related to non-neurophysiological signals 

(Puce and Hämäläinen, 2017). 

 

2.5.2 Frequency analysis 

The high temporal resolution of the EEG data allows decomposition of the EEG signal 

into different frequencies (spectral decomposition). Canonical frequencies, including 

gamma (>30Hz), beta, (12-30Hz), alpha (8-12Hz), delta (1-4Hz) and theta (4-8Hz), 

have been linked to distinct roles in brain function (Buzsáki and Draguhn, 2004; 

Uhlhaas et al., 2008). From Fourier analysis, a decomposition of a discrete-time 

signal-𝑥(𝑡) (such as the EEG signal from one electrode) into different frequencies 

𝑓can be obtained using its Fourier transform: 

𝑋 𝑓 = 𝑥 𝑡 𝑒!!!"#$
!!

!!

 

Power at each frequency can be defined as 𝑆!! 𝑓 = 𝑋 𝑓 𝑋∗ 𝑓  where 𝑋∗ 𝑓  is the 

complex conjugate of 𝑋 𝑓 . 

Because data is recorded only for finite segments (i.e. for limited duration of EEG 

recording), only parts of the above transform can be calculated thus introducing bias 

in the calculation. Specifically, for a segment of limited duration 𝑇 only the truncated 

transform can be computed: 

𝑋 𝑓 = 𝑥 𝑡 𝑒!!!"#$
!

!!!

 

To this end, it has been shown that breaking the data into different parts (or 

“tapering” the data) and calculating the frequency decomposition at different chunks 

of time can reduce part of this bias (van Vugt et al., 2007). More refined approaches 

have been introduced that find the “optimal” tapering of the data such as the bias in 

estimating frequency decomposition is minimal (Bokil et al., 2010). These methods 
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find a certain number 𝐾 of taper functions (Slepian functions) that maximize the 

frequency decomposition at each frequency i.e. they find a number of functions 𝑤 

such that their frequency decomposition 𝑈(𝑓) 

𝑈 𝑓 = 𝑤 𝑡 𝑒!!!"#$
!

!!!

 

is maximal at each frequency 𝑓. 

Then these functions are used instead of the previously mentioned Fourier 

decomposition to obtain a multi-taper frequency decomposition as follows 

𝑋!!!,…,! 𝑓 = 𝑤! 𝑘 𝑥(𝑡)𝑒!!!"#$
!

!!!

 

where 𝑤!(𝑘), k = 1,…𝐾, are all the taper functions. 

I will use this method to obtain a frequency decomposition of EEG signals in chapter 

6. 

 

2.5.3 EEG functional connectivity 

Synchronization between the oscillatory activities of different brain regions is an 

important feature of brain communication (Fries, 2005). This is usually defined in 

terms of coherence (or connectivity) between EEG signals and it is measured by 

relating their spectral decompositions at each frequency 𝑓 as  

𝐶!" 𝑓 =
𝑆!"(𝑓)

𝑆!!(𝑓)𝑆!!(𝑓)
 

where 𝑆!! 𝑓 =< 𝑋 𝑓 𝑋∗ 𝑓 > , 𝑆!! 𝑓 =< 𝑌 𝑓 𝑌∗ 𝑓 >  represent the signal 

power (averaged over all the tapers of the data) of signals 𝑋 and 𝑌 for all frequencies 𝑓 

and 𝑆!" 𝑓 =< 𝑋 𝑓 𝑌∗ 𝑓 > represents the cross-spectral power of signals 𝑋 and 𝑌 

(averaged over all the tapers of the data). 𝐶!" 𝑓  is a complex number (real and 

imaginary part) between 0 and 1 and can be interpreted as the frequency-equivalent of 
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correlation between the two signals 𝑋 and 𝑌. One issue for using this quantity as a 

measure of connectivity in EEG data relates to the so-called volume conduction 

problem. This refers to the case where two electrodes/sensors that measure the activity 

of the same neuronal source will show artificially high coherence (Stam et al., 2007). 

Measures such as the imaginary part of coherence have been used to address this issue 

(Nolte et al., 2004). Whole-brain EEG connectivity can be assessed by calculating the 

coherence between each pair of electrodes at each frequency. There are two particular 

disadvantages with respect to using the imaginary part of coherence that should be 

addressed here. First, it can be strongly affected by the phase of the coherence, which 

can lead to very small values when the sources of interest are nearly in phase (or in 

phase opposition)(Stam et al., 2007). Second, additional noise sources might change 

the sign of imaginary coherence. To overcome these, additional measures such as the 

weighted phase lag index have been proposed (Vinck et al., 2011). 

However as addressed by the authors the use of either of these measures is pertinent 

to the quantity, quality, and amount of the data. For example, weighted phase lag 

index should be utilized when multiple sessions and trials are considered-something 

that did not apply to my resting-state EEG analysis; this is why EEG analysis was 

conducted using only the imaginary part of coherence. An important point made by 

the authors is that additional validation of results needs to take place at the source 

level-something that I took into consideration when examining EEG connectivity 

results at both the sensor and source levels. 

Network analysis methods mentioned previously can be applied here. An overview of 

the methods used for EEG analysis and connectivity is given in Fig. 2.6. 
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Figure 2.6 - From EEG data to EEG networks. (a) EEG data is acquired at a high sampling rate from 

set of electrodes placed on the scalp. After preprocessing, different techniques are applied to obtain 

relevant information about the oscillatory activity and power of each signal. (b) Multi-taper time-

frequency decomposition is one such method that extracts the oscillatory information at different tiles 

of time and frequency. This provides more accuracy in estimating oscillatory activity and power 

compared to traditional Fourier analysis methods. (c) The oscillatory activity of each signal can be 

correlated with that of another one at each particular frequency (cross-spectrum). Repeating this 

process results in EEG connectivity networks corresponding to each frequency. In turn, standard 

network analysis techniques (thresholding, binarizing) can be applied to study the organization of these 

EEG networks. 

2.5.4 Source reconstruction 

Connectivity at the sensor level includes a number of electrodes and provides an 

indirect proxy for the connectivity of the underlying neuronal sources. To overcome 

the spatial limitations, source reconstruction methods have been applied in order to 

reconstruct activity at the neuronal source using EEG data. Quantitatively the 
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neuronal sources are represented as a 3-dimensional grid of dipoles derived from the 

individual’s anatomical data (Jatoi et al., 2014). To reconstruct the sources’ time-

courses a mathematical relationship between the EEG data and the dipoles is required 

(Henderson et al., 1975). This is called the forward problem. To address the forward 

problem one needs to represent how electrical activity moves from the source to the 

scalp. The mathematics of this process takes into consideration the inhomogeneous 

and anisotropic conductivity profile of the head volume (head model). Towards this 

direction, obtaining accurate representation of the head model is important as 

different volume conductor tissues (e.g. scalp, skull, brain) have different 

conductivities and different levels of anisotropy. Standard head models for EEG 

forward modelling use image segmentations of the scalp, the skull and the brain and 

employ refined geometric descriptions (for example using a tessellation) in order to 

provide realistic bases of how electrical activity diffuses along these tissues (Kybic et 

al., 2005). To obtain these geometric descriptions, mathematical methods, such as the 

boundary element method (BEM), are applied on the segmented tissues (scalp, skull, 

brain) coming from each individual’s T1 anatomical images (Akalin-Acar and Gençer, 

2004). In addition to the head model, a source model is also obtained from each 

individual’s T1 anatomical data. Specifically, the source model quantifies the position 

and orientation of the dipoles. Each dipole 𝑖  is associated with two parameters 

𝒔 = 𝒓! ,𝜽! : a three-dimensional vector 𝒓!representing its location and 𝜽!, a three-

dimensional vector representing its orientation. These will be later inferred when 

source activity will be derived from the EEG data. 

Based on the information coming from the head and source models, a mathematical 

model is constructed in order to relate EEG and dipole activity. One such model uses 

a collection of vectors called the leadfield matrix, of which each vector’s strength and 

direction quantify how each dipole contributes to each sensor’s activity. This can be 

written as  

𝑩𝒔 = 𝑳𝒔 𝑱𝒔 + 𝒀 

where 𝑩𝒔 is a 𝑒 × 𝑛 matrix representing the EEG data with 𝑒 being the number of 

electrodes and 𝑛 being the number of time points. Each row in this matrix represents 
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each electrode’s time course. 𝑱𝒔 is a 𝑑 × 𝑛 matrix that represents the dipole data that 

need to be inferred with 𝑑 being the number of dipoles. Each row in this matrix 

represents each dipole’s time course. 𝑳𝒔 is the leadfield matrix with dimensions 𝑒 × 𝑑 

and it is used to relate the electrode and dipole time courses. Finally 𝒀 is a 𝑒 × 𝑛 noise 

matrix reflecting the uncertainty of the measurements.  

Formulating the forward problem and obtaining the leadfield matrix allows us to 

inversely solve the problem for the time courses of the dipoles (Pascual-Marqui, 1999). 

In mathematical terms this can be written as an optimization problem: 

min
𝒔

𝑩𝒔 − 𝑩  

where 𝑩𝒔 is the EEG data as modelled using the leadfield, 𝑩 is the real EEG data 

obtained and 𝒔  represents the dipole parameters. One popular technique is 

beamforming where a single dipole’s activity is obtained by looking at how it 

contributes to the measured EEG activity compared to other dipoles (Van Veen et al., 

1997). The goal is to estimate the activity at a dipole of interest while avoiding the 

cross-talk from other dipoles i.e. avoiding the effect of other dipoles in the estimation 

of activity at the dipole of interest (Van Veen et al., 1997). To do so, one can use a 

spatial filter 𝑊 that minimizes the contributions of other dipoles except the one from 

the dipole of interest. Formally a spatial filter 𝑾𝒔 is computed by  

𝑾𝒔
! =

𝑳𝒔!

𝑳𝒔
 

where 𝑳𝒔! is the transpose matrix of the leadfield matrix 𝑳𝒔 and 𝑳𝒔  is its norm. 

Given the spatial filter and the solution to the optimization problem 𝑩𝒔, the activity of 

each source can be calculated as 𝑾𝒔
!𝑩𝒔. This approach guarantees that when only one 

dipole is active, the solution of the inverse model will be related only to that particular 

dipole by “spatially” filtering out the contributions of other dipoles (Darvas et al., 

2004). One limitation of this approach is that the spatial filter has limited spatial 

resolution meaning that it can only block the contribution of a certain number of 

dipoles. Other approaches that can partially deal with the spatial filtering problem 

include the Linearly constrained minimum variance (LCMV) beamforming (Van 
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Veen, et al., 1997) or the Backus and Gilbert method (Grave de Peralta Menendez and 

Gonzalez Andino, 1999). 

After obtaining time courses from all the dipoles, their cross-spectrum can be 

calculated as previously resulting in a source-based connectivity network. 

Furthermore, in order to obtain a more interpretable representation of cortical 

connectivity, source connectivity can be grouped into ROIs using a specific 

parcellation. 

 

2.5.5 Software 

The bulk of EEG analysis and source reconstruction was conducted using the 

following software packages (alongside in-house made scripts): 

a) the EEGLAB toolbox (Delorme and Makeig, 2004) 

(http://sccn.ucsd.edu/eeglab/index.php) 

b) the Fieldtrip toolbox (Oostenveld et al., 2011)  

(http://www.fieldtriptoolbox.org/)  

d) the chronux toolbox  (Mitra and Bokil, 2008) 

(http://chronux.org/) 

2.6 Code availability 

Code for in-house made scripts (as mentioned in this chapter and mentioned later in 

the experimental chapters) will be made available in my github website 

(http://github.com/ioannispappas322) 
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Figure 2.7 - Source reconstruction: from EEG data to cortical networks. (a) The head model consists 

of scalp, skull and brain compartments obtained from each subject’s anatomical data. The head model 

defines how electrical activity from the sources (or dipoles) is diffused along the head tissue and reaches 

the sensors. (b) The source model assumes that these dipoles are placed in a 3-dimensional grid in the 

brain. (c) The forward problem pertains to how source activity translates into sensor activity. This is 

done usually in the form of vectors (leadfield matrix) that use the head model, the source model and the 

sensors’ positions. The vectors’ locations and orientations relate how dipole activity explains sensor 

activity. For example, a dipole located in the occipital cortex will have leadfield vectors as shown in 

panel c and will mostly explain the contribution of occipital electrodes. (d) The inverse problem uses 

the leadfield matrix and the EEG data to obtain the dipole time courses. (e) After obtaining these, 

connectivity can be quantified as in the EEG sensor data by taking the dipoles’ cross-spectrum at 

different frequencies. In turn, dipole networks can be transformed to ROI-based networks with the use 

of a specific parcellation. Due to the assumptions about how activity is measured from pyramidal cells 

usually only cortical dipoles (and regions) are considered. 
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Chapter 3: Complexity of functional connectivity emerges 

from optimal structure 

Since the early measurements by Biswal and colleagues (Biswal et al., 1995), it has 

been shown that functional connectivity (obtained using resting-state fMRI) is not 

random but it shows consistent spatio-temporal patterns. As I discussed in chapter 1, 

one of the major challenges is to understand the complexity of functional connectivity 

as it emerges from a balance between segregation and integration (Tononi et al., 

1998).  Under this framework, system criticality provides the theoretical foundation 

upon which one can understand how the opposite forces of segregation and 

integration co-exist in the brain (Tagliazucchi and Chialvo, 2012). These theories 

pertain to the collective behaviour of the system’s constituent elements and how this 

macroscopically shapes the complexity of the system. 

Towards this direction, studies have examined criticality in the brain on the basis of 

its relationship to how brain regions are structurally connected to each other (Park 

and Friston, 2013). In that regard, simulations have shown that structural connectivity 

in combination with certain dynamic models signifying a “bistable” state of 

segregation and integration can reproduce functional connectivity as the one obtained 

from real data (Rubinov et al., 2011; Haimovici et al., 2013). 

Another avenue towards understanding the complexity of functional connectivity 

involves exploring the underlying structural communication paths and how these are 

intertwined to produce complex brain dynamics (Avena-Koenigsberger et al., 2017). 

In light of this, I propose the use of a model that links the complexity of functional 

connectivity network with a set of efficient communication paths in the structural 

connectivity network. Specifically, by using a game-theoretic model, I quantify the 

collective communication dynamics in terms of Nash equilibrium between efficient 

structural paths. In that regard, I show that the structural connectome contains a set 

of “optimal” structural connections that emerge from the equilibrium between each 

region’s tendencies to efficiently communicate information to the rest of the brain. In 

turn, I show that optimal connections can predict the complexity of functional 

connectivity as it is obtained from real data. Thus I provide evidence for the criticality 
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of complexity of functional connectivity: it can only be derived upon the equilibrium 

of structural connections that support communication in an optimal way. 

 

3.1 Introduction 

Unlike other biological networks, brains are unique in the sense that their underlying 

static structural connections give rise to highly flexible and diverse functional 

connectivity patterns (Park and Friston, 2013). Understanding the complexity of 

functional connectivity, as a solution that stems from its underlying structural 

substrate, requires decoding the brain’s communication model i.e. how structural 

pathways support efficient communication (Laughlin and Sejnowski, 2003). Recent 

advances in diffusion imaging techniques have assisted with precise quantification of 

the dense network of white matter pathways (Hagmann et al., 2008) while network 

analysis has shown that structural networks exhibit a topology characterized by 

reduced mean shortest path length and high clustering, features which potentially 

enhances efficient communication of information (Bullmore and Sporns, 2012). At 

the same time, functional connectivity shows systematic patterns that diverge from 

their structural counterparts, suggesting that its information can be communicated 

globally without necessarily following topologically short paths (Cole et al., 2014b). 

Thus the complexity of functional connectivity cannot be trivially derived based on 

the premises of structural underpinnings. 

To this end, approaches to reconciliate the discrepancy between functional 

connectivity and the underlying structural connectivity have focused on a search for 

the brain’s underlying communication models. It is possible that communication 

models that allow for information exchange at an optimal level might provide the 

basis for explaining the versatility of functional connectivity (Avena-Koenigsberger et 

al., 2017).  

Thus a central question arises: Can an optimal communication model explain the 

complexity of functional connectivity? Optimal models can be derived via 

optimization techniques or, when multiple elements/nodes are involved as in 
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biological networks, via game-theoretic approaches such as Nash equilibria between 

each element’s competing strategies (Fabrikant et al., 2003). In that regard, optimal 

solutions are produced from the critically balanced (equilibrium) strategies between 

different players trying to maximize their payoff.   

When brain regions are the metaphorical players, such strategies might be translated 

into how each region is going to connect to the rest of the brain in an optimal way in 

order to maximize communication efficiency. Previous studies have argued that 

wiring in the brain is optimal in the sense that it maximizes communication efficiency 

within certain anatomical constraints (Koulakov and Chklovskii, 2001; Chklovskii et 

al., 2002). In addition, efficient communication is essential in the sense that it allows 

the brain to adapt to varying functional demands and allocate resources between 

different brain regions (Avena-Koenigsberger et al., 2017). Thus, an optimal 

communication model in the brain might consist of a set of optimal connections, or 

an “optimal network”, reflecting the equilibrium between all regions’ efficient 

communication strategies. 

This provides a fruitful framework for studying functional connectivity and its 

complexity. An optimal communication model of structural connections might 

provide a suitable scaffold for explaining how this complexity is derived. Optimal 

connections reflect a balance between every region’s efficient communication 

strategies suggesting that information upon these connections can be efficiently 

communicated from the local/segregated level to the integrated/whole-brain level. 

Notably, the notion that of an equilibrium implies that this complexity is critical i.e. it 

can result only from a certain configuration of optimal connections and other 

configurations fail to do so. 

This work provides evidence towards the emergence of complexity of functional 

connectivity upon an optimal communication model using a multi-step approach. 

First, I identified optimal connections in the structural connectivity-connectomes of 

healthy individuals using a game-theoretic model (Gulyás et al., 2015). In turn, I 

verified that information communicated upon optimal structural connections 

explained functional connectivity and its complexity. I employed a suitable algorithm 
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that predicts functional connectivity by utilizing paths of the structural network 

(Becker et al., 2018) to show that the optimal structural networks contain core features 

essential for the more accurate prediction of functional connectivity compared to 

using the features of the entire structural network or other non-optimal connections. 

Then I showed that the complexity of functional connectivity of the predicted 

matrices using optimal structural networks is similar to the one obtained from the real 

data, indicating that it can be derived only upon these optimal connections.  

Parts of this chapter have been presented as a poster at the Connectomics, Keystone 

Symposia conference (2017) in Santa Fe, USA. 

 

3.2 Materials and Methods 

The Nash model was applied to structural connectivity data in order to see whether 

optimal structural connections existed in the structural connectomes of healthy 

individuals. In turn, these were used to predict functional connectivity data and its 

complexity in order to provide evidence for the emergence of complexity from the 

Nash equilibrium of optimal structural connections. Prior to describing the Nash 

model and the prediction methodologies, in sections 3.2.1, 3.2.2, and 3.2.3 I describe 

the structural and functional connectivity data used in this experimental chapter. 

 

3.2.1 Participants 

Data was provided by the Human Connectome Project, WU-Minn Consortium 

(Principal Investigators: David Van Essen and Kamil Uğurbil; 1U54MH091657)(Van 

Essen et al., 2013) funded by the 16 NIH Institutes and Centers that support the NIH 

Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 

Neuroscience at Washington University. Data was downloaded from the Human 

Connectome Project (HCP) website:  

(http://www.humanconnectome.org/) 
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Structural and resting-state functional magnetic resonance images from a total of 50 

subjects were used in the analysis, all of whom were between the ages of 22 and 35.  

 

3.2.2 Structural connectivity 

HARDI data was used for mapping diffusion in the brain (Sotiropoulos et al., 2013). 

Using HARDI data is advantageous for identifying complex axonal pathways because 

diffusion-weighted signal is acquired in more directions that usual DTI sequences, 

thus providing increased accuracy in determining white-matter pathways (Tuch, 

2004). Data was acquired using a single shot single refocusing spin-echo, EPI 

sequence with a multishell diffusion scheme of 90 diffusion weighted directions with 

b-values of 990, 1985, and 2985 𝑠𝑒𝑐/𝑚𝑚! and spatial resolution of 1.25 × 1.25 × 

1.25𝑚𝑚!. Preprocessing was conducted as part of the HCP pipeline and included 

eddy current and motion corrections, gradient non-linearity correction, and 

transformation to native structural space determined by the T1. The diffusion tensors 

were reconstructed in dsi-studio using generalized q-sampling imaging (GQI) (Chen 

et al., 2015). GQI is a model-free reconstruction procedure that quantifies the density 

of diffusion in different orientations, thus providing directional information 

regarding crossing fibres. DSI-studio uses the spin distribution function (SDF) that 

has greater sensitivity and specificity in fibre orientation (Yeh et al., 2010). A 

deterministic fibre-tracking algorithm was used to obtain Generalized Fractional 

Anisotropy (GFA) (which is a HARDI anisotropy measure similar to the popular DTI 

fractional anisotropy/FA) values between brain regions (Yeh et al., 2013). This 

method uses spherical harmonics and orientation distribution functions (ODF) to 

accurately characterize estimates of anisotropy (Cohen-Adad et al., 2008; Smith et al., 

2013). Parameters of the fibre-tracking algorithm include the anisotropy threshold 

(how far tracking lines will be traced in each voxel), the angular ratio (the a priori 

knowledge of the tracking line curvature), and the step size (that represents in which 

consecutive voxels anisotropy is going to be estimated). The anisotropy ratio 

threshold was set to 0.0518329, the angular threshold was set to 60 degrees, and the 

step size was 0.625mm (half of the voxel size in one dimension).  
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To obtain ROI-based structural connectivity using the GFA values, I parcellated each 

subject’s T1 using the Lausanne parcellation consisting of 234 or 129 cortical ROIs 

depending on the resolution (Hagmann et al., 2008; Daducci et al., 2012). This 

analysis was done using the easy_lausanne software 

(http://github.com/mattcieslak/easy_lausanne). For each ROI I also obtained the 

centre of mass coordinates in each volunteer’s native space and the resulting Cartesian 

distances between ROIs (Fischl et al., 1999).  

In turn, using the GFA values and the Lausanne parcellation, I created a 234×234 or 

129×129 connectivity matrix depending on the resolution of the parcellation used. 

Each entry in the matrix contained either a positive number corresponding to the 

GFA (when a non-zero GFA between each pair of brain regions was obtained) or a 0 

when a zero GFA value was obtained (Cammoun et al., 2012). 

The reason that two different parcellation resolutions were chosen was to show the 

reliability of the proposed network model in capturing structural connections 

irrespective of the number of ROIs chosen.  It has recently been suggested that the 

number of ROIs plays an important role in how network features are dispersed across 

the brain. Higher resolution connectome maps can potentially reveal characteristics 

that are more specific to functionally specialized regions whereas coarser resolution 

connectome maps can reveal a more abstract network organization (Reus and van den 

Heuvel, 2013). The goal was to verify that the network model could capture structural 

connectivity at both of these levels. 

 

3.2.3 Resting-state fMRI and functional connectivity 

Whole-brain EPI data was acquired with a 32-channel head coil using a 3T Siemens 

Skyra scanner, modified for use in the HCP. The acquisition parameters were as 

follows: repetition time (TR) = 720ms, echo time (TE)=33.2ms, flip angle=52 degrees, 

bandwidth = 2290Hz/pixel, field of view = 208 ×180mm, slice number=72, 2mm 

isotropic voxels and multiband acceleration factor = 8. T1-weighted images were 

obtained using an MPRAGE sequence using a TR=2530ms, TE =1.15ms, field-of-view 

256 × 256mm, flip angle=7 degrees, 1mm isotopic voxels (Chai et al., 2012; Uğurbil et 
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al., 2013). The first 13 volumes (corresponding to 10 seconds) were removed to 

eliminate saturation effects and achieve steady state magnetization. The HCP minimal 

preprocessing pipeline was used to preprocess functional data (Glasser et al., 2013). 

This included artefact removal, motion correction, registration to structural T1-

weighted scan, and non-linear registration into MNI space (Smith et al., 2013).  

Connectivity analysis was performed using the CONN functional Connectivity 

Toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). Functional images were 

highpass filtered below 0.009Hz to remove low frequency drifts due to scanner noise. 

Physiological and motion related noise were dealt with by using the anatomical 

CompCor technique, which removes the first 5 principal components of the signal 

from white matter and cerebrospinal fluid masks, as well as the motion parameters 

and their first-order temporal derivatives (Behzadi et al., 2007).  In detail, to minimise 

partial voluming, the white matter and CSF masks were eroded by one voxel, which 

resulted in substantially smaller masks than in the original segmentations (Chai et al., 

2012). I then used the eroded white matter and CSF masks as noise regions of interest. 

Specifically I used the CompCor method to remove the top 5 principal components 

from white matter and CSF masks alongside the motion parameters and their 

temporal derivatives. A temporal band-pass filter of 0.008–0.09Hz was also applied on 

the time series to restrict the analysis to low-frequency fluctuations (Fox et al., 2005). 

Following preprocessing, I computed temporal correlations between each region in 

the parcellation scheme used, resulting in a 234×234  or 129×129  functional 

connectivity matrices for each subject. 

 

3.2.4 Assignment of ROIs to large-scale networks 

In order to assist with interpretation of the results I further assigned each ROI to LSNs 

of interest. To do so I used the 7 cortical network masks from Yeo et al. (Yeo et al., 

2011) and I calculated each ROI’s overlap with each LSN. The maximum overlap 

served as the criterion for assigning each ROI to an LSN. The number of connections 

within and between the different networks was defined using the real structural 

matrices from the HARDI data.  
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3.2.5 Nash equilibrium Network model 

In this section I describe the Nash model used to obtain optimal connections in the 

structural connectome. The Nash equilibrium Network Game model (NNG) is a 

network construction game derived from the Nash equilibrium of a non-cooperative 

game, where each player or node follows a strategy independently of others in order to 

maximize a certain payoff (Nisan, 2007). In the context of this work, each node’s 

strategy was to maximize efficient communication with the rest of the brain by 

making efficient “navigable” paths while maintaining a minimum number of edges. I 

will provide definitions for each node’s strategy using graph-theoretic terms following 

closely the formulation used by Gulyás and colleagues (Gulyás et al., 2015). A triplet of 

coordinates 𝑥,𝑦, 𝑧 represented the position in the Euclidean space of the nodes of 

interest 𝑉 (e.g. the ROI centre of mass of the 234 or 129 parcellation resolutions). 

Distance between two nodes 𝑝! and 𝑝! with coordinates 𝑥!!,𝑦!!, 𝑧!! and 𝑥!!,𝑦!!, 𝑧!! 

respectively was defined as the Euclidean distance and was calculated as  

𝑑𝑖𝑠𝑡 𝑝!,𝑝! = 𝑥!! − 𝑥!!
! + 𝑦!! − 𝑦!!

! + 𝑧!! − 𝑧!!
! 

For each pair of nodes 𝑢 ∈ 𝑉 and 𝑣 ∈ 𝑉, let 𝑆!! = 𝑤 𝑑𝑖𝑠𝑡 𝑣,𝑤 < 𝑑𝑖𝑠𝑡(𝑢,𝑤)}. This 

represents the set of nodes that one can efficiently navigate to from 𝑢, using 𝑣 as an 

intermediate hop. 

The problem with finding a strategy for a node 𝑢 ∈ 𝑉 is formulated as follows. First, 

node 𝑢 ∈ 𝑉 is associated with a collection of sets 𝑆!!, each one corresponding to the 

rest of the nodes 𝑣 ∈ 𝑉 \{𝑢}. In turn, the optimal strategy of node 𝑢 consists of 

constructing edges to those nodes 𝑣’ such that their 𝑆!!!  sets belong to the minimum 

cover set of the sets 𝑆!!. For a collection of sets, the minimum cover set problem refers 

to selecting the minimum number of sets such that their union includes all the 

elements appearing in the collection of sets. Formally, for each 𝑣 ∈ 𝑉 \{𝑢}  the 

problem is to find the binary values of the decision variables 𝑑! indicating whether the 

𝑆!! is going to be selected or not as part of the minimum cover set. To assist with the 

problem formulation I assign a variable 𝑎!!! = 1 based on whether a node 𝑣′ belongs 
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to a set 𝑆!!. The minimum cover set problem for node 𝑢 can then be written as the 

following optimization problem. 

min ∑𝑑!  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑𝑎!!!𝑑! ≥ 1 𝑣, 𝑣′ ∈ 𝑉 \{𝑢} 

𝑑! = {0,1} 

Instead of solving the integer form of the minimum set cover problem, I considered 

its linear relaxation by allowing the decision variables to be real non-negative 

numbers rather than integers, i.e. 𝑑! ≥ 0. This relaxation transforms a hard linear 

integer programming problem into a related problem that can be solved in 

polynomial time  (from a computational complexity perspective) while, at the same 

time, the solution of the latter is at least as good as the original problem (Schrijver, 

1987). 

The described procedure results in a number of connections for node 𝑢 that represent 

its optimal strategy. If this is repeated independently for all nodes 𝑢 ∈ 𝑉, it can be 

proved that the resulting network is the Nash equilibrium of all the nodes’ strategies 

and is characterized by maximum navigability with minimum number of edges 

(Gulyás et al., 2015). To obtain NNG models/networks for each subject’s T1 

parcellation I used the methodology that follows. For each subject’s ROIs’ coordinates, 

I calculated the minimum cover set for each ROI 𝑢 by formulating and solving the 

corresponding problem using the glpk library (http://www.gnu.org/software/glpk). 

Edges between the ROI 𝑢 and the rest of the ROIs 𝑣 ∈ 𝑉 \{𝑢} were constructed when 

the software’s output for 𝑑! was 1. This was repeated for all ROIs of each subject 

resulting in a subject-specific NNG network.  Structural optimality results were 

obtained by comparing the NNG edges with the edges in the structural matrix from 

the HARDI data and described in the Structural Connectivity section. Specifically, I 

defined a true positive/optimal connection (T) between two ROIs as one that existed 

in both the real, structural network and the NNG network. Non-optimal connections 

were those that existed in the real, structural network but were not present in the 

NNG network. False positives were defined as those connections that existed in the 
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NNG network but not in the structural connectivity network (F). Optimality was 

defined as the ratio |T|/|M| where |T| was the total number of optimal connections 

and |M| was the total number of connections in the NNG network. False positives 

were defined as |F| = |M|-|T|. 

 

3.2.6 Predicting functional from structural connectivity 

After obtaining the optimal connections for each individual using the NNG network, I 

utilized these to predict functional connectivity data and its complexity. In the next 

section I describe the algorithm for conducting this analysis.  

 

Formulation of the problem 

For each pair of functional and structural connectivity matrices, I used a 

transformation of structural to functional connectivity matrices in order to predict 

functional connectivity (Becker et al., 2018). Suppose that for an individual subject 𝑗 I 

obtained structural and functional connectivity matrices of dimensions 𝑛×𝑛: 𝑺!  and 

𝑭!  respectively. The first step consists of writing the predicted functional connectivity 

matrix as  

𝑭! =  𝑹   𝑎!𝑺!!
!

!!!

 𝑹! 

The term (𝑎!𝑺!!)!
!!!  is a weighted sum of powers of 𝑺!  up to order 𝑘 (polynomial 

transformation of order 𝑘). Spectral graph theory states that powers of 𝑘  of the 

structural connectivity matrix are related to the walks of length 𝑘 in the underlying 

structural graph (Chung, 1997). These are traversals from one vertex of the graph to 

another (with a potential repetition of the same vertices) using the edges of the graph. 

Therefore, higher-order transformations show how information can be 

communicated upon long traversals in the graph, something that is potentially 

important for predicting functional connectivity. After the polynomial 

transformation, the rotation matrix 𝑹 is used to transform the eigenvectors of the 
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matrix 𝑺!  in order to align to those of the real functional connectivity matrix 𝑭! . In the 

second step, I solved the optimization problem that finds the best approximation 𝑭! , 

i.e. I solved the following problem   

min
!! !!!

! ,𝑹

 𝑭! − 𝑭! = 𝑹   𝑎!𝑺!!
!

!!!

 𝑹! − 𝑭!  ,𝑹!𝑹 = 𝑹𝑹! = 𝑰𝒏,

det𝑹 = 1     

 

where  .  stands for the Frobenius norm and 𝑰𝒏 is the all-ones diagonal matrix of 

dimension 𝑛.  The two constrains guarantee that the matrix 𝑹 is a rotation matrix.  

Prior to solving this minimization problem, I will provide notation. I write 𝒗!!!! , 𝜆!!!!  

and 𝒖!!!! , 𝜙!!!!  for the eigenvectors and eigenvalues of 𝑺!  and 𝑭!  respectively. First I 

considered the vectors  𝝓 = 𝜙!,… ,𝜙! ! , 𝝀 = 𝜆!,… , 𝜆! !  and the matrices 

𝑽 = [𝑣!|… |𝑣!] and 𝑼 = [𝑢!|… |𝑢!] for 𝑺 and 𝑭 respectively. I also considered the 

Vandermonde matrix 

𝑳 =  

1 𝜆! ⋯ 𝜆!!

1 𝜆! ⋯ 𝜆!!
⋮ ⋮ ⋱ ⋮
1 𝜆! ⋯ 𝜆!!

 

where 𝑘 is the order of the polynomial transformation. The minimization problem can 

be decomposed into two problems that I solved in their generic form. 

The first problem is that of finding the optimal coefficients to fit the polynomial 

transformation of order 𝑘 to the matrix 𝑺. Generally, for a matrix 𝒈 and coefficient 

matrix 𝑨, this problem can be written as 

 min
𝒙

𝑨𝒙− 𝒈   

where 𝐴!" = 𝑡!
!!! can be written as the Vandermonde matrix 

1 𝑡! ⋯ 𝑡!!

1 𝑡! ⋯ 𝑡!!
⋮ ⋮ ⋱ ⋮
1 𝑡! ⋯ 𝑡!!
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The solution to this problem is based on optimization theory (Boyd and 

Vandenberghe, 2007) and can be obtained as   

𝒙∗ = 𝑨!𝑨 !!𝑨!𝒈 

The second problem rotates the eigenvectors of the weighted sum of powers of 𝑺!  to 

fit the eigenvectors of 𝑭! . In general, for matrices 𝑨 and 𝑩 the problem pertains to 

finding a rotation matrix 𝛀 as follows. 

min
𝛀

𝛀𝑨𝛀! − 𝑩  

𝛀!𝛀 = 𝛀𝛀! = 𝑰!, det𝛀 = 1 

For real symmetric matrices, this problem can be solved using the eigenvalue 

decomposition of the matrix 𝑨 =  𝑼!𝜮!𝑼!!! and the eigenvalue decomposition of 

𝑩 =  𝑼!𝜮!𝑼!!!  with the solution being the matrix 𝛀∗ = 𝑼!𝑼!!   (Schönemann, 

1968). 

By utilizing these formulas for the prediction problem, I obtained the pair of solutions  

𝑎!∗ ,… ,𝑎!∗ ! = 𝑳!𝑳 !!𝑳!𝜙,    𝑹∗ = 𝑼𝑽!  

and thus 𝑭!  was written as  

𝑭! =  𝑹∗ 𝑎!∗𝑺𝒋!
!

!!!

(𝑹∗)!  

The algorithm for predicting 𝑭!  was used in three scenarios that differed according to 

their structural connectivity matrix inputs 1) using the whole-brain structural 

connectivity matrix 𝑺!  2) using the (sub) network of 𝑺!  consisting only of optimal 

connections 3) using the (sub) network of 𝑺!  consisting only of non-optimal 

connections. To assess the importance of structural connections in each scenario, I 

used two different goodness-of-fit measures between the predicted 𝑭!  and the real 𝑭!  

functional connectivity matrices as described in the following section.   
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Evaluation of prediction 

The predictive ability of optimal connections was compared against other structural 

connections in order to provide evidence for their important role in driving functional 

connectivity. To so, I quantified the goodness-of-fit between the predicted 𝑭!  and the 

real 𝑭!  functional connectivity matrices by employing two methods: First I used 

correlation of the upper triangular entries obtained from the real matrix with those 

entries obtained from the predicted matrix. Second I used the proposed homology-

based evaluation. This evaluation was based on comparing the number of connected 

components of the predicted and real functional connectivity matrices at different 

edge density levels 𝜆 (Betti numbers 𝛽!(𝜆) and 𝛽!(𝜆) respectively) (Liang and Wang, 

2017). Here edge density refers to the percentage of correlation entries in the 

functional connectivity matrix. Specifically, zero density refers to an empty matrix 

whereas density of 1 indicates the presence of all values in the matrix. 𝑆𝑆𝐸!  was used 

to evaluate the goodness-of-fit for the prediction and can be formulated as  

𝑆𝑆𝐸! =
1
𝑛! (𝛽! 𝜆 − 𝛽!(𝜆))! dλ

!

!
 

where the integral spans all edge densities from 0 (no correlation entries existing) to 1 

(all correlation entries present) and 𝑛 is the dimension of the matrix. Intuitively, the 

smaller the score the better the fit of the predicted matrix to the real matrix as the 

number of different connected components is smaller.  

 

3.2.7 Complexity of functional connectivity networks 

In turn, the predictive ability of optimal connections was evaluated in the context of 

how well they could predict the complexity of functional connectivity data. First, to 

obtain complexity of functional connectivity, functional connectivity matrices were 

thresholded using the BCT toolbox at a range of edge densities τ. This allowed for 

individuals’ networks to have the same number of edges. I chose a range of densities 

from τ = 7% to τ = 19% in steps of 2%. The lower threshold was chosen as a more 

conservative threshold compared to the 4% threshold chosen by Power et al. (Power et 
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al., 2011) with the purpose of keeping the networks from being severely fragmented. 

The upper threshold was chosen so as to prevent the networks from being random by 

introducing unnecessary edges (Bassett and Bullmore, 2006). As introduced in the 

Methods chapter (2), complexity of functional connectivity was calculated by using 

the entropy of the degree distribution 𝑝!  across all regions of the parcellation (Zhao et 

al., 2011; Zamora-López et al., 2016). A standard entropy estimator calculates entropy 

by utilising the probability distribution of the degree sample 𝑝!. This was done by 

calculating the probability of each degree value appearing once or twice and so on 

(naïve estimation). To formalize these, for a degree sample of length k obtained from 

the functional connectivity network, I calculated its fingerprint (𝐹(1),𝐹(2),… ) 

where 𝐹(1) was the number of nodes appearing once, 𝐹(2) was the number of nodes 

appearing twice and so on (Valiant and Valiant, 2013). Then entropy was defined as 

𝐻 =  −  𝑝! log𝑝!!∈!! = −  !
!
𝐹 𝑖 log 𝑖/𝑘! . Results presented here were for an 

average over the aforementioned range of thresholds τ in order to show that the 

results were not anchored to some specific threshold. 

The complexity of predicted functional connectivity networks obtained were 

compared to the ones obtained from real functional connectivity networks for cases of 

optimal, non-optimal, and whole-brain structural connections. 

 

3.2.8 Statistical analysis 

Data was tested for normality using the Kolmogorov-Smirnov test. Statistical analysis 

was conducted using a one-way, repeated-measures analysis of variance (ANOVA) 

with the use of optimal, non-optimal, and whole-brain connections as a factor. The p 

values reported are from (two-tailed) post hoc comparisons after Bonferroni 

correction. I also report effect sizes for ANOVA using the bayes factor and the eta 

squared quantities. 
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3.3 Results 

3.3.1 Identifying optimal connections in structural connectivity networks 

The Nash equilibrium Network Game model (NNG) takes as input the brain’s 

topographical organization, as defined by the spatial location of brain regions or 

nodes (derived from T1 scans), and creates a synthetic network by maximizing the 

objectives of each node. Specifically, the resulting NNG network achieves Nash 

equilibrium by simultaneously maximizing efficient information routing between all 

nodes in the network (navigability) while minimizing the number of connections 

(Gulyás et al., 2015). Given these data, the NNG model solves an optimization 

problem (for each ROI independently) and produces a set of connections between the 

ROIs (Fig. 3.1a, 3.1b, and 3.1c). Initially, I determined whether the connections 

predicted by the NNG model were present in the real structural connectivity networks 

obtained from the HARDI data. I first report results for the 234-ROI parcellation. The 

mean optimality score across subjects (mean=0.79, stdev=0.02) suggested that all 

brain networks displayed a consistent pattern of optimal connectivity (Fig. 3.1f). The 

number of false positives was low across subjects (mean=133.1, stdev=17.0) compared 

to the number of connections that the NNG produced (mean=627.28, stdev=24.7) 

indicating statistical robustness of our model (Gulyás et al., 2015). To show that the 

results were consistent across different parcellation resolutions I applied the same 

model to the 129-ROI parcellation scheme. Structural networks using this parcellation 

also contained a consistent number of optimal connections (mean=0.7161, 

stdev=0.0430) while false positives remained low across subjects (mean=93.8,  

stdev=15.8) (Appendix Table 3.1). 
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Figure 3.1 - Identifying optimal connections in structural connectivity networks using the NNG 

model. (a) Example of the game-theoretic model (NNG) applied to a four-node graph on the 𝑥𝑦 plane 

taken from Gulyás et al. (2015). Each node is associated with three binary decision variables indicating 

whether it will connect to other nodes. To obtain the decision variable values, I compute three sets 𝑆!! , 

𝑆!!, and 𝑆!! corresponding to three decision variables 𝑑!,𝑑! , and 𝑑!. For example, 𝑆!! is defined as the 

set of node’s 𝐵 neighbors 𝑤  that are closer to the destination 𝐴 i.e. nodes such that 𝑑𝑖𝑠𝑡 𝑤,𝐴 <

𝑑𝑖𝑠𝑡(𝑤,𝐵) or else 𝑆!! = {𝑤|𝑑𝑖𝑠𝑡 𝑤,𝐴 < 𝑑𝑖𝑠𝑡 𝑤,𝐵 } (𝑑𝑖𝑠𝑡 is the Euclidean distance) (b) Decisions 

are based on the minimum cover set of these three sets; here I find that 𝑑! = 𝑑! = 1 and 𝑑! = 0. 

Therefore, BC and BA connections will be created. (c) By repeating calculations for the remaining 

nodes, it can be shown that the resulting network has maximum navigability (as a result of the “greedy” 

selection of neighbours close to target) and a minimum number of connections (as a result of the 

minimum cover set). (d) Example of whole-brain structural network. Black dots represent the location 

of each ROI/node and green lines show existing connections (edges) between ROIs. (e) Optimal 

connections in magenta colour obtained using the locations of ROIs shown in d and the NNG model.  

(f) Optimality statistics for the structural networks at the 234-ROI resolution. Results are presented in 

the form of mean (stdev) over n=50 subjects. For similar results at the 129-ROI resolution-see 

Appendix Table 3.1. 
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3.3.2 Optimal structural connections in large-scale networks  

I next investigated the extent to which optimal connections were distributed across 

established cortical networks. To assess this, I assigned each ROI from the Lausanne 

234-ROI parcellation to a previously defined cortical network (Yeo et al., 2011). I then 

computed the number of optimal connections between ROIs within networks 

(intranetwork optimal connections) and between ROIs of different networks 

(internetwork optimal connections). To account for differential network sizes I 

divided the number of optimal connections by the total number of intra- or 

internetwork connections. This revealed that the SM network contained the highest 

proportion of optimal intranetwork connections (Fig. 3.2a, 3.2b), suggesting that 

connections within the SM form a comparatively self-integrated structure. This is in 

agreement with earlier studies showing that the somatomotor network has a low 

participation coefficient and high local efficiency (Power et al., 2011). The DMN 

showed the lowest optimal intranetwork connectivity, possibly reflecting the 

metabolically expensive fronto-parietal connections linking the MPFC and the PCC 

(Greicius et al., 2009). In contrast, I found that the DMN had substantially higher 

internetwork optimal connectivity than any other network (Fig. 3.2c, 3.2d), in support 

of the idea that the DMN may act in part, as a global workspace, integrating 

information from other LSNs (Dehaene and Naccache, 2001; Vatansever et al., 

2015b). 
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Figure 3.2 - Intra- and internetwork optimal connections in structural brain networks (a) Optimal 

intranetwork connections in each of 7 cortical brain networks. Bars show mean and standard error of 

the mean. (b) Intranetwork optimal connections in the somatomotor network, the network that 

showed the greatest number of intranetwork connections. (c) Optimal internetwork connections 

between each cortical network averaged over subjects. Bars below show the mean of optimal 

connections from each network to the other 6 networks. (d) Internetwork optimal connections from 

the DMN, the network that showed the greatest number of internetwork connections. For (b) and (d) 

line emphasis corresponds to connections that exist in more than 30 (out of the 50 subject sample) 

subjects. Network definitions are from Yeo et al. (2011). All numbers reflect ratios of the number of 

optimal connections over the total number of intra- or internetwork connections respectively. 

Abbreviations: DMN = Default Mode Network; DAN = Dorsal Attention Network; FP = Fronto-

Parietal Network; SM = Somato-Motor Network; VAN = Ventral Attention Network; VIS = Visual 

Network. 
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3.3.3 Predicting functional connectivity and its complexity using optimal 

structural connections  

Next, I probed the capacity of the optimal structural network to predict whole-brain 

functional connectivity and its complexity. I employed a recently developed algorithm 

that predicts resting-state functional connectivity using the Eigen-structure of a 

structural connectivity matrix (Becker et al., 2018). By using only the optimal 

connections in the structural connection matrix as input, this method allowed me to 

assess how well can optimal connections predict functional connectivity and its 

complexity. Then I compared the predicted with the actual functional connectivity 

matrices obtained from the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 

2012). Comparison between the predicted and real matrices was conducted using 

Pearson correlation between their entries. For the 234-ROI parcellation and a 

sufficiently large order polynomial transformation (k=5), I found that predictive 

ability was superior when using only the optimal connections (correlation coefficient 

between predicted and real functional matrices mean r=0.965, stdev=0.032) compared 

to using all the structural connections (correlation coefficient between predicted and 

real functional network mean r=0.902, stdev=0.023) (Fig. 3.3a). I also found that the 

predictive ability dropped considerably when using only the non-optimal structural 

connections (correlation coefficient between predicted and real functional network 

mean r=0.784, stdev=0.061). A one-way repeated-measures ANOVA confirmed that 

each prediction was significantly different from the others (F(2,98)=206.32, p<0.0001 

Bonferroni corrected multiple comparisons test, bayes factor=91.7949, eta 

squared=0.8085). For prediction results across different polynomial transformation 

orders, see Appendix Fig. 3.1. These results were further verified using a newly 

introduced method from homology theory (Liang and Wang, 2017) that calculates 

prediction accuracy by quantifying the difference between the number of connected 

components in the predicted and real functional matrices, such that a higher score 

implies poorer prediction. Here I observed that the differences in connected 

components were smaller using only optimal connections thus showing their high 

predictive accuracy (F(2,98)=28.07, p<0.0001 Bonferroni corrected multiple 

comparisons test, bayes factor=19.0641, eta squared=0.3642) (Fig. 3.3b). Thus, I argue 
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that this set of optimal connections is the most important driver of whole-brain 

functional connectivity.  

In turn, I used these optimal connections to show that complexity of functional 

connectivity is related to the underlying optimal structure. As a measure of 

complexity of functional connectivity networks, I used the entropy of their degree 

distribution (Zhao et al., 2011; Zamora-López et al., 2016). In that regard, I calculated 

the entropy of the degree distribution of functional connectivity networks from the 

predicted functional connectivity matrices obtained above (corresponding to optimal, 

the non-optimal and all the structural connections). Then I compared the complexity 

of these networks with those obtained from real functional connectivity data and I 

found an effect on retrieving complexity depending on which set of structural 

connections was used (F(2,98)=73.96, p<0.0001, bayes factor=45.5461, eta 

squared=0.6015). I found that there was a high correspondence between predicted and 

real complexity only in the case of optimal connections implying that the complexity 

of data could be retrieved successfully only when optimal connections were 

considered (Fig. 3.3c) (p<0.001 for both cases Bonferroni corrected). Similar results 

were obtained for the 129-ROI parcellation-Appendix Fig. 3.2) 
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Figure 3.3 - Predicting functional connectivity and its complexity from structural connectivity. (a) 

The prediction algorithm uses the Eigen-structure of a polynomial transformation of order k (here only 

for k = 5) of the structural connectivity matrix to predict the functional connectivity matrix. Each box 

plot shows the variation of the prediction accuracy over n=50 subjects in terms of cross-matrix 

correlation from each set of structural connections Higher scores show higher predictability. See 

Appendix Fig. 3.1 for different polynomial orders k. (b) Here I used methods from homology theory to 

correlate predicted and real functional matrices. Lower scores reflect a smaller difference between the 

real and predicted functional networks. Both prediction scores show that using only optimal (Opt) 

connections was significantly more predictive of whole-brain functional connectivity than using non-

optimal (Non-opt) or all structural connections (All-conn). (c) Differences between predicted 

complexity and complexity obtained from real functional connectivity matrices using optimal, non-

optimal and whole-brain connections. Complexity was obtained as the entropy of degree distribution 

of functional connectivity networks. See Appendix Fig. 3.2 for the 129-ROI parcellation results. The 

closer the value is to 0, the better the prediction of complexity is. Boxplots’ thick lines show the median 

value while whiskers reflect the maximum and minimum values of the data.  

3.4 Discussion 

The goal of this chapter was to find out how brain complexity emerges from structural 

connectivity. First, by using diffusion imaging data from 50 healthy volunteers, I 

identified a consistent proportion of optimal connections in structural connectivity 

networks. Earlier work has shown that structural networks have small-world 

architecture i.e. their organization is characterized by a high efficiency in 

communication usually facilitated by the presence of short paths (Bullmore and 

Sporns, 2012; Betzel and Bassett, 2016). How does the optimal communication model 

concur with the small-world hypothesis? Optimal connections were derived on the 

premise of each node’s strategy to construct paths that can promote efficient 

communication. Thus structural networks efficiently communicate information in a 

pattern that takes into consideration how each node differentially routes information 

to the rest of the network, expanding the small-world framework where one would 

expect information to be routed using only shortest paths (Avena-Koenigsberger et 

al., 2017).  

In addition, application of the NNG model to structural brain networks by using the 

brain’s unique layout in three-dimensional space illustrates the significance of the 

underlying cortical organization to structural connectivity as derived by the diffusion 
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data. The notion that an optimal communication model of structural connectivity is 

intertwined with the geometrical placement of the regions in the cortex has been the 

focus of research from early descriptions of cortical organization (Cherniak, 1994) to 

recent studies utilizing advances in mapping axonal interconnections (Ercsey-Ravasz 

et al., 2013). Studies suggest that the positioning of cortical regions is optimal in the 

sense that it minimizes axonal wiring cost and enhances communication under the 

various physical constraints relative to brain size (Koulakov and Chklovskii, 2001; 

Klyachko and Stephens 2003; Cherniak et al., 2004) in contrast to any sub-optimal 

layout which would compromise efficient connectivity (Chklovskii et al., 2002). An 

additional explanation comes from certain morphogenetic accounts suggesting that, 

although increasing tensions (associated with expanding brain volume and size) affect 

local connections, the aggregate/whole-brain wiring length is minimal (Van Essen, 

1997). Taken together, the existence of an optimal communication model might be 

associated with how the structural connectome has evolved in order to attain minimal 

wiring length and promote efficient communication at all levels. 

I then asked how optimal structural connections are differentially distributed across 

LSNs. First, a high number of optimal connections were found within the SM 

network. This is consistent with previous studies suggesting that the SM network has 

high local communication efficiency possibly reflective of continuous and 

comparatively rigid processing demands (Power et al., 2011). In contrast, the DMN 

had a low number of intra-network optimal connections potentially attributed to the 

fact that the NNG is not best suited for the capture long-range connections linking the 

MPFC with the PCC (Greicius et al., 2009; Betzel et al., 2017).   

Despite having a low number of optimal intra-network connections, the DMN had 

the highest number of optimal inter-network connections suggesting it is efficiently 

communicating information to other LSNs. Along these lines, studies on structural 

connectivity have singled out the DMN as a network extensively connected to regions 

of other LSNs (Parvizi et al., 2006; Hagmann et al., 2008; Greicius et al., 2009; Ongur 

and Price, 2010). These results show that this connectivity is supported by principles 

of efficient communication and minimum wiring cost reflecting flexible information 

exchange of the DMN with other LSNs (Vatansever et al., 2015a). This finding is also 
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in line with research demonstrating a central role for the DMN in cognitive 

processing (Vatansever et al., 2017). In a recent study by Margulies and colleagues 

(Margulies et al., 2016) the authors showed that DMN regions occupy ideal positions 

along a principal gradient, a property related to the topographic organization of large-

scale connectivity, thus promoting efficient information processing. The NNG model 

provides a complementary approach in understanding DMN’s unique multi-

functional organization. I showed that the topographic locations of the DMN regions 

are ideal in the sense that they allow the emergence of a high number of optimal 

connections towards the rest of the brain. When conceptualizing the proportion of 

internetwork optimal connectivity in a continuous spectrum, our results place the 

DMN at the one end, distant from the contributions of other networks, thus providing 

evidence for its functional heterogeneity and flexibility. 

I then used a structural-to-functional prediction algorithm in order to identify the 

extent to which optimal connections can predict functional connectivity and its 

complexity. The prediction algorithm utilized path information embedded into the 

structural connectivity matrix by expressing functional connectivity as a weighted 

combination of powers of the structural connectivity matrix, each one associated with 

walks of different lengths (Becker et al., 2018). I found that optimal connections were 

more predictive of whole-brain functional connectivity than the entire structural 

connectome. This finding suggests that paths consisting of optimal edges serve as 

better predictive features for explaining functional connectivity. Interregional 

communication using optimal paths may provide a framework for explaining flexible 

brain function in order to satisfy different cognitive demands. Beyond this, I used 

these optimal connections to retrieve the complexity of functional connectivity 

networks. Complexity addresses the segregation and integration in functional 

connectivity networks (Zamora-López et al., 2016). The existence of an optimal 

communication model supports the idea that information can be transmitted 

efficiently from the local/regional to the global/whole-brain level. It is therefore 

possible that an optimal communication model can provide a suitable scaffold for 

how segregated information can become integrated across the whole brain thus 

supporting the emergence of complex functional connectivity. It is worth noting that 

optimal connections were differentially distributed across networks. This potentially 
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reflects that the integration “part” of complexity could be anchored more to networks 

with high number of internetwork optimal connections such as the DMN, while the 

segregation “part” could be anchored more to sensory systems with high number of 

intranetwork optimal connections such as the SM. 

Because complexity derived upon the equilibrium of optimal connections resembled 

the one obtained from the real data, I argue that it is critical, meaning that only the 

balance/equilibrium of an efficient structural connectivity can explain this complexity 

and other, non-equilibrium configurations would fail to do so. Corroborating the 

premises of criticality in the brain as a system, I showed that complexity of functional 

connectivity emerges from the collective outcome (in a game-theoretic fashion) of 

each node’s tendency to efficiently communicate with the rest of the brain. 

Critical complexity of functional connectivity is an important feature of the healthy 

brain as it has been associated with the capacity of information that can be 

transmitted across the brain (Shew et al., 2011) or the tendency of the brain to adapt 

to different cognitive demands (Beggs and Plenz, 2003; Beggs, 2008). More 

importantly, as I shall show in the next chapter, changes in complexity, as aberrations 

from this criticality, might be a marker of loss of consciousness. 

 

3.5 Conclusion 

In sum, I provided evidence that the complexity of functional connectivity can be 

derived upon a balance/equilibrium of optimal structural connections. Can an 

unconscious brain signify departure from this balance? To answer this question, in the 

next chapter I will use alterations of complexity to show how they can discriminate 

between different states of consciousness. 
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Chapter 4: Reduction of complexity during loss of 

consciousness 

Criticality refers to the state of a system within a range of “critical” transitions where 

even small perturbations can change its behaviour (Tagliazucchi and Chialvo, 2012). 

At that range, a system displays specific properties that can only be understood as the 

collective behaviour of its constituent parts and not as the outcome of a single part 

alone. I focused on one such property, the complexity of functional connectivity 

networks as a means of investigating the diversity/non-uniformity of connectivity 

across the brain. In chapter 3, I showed that the complexity of functional connectivity 

in the healthy brain is critical as it emerges from the collective configuration (Nash 

equilibrium) of the optimal structural connections in the human brain.  

Disruption of consciousness due to pharmacological causes can drastically perturb the 

(critical) complexity of the healthy brain. Alluding to the second major objective of 

this work, I claim that deviations from complexity of the awake, conscious brain could 

be used to signify loss of consciousness. What is the motivation behind this 

hypothesis? Complexity of functional connectivity has been linked to the brain’s 

ability to critically balance segregation and integration of information (Zamora-López 

et al., 2016). It is this balance that generates integrated yet diversified information, a 

feature that has been deemed tantamount to the richness of conscious experience 

(Tononi, 2004).  Aberrations of complexity in the healthy brain would imply changes 

in this balance where functional connectivity networks would be biased towards a 

more integrated or segregated configuration (Tononi et al., 1998). In that regard, 

theoretical models suggest that loss of consciousness is associated with reduction in 

complexity i.e. a shift towards a more segregated configuration where information 

cannot be broadcasted globally in the network (Carhart-Harris et al., 2014). For 

example, GNW states that processes at individual/segregated units cannot attain a 

conscious level unless they are integrated in the global workspace (Dehaene and 

Changeux, 2011). Tononi and Edelman also suggest that neuronal information 

becomes conscious only if it is sufficiently integrated across the whole brain (Tononi 

and Edelman, 1998). Thus the goal of this chapter is to show that reduction in 
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complexity of functional connectivity can capture consciousness-dependent changes 

by using data from anaesthetic-induced unconsciousness and patients with disorders 

of consciousness. 

 

4.1 Introduction 

Functional connectivity is believed to measure neural synchronization by quantifying 

relationships between BOLD signals from different brain regions (Dosenbach et al., 

2007). Under this context, a standard measure of a region’s level of synchronization to 

the rest of the brain is its number of edges (degree) with evidence showing that the 

degrees of functional connectivity conform to specific distributions following a non-

trivial heavy-tailed pattern (Vértes et al. 2012). The complexity of this distribution 

emphasizes the co-existence of highly connected regions (usually forming densely 

connected modules) and sparsely connected regions that together support efficient 

communication in the brain (Zamora-López et al., 2016).  

As I showed in chapter 3, the complexity of the degree distribution is a critical trait of 

the healthy awake brain. If a critical complexity characterizes the awake brain’s 

functional connectivity, then fundamental questions pertain to how this complexity 

changes during altered states of consciousness. One account suggests that network 

complexity reflects the capacity to process local and global information in the 

conscious brain (Tononi and Edelman, 1998). The consciousness spectrum is 

therefore assumed to be echoed by a complexity spectrum where pharmacologically-

induced or pathologically driven decreases in consciousness correspond to decreased 

complexity and a shift towards a more segregated brain (entropic brain hypothesis) 

(Alkire et al., 2008; Carhart-Harris et al., 2014; Tagliazucchi et al., 2014). Studies 

focusing on the precise quantification of alterations in complexity are 

methodologically inconclusive. Limited work has shown reorganization of degrees in 

comatose patients (Achard et al., 2012) however with no precise characterization of 

where these changes take place (for example hubs or non-hubs). 
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Here, I used the entropy of the degree distribution similar to chapter 3 as a measure of 

functional connectivity complexity. However, in an effort to see whether the effects on 

complexity were more evident in different parts of the brain, I analysed different parts 

of the degree distribution entropy separately. This allowed me to precisely 

characterize reductions in complexity by showing changes in the entropy of regions 

with important functional role in network integration. 

I applied this methodology to data from propofol-induced sedation, anaesthesia and 

patients with disorders of consciousness. My goal was twofold: first to characterize 

changes in complexity during loss of consciousness. Second, my goal was to delineate 

a commensurate spectrum of complexity; from high levels of complexity 

corresponding to the awake state to reduced complexity in sedation and anaesthesia 

and even more reduced complexity in patients with disorders of consciousness. 

The rationale, results and conclusions for these parts are presented in the following 

sections. 

A part of this chapter has been published as an article titled “Brain network 

disintegration during sedation is mediated by the complexity of sparsely connected 

regions” in Neuroimage, 2018. 

 

4.2 Changes in complexity under propofol-induced sedation and anaesthesia 

4.2.1 Overview 

A working hypothesis in this thesis is that consciousness is lost is because the 

complexity of functional connectivity is impaired and the brain shifts towards a less 

integrated/more segregated configuration (Alkire et al., 2008). As I argued in previous 

chapters, one approach for testing this hypothesis is to use the entropy of functional 

connectivity as a measure of complexity. In addition to this approach, a more refined 

quantification of entropy has been adopted here by focusing on different parts of the 

degree distribution that will provide information regarding a) where the complexity 

changes take place and b) how these affect network integration. Specifically, this 

approach allowed me to consider the following questions. First, I asked whether 
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reduced consciousness is characterized by decreased global/whole-brain entropy. 

Second, I asked whether a decrease in global/whole-brain entropy would be 

disproportionally evident in a specific part of the degree distribution, motivated by 

evidence that loss of consciousness is characterized by connectivity changes that do 

not span the entire distribution (Alkire et al., 2008; Schiff, 2008; Guldenmund et al., 

2013). A possible explanation could be the differential effect of the anaesthetic agents 

on the pattern of specific connections. Sparsely connected regions are primary 

candidates as they are potentially more susceptible to anaesthetic agents compared to 

highly connected ones-hubs (Alkire et al., 2008). In addition, limited work on 

functional connectivity data (Gallos et al., 2012) has led to the hypothesis that 

perturbation of sparse connectivity might produce disconnected network components 

at a regional level causing loss of network integration; however, evidence for this 

during states of decreased consciousness has not yet been shown.  

Moreover, I asked whether specific network-level connectivity changes 

disproportionately contribute to sedation-induced changes in entropy. Previous work 

has discussed the importance of two specific LSNs in this context. One the one hand, 

the FP network has been implicated in the loss of information integration during 

decreased consciousness (Guldenmund et al., 2016) while others have shown that the 

DMN is re-organized during sedation and anaesthesia (Boveroux et al., 2010; 

Stamatakis et al., 2010). 

Lastly, obtaining a connectivity-based marker predictive of an individual’s behaviour 

during decreased consciousness remains a fundamental challenge, mainly due to the 

variety of connectivity changes in different regions. Here I investigated the 

relationship between complexity and behaviour by asking whether the level of degree 

entropy during the awake state could predict an increase in the reaction times 

observed during a task executed under sedation.  

I addressed these questions using fMRI imaging data obtained during different levels 

of propofol sedation.  Administration of propofol was used to achieve light and 

moderate sedation followed by a recovery state. Resting-state functional MRI scans 

during these four (including baseline-awake) sedation levels allowed us to construct 
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networks representative of each individual’s functional connectivity and to quantify 

entropy at different levels of sedation. I complemented these results by showing 

similar trends in a deep anaesthesia-related dataset. In this experiment individuals 

transitioned from an awake state to light anaesthesia and, in turn, a fully anaesthetised 

state. 

 

4.2.2 Materials and Methods 

Sedation data 

Part of the data used in this experiment was previously used in a work by Stamatakis 

and colleagues (Stamatakis et al., 2010). 

 

Participants 

25 healthy, right-handed volunteers with no history of neurological disorders (16 

male, 9 female, range=19-52 years) were included in the propofol experiment. All 

procedures were according to the local ethics permission from the Cambridgeshire 2 

Regional ethics committee. 

 

Experimental setup and procedure 

In order to test the effect of sedation on functional connectivity networks and their 

complexity, fMRI data was obtained during different propofol-induced sedation 

levels. The experimental design (leaving out task data that was collected during the 

same experiment) consisted of four scanning runs of resting-state fMRI 

corresponding to four levels of sedation (awake, light sedation, moderate sedation, 

recovery). The order of the administration of light and moderate sedation was 

randomized.  Data was obtained during a resting-state period where propofol was 

administered intravenously. A computer controlled intravenous infusion was used 

aiming to achieve three target plasma levels - no drug (awake), 0.6 μg/ml (light 

sedation), and 1.2 μg/ml (moderate sedation-corresponding to Ramsay score 3) 
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(Ramsay et al., 1974; Marsh et al., 1991; Absalom and Menon, 2009). FMRI data for 

each resting-state condition (awake, light sedation, moderate sedation, recovery) was 

collected for 5 minutes.  During scanning we instructed volunteers to close their eyes 

and think about nothing in particular throughout the acquisition of the resting-state 

BOLD data. Volunteers were informed of the risks of propofol administration and 

were also informed about more minor effects of propofol such as pain on injection, 

sedation, and amnesia. In addition, standard information about intravenous 

cannulation, blood sampling, and MRI scanning was provided. During data collection 

there were always two trained anaesthesiologists present, and observed the volunteer 

from the MRI control room and on a video link that showed the volunteer in the 

scanner.  Task data during a semantic judgement task was also collected for all the 

sedation levels after obtaining the resting-state data. The experimental design is 

described in detail in Adapa et al. (2014). In short, the task experiment consisted of 

four scanning runs (corresponding to the sedation levels described previously) where 

each scanning run lasted 5.5 minutes and comprised alternating 30 seconds blocks of 

words and acoustically matched non-speech (buzz/noise) stimuli. Stimuli were 

presented with a stimulus onset asynchrony (SOA) of three seconds in silent intervals 

between scans. Blocks of 8 stimuli were presented with an additional 6 seconds of 

silence between blocks to allow estimation of baseline activity. Participants were asked 

to respond with a button press to indicate whether presented words referred to living 

or non-living items and whether non-speech stimuli were buzz-type or noise-type 

items. Response times acquired from this experiment were analysed (as described in 

the Behavioural data section) and correlated with results from the complexity analysis 

as described in the Behavioural data correlations section. 

 

Behavioural data 

There were two types of stimuli used: a) words that were pseudo-randomly drawn 

from a set of 280 items (140 living items, e.g. tiger, birch, and 140 nonliving items, 

e.g., table, stone) in subsets of 40 items (20 living, 20 nonliving) and were matched for 

relevant psycholinguistic variables (word frequency, length, imageability, acoustic 

amplitude, and familiarity). Participants heard 4 of the 7 groups of spoken words in 
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the four scanning runs with assignment of items to sedation levels counter-balanced 

over participants.  b) Buzz/noise stimuli that were generated by extracting the 

amplitude envelope of a spoken and using that envelope to modulate to modulate 

either a broad band noise (noise) or a harmonic complex with a 150Hz fundamental 

frequency (buzz). These sounds were filtered to match the average spectral profile of 

the source word. This process was implemented using a custom script implemented 

with Praat software (http://www.praat.org). Blocks of 8 stimuli were presented with an 

additional 6s of silence between blocks to allow estimation of resting activity. 

Participants were asked to respond with a button press to indicate whether presented 

words referred to living or nonliving items and whether nonspeech stimuli were buzz-

type or noise-type items. Behavioural responses were categorized into correct 

responses, incorrect responses, and time-outs (no response to stimuli within 3 s of 

presentation). Here I used reaction times for responses corresponding to correctly 

classified stimuli (measured from word onset). 

 

Image acquisition and preprocessing 

Functional data was acquired using a Siemens (Erlangen, Germany) 3T scanner at the 

Wolfson Imaging Center, Cambridge. Functional data was obtained using an EPI 

sequence and each functional BOLD volume consisted of 32 interleaved, descending, 

oblique axial slices, 3mm thick with interslice gap of 0.75mm, in-plane resolution of 

3mm, field of view = 192 × 192mm, TR = 2000ms, TE = 30ms, and flip angle=78 

degrees. T1-weighted structural images were acquired at 1mm isotropic resolution in 

the sagittal plane, using an MPRAGE sequence with 1mm isotropic resolution, with 

TR= 2250ms, TE=2.99ms, TI=900ms, field-of-view=256 × 256mm, and flip angle=9 

degrees. 

Images were preprocessed and modelled using SPM version 12.0 and MATLAB 

Version 12a platforms. The first six volumes were discarded to allow for MR signal 

equilibration. All imaging data was preprocessed following a standard pipeline of 

slice-timing and motion correction and normalization to the MNI space. Functional 

images were smoothed with an 8 mm FWHM Gaussian kernel.  
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Regions of interest 

The main objective of this work was to quantify the complexity of functional 

connectivity networks and how it changes at different levels of sedation. I adopted a 

whole-brain approach in which correlation matrices were built based on regions of 

interest (ROIs) spanning the entire brain. Details are presented below. I used a set of 

predefined regions of interest (ROIs) as follows:  a) Cortical ROIs from the FSL 

Harvard-Oxford maximum likelihood cortical atlas divided bilaterally into areas of 

the left/right hemisphere (91 ROIs).  b) Subcortical ROIs from the FSL Harvard-

Oxford maximum likelihood subcortical atlas (15 ROIs) (Makris et al., 2005). c) 

Cerebellar parcellation from the Automated Anatomical Labelling (AAL) atlas  (26 

ROIs) (Tzourio-Mazoyer et al., 2002). The combined atlas of 132 ROIs (eAAL atlas) 

was provided with the CONN toolbox described below. The main motivation behind 

using this atlas (compared to the Lausanne parcellation used in chapter 3) was to 

compensate for the absence of finely defined subcortical and cerebellar regions that 

potentially play an important role in loss of consciousness (Alkire et al., 2008). 

 

Assignment of ROIs to large-scale networks 

To help with interpretation of the results, I further classified regions based on their 

LSN membership. To do so, I defined cortical LSNs using the 7 masks from Yeo et al. 

(2011) that are available online  

(http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011) 

In order to assign each ROI to one of the networks, I used an in-house script to 

calculate the overlap of each ROI with each network. Each ROI was assigned with an 

overlap number for each network by counting the number of voxels that were both in 

the ROI and the network. The maximum overlap (across networks) determined 

network membership.  Subcortical and cerebellar ROIs were grouped together 

manually to become “subcortical” and “cerebellar” networks respectively. For 

confirmation of our results on residual entropy, I also used the 10 Smith et al. (2009) 

canonical network masks that are available online  
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(http://www.fmrib.ox.ac.uk/datasets/brainmap+rsns)  

I followed an identical methodology for assigning each ROI to the 10 networks.  

 

Functional connectivity networks 

I used the CONN functional connectivity toolbox (Whitfield-Gabrieli and Nieto-

Castanon, 2011) to obtain the time series from the ROIs described above. A strict 

temporal preprocessing pipeline of nuisance regression was applied. Linear regression 

confounds included CompCor components attributable to white matter and CSF 

signals (Behzadi et al., 2007), subject-specific six realignment parameters alongside 

their first-order derivatives and the effects of the drug level (Fair et al., 2007a). In 

addition, a high pass filter of 0.009Hz was applied to remove low frequency 

fluctuations due to scanner noise. 

Z-transformed linear correlation coefficients were calculated between the 132 time 

series corresponding to each ROI and used to construct correlation matrices for the 

awake state, mild sedation, moderate sedation, and recovery using inbuilt MATLAB 

functions. For each individual, I constructed four correlation matrices corresponding 

to four different conditions. Each matrix was then proportionally thresholded using 

the BCT toolbox (http://sites.google.com/site/bctnet/) at a range of densities τ in order 

to construct networks having the same number of edges across individuals and 

conditions. Here I chose a range of densities from τ = 7% to 19% in steps of 2%. The 

lower bound was chosen empirically as a more conservative value compared to the 4% 

chosen by Power and colleagues to construct network with same parcellation (Power 

et al., 2011) with the purpose of keeping networks from being severely fragmented. 

The upper bound was chosen so as to prevent the networks from being random by 

introducing unnecessary edges (Bassett and Bullmore, 2006). For each τ in that range, 

degrees for all the regions were calculated using the BCT toolbox. The degree for each 

region was defined as its number of edges regardless of the strength of the correlation 

(binarized degree sample). Results presented in this work were averaged over this 

range of thresholds in order to show robustness of the results with respect to different 

thresholds. 
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Complexity of functional connectivity networks: global, rare and frequent entropy 

Complexity was calculated for the whole-brain functional connectivity networks using 

the entropy of the degree distribution 𝑝!  defined as 

 𝐻 = − 𝑝!𝑙𝑜𝑔𝑝!! .  

Because I wanted to investigate how different parts of entropy change, instead of 

calculating entropy in the same way for all regions as in chapter 3, I calculated entropy 

in two parts; one for regions that their degree value appeared frequently in the sample 

(frequent degrees) and one for regions that their degree value appeared infrequently 

(rare degrees). This was based on the assumption that propofol would have a 

differential rather than a uniform effect on entropy. From a methodological 

perspective, different approaches were used for calculating rare and frequent 

entropies. The rationale behind this was that standard (naïve) entropy estimators 

cause bias in the estimation of entropy when sample elements do not appear often (as 

in rare degrees) (Valiant and Valiant, 2013). I present the details in the following 

parts. 

To use notation, for a degree sample of size 𝑘 obtained from a brain network, I 

calculated its fingerprint (𝐹(1),𝐹(2),… )  where 𝐹(1)  was the number of nodes 

appearing once, 𝐹(2) was the number of nodes appearing twice and so on. Given a 

frequency level 𝐵 ∈ {1, 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡}  indicating an index in the 

fingerprint, the part of the fingerprint from B to the end of the fingerprint (𝐹 𝐵 +

1 , . . . , 𝑒𝑛𝑑 𝑜𝑓 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡) corresponded to degrees appearing frequently in the 

sample whereas the part of the fingerprint (1,…𝐹(𝐵)) corresponded to the rare 

degrees.  

 The histogram of the degree distribution 𝑝, denoted by ℎ!(𝑥), is equal to the number 

of degrees that occur with probability 𝑥. Using this notation, entropy is defined as  

    𝐻 = − ℎ! 𝑥  𝑥 𝑙𝑜𝑔𝑥!:!! ! !!  

The histogram of the distribution ℎ!(𝑥) and probabilities 𝑥 were calculated separately 

for frequent and rare degrees. Specifically, for the frequent degrees a histogram 
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ℎ!"#$%#&'(𝑥)  =  𝐹(𝑖)  with probability 𝑥 = !
!

 , was assigned for each 𝑖 ∈ (𝐹 𝐵 +

1 , . . . , 𝑒𝑛𝑑 𝑜𝑓 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡). Thus the entropy of frequent degrees was calculated as 

𝐻!"#$%#&' =  −  𝐹 𝑖 !
!
log 𝑖/𝑘!!! . This is also called the naïve estimation of entropy 

and it is identical to the calculation of entropy used in chapter 3. For the rare degrees, 

a histogram of probability distribution was derived by solving an optimization 

problem. First, an initial, non-informative mesh of probabilities was considered 

𝑥!,… , 𝑥! , with 

𝑥! =
1
𝑘! , 𝑥! = 1.1𝑥!!!, 0 < 𝑥! ≤ 1 

In turn, the goal was to find a histogram ℎ!"!# = ℎ! 𝑥! ,… , ℎ!  𝑥!  corresponding to 

these probabilities such that it would minimize the quantity 

1

𝐹 𝑖 + 1
𝐹 𝑖 −  ℎ! 𝑥! 𝑝𝑜𝑖 𝑥!𝑘, 𝑖

!

!!!!!!

  

under the constraints that 𝑥!ℎ!(𝑥!) =  ! !
!!!!

!
!!!  and ℎ!(𝑥!) ≥ 0 ∀𝑗. 

The notation 𝑝𝑜𝑖(𝑥!𝑘, 𝑖) for a degree associated with probability 𝑥! , represents the 

probability of that degree to appear 𝑖 times in the sample of size 𝑘 (this probability 

follows a Poisson distribution).  Practically speaking, the goal was to find a probability 

histogram ℎ  that minimizes the distance between the expected fingerprint 

ℎ! 𝑥! 𝑝𝑜𝑖 𝑥!𝑘, 𝑖!
!!!  and the observed fingerprint 𝐹(𝑖) of the rare degrees. In this 

way the bias in estimating entropy for the rare degrees would be minimized. The 

distance between the expected and observed fingerprints was penalized by the inverse 

of standard deviation of 𝐹(𝑖) calculated as 1/ 𝐹 𝑖 + 1 as this would minimize their 

statistical discrepancy (Valiant and Valiant, 2013). The constraint 𝑥!ℎ!(𝑥!) =!
!!!

 ! !
!!!!  guaranteed that the total probability would sum to 1. The constraint 

ℎ!(𝑥!) ≥ 0,∀𝑗 ensured that all probability values were nonnegative. 
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The solution of this problem resulted in a histogram ℎ!"!# and the rare entropy was 

then calculated as 𝐻!"!# =  − ℎ! 𝑥! 𝑥! log 𝑥!!
!!! . The details of how to solve the 

optimization problem are described in Valiant and Valiant (2013).  

There is an advantage of using an optimization algorithm to estimate the entropy in 

the rare degree “regime”. When sample elements are seen only a handful of times 

(such as the rare degrees), the naïve estimation underestimates their underlying 

distribution and entropy i.e. it causes bias in the entropy estimation (Valiant and 

Valiant, 2013). To this end, optimisation techniques such as the one mentioned 

before, have proven to be more successful in retrieving the entropy compared to the 

naïve estimator (Valiant and Valiant, 2013).  In the case when sample elements are 

seen often (such as the frequent degrees), the previous optimization technique and the 

naïve estimator have virtually indistinguishable results in recovering the underlying 

entropy (Valiant and Valiant, 2013). Thus I chose to use the naïve estimator for 

calculating the entropy of the frequent degrees. 

The code used to obtain the rare degree distribution can be found here 

(http://theory.stanford.edu/~valiant/code.html).  The definition of rare degrees was 

associated with degrees appearing in the fingerprint with frequencies from 1% (i.e., 

𝐵 =  1) to 4% (i.e. 𝐵 = 5) of the degree sample size (132). The upper bound was 

chosen empirically so as to include approximately half of the obtained average 

fingerprint length over all individuals and conditions. Global/whole-brain entropy 

was calculated as the sum of the frequent (𝐻!"#$%#&') and rare (𝐻!"!#) entropies. All 

entropy results shown were calculated as an average over different 𝐵 levels (and over 

different network densities τ as I mentioned previously).  
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Figure 4.1 - Degree entropy of functional connectivity networks as a measure of complexity: a more 

refined approach. Part (a) shows how to obtain a network representation from functional connectivity 

data. Each entry in the matrix is a Pearson correlation between the BOLD signals of two brain regions. 

A functional connectivity network can be obtained by considering brain regions as nodes and their 

signal correlations as edges. The degree of each region is defined as its number of edges towards the rest 

of the network. Part (b) shows the associated degree histogram for a typical functional connectivity 

network. The number of nodes having degrees appearing once, twice, … can be quantified using the 

fingerprint of the sample; that is the histogram of the values in the y-axis of the histogram (“histogram 

of the histogram”). The red line splits the degrees to i) those that occur below a specific frequency B 

(here B= 3) in the sample (associated with rare degrees entropy, 𝐻!"!#) ii) the rest of the degrees 

(associated with frequent degrees entropy, 𝐻!"#$%#&'). The former includes degrees of regions that are 

rare but have a high degree value (highly connected regions) and degrees of regions that are rare but 

have a low degree value (sparsely connected regions). The global entropy of the sample is calculated by 

adding the rare and frequent entropies.  

Normalizing rare and frequent entropy 

When calculating the effect of sedation on rare and frequent entropies, I normalized 

these by the lengths of the rare and frequent degree distributions respectively. This 

was done in order to account for sample size bias in the sense that when summing the 

probabilities for calculating entropy one wants this to be independent of the number 
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of probabilities being summed. As the number 𝐵  was fixed for calculating rare 

entropy for each individual at each sedation level the length of the rare distribution 

(calculated from the part of the fingerprint ≤ 𝐵) was fixed. Thus normalization for 

rare entropy was not necessary. However, this was not the case for the frequent 

distribution. For example, it can be the case that the part corresponding to the 

frequent degrees (𝐹 𝐵 + 1 , . . . , 𝑒𝑛𝑑 𝑜𝑓 𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡) has variable length due to the 

variable length of the fingerprint thus leading to false estimates. For consistency, I 

normalized both rare and frequent degree entropies by the lengths of their 

corresponding distributions 𝐻!"!# =  − (𝑝! log𝑝!) /𝑙𝑒𝑛𝑔𝑡ℎ(𝑝!"!#)!∈!!"!#  and 

𝐻!"#$%#&' =  −  (𝑝! log𝑝!)/𝑙𝑒𝑛𝑔𝑡ℎ(𝑝!"#$%#&')!∈!!"#$%#&' . 

 

Characterizing regions with rare-low (sparsely connected) and rare-high (highly 

connected) degrees 

Splitting the degree sample into two types of degrees (regions with rare, and frequent 

degrees) allowed me to look into regional effects in entropy. As it will be evident in the 

results, regions with rare degrees had decreased entropy during sedation showing a 

similar trend as in whole-brain entropy. Thus I shifted my focus to looking into more 

specific effects within these regions alluding to their different functional roles and, 

specifically, their role in network integration. Regions with rare degrees could include 

regions that have high degrees (rare-high or highly connected regions) or regions with 

low degrees (rare-low or sparsely connected regions). A hypothesis would be that the 

effect of propofol would be more evident in the sparsely connected regions (rare-low) 

and that these would cause the brain networks to become more segregated. 

Towards this direction, sparsely connected regions were obtained as follows. I first 

identified the rare degrees in the original degree sample alongside the top 20 high 

degrees in the sample. I then took the intersection of these two and I subtracted it 

from the original set of rare degrees leaving me only with the rare-low degrees. 

Regions with rare-high degrees were computed similarly by removing the bottom 20 

low degrees from the original set of rare degrees. After identifying sparsely connected 

regions, I used these in several ways: 
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1) First I identified their impact on network integration by looking at how they affect 

the largest connected component. To do so, I calculated their impact on the large 

connected component after virtually lesioning them (Gallos et al., 2012; Del Ferraro et 

al., 2018). The largest connected component in a network is the largest number of 

nodes that are connected with each other. In other words, if one starts from any node 

within the connected component, one can always reach (using a path consisting of 

edges) every other node within the connected component. To establish the size of the 

largest connected component after lesioning certain nodes, I used a quantity defined  

     𝐺!" − 𝐺!"#  

where 𝐺!"  is the size of the largest connected component in the original network, 𝐺!"# 

is the size of the largest connected component in the network after lesioning the node 

of interest. This quantity is usually normalized by 𝑁!" , the number of nodes in the 

original network to address network size bias. 

Thus I had a normalized positive measure that quantified the size of the connected 

component in the lesioned network with respect to the size of the connected 

component in the original network.  The higher the measure the more difference in 

the connected component and thus the more impactful the lesion is in network 

integration. To compute the size of the connected component I used a publicly 

available code found here 

(http://uk.mathworks.com/matlabcentral/fileexchange/30926-largest-component) 

2) I used their entropy (rare-low entropy) instead of all rare entropy to see if it can 

better discriminate between sedation states, the assumption behind this being that 

sparsely connected regions would be disproportionally affected by propofol. Rare-low 

entropy was further normalized by the length of their corresponding distributions to 

account for sample size bias for the reasons mentioned previously. 

 3) As it will become apparent in the results section, sparsely connected regions were 

shown to be the strongest contributors to effects observed from earlier analyses. To 

gather more information on this, I also examined the effect of sedation on the location 

of sparsely connected regions. For consistency I will not discuss individual regions in 
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this set of results but each of the 9 LSNs they belong to. I classified the sparsely 

connected regions as belonging to different canonical networks obtained from Yeo 

and colleagues (Yeo et al., 2011). 

4) I calculated their spatial extent of connectivity with rest of the brain. 

 

Calculating the residual entropy of each large-scale network 

In turn, I shifted my focus from regions to LSNs and their role in whole-brain 

entropy. To do so, I conducted a network lesion analysis by calculating residual 

entropy after removing the nodes corresponding to each LSN based on either the Yeo 

et al. (2011) or Smith et al. (2009) network definitions.  

 

Behavioural data correlations 

As it will become evident in the results section, rare-low entropy and residual entropy 

could successfully classify between different sedation levels. In turn, I examined the 

relationship between reaction times and these entropies in order to see if there is a 

link between entropy and level of responsiveness that we use a as a rough proxy of the 

state of consciousness in the sedated participants. Behavioural data for 20 of the 25 

participants were obtained after the resting-state fMRI sessions corresponding to the 

different states of sedation. The experimental paradigm used to obtain behavioural 

data is described in detail in a study by Adapa and colleagues (Adapa et al., 2014) and 

in the Behavioural data section presented earlier. It is worth noting that I did not 

correlate brain metrics with propofol concentration in plasma, as I was looking for 

effects relevant to the maintenance of consciousness (measured by the level of 

behavioural responsiveness in this case) and not to the action of the drug itself (e.g. 

generalized synaptic depressant action). This comes in line with previous literature 

suggesting that brain connectivity changes that correlate with propofol in the blood 

might not be identical to those that perturbate the level of behavioural responsiveness 

(Barttfeld et al., 2015b).  
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Statistical analysis 

Statistical comparisons for global, rare, and frequent entropy were performed using 

ANOVA for repeated measures with the one factor being the four conditions (awake, 

mild sedation, moderate sedation, recovery). Data was checked for normality using 

the Kolmogorov-Smirnov test. The p values reported are from (two-tailed) post 

hoc comparisons after Bonferroni correction. I also report effect sizes for ANOVA 

using the bayes factor and the eta squared quantities. 

To compare the effect of sparsely connected regions on the length of the largest 

connected component during different sedation levels, I used one-way ANOVA for 

repeated measures with Bonferroni correction for the post hoc tests.   

To compare the discriminatory ability of sparsely connected regions compared to 

previous analysis that used only rare entropy, I used an equivalent of Cohen’s d-score 

in the multivariate setting called the Mahalanobis distance (Del Giudice et al., 2012). P 

values to establish whether there was a difference in the ANOVA effects were 

obtained by constructing appropriate confidence intervals with bootstrapping using 

the code provided here 

 (http://sites.google.com/site/mvlombardo/matlab-tutorials/computeeffectsizes). 

Statistical comparisons regarding the location and connectivity of sparsely connected 

regions were carried out after grouping these in LSNs. I performed pairwise t-tests 

between the location and connectivity values between the two extreme conditions: 

awake and moderate sedation. The p values obtained were further Bonferroni 

corrected for 9 networks meaning that a p value was multiplied by 9 times before 

considered statistically significant. 

To examine the effect of sedation on the residual entropy of 9 networks, one-way 

ANOVA was used. P values coming from post hoc comparisons after Bonferroni 

correction. The p values were further corrected for multiple comparisons taking into 

account the 9 networks under consideration. When the Smith et al. (2009) network 

definitions were considered, corrections were carried out for 10 networks. 
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Finally, I examined the relationship between rare-low entropy and behavioural data.  

The correlation and p  values reported were obtained using Pearson’s linear 

correlations between reactions time and (rare-low or residual) entropy. 

 

Anaesthesia data 

To verify the results on the sedation dataset a similar analysis was conducted on 

dataset where healthy individuals transitioned to a fully anaesthetized state.  

 

Participants 

19 healthy, right-handed volunteers with no history of neurological disorders (18-40 

years; 13 males) healthy volunteers participated in this study. Four volunteers (1 male) 

were excluded from data analyses of the study due to technical difficulties in data 

acquisition resulting in a total of 15 volunteers. A resting-state scan (8 minutes) was 

acquired, during which volunteers were asked to relax with their eyes closed and not 

fall asleep. Ethical approval was obtained from the Health Sciences Research Ethics 

Board and Psychology Research Ethics Board of Western University, Canada. All 

experiments were performed in accordance with the relevant guidelines and 

regulations set out by the research ethics boards.  

 

Experimental setup and procedure 

Resting-state fMRI data was acquired while participants were awake (non-sedated), 

lightly anaesthetized (Ramsay score 3) and deeply anesthetized (Ramsay score 5) with 

propofol induction (Ramsay et al., 1974). 8-minute resting-state data was obtained for 

awake, light anaesthesia, deep anaesthesia and recovery conditions. Intravenous 

propofol was administered with a Baxter AS 50 (Singapore). An effect-site/plasma 

steering algorithm was used in combination with the computer-controlled infusion 

pump to achieve step-wise increments in the sedative effect of propofol. The 

pharmacokinetic model provided target-controlled infusion by adjusting infusion 
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rates of propofol over time to achieve target blood concentrations (Marsh et al., 1991). 

Propofol infusion commenced with a target effect-site concentration of 0.6 µg/ml 

(state of light anaesthesia). If the Ramsay level was lower than 5, the concentration 

was slowly increased by increments of 0.3 µg/ml with repeated assessments of 

responsiveness between increments to obtain a Ramsay score of 5 (state of deep 

anaesthesia). Throughout the scanning, the participant’s behavioural profile was 

monitored inside the scanner room by the anaesthesia nurse and one of the 

anaesthesiologists and outside from the scanner control room, with an infrared 

camera that displayed the participant’s face. No movement, fluctuations of sedation, 

or any other state change, was observed during the deep sedation scanning for any of 

the participants included in the study.  

 

MRI acquisition and preprocessing 

Scanning was performed using a 3 Tesla Siemens Tim Trio system with a 32-channel 

head coil, at the Robarts Research Institute in London, Ontario, Canada. Functional 

images were acquired using an EPI sequence (33 slices, voxel size: 3 × 3 × 3mm, inter-

slice gap of 25%, TR=2000ms, TE=30ms, matrix size= 64 × 64mm flip angle=75 

degrees). An anatomical volume was obtained using a T1-weighted MPRAGE 

sequence (32 channel coil, voxel size: 1 × 1 × 1mm, TA=5 min, TE=4.25ms, matrix 

size= 240 × 256mm, flip angle=9 degrees). Data was preprocessed using the same 

SPM pipeline as in the sedation experiment. 

 

Regions of interest 

I used the eAAL atlas with the same ROIs as described in the sedation paradigm 

section.  
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Assignment of ROIs to large-scale networks 

I used the same methodology as described in the previous section to associate each 

ROI with an LSN. 

 

Functional connectivity networks 

I used the CONN functional connectivity toolbox (Whitfield-Gabrieli and Nieto-

Castanon, 2011) to obtain the time series from the previous ROIs. A strict temporal 

preprocessing pipeline of nuisance regression was applied. Linear regression 

confounds included CompCor components attributable to white matter and CSF 

signals (Behzadi et al., 2007), subject-specific six realignment parameters alongside 

their first-order temporal derivatives and the effects of the drug (Fair et al., 2007a). In 

addition, a highpass filter of 0.009Hz was applied to remove scanner noise. Functional 

connectivity matrices were obtained by taking the pairwise Pearson correlations 

between each pair of ROIs. Functional connectivity matrices were thresholded using 

the same range of thresholds 𝜏 as in the sedation experiment.   

 

Complexity of functional connectivity networks 

Global entropy, rare entropy, frequent entropy and residual entropy were calculated 

as previously. 

 

Statistical analysis 

Data was checked for normality using the Kolmogorov-Smirnov test. Statistical 

analysis included ANOVA with the anaesthesia level as a single factor. The p values 

reported were from post hoc comparisons after Bonferroni correction. I also report 

effect sizes for ANOVA using the bayes factor and the eta squared quantities. 
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4.2.2 Results 

Global and rare entropy in the whole-brain  

I first asked whether the global entropy of the degree distribution of functional 

connectivity networks changes with increasing sedation.  A repeated-measures 

ANOVA showed a significant effect of sedation on global entropy  (𝐹(3,72)=3.39, 

p=0.0226, bayes factor=0.7874, eta squared=0.1585) (Fig. 4.2a) and post hoc t-tests 

showed that entropy was decreased during moderate sedation compared to the awake 

state (p=0.0137). When I considered different parts of the degree distribution, I found 

a significant effect of sedation on rare entropy (𝐹(3,72)=3.46, p=0.0208, bayes 

factor=0.8635, eta squared=0.1612) (Fig. 4.2b) with post hoc t-tests revealing a 

significant decrease during moderate sedation compared to the awake state 

(p=0.0120). I conducted a similar analysis for the frequent entropy where I observed 

no alterations across sedation conditions (𝐹(3,72)=0.29, p=0.8352) (Fig. 4.2c). In 

other words, the pattern I observed with rare degrees alone mirrored the pattern of 

global entropy. Post hoc tests revealed that moderate sedation had significantly less 

rare entropy than the awake state (p=0.0066). Collectively these results suggested that 

the effect of sedation was more evident in regions with rare degrees potentially 

reflecting the selective action of the anaesthetic.  

 

  



Chapter 4: Reduction of complexity during loss of consciousness 

 135 

 

Figure 4.2 - Complexity is decreased during moderate sedation. Entropy of the degree distribution 

was calculated as a proxy of complexity for functional connectivity networks. Part (a) boxplot shows 

changes in the global\whole-brain entropy from the awake state to moderate sedation. Part (b) boxplot 

shows changes in rare entropy alone (part of entropy corresponding to regions with rare degrees) with 

increased sedation. Part (c) boxplot shows that the frequent entropy (part of entropy corresponding to 

regions with frequent degrees) remains unchanged across sedation levels. Single asterisk (*) indicates 

post hoc significance p<0.05 Bonferroni corrected. Grey lines between boxplots indicate changes in 

individual volunteers from awake to moderate sedation. Boxplots’ thick lines show median values and 

whiskers represent 1.5 times the inter-fourth range. Since rare and frequent entropy are parts of the 

total entropy, boxplots of (b) and (c) are on a different scale. Entropy of rare and frequent degrees was 

normalized by the length of their respective distribution to account for size bias; thus plots b+c do not 

sum to a. 
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Rare entropy in the whole-brain: the role of sparsely connected regions 

Regions with rare degrees may be highly connected (high degrees) or sparsely 

connected (low degrees) with each having different functional roles in network 

communication. Information produced locally usually within groups of highly 

connected regions (modules or components) propagates to the distant parts of the 

brain through sparsely connected regions; thus the importance of individual regions 

for whole-brain network integration varies (Bullmore and Sporns, 2012). Motivated 

by the hypothesis that sparsely connected regions might have a profound impact on 

network integration, I identified these within each individual’s rare degree sample and 

I assessed their role in network integration. Mathematically one can quantify this by 

measuring the size of the largest connected component in the network after these 

regions have been virtually lesioned/removed (Gallos et al., 2012; Del Ferraro et al., 

2018-Fig. 4.3a). The larger the connected component in the lesioned network the less 

the impact in network integration of the nodes that were lesioned. Using this 

methodology I found two interesting results regarding the role of the sparsely 

connected regions in network integration: 1) During the awake state the sparsely 

connected regions were associated with a smaller connected component compared to 

an equally sized sample of randomly chosen (rare and frequent) nodes (𝐹(3,72)=4.58, 

p=0.0054, bayes factor=2.0778, eta squared=0.2028 and Fig. 4.3b) 2) This effect was 

abolished with increasing sedation implying a loss of their role in network integration 

(post hoc test awake vs. moderate sedation p=0.0046). Combining the last result with 

the fact that I observed a reduced complexity in the rare degrees implies that sparsely 

connected regions reorganized in a pattern that prevented network integration when 

participants were moderately sedated.  

 

Using only sparsely connected regions to discriminate between sedation levels  

The previous results collectively suggested that the complexity of sparsely connected 

regions might be more predictive of anaesthetic depth than other regions. Here I 

sought to confirm this by first removing the rare-high degrees from each participant’s 

sample and, using the Mahalanobis distance (Del Giudice et al., 2012) to compare 
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effect sizes. I found a stronger effect size compared to the effect size when using the 

unaltered rare entropy (Mahalanobis p=2.9e-04).  When rare-low degrees were 

removed, the effect size did not change (Mahalanobis p=0.944) thus signifying a 

greater contribution from sparsely connected regions to the ANOVA effect size. 

Collectively, these findings demonstrated that sparsely connected regions could be 

used to discriminate between different consciousness states with alterations in their 

connectivity linked with their role in network integration.  

 

The location and connectivity of sparsely connected regions 

To facilitate the characterization and localisation of sparsely connected regions, I 

investigated canonical network membership utilising a set of predefined functional 

networks widely used in resting-state fMRI literature (Yeo et al., 2011) (alongside 2 

manually defined networks spanning subcortical and cerebellar regions). The first 

observation was that network membership of sparsely connected regions changed as 

volunteers transitioned across different sedation levels (Fig. 4.3c, 4.3d, and 4.3e). 

When comparing the awake state to moderate sedation I found decreases in the 

DMN’s sparse connections (paired two-tailed t-tests were used across 9 networks, 

t(24)=3.1175, p=0.0423, Bonferroni corrected for 9 networks), a finding supported by 

previous work demonstrating a reorganization of key regions in the default mode 

network during moderate sedation (Stamatakis et al., 2010).  Additionally, I found 

that sparsely connected regions changed their connectivity endpoints (regions they 

were connected to) with increasing sedation (Appendix Fig. 4.1). Specifically, when 

comparing awake to moderate sedation, there was an increase in the number of 

endpoints belonging to the DMN, limbic, and subcortical networks (paired two-tailed 

t-tests t(24)=3.1781, p=0.0364, t(24)= 3.3516, p=0.023, p=0.032, Bonferroni corrected 

for 9 networks) (Fig. 4.3c and 4.3f) suggesting an increased presence of sparse 

connectivity towards these regions as has been reported elsewhere (Mhuircheartaigh 

et al., 2010; Schröter et al., 2012). 
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Figure 4.3 - The functional role, location, and connectivity of sparsely connected regions during 

different levels of sedation. Part (a) shows one can define the impact of certain nodes of interest to 

network integration. This can be quantified using 𝐺 − 𝐺! where 𝐺 is the largest connected component 

in the original network and 𝐺! is the size of the largest connected component in the lesioned network 
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after removing nodes of interest (for example random degree nodes 𝐺! or sparsely connected nodes 

𝐺!). Part (b) shows the impact of sparsely connected regions on network integration. Removing 

sparsely connected regions had a bigger impact than removing randomly chosen (rare or frequent) 

nodes. The difference is getting smaller as individuals become anaesthetized showing that the reduced 

complexity of sparsely connected regions might be linked to their losing ability to enhance network 

integration. Part (c) shows example locations, in the brain of one healthy volunteer, of sparsely 

connected regions (yellow)-i.e. regions with degrees that their value was infrequent and low. Their 

connections to other regions are shown in light green and their connectivity endpoints are shown in 

brown. In part (d) the alluvial diagram shows changes in the median of the 25 subjects (width of colour 

band) of the amount of sparsely connected regions in different networks with increasing sedation. In 

part (e) I quantified these changes by calculating the percentage of sparsely connected regions and their 

network membership during the awake state and moderate sedation. In part (f), I show where sparsely 

connected regions connect to (i.e. connectivity endpoints). For an alluvial representation of (f) I refer 

the reader to Appendix Fig. 4.1. In parts  (e) and (f) the y-axes indicate percentages that I calculated by 

dividing by the number of regions in each network. For the ANOVA boxplots’ thick lines show median 

values and whiskers represent 1.5 times the inter-fourth range for n=25 subjects and single and double 

asterisks (*), (**) imply post hoc significance p<0.05 and p<0.01 Bonferroni corrected for multiple 

comparisons respectively. For parts (e), (f) barplots show mean values and errors bars show standard 

error of the mean. Single asterisk (*) implies significance p<0.05 Bonferroni corrected for 9 paired t-

tests corresponding to the number of different networks. Abbreviations: DMN: Default Mode Network. 

DA: Dorsal Attention Network. FP: Fronto-Parietal Network. L: Limbic network. SM: Somato-Motor 

Network. VA: Ventral Attention Network. VIS: Visual Network. Sub: Subcortical. Cb: Cerebellum. 

 

Global and rare entropy after lesions: The importance of canonical networks  

The previous section provided evidence as to where sparse connectivity changes 

occurred during sedation with the DMN encompassing most of these alterations. To 

directly assess the importance of changes in LSN connectivity during sedation I 

conducted a lesion simulation by removing single networks and calculating the 

residual global entropy across the four sedation levels (residual entropy) (Kaiser et al., 

2007; Hagmann et al., 2008; Váša et al., 2015) (Fig. 4.4a). I found an effect of sedation 

on residual entropy only when I removed the DMN or limbic networks (F(3,72)=7.84, 

p=0.0002, bayes factor=5.5433, eta squared=0.3034, F(3,72)=5.26, p=0.0016, bayes 

factor=2.8102, eta squared=0.2261 respectively). Post hoc t-tests for comparing 

moderate sedation to awake state revealed a decrease only in the DMN and limbic 

residual entropies (p=0.0048, p=0.0273, Bonferroni corrected for 9 networks) (Fig. 4.4 
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and Appendix Fig. 4.2a). I also observed an increase in DMN residual entropy 

(entropy following DMN removal) from moderate sedation to recovery (p=0.0172, 

Bonferroni corrected for 9 networks). The same effect held when considering rare 

entropy of the residual network alone (Appendix Fig. 4.3). These results shift the focus 

of the findings to the connectivity of the DMN suggesting its vital role in maintaining 

whole-brain entropy during sedation. I performed a further validation study by 

changing our network definitions using those from the Smith et al. (2009) parcellation 

and, again, I observed a decrease in the DMN residual entropy (Appendix Fig. 4.2b).  

 

Figure 4.4 - Complexity of functional connectivity after removing networks. Boxplots display a 

decrease in residual global entropy during sedation after removing the DMN and limbic networks. 

Single asterisk (*) implies post hoc significance p<0.05 after Bonferroni correction within sedation levels 

and for 9 networks. Boxplots’ thick lines show median values and whiskers display 1.5 times the inter-

fourth range. For changes in residual entropy for all networks I refer the reader to Appendix Fig. 4.3. 

Abbreviations: DMN: Default Mode Network, L: Limbic Network. 
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Using entropy of sparsely connected regions to predict behaviour under sedation 

Finally, I attempted to establish a relationship between network entropy and 

behaviour. EEG results have shown that participants who had relatively reduced 

connectivity during the awake state (a close to ‘drowsy’ EEG signature) showed slower 

reaction times during moderate sedation (Chennu et al., 2016) i.e. were more affected 

by sedation.  Since changes in connectivity will likely result in entropy (as it is 

computed here) changes, I investigated the relationship between rare-low degree 

entropy during the awake state and reaction times (from a semantic decision task) 

during moderate sedation (Adapa et al., 2014). I observed a significant anti-

correlation (r=-0.6279, p=0.0030) of reaction times during moderate sedation with 

rare-low degree entropy during the awake state i.e. the longer the reaction time the 

less entropy at baseline (Fig. 4.5a). I also asked whether rare-low degree entropy 

during the awake state could predict differences (i.e. amount of change) in the 

reaction times between the awake state and moderate sedation. Here I also found a 

significant anti-correlation between the two (r=-0.4803, p=0.0321) (Fig. 4.5b) 

reinforcing the earlier suggestion that entropy during the awake state can successfully 

relate to cognitive ability during moderate sedation. Given the earlier findings, I 

attempted to establish whether these relationships were driven by the DMN and 

limbic networks. I found again an anti-correlation of DMN residual entropy with 

reaction times during sedation (r=-0.4527, p=0.0450) (Fig. 4.5c) as well as an anti-

correlation of limbic residual entropy with reaction times during moderate sedation 

(r=-0.6916, p=0.0007) (Fig. 4.5d) suggesting that DMN and limbic residual entropy 

were most affected by sedation. 
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Figure 4.5 - Individual differences in reaction times during moderate sedation correlate with rare-

low and residual entropies during the awake state. Part (a) shows that higher rare-low entropy 

(entropy of sparsely connected regions) during the awake state indicates faster reaction times during 

moderate sedation (negative correlation). Part (b) shows that rare-low entropy during the awake state 

correlates with the impact of sedation on reaction times i.e. the reaction times during moderate 

sedation minus the reaction times during the awake state. Parts (c) and (d) show that the residual 

entropies of the DMN and limbic networks also negatively correlate with reaction time during 

moderate sedation. Rare-low entropy was normalized by the length of the degree sample after removal 

of the high-degree nodes and is therefore on a different scale compared to the residual entropies.  r 

values indicate Pearson correlations.  

Results from anaesthesia data 

I conducted a similar analysis for entropy in the anaesthesia data. As in the sedation 

data, I discovered a decrease in complexity that was reflected in the entropy of the rare 

degrees. Specifically, I observed an effect of anaesthesia level in global/whole-brain 

entropy (F(3,45)=4.96, p=0.0038, bayes factor=2.4892, eta squared=0.3060). Global 

entropy was significantly reduced during deep anaesthesia compared to the awake 
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condition (p=0.0112) (Fig. 4.6a). On the contrary, going from deep anaesthesia to 

recovery, there was an increase in global entropy (p=0.01).  In turn, I investigated the 

effect of the anaesthesia level to rare entropy. Similarly to the sedation experiment, 

rare entropy was affected by anaesthesia (F(3,45)=4.17, p=0.0095, bayes factor=1.6286, 

eta squared=0.2704). When going from awake to deep anaesthesia, I observed a 

decrease in rare entropy (t(14)=3.1, p=0.0073), however no significant result was 

observed when going from deep anaesthesia to recovery (Fig. 4.6b).  As previously, the 

frequent entropy was not significantly affected by anaesthesia (F(3,45)=2.23, p=0.12).		

In addition, rare-low entropy was more predictive of the anaesthesia level compared 

to the unaltered rare entropy (Mahalanobis p=0.03) while this was not the case for the 

rare-high entropy (Mahalanobis p=0.911). 

For	 the	 residual	 entropy	 of	 different	 LSNs	 I	 observed	 that,	 as	 in	 the	 sedation	

experiment,	DMN’s	 residual	entropy	was	decreased	when	going	 from	awake	 to	

anaesthesia	 (t(14)=2.8891,	 p=0.0112)	 (Fig.	4.6c).	However,	 I	 also	observed	 that	

the	FP’s	residual	entropy	was	significantly	decreased	when	going	from	awake	to	

deep	anaesthesia	(t(14)=3.0844,	p=0.0076)	and	increased	when	going	from	deep	

anaesthesia	to	recovery	(t(14)=3.6065,	p=0.0026)	(Fig.	4.6c). 
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Figure 4.6 - Complexity is decreased during anaesthesia. Part (a) boxplot shows changes in the global 

entropy from the awake state to anaesthesia. Single asterisk (*) and double asterisks (**) indicates post 

hoc significance p<0.05 and p<0.01 respectively Bonferroni corrected. Boxplots’ thick lines show 
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median values and whiskers represent 1.5 times the inter-fourth range from the median. Since rare is a 

part of the total entropy, boxplots of (a) and (b) are on a different scale. Part (b) boxplot shows changes 

in rare entropy alone with increasing anaesthesia. Part (c) the decreases in residual entropies of the 

DMN and fronto-parietal networks.  Single asterisk (*) and double asterisks (**) implies post hoc 

significance p<0.05 and p<0.01 respectively Bonferroni corrected within anaesthesia levels and for 9 

networks. Boxplots’ thick lines show median values and whiskers represent 1.5 times the inter-fourth 

range. Abbreviations: DMN: Default Mode Network, FP: Fronto-Parietal Network. 

4.3 Changes in complexity: from sedation to disorders of consciousness  

4.3.1 Overview 

In the previous sections I quantified the complexity of sparsely connected regions and 

confirmed its ability to discriminate different levels of sedation and anaesthesia.  

Unlike sedation/anaesthesia, disorders of consciousness are cases of loss of 

consciousness usually caused by severe brain injury (Laureys, 2005). Patients with 

disorders of consciousness usually have severely impaired awareness while their 

wakefulness might be spared (Di Perri et al., 2013). These cases have been broadly 

categorized into cases of minimally conscious state/MCS, vegetative state/VS (now 

also called the unresponsive wakefulness syndrome) and coma state depending on the 

levels of awareness and arousal (Laureys et al., 2010; Gosseries et al., 2011). 

Stratification of patients into these categories is usually done using clinical 

behavioural markers such as the CRS-R score (Gerrard et al., 2014). Despite their 

usefulness, it is now accepted that the gathering of elementary behavioural signs has to 

be complemented by brain activity measures in order to unveil brain responses not 

necessarily reflective in the patients’ behavioural responses (Naccache, 2017), In that 

regard, brain-response-related clinical diagnosis of loss of consciousness in these 

patients can be broadly summarized in three approaches (Naccache, 2017). The first 

approach is to engage the patient in a paradigm that they can perform only 

consciously. If a patient’s brain shows patterns of activity observed in conscious 

controls performing this task, one may infer he/she is conscious. Towards this 

direction, there has been important work on identifying brain responses in patients 

asked to “imagine play tennis/navigating in your home” (Naccache, 2006; Owen et al., 

2006). A second approach is to conduct region-specific brain stimulation and look at 
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the brain activity in response to the stimulation (Casarotto et al., 2016). Under this 

framework, work by Casali and colleagues have shown that the pattern of Transcranial 

Magnetic Stimulation/TMS-induced EEG activity can discriminate between patients 

with different categories of disorders of consciousness (Casali et al., 2013). The third 

approach relates to investigating the brain at rest using MRI imaging techniques. The 

usefulness of studying resting-state activity and connectivity has been discussed in the 

introduction; it is a method that provides a wealth of information of spontaneous 

brain dynamics that does not require task-related designs (and subtractive techniques) 

or brain stimulations. In that regard, I focused only on resting-state fMRI data. 

Conventional brain imaging studies have shown heterogeneous results, suggesting 

that no damage on specific brain region can be unequivocally related to the states of 

consciousness. For example, in some cases, brain metabolism has shown similar levels 

at healthy controls and patients in vegetative state (Schiff et al., 2002). On the 

contrary, functional connectivity analysis on resting-state fMRI data has shown some 

promise in the pursuit of an objective marker of the state of consciousness irrespective 

of brain damage (Naccache, 2017). This has been proposed as the disconnection 

syndrome in the sense that loss of consciousness in these patients is associated with 

the level of impairment in their functional connectivity (Monti, 2012). Towards this 

direction it has been shown that VS patients are characterised by “isolated” cognitive 

modules that, in the absence of global integration, do not generate conscious 

experience (Schiff et al., 2002; Kotchoubey et al., 2005). Further evidence suggest that 

VS patients exhibit reduced resting-state connectivity, as compared to MCS patients 

and healthy volunteers especially in key DMN regions believed to integrate 

information (Vanhaudenhuyse et al., 2010). Thus, decreased information integration 

could underlie the absence of consciousness in these patients (Tononi, 2008). 

If loss of integration is a marker of absence of consciousness, how can the previous 

sedation/anaesthesia results discussed in this chapter inform us on loss of 

consciousness in these patients? Evidence from past fMRI studies suggest similarities 

in how functional connectivity changes during anaesthesia and injury-induced loss of 

consciousness.  For example, functional connectivity especially in the FP and DMN 

networks seem to be reduced (Heine et al., 2012). Another common theme is the loss 
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of long-range connections in both of anaesthesia and disorders of consciousness cases, 

especially between frontal and posteromedial cortices that have been deemed 

important for network integration (Laureys et al., 2000a). In addition, functional 

connectivity of the thalamus, a region that its functional connectivity is believed to 

support whole-brain integration (Hwang et al., 2017), appears to be affected both 

during anaesthesia and disorders of consciousness (Laureys et al., 2000a; 

Guldenmund et al., 2013).  

Given these similarities on the behaviour of regions responsible for network 

integration in both anaesthesia and disorders of consciousness, I asked whether the 

complexity of sparsely connected regions could discriminate between different states 

of consciousness. To do so I used data from patients with disorders of consciousness. 

The goal was to provide evidence for consciousness-specific alterations in the 

complexity of regions responsible for network integration. Based on previous 

evidence regarding the role of sparsely connected regions in network integration, I 

restricted my analysis on the rare-low entropy. 

 

4.3.2 Materials and Methods 

Disorders of consciousness data 

Participants 

A total of 32 adults meeting diagnostic criteria of unresponsive wakefulness syndrome 

(also known as a vegetative syndrome) or minimally consciousness state due to severe 

anoxic or traumatic brain injury were include in this study. MCS patients were further 

subcategorized into MCS+ and MCS-. MCS+ describes high-level behavioural 

responses (i.e. command following, intelligible verbalizations or non-functional 

communication) and MCS- describes low-level behavioural responses (i.e. visual 

pursuit, smiling or crying to emotional stimuli etc.)(Bruno et al., 2011). Participants 

were in a similar age range as in the sedation experiment (range= 19-52 years). 

Scanning occurred at the Wolfson Brain Imaging Centre, Addenbrooke’s hospital 

written informed consent was obtained by the individuals legally responsible for 

making decision on the patients’ behalf. CRS-R score were also obtained for these 
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patients in order to clinically distinguish VS, from MCS and conscious (exit-MCS) 

patients (Gerrard et al., 2014). The CRS-R score assesses auditory, visual, motor, and 

verbal functioning, as well as communication and arousal. Each of its subscales is 

assigned a maximum score between two and six points, which results in a maximum 

total score of 23 points-corresponding to the awake state (Giacino et al., 2004). 

 

MRI acquisition and preprocessing 

Resting-state fMRI was acquired for 10 minutes using a Siemens Trio 3T scanner 

(Erlangen, Germany). Functional images were acquired using an echo planar 

sequence with the following parameter (32 slices of 3 × 3 × 3.75mm resolution, 

TR=2000ms, TE=30ms, flip angle=75 degrees). T1-weighted images were also 

obtained with an MPRAGE sequence using the following parameters TR=2300ms, 

TE=2.47ms, 150 slices of resolution 1 × 1 × 1.2mm. The preprocessing pipeline 

consisted of similar steps as in the sedation and anaesthesia experiments.  However 

due to the brain distortion caused by injury, I observed unacceptable normalisation in 

6 subjects. Normalisation checking was conducted by visually contrasting the MNI 

template with the normalised brains (using the checkreg button in SPM) and 

unacceptable normalisation was considered when I observed abnormal skewing in a 

particular dimension. By utilizing a two-step process 1) creating a template out of the 

distorted brains and mapping the template to MNI space 2) wrapping invidiual brains 

to the template and, in turn, to MNI space. Creating the template was done by using 

the buildtemplateparallel.sh function implemented in the package ANTS 

(http://stnava.github.io/ANTs/). Normalisation of the template was conducted using 

the non-linear transformation SyN also implemented in ANTS. To wrap individual 

brains to MNI space I wrapped them first to the template and then, using the 

deformation field obtained from the template normalization, I mapped them to MNI 

space. Because of the presence of severe deformations caused by brain injury, 2 out of 

the 6 subjects were excluded despite efforts in assisting with the normalisation.  
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Regions of interest 

Ι used the eAAL atlas as described in the sedation/anaesthesia paradigm section.  

 

Functional connectivity networks and complexity of sparsely connected regions 

I used the CONN functional connectivity toolbox (Whitfield-Gabrieli and Nieto-

Castanon, 2011) to obtain the time series from the previous ROIs. A strict temporal 

preprocessing pipeline of nuisance regression was applied. Linear regression 

confounds included CompCor components attributable to white matter and CSF 

signals (Behzadi et al., 2007), subject-specific six realignment parameters and their 

first-order temporal derivatives. In addition a highpass filter of 0.009Hz was applied 

to remove scanner noise. Connectivity matrices were obtained by taking the pairwise 

Pearson correlations between each pair of ROIs. Functional connectivity matrices 

were obtained as previously and thresholded using the same range of thresholds 𝜏 as 

in the sedation and anaesthesia experiments. Rare-low entropy was obtained as 

previously by identifying sparsely connected regions in the functional connectivity 

networks. Rare-low entropy was averaged over the range of thresholds 𝜏.  

It is worth noting that the similar age range and acquisition parameters (both datasets 

acquired in WBIC, Cambridge) of the sedation and DOC data allowed me to compare 

results from these two different experiments. In that regard, in this section I did not 

include data from the anaesthesia experiment as this was obtained with a different 

setup, something that could potentially introduce bias in the comparisons between 

different experimental data.  

 

4.3.3 Results 

I observed a monotonic decrease of rare-low degree complexity from disorders of 

consciousness to the awake state acquired during the sedation experiment (Fig. 4.7) 

(F(2,77)=20.97, p<0.0001, bayes factor=12.7364, eta squared=0.4496). Specifically, I 

observed a statistically significant decrease between the awake state and moderate 
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sedation (p=0.028), patients with disorders of consciousness and awake state 

(p<0.0001) and patients with disorders of consciousness and moderate sedation 

(p=0.0015). This result suggested that the complexity of sparsely connected regions 

was significantly reduced in patients with disorders of consciousness compared to 

sedation and the awake state showing that their brains might be further segregated. 

 

Figure 4.7 - Complexity of sparsely connected regions from sedation to disorders of consciousness. 

A monotonic decrease in the complexity of sparsely connected regions was observed when going from 

awake to moderate sedation and disorders of consciousness. We also show complexity across different 

categories of disorders of consciousness (vegetative state, MCS+, MCS-).  Boxplots’ thick lines show 

median values and whiskers represent 1.5 times the inter-fourth range. Single asterisk (*), double 

asterisk (**) and triple asterisks (***) imply post hoc p<0.05, p<0.01, and p<0.001 significance 

respectively Bonferroni corrected. Abbreviations: DOC: Disorders of Consciousness. 
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4.4 Discussion 

Network models suggest that functional connectivity is far from random but that it is 

characterized by specific organization (Bullmore and Sporns, 2012). The complexity 

of functional connectivity networks is considered to promote local and global 

efficiency in communication through the existence of heterogeneously connected 

regions (Zamora-López et al., 2016). In other words, functional connectivity networks 

of the awake brain might be described by a “sweet spot” of complexity critically 

balancing segregation and integration. Evidence for this critical complexity was shown 

in chapter 3. In this chapter, I hypothesized that alterations in complexity could 

discriminate between different states of consciousness, as these would mark a 

departure from this criticality towards a less complex and more segregated 

configuration. 

In that regard, previous work has hypothesized that loss of consciousness is associated 

with a less complex and more stereotypic pattern of brain interactions (Tononi and 

Edelman, 1998; Alkire et al., 2008). I observed a decrease in whole-brain complexity 

during sedation suggesting that brain connectivity was characterized by a diminished 

repertoire of degrees. This result was further confirmed with the anaesthesia dataset. 

Diminished degree repertoire implies a more segregated network organization where 

information can still be communicated efficiently at the local/regional level but not at 

the global/whole-brain level (Power et al., 2010). I attempted to provide more direct 

evidence about how integration is lost by looking at local changes in complexity.  

I showed that the observed decrease in whole-brain complexity during sedation and 

anaesthesia was driven by regions that have a rare number of connections. I believe 

that this result has important implications for how propofol affects brain connectivity. 

First, the diminished repertoire in the degrees of few brain regions suggests that the 

anaesthetic has more severe effects on a limited number of regions. However, it is not 

clear why this selective action can be associated with loss consciousness. 

Contemporary theories suggest that the selective action of propofol on areas crucial 

for network integration may be enough to cause loss of consciousness (Alkire et al., 

2008). Alluding to this hypothesis, I showed that sparsely connected regions identified 
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within the set of regions with rare degrees were important for network integration. 

Expanding on this argument I used only the complexity of these regions to show that 

it can discriminate between sedation or anaesthesia levels better than using the degree 

of highly connected regions. Building on the work of Granovetter regarding the 

importance of weak ties in large-scale social structures (Granovetter, 1973), sparsely 

connected regions have been deemed important for bridging different network 

components thus providing efficient information exchange between distant parts of 

the brain (Markov et al., 2011; Gallos et al., 2012; Park and Friston, 2013; Goulas et al., 

2015). Furthermore, a different study reported a decrease in rare, long-range 

connections accompanied by loss of whole-brain integration during propofol-induced 

loss of consciousness (Schröter et al., 2012). Contributing to this, I showed that 

sparsely connected regions had an important role in network integration during the 

awake state. As sedation increased, this role was diminished suggesting that their 

decreased complexity might be directly linked with their inability to integrate 

information. This can be one explanation for why the observed decreased complexity 

of sparsely connected regions during sedation is associated with loss of consciousness. 

I also found that sparsely connected regions were significantly decreased in the DMN 

during moderate sedation. Studies have shown that the DMN, besides highly 

connected regions, includes regions with sparse connectivity (such as rare, long-

distance connections) (Smallwood et al., 2012; Vatansever et al., 2015b), however their 

role in loss of consciousness has not been established before. In light of our previous 

observations regarding the importance of sparse connections, I speculated that the 

DMN during sedation is deprived from its ability to integrate information from far 

and diverse sources. 

An additional account for why the complexity of sparsely connected regions might be 

linked to loss of consciousness can be recapitulated in terms of loss of information 

capacity (Tononi, 2004; Schrouff et al., 2011). For example, observed alterations in 

subcortico-cortical interactions deemed critical for maintaining wakefulness (Brown 

et al., 2011), can lead to impaired consciousness because they can reduce the capacity 

of the brain to process information (Alkire et al., 2008). This work provided additional 

explanatory power for this approach. First I showed that during moderate sedation, 
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the connectivity of sparsely connected regions spanned DMN and subcortical regions 

significantly more than the awake state, aligning with previous evidence of sparse 

connectivity between DMN and subcortical regions during decreased consciousness 

(Stamatakis et al., 2010; Guldenmund et al., 2013).  At the same time this sparsely 

connected sub-network of cortico-cortico and subcortico-cortical regions was 

characterized by decreased in rare-low degree entropy, potentially reflecting its 

decreased capacity to process information (Brunel, 2016). Further research can focus 

on the importance of sparsely connected regions especially in thalamocortical loops 

that have been deemed critical for regulating consciousness (Ching et al., 2010). 

Interestingly the thalamus has been shown to have an enhanced role in network 

integration (Hwang et al., 2017). A relationship of this with our data (in the context of 

reduced complexity of sparsely connected regions) is something that can be 

investigated in the future.  

In addition, I quantified the importance, from a complexity perspective, of canonical 

networks during sedation. Here I observed that the DMN residual entropy was 

significantly decreased during sedation. An association of impaired connectivity in the 

DMN and loss of consciousness has been previously reported (Guldenmund et al., 

2016). I showed that virtually removing the DMN was associated with a significant 

decrease in entropy during sedation suggesting its importance in whole-brain 

complexity during loss of consciousness. This result, in conjunction with the fact that 

the number of sparsely connected regions within the DMN were significantly 

decreased, comes in line with the previous observations about the diminished role of 

DMN in whole-brain integration during loss of consciousness. 

Further results revealed a significant decrease in the limbic residual entropy. This 

network-as defined by Yeo et al. (2011)-consists of ventral frontomedial and orbital 

regions as well as inferior temporal and parahippocampal regions. Orbitofrontal 

regions have been associated with engaging visceromotor control (Lindquist and 

Barrett, 2012) while parahippocampal regions have been linked to conscious sensory 

perception (Li et al., 2012) both features of conscious experience. Interestingly, the 

residual entropies of motor and visual networks were not affected during moderate 

sedation in alignment with evidence showing that primary sensory cortical activity is 
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not modulated by sedation (Plourde et al., 2006; Boveroux et al., 2010). It is worth 

noting that the residual entropy following the virtual removal of the DMN was the 

only one that significantly increased when comparing recovery to moderate sedation. 

A previous study has shown that the connectivity of DMN-specific regions is restored 

during recovery (Långsjö et al., 2012). Accordingly, I expected the DMN to re-obtain 

its connectivity pattern during recovery. 

During full anaesthesia, I observed that the DMN residual entropy was also decreased. 

However, the limbic network was not implicated in this case and instead was replaced 

by the FP possibly indicating that its connectivity is significantly affected during deep 

anaesthetic levels. Studies from propofol-induced anaesthesia have shown that the 

connectivity of the FP is reduced (Boveroux et al., 2010). One reason for why deep 

levels of anaesthesia might be associated with impaired FP connectivity is that 

anaesthesia affects connectivity between frontal and parietal regions (Hudetz, 2012) 

and thalamo-frontal connectivity (Alkire et al., 2008) thus impairing network 

integration. Can these findings be reconciliated with the residual entropy results 

shown in sedation? One working hypothesis is that of graded suppression of 

connectivity: the FP is relatively intact in cases of sedation but affected during deep 

anaesthesia (Martuzzi et al., 2010). However, further evidence is required to confirm 

this hypothesis. 

In addition, by tracking individual behavioural data during moderate sedation, I 

discovered that entropy during the awake state was a potential marker of impaired 

reaction times during sedation. This result adds to a recent EEG study showing the 

potential of alpha band network connectivity as a predictor of unresponsiveness 

during propofol-induced sedation (Chennu et al., 2016). This result might signify that 

behaviour during sedation or anaesthesia can be predicted by the complexity of our 

brains during the awake state. I believe that this can have important implications for 

further understanding individual responses under anaesthesia and anaesthesia 

monitoring in general. The correlations, however, presented here will require 

subsequent replication given their exploratory nature. 
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Finally, I used the complexity of sparsely connected regions to differentiate between 

sedation and disorders of consciousness.  Specifically, I showed that when going from 

awake to sedation and disorders of consciousness complexity is reduced. A particular 

question is how comparable these states are. For example vegetative state impairs only 

awareness while anesthesia appears to affect both awareness and wakefulness. 

One approach for this is to consider that complexity gauges information about 

integration of specialized modules in the brain; thus what we believe that complexity 

is capturing aggregate information that combines features of different systems 

responsible for awareness and wakefulness. Towards this direction, previous studies 

using complexity of EEG signals across the whole brain (a measure that they called 

perturbational index) have suggested that complexity can classify between 

consciousness states in a way that goes above and beyond the dichotomy of awareness 

and wakefulness (Casali et al., 2013). In this study Casali and colleagues show that 

patients at the vegetative state have low perturbational index despite their high 

behavioural arousal. At the same time, the perturbational index of these was 

comparable or lower to the one observed in healthy individuals under anaesthesia 

suggesting different states of consciousness impairment. Together with the results 

presented here, such findings might provide additional directions as to how these 

different states can be compared against each other, possibly delineating a 

“continuum of consciousness” that cannot be captured by the standard 

wakefulness/awareness quantification. 

Additional speculation as to why the complexity measure presented in this thesis 

could discriminate between different cases of loss consciousness in a “continuum” 

fashion pertains to the fact that reduced complexity of sparsely connected regions 

reflects the effect of loss of consciousness on long-range connectivity, something that 

has been observed both in anaesthesia and disorders of consciousness (MacDonald et 

al., 2015). Another interesting hypothesis that could complement the results presented 

here is that of the impairment in thalamocortical connectivity. Thalamocortical 

connectivity has been shown to be affected in disorders of consciousness (Monti et al., 

2015) while its restoration has been associated with emergence from vegetative state 

(Laureys et al., 2000a). Thus it is possible that alterations in the complexity of these 
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regions might affect whole-brain complexity. By combining the findings from 

sedation and disorders of consciousness, I showed that the complexity of sparsely 

connected regions was able to classify between anaesthetic-induced and clinical loss of 

consciousness. This finding vindicates the claim that the complexity of functional 

connectivity is significantly downgraded in patients with disorders of consciousness 

compared to the anaesthetic state or the healthy brain; something that, as I discussed 

previously, might be attributed to severe impairment in network integration (Casali et 

al., 2013; Sarasso et al., 2015).  In addition, I showed that complexity could classify 

between anaesthetic conditions and states of consciousness in patients based on 

resting-state functional connectivity. This is particularly important in cases where 

clinical assessment using traditional behavioural markers is difficult to obtain and 

usually confounded by other factors such as motion reflexes (Monti, 2012).  

 

4.5 Conclusion 

Collectively, I showed shifts in the complexity of functional distribution under 

different states of consciousness. Specifically, I showed these alterations might reveal a 

shift towards less integrated/more segregated networks. These are known to facilitate 

global communication, thus alterations in their connectivity might reflect loss of 

communication in the whole brain.  One point that still needs to be elucidated relates 

to whether changes in functional connectivity and its complexity are static or they 

change concomitant with the changes in brain dynamics. Complexity is calculated on 

the premises of an average functional connectivity over the scanning interval. But 

what happens at each point of time? In the next section my focus will be on the brain 

dynamics during anaesthesia and disorders of consciousness and to see whether 

complexity at the temporal domain can also inform us about different states of 

consciousness. 
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Chapter 5: Dynamic functional connectivity and its 

complexity during loss of consciousness 

In the previous chapter I showed that the complexity of functional connectivity 

networks could differentiate between states of consciousness in both anaesthetic-

induced loss of consciousness and disorders of consciousness. One assumption of this 

method is the representation of functional connectivity (and its properties) as an 

average over the scanning time with a secondary assumption that the connectivity 

values remain almost constant over time (Cole et al., 2010). Although this is a 

convenient framework for analysing functional connectivity, given the dynamic 

nature of brain activity, even during rest, it is expected that functional connectivity 

will change across time (Hutchison et al., 2013). These changes are not just 

fluctuations of a random process but have been shown to have a neurobiological basis 

potentially reflective of diverse brain dynamics (de Pasquale et al., 2010). Thus, 

besides the static methods for studying resting-state functional connectivity 

introduced earlier in this thesis, recent dynamic approaches have been developed in 

order to study and quantify the temporal variations/changes in functional connectivity 

(Hutchison et al., 2013). 

The static and dynamic approaches should not be adopted in a manner exclusive to 

each other but as complementary to each other when it comes to studying loss of 

consciousness. The temporal dynamics of functional connectivity are considered 

important in the context of consciousness. The repertoire of functional connectivity 

across time is believed to reflect the number of accessible brain states across time, 

something that has been linked with the brain’s capacity of conscious processing 

(Carhart-Harris et al., 2014; Tagliazucchi et al., 2014). The temporal dimension of 

these changes is often regarded as the temporal aspect of complexity (complexity over 

time) that complements the (spatial) complexity of functional connectivity in order to 

support the richness of conscious experience (Tononi, 2004). 

Under this premise, previous studies have begun investigating the temporal changes 

of functional connectivity during loss of consciousness. Previous studies have shown 

abnormal dynamic functional connectivity changes during anaesthesia (Barttfeld et al. 
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2015a; Hudetz et al., 2015) and disorders of consciousness (Di Perri et al., 2018) 

showing alterations in brain dynamics otherwise not seen with the static analysis. 

Thus precise characterization of the temporal dynamics of functional connectivity is a 

useful way of understanding the temporal dimension of loss of consciousness and of 

brain function.   

As in the (spatial) complexity of static functional connectivity where I computed 

distribution of connectivity across different regions, complexity of dynamic functional 

connectivity (or temporal complexity) can be derived from the distribution of brain 

connectivity across time as the brain fluctuates between discrete states with different 

connectivity patterns (Baker et al., 2014).  Thus the goal of this experimental chapter 

is to use a dynamic functional connectivity model for extracting relevant states and, in 

turn, for studying the complexity of dynamic connectivity in cases of anaesthetic-

induced unconsciousness and disorders of consciousness.  

 

5.1 Introduction 

The vast majority of fMRI studies assess differences in functional connectivity by 

calculating BOLD correlations with the assumption that functional connectivity is 

static. While this is true in some cases, studies have shown that the brain has richer 

temporal dynamics that cannot be detected using static functional connectivity 

methods (Hutchison et al., 2013).  

In the context of fMRI, with a sampling resolution not as rich as that of EEG or MEG 

studies, a plethora of methods, labelled as dynamic functional connectivity (dFC), 

have been developed to quantify how functional connectivity changes across time. The 

most common one is the sliding window that results in different functional 

connectivity matrices per a window of time and assesses their changes over time 

(Hutchison et al., 2013).   

Why is assessing dynamic functional connectivity important in the context of loss of 

consciousness? Besides alterations in spatial complexity, current theories postulate 

that the state of consciousness is related to the diversity or repertoire of states that are 
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available for the brain to access (Tononi, 2004; Carhart-Harris et al., 2014; 

Tagliazucchi et al., 2014). This has also been framed under the context of “richness” in 

conscious experience that an unconscious brain fails to attain (Barttfeld et al., 2015a). 

Under this premise, a decreased repertoire in functional connectivity between 

different windows, would potentially be associated with a decreased level of accessible 

states and an impaired state of consciousness (Tagliazucchi et al., 2014). 

In that regard, evidence for reduction of the repertoire of functional connectivity has 

been shown in anaesthetized rats (Ma et al., 2017; Paasonen et al., 2018) and macaques 

(Barttfeld et al., 2015a). In cases of patients with disorders of consciousness, Di Perri 

and colleagues found disrupted within and between networks dynamic functional 

connectivity (Di Perri et al., 2018). Thus initial evidence suggests that dFC is altered in 

cases of anaesthetic-induced and disorders of consciousness. 

However, dFC assessed with the commonly used sliding window method has its 

disadvantages, the most important being whether functional connectivity obtained at 

different windows or time reflects distinct brain dynamic patterns (Preti et al., 2017). 

To overcome this obstacle, new approaches have been introduced that allow the 

separation of brain dynamics into discrete states at which brain activity recurs during 

different time points (Baker et al., 2014). A Markov chain is an appropriate 

mathematical framework for modelling transitions between a number of discrete 

states (Ross, 1966). In that regard, the Hidden Markov model (HMM) assumes that 

the brain undergoes transitions between states that can be quantitatively described as 

transitions between states in a Markov chain (Vidaurre et al., 2017a; Vidaurre et al., 

2017b). Brain dynamics and their repertoire can then be evaluated on the premises of 

visiting and switching between different states. 

In light of the advantages in using HMM to explaining brain dynamics, I utilised this 

technique to address the temporal dynamics of functional connectivity in sedation 

and disorders of consciousness.  The first goal of this chapter was to show that the 

repertoire of brain dynamics is related to different states of consciousness. In that 

regard, I identified states that characterized brain dynamics in each population 

separately. I then related each individual’s brain dynamics with the level of 
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responsiveness in cases of propofol-induced sedation or the CRS-R score in the case of 

patients with disorders of consciousness.   

In turn, as in the case of complexity reported in the previous chapter, I wanted to see 

whether the complexity of these brain dynamics mirrored a consciousness- dependent 

spectrum. To do so, I derived states common to both populations and I considered the 

switching rate between all the derived states as a proxy for temporal complexity. I then 

showed that this could discriminate between sedation and disorders of consciousness. 

 

5.2 Materials and methods 

5.2.1 Participants 

Details for the datasets used for this experimental chapter have been described in 

chapter 4. 

 

5.2.2 Image acquisition and preprocessing 

Image acquisition and preprocessing details have been described in section 4.2 of 

chapter 4. 

 

5.2.3 Hidden Markov Model 

Here I describe the basic premises of the Hidden Markov Model that was used to 

derive brain dynamics. At each time point 𝑡 of brain activity, the observed BOLD time 

series data was modelled as a mixture of multivariate Gaussian distributions. Each one 

of the multivariate Gaussian distributions corresponded to a different state 𝑘 and was 

described by first-order and second-order statistics, mean 𝜇!  and covariance 𝛴! 

(interpreted as activity and connectivity of each state respectively). Using some 

notation, if 𝑥! describes the BOLD data at each time point t, then the probability of 

being in state 𝑘 is assumed to follow a multivariate Gaussian distribution 
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P(x!|s! = k )~ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇! ,𝛴!) 

In turn, I wanted to model how transitions between states take place. The basic 

Markovian principle that describes the transition between states, assumes that the 

probability of the data being in state 𝑘 at time 𝑡 relates only to the probability of being 

in state 𝑙 at time 𝑡 − 1. This can be described by the following equation 

Pr 𝑠! = 𝑘 = 𝛩!,!Pr (𝑠!!! = 𝑙)
!

 

 

where 𝛩!,! is the transition probability from state 𝑙 to state 𝑘. 
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Figure 5.1 - Deriving brain dynamics from resting-state data using the Hidden Markov Model. (a) 

ROI time courses were obtained for each participant using a parcellation scheme described earlier 

(eAAL) and were concatenated across participants. (b) The HMM model assumed that BOLD data is 

organized into discrete states that the brain occupies (and switches in-between) at each sampled time 

point. Each time point 𝑡 of brain activity is characterized by a mixture of multivariate Gaussian 

distribution describing the probability of the brain being active in each state. (c) The HMM model that 

runs on the concatenated ROI data results in a number of states each one characterized by a mean 
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𝜇! (activity) and covariance 𝛴! (connectivity). Fractional occupancy/FO of state 𝑖 was defined as the 

mean probability of that state being active over the duration of the scanning. Switching rate between 

states 𝑖 and 𝑗 was defined as the difference in their activation probabilities in consecutive time points 

i.e. how much a brain that was active on state 𝑖 at time t would switch to being active on state 𝑗 at time 

t+1. 

Together, based on this modelling, HMM infers the Pr 𝑠! = 𝑘  probabilities for each 

state 𝑘 and time 𝑡 (state time courses) as well as the transition probabilities 𝛩!,! and 

the statistics of each state (𝜇! , 𝛴!) that best describe the BOLD data. To make 

inference tractable, a variational Bayes algorithm was used that works by minimizing 

the Kullback-Leibler divergence between the real and the modelled data (Wainwright 

and Jordan, 2008).  

After obtaining the time course for each state, additional quantities related to the 

temporal characteristics of each state could then be obtained for each participant. One 

important quantity of the HMM model is the average time spent on each state 

(fractional occupancy-FO) quantified in terms of the average probability of this state 

being active across time. The higher the FO the more time the brain is active in that 

state. In turn, the switching rate from state 𝑖 to state 𝑗 was defined as the number of 

times a brain goes from activating state 𝑖 with probability Pr 𝑠! = 𝑖  to activating 

state 𝑗 Pr 𝑠!!! = 𝑗  i.e. the absolute difference |Pr 𝑠! = 𝑖 − Pr 𝑠!!! = 𝑗 |  for all 

time points 𝑡 (normalized by the total number of switches). 

The input data for the HMM model was the following. I obtained a matrix of 

dimensions: number of images pooled for all conditions x (number of subjects x number 

of ROIs) = 600− 6  × 25 × 132 , by concatenating the awake, light sedation, 

moderate sedation, and recovery data from all volunteers (after discarding the first six 

volumes) with the purpose of finding common states characterizing the sedation 

experiment. Prior to concatenation, the participant-specific time courses were 

standardized (centered and with standard deviation = 1). To reduce noise in the 

matrix, I used a principal component analysis (PCA) on the concatenated time 

courses and I kept the top 25 principal components that explained approximately 70% 

of the signal variance. The number of states was chosen as 𝐾 = 12. Although the 

number of states is arbitrary, a high number of states might result to overfitting 
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whereas a low number of states might not be enough to explain the variety of brain 

dynamics (Vidaurre et al., 2017b). In addition, I used a number of states 𝐾 = 12 in 

order to be consistent with previous work using similar models thus enhancing 

reproducibility and interpretability of the results (Vidaurre et al., 2017b). It is worth 

noting that although the HMM model works on data at the group level, the state time 

courses and all consequent metrics (FO, switching rate) were obtained at the subject 

level. For the disorders of consciousness cohort, the matrix was of dimensions 300−

6  × (30 × 132) by concatenating the resting-state data across all the patients.  

For both experiments, mean activity 𝜇!  for each state was converted back to the 

original 132 regions using the PCA loadings obtained from the PCA decomposition 

mentioned previously. For connectivity, in order to obtain the spatial maps, I 

calculated the weighted degree of each region (row-wise sum of correlations for each 

region) and I converted it back to 132 regions by using the PCA loadings. To help 

with interpretation of the results, the spatial maps were thresholded by keeping the 

top 40% of values (activity or connectivity). 

Because the HMM states obtained for the sedation and DOC experiments were 

different, it prevented me for drawing common conclusions about similar brain 

dynamics that would able to characterize and discriminate between different states of 

consciousness. To this end, I wanted obtain a common HMM model for the two 

experiments in order to obtain similar states that would characterize both of the 

experiments. In that regard, I concatenated the data from the two experiments along 

the temporal dimension thus obtaining a matrix of size: 

 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑂𝐼𝑠 594 ×

 25 +  294 × 30  × 132). 

This was the input to the common HMM model and resulted in a set of common 

states for both of the experiments that were later analysed. 

For the common HMM model, instead of focusing on the FO and switching rate of 

each state, I quantified the switching rate between all states as a proxy measure of 

temporal complexity with the hope that it would discriminate between states of 
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consciousness. This was quantified as the average switching rate over all pairs of 

states. High switching rate between all states in a Markov chain implies that, at each 

time point, there is a high probability of switching from the current state to any other 

state; thus transitions would take place almost randomly between every state. This has 

also been termed as temporal instability of the Markov chain (Vidaurre et al., 2017b). 

In that regard, starting from a state 𝑖, one will visit only a certain number states after a 

number of transitions, while other states would remain unvisited (Ross, 1966). In 

analogous fashion to the concept of network (spatial) complexity, increases or 

decreases in switching rate can be regarded as a proxy of temporal complexity in the 

Markov chain. Viewing the Markov chain as a graph with nodes being states and 

edges being transitions, high switching rate implies that information is unstable/noisy 

and thus can be communicated among a restricted number of nodes, analogous to a 

less complex brain network. 

 

5.2.4 Statistical analysis 

Data was tested for normality using the Kolmogorov-Smirnov test. Statistical analysis 

for assessing the effect of sedation on fractional occupancy was conducted using a 

one-way ANOVA. P values were post hoc Bonferroni corrected. For correlation-

related analyses, r and p values indicated Pearson’s correlation coefficient and 

statistical significance. I also report effect sizes for ANOVA using the bayes factor and 

the eta squared quantities. 

 

5.3 Results 

5.3.1 Brain dynamics during sedation 

I applied the HMM model with 𝐾 = 12 states and number of PCA components 

constrained to 25 to the sedation data presented in chapter 4. This resulted in a 

number of states each one associated with a vector of probabilities indicating the brain 

being active at that state. 
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First I plotted the FO occupancy i.e. the average (over time) probability of each 

participant’s brain being active in that state (for a full list of states see Appendix Fig. 

5.1). I observed that two states had the highest mean FO over individuals (state 3 and 

state 6)(Fig. 5.2a). As FO was derived on the basis of the whole scanning, I wanted to 

better understand the FO of each state during each experimental condition. To do so, 

for each individual I plotted the state time courses for each state and I evaluated the 

FO of each state at each condition separately. By plotting state 6’s time course for all 

individuals, I observed that state 6, despite its high FO, it was rarely visited during 

sedation (Fig. 5.2b). In other words, the high FO observed for state 6 across the 

scanning was a trait of the awake, light sedation, and recovery conditions and not the 

sedated condition. I quantified this effect by measuring state 6’s FO across the four 

conditions separately (awake, light sedation, moderate sedation, recovery). I observed 

an effect of the sedation level on the FO of state 6 (F(3,72)=4.59, p=0.0048, bayes 

factor=2.0886, eta squared=0.2032). Specifically, I observed that state 6’s FO during 

moderate sedation was significantly less compared to awake state (p=0.0076) and 

recovery (p=0.0242). State 6’s activity included parts of the DMN such as the PCC as 

well as brainstem and cerebellar regions. State 6’s connectivity also included parts of 

the DMN such as the PCC and the precuneus, as well as cerebellar regions (Fig. 5.2c). 

Similar analysis for state 3 showed non-significant results potentially indicating that it 

was capturing more subject-specific dynamics rather than sedation-level-dependent 

dynamics.  

It is noteworthy that despite its overall low FO across the scanning session, state 4 was 

the one mostly visited during sedation, as it was evident by its time course (Fig. 5.2b). 

Similarly to state 6, I quantified this by measuring the effect of sedation level on the 

average FO of state 4 for each of the four conditions (F(3,72)=3.43, p=0.02, bayes 

factor=0.8390, eta squared=0.1601). The FO during moderate sedation was higher 

when compared to the awake state (p=0.042) and recovery (p=0.03).  State 4’s activity 

pattern included frontal and precentral regions, parts of the cerebellum and the 

brainstem. State 4’s connectivity pattern included the anterior parts of the DMN as 

well as occipital and cerebellar regions (Fig. 5.2c).  
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In conclusion states 4 and state 6 showed the highest FO during sedation and non-

sedation conditions respectively. Thus I regarded these states as the most relevant 

states of brain dynamics in this experiment. 

If these two states reflect opposite features of brain dynamics during sedation then it is 

possible that switching between deactivating state 6 and activating state 4 is crucial for 

how the brain behaves during sedation. Preliminary evidence comes from previous 

studies suggesting that alterations in the dynamic interaction between states/networks 

determine how anaesthetized/unresponsive an individual would be (Guldenmund et 

al., 2016). I thus hypothesised that the switching rate between states 4 and 6 would be 

reflective of the level of the participants’ behavioural performance during sedation. In 

that regard, I found that their switching rate was negatively correlated with reaction 

times during sedation (r=0.41, p=0.04) (Fig. 5.2d). 
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Figure 5.2 - Brain dynamics during sedation. (a) State 6 was the one that showed higher occupancy 

throughout the duration of the sedation experiment. (b) However, during moderate sedation, state 6 

was rarely visited and this was evident by the probability time courses for each individual (blue lines). 

On the contrary, state 4 was mostly visited during moderate sedation. (c) State 6’s activity encompassed 

region such as the PCC as well as brainstem and cerebellar regions. State 6’s connectivity included 

regions belonging to the DMN such as the PCC and the precuneus. State 4’s activity and connectivity 

mostly included frontal and occipital regions. (d) Switching between state 6 and state 4 correlated with 

how responsive individuals would be during sedation. For both activity and connectivity spatial maps 

slices at x=98 y=41 z=97 are displayed. 

Collectively these results showed that the temporal dynamics during sedation were 

characterized by two opposite effects: low FO in state 6 and high FO in state 4. The 

switching rate between the two states correlated negatively with reaction times 
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implying that the higher the switching rate the more responsive the individuals were 

during sedation. This fits with theories arguing that the dynamic toggling between 

networks can potentially determine the level of responsiveness when consciousness is 

lost (Di Perri et al., 2016; Lin et al., 2017). 

 

5.3.2 Brain dynamics in patients with disorders of consciousness 

Next I investigated the brain dynamics in the disorders of consciousness cohort 

presented in chapter 4.  I used similar parameters (𝐾 = 12 states, 𝑃𝐶𝐴 = 25) as 

previously; however, the HMM model rejected 1 state as it was visited with a rate close 

to 0. Out of the 11 remaining states, states 2 and 9 showed the highest mean FO (Fig. 

5.3a) (for a full list of states see Appendix Fig. 5.2). 

State 9’s activity pattern included cerebellar and inferior frontal regions as well as 

parts of the DMN network such as the PCC and the MPFC. State 9’s connectivity 

pattern included brainstem and cerebellar regions. State 2’s activity pattern included 

dorsolateral-prefrontal, and orbitofrontal regions while its connectivity pattern 

included mostly cerebellar regions (Fig. 5.3b). I considered those to be the most 

relevant states of brain dynamics during disorders of consciousness. 

As it has been previously reported in disorders of consciousness, changes in the 

connectivity between networks across time might serve as marker of the state of 

consciousness (Di Perri et al., 2018). I thus hypothesised that the inter-dynamics of 

states 2 and 9 would be critical for regulating consciousness. To do so, I correlated the 

switching rate between states 9 and 2 with the CRS-R score. I found that higher 

switching significantly correlated with higher CRS-R score (r=0.37, p=0.003-Fig. 5.3c) 

showing that the amount of switching between states was related to their clinical 

diagnostic score. 
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Figure 5.3 - Brain dynamics in patients with disorders of consciousness.  (a) The Hidden Markov 

model results in two states, state 2 and state 9 that patients’ brains occupied (fractional occupancy/FO) 

mostly during the data collection. (b) State 9’s activity and connectivity patterns included DMN as well 

as cerebellar and brainstem regions. State 2’s activity and connectivity patterns included thalamic, 

orbitofrontal and cerebellar regions. (c) Switching between states 2 and 9 was positively correlated with 

the CRS-R score. For both activity and connectivity spatial maps slices at x =98 y=41 z=97 are 

displayed. 

 

5.3.3 Brain dynamics: from sedation to disorders of consciousness 

In the previous sections, I identified certain states describing the brain dynamics 

during sedation and disorders of consciousness. The switching rate between them 

related to the level of responsiveness and clinical diagnostic score respectively. A 
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natural extension would be to compare the states and their switching rates between 

the two experiments in order to arrive at a conclusion about brain dynamics in 

different states of consciousness. However, due to the fact these states were derived on 

the premises of each experiment separately, it was difficult to make any cross-

comparisons. Thus the next goal was to obtain a common underlying marker of 

temporal dynamics like complexity reported in chapter 4.  To do so, I pooled the data 

from the two experiments and I applied the HMM model. This resulted in 12 states 

common to the new dataset.  Because, in this case, there were no states specifically 

associated with each cohort, I used the switching rate between all states obtained from 

the model as a proxy of temporal complexity. The switching rate between all states 

obtained from the model is regarded as a measure of temporal instability (Vidaurre et 

al., 2017b). From Markov chain theory, the higher the switching rate the more time it 

takes to visit different states as transitions would be more likely diverged between 

different states (Ross, 1966). In such a configuration, the chain of transitions is more 

likely to take place between a restricted number of states and not span the entire set of 

states, as for some states it would take an increased amount of time to visit. 

Conceptualizing the transitions as a graph (with nodes being states and edges being 

state transitions), increased switching rate would be analogous to a less temporally 

complex brain.  Therefore, I considered changes in the switching rate between all 

states to be a proxy measure of temporal complexity. 

In that regard, I quantified the effect of level of consciousness on the switching rate 

between all states obtained from the common model (F(2,77)=8.67 p<0.001, bayes 

factor=4.3528, eta squared=0.2525)(Fig. 5.4). I observed that the switching rate in the 

disorders of consciousness cohort was significantly higher compared to the awake 

state (p<0.001) and approached significance when compared to moderate sedation 

(p=0.056).  In light of the previous remarks regarding the time to communicate 

information between states in a highly unstable/noisy brain, I concluded that 

temporal complexity decreased from sedation to disorders of consciousness. 
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Figure 5.4 - Brain dynamics from sedation to disorders of consciousness. A number of states 

common to both cohorts were derived. High switching rate implied more instability and less temporal 

complexity. I observed that patients with disorders of consciousness exhibited significantly higher 

switching rate when compared to the awake and approached significantly higher switching rate when 

compared to moderate sedation. We also show switching rates across different categories of disorders 

of consciousness (vegetative state, MCS+, MCS-). Boxplots’ thick lines show median values and 

whiskers represent 1.5 times the inter-fourth range. Triple asterisks (***) imply post hoc p<0.001 

significance and ~s imply approaching significance p<0.05 Bonferroni corrected. Abbreviations: DOC: 

Disorders of Consciousness. 

5.4 Discussion 

The brain is not static even when consciousness is abolished. Previous studies have 

shown that anaesthetic states show high temporal variability in functional 

connectivity that has been related to transitions and recovery from unconsciousness 

(Hudson et al., 2014). Similar results have been shown for patients with disorders of 

consciousness (Di Perri et al., 2018). In light of these, in this chapter I used the HMM 
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model to investigate brain dynamics and their complexity in different cohorts of 

propofol-induced sedation and disorders of consciousness. 

First, I applied the HMM model to the data from the sedation experiment. I found 

that during sedation brain dynamics were characterized by absence of visits to state 6 

that was otherwise often visited during the awake, mild sedation and recovery 

conditions. State 6’s activity pattern included DMN regions and thalamic regions 

showing that, during sedation, these regions were comparatively less activated. 

Deactivation of the DMN has been observed in previous paradigms during propofol-

induced anaesthesia (Greicius et al., 2008). Propofol-induced anaesthesia has also 

been shown to deactivate parts of the thalamus (Alkire et al., 2008; Mashour et al., 

2014). From a connectivity perspective, state 6 included DMN regions such as PCC 

and the precuneus. It is thus possible that reduced occupancy of this state might be 

associated with decreased DMN connectivity.  Impaired DMN connectivity has been 

previously shown in cases of propofol-induced sedation and anaesthesia potentially 

marking its reduced role in integrating information from other networks (Boveroux et 

al., 2010; Stamatakis et al., 2010).  

While state 6 was dominant before and after sedation, state 4 had high FO when 

individuals were sedated.  This state included activation of regions such as the 

precentral and prefrontal regions that can be broadly characterized as regions 

belonging to the FP, “executive” network. Previous work has emphasized the 

importance of switching between DMN and executive networks as a feature of 

conscious processing (Guldenmund et al., 2013; Di Perri et al., 2016). Indeed, it has 

been observed that during anaesthesia and in disorders of consciousness, such 

networks are pathologically connected (Vincent et al., 2007; Boly et al., 2009). Thus I 

hypothesised that toggling between the “DMN-like” state 6 and state 4 would suggest 

more responsive individuals during sedation. In that regard, I correlated the switching 

rate between these two states and I showed that it was negatively correlated with 

reaction time during sedation. In other words, the more switching between the two 

states, the more responsive the participants were. It is worth noting that both of these 

states included brainstem regions that previous literature has suggested as common 
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target for the arousal pathways; however further evidence is needed for clarifying why 

these states include brainstem regions (Brown et al., 2010). 

Next, I investigated brain dynamics in patients with disorders of consciousness. I 

found a state that showed the highest FO among all patients during the scanning 

(state 9). This state’s activity pattern included cerebellar and inferior frontal regions as 

well as parts of the DMN network such as the PCC. These regions show high overlap 

with regions previously reported as part of the “DMN’s positive connectivity” regions 

in patients with disorders of consciousness (Di Perri et al., 2016). Why can high 

activity in these regions be a trait of an unconscious brain? Increased positive DMN 

connectivity has been observed in anaesthesia and disorders of consciousness and is 

thought to signify its inability to communicate information to the rest of the brain 

(Boveroux et al., 2010; Di Perri et al., 2016). This might explain why brain dynamics in 

some patients would occupy a state with spatial features similar to the ones obtained 

for DMN’s positive connectivity. State 2 also showed high FO among patients. Its 

activity pattern included dorsolateral–prefrontal, and orbitofrontal cortical regions 

(regions belonging to the FP, “executive” network) and occipital regions. These 

regions show high overlap with “DMN’s negative connectivity” regions reported in 

the Di Perri and colleagues work (Di Perri et al., 2016). Anti-correlations or negative 

connectivity between the DMN and the rest of the brain have been deemed an 

important feature of conscious cognition through which the DMN integrates 

information from multiple networks (Dixon et al., 2017). For example, such anti-

correlations have been observed in patients that had emerged from a minimally 

conscious state (Di Perri et al., 2016). Taken together, I conclude that these two reflect 

opposite states of brain dynamics potentially regulated by how the DMN connects to 

the rest of the brain.  

In turn, based on the previous remarks about the functional role of positive vs. 

negative DMN connectivity, I hypothesized that transitions between state 2 (related to 

negative correlations of the DMN) and state 9 (related to positive correlations of the 

DMN) would relate to loss of consciousness of each patient. In that regard, I found 

that the switching rate between states 2 and 9 positively correlated with the CRS-R 

score. Therefore, it might be possible that increased switching from a “DMN positive 
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connectivity”-related state to a “DMN negative connectivity”-related one can reflect 

an increased state of consciousness (Di Perri et al., 2018). It is worth noting that the 

spatial patterns of functional connectivity of these states included mostly cerebellar 

and brainstem areas. These findings might confirm evidence from previous studies 

showing increased connectivity between DMN and brainstem and cerebellar regions 

during loss of consciousness (Stamatakis et al., 2010; Guldenmund et al., 2013). 

It is worth noting that there were spatial similarities between states identified in the 

sedation and DOC cohorts. An intriguing hypothesis for this is that the HMM could 

be capturing a common core of abnormal dynamic connectivity that encompasses 

regions of the DMN. Thus it is possible that the extent of alterations in dynamic 

functional connectivity of the DMN might constitute a common marker for 

consciousness impairment extending previous reports that have shown such an 

association from a static functional connectivity perspective (Vanhaudenhuyse et al. 

2010). Despite this common state framework between sedation and DOC, there are 

specific differences; a striking example is the inclusion of the thalamus in DOC state 2. 

For the DOC it could be the case that abnormal dynamic functional connectivity in 

this DMN core is also accompanied by further widespread cortico-thalamic structural 

alterations. Some evidence towards this direction comes from previous studies 

suggesting that altered DMN functional connectivity in the DOC is underpinned by 

structural connectivity abnormalities. For example, alterations in the structural 

connectivity between the PCC and the thalamus have been previously reported in a 

DOC cohort (Fernández-Espejo et al., 2012). Thus abnormal DOC dynamics could be 

mediated by abnormalities in both functional and structural DMN connectivity. 

As a further research effort for identifying this common core, I also plan to look at 

how the temporal dynamics of each of these states differ across clinical categories (for 

example by looking at how fractional occupancy and switching rates of these states 

differ between the sedation and DOC cohorts). 

Collectively, I observed that brain dynamics would be dominated by different states in 

the two cohorts. In both cohorts, the switching rate between relevant states correlated 

with the level of responsiveness (in the case of sedation) or CRS-R score (in the case of 
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disorders of consciousness). Because of the different definitions of each state obtained 

for each dataset, it is inherently difficult to quantify and compare the states and their 

switching rates. In order to overcome this obstacle, I applied the HMM model to 

concatenated data from these datasets to obtain a common underlying model. I then 

considered the average switching rate between all the states as a measure of temporal 

complexity that allowed me to compare the temporal dynamics between all subjects. I 

observed that the switching rate was increased when going from awake to moderate 

sedation and disorders of consciousness signifying a more unstable/noisy brain. From 

an information perspective, higher switching rate implies that information can reach a 

restricted number of states after a certain time while ignoring others (Ross, 1966). 

This finding is also in line with previous studies suggesting that the unconscious brain 

is associated with the emergence of self-reinforcing connectivity between a limited 

number of networks, a phenomenon that might disrupt whole-brain communication 

(Demetrio et al., 2013; Di Perri et al., 2013).  In addition, analogous to the (spatial) 

network complexity, a brain with high switching rate would be visiting a restricted 

number of states while ignoring other states i.e. it is less temporally complex. 

In light of these findings, an important question is whether there is a direct 

relationship of temporal complexity to spatial complexity discussed in chapter 5. A 

state obtained from the HMM model includes temporally coherent regions thus it is 

related to some form of spatial complexity across its regions. Therefore, it is possible 

that alterations in the temporal complexity between these states show relationship 

with alterations in their spatial complexity. Towards this direction, preliminary 

evidence exists from the EEG literature where studies have shown the brain dynamics 

switch swiftly between different EEG “microstates” which, at the same time, change 

their spatial distribution across the scalp (Van de Ville et al., 2010). Thus the reduced 

(spatial) complexity observed in chapter 4 might be also complemented by reduced 

temporal complexity although further evidence is required. Because the states 

obtained here were derived on group/concatenated data at each experiment, further 

analysis is required to obtain subject-specific states and associate their spatial 

complexity with the changes in temporal complexity.  
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5.5 Conclusion 

Collectively, brain dynamics during sedation and disorders of consciousness were 

characterized by variety of states and inter-state transitions not previously seen by the 

static approach. Impaired consciousness showed increased switching rate and 

decreased temporal complexity suggesting that the unconscious brain becomes 

increasingly unstable. The additional temporal information yielded by this approach 

can provide new insights on the connectivity patterns sustaining sedation and 

disorders of consciousness. Future research can use the spatiotemporal complexity 

markers provided by this and the previous chapter, for example, in a classifier for 

diagnostic and prognostic purposes. 
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Chapter 6: Complexity of functional connectivity in the 

developing brain 

As I have discussed in the previous chapters, alterations in the spatial and temporal 

complexity of functional connectivity in the adult brain could explain anaesthetic-

induced loss of consciousness and cases of disorders of consciousness. The last 

question of this thesis is whether these results can be transposed to the other end of 

the developmental trajectory i.e. the developing brain. Infants display features 

characteristic of what may be referred to as minimal consciousness; for example, 

avoiding painful stimuli or eye contact with their mother (Lagercrantz and Changeux, 

2009). The state of consciousness in the developing brain is considered different than 

the adult one, as the infant brain is at a transitional state and its structural and 

functional connectivity have not been fully established (Nowakowski, 2006). 

Together, these lead to the question of whether reduction in complexity is a marker 

for loss of consciousness only in the adult brain or it can be observed in the 

developing brain as well. 

Functional connectivity networks in infants and children cannot be simply considered 

as precursors of adult brain networks as the developmental trajectory modulates their 

properties by a series of biological and experiential events (Power et al., 2011). 

Functional connectivity networks are less integrated in the first stages of development 

showing their lack of functional cross-communication (Fair et al., 2007b; Vértes and 

Bullmore, 2015). Differences between the functional connectivity of adults and infants 

render the translation of results obtained from anaesthetized adult brains to the 

developing brain an open question. 

These observations necessitate a separate study of functional connectivity networks in 

the developing brain. FMRI studies looking at the functional connectivity in 

anaesthetised infants have been sparse mainly due to difficulties in image acquisition 

as well ethical implications of potential exposure of infants to any additional risks 

except those associated with medical conditions and associated treatment such as 

surgery (Mongerson et al., 2017). Bedside EEG is a useful, non-invasive tool for 
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tracking brain activity during infant anaesthesia. EEG captures oscillatory activity of 

pyramidal neuronal populations as signal of high temporal resolution from different 

sensors placed around the scalp (Cohen, 2017). EEG connectivity can be defined on 

the basis of coherent oscillatory activity.  Towards this direction, I analysed a unique 

EEG dataset coming from infants spanning an age range of 0-3 years that were 

anaesthetized for clinical purposes (Cornelissen et al., 2015). This dataset allowed me 

to explore two research questions: First, the effects of loss of consciousness in the 

functional connectivity networks of the infant brain (anaesthetic trajectory). Second, 

the changes in the functional connectivity networks with increasing age within each 

anaesthetic state (developmental trajectory). 

With respect to the anaesthetic trajectory, studies investigating the effects of 

anaesthesia in the developing brain have been limited by usually focusing on frontal 

connectivity. My plan is to expand this analysis to whole-brain EEG networks and, as 

in chapter 4 to show that EEG networks have reduced complexity during anaesthesia. 

Regarding the developmental trajectory, fMRI studies have shown that the 

development of functional connectivity is characterized by changes in the integration 

of functionally specialized networks with the development of long-range connections 

(Fair et al., 2007b). In that regard, my plan is to use the previously proposed 

complexity measure to show that, within each anaesthetic state, brains become 

increasingly complex with increasing age. 

Taken together these two research directions would not only suggest that complexity 

of brain connectivity in infants during anaesthesia is reduced, but also that these 

reductions are age-specific and related to each infant’s brain functional development. 

 

6.1 Introduction 

Part of our knowledge for the developing brain comes from post mortem histological 

or gene expression analysis suggesting that the basic structural and functional 

framework is rapidly reorganizing until the third year of life  (Petanjek et al., 2011; 

Pletikos et al., 2014). Advances in imaging methods have resulted in an improvement 



Chapter 6: Complexity of functional connectivity in the developing brain 

 180 

of in vivo quantification of brain functional connectivity networks during 

development. Such networks have been identified even before birth (van den Heuvel 

and Thomason 2016). Since their emergence, these networks are constantly maturing 

in terms of their functional connectivity in order to attain their functional 

specialization (Smyser et al., 2010). Studies looking at their trajectory in utero and 

after birth have shown that functional connectivity networks become more segregated 

as a result of their increased functional specialization and, at the same time, more 

integrated usually by recruiting long-range connections (Fair et al., 2007b; Thomason 

et al., 2015). Thalamocortical connectivity has also been shown to develop since 

infancy. At earlier stages of life, thalamic connectivity is mostly restricted to primary 

sensory systems whereas later at the first year of life, it includes higher-order and 

default mode systems (Alcauter et al., 2014). 

How can functional connectivity in infants be studied? Initial attempts have used an 

fMRI experimental setting similar to adult fMRI (Fransson et al., 2007). However, 

recently it has been suggested that the neurovascular coupling is not mature in infants, 

thus BOLD based approaches might be misleading (Kozberg and Hillman, 2016). 

Alternative methods based on near-infrared spectroscopy (NIRS) have also been used 

to investigate differences in the organization of cortical networks in infants (Homae et 

al., 2010). Yet, NIRS requires light emission that penetrates through the superficial 

tissue (scalp and skull). In adults, this results in a restricted depth specificity typically 

reaching 5 to 10 millimetres beneath the inner surface of the skull. Thus NIRS is 

usually limited to very young infants where the superficial tissue development is still 

immature (Ferrari et al., 2014). Magnetoencephalography (MEG) is another approach 

that provides high temporal resolution as well as large coverage of the brain (Baillet, 

2017). However, MEG devices are not optimized for infant head shapes, thus making 

their use in that age range impractical most of the times. 

An alternative method of measuring brain activity is EEG, which quantifies the phase 

and amplitude of oscillatory activity of local neuronal assemblies in the human cortex 

by measuring membrane potential fluctuations of cortical pyramidal cells 

perpendicular to the skull (Cohen, 2017). Following historical conventions, oscillatory 

activity has been categorized in the following frequency bands of interest: delta (1-
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4Hz), theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz), low gamma (30-60Hz), high 

gamma (60-250Hz), and fast ripples (200-400Hz). Each rhythm is assumed to serve 

different brain functions (Buzsáki and Draguhn, 2004). For example, alpha 

oscillations are the most prominent rhythms to have been associated with higher-

order communication between occipital, parietal, and central areas (Hipp et al., 2012) 

while theta frequency has been associated with memory retrieval by communicating 

information between the medial temporal lobe and the rest of the brain (Hipp et al., 

2012). Importantly, coherence or connectivity between neuronal oscillations at 

different frequencies plays an important role in coordinating between-region 

communication (Fries, 2005).  

What is the importance of these oscillations and their coherence in loss of 

consciousness? Evidence from power analysis has shown that loss of consciousness in 

adult anaesthesia is associated with increasing alpha oscillatory power (Purdon et al., 

2013). What is more, these alpha oscillations are primarily localized in the frontal 

cortex and appear to be coherent, suggesting that alpha-based connectivity might 

prove more useful for understanding loss of consciousness (Brown et al., 2010). 

Models have now proposed that the emergence of alpha coherence in the frontal 

cortex is associated with the disruption of the thalamocortical loop and its impact in 

whole-brain communication (Llinás et al., 1998; Ching et al., 2010).  

Evidence for this comes from studies using whole-brain EEG connectivity. These 

studies have shown changes in EEG alpha networks when transitioning to or 

recovering from loss of consciousness. Specifically, alpha EEG networks during 

anaesthetic-induced loss of consciousness become more fragmented and less efficient 

(Boly et al., 2012; Lee et al., 2013; Chennu et al., 2016). This has been linked to 

aforementioned theories regarding the shift in the balance of segregation and 

integration across the brain. Changes in alpha connectivity might produce a more 

segregated network as a result of impaired information integration across the whole-

brain (Lee et al., 2017). Therefore, by using the complexity as an aggregate measure of 

segregation and integration, one can conclude that complexity of alpha networks 

might provide a marker for loss of consciousness.  
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Can similar conclusions be drawn for the infant brain? It is believed that infants reach 

a state of consciousness that is only basic compared to adults mainly because 

thalamocortical, higher-order, and DMN network connectivity has not fully 

developed (Lee et al., 2005; Nowakowski, 2006). However, if infants still exhibit some 

form of consciousness then a similar, to some extent, loss of balance of segregation 

and integration might take place in the infant brain during loss of consciousness 

(Merker, 2007; Lagercrantz and Changeux, 2009). Under this framework, decrease in 

the complexity of functional connectivity networks might discriminate between an 

unconscious and conscious infant brain even when functional connectivity still 

undergoes development.  

To address this hypothesis, I conducted a connectivity analysis on novel EEG data in 

infants aged from 0 to 3 years old obtained from sevoflurane-induced anaesthesia 

during standard clinical procedure. Multi-electrode EEG caps were used to monitor 

brain activity during maintenance of surgical anaesthesia (MOSSA) and emergence 

from anaesthesia. To investigate whether complexity changed during loss of 

consciousness, I analysed EEG data from selected segments of two steady anaesthetic 

states with different levels of anaesthetic depth (MOSSA corresponding to moderate 

anaesthesia and MOSSA2 corresponding to deep anaesthesia) as well as emergence 

from anaesthesia. In turn, I constructed functional connectivity networks representing 

sensor activities focusing on alpha frequency for the reasons detailed previously. 

Based on the results of chapter 4, I hypothesized that the complexity of networks 

would decrease in anaesthesia compared to emergence.  

The uniqueness of this dataset also allowed me to understand whether, within each 

anaesthetic state, the complexity of functional connectivity changed with age. 

Previous evidence coming from fMRI studies has shown that functional connectivity 

becomes more complex in network organization from 7-30 years in order to support 

higher-order functions (Fair et al., 2007b; Vértes and Bullmore, 2015). Expanding on 

this finding, my goal was to show that complexity increases since infancy reflecting a 

shift towards a more integrated configuration.  
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Taken together, I hypothesized that anaesthesia would not only cause an overall 

reduction in complexity, but also that this reduction would be age-specific reflecting 

different stages of brain development and function.               

One limitation of EEG-derived connectivity is that it uses sensor data with limited 

coverage around the scalp. This can lead to ambiguities regarding the interpretation 

for how sensor-based connectivity is related to cortical connectivity.  Source 

reconstruction techniques can deal with this issue by utilizing mathematical methods 

for deriving signals at the source level using the measured signals at the sensor level 

(Van Veen et al., 1997; Kybic et al., 2005). Thus functional connectivity in EEG data 

can be translated to cortical functional connectivity resembling, to some extent, 

functional connectivity derived from fMRI.  

In that regard, I complemented the analysis at sensor level with analysis at the source 

level in order to demonstrate that alterations in complexity hold at both the sensor 

and source levels. 

 

6.2 Materials and Methods 

6.2.1 Participants 

Part of the EEG data has been used previously reported in a study by Cornelissen and 

colleagues (Cornelissen et al., 2015). Multi-channel EEG data was collected from 

infants 0-3 years old who were scheduled for an elective surgical procedure at Boston 

Children’s Hospital from December 2011 to August 2014. Eligibility criteria consisted 

of infants between 0 and 3 years postnatal age who required surgery below the neck 

and were recruited from the pre-operative clinic. Ethical approval was obtained from 

Boston Children’s Hospital Institutional Review Board (Protocol Number IRB-

P000003544) and classified as a ‘no more than Minimal Risk’ study. Informed written 

consent was obtained from parents/legal guardians before each study. No infants were 

prescribed midazolam or other premedication on the day of surgery. Data was 

obtained for two levels of surgical anaesthesia at different anaesthetic depths (MOSSA 

and MOSSA2) and during emergence (see section 6.2.2). After excluding missing data 
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and following strict artefact removal (see section 6.2.4 for details), the sample size was 

restricted to 39 infants for emergence (mean age 11.4, stdev +-8.8), 51 infants for 

MOSSA (mean age 11.4, stdev +-10.4), and 34 infants for MOSSA2 (mean age 10.5, 

stdev +-7.3). There were no statistically significant differences between the ages of 

these groups. To explore the developmental trajectory, participants were further 

divided into 5 age classes. The motivation from this stratification was as follows. First, 

age grouping was based on results of previous work studying infants of similar age 

ranges during surgical anaesthesia (Cornelissen et al., 2018). Second, age grouping 

was based on key stages of postnatal neurodevelopment (Kanold and Luhmann, 

2010). Specifically, data was divided as following: i) <=3 months ii) 4-6 months iii) 7-9 

months iv) 10-14 months v) >14 months. The numbers of each group (n) for each 

condition were as follows: for emergence: i age group: (5) ii second age group: (9) iii 

age group: (7) iv age group: (9) v age group: (9) for MOSSA i age group: (8) ii age 

group: (9) iii age group: (12) iv age group: (9) v age group:  (13) for MOSSA2 i age 

group: (3) ii age group: (5) iii age group: (10) iv age group: (7) v age group: (9). 

 

6.2.2 Experimental design and procedure 

Infants were anaesthetized with sevoflurane (SEVO)-induced anaesthesia to maintain 

a state of surgical anaesthesia (MOSSA). Nitrous oxide was added only if necessary 

(based on the anaesthesiologist’s judgement) and was discontinued after intubation. 

EEG was recorded continuously before the surgery and after the infant was emerging 

from anaesthesia. From the recording, I chose segments corresponding to three 

anaesthetic states identified by steady states of sevoflurane concentration 1) 

Maintenance of state of surgical anaesthesia (MOSSA) when infants were 

anaesthetised with mean sevoflurane concentration 1.8-2.5% and plus minus nitrous 

oxide 2) Maintenance of state of surgical deep anaesthesia (MOSSA2) where infants 

were anaesthetised with mean sevoflurane concentration 2.6-3.3% plus minus nitrous 

oxide 3) emergence from anaesthesia with mean sevoflurane concentration 0-0.3%. 

Segments for MOSSA and MOSSA2 were chosen at least two minutes after incision 

time whereas segments for emergence were chosen at least two minutes after body 

movement for emergence. Mean and standard deviation SEVO concentration for the 
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MOSSA2 segments was 2.8 +- 0.2%, for the MOSSA segments it was 2.2 +- 0.2%, and 

for the recovery segments it was 0.1 +- 0.3%. 

An EEG cap was used to record EEG activity (WaveGuard EEG cap, Advanced 

NeuroTechnology, Enschede, Netherlands). There were two types of EEG caps used 

for this study: 33 recording electrodes were positioned according to the modified 

international 10/20 electrode placement system at Fz, FPz, FP1, FP2, F3, F4, F7, F8, 

FC1, FC2, FC5, FC6, Cz, CPz, C3, C4, CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, T7, T8, 

M1, M2, POz, Oz, O1, and O2. Reference and ground electrodes were located at Fz 

and AFz, respectively. This cap was used for up to 6 months infants. For >6 months a 

40 channel cap with electrodes Fz, FPz, FP1, FP2, F3, F4, F7, F8, FC1, FC2, FC5, FC6, 

Cz, CPz, C3, C4, CP1, CP2, CP5, CP6, Pz, P3, P4, P7, P8, T7, T8, M1, M2, POz, Oz, 

O1, and O2 and AF7, AF8, FT7, FT8, TP7, TP8, PO7 and PO8 was used. The 

impedance of the electrode-skin interface was kept to a minimum by massaging the 

skin with an EEG prepping gel (Nu-Prep gel, DO Weaver & Co., CO, USA), and 

conductive EEG gel was used to optimize contact with the electrodes (Onestep-Clear 

gel, H+H Medical Devices, Dulmen, Germany). EEG activity from 0 to 500Hz was 

recorded with an Xltek EEG recording system (EMU40EX, Natus Medical Inc., 

Ontario, Canada). Signals were digitized at a sampling rate of 1024Hz (or 256Hz in 

one case), and a resolution of 16 bits. 

 

6.2.3 Clinical data collection 

Demographics and clinical information, including age, gender, surgical procedure, 

anaesthetic management, incision and body movement times were collected from the 

electronic medical records and from the in-house Anaesthesia Information 

Management System (AIMS). Sevoflurane, oxygen, and nitrous oxide concentrations 

were downloaded from the anaesthetic monitoring device (Drager Apollo, Draeger 

Medical Inc., Telford, PA) to a recording computer in real-time using ixTrend 

software (ixellence, Wildau, Germany). Signals were recorded at a sampling rate of 1 

data point per second. Gross body movement was recorded with a camcorder that was 

time-locked to the EEG recording (Xltek DSP270x, Natus Medical Inc.). 
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6.2.4 EEG data acquisition and preprocessing 

EEG data was obtained for 100 seconds at two stages of MOSSA corresponding to 

different anaesthetic depths and one stage of emergence from MOSSA. The collected 

data underwent various preprocessing stages. First, I visually inspected the raw 

segments for any presence of strong artefacts. If that was the case, infants were not 

considered for further analysis. Then EEG signals were downsampled to 250Hz and 

bandpass filtered within the 1-50Hz range.  The low edge of this range was defined for 

removing ultra-slow frequencies that can be contaminated by sweating etc. The upper 

edge was used in order to remove high frequency artefacts. EEG data was cleaned 

using the clean_rawdata function implemented in the EEGLAB (Delorme and 

Makeig, 2004). Channels that were removed due to excessive artefact were 

interpolated using spherical interpolation implemented in EEGLAB. Data was re-

montaged to a nearest-neighbour Laplacian reference using distances along the scalp 

surface in order to weight neighbouring electrode contributions. ICA was not 

required due to the small size of the data. After segmenting the continuous segment 

into 1-second epochs, I used the function pop_rejkurt as implemented in EEGLAB 

(Delorme and Makeig, 2004) that rejects epochs based on the kurtosis of the data. I 

allowed no more than 10% of epochs to be rejected.   

 

6.2.5 EEG network construction and complexity 

Decomposition of the time series in its oscillatory activity in different frequency bands 

(spectrum) was calculated using multi-taper analysis (Mitra and Bokil, 2008). Multi-

taper analysis reduces the bias in obtaining the true underlying oscillatory activity 

caused by standard Fourier techniques (Mitra and Bokil, 2008). Multi-taper analysis 

uses tapers of EEG data and calculates the spectrum within each taper separately by 

using specific spectral functions (Slepian functions). For a taper of specific time length 

𝑇 and for a frequency band of interest 𝑊 (tile of frequency and time), the time-

bandwidth product 𝑇 × 𝑊 corresponds to how many such functions will be used in 

this particular tile of frequency and time. I calculated the spectrum with 𝑇 × 𝑊 =

3,𝐾 = 5 tapers. These parameters were consistent with the previous studies published 
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using part of this data (Cornelissen et al., 2015) and have been shown to work better 

in terms of reducing bias in the calculation of the frequency decomposition (Purdon 

et al., 2013). I used the chronux toolbox to perform the multi-taper analysis (Mitra and 

Bokil, 2008).  

Cross-spectral coherence is a complex number reflecting the relation between signals 

at each frequency and was calculated by correlating the multi-taper spectrums for all 

pairs of sensors 𝑖 and 𝑗. For the sake of this study, I focused only on the alpha 

frequency band 8-12Hz (alpha) due to previous work arguing that patterns of alpha 

connectivity could constitute neural markers of impaired consciousness under 

anaesthesia (Purdon et al., 2013; Chennu et al., 2016). 

One issue with using cross-spectral coherence relates to volume conduction. This 

refers to the case when two different electrodes might give spuriously high coherence 

just because they are measuring the same source (Stam et al., 2007). One way to 

overcome this problem is by keeping only the imaginary part of the coherence (Nolte 

et al., 2004). Two sensors measuring the same source cannot give non-zero imaginary 

coherence (Nolte et al., 2004). I thus obtained a 33×33 functional connectivity matrix 

for each infant where each entry (𝑖, 𝑗) represented the imaginary coherence between 

the two channels 𝑖 and 𝑗 at alpha frequency. M1 and M2 channels were excluded from 

these due to poor contact with the infants’ heads leaving me with networks of 31×31 

electrodes. In the case where 40-channel EEG caps were utilised, I only used the same 

31 electrodes as in the 33-channel EEG cap, thus obtaining a 31×31 electrode matrix.  

In turn, alpha-specific matrices for each infant were thresholded at a range 10-50% 

thresholds 𝜏 at steps of 2%. The limits were chosen so as to prevent the network from 

being severely fragmented and from being random by introducing connections and 

they are consistent with recent literature in adult EEG networks (Chennu et al., 2016). 

Consequent network properties were calculated for an average over this range of 

thresholds. 

I used the BCT toolbox to obtain the degree sample for each network and I calculated 

the complexity as described in chapter 3. Due to the limited number of sensors/nodes 

and the ambiguity involved in the interpretation of rare sensor degrees, I did not 
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investigate rare and frequent entropy as in chapter 4 but I focused on the total entropy 

of the degree distribution as in chapter 3. I also applied modularity analysis to help 

with visual representation of EEG networks. Modularity was calculated by the 

heuristic Louvain algorithm (as implemented in the BCT toolbox) and all measures 

derived therefrom were averaged over 50 repetitions. 

 

6.2.6 Source reconstruction 

As I mentioned in the methods section, one way of linking EEG activity to source 

activity in the cortex is to use source reconstruction methods. The two steps for source 

reconstruction include forward modelling and its inverse solution. Forward modelling 

involves using Maxwell's equations to predict the electromagnetic field produced by 

the sources at a given electrode. This is done by deriving the leadfield matrix, a 

mathematical quantity that relates the measured activity at the electrode level with the 

source activity. In that regard, to calculate the forward model one needs to combine 

information regarding i) how electric activity spreads though different tissues (the 

head model) ii) the position and orientation of different dipoles (the source model), 

and iii) the electrodes’ locations. As far as the head model is concerned, one approach 

is to use numerical solutions such as the Boundary Element Model (BEM) (Mosher et 

al., 1999) where the brain is compartmentalized into 3 tissues (brain, skull, scalp) each 

one being covered by a tessellation. To obtain such a geometrical description one 

needs anatomical information from the T1 images such as to segment out the brain, 

scalp, and skull tissues.  When individual T1 data are not available, an alternative way 

is to use predefined templates. Under this framework, it is important to use age-

appropriate brain templates and parameters to accurately quantify the localization 

and time course in each infant (Ortiz-Mantilla et al., 2012). Towards this direction, I 

used age-specific templates provided by the Richards laboratory (Sanchez et al., 2012) 

available here (upon request) 

(http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase) 

Specifically, templates were obtained for 3, 4.5, 6, 7.5, 9, 12, 18, 15, 24, 30, 36 and 48 

months of age. Besides T1 and T2 structural images, scalp, brain, and skull 
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segmentations were also obtained. The specific details for these are described in 

(Sanchez et al., 2012).  

For each one of these templates, I used standard conductivity settings and the ‘bemcp’ 

option in Fieldtrip to obtain a BEM head model using the tessellation of the three 

compartments (brain, skull, scalp). I used a standard number of vertices for the 

construction of the head model as suggested by Fieldtrip (3000, 2000, and 1000 

respectively). Each infant was matched to each head model as follows: If the age of 

each infant was +-2 months from the age of the templates then it was used as a 

forward solution for that participant.  Due to lack of data for <= 3 months infants, 

these were mapped to the 3-month template. 

The next step required realignment of the electrodes’ positions with the head model. 

This was performed manually using Fieldtrip’s graphical interface. Finally, for the 

source model, a 3-dimensional grid of dipoles with 1cm resolution was constructed. 

Electrodes, head model and source model were aligned and mapped to the same 

space. Following this, I obtained the leadfield matrix for each template.  

Inverse solution refers to obtaining the source-level activity using the leadfield matrix 

and the acquired EEG data. One popular method for obtaining the inverse solution 

encompasses beamforming techniques (Van Veen et al., 1997). The basic principle of 

beamforming lies in obtaining a single source’s activity by looking at how it 

contributes to the measured EEG activity compared to other sources (Van Veen et al., 

1997). Using the forward solution obtained alongside the EEG data, I utilised the 

beamforming technique to obtain the activity of each dipole. I used the Fieldtrip 

toolbox with the option ‘pcc’ to obtain the time course and spectrum of each dipole. I 

then calculated the 𝑑𝑖𝑝𝑜𝑙𝑒 × 𝑑𝑖𝑝𝑜𝑙𝑒  connectivity matrix using the imaginary 

coherence as with electrode-based networks I discussed earlier in this chapter.  

After obtaining the dipole matrices, I grouped the dipoles based on known cortical 

regions in order to assist with interpretation of the results. I used a specific 

parcellation obtained in the Richards templates to group dipoles to specific regions of 

interest. These include age-specific atlases for infants 3, 4.5, 6, 7.5, 9, 12, 18, 15, 24, 30, 

36 and 48 months and are publicly available here 
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(http://jerlab.psych.sc.edu/NeurodevelopmentalMRIDatabase).  

The parcellation was based on the macro-anatomical Hammers atlas previously used 

in adult literature (Hammers et al., 2003). Due to lack of data for infants <= 3 months, 

I mapped their source data to the closest age-matched atlas, i.e. the 3-month atlas. 

I assigned each dipole to an ROI by overlapping the source model (the dipole 

positions) and the atlas images. I then averaged the connectivity values of the dipoles 

belonging to each ROI to obtain ROI-specific time course. This resulted in an 

ROI×ROI connectivity matrix for each infant. 

Due to known difficulties in obtaining source signals from subcortical regions using 

beamforming techniques (Krishnaswamy et al., 2017), I excluded regions 

corresponding to the ventricles, cerebellum, brainstem, striatum, corpus callosum, 

hippocampus, thalamus, amygdala and insula.  

Matrix thresholding was conducted as previously by looking at a range of thresholds 

10-50% in steps of 2%. The complexity measure was applied in ROI networks as 

previously and averaged over the aforementioned range of thresholds. Due to the 

limited number of cortical regions, I did not investigate rare and frequent entropy 

(chapter 4) but I focused on the total entropy of the degree distribution as in chapter 

3. 

 

6.2.7 Statistical analysis 

Due to the wide age range, power and complexity data was not normally distributed. 

Thus, I used non-parametric ANOVA (Kruskal-Wallis) in order to test the effect of 

anaesthetic depth and age on power and complexity. P values were post hoc corrected 

using the Bonferroni criterion. I also reported effect sizes for ANOVA using the bayes 

factor and the eta squared quantities. Furthermore, I used correlation analysis to 

report a relationship between complexity and age. For these analyses I reported 

Spearman’s correlation coefficient and statistical significance. 

 



Chapter 6: Complexity of functional connectivity in the developing brain 

 191 

6.3 Results 

6.3.1 Power during different ages and conditions 

First, I analyzed data coming from power analysis. The goal was to quantify trends in 

alpha power as proposed by previous studies suggesting the important role of alpha in 

anaesthesia and loss of consciousness (Ching et al., 2010; Purdon et al., 2013). I 

calculated the median (over all infants) spectrograms for each condition and each age 

group which represent the power of each oscillation across time. First I show the 

spectrograms for only one frontal electrode (F8)(Fig. 6.1a) although similar trends 

were observed for other electrodes (Appendix Fig. 6.1). Qualitatively I observed some 

distinct patterns: 1) There was an increase in alpha power with increasing age for all 

conditions (Fig. 6.1a). One explanation for enhanced alpha power with increasing age 

is the maturation of thalamo-frontal connectivity (Cornelissen et al., 2015). 

Specifically, regarding changes in alpha power between different age groups within the 

same condition, I observed an effect of age on mean alpha power at MOSSA (chi 

square=12.28, p=0.0154, bayes factor=14.8914, eta squared=0.2349)(Fig. 6.1c). This 

was also the case for emergence (chi square=13.09, p=0.0108, bayes factor=16.1325, 

eta squared=0.2466) but not for MOSSA2. 2) I observed an increase in alpha power 

when comparing the anaesthetic state to emergence. Specifically, for all infant data 

pooled together, I observed an effect of sedation in mean (over all electrodes) alpha 

power (chi square=13.48, p=0.0012, bayes factor=8.3519, eta squared=0.2880) (Fig. 

6.1b). Post hoc tests revealed an increase in mean power over all electrodes during 

MOSSA compared to emergence (p=0.0007). These results replicated the observation 

that power increases with anaesthesia, previously observed in adults (Purdon et al., 

2013). It is worth noting that during MOSSA2 power tended to decrease compared to 

MOSSA and emergence, potentially suggesting that alpha power might decrease 

during deep anaesthetic states (Hight et al., 2017). 
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Figure 6.1 - Spectral power analysis for infant brain dynamics under anaesthesia and emergence 

from anaesthesia. (a) Median (over all infants) spectrograms show the power in each frequency as a 

function of age in each of the three conditions. (b) Average alpha power over all sensors for all infants 

showed a significant increase with MOSSA. Panel (c) shows the dependence of alpha power to 

anaesthetic depth. Older infants had higher alpha power compared to younger infants. Boxplots’ red 

lines show median values and whiskers represent 1.5 times the inter-fourth range. Single asterisk (*) 

indicates p<0.05 significance of ANOVA. 

6.3.2 EEG network alterations in infant anaesthesia 

Sensor level 

The previous power analysis showed that there was an increase in alpha power at the 

MOSSA level. However, was this the case with complexity? According to our 

hypothesis, despite the observed effect of anaesthesia on power, complexity should 

decrease, reflecting a shift in the balance between segregation and integration towards 

a more segregated configuration. To show this, I investigated functional connectivity 

and its complexity at the electrode/sensor and source levels.  

First, I examined the differences in complexity of functional connectivity networks 

across three anaesthetic conditions for all age groups pooled together. Average 

networks for all infants across the three conditions are shown in Figure 6.2a. Non-
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parametric ANOVA showed a significant effect of anaesthesia on complexity (chi 

square=7.14, p=0.0281, bayes factor=3.2585, eta squared=0.1764)(Fig. 6.2b). 

Specifically, I observed a decrease in complexity during MOSSA2 compared to 

emergence (p=0.0207) showing that networks were becoming homogenized and more 

segregated. 

 

Figure 6.2 - Complexity of alpha functional connectivity at the sensor level in the infant brain 

during anaesthesia and emergence from anaesthesia. (a) Average connectivity networks at the sensor 

level and their respective degree distributions. Different colours for each sensor correspond to different 

modules in the network. (b) There was a significant effect of anaesthetic depth on complexity with a 

significant decrease when comparing MOSSA2 to emergence. Boxplots’ red lines show median values 

and whiskers represent 1.5 times the inter-fourth range. Single asterisk (*) indicates p<0.05 significance 

of ANOVA. 

Next I quantified the effect of age on complexity within each condition. 

Representative EEG networks for single infants from 3 age groups at MOSSA are 
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shown in Fig. 6.3a. I observed a significant effect of age on complexity at MOSSA (chi 

square=9.46, p=0.04, bayes factor=10.5063, eta squared=0.1913)(Fig. 6.3b). Similar 

results were observed at emergence (chi square=19.73, p=0.0006, bayes 

factor=25.9662, eta squared=0.3303) and at MOSSA2 (chi square=10.39, p=0.0344, 

bayes factor=11.9629, eta squared=0.2062). 

In addition, I found that complexity was positively correlated with age when infants 

emerged from anaesthesia (r=0.3527, p=0.0277). The positive correlation was also 

maintained during MOSSA (r=0.4996, p=0.0002) (Fig. 6.3c) and MOSSA2 (r=0.4038, 

p=0.0179) conditions. These results showed that, even during anaesthesia, there was 

an increase in complexity with increasing age potentially reflecting the tendency of the 

infant brain to become more integrated as age increases.  

Figure 6.3 - Complexity of alpha functional connectivity at the sensor level in the infant brain at 

different ages. (a) Connectivity networks at the sensor level and their respective degree distributions 

for individual infants at 2 months, 4 months, and 15 months during MOSSA. Different colours for each 

sensor correspond to different clusters in the network. (b) There was a significant effect of age on 

complexity with older infants showing higher complexity than younger infants. (c) There was also a 

positive correlation of age with complexity of alpha connectivity during MOSSA. Boxplots’ red lines 

show median values and whiskers represent 1.5 times the inter-fourth range. Single asterisk (*) 

indicates p<0.05 significance of ANOVA. r shows Spearman’s correlation coefficient.  
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Source level 

Next, I used source reconstruction to obtain cortical functional connectivity networks 

for each infant. Average matrices for all the infants across the three conditions are 

shown in Fig. 6.4a. First, I investigated the effect of anaesthetic depth on complexity of 

alpha functional connectivity in order to see whether results on alpha connectivity at 

the sensor level would be similar for the source level. I observed a significant effect of 

anaesthetic depth on complexity (chi square=6.03, p=0.0423, bayes factor=2.3415, eta 

squared=0.1532, Fig. 6.4b) with post hoc tests revealing a significant difference in 

complexity between emergence and MOSSA2 (p=0.03). Similar to the results observed 

at the sensor level, cortical networks became less complex and more segregated with 

increasing anaesthetic depth. 
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Figure 6.4 - Complexity of alpha functional connectivity at the source level in the infant brain 

during anaesthesia and emergence from anaesthesia. (a) Average connectivity networks between 

pairs of cortical ROIs and their respective degree distributions. Brighter colours at the yellow orange 

end of the colour scale correspond to high imaginary coherence between pairs of ROIs (b) There was a 

significant effect of anaesthetic depth on complexity with a significant decrease when comparing 

MOSSA2 to emergence. Boxplots’ red lines show median values and whiskers represent 1.5 times the 

inter-fourth range. Single asterisk (*) indicates p<0.05 significance of ANOVA. 

I then quantified the effect of age on complexity within each condition. Representative 

EEG networks for single infants from 3 age groups during MOSSA are shown in Fig. 

6.5a. I observed a significant effect of age on complexity during MOSSA (chi 

square=8.02, p=0.043, bayes factor=8.2326, eta squared=0.1670)(Fig. 6.5b) and no 

effect of age on complexity during emergence and MOSSA2. Similar to the sensor 

level, I observed a positive correlation of complexity with age during emergence 

(r=0.27, p =0.04) that was maintained during MOSSA (r=0.4444, p=0.0046)(Fig. 6.5c) 

and followed a trend during MOSSA2 (r=0.2619, p=0.0633). 

Figure 6.5 - Complexity of alpha functional connectivity at the source level in the infant brain at 

different ages. (a) Alpha functional connectivity networks between cortical ROIs and their respective 

degree distributions for individual infants at the age of 2 months, 4 months, and 15 months during 

MOSSA. (b) There was a significant effect of age on complexity with older infants showing higher 

complexity than younger infants. (c) There was also a positive correlation of age with complexity of 

alpha connectivity during MOSSA. Boxplots’ red lines show median values and whiskers represent 1.5 
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times the inter-fourth range. Single asterisk (*) indicates p<0.05 significance of ANOVA. r shows 

Spearman’s correlation coefficient. 

6.4 Discussion 

In this experimental chapter I analysed a unique dataset of infants 0-3 years old 

undergoing surgical anaesthesia and I examined changes in complexity of functional 

connectivity in two anaesthetic states and emergence from anaesthesia. I observed that 

the complexity of functional connectivity was reduced with increasing anaesthetic 

depth. This finding is in line with the results observed in chapter 4 where I showed 

reduction in whole-brain complexity in propofol-induced sedation and anaesthesia. 

In addition, I observed that complexity positively correlated with age showing that 

functional connectivity is becoming increasingly complex as the human brain 

develops. 

Converging results from the adult literature show that GABAergic anaesthetics (ether-

based agents, barbiturates, propofol) modulate alpha oscillations (Ní Mhuircheartaigh 

et al., 2013; Purdon et al., 2013). The established importance of alpha oscillations has 

led to the idea of using alpha-based connectivity networks as marker of loss of 

consciousness under anaesthesia. Previous EEG studies in adult propofol-induced 

anaesthesia have shown alterations in a variety of network metrics. At the 

local/regional level, studies have shown a decrease in the degree of network hubs (Lee 

et al., 2010; Lee et al., 2013). At the meso level studies in propofol-induced anaesthesia 

show that alpha EEG networks become more fragmented during anaesthesia (Chennu 

et al., 2016). Finally, at the global/whole-brain level EEG networks are becoming less 

globally efficient (Blain-Moraes et al., 2017). Together, these results suggest that, 

despite increase in alpha power, alpha networks during loss of consciousness are 

biased towards a less global/more local configuration. 

An important question is whether such brain network configuration can be translated 

to infant anaesthesia. Few studies have studied brain activity and connectivity in 

infants under anaesthesia. A previous study using part of this data focused only on 

frontal electrode coherence (Cornelissen et al., 2015). Expanding on these findings, I 

applied whole-brain EEG network modelling and showed that loss of consciousness is 
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characterized by reduced complexity both at the sensor and source levels. Thus, 

despite the increase in alpha power during MOSSA, I showed that the balance 

between segregation and integration was shifted with increasing anaesthetic depth 

with networks becoming less complex and more segregated.  

Can this inconsistency between the increase in alpha power and reduction in network 

complexity explained? Alpha oscillations likely represent activity between the 

forebrain and the thalamus (Ching et al., 2010). Specifically, GABA potentiation 

induces coherent alpha oscillations that can explain the appearance of alpha power 

primarily in the frontal cortex. However, although the thalamus might be locally 

coherent during anaesthesia, models have suggested that information efficiency in the 

whole-brain is inhibited because of the inability of the rest of the brain to become 

synchronized with the “fast” oscillatory thalamo-frontal connectivity (Ching et al., 

2010). Consistent with this observation are theories discussing loss of consciousness 

as a shift in the balance of segregation and integration in the adult brain. Although 

anaesthetics might make the thalamus to oscillate at coherent alpha frequencies 

(Brown et al., 2010), loss of consciousness occurs due to its impact on whole-brain 

integration (Alkire et al., 2008). Taken together, it is plausible that the same 

mechanistic explanation i.e. a shift in the balance between segregation and integration 

towards a more segregated configuration can explain loss of consciousness in the 

infant brain. However, it is worth noting that, due to differences in thalamocortical 

maturation between infants and adults, more investigation is required regarding the 

effect of thalamocortical connectivity in whole-brain complexity. 

In addition to these results, I showed that the reduction in complexity was age-specific 

as complexity was related to age within each anaesthetic state. Specifically, I observed 

that alpha complexity increased monotonically with age. Previous results on the 

development of resting-state fMRI in infants lend credence to this idea. During 

development, networks become more specialized while inter-network (and often 

long-range) connections are developed in order to integrate different specialized 

modules (Gao et al., 2009). Thus the developing brain becomes increasingly complex 

and more integrated. To what extent this increase in functional connectivity 

complexity is driven by developmental phenomena? Changes in structural 
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connectivity occur rapidly since birth while myelination starts around the 3-4 months 

of life (Brody et al., 1987). However structural connectivity is adult-like around 9 

months after birth while myelination and synaptogenesis peak around 12 months 

(Conel, 1963). Thus increasing complexity cannot be solely attributed to 

developmental changes but also reflects the brain’s tendency to integrate functionally 

specialized modules, potentially due to increasing adaptation to environmental and 

cognitive demands (Lagercrantz and Changeux, 2009).  

 

6.5 Conclusion 

Taken together, I observed a monotonic decrease in complexity in the infant brain 

with increasing anaesthetic depth. I concluded that the decrease in complexity reflects 

the idea of a shift in the balance between integration and segregation towards a more 

segregated configuration. It is therefore possible that the mechanistic explanation for 

losing consciousness found for adults can be transposed (to some extent) to the infant 

brain. Furthermore, I found that complexity increased with age, suggesting age-

specific brain responses during anaesthesia, potentially due to different levels of brain 

network segregation and integration. Additional studies at this age range will pave the 

way for understanding how infants lose consciousness during anaesthesia as well as 

for deciphering brain function during development. 
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Chapter 7: Discussion 

7.1 Summary 

This work attempted to answer the following question: How do we lose 

consciousness? Theoretical models propose that consciousness is a phenomenon that 

depends both on the segregated and integrated aspects of experience (Tononi, 2004). 

By the same token, neural activity should be segregated and integrated to produce 

consciousness (Crick and Koch, 2003) while loss of consciousness should allude to 

disruption of how segregation and integration are interrelated (Alkire et al., 2008). 

While consciousness cannot be quantified directly, indirect measures have associated 

the coexistence of segregation and integration with the complexity inherent in brain 

function (Tononi et al., 1994). Complexity is low when the components of a system 

are either completely independent (segregated) or when the components are 

completely dependent (integrated) (Tononi et al., 1994; Tononi et al., 1998). But what 

is the case for the human brain? Studies using graph-theoretic models have assumed 

that complexity of the human brain is at a “sweet spot”, encompassing a critical 

balance between segregation and integration (Zamora-López et al., 2016). In that 

regard, chapter 3 provided evidence that the complexity of functional connectivity 

was critical, as it was derived on a Nash equilibrium of optimal connections 

supporting efficient communication at both the local and whole-brain levels. 

Following this rationale, I assumed that loss of consciousness is associated with shifts 

from this balance. Towards this direction, in chapter 4 I showed evidence that 

complexity of functional connectivity was decreased during loss of consciousness. 

Using a dynamic connectivity approach, in chapter 5 I investigated the temporal 

dimension of complexity where I found that temporal complexity was also decreased 

in the unconscious brain. Finally, in chapter 6 I extended this framework in the 

developing brain where I showed that complexity was decreased in anaesthetized 

infants.  

Overall, by collecting a variety of evidence, from the spatial and temporal complexity 

of the adult brain to the complexity in the infant brain, I argue that alterations in 
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complexity of functional connectivity might offer a potential mechanistic explanation 

for how we are losing consciousness.  

 

7.2 Complexity of functional connectivity 

The healthy brain depends on acquiring information from different neuronal systems 

and integrating these into a coherent module (Fuster, 2003). Thus on the one hand, 

advances in neuroscience have shown the functional specialization/segregation of 

different regions and groups of neurons (for example the regions in the primary visual 

cortex, Fujita et al., 1992). On the other hand it is now clear that information from 

these specialized systems needs to be functional integrated in order to foster adaptive 

behaviour (for example in the visual cortex information from different specialized 

regions are integrated to yield the feature of the visual stimuli, Kanizsa, 1979). In that 

regard, complexity of brain function is believed to support the coexistence of 

segregation and integration (Sporns and Tononi, 2001), a property that has been 

deemed essential for survival (Damasio, 1989).   

Ideas about brain complexity, a property of brain function that encapsulates the 

balanced capacity of the brain to segregate and integrate information, have 

transformed the way neuroscientists think about consciousness and fostered 

theoretical and practical endeavours. These broadly tried to answer two 

complementary questions: First what are the properties of the brain as a system in 

order to support consciousness? Second how does conscious access take place in the 

brain? Regarding the first question, theories proposed by Tononi and colleagues 

suggest that consciousness emerges because of the integration of segregated 

subsystems in the brain (Tononi and Edelman, 1998). In that sense, in order for the 

brain as a system to support consciousness it should present a high level of 

differentiation, as well as of information integration (Tononi, 2004). Regarding the 

second question, theoretical models have proposed that conscious access relies upon a 

common data structure upon which information is shared from different specialized 

modules. The term proposed for this framework is the  “global workspace” where 

information from different specialized systems is available and integrated in a 
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common/global space (Baars, 2002; Baars and Franklin, 2003). Expanding on this 

framework, Dehaene and colleagues have argued about the idea of conscious 

processing as a neuronal process related to how information from different specialized 

systems is integrated in the global workspace via long-range connections (Dehaene et 

al., 2006; Dehaene, 2014). Converging neuroimaging data, acquired when contrasting 

conscious and non-conscious processing, point towards this direction. For example, 

experiments studying exposure to conscious and unconscious visual stimuli suggest 

that unconscious words activate only the visual cortex while conscious word evoke 

widespread “global-workspace-like” activations including visual, parietal and frontal 

cortices (Dehaene and Changeux, 2011). 

The aforementioned theories propose the idea that, for neuronal activity to sustain 

consciousness it must be functionally integrated and at the same time highly 

differentiated (Tononi and Edelman, 1998). In order to experimentally test these 

concepts, the use of formal measures has been introduced aiming at capturing the 

balance of segregation and integration using statistical and graph-theoretic 

approaches. Previously, measures of complexity investigating information exchange 

between neuronal populations were proposed but were usually limited to few cortical 

areas (Tononi et al., 1994). The emergence of networks and large-scale connectivity 

allowed assessing interactions between multiple regions as whole-brain 

networks/graphs. Based on these models, I used the entropy of the degree distribution 

to measure complexity in functional connectivity.  The degree distribution quantifies 

the co-existence of differentially connected regions across the human brain (Bullmore 

and Sporns, 2012, Vértes et al., 2012). Shifts in the entropy of the degree distribution 

result in brain networks with differential organization. For example, decreased 

entropy is associated with increased segregation and decreased integration, as 

information in the network is mostly communicated locally rather than globally 

(Power et al., 2010). Opposite trends are observed when networks are biased towards a 

more integrated configuration thus supporting global rather than local 

communication (Power et al., 2010). Above and beyond these extremes, the entropy of 

the degree distribution in functional connectivity networks show a specific “heavy-

tailed” pattern, believed to reflect a critical balance between segregation and 
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integration to support both local and global efficient communication (Vértes et al., 

2012; Zamora-López et al., 2016).  

How does one find empirical evidence for this balance? Criticality is a useful 

framework for studying how properties in a system arise at the point of balance 

between opposite tendencies (Christensen and Moloney, 2005). To study these, one 

needs to look at the collective behaviour of the systems’ elements; i.e. how each 

element’s specific tendencies are employed in order to produce complex patterns. 

When applied to brains, models suggest that brain complexity can be predicted using 

the dynamics of brain regions and how these are entangled upon the premises of their 

structural connectivity (Deco and Jirsa, 2012). Expanding on these ideas, theories now 

propose that critical dynamics pertain to the way each brain region communicates 

information, and how these communication paths are efficiently interweaved to 

support functional complexity (Avena-Koenigsberger et al., 2017). 

In light of this, in chapter 3 I assessed criticality of functional connectivity by showing 

that it emerges from the Nash equilibrium of connections supporting communication 

transfer in the most optimal way (optimal connections). These connections were 

differentially distributed across the cortex serving different functional roles. LSNs 

such as the DMN, that have been deemed important for integrating information, had 

a high number of inter-network optimal connections while more segregated networks, 

such as the SM network, had a high number of intra-network optimal connections. 

Thus I claimed that functional connectivity in the healthy brain lies in a “sweet spot” 

of complexity as it can be derived upon the collective properties of optimal 

connections, reflecting the critical balance between segregation and integration.  

 

7.3 Alterations of complexity in functional connectivity 

The notion of complexity as a critical balance between segregation and integration 

suggests that even few perturbations can cause alterations in complexity. For example, 

perturbation of long-range connections under anaesthetic induction is sufficient to 

produce a disconnected brain and reduce its complexity (Alkire et al., 2008). Towards 



Chapter 7: Discussion 

 204 

this direction, initial evidence using computer simulations have shown that 

transitions to a state of high anaesthesia is consistent with a breakdown of 

connections responsible of network integration (Steyn-Ross et al., 2001). In light of 

this, in chapter 4 I used complexity in order to characterize states of anaesthetic-

induced unconsciousness and disorders of consciousness, under the assumption that 

the unconscious brain would shift towards a less complex and more segregated 

configuration. I refined the quantification of complexity by considering regions with 

different degrees in order to capture where the reduction in complexity would take 

place. I found that loss of consciousness during sedation and anaesthesia was 

characterized by decreased complexity with alterations more prominent in the 

complexity of sparsely connected regions. I showed that these regions were important 

for network integration by looking at their impact on the largest connected 

component, and proposed that their alterations in complexity resulted in a segregated 

brain network. In disorders of consciousness this phenomenon was even more 

prevalent suggesting that decreasing states of consciousness might be associated with 

increasing segregation. 

Interestingly, these connections were primarily found in the DMN suggesting its 

enhanced role in network integration. This result aligns with the findings of chapter 3, 

where I showed that the DMN was optimally connected with other networks, 

potentially supporting inter-network communication and whole-brain integration. 

Additional stratification of the characteristics of these connections might shed more 

light on their role in loss of consciousness. One hypothesis is that sparsely connected 

regions also incorporate thalamocortical connections as evident by the increased 

number of sparse connections in subcortical regions during sedation. Indeed, the 

thalamus been shown as a primary target for anaesthetics (Brown et al., 2010) and is 

affected in patients with disorders of consciousness (Laureys et al., 2000a). At the 

same time the thalamus is important for network integration (Hwang et al., 2017) 

showing that alterations of its connectivity might play an increased role in disrupting 

whole-brain communication (Alkire et al., 2008). An additional hypothesis is that 

sparsely connected regions include regions with long-range connections-for example 

those between the anterior and posterior parts of the DMN-that are important for 

communicating information between distant parts of the brain (Bassett and Bullmore, 
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2016). Confirmatory evidence comes from previous studies showing that long-range 

connectivity changes in both anaesthesia and disorders of consciousness (Schröter et 

al., 2012; MacDonald et al., 2015). Thus changes in the complexity of long-range 

connectivity might impair network integration during loss of consciousness.  

 

7.4 Dynamic functional connectivity 

Evidence from anaesthetised primates and humans show that even during anaesthesia 

functional connectivity is not static but shows fluctuations. But what do these brain 

dynamics tell about loss of consciousness? Are brain dynamics altered during loss of 

consciousness and is this more prevalent in specific networks? 

Prominent theories suggest that consciousness is related to the diversity of brain 

connectivity across time (Tononi, 2004) and that anaesthesia might suppress 

consciousness by shrinking this functional repertoire (Alkire et al., 2008). Towards 

this direction, previous research using dynamic connectivity methods, attempted to 

quantify the dynamic changes in connectivity patterns during loss of consciousness 

(Barttfeld et al., 2015a; Ma et al., 2017). This research discretizes functional 

connectivity by calculating connectivity over different time windows. The 

disadvantage of using sliding window methods relates to whether it can actually 

capture the entire repertoire of functional connectivity.  

To overcome this obstacle, in chapter 5 I used a dynamic connectivity model in order 

to identify states that the unconscious brain would occupy during at each time point. 

For the sedation data, I found that brain dynamics during sedation were characterized 

by distinct temporal patterns as the brain would predominantly visit certain states and 

avoid visiting others. Interestingly, a state that was visited scarcely during sedation 

was associated with default mode/task-negative regions, while a state that was visited 

more was associated with frontal-parietal/task-positive regions. Previous studies have 

highlighted how switching between these networks might regulate information 

sharing in the brain (Fox et al., 2005). In light of this, I showed that their inter-

dynamics related to the state of consciousness during sedation as higher toggling 



Chapter 7: Discussion 

 206 

between the two states was related to higher levels of responsiveness. Studies of 

anaesthesia in humans and monkeys have shown that default mode network 

connectivity with task positive networks was lost after propofol administration and 

was regained after recovery of consciousness (Boveroux et al., 2010; Barttfeld et al., 

2015a), suggesting that these brain dynamics are important for transition to and 

emergence from loss of consciousness. Similarly, in the case of disorders of 

consciousness I found two states with different spatial characteristics dominating the 

brain dynamics of the patients. These two states also showed overlap with regions of 

positive (task-negative regions) and negative DMN connectivity (task-positive 

regions) observed in patients’ functional data (Di Perri et al., 2016). Moreover, the 

switching rate between these states positively correlated with the CRS-R score 

showing that their inter-state dynamics related to their state of consciousness. 

Taken together, it was evident that the switching rate between these states could 

discriminate between different state of consciousness during sedation or clinical 

assessment of. By complementing the results of chapter 4 on the effect of sedation on 

DMN complexity and the loss of integration, these findings show that the temporal 

aspect of DMN connectivity also changes during loss of consciousness. One 

interesting hypothesis is that loss of consciousness is characterized not only by 

decreased DMN complexity and its effect on whole-brain integration, but also by its 

pathological dynamic interactions with the task-positive networks. Together, these 

two distinct phenomena might diminish the spatiotemporal repertoire of 

connectivity, thus reducing the amount of information a brain has access to (Alkire et 

al., 2008). However, a study unifying these two methodologies is required to further 

address this. 

A natural extension of this approach relates to whether the switching rate can 

discriminate between different states of consciousness. Towards this direction, I 

obtained a collection of common states for both of the sedation and disorders of 

consciousness populations. Because no state was population-specific, I calculated the 

switching rate between all these states as an aggregate measure of temporal 

complexity. Higher switching rate would imply that the brain would visit only a 

specific number of states while ignoring others i.e. a less temporally complex/more 
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unstable brain. In that regard, I found higher switching rate when comparing 

individuals during awake and sedation levels to patients with disorders of 

consciousness.  

Thus in conjunction with the spatial complexity results presented in chapter 4, it is 

possible that there exist two aspects of complexity reduction during loss of 

consciousness: spatial as evident for more segregated networks and temporal as 

evident by the greater local temporal dynamics. Such a two-faceted shift in complexity 

has been postulated by theoretical models claiming the importance of the 

spatiotemporal brain repertoire in shaping conscious experience (Tononi, 2004). The 

involvement of default mode regions in both of these processes suggests that the 

spatiotemporal shift towards a more segregated configuration might have a common 

basis similar to what has been termed as the “dynamic core” of segregation and 

integration in consciousness (Tononi and Edelman, 1998). The DMN could be the 

neural instantiation of this common basis; it encapsulates unified neural processes of 

high complexity organized at a very refined temporal scale (Raichle, 2015) that 

emphasize integration both at the static (Vatansever et al., 2015b) and the dynamic 

level (Tang et al., 2017). Further studies implementing a common approach for 

calculating the spatiotemporal complexity can confirm this hypothesis. 

 

7.5 Complexity of functional connectivity in the developing brain 

The spatiotemporal grain of consciousness and complexity is not only a feature of the 

adult brain. Consciousness is present since infancy; human infants experience pain 

and react to stimuli showing features of what is termed as basic consciousness 

(Lagercrantz and Changeux, 2009). Interestingly, anaesthesia can abolish 

consciousness in infants using the same process as in adults. In light of the work 

presented in previous chapters, this poses the question of whether reduction of 

complexity is also a characteristic of the anaesthetized infant brain. 

In that regard, in chapter 6 I used EEG based connectivity derived from data recorded 

in infants during different levels of maintenance of surgical anaesthesia and 
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emergence from anaesthesia.  I focused on alpha frequency connectivity for various 

reasons. Power analyses have suggested the emergence of alpha power during 

unconsciousness (Purdon et al., 2013). These alpha oscillations are believed to 

decrease network integration by acting on thalamocortical loops (Alkire et al., 2008). 

Results from adult anaesthesia and disorders of consciousness using whole-brain 

alpha EEG recordings show that networks during anaesthesia are more fragmented 

and less globally efficient (Chennu et al., 2016; Chennu et al., 2017). Thus, the way 

alpha-based whole-brain connectivity changes might provide a suitable framework for 

quantifying alterations in complexity.  

First, I observed that alpha oscillations changed during anaesthesia. When comparing 

anaesthesia to emergence, alpha power increased during anaesthesia potentially 

reflecting the emergence of alpha-specific thalamocortical oscillations previously 

reported in adult literature (Purdon et al., 2013). However, confirming the initial 

hypothesis, the complexity in alpha-derived networks was reduced in anaesthesia 

compared to emergence. This result was verified using source localization methods 

showing that decrease in complexity also takes place at the source level. These results 

validate and extend the findings presented in chapter 4 where I showed reduced 

complexity in the anaesthetized adult brain. Further analysis can elucidate whether 

reduction in complexity in the infant brain is also more evident in default mode 

regions in a similar way to what has been previously proposed in this thesis. Towards 

this direction, the DMN is one of the first higher-order networks to show a well-

established structure in the developmental context by comprising robust functional 

connectivity across distant medial frontal, medial/lateral parietal, and medial/lateral 

temporal regions (Gao et al., 2015). This finding shows that the DMN likely serves as a 

foundation for other higher-order functions to integrate with each other; thus it is 

possible that its complexity has an increased role in consciousness since infancy. In 

addition, I found that alpha complexity was positively correlated with age during 

anaesthesia. Increased complexity indicated that brain networks become more 

integrated, potentially showing that the brain is developing in order to attain a higher 

level of conscious processing (Fair et al., 2007b). The developmental trajectory of 

functional connectivity starts with the emergence of primary sensory systems followed 

by the formation of higher-order and default mode networks (Gao et al., 2009). Thus 
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the ongoing integration of the developing brain could be attributed to the rapid 

development of networks that are responsible for combining multi-modal 

information coming from primary sensory systems (Gao et al., 2015). In conjunction 

with the previous findings in this thesis, the DMN might have an enhanced role in 

how this information is integrated and, thus, a profound impact on the increasing 

brain complexity during development.   

Overall, alpha complexity was able to discriminate between stages of unconsciousness 

in the infant brain showing the possibility of translating the results derived from the 

adult brain to the infant brain.  At the same time, the complexity increased with 

increasing age showing different aspects of functional maturation across development. 

 

7.6 Clinical insights 

As evident by previous remarks, complexity was used for discriminating between 

different states of consciousness. Refined approaches showed that in order to 

perturbate whole-brain complexity, alterations in the complexity of few regions 

important for network integration might suffice.  

The complexity approach proposed here could therefore find application as a tool for 

identifying different states of consciousness, complementary to the clinical 

assessment. All of the data analysed were obtained during resting-state condition 

suggesting that the state of consciousness could potentially be assessed irrespectively 

of the individual’s behaviour (e.g. response to stimuli or commands). However, a 

question remains as to how the current resting-state functional connectivity approach 

is enough to identify the neural correlates of consciousness. A drawback of the 

resting-state paradigms is that they do not shed light into how complex information 

processing breaks down during loss of consciousness. For example studies have shown 

that fronto-parietal network is disrupted in unresponsive patients showing a lack of 

executive function in these patients (Naci et al., 2014). Until we have a clear picture of 

the relationship between task-based and resting-state functional connectivity (such 

efforts start to emerge; see Tavor et al., 2016), complementary task-based studies will 
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need to take place. Eventually, I claim that the goal of obtaining consciousness 

markers relying only on resting-state data can provide a valuable avenue for 

understanding consciousness not only from a practical perspective (ease of aquisition, 

no need for task design) but also from a clinical perspective (use as input to classifiers 

for categorizing disorders of consciousness cohorts, e.g. see Demertzi et al., 2015). 

In that note, further research and validation of complexity in multiple datasets might 

assist with machine-learning classification between different states of consciousness in 

novel datasets.  

The importance of complexity was also evident in infant anaesthesia. Despite the vast 

clinical need, there are still no robust markers for tracking brain dynamics in infant 

anaesthesia. I hope that the results presented in this thesis will pave the way for using 

complexity as a means of understanding and identifying anaesthetic states in the 

developing brain. 

Finally it is worth noting a particular limitation of the experimental method followed 

in this thesis. The goal of this work was to introduce spatio-temporal complexity as a 

way of capturing loss of consciousness. In order to verify the utility of the complexity 

measure, correlations took place between complexity and the level of responsiveness 

(in sedation) or CRS-R scores (in the DOC cohort). However, such measures might 

not always tell the full story about whether someone is unconscious or not; for 

example it could be the case that some individuals are in a state of consciousness in 

which many of the cognitive and behavioural systems are still ‘on-line’ (Bayne et al., 

2016) Thus additional research is required to investigate the multifaceted cognitive 

and behavioural aspects that are lost during loss of consciousness and how these relate 

to complexity. 

Hopefully, by introducing and verifying complexity measures as objective markers of 

loss consciousness we can assist with the multi-dimensional problem of classifying 

states of consciousness. The end goal is to reduce the known taxonomy of 

consciousness to a single dimension above and beyond awareness and wakefulness 

(Fig. 7.1). This is something that fits nicely with the basic motivation that this thesis 

was built upon in the introduction: the clinic. Specifically, I hope that the use of 
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complexity will pave a new, objective determination of consciousness that can assist 

with individuals’ prognosis and recovery at the bedside without the need for multiple 

and complex behavioural and cognitive assessments. 

  

Figure 7.1. - Complexity as an objective marker of consciousness. The goal is to use complexity as a 

different dimension of mapping consciousness above and beyond the two-dimensional map of 

wakefulness and awareness.  

 

7.7 Future work 

There are additional future directions that can extend the work of each chapter. 

The proposed NNG model in chapter 3 for explaining the criticality of complexity of 

functional connectivity networks took into account the topographic location of each 

region and employed a wiring minimization rule to produce a network of optimal 

connections. One can argue that besides the topographic location, other 

morphological features of brain organization (for example axon tensions, wiring 
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constraints, etc.) might need to be taken into consideration and compared against the 

current NNG model. 

In chapter 4, I argued about the complexity of sparsely connected regions as a 

measure of classifying different states of consciousness. I made a specific hypothesis 

that the complexity of thalamic connectivity would change as its role in network 

integration has been previously demonstrated (Hwang et al., 2017). In light of this, a 

more comprehensive analysis including a parcellation of the thalamus might provide 

more information regarding the complexity of thalamocortical connectivity and how 

it is being affected during loss of consciousness.  

Moreover, I would like to use the complexity of sparsely connected regions to further 

investigate the classification between patients within the disorders of consciousness 

cohort (for example classifying between MCS and VS patients). This could be an 

additional extension to previous EEG studies regarding classification between 

different states of consciousness in patients (Sitt et al., 2014; Chennu et al., 2017). 

In chapter 5, I used the HMM model to derive a set of states that characterized brain 

dynamics. A major issue of these models is that they assume that the BOLD data is 

stationary (Liégeois et al., 2017) meaning that its mean and variance do not change 

over time. However, studies have suggested that this is not always the case (Laumann, 

et al. 2017).  Thus I would like to utilize other dynamic models that can address this 

problem in a more systematic way. 

Finally, by combining methods from chapters 4 and 5, I would like to derive a 

common model that can incorporate both spatial and temporal complexity. This will 

allow me to address hypotheses regarding the spatiotemporal reduction in complexity 

during loss of consciousness as well as to search for a common core of regions that 

can cause both loss of spatial and temporal complexity (for example DMN regions). 
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7.8 Conclusion 

How do we lose consciousness? Evidence presented in this thesis attempted to answer 

this question by showing that loss of consciousness occurs because of a drastic 

decrease in complexity. This measure was able to discriminate between different states 

of consciousness in the adult and infant brain, by exploring both spatial and temporal 

domains. I believe that this provides a new avenue for understanding the relevance of 

resting-state functional connectivity for the assessment of different states of 

consciousness irrespectively of the behavioural capacity or age of the individual. 
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Appendix Figure 3.1 - Predicting functional connectivity from structural connectivity matrices 

using different orders of polynomial transformation. The prediction algorithm uses a polynomial 

transformation (of order 𝑘) of the structural connectivity matrix to predict the functional connectivity 

matrix. (a) shows the prediction accuracy, as expressed by correlation of the predicted and real 

functional connectivity matrices, for the 234-ROI parcellation across different values of 𝑘. We observed 

that above 𝑘 = 5  the results plateaued showing that incorporating higher powers of polynomial 

transformation did not contribute further to the prediction. (b) shows similar results for the 129-ROI 

parcellation. Circles show average over n=50 subjects and lines show +- standard error of the mean. 

 

 

Appendix Figure 3.2 - Predicting functional connectivity from structural connectivity matrices at 

the 129-ROI resolution. (a) Each box plot shows the variation of the prediction accuracy across n=50 

subjects as expressed in terms of correlation between the real and predicted functional connectivity 

matrices (one-way repeated-measures ANOVA F(2,98)=837, p<0.0001 Bonferroni corrected multiple 

comparisons test, bayes factor=8.0399e-30, eta squared=0.9447). The predicted functional connectivity 

matrix was obtained using a polynomial order of 𝑘 = 5 of the structural connectivity matrix. Higher 



Appendix 1 

 254 

scores show higher correlations between the real and the predicted functional connectivity matrices. (b) 

Here I used methods from homology theory to assess the similarities between predicted and real 

functional connectivity matrices (one-way repeated-measures ANOVA F(2,98)=82.16, p<0.0001, 

Bonferroni corrected multiple comparisons test). Lower scores reflect a smaller difference between the 

real and predicted functional connectivity matrices. Both prediction scores show that using only 

optimal connections was significantly more predictive of whole-brain functional connectivity than 

using all structural or non-optimal connections. Boxplots’ thick lines show the median value while 

whiskers reflect the maximum and minimum values of the data. (c) Difference between predicted 

complexity and complexity obtained from real functional connectivity matrices using optimal, non-

optimal, and whole-brain connections. Complexity was obtained as the entropy of degree distribution 

of functional connectivity networks. I observed that optimal connections could retrieve real complexity 

significantly better than non-optimal and whole-brain connections (ANOVA F(2,98)=44.84, p<0.0001, 

Bonferroni corrected multiple comparisons test). The smaller the value to 0 the better the prediction of 

complexity is. Boxplots’ thick lines show the median value while whiskers reflect the maximum and 

minimum values of the data. 

Appendix Table 3.1 - Optimality statistics for the structural networks at the 129-ROI resolution. 

Optimality was calculated by counting the number of optimal edges (connections that existed in both 

the NNG and real networks 𝑇 ) divided by the number of total edges the NNG model (|𝑀|) produced. 

False positives remained relatively low compared to the total number of edges |𝑀| of the NNG model. 

Results are presented in the form of mean (stdev) over n=50 subjects. 
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Chapter 4 

 

 

Appendix Figure 4.1 - Alterations in sparsely connected regions’ connectivity during sedation. The 

alluvial diagram shows changes in the median over n=25 subjects amount (width of colour band) of 

participation of the endpoints of sparsely connected regions in different LSNs with increasing sedation. 

 



Appendix 1 

 256 

 

 

Appendix Figure 4.2 - Residual entropy during moderate sedation. Part (a) shows residual entropy 

that was calculated by virtually removing from the whole-brain network 7 pre-defined networks (and 2 

manually defined subcortical and cerebellar networks) coming from Yeo et al., (2011) and calculating 

global entropies in the respective residual networks. Barplots show mean values and error bars show 

the standard error of the mean for n=25 subjects. Asterisk (*) implies significance p<0.05 that survived 

Bonferroni correction within sedation levels and across 9 networks.  Abbreviations: DMN: Default-
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Mode Network, DA: Dorsal Attention Network, FP: Fronto-Parietal Network, L: Limbic Network, SM: 

Somato-Motor Network, VA: Ventral Attention Network, VIS: Visual Network, Sub: Subcortical, Cb: 

Cerebellum. Part (b) shows residual entropy that was calculated by removing 10 pre-defined networks 

from Smith et al. Barplots show mean values and error bars show the standard error of the mean. 

Asterisk (*) implies significance p<0.05 that survived Bonferroni correction within sedation levels and 

across 10 networks.  Abbreviations stand for the Smith et al. (2009) networks with the order presented 

in the Smith et al. (2009) work. 

 

Appendix Figure 4.3 - Residual rare entropy during moderate sedation. Figure shows residual rare 

entropy that was calculated by removing from the whole-brain network 7 pre-defined networks coming 

from Yeo et al. (2011) (and 2 manually defined subcortical and cerebellar networks) and calculating 

rare entropy in the respective lesioned networks. Barplots show mean values and error bars show the 

standard error of the mean for n=25 subjects. Asterisk (*) implies significance p<0.05 that survived 

Bonferroni correction within sedation levels and across 9 networks.  Abbreviations: DMN: Default-

Mode Network, DA: Dorsal Attention Network, FP: Fronto-Parietal Network, L: Limbic Network, SM: 

Somato-Motor Network, VA: Ventral Attention Network, VIS: Visual, Sub: Subcortical, Cb: 

Cerebellum. 



Appendix 1 

 258 

Chapter 5 

 
Appendix Figure 5.1 - Brain states extracted from the Markov model for the sedation experiment. 

Each panel shows slices at x=98 y=41 z=97 of the states identified from the HMM output applied on the 

sedation data. 
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Appendix Figure 5.2 - Brain states extracted from the Markov model for the DOC experiment. Each 

panel shows slices at x=98 y=41 z=97 of the states identified from the HMM output applied on the 

DOC data. 
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Chapter 6 

 
Appendix	Figure	6.1	-	Spectral	power	analysis	for	infant	brain	dynamics	under	

anaesthesia.	Median	(over	all	infants)	spectrograms	show	the	power	in	each	frequency	as	a	

function	of	age	during	MOSSA	for	four	different	channels	O2,	P4,	T8,	C4. 
 

 


