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Abstract6

Thermal runaways in exothermic batch reactions are a major economic, health and safety7

risk in industry. In literature most stability criteria for such behaviour are not reliable for8

nonlinear non-steady state systems. In this work, Lyapunov exponents are shown to predict9

the instability of highly nonlinear batch processes reliably and are hence incorporated in10

standard MPC schemes, leading to the intensi�cation of such processes. The computational11

time is of major importance for systems controlled by MPC. The optimal tuning of the12

initial perturbation and the time frame reduces the computational time when embedded13

in MPC schemes for the control of complex batch reactions. The optimal tuning of the14

initial perturbation and time horizon, de�ning Lyapunov exponents, has not been carried15

out in literature so far and is here derived through sensitivity analyses. The computational16

time required for this control scheme is analysed for the intensi�cation of complex reaction17

schemes.18
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Nomenclature21

Roman Symbols22

Symbol Description23

∆Hr,i enthalpy of reaction i
[
kJ mol−1

]
24

[A] , [B] , [C] concentration of component A, B and C, respectively
[
kmol m−3

]
25

A heat transfer area [m2]26

Cpj heat capacity of component j
[
J kg−1K−1

]
27

Cp heat capacity of reaction mixture
[
J kg−1K−1

]
28
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Ea,i activation energy of reaction i
[
J mol−1

]
29

k0,i pre-exponential Arrhenius constant for reaction i
[(
m3 kmol−1

)n−1
s−1
]

30

Kp proportional parameter for PI control
[
m3 s−1K−1

]
31

nA,i, nB,i reaction orders of components A and B for reaction i, respectively [−]32

qC volumetric folw rate of coolant [m3 s−1]33

R universal molar gas constant
[
J mol−1K−1

]
34

ri rate of reaction i
[
kmol m−3s−1

]
35

t time of simulation [s]36

tlyap Lyapunov time horizon [s]37

TR, TC , Tsp temperature of reactor contents, coolant and reaction set-point, respectively38

[K]39

U heat transfer coe�cient
[
W m−2K−1

]
40

VR, VC volume of the reactor and the cooling jacket, respectively [m3]41

yj, ȳj, ŷj mass fraction, mole fraction and volume fraction of component j, respectively42

[−]43

Greek Symbols44

Symbol Description45

ε initial perturbation for Lyapunov exponents [−]46

η, κ orders of reaction for nitration of toluene [−]47

Λ, Λl Lyapunov exponent and local Lyapunov exponent [s−1]48

λj thermal conductivity of component j
[
Wm−1K−1

]
49

µj viscosity of component j [Pa s]50

Φ objective function for MPC algorithm [−]51

ρ, ρC density of reactor contents and coolant, respectively
[
kg m−3

]
52

τI integral parameter for PI control [Ks2m−3]53
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1. Introduction54

Thermal runaways are a phenomenon which is still observed today, causing signi�cant55

safety hazards and large economic loss (Theis, 2014). In industry a thermal runaway reaction56

can result in the stoppage of normal operation, as well as release of chemicals in order to57

reduce the reactor pressure. Reducing the risk of such interruptions of normal operation is58

therefore of major interest to industry. Increasing the temperature of the reaction system59

whilst keeping it under control can potentially give large improvements in process e�ciency60

and safety. Therefore a thorough analysis of the behaviour of such exothermic systems is61

necessary.62

The implementation of Model Predictive Control (MPC) with an embedded stability63

criterion was achieved in Kähm and Vassiliadis (2018b), Kähm and Vassiliadis (2018a) and64

Rossi et al. (2015). These implementations enabled an increased e�ciency of exothermic65

batch processes while keeping the process under control at all times.66

In Rossi et al. (2015) a boolean variable which gives rise to the system stability is deter-67

mined by an algorithm. As is the case for barrier functions (Nocedal and Wright, 2006) the68

boolean variable causes a severe increase in the objective function if the system is deemed to69

be unstable. The evaluation of the boolean is system speci�c and therefore needs extensive70

trial and error. Furthermore, a badly scaled problem can occur, as the additional term in71

the objective gives a sharp increase close to instability.72

A good review on stability criteria embedded in MPC algorithms for continuous systems73

is given in Albalawi et al. (2018). The work presented therein is useful for many continuous74

systems in industry. As in this work batch reactors are considered these criteria cannot be75

transferred easily to the case studies considered in this work.76

In Kähm and Vassiliadis (2018b) a new stability criterion for exothermic batch reactors77

was introduced, which does not su�er from this issue. Furthermore, the methodology pre-78

sented in this work with Lyapunov exponents is similar to that shown in Kähm and Vassiliadis79

(2018b), but derived using di�erent numerical techniques.80

Lyapunov exponents quantify the chaotic nature of processes by measuring the divergent81

or convergent nature with respect to the relevant system variables (Strozzi and Zaldívar,82

1994; Melcher, 2003). This work focuses on the extension of Lyapunov exponents, based on83

the work given in Kähm and Vassiliadis (2018a).84

Other stability criteria are present in literature, as was discussed in Kähm and Vassiliadis85

(2018b) and Kähm and Vassiliadis (2018a). It was shown in both that the commonly used86

divergence criterion does not give reliable predictions on system stability for nonlinear non-87

steady-state processes. Therefore these criteria are not discussed further in this work.88

In literature most nonlinear MPC schemes implement a linearisation of the system present,89
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with which a linear MPC scheme can be used (Rawlings and Mayne, 2015). With such a90

formulation the stability of the closed-loop system can be proven theoretically by the use of91

Lyapunov functions (DeHaan and Guay, 2010; Huang et al., 2012). If no Lyapunov function92

can be found, end-point constraints are often employed for a very large prediction horizon.93

For complex and highly nonlinear systems this leads to higher computational cost as the94

system has to be simulated for a larger time frame. The use of an online stability criterion95

can reduce the time frame used by giving an indication of the system's stability at each point96

of the simulation.97

This work aims to achieve the following goals:98

• derive the optimal value for the initial perturbation ε for the numerical calculation of99

Lyapunov exponents100

• determine the time horizon tlyap for reliable stability prediction using Lyapunov expo-101

nents102

• explore the computational time of Lyapunov exponents embedded in MPC schemes for103

the intensi�cation of batch processes104

Achieving these goals leads to MPC schemes which can keep nonlinear non-steady-state105

systems under control while intensifying the process, reaching target conversion in shorter106

processing time and making batch processes more e�cient.107

This paper is organised as follows: in Section 2 the underlying system equations and108

reaction schemes used for the detailed analysis of Lyapunov exponents are introduced. This109

is followed by Section 3, where an in-depth sensitivity analysis of the initial perturbation110

ε and time horizon tlyap de�ning Lyapunov exponents, as well as their optimal values are111

presented. In Section 4 the computational time of implementing Lyapunov exponents within112

MPC schemes is compared to current nonlinear MPC schemes and the possibility of inten-113

sifying batch processes is presented. The key �ndings and prospects for future work are114

summarised in Section 5.115

2. Process model116

2.1. Reaction kinetics117

The reactions analysed in this work occur in a homogeneous liquid solution and are118

assumed to be irreversible.119
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2.1.1. Reaction scheme 1: single reaction120

Reaction scheme 1 corresponds to a single reaction given by the following equation:121

νA,1A + νB,1 B→ νC,1C (2.1)

The reaction kinetics for this reaction scheme is dependent only on the concentration122

of components A and B and their respective orders of reaction nA,1 and nB,1. The rate of123

reaction is given by:124

r1 = k0,1 exp

(
−Ea,1
RTR

)
[A]nA,1 [B]nB,1 (2.2)

where [A] and [B] are the concentrations of components A and B, Ea,1 is the activation energy125

of reaction 1, TR is the reactor temperature, R is the universal molar gas constant and k0,1126

is the pre-exponential Arrhenius constant for reaction 1.127

2.1.2. Reaction scheme 2: series reactions128

Reaction scheme 2 consists of the reaction shown in Reaction scheme 1, as well as a second129

reaction in running in series. This is given by:130

νA,1A + νB,1 B→ νC,1C (2.3)

νA,2A + νC,2C→ νD,2D (2.4)

The rate of the �rst reaction is given by Equation (2.2). The rate of the second reaction131

can be described with an Arrhenius expression (Davis and Davis, 2003), including the order132

of reaction nA,2 and nC,2 with respect to reactants A and C, respectively. This expression is133

given by:134

r2 = k0,2 exp

(
− Ea,2
RTR

)
× [A]nA,2 [C]nC,2 (2.5)

The parameters have the same meaning as for reaction scheme 1, but the numerical values135

di�er.136

2.1.3. Industrial reaction: Nitration of toluene137

The reaction of the nitration of toluene is an example of a complex industrial reaction138

carried out in batch reactors (Halder et al., 2008). The reaction is initiated by the formation139

of a nitronium ion
(
NO+

2

)
, proceeded by 3 parallel reactions with toluene:140

HNO3 + H2SO4 → NO+
2 + HSO−4 + H2O (1) (2.6a)

NO+
2 + C7H8 → o-C7H7NO2 + H+ (2) (2.6b)

NO+
2 + C7H8 → p-C7H7NO2 + H+ (3) (2.6c)

NO+
2 + C7H8 → m-C7H7NO2 + H+ (4) (2.6d)
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where the letters o-, p- and m- stand for ortho, para and meta positions of the nitronium ion141

on toluene (Mawardi, 1982). For simpli�cation, the reactions in Equations (2.6) are hereafter142

re�ered to as reactions (1) − (4). Each of reactions (2) − (4) depends on the concentration143

of the nitronium ion and toluene. Furthermore, as the energetics of each reaction is similar,144

it is assumed that the activation energy and enthalpy of reaction are equal for reactions145

(2)− (4). The kinetic rates, on the other hand, are di�erent: as described in Mawardi (1982)146

the product of such a reaction will form a molar mixture of 60% ortho-, 37% para-, and 3%147

meta-nitrotoluene.148

Each individual reaction can be described by Arrhenius rate expressions. The reaction149

rates are given by the following expressions:150

r1 = k0,1 exp
(
−Ea,1

RTR

)
× [HNO3]

η1 × [H2SO4]
κ1 (2.7)

r2 = k0,2 exp
(
−Ea,2

RTR

)
×
[
NO+

2

]η2 × [C7H8]
κ2 (2.8)

r3 = k0,3 exp
(
−Ea,3

RTR

)
×
[
NO+

2

]η3 × [C7H8]
κ3 (2.9)

r4 = k0,4 exp
(
−Ea,4

RTR

)
×
[
NO+

2

]η4 × [C7H8]
κ4 (2.10)

where η and κ are orders of reaction with respect to each reagent.151

2.2. Mass and energy balances for batch reactors152

A diagram of the batch reactor considered in the following simulations is shown in Figure 1.153

qC; TC;in; CpC; ρC

TT

TIC

µ; λ; ρ

VR; TR; CpR

Cooling
jacket

Figure 1: Batch reactor diagram for simulated systems.
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For all following equations reaction scheme 2 is considered as an example. The mass and154

energy balances for all remaining reaction schemes are adjusted accordingly.155

The overall mass balance with respect to time t is given by:156

d (ρVR)

dt
= 0 (2.11)

where ρ is the reaction mixture density and VR is the reactor volume.157

The mass balance for each reagent and product is given by:158

d [A]

dt
= −νA,1r1 − νA,2r2 (2.12)

d [B]

dt
= −νB,1r1 (2.13)

d [C]

dt
= νC,1r1 − νC,2r2 (2.14)

d [D]

dt
= νD,2r2 (2.15)

where r1 and r2 are the reaction rates given by Equations (2.2) and (2.5).159

The energy balance of the reaction mixture is given by:160

d
dt

(ρVRCpTR) = r1 (−∆Hr,1)VR + r2 (−∆Hr,2)VR − UA (TR − TC) (2.16)

where Cp is the reaction mixture heat capacity, ∆Hr,1 and ∆Hr,2 are the reaction enthalpy161

for each reaction, U is the heat transfer coe�cient from reactor contents to the cooling jacket,162

A is the heat transfer area of the cooling jacket, and TC is the coolant temperature.163

The energy balance for the cooling jacket is given by:164

d
dt

(VC ρC CpC TC) = qC ρC CpC (TC,in − TC) + U A (TR − TC) (2.17)

where VC is the cooling jacket volume, ρC is the coolant density, CpC is the coolant heat165

capacity and TC,in is the coolant inlet temperature.166

2.3. Process parameters167

The parameters speci�c to the reaction kinetics and energy produced are varied to get a168

range of processes, for which the stability is analysed. The di�erent processes are denoted169

by Pdc for process c of reaction scheme d. Below the various process parameters are shown.170

2.3.1. Reaction scheme 1171

The process parameters for reaction scheme 1 are summarised in Table 1.172
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Table 1: Process parameters for reaction scheme 1.

Process k0,1 ∆Hr,1 Ea,1/R [A]0 nA,1 nB,1 νA,1 νB,1[(
m3 kmol−1

)(n1−1) s−1
]∗ [

kJ
mol

]
[K]

[
kmol
m3

]
[−] [−] [−] [−]

P1
1 2.76× 106 -75.0 9525 13.0 1.0 0.0 1.0 1.0

P1
2 7.65× 105 -80.0 9525 13.0 1.5 0.0 1.0 2.0

P1
3 7.00× 103 -115 9480 13.0 2.0 1.0 2.0 1.0

P1
4 2.00× 103 -100 9450 13.0 2.5 1.0 2.0 2.0

P1
5 2.00× 102 -25.0 9525 13.0 3.0 1.0 1.0 1.0

P1
6 2.76× 106 -130 9525 8.0 1.0 1.0 1.0 1.0

∗ n1 = nA,1 + nB,1

The initial concentration of component B, and the initial temperature of the reactor173

are held constant for all the above processes. These are set to [B]0 = 21.1 kmol m−3 and174

TR0 = 395K.175

2.3.2. Reaction scheme 2176

The process parameters of the second reaction, which is in parallel with the �rst reaction,177

are given in Table 2.178

Table 2: Process parameters for reaction scheme 2.

Process k0,2 × 10−3 ∆Hr,2 Ea,2/R [A]0 nA,2 nC,2 νA,2 νC,2[(
m3 kmol−1

)(n2−1) s−1
]∗ [

kJ
mol

]
[K]

[
kmol
m3

]
[−] [−] [−] [−]

P2
1 40.0 -90.0 9400 10.0 1.0 1.0 1.0 2.0

P2
2 600 -110 9450 10.0 1.0 2.0 1.0 1.0

P2
3 500 -130 9525 10.0 1.5 1.5 1.0 2.0

P2
4 400 -250 9350 8.0 2.0 1.0 1.0 1.0

P2
5 200 -130 9300 11.0 2.0 2.0 1.0 2.0

P2
6 100 -90.0 9200 8.0 2.0 2.0 1.0 2.0

∗ n2 = nA,2 + nC,2

The initial concentration of components B and C, and the initial temperature of the179

reactor are held constant for all the above processes. These are set to [B]0 = 8.0 kmol m−3,180

[C]0 = 0.0 kmol m−3 and TR0 = 390K.181
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2.3.3. Industrial case study: Nitration of toluene182

The data used for this reaction network, relevant to industry, are given in Table 3.183

Table 3: Process parameters for the nitration of toluene reaction network (Luo and Chang, 1998; Sheats and
Strachan, 1978; Chen et al., 2008; Mawardi, 1982).

Reaction k0 Ea ∆Hr η κ[
m3mol−1 s−1

] [
kJ mol−1

] [
kJ mol−1

]
[−] [−]

(1) 2.00× 103 76.5 +30.0 1.00 1.00
(2) 109 12.5 -122 2.27 0.293
(3) 67.3 12.5 -122 2.27 0.293
(4) 5.46 12.5 -122 2.27 0.293

This reaction network includes both, an endothermic dissociation reaction (1) and the184

highly exothermic electrophilic substitution reactions (2) − (4), as shown in Section 2.1.3.185

Hence, this reaction process gives a good challenge in order to keep the process under control.186

The initial concentrations of each reagent are given by:187

[HNO3]0 = 6.0 kmol m−3 (2.18)

[H2SO4]0 = 1.0 kmol m−3 (2.19)

[C7H8]0 = 5.5 kmol m−3 (2.20)

These initial concentrations are used throughout all case studies for the nitration of188

toluene.189

2.3.4. Physical properties190

The changes in viscosity and speci�c heat capacity of the reaction mixture are estimated191

according to Hirschfelder et al. (1955), Teja (1983) and Green and Perry (2008):192

1

ρ
=

∑
j

yj/ρj (2.21)

lnµ =
∑
j

ȳj lnµj (2.22)

Cp =
∑
j

yj Cpj (2.23)

λ =
∑
j

ŷj λj (2.24)

where yj is the mass fraction, ȳj is the molar fraction, and ŷj is the volume fraction of193

component j.194

The physical data used for the equations above are given in Table 4.195
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Table 4: Physical properties of components A, B, C, D, toluene, mono-nitrotoluene mixtures and a mixture
of HNO3/H2SO4/H2O (Dever et al., 2004; Chen et al., 2008; Bohne et al., 2010; Crittenden et al., 2012).

Physical property ρ µ Cp λ
[units] [kgm−3]

[
Pa s−1

] [
J kg−1K−1

] [
W m−1K−1

]
Component

A 911 1.00× 10−4 1100 0.300
B 790 3.00× 10−4 950 0.250
C 1200 9.00× 10−4 850 0.150
D 1205 2.00× 10−4 4200 0.685

Toluene 870 6.00× 10−4 1700 0.141
Mono-nitrotoluene 1160 2.00× 10−4 1500 0.150

mixture
HNO3/H2SO4/H2O 1430 2.90× 10−4 2600 0.540

mixture

Since the accurate description of the composition relationships for liquid mixtures is very196

di�cult, Equations (2.21) − (2.24) together with the data in Table 4 are used to determine197

the physical properties of the reacting mixture.198

2.4. Reactor parameters199

The chemical reactors' models simulated have a cooling/heating jacket, as can be seen in200

Figure 1, which controls the reactor temperature by varying the coolant �ow rate. A stirrer201

in each reactor is assumed to be ideal in that all reactor properties are uniform within the202

reaction mixture. The coolant �ow rate is controlled by either a PI controller or by MPC.203

The reactor properties for each size of reactor are shown in Table 5.204

Table 5: Reactor properties used for all processes.

Parameter VR VC A qC,max

[units] [m3] [m3] [m2] [m3 s−1]

Process

P1
1 − P1

3 32 2.0 49 0.060

P2
1 − P2

3 20 1.4 36 0.043

P1
4 − P1

6 8 0.5 20 0.023

P2
4 − P2

6 0.8 0.17 4.2 0.005

The nitration of toluene was carried out in a batch reactor with the same parameters as205

for processes P2
1 − P2

3.206
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The heat transfer coe�cient U between the reaction mixture and the cooling jacket is207

evaluated from the �ow rate of coolant, as well as the properties of the reaction mixture and208

the coolant (Sinnot, 2005).209

A Proportional-Integral (PI) controller is employed to show the behaviour of thermal210

runaway reactions. The equation giving the output from a PI controller is given by:211

qC (t) = Kp (TR (t)− Tsp (t)) +
1

τI

t̂

t0

(TR (t′)− Tsp (t′)) dt′ (2.25)

where Kp is the proportional, τI is the integral parameter, Tsp (t) is the set-point temperature212

at time t, and t′ is a dummy variable for the integral.213

As the PI controller is simply used to show the transition of a thermally stable to a214

thermally unstable system, perfect tuning of the PI controller is not necessary. It is of215

greater importance in this work to see where the system becomes unstable. To achieve216

such a behaviour the tuning coe�cients were obtained by trial and error, resulting in the217

parameters given in Table 6.218

Table 6: Parameters for PI controller used in case studies.

Parameter Value

Proportional (P), Kp 10 m3 s−1K−1

Integral (I), τI 1000 K s2m−3

All simulations shown in this paper were carried out on an HP EliteDesk 800 G2 Desktop219

Mini PC with an Intelr CoreTM i5-65000 processor with 3.20 GHz and 16.0 GB RAM, running220

on Windows 7 Enterprise. The system dynamics were simulated using ode15s (Shampine221

et al., 1999) within MATLABTM. MATLABTM was used due to its simplicity of developing222

code.223

3. Lyapunov exponent method224

Many stability criteria are present in literature: Rossi et al. (2015); Melcher (2003); Strozzi225

and Zaldívar (1999, 1994); Anagnost and Desoer (1991); Barkelew (1959); Semenov (1940);226

Hurwitz (1895); Routh (1877). As was shown in Kähm and Vassiliadis (2018b) most of these227

do not apply to non-steady-state systems or do not give reliable results. Hence, Lyapunov228

exponents are considered which will be shown to give reliable results for such systems. Careful229

tuning of the parameters involved in this method has to be carried out.230
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3.1. Derivation231

The Lyapunov exponents describe how state variables �drift o�� after a large amount232

of time for an initial small perturbation ε. The deviation of the state variables is assumed233

to follow an exponential pro�le, which enables to quantify if a stable system is present. A234

diagram showing the evolution of this deviation is shown in Figure 2.235

t=s
t0

ǫ

δx(t) < ǫ ! stable

x(t0) + ǫ

x(t0)

t

x(t)

δx(t) > ǫ ! unstable

Figure 2: Deviation of an initially perturbed state variable for a stable system (blue line) and an unstable
system (red line), respectively.

The following expression quanti�es the deviation of an initially perturbed state variable236

after time t:237

ε exp (Λ (x0) t) = |x (t, x0)− x (t, x0 + ε) | (3.1)

Λ (x0) =
1

t
ln

(
|x (t, x0)− x (t, x0 + ε) |

ε

)
(3.2)

At the limit of a very small perturbation and in�nite time:238

Λ (x0) = lim
t→∞

{
1

t
ln

(∣∣∣∣δx (t, x0)

δx0

∣∣∣∣)} (3.3)

where Λ is known as the Lyapunov exponent (Strozzi and Zaldívar, 1994). Numerically,239

Lyapunov exponents can be evaluated by simulating several systems in parallel, for which240

each state variable is perturbed initially by an amount ε = δx0. Simulating the systems for241

an in�nite amount of time is of course infeasible. Therefore, a large time horizon is chosen242

instead, which is supposed to give a good approximation of the �nal value, known as the243

local Lyapunov exponent. This means that at each point in time, a long simulation is carried244
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out in order to �nd the local Lyapunov exponent, Λl, given by:245

Λl (x0, t) =
1

tlyap
ln

(∣∣∣∣δx (t+ tlyap, x0)

δx0

∣∣∣∣) (3.4)

The choice of the Lyapunov horizon tlyap in Equation (3.4) is made based on a detailed sen-246

sitivity analysis outlined in the sections below. Other methods for evaluating the Lyapunov247

exponents are available (Melcher, 2003).248

Due to the heat generation and removal of the reaction the variables of interest are [A],249

[B], TR and TC . Hence, the local Lyapunov exponents at time t for each state variable are250

evaluated by:251

Λl,1 ([A]0 , t) =
1

tlyap
ln

(∣∣∣∣ [A] (t+ tlyap, [A]0)− [A] (t+ tlyap, [A]0 + ε)

ε

∣∣∣∣) (3.5)

Λl,2 ([B]0 , t) =
1

tlyap
ln

(∣∣∣∣ [B] (t+ tlyap, [B]0)− [B] (t+ tlyap, [B]0 + ε)

ε

∣∣∣∣) (3.6)

Λl,3 (TR,0, t) =
1

tlyap
ln

(∣∣∣∣TR (t+ tlyap, TR,0)− TR (t+ tlyap, TR,0 + ε)

ε

∣∣∣∣) (3.7)

Λl,4 (TC,0, t) =
1

tlyap
ln

(∣∣∣∣TC (t+ tlyap, TC,0)− TC (t+ tlyap, TC,0 + ε)

ε

∣∣∣∣) (3.8)

The evaluation of the Lyapunov exponents requires a particular value of the control252

variable, in this case the coolant �ow rate. For both, PI and MPC controlled systems 95%253

cooling capacity is assumed. Detailed sensitivity analyses on choosing values for the initial254

perturbation, ε and the Lyapunov time frame, tlyap, are carried out in the following sections.255

A detailed description of the MPC scheme used is given in Section 4.256

3.2. Sensitivity analysis for initial perturbation ε257

To show how the choice of ε a�ects the results obtained for the Lyapunov exponents,258

a sensitivity analysis on ε is carried out for reaction schemes 1 and 2. For values of ε =259

100, 10−1, 10−2, 10−3, 10−4 the Lyapunov exponent pro�les are evaluated for process P1
1. The260

temperature pro�le for this process is shown in Figure 3.261
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Figure 3: Temperature pro�le of process P1
1.

The errors for each Lyapunov exponent with respect to the values obtained when setting262

ε = 10−5 and tlyap = 5000 s as a reference are computed and shown in Figures 4−7.263

Figure 4: Errors ε obtained for the Lyapunov exponents with respect to state variable [A], Λl,1, with changes

in the initial perturbation ε for process P1
1.
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Figure 5: Errors ε obtained for the Lyapunov exponents with respect to state variable [B], Λl,2, with changes

in the initial perturbation ε for process P1
1.

Figure 6: Errors ε obtained for the Lyapunov exponents with respect to state variable TR, Λl,3, with changes

in the initial perturbation ε for process P1
1.
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Figure 7: Errors ε obtained for the Lyapunov exponents with respect to state variable TC , Λl,4, with changes

in the initial perturbation ε for process P1
1.

The errors obtained for the Lyapunov exponents when using various initial perturbations264

are similar, and have a maximum value of approximately 10−3. This is a relatively large265

error, but the relative size compared to the magnitude of the Lyapunov exponents is of266

greater importance. For the second Lyapunov exponent with respect to the concentration of267

B the errors are close to zero. This is the case because the reaction kinetics for process P1
1268

do not depend on component B and therefore the initial perturbation of the concentration of269

B has no e�ect. The values obtained are more likely due to numerical e�ects and therefore270

of order 10−14.271

The smaller the initial perturbation, the more prone the stability detection is to �uctua-272

tions in the �nal values obtained. Since all pro�les mostly follow the same trend, an optimal273

initial perturbation of ε = 10−3 is chosen.274

No additional information can be obtained by reducing the size of the initial perturbation275

epsilon, as this can result in wrong predictions of the thermal stability due to numerical276

inaccuracies.277

3.3. Determination of reliable time horizon tlyap278

To show how the choice of tlyap a�ects the results obtained for the Lyapunov exponents,279

a sensitivity analysis on tlyap is carried out. For values of tlyap = 1000, 2500, 5000, 104, and280

5×104 s the Lyapunov exponent pro�les are evaluated for process P1
1, the temperature pro�le281

of which is shown in Figure 3. For clarity, only the analysis of process P1
1 is presented here,282

16



as for all other processes the similar results are obtained. The respective pro�les for each283

Lyapunov exponent with respect to the values obtained when ε = 10−3 are computed and284

shown in Figures 8−11.285

Figure 8: Lyapunov exponent pro�les with respect to state variable [A], Λl,1, with various setting for the

Lyapunov time frame tlyap for process P1
1.

Figure 9: Lyapunov exponent pro�les with respect to state variable [B], Λl,2, with various setting for the

Lyapunov time frame tlyap for process P1
1.
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Figure 10: Lyapunov exponent pro�les with respect to state variable TR, Λl,3, with various setting for the

Lyapunov time frame tlyap for process P1
1.

Figure 11: Lyapunov exponent pro�les with respect to state variable TC , Λl,4, with various setting for the

Lyapunov time frame tlyap for process P1
1.

In Figures 8, 10 and 11 it can be seen that di�erent Lyapunov horizons tlyap lead to di�er-286

ent predictions of system stability. For the Lyapunov exponents with respect to the concen-287

tration of B, shown in Figure 9, the values obtained are close to zero (of the order of 10−14),288
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as component B has no e�ect on the reaction kinetics. Furthermore it can be seen that289

the most useful Lyapunov exponent relates to the temperature of the system: for stability of290

batch reactors the thermal stability is of interest. Hence the Lyapunov exponent with respect291

to the temperature gives the best indication of system stability. The Lyapunov exponents292

with respect to concentration [A] are initially negative, only becoming positive in a sharp293

manner when the system starts to become unstable at t ≈ 500 s. Directly after the sharp294

increase, the values for Λl,1 become negative again, although the thermal runaway is starting.295

Therefore using Λl,1 as the main indicator of instability is unreliable. Nevertheless valuable296

information can be obtained at the point where the system becomes unstable.297

For the Lyapunov exponent with respect to the coolant temperature, Λl,4, no valuable298

information can be extracted as the values of the exponents do not correspond well to the299

temperature pro�le of the thermal runaway. This can be seen in Figure 11 as the regions300

in which Λl,4 > 0 do not coincide with the loss of stability after t = 550 s given by the301

temperature pro�le within the reactor, which is shown in Figure 3.302

The Lyapunov exponent with respect to the system temperature, Λl,3, gives a good esti-303

mate of the system stability when using a Lyapunov time frame of tlyap = 5000 s. At time304

t = 300 s a thermal runaway is predicted. At this point in time the temperature is 2 K305

below the loss of stability. Using a Lyapunov time frame of tlyap = 104 s predicts the stability306

correctly at t = 550 s. This time frame is twice the size of tlyap = 5000 s and as such will307

result in higher computational cost. As it is required to have a stability criterion with low308

computational cost, the optimal time frame of tlyap = 5000 s is chosen for further applications.309

The conservative nature of the stability estimate is in the best interest for control schemes,310

as therefore the boundary of stability is never crossed, giving stable operation.311

The Lyapunov exponents due to the concentrations do not give a clear indication of312

when the system becomes unstable. Nevertheless, for more complex systems, the e�ect due313

to concentration will not be ignored. As can be seen in Figure 8 there is a spike in the314

Lyapunov exponent with respect to the concentration of A at approximately 500 s, which315

suggests that valuable information can still be present. Therefore, for the PI control case316

studies following this section, only Λ3 corresponding to the reactor temperature is plotted.317

In the Model Predictive Control (MPC) case studies in Section 4 the Lyapunov exponents318

with respect to concentrations as well as reactor temperature are included as constraints in319

the MPC schemes.320

3.4. Veri�cation of Lyapunov exponents for system stability321

The veri�cation of Lyapunov exponents, evaluated with the optimal values for ε and tlyap322

found above, with respect to the point of loss of stability is carried out for reaction schemes323

1 and 2. Similarly to the results shown in Kähm and Vassiliadis (2018a), once it is shown324
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that Lyapunov exponents give a reliable prediction of system stability, this criterion can be325

applied to advanced control schemes such as MPC.326

3.4.1. Reaction scheme 1327

Detecting the stability of batch processes is the main task of the Lyapunov exponents in328

this work. Hence an initially stable process with PI control will arti�cially be made unstable329

with step changes in the set point temperature. The �rst step change in set-point temperature330

leads to a still controllable system, while the second step change causes the system to enter the331

unstable regime. Hence a clear transition form stable to unstable operation can be observed332

to prove Lyapunov exponents are reliable at predicting system stability. The temperature333

pro�les for processes P1
1 − P1

6 are shown in Figure 12.334

Figure 12: Temperature pro�les for processes P1
1 − P1

6 as solid lines. Temperature set-points are given by
dashed lines with respective colour.

The Lyapunov exponents for the temperature of the batch reactor contents, Λl,3, with335

respect to the above temperature pro�les are shown in Figure 13.336
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Figure 13: Lyapunov exponent pro�les with respect to reactor temperature, Λl,3, for processes P
1
1−P1

6. The
dotted line indicates zero, giving the switch-over from stable to unstable operation.

As can be seen in Figure 13 a thermal runaway of the reactor system is predicted before337

it occurs in Figure 12. For each system the instability is predicted approximately 2 K before,338

hence giving a conservative stability measure.339

From these results it can be seen that for single reactions, as given in reaction scheme 1,340

Lyapunov exponents are a reliable and conservative stability measure. In the following section341

it is shown that this criterion can also be used for more complex reaction schemes.342

The conservative nature comes from the predictive property as the perturbed state pro�les343

have to be simulated for a certain Lyapunov time frame tlyap. As was shown in Kähm and344

Vassiliadis (2018b) other stability criteria in literature result in extremely conservative pro-345

cesses if embedded in an MPC scheme. Lyapunov exponents do not give overly conservative346

estimates of stability as the processes to which they are applied are still intensi�ed.347

3.4.2. Reaction scheme 2348

In this section it is shown that the use of Lyapunov exponents is not only reliable for349

single reactions, but also for series reactions. The temperature pro�les of processes P2
1 − P2

6,350

the parameters of which are shown in Table 2, are shown in Figure 14.351
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Figure 14: Temperature pro�les for processes P2
1 − P2

6 as solid lines. Temperature set-points are given by
dashed lines with respective colour.

The respective Lyapunov exponent pro�les with respect to reactor temperature, Λl,3, are352

given in Figure 15.353

Figure 15: Lyapunov exponent pro�les with respect to reactor temperature, Λl,3, for processes P
2
1−P2

6. The
dotted line indicates zero, giving the switch-over from stable to unstable operation.

As was observed for reaction scheme 1, a conservative and reliable stability measure is354
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obtained for reaction scheme 2. The value of the Lyapunov exponent with respect to reactor355

temperature, Λl,3, becomes positive before a thermal runaway occurs. This gives advanced356

control schemes enough time to react to potential disturbances in the system. The thermal357

runaways are predicted 2-3 K before the thermal runaways occur, giving some robustness in358

case of deviations in temperature measurements.359

The case studies shown for reactions schemes 1 and 2 show that using Lyapunov expo-360

nents for measuring system stability is a feasible method. The implementation of Lyapunov361

exponents within MPC schemes is discussed in detail in the following section.362

4. Model Predictive Control with Lyapunov Exponents363

In this section the structure of common MPC schemes, as well as the scheme embedding364

Lyapunov exponents as presented in Kähm and Vassiliadis (2018a), is outlined. The basic365

concepts of MPC are described and the reformulation of the problem for such control schemes366

is shown. The computational time required for such a control scheme is analysed for cases367

where the respective batch reaction is intensi�ed, giving the smallest possible time to complete368

the reaction. Furthermore, the improved control pro�les and thermal stability of the processes369

controlled similar to Kähm and Vassiliadis (2018a) are outlined.370

4.1. Model Predictive Control Structure371

Model Predictive Control (MPC) started to be vastly implemented in industry in the372

1980s as an alternative to the then (and now) commonly used PID control (Lee, 1994, 2011).373

The advantage of MPC over PID controllers is the capability of optimising a system during374

operation, whilst considering system constraints and nonlinear system dynamics (Chuong La375

et al., 2017; Anucha et al., 2015; Mayne, 2014). Constraints cannot be included in PID control376

which leads to saturation of control valves or exceeding certain criteria for the process, e.g.377

maximum allowable temperatures.378

MPC is capable of using a process model to continuously carry out a speci�ed optimisation379

of control variables, also called inputs, in order to achieve that particular goal (Haber et al.,380

2011). For this purpose a method called �receding horizon� control is employed, which is381

described in detail in Rawlings and Mayne (2015) and Christo�des et al. (2011).382

In this approach of process control the process model is used to predict how the system383

will behave to certain input values. It is desired to reach a given reference trajectory as384

quickly as possible, while satisfying all constraints. The inputs are usually split into several385

control steps during which the value of the input does not change (piecewise constant) over a386

control horizon tc (Akpan and Hassapis, 2011). In order to make sure a solution is obtained387

which converges to the desired reference trajectory, a prediction horizon tp is included, for388
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which the system is simulated with the control inputs found from the optimisation. As is389

the case for PID control, tuning is an essential part for MPC: the number of control steps,390

the control horizon tc as well as prediction horizon tp have to be adjusted until satisfactory391

control is achieved (Christo�des et al., 2011). Except for some special cases, an extension of392

tp will lead to more stable control (Haber et al., 2011).393

The optimisation problem for the MPC implementation at time t(i), which is the ith step,394

is formulated in the following way (Rawlings and Mayne, 2015; Charitopoulos and Dua,395

2016):396

min
qC(t)

Φ(i) (x (t) , qC (t)) =

t
(i)
f̂

t
(i)
0

(TR − Tsp)2 dt (4.1a)

subject to:397

0 = h (x (t) , qC (t) , t) (4.1b)

TR ≤ Tchem (4.1c)∣∣∣q(i)C − q(i−1)C

∣∣∣ ≤ δqC (4.1d)

Λl,1, Λl,2, Λl,3 ≤ 0 (4.1e)

0 ≤ q
(i)
C ≤ qC,max (4.1f)

t0 ≤ t ≤ tf (4.1g)

where Φ(i) is the objective function of the optimisation, and x (t) are the state variables of398

the system, h (x (t) , qC (t) , t) are the equations giving the physical properties, t(i)0 and t(i)f399

are the initial time and �nal time of the simulation at step i, respectively, and Tchem is the400

chemical stability temperature. The change in coolant �ow rate between steps i and i − 1,401

q
(i)
C − q

(i−1)
C , is limited to at most equal to δqC , which is set to δqC = 0.05 qmax. Λl,1, Λl,2, Λl,3402

are the local Lyapunov exponents with respect to concentration of components A and B,403

and the system temperature, respectively, which are incorporated into the MPC scheme for404

improved stability of the resulting process. The problem given in Equations (4.1a) - (4.1g) is405

solved using the SQP optimisation algorithm (Nocedal and Wright, 2006) within fmincon in406

MATLABTM. The implementation of the optimal control problem solution with the nonlinear407

MPC framework was sequential.408

Three di�erent MPC schemes are considered in this section:409

1. MPC with Lyapunov exponents410

2. MPC with constant set-point temperature411

3. MPC with extended prediction horizon412
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The �rst scheme is the implementation discussed above and in Kähm and Vassiliadis413

(2018a). This MPC scheme uses a control horizon of tc = 40 s with four control increments,414

each with length of 10 s, and no extended prediction horizon. The Lyapunov horizon is set to415

tlyap = 5000 s with an initial perturbation of ε = 10−3, as derived from the sensitivity analysis416

in Section 3. For the evaluation of the Lyapunov exponents the cooling valve position after417

the control horizon is assumed to be 95%, as was done for all Lyapunov exponent evaluations418

before in this work.419

The second scheme is often found in industry: rather than increasing the temperature420

set-point during a process, it is easier to keep the reaction temperature constant in order to421

ensure stability of operation. This MPC scheme uses a control horizon of tc = 30 s with three422

control increments, each with length of 10 s, and no extended prediction horizon.423

The third scheme is an alternative to using stability criteria altogether: as the prediction424

horizon of the MPC formulation is extended, the optimisation algorithm should be able to425

�nd control inputs which keep the system close to the desired temperature set-point and426

within the de�ned constraints. The control horizon for this scheme is set to tc = 50 s with427

�ve control increments, each with length of 10 s, and a prediction horizon of tp = 10000 s.428

These three schemes are compared with respect to reliability of control and computational429

cost.430

4.2. Computational time of batch processes with Lyapunov exponents431

In this section the three MPC schemes described above are implemented to intensify reac-432

tion schemes 1 and 2, as well as the nitration of toluene, outlined in Section 2.1. Each MPC433

scheme is analysed in terms of computational time and stability to achieve an intensi�cation434

of the respective batch reaction.435

4.2.1. Intensi�cation of reaction scheme 1436

In this section the three MPC schemes discussed above are compared. The objective is437

to increase the reaction temperature to a maximum of Tchem = 470 K, whilst keeping the438

process under control. The temperature pro�les for each MPC implementation applied to439

processes P1
1 and P1

2 are shown in Figure 16.440
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Figure 16: Temperature pro�les for each MPC scheme applied to processes P1
1 and P1

2. Solid lines correspond
to process P1

1, dashed lines to P1
2. The dotted line represents the maximum allowable temperature of Tchem =

470K.

The MPC scheme incorporating Lyapunov exponents results in stable operation of the441

system. The reactor temperature increases in a steady manner until the maximum temper-442

ature is reached, without violating this constraint.443

A constant temperature set-point for the standard MPC implementation gives steady444

operation for processes P1
1 and P1

2. No thermal runaway occurs for these processes, as the445

temperature is not increased during the operation.446

The standard nonlinear MPC scheme using an extended prediction horizon does not yield447

stable operation. This is observed due to the thermal runaway peaks reaching a maximum448

temperature of TR = 820 K for both process P1
1 and process P1

2, therefore exceeding the449

maximum allowable temperature.450

The coolant valve positions for processes P1
1 and P1

2 controlled by each MPC scheme are451

shown in Figure 17.452
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Figure 17: Cooling valve position for each MPC scheme applied to processes P1
1 and P

1
2. Solid lines correspond

to process P1
1, dashed lines to P1

2.

In Figure 17 it is seen that the coolant valve position for MPC scheme 1 high cooling453

intensity is present at �rst for processes P1
1 and P1

2. As stable operation is reached, the extent454

of cooling is reduced hence intensifying the process. As the temperature increases, cooling is455

activated from time to time in order to keep the process stable.456

Keeping a constant reactor temperature for processes P1
1 and P1

2 is achieved with MPC457

scheme 2 by slowly reducing the cooling capacity, since as the concentration is depleted the458

reaction rate decreases, and hence the rate of heat generation of the reactor decreases also.459

MPC scheme 3 initially starts with low cooling capacity in contrast to MPC schemes 1 and460

2. This control is obtained as the prediction horizon is not large enough to recognise that the461

process will enter an unstable region. Therefore no cooling is present until the standard MPC462

scheme recognises that the maximum allowable temperature constraint cannot be satis�ed463

within the prediction horizon, upon which the cooling is increased at the maximum allowable464

rate.465

The temperature pro�les for each MPC implementation applied to processes P1
3 and P1

4466

are shown in Figure 24.467
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Figure 18: Temperature pro�les for each MPC scheme applied to processes P1
3 and P1

4. Solid lines correspond
to process P1

3, dashed lines to P1
4. The dotted line represents the maximum allowable temperature of Tchem =

470K.

The MPC scheme using Lyapunov exponents of the reactor temperature results in stable468

operation of processes P1
3 and P1

4. The reactor temperature is continuously increased, but469

always kept below the chemical temperature constraint of Tchem = 470K.470

A constant temperature set-point for processes P1
3 and P1

4 results in stable operation471

throughout each process. Due to the constant temperature it is expected that the rate of472

conversion for this control strategy is slower than for the other MPC schemes. Since MPC473

schemes 1 and 2 result in stable operation, the computational time of each will be of interest.474

Thermal runaways are observed for the processes using a standard MPC scheme with an475

extended prediction horizon. The peak temperatures for processes P1
3 and P1

4 are both at476

approximately TR = 800 K, exceeding the maximum allowable temperature. Therefore, this477

type of MPC strategy does not yield satisfactory system control.478

The temperature pro�les for each MPC implementation applied to processes P1
5 and P1

6479

are shown in Figure 19.480
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Figure 19: Temperature pro�les for each MPC scheme applied to processes P1
5 and P1

6. Solid lines correspond
to process P1

5, dashed lines to P1
6. The dotted line represents the maximum allowable temperature of Tchem =

470K.

The MPC scheme incorporating Lyapunov exponents results in stable operation of the481

system. The temperature of the reactor is increased continuously whilst staying below the482

maximum allowable temperature at all times. As the approach of using a stability crite-483

rion leads to stable operation, the computational time is of major importance for industrial484

application.485

The MPC scheme using a constant temperature set-point results, as expected, in stable486

operation of the systems. As will be shown below, keeping a constant temperature during487

the process results in a slow rate of conversion when compared to the other MPC schemes.488

As can be seen in Figure 19 the processes controlled by MPC with an extended prediction489

horizon did not yield stable operation. This is observed due to the thermal runaway peaks490

reaching a maximum temperature of TR > Tchem = 470 K, which therefore exceeds the491

maximum allowable temperature. This phenomenon occurs although a larger prediction492

horizon than for the MPC scheme incorporating Lyapunov exponents is used, because the493

standard nonlinear MPC scheme enters an unstable region without realising.494

The �rst point of concern for this analysis is the computational cost required for each495

control scheme. This is of importance since these control schemes have to be implemented in496

an industrial setting. The lower the computational cost for each iteration, the more likely a497

successful implementation for online control schemes. In Table 7 the computational cost for498

each control scheme and process are given.499
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Table 7: Computational cost for each control scheme applied to processes P1
1 − P1

6. For the standard MPC
scheme with an extended prediction horizon only the iterations before loss of stability are taken into account.

Computational time / CPU s
MPC scheme P1

1 P1
2 P1

3 P1
4 P1

5 P1
6

With Lyapunov exponents 3.4 2.6 4.4 5.5 6.9 2.9

Constant set-point temperature 0.84 0.82 0.76 0.90 0.93 1.1

Standard MPC with extended horizon 7.9 6.2 6.2 7.6 7.3 8.8

The intensi�cation of batch processes is one of the main aims of this work. To demon-500

strate this feature, the conversion pro�les for all the above processes are shown. The target501

conversion with respect to component A is set to 80% such that the performance of each502

MPC scheme can be compared.503

The conversion pro�les for processes P1
1 and P1

2 are shown in Figure 20.504

Figure 20: Conversion pro�les of component A for each MPC scheme applied to processes P1
1 and P1

2. Solid
lines correspond to process P1

1, dashed lines to P1
2. The dotted line represents the target conversion of 80%.

When using Lyapunov exponents the conversion increases continuously during each pro-505

cess. The MPC scheme using Lyapunov exponents results in reaching the target conversion506

after 3.2 h for process P1
1 and after 3 h for process P1

2.507

The use of standard nonlinear MPC with an extended prediction horizon of tp = 104 s508

yields a thermal runaway for P1
1 and P1

2: the conversion reaches 100% in a very sharp manner509

after 0.2 h for both process P1
1 and process P1

2.510
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Using a constant temperature set-point gives a very slow increase in conversion, not511

reaching the target conversion of 80% after approximately 5 h for processes P1
1 and P1

2.512

The conversion pro�les for processes P1
3 and P1

4 are shown in Figure 21.513

Figure 21: Conversion pro�les of component A for each MPC scheme applied to processes P1
3 and P1

4. Solid
lines correspond to process P1

3, dashed lines to P1
4. The dotted line represents the target conversion of 80%.

The control scheme using Lyapunov exponents gives a controlled increase in conversion,514

reaching the target conversion after 2.7 h for process P1
3, and after 2.5 h for process P1

4.515

As can be seen in Figure 21 a constant temperature set-point does not achieve any in-516

tensi�cation of the process. The target conversion of 80% is reached after 12 h for process517

P1
3 and after 15 h for process P1

4. The full timescale for these processes is outside the range518

shown in Figure 21 and omitted for clarity.519

Thermal runaways are obtained when using the standard MPC scheme with a prediction520

horizon of tp = 104 s. The maximum conversion of 100%, coinciding with the temperature521

peaks in Figure 21, occur at t = 0.1 h for process P1
3 and at t = 0.2 h for process P1

4.522

The conversion pro�les for processes P1
5 and P1

6 are shown in Figure 22.523
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Figure 22: Conversion pro�les of component A for each MPC scheme applied to processes P1
5 and P1

6. Solid
lines correspond to process P1

5, dashed lines to P1
6. The dotted line represents the target conversion of 80%.

The MPC schemes implementing Lyapunov exponents for the system temperature give a524

steady increase in conversion. For this MPC scheme the target conversion of 80% is reached525

after 2.6 h for process P1
5 and after 3.5 h for process P1

6.526

A constant set-point temperature again gives a very slower reaction rate, reaching the527

target conversion after 36 h for process P1
5 and after 4.9 h for process P1

6. The simulation528

horizon given in Figure 22 is not extended to this extent, as the graphs of major interest529

could not be observed otherwise.530

Not using stability criteria, but an extended prediction horizon for standard MPC for-531

mulations again gives thermal runaway reactions: the conversion reaches a maximum value532

of 100% after 0.1 h for process P1
5 and 0.2 h for process P1

6.533

From all the processes considered in this section, the processes using a constant temper-534

ature set-point required the lowest computational time, but the rate of conversion was very535

slow. The resulting processes were all stable, as no increase in reactor temperature occurred.536

The standard nonlinear MPC scheme with an extended prediction horizon did not manage537

to keep the processes under control: thermal runaways occurred for all processes using this538

control strategy. Hence using such a control scheme to intensify batch processes is not feasible.539

With a prediction horizon of twice the size of that used for the MPC scheme with Lyapunov540

exponents, the computational time is already higher than that of the other MPC schemes.541

Hence, further increasing the prediction horizon to obtain stable operation will result in an542

even slower MPC scheme, making it less e�cient for industrial application.543
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The MPC scheme using Lyapunov exponents results in stable operation of batch processes,544

while intensifying the reaction by continuously increasing the system temperature. The545

maximum temperature of Tchem = 470 K is never exceeded. The time required to reach the546

target conversion when compared to the constant temperature set-point processes is reduced547

by at least 1.5-fold. This demonstrates the value of using stability criteria within MPC548

frameworks.549

From the computational time it is seen that the MPC scheme using Lyapunov exponents550

results in a lower computational time than the standard MPC scheme. The MPC scheme551

using Lyapunov exponents is faster, as the prediction horizon is much smaller. The infor-552

mation about stability is obtained by the Lyapunov exponents directly. Using a constant553

temperature set-point gives the smallest computational time, but no process intensi�cation554

can be achieved with this MPC scheme.555

Hence, using Lyapunov exponents gives an MPC scheme which can intensify such pro-556

cesses, whilst reducing the computational time when compared to standard MPC schemes.557

How these results change with more complex reaction schemes is discussed in the following558

section.559

4.2.2. Intensi�cation of reaction scheme 2560

The three MPC schemes presented above are applied to processes P2
1−P2

6 in the same way561

as for processes P1
1−P1

6. Again, the maximum allowable temperature is set to Tchem = 470K,562

and the target conversion is set to 80%. The resulting temperature pro�les for processes P2
1563

and P2
2 are shown in Figure 23.564
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Figure 23: Temperature pro�les for each MPC scheme applied to processes P2
1 and P2

2. Solid lines correspond
to process P2

1, dashed lines to P2
2. The dotted line represents the maximum allowable temperature given by

Tchem = 470K.

The MPC scheme incorporating Lyapunov exponents results in stable operation of the565

system. The reactor temperature increases in a steady manner until the maximum temper-566

ature is reached, without violating this constraint.567

A constant temperature set-point for the standard MPC implementation gives steady568

operation for processes P2
1 and P2

2. No thermal runaway occurs for these processes, as the569

temperature is not increased during the operation.570

The standard nonlinear MPC scheme using an extended prediction horizon does not yield571

stable operation. This is observed due to the thermal runaway peaks reaching a maximum572

temperature of TR =730 K for processes P2
1 and P2

2, therefore exceeding the maximum al-573

lowable temperature. The temperature pro�les for each MPC implementation applied to574

processes P2
3 and P2

4 are shown in Figure 24.575
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Figure 24: Temperature pro�les for each MPC scheme applied to processes P2
3 and P2

4. Solid lines correspond
to process P2

1, dashed lines to P2
2. The dotted line represents the maximum allowable temperature given by

Tchem = 470K.

When embedding Lyapunov exponents within a standard MPC framework results in stable576

operation of processes P1
3 and P1

4. The reactor temperature is increasing continuously until577

the maximum allowable temperature is reached.578

Using a constant temperature set-point results in stable operation, as can be seen in579

Figure 24. Due to the constant temperature it is expected that the rate of conversion for this580

control strategy is slower than for the other MPC structures.581

The resulting temperature pro�les when using standard MPC schemes without a stability582

criterion show thermal runaway behaviour. The peak temperatures for processes P1
3 and P1

4583

are TR = 790 K and TR = 950 K, respectively, exceeding the maximum allowable temperature.584

As for the MPC implementation for reaction scheme 1, this is not an acceptable control585

behaviour. The temperature pro�les for each MPC implementation applied to processes P2
5586

and P2
6 are shown in Figure 25.587
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Figure 25: Temperature pro�les for each MPC scheme applied to processes P2
5 and P2

6. Solid lines correspond
to process P2

1, dashed lines to P2
2. The dotted line represents the maximum allowable temperature given by

Tchem = 470K.

The MPC schemes incorporating Lyapunov exponents result in stable operation of the588

system. The temperature of the reactor is kept below the maximum, while increasing in589

order to give a faster rate of convergence.590

A constant temperature set-point, as expected, gives stable operation of the batch reac-591

tor systems. The trade-o� for this control scheme is the slow rate of conversion, which is592

demonstrated in the conversion pro�les below.593

In Figure 25 it can be seen that unstable operation is the result of a standard MPC frame-594

work with an extended prediction horizon for processes P2
5 and P2

6. The thermal runaway595

peaks reach a maximum temperature of TR = 800 K and TR = 760 K for processes P2
5 and596

P2
6, respectively, exceeding the maximum allowable temperature.597

As the kinetic frameworks of the batch reactor system become more complex, it is expected598

that the computational cost also increases. Hence, the computational time of each MPC599

implementation for the more complex parallel reaction scheme is shown in Table 8.600
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Table 8: Computational cost for each control scheme applied to processes P2
1 − P2

6. For the standard MPC
scheme with an extended prediction horizon only the iterations before loss of stability are taken into account.

Computational time / CPU s
MPC scheme P2

1 P2
2 P2

3 P2
4 P2

5 P2
6

With Lyapunov exponents 5.5 5.2 7.3 8.0 7.4 5.7

Constant set-point temperature 0.91 0.85 0.95 0.98 1.0 1.2

Standard MPC with extended horizon 11 10 9.5 8.9 7.9 12

The intensi�cation of batch processes is the other major contribution of this work. For601

this purpose, the conversion pro�les of component A for each process, when controlled by602

the three presented MPC schemes, are demonstrated below.603

The conversion pro�les for each MPC implementation applied to processes P2
1 and P2

2 is604

presented in Figure 26.605

Figure 26: Conversion pro�les of component A for each MPC scheme applied to processes P2
1 and P2

2. Solid
lines correspond to process P2

1, dashed lines to P2
2. The dotted line represents the target conversion of 80%.

When using Lyapunov exponents the conversion increases continuously during each pro-606

cess, reaching the target conversion of 80% after 2.6 h for process P2
1 and after 3.6 h for607

process P2
2.608

The use of an extended prediction horizon with tp = 104 s for standard nonlinear MPC609

yields a thermal runaway, as can be seen in Figure 26. Full conversion of 100% is reached610

after only t =0.15 h for process P2
1 and after t =0.55 h for process P2

2.611
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Using a constant temperature set-point gives a very slow increase in conversion, reaching612

the target conversion of 80% after 5.1 h for process P2
1 and 8.5 h for process P2

2. For clarity613

this extended time frame is not shown here.614

The conversion pro�les for each MPC implementation applied to processes P2
3 and P2

4 are615

presented in Figure 27.616

Figure 27: Conversion pro�les of component A for each MPC scheme applied to processes P2
3 and P2

4. Solid
lines correspond to process P2

3, dashed lines to P2
4. The dotted line represents the target conversion of 80%.

The MPC scheme embedding Lyapunov exponents gives a controlled increase in conver-617

sion, reaching the target after 3.5 h for process P1
3, and after 5 h for process P1

4.618

In Figure 27 it can be seen that a constant temperature set-point does not achieve the619

target conversion within 6 h. The target conversion is reached after 15 h for process P2
3 and620

25 h for process P2
4, but for clarity the time frame presented here is truncated to show the621

graphs of major interest.622

Thermal runaways are obtained when using the standard MPC scheme with a prediction623

horizon of tp = 104 s. The maximum conversion of 100%, coinciding with the temperature624

peaks in Figure 27, occurs at t = 0.2 h for process P1
3, as well as for process P

1
4.625

The conversion pro�les for each MPC implementation applied to processes P2
5 and P2

6 is626

presented in Figure 28.627
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Figure 28: Conversion pro�les of component A for each MPC scheme applied to processes P2
5 and P2

6. Solid
lines correspond to process P2

5, dashed lines to P2
6. The dotted line represents the target conversion of 80%.

The MPC scheme embedding Lyapunov exponents gives a steady increase in conversion,628

reaching the target conversions of 80% after 3 h for process P2
5, and after 4.2 h for process629

P2
6.630

A constant set-point temperature again gives a very slow reaction rate, not reaching the631

target conversion within the simulation horizon given in Figure 28. The target conversion632

is achieved after 7.5 h for process P2
6, and is not reached within 50 h for process P2

5. The633

complete pro�les for these graphs are not shown in Figure 28 for clarity.634

Thermal runaway behaviour is obtained if no stability criterion is embedded within the635

MPC framework and only the prediction horizon tp is increased. This is observed on Figure 28,636

as 100% conversion is reached in a sharp manner after just 0.15 h for process P2
5 and 0.35 h637

for process P2
6.638

As was observed for processes P1
1 − P1

6 a signi�cant reduction in reaction time of at least639

2-fold was achieved compared to constant set-point temperature processes when using Lya-640

punov exponents as a stability measure, embedded within an MPC framework. Furthermore,641

stable operation was always obtained which is not the case for standard MPC schemes with642

an extended prediction horizon.643

The computational time of using Lyapunov exponents is shown to be smaller than for644

standard MPC schemes with large prediction horizon, but larger than for constant set-point645

temperature processes. As a larger prediction horizon would be required to give stable646

operation for the standard MPC approach, this would only increase the computational cost647
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further. Hence, using Lyapunov exponents can be used to intensify batch processes in a648

stable manner, while reducing computational cost. These results are in accord with the649

results obtained in Kähm and Vassiliadis (2018a).650

4.2.3. Computational time and intensi�cation of the nitration of toluene651

One of the major advantages of using Lyapunov exponents for the system temperature652

to predict thermal stability is the ease of implementation: if a reliable process model with653

the generation of heat is present, which in all likelihood is the hardest part, the Lyapunov654

exponents can easily be evaluated even for very complex reaction networks. To showcase this655

the nitration reaction described in Sections 2.1.3 and 2.3.3 is considered next.656

The aim of this case study is to prove that Lyapunov exponents embedded in MPC657

algorithms can be applied to more complex reaction networks, for which an intensi�cation658

can be achieved while keeping the process under control. For this purpose, the nitration659

reaction presented above is simulated for di�erent initial temperatures, while the maximum660

allowable temperature is set to Tchem = 510 K. The resulting temperature and conversion661

pro�les are presented below, as well as the computational time of using each MPC scheme.662

Due to the additional stability constraint, the objective of the optimal control problem663

in Equation (4.1a) can be changed to result in the most e�cient process:664

min
qC(t)

Φ(i) (x (t) , qC (t)) = − [o-C7H7NO2]
(
t
(i)
f

)
(4.2)

where [o-C7H7NO2]
(
t
(i)
f

)
is the concentration at �nal time t(i)f of the product, given by ortho-665

nitrotoluene, hereafter referred to as o-nitrotoluene. This optimisation tries to optimise666

the �nal concentration of o-nitrotoluene at each step of the MPC algorithm. Hence an667

optimisation of the product concentration is carried out with respect to constraints forcing668

the system to stay below the maximum allowable temperature, Tchem = 510 K, and keeping669

the system stable. This is not possible for standard MPC schemes, which if such an objective670

was given, would easily run into an unstable region resulting in a thermal runaway, as shown671

in Sections 4.2.1 and 4.2.2.672

As there are four reagents and one temperature in�uencing the rate of heat generation673

in this system, a total of �ve Lyapunov exponents have to be evaluated at each step. The674

in�uence of increasing the number of relevant system variables on the computational time is675

analysed below. The resulting computational time will show how close this method is to the676

limit of applicability in an industrial setting.677

The underlying MPC scheme uses a control horizon of tc = 30 s with three equal control678

steps, and a prediction horizon of tp = 30 s, hence not going beyond the control horizon.679

Since only the �rst MPC step is implemented, it is required that the computational time680
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does not exceed 10 s, which is the duration of the �rst control step. Otherwise this method681

is not fast enough to be implemented in industry.682

The intensi�cation is highlighted by comparing the concentration pro�les of the products683

when using MPC with Lyapunov exponents to MPC processes with constant set-point tem-684

peratures. The MPC settings are the same here as they were for the second MPC scheme685

presented in Section 4.1.686

The resulting temperature pro�les for the addition reaction with MPC and Lyapunov687

exponents are given in Figure 29.688

Figure 29: Temperature pro�les of nitration reaction using an MPC scheme including Lyapunov exponents
with di�erent initial temperatures. The solid line relates to TR0 = 450 K, the dashed line relates to TR0 =
440K and the dash-dotted line relates to TR0 = 430 K.

As can be seen, for none of the di�erent initial temperatures the maximum allowable tem-689

perature of 510 K is exceeded. This means that the MPC scheme with Lyapunov exponents690

successfully controls each process even as the initial temperature increases, which makes the691

reaction inherently less stable. The temperature can hence be increased continuously in a692

�exible manner along the stable reaction path de�ned by the Lyapunov exponents with the693

optimal parameter settings found earlier.694

The resulting temperature pro�les when keeping a constant temperature set-point with695

MPC are shown in Figure 30.696
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Figure 30: Temperature pro�les of nitration reaction using an MPC scheme with constant set-point temper-
atures. The solid line relates to Tsp = 450 K, the dashed line relates to Tsp = 440 K and the dash-dotted line
relates to Tsp = 430 K.

From Figure 30 it can be seen that constant temperature set-points lead to stable pro-697

cesses. This is the case as long as the start point of the process is not unstable, which would698

lead to thermal runaway behaviour.699

As for this complex reaction scheme the computational time at each iteration is of great700

importance, the average CPU seconds required per iteration for each MPC scheme are shown701

in Table 9.702

Table 9: Computational time for each MPC scheme applied to the nitration of toluene. For the unstable
MPC scheme only the iterations before loss of stability are taken into account.

Initial temperature of MPC scheme Computational time / CPU s

TR0 = 430 K 8.9

TR0 = 440 K 8.5

TR0 = 450 K 9.1

The respective concentration pro�les for each MPC system with Lyapunov exponents are703

shown in Figure 31.704
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Figure 31: Concentration pro�les of nitration reaction using an MPC scheme including Lyapunov exponents
with di�erent initial temperatures. The dotted line indicates the target concentration of o-nitrotoluene.

As the temperature for each process increases, the rate of increase in conversion increases.705

The target concentration for o-nitro-toluene of 2.5 mol m3 is reached after at most 6 h for706

all analysed processes. Furthermore it can be seen that a higher initial temperature leads to707

faster convergence. In order to quantify the extent to which these reactions are intensi�ed,708

the constant set-point temperature processes are considered next.709

The concentration pro�les for constant set-point temperatures within standard MPC710

schemes are shown below in Figure 32.711
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Figure 32: Concentration pro�les of nitration reaction using an MPC scheme with constant set-point tem-
peratures and with di�erent initial temperatures. The dotted line indicates the target concentration of
o-nitrotoluene.

Comparing Figures 32 and 31 highlights the intensi�cation achieved by using an MPC712

scheme with Lyapunov exponents: the concentration for o-nitrotoluene only reaches the tar-713

get concentration of 2.5 mol m3 after 13 h for a set-point temperature of 450 K. A lower714

set-point temperature does not reach the target concentration within 16 h. Hence an inten-715

si�cation of at least two-fold is achieved. To show the dynamic behaviour of these processes,716

the time frame is truncated up to 16.5 h.717

Figures 29 − 32 prove that using Lyapunov exponents as a stability measure for complex718

reaction kinetics works just as well as it does for simple reactions.719

The computational time is just below the upper limit of 10 s, hence showing the fea-720

sibility of this method. These results show that the limit of applicability of this method,721

implemented as outlined above, is reached. Considerable improvements for computational722

time are necessary in order to implement this in an industrial setting, where continuous pa-723

rameter estimation before the MPC stage could be necessary, requiring computational time724

as well. Hence, further improvements with respect to computational time are essential for725

a successful implementation in industry. Nevertheless, the batch processes of this industri-726

ally relevant reaction can be intensi�ed by the application of Lyapunov exponents within727

standard MPC schemes.728

For the reduction of computational time the underlying process model can potentially be729

simpli�ed. This can be done by removing reactions and components not contributing greatly730
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to the overall system behaviour.731

In this work the evolution of the stability is of major importance. The Lyapunov exponent732

with respect to the temperature gives the best indication of the system, which is based on733

the energy balance of the reactor. In the energy balance the contribution of each reaction734

i is weighted according to its fraction of the total heat generation, ri ∆Hr,i/
∑
m

(rm ∆Hr,m).735

Consider the rate of heat generation of the nitration reaction starting at TR0 = 440K, plotted736

in Figure 33 for the complete reaction mechanism, as well as the simpli�ed one introduced737

below.738

Figure 33: Fraction of total heat generation by each individual reaction for the complete and simpli�ed
reaction models. The solid lines represent the full mode, the dashed lines the simpli�ed model.

The sum of each fraction of total heat generation adds up to one. In this reaction network739

an endothermic reaction is present, hence reaction (1) has a negative fraction of total heat740

generation throughout. Furthermore, in the �rst 150 s of the reaction, the individual fractions741

of total heat generation can be larger than +1 and smaller than -1, as the sum of all reactions742

still adds up to one.743

The fraction of total heat generation for the formation of p-nitrotoluene, given by reac-744

tion (4), is below 3% for the full reaction model, as can be seen in Figure 33. Hence, to reduce745

the computational time, this particular reaction is removed in order to simplify the reaction746

model and reduce computational time.747

The pro�les of each fraction of total heat generation for the simpli�ed reaction model748

are shown as dashed lines in Figure 33. From the dashed lines it can be seen, that the heat749
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generation of reaction (4) is zero, whilst the pro�les of the other reactions follow the pro�les750

of the full reaction model closely.751

The temperature pro�les of the complete reaction model, as well as the simpli�ed model,752

are shown in Figure 34.753

Figure 34: Temperature pro�les for the complete and simpli�ed reaction models. The solid line represent the
full mode, the dashed line represents the simpli�ed model.

As can be seen in Figure 34 the temperature pro�les are very similar. In actual fact,754

the simpli�ed model predicts a sharp temperature increase before the full model. Therefore,755

assuming the formation of p-nitrotoluene is negligible with respect to the overall reaction756

behaviour is valid.757

The computational time required by each simulation is presented in Table 10.758

Table 10: Computational time of the MPC scheme with Lyapunov exponents for the full and simpli�ed
nitration reaction models.

Reaction model Computational time / CPU s

Full 8.5

Simpli�ed 7.6

As can be seen in Table 10 the computational time saved by reducing the complexity of759

the reaction model is 0.9 s. Therefore, simplifying the reaction model does indeed reduce the760

computational time. Hence, considering which reactions give rise to instability due to their761
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contribution to the total heat generation becomes important with more complex reaction762

schemes.763

5. Conclusions764

An introduction to measuring system stability of batch processes with Lyapunov expo-765

nents is given. The batch reactor system simulated in this work is presented, with all the766

equations describing the dynamic behaviour of such systems. Two kinetic reaction schemes767

are given, for which a detailed analysis of the application of Lyapunov exponents is carried768

out. The nitration of toluene is considered as a relevant case study, showing interesting769

thermal runaway behaviour if not controlled well.770

The theory underlying Lyapunov exponents is discussed in detail, outlining how the initial771

perturbation ε and time horizon tlyap de�ning local Lyapunov exponents are chosen optimally772

with the help of sensitivity analyses. PI control is applied to the batch reactor system intro-773

duced: an initially stable process is made unstable by increasing the set-point temperature774

in a step-wise manner. Hence a transition from stable to unstable operation is obtained. It775

is found that the Lyapunov exponents a�ecting the heat generation of the reaction are most776

relevant to the system stability. Therefore the number of Lyapunov exponents used can be777

decreased.778

Model Predictive Control (MPC) is introduced as an advanced control scheme and al-779

ternative to traditional PI(D) control. The ability to include system constraints enables the780

inclusion of stability measures for improved system control and process intensi�cation. It is781

found that including Lyapunov exponents as additional system constraints yields intensi�ed782

batch processes kept under control at all times. A continuous increase in system tempera-783

ture by increasing the prediction horizon of a standard MPC scheme gives unstable control,784

leading to thermal runaway behaviour. Constant set-point temperature processes, commonly785

found in industry, are under control but the rate at which the target conversion is reached is786

very slow in comparison.787

Furthermore, a reduction in computational time is achieved when using this stability788

criterion as opposed to an increased prediction horizon. The resulting MPC scheme imple-789

mentation is fast enough for reactions with up to 5 relevant variables, although MATLABTM
790

is being used. Hence it should be noted that as the number of system variables analysed us-791

ing Lyapunov exponents increases, the computational time required per MPC step increases792

signi�cantly. Using other programming languages, e.g. C++ or FORTRAN, can give a sig-793

ni�cant reduction in computational cost. The use of parallel computing for the constraint794

evaluation will also be investigated to improve computational e�ciency.795

The computational time can be was shown to be reduced by simplifying the reaction796
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kinetics underlying the system according to the contribution of each reaction to the total797

heat generation, which becomes important as the model becomes more complex.798

Setting Lyapunov exponent values as hard constraints within the OCP formulation in799

Equation (4.1a) can potentially lead to infeasibility. In such a scenario the cooling capacity800

is increased as much as possible according to Equation (4.1d), as this is the most stabilising801

action possible for the batch systems analysed. Increasing the control horizon to have more802

control increments with smaller time frames, such that maximum cooling capacity can be803

achieved at the end of the control horizon, would mitigate this issue and will be analysed804

in future work. Furthermore, additional theoretical considerations on the feasibility of the805

MPC formulations will be carried out in future work.806

Incorporating a stability constraint as a hard constraint for continuous systems controlled807

by MPC has been considered in literature (Zhang et al., 2018; Albalawi et al., 2018, 2017).808

For such continuous systems with a particular operating point such a control scheme is not809

always necessary, as the stability of operating points even for strongly nonlinear systems can810

be proven theoretically with Lyapunov stability functions (Haÿkerl et al., 2018; Gri�th et al.,811

2017). The methods presented in Albalawi et al. (2016) are rigorous for continuous reactor812

systems. Applying such methods to batch reactors would be bene�cial and are hence subject813

to future work.814

Future work will focus on implementing Lyapunov exponents to other complex reaction815

kinetics of batch reactors. More advanced MPC schemes will be implemented to speed up816

the time required for each iteration. The e�ect of uncertainty in process parameters and817

model-plant-mismatch on the reliability of Lyapunov exponents have to be considered for818

future applications. The robustness of stability criteria for online applications is of major819

importance and hence needs consideration in future work.820
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