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Human bias towards more recent events is a common
and well-studied phenomenon. Recent studies in visual
perception have shown that this recency bias persists
even when past events contain no information about the
future. Reasons for this suboptimal behavior are not well
understood and the internal model that leads people to
exhibit recency bias is unknown. Here we use a well-
known orientation estimation task to frame the human
recency bias in terms of incremental Bayesian inference.
We show that the only Bayesian model capable of
explaining the recency bias relies on a weighted mixture
of past states. Furthermore, we suggest that this mixture
model is a consequence of participants’ failure to infer a
model for data in visual short-term memory, and reflects
the nature of the internal representations used in the
task.

Introduction

In a rapidly changing world our model of the
environment needs to be continuously updated. Often
recent information is a better predictor of the
environment than the more distant past (Anderson &
Milson, 1989; Anderson & Schooler, 1991): For
example, the location of a moving object is better
predicted by its location one second ago than a minute
ago. However, human observers seem to rely on recent
experience even when it provides no information about
the future at all (Burr & Cicchini, 2014; Cicchini,
Anobile, & Burr, 2014; Fischer & Whitney, 2014;
Fritsche, Mostert, & de Lange, 2017; Liberman,
Fischer, & Whitney, 2014). Such recency bias seems to
be domain-general and not constrained to a particular
task or feature dimension (Kiyonaga, Scimeca, Bliss, &
Whitney, 2017). Why should this be so, and what can it
tell us about the mechanisms of perception and
memory?

The most extensive quantitative data on the human
recency bias comes from a study of visual orientation
estimation by Fischer and Whitney (2014). In that
study participants were presented with a randomly
oriented grating (Gabor) on each trial and asked to
report the orientation by adjusting a bar using the
arrow keys (Figure 1A).

Participants’ error distributions revealed that al-
though responses were centered on the correct orien-
tations over the course of the entire experiment, on a
trial-by-trial basis the reported orientation was sys-
tematically (and precisely) biased in the direction of the
orientation seen on the previous trial. For example,
when the Gabor on the previous trial was oriented
more clockwise than the Gabor on the present trial,
participants perceived the present Gabor as being tilted
more clockwise than its true orientation (Figure 1B).

Since the orientations of the stimuli were generated
randomly in this task, the recency bias indicates that
participants are not behaving optimally. In other
words, the previous trial contained no information
about the next trial and hence the optimal model would
consider all orientations as equally likely in the future.
In this case the participants’ error distributions would
simply be proportional to the sensory noise and always
centered around the true stimulus value (Figure 2A, top
row). However, here participants assume a model of the
environment where past states are informative about
the future (Figure 2A, bottom row), which is clearly
false.

In the current study we use the orientation estima-
tion task (Fischer & Whitney, 2014) to investigate what
is the participants’ model of the environment that gives
rise to the recency bias. We frame this question in terms
of sequential Bayesian inference, which allows us to test
hypotheses about the participant’s model of the
environment at any trial given sensory information
(orientation of the Gabor) and the recorded response
(Figure 2; see also Bayesian orientation estimation in
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Supporting information). We test three alternative

hypotheses about the model behind the recency bias,

which are all formulated as sequential Bayesian

inference models so that they can be directly compared

to each other.

Von Mises filter

First, we test the hypothesis that participants assume

that the current state of the environment is the best

guess about its future. This identity model is the

Figure 1. Orientation estimation task (Fischer & Whitney, 2014). (A) Participants observed randomly oriented Gabor stimuli and

reported the orientation of each Gabor by adjusting a response bar. Stimuli were presented for 500 ms and separated in time by 5 s.

(B) Single subject’s errors (red dots) as a function of the relative orientation of the previous trial. Gray line is average error; red line

shows a first derivative of Gaussian (DoG) curve fit to the data. (C) Average recency bias amplitude across participants computed for

stimuli presented one, two, and three trials back from the present. Error bars represent 61 SD of the bootstrapped distribution.

Figure 2. Bayesian orientation estimation and recency bias. The participant’s estimate of the orientation (p(zjy), green line) combines

sensory evidence (p(yjz), blue line) with prior expectation (p(z), red line). The participant’s response can be thought of as a sample

from the posterior distribution. All distributions are Von Mises since orientation is a circular variable. (A) Top row: For optimal

behavior, the participant’s prior should be flat and posterior equal to the sensory evidence. Bottom row: Recency bias occurs when

information about previous stimuli (orientation estimate at trial n – 1, green line in top row) is transferred to the prior expectation

about the next stimulus (red line, bottom row). Here the prior for trial t is just the posterior from previous trial t – 1. (B) Natural prior

model. Top row: The participant’s prior is based on the statistics of the natural environment (Girshick et al., 2011). Bottom row: The

participant’s prior is a mixture of the previous stimulus and the natural statistics.
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simplest Bayesian incremental updating model (a
Bayesian filter) that can plausibly represent the
orientation estimation task. Bayesian filters (such as the
Kalman filter; Kalman & Bucy, 1961) are widely used
in explaining human behavior and have been previously
proposed to explain the temporal continuity effects in
perception (Burr & Cicchini, 2014; Rao, 1999; Wolpert
& Ghahramani, 2000).

Here we use the circular approximation of the
Kalman filter called the Von Mises filter (VMF) where
the latent state and measurement noise are distributed
according to Von Mises and not Gaussian distributions
(Kurz, Gilitschenski, & Hanebeck, 2016; Marković &
Petrović, 2009). An example of a simple VMF is
depicted on Figure 2A, where the prediction p(zt) at the
bottom row is derived from the previously estimated
posterior distribution pðzt1 jyt�1Þ, or in other words, the
latent state transition model is identity. See Von Mises
filter in Methods for details.

Natural prior model

A simple identity model as outlined above ignores
the fact that people’s orientation judgments are more
accurate at cardinal orientations, reflecting the statistics
of contours in a natural environment (Girshick, Landy,
& Simoncelli, 2011). Such bias suggests that the

observer’s internal model matches the environment, a
hallmark of Bayesian optimality. Figure 3 depicts
orientation statistics of a natural image and partici-
pants’ orientation sensitivity extracted from a behav-
ioral task (Girshick et al., 2011). Hence we can
supplement the identity model with a natural prior so
that participants modulate the identity prediction by
taking into account the natural statistics of orientations
in the environment.

Since the size of the recency bias in the task was
independent of stimulus orientation (Fischer & Whit-
ney, 2014), we can rule out a static natural prior in
advance. Instead, we assume here that the prior is a
mixture of the stimulus on the previous trial and the
natural prior distribution. An illustration of a single
step in the natural prior model is depicted on Figure
2B, where the prediction zt is equal to the mixture of
the previous stimulus and a static natural prior. See
Natural prior model in Methods for details.

Mixture model

Last, we test the hypothesis that participants’
predictions incorporate information from multiple past
trials. Such a mixture model assumes that the partici-
pant’s model of the environment is a mixture of
multiple past states so that more recent states

Figure 3. Natural prior for orientation (Girshick et al., 2011). (A) A natural image (left) and a distribution of contour orientations

extracted from the image. (B) Average prior distribution of orientations across all participants estimated with a noisy orientation

judgment task. The gray error region shows 61 SD of 1,000 bootstrapped estimated priors. (C) Observers’ average prior as reported

by Girshick et al. (2011; dotted blue line) represented as a mixture of two Von Mises distributions (solid blue line), which has two

components peaking at cardinal orientations (dotted yellow and red lines).
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contribute more than older ones. The two previous
hypotheses both assume that the model of the
environment p(z) is inferred only based on the previous
latent state. Contrastingly, the human recency bias
clearly extends beyond the previous state—it is greatest
for the most recent state and decays for each further
state into the past (Figure 1C). In order to model such
time-decaying recency bias over several past states we
modify the VMF so that its prior distribution reflects a
time-decaying mixture of information from multiple
previous trials. Figure 4 illustrates the evolution of the
latent state p(z) in a mixture model over four trials.
Importantly, such mixture distribution is computed by
a fixed sampling step (Kalm, 2017), which results in a
computationally first-order Markovian model, which
has the same number of parameters and model
complexity as the natural prior model described above.
See Mixture model in Methods for details.

Note that we can a priori rule out approaches that
track the average orientation or some other summary
statistic (Dubé, Zhou, Kahana, & Sekuler, 2014;
Hubert-Wallander & Boynton, 2015) since with ran-
dom stimuli they would all be uninformative about the
past (however, see Manassi, Liberman, Chaney, &
Whitney, 2017 for sequential dependencies in summary
statistical judgments themselves).

Methods

Von Mises filter

Here we use the circular approximation of the
Kalman filter called the Von Mises filter (VMF) where
the latent state and measurement noise are distributed

according to Von Mises and not Gaussian distribu-
tions,

zt ¼ aðzt�1Þ þ qt qt ;VMð0; jQt
Þ ð1Þ

yt ¼ hðztÞ þ rt rt ;VMð0; jLt
Þ ð2Þ

where jQ and jL are latent state and measurement
noise concentration terms, respectively. An example of
a simple VMF is depicted on Figure 2B, where both
state transition and measurement models are identity
functions and state noise is zero, resulting in a model
where the predicted state zt is equal to the previously
estimated posterior distribution pðzt1 jyt�1Þ. The poste-
rior distribution, being a product of two Von Mises
distributions and representing a participant’s estimate,
therefore also approximates Von Mises (see Product of
two von Mises distributions in Supporting information
for details):

pðztjytÞ}VMðlEt
;jEt
Þ: ð3Þ

This allows us to define recency bias on any trial t as
the distance which posterior mean lEt

has moved away
from the presented stimulus yt towards some previous
stimulus value yt–n. Such estimation error represents the
systematic shift in participants’ responses since the
internal estimate of the perceived orientation (Equation
3) is not centered around the presented stimulus yt
(Figure 2). The value of the estimation error, as a
distance between the posterior mean and stimulus
value, can be easily derived from the properties of the
Von Mises product:

yt � lEt
¼ arctan

jQt
sin yt

jQt
cos yt þ jLt

: ð4Þ

Importantly, this estimation error function (Equa-
tion 4) allows us to describe the possible space of
recency biases by mapping the systematic shift of the
estimation error towards previously observed orienta-
tions (Figure 5).

Such mapping of all possible shapes of the recency
bias (Figure 5B) reveals that when Von Mises
distributions are used for Bayesian inference, the
recency bias always peaks more than halfway through
the x-axis (Figure 5; for a proof, see Von Mises filter
properties in Supporting information). This property
means that the VMF cannot even theoretically yield a
derivative of a Gaussian (DoG)-like recency bias shape
as observed with human participants (Figure 1B).

Model parameters

To model the perceptual noise around the stimulus
value (Equation 2) we used a fixed concentration
parameter for the likelihood function (jL), which was
chosen so as to produce the just noticeable difference

Figure 4. Mixture model. Evolution of the mixture latent state

over five trials.
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(JND) values matching human data from Fischer and
Whitney (2014) (average JND was 5.398, hence r ¼
3.81138 and jL¼ 0.0688). The concentration parameter
for the state noise jQ was a free parameter optimized to
minimize the distance between the simulated data and
the average observed subjects’ response (see Model
fitting and parameter optimization in Supporting
information).

Natural prior model

We modified the VMF so that instead of predicting
the next state based on the current one (identity model),
we assume that everything else being equal, cardinal
orientations are more likely than oblique ones and
reflect this in our prediction. We can do this by using
the natural prior distribution function as the state
transition model, which changes the predictive prior
distribution p(ztjzt–1) on trial t from unimodal Von
Mises to bimodal nonparametric distribution. For this
purpose we model the average observers’ prior as
reported by Girshick et al. (2011) as a mixture of two
Von Mises distributions, which has two components
peaking at cardinal orientations (solid blue line on
Figure 3C):

aðzÞ; b1VMðz; 0; j1Þ þ b2VMðz;p;j2Þ

¼ expðj1 cosðzÞÞ
2pI0ðj1Þ

þ expðj2 cosðz� pÞÞ
2pI0ðj2Þ

: ð5Þ

We can now specify the equations for the Bayesian
filter (Equations 1 and 2) with the natural prior with a
state transition model aðzt�1Þ as a bimodal mixture
peaking at cardinal orientations (Equation 5; Figure
3C), the measurement model is identity, and the noise
for both is additive Von Mises.

However, if the prior would always predict cardinals
over obliques, we would only observe recency bias for
the trials that were preceded by orientations close to
cardinal angles. Since the size of the recency bias in the
behavioral experiment was independent of stimulus
orientation (Fischer & Whitney, 2014), we can rule out
a fixed natural prior (Equation 5) in advance. Instead,
we assume here that the prior is a mixture of the natural
prior and the previous posterior.

aðzt�1Þ;

b1pðzt�1jyt�1Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{previous posterior

þ b2VMðz; 0; j1Þ þ b3VMðz; p;j2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{natural prior

Þ
ð6Þ

This leads to a prediction that is still biased towards
the previous trial but mixed with the natural prior
(Figure 6). In general terms, we assume here that
participants have both a bias towards previous
orientations and natural statistics of the environment
(Figure 3). Importantly, such multimodal prior means
that participants’ estimates (posterior distribution) are
also not Von Mises, which allows for recency bias
curves qualitatively different from Von Mises ones.

Figure 5. Recency bias with Von Mises distributions. (A) Example of Von Mises recency bias with fixed prior and likelihood parameters

(jL¼ 1.5, jQ¼ 1, Equation 4). Recency bias is greatest when the distance between the prior mean and stimulus (x-axis) is ca 668 (1.15

radians) (black dotted line). (B) The shape of the recency bias depends on the ratio of likelihood to prior concentration jLt=jQt

(differently colored lines). See Von Mises filter properties in Supporting information for details.
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Model parameters

For the natural prior model (NPM) we used the
same perceptual noise parameter (jL) as in the VMF
described above. Here we used an additional free
parameter—the proportion of the previous posterior
(b1) in the prior distribution (Equation 6). Importantly,
when b1 . 0.5 (Figure 6A) the previous posterior
would dominate the resulting prior and hence the
model would start to approximate the VMF. Similarly,
as b1 approaches zero (Figure 6B) the natural prior
component will dominate the prior distribution. As in
our previous simulations we chose the free parameter
values (jQ, b1) to minimize the distance between the
simulation and behavioral results observed by Fischer
and Whitney (2014). See Model fitting and parameter
optimization in Supporting information for details.

Since the predictive prior distribution resulting from
the mixture components is nonparametric, we used a
discrete circular filter to approximate the distributions
in this simulation. The discrete filter is based on a grid
of weighted Dirac components equally distributed
along the circle (Kurz, Gilitschenski, & Hanebeck,
2013; Kurz et al., 2016) and was implemented with
libDirectional toolbox for MATLAB (MathWorks,
Natick, MA; Kurz, Gilitschenski, Pfaff, & Drude,
2015). Because in the unidimensional circular state
space of orientations the quality of approximation is
only given by the number of components, we felt that
10,000 Dirac components can adequately approximate
a distribution of a circular variable. For details on the
implementation of the filter algorithms see Discrete
circular filter with Dirac components in Supporting
information.

Mixture model

In order to model a time-decaying recency bias over
several past states we modify the basic VMF so that the
state transition model (a(�), Equation 1) predicts the

next state based on a recency-weighted mixture of m
past states:

aðzt�1; . . . ; zt�mÞ; h1pðztjzt�1Þ þ . . .þ hmpðztjzt�mÞ

¼
XM
m¼1

hmpðztjzt�mÞ: ð7Þ

Here hm is a mixing coefficient for the m-th past
state. We can control the individual contribution of a
past state zm to the resulting mixture distribution by
defining how the mixing coefficient h decays over the
past states:

hm ¼ ah0ð1� bÞm: ð8Þ
Here b is the rate of decrease of the mixing

coefficient over the past m states and a is a normalizing
constant. As a result we have a decaying time window
into the past m states defined by the rate parameter b.
The role of the b parameter is to control the decrease of
the mixing coefficient h over past states. Figure 7A
illustrates the relationship between the b and h
parameters: The bigger the b, the faster the contribu-
tion of past states decreases and greater the proportion
of most recent states to the mixture distribution
(Equation 7). As b approaches 1, the mixture begins to
resemble zt–1 and approximate the first-order VMF
described above:

lim
b!1

; pðztjzt�1; . . . ; zt�mÞ; pðztjzt�1Þ:

Conversely, as b approaches zero, all past states
contribute equally to the mixture. Intuitively, b could
be interpreted as the bias towards more recent states.
Figure 7B illustrates the evolution of the latent state
distribution p(z) when b¼0.5 and the mixing coefficient
decays over the previous states.

Importantly, the mixture distribution is computed by
a fixed sampling step (for details of the mixture
sampling algorithm see Kalm, 2017, and Mixture
model in Supporting information). Hence the mixture

Figure 6. Prior distribution as a mixture between the previous posterior p(zt–1jyt–1) and the natural prior distribution (Equation 5).

Depicted are two mixtures of the same components. (A) Equal mixture (solid blue line) of 50% previous posterior (dotted red line)

and 50% natural prior (dotted green line). (B) Mixture (solid blue line) of 10% previous posterior (dotted red line) and 90% natural

prior (dotted green line).
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model is computationally first-order Markovian and
has the same number of parameters and model
complexity as the NPM described above.

In sum, we have a circular Bayesian filter where the
state transition model a(�) is a mixture function over
past m states (Equation 7). The proportion of the
individual past states in the mixture—and therefore the
effective extent of the window into the past—is
controlled by the b parameter. As in previous models,
the measurement model is identity, and both state and
measurement noise (jQ and jL) are additive Von Mises.

Model parameters

We used the same perceptual noise parameter (jL) as
in the VMF and NPM simulations described above.
The free parameters in the mixture model (MM) were
the mixing coefficient hyper-parameter b (Equation 8)
and state noise (jQ). As with previous simulations, the
free parameters were chosen to minimize the distance
between the simulated data and the average observed
subjects’ response (see Model fitting and parameter
optimization in Supporting information).

Statistical effects of interest

In each trial, we simulated the participant’s response
kt by taking a random sample from the posterior
distribution: kt ; pðztjytÞ. We then calculated three
statistical effects as follows:

1. Distribution of errors—we fit a Von Mises
distribution to the simulated errors yielding mean
(l) and concentration values (jE). We then
calculated the similarity between our simulated
error distribution and participants’ average dis-
tribution by assessing the probability of simulated
l and jE given the distribution of participants
bootstrapped �l and jE.

2. DoG recency bias curve—we fit the simulated
errors with a first DoG curve (see Recency bias
amplitude as measured by fitting the derivative of
Gaussian in Supporting information for details),
and as above, calculated the probability of the
curve parameters arising from the distribution of
participants’ bootstrapped parameter distribu-
tions.

3. DoG recency bias over past three trials—we
calculated the amplitude of the DoG curve peak
for stimuli presented one, two, and three trials
back. We sought to replicate a positive but
decaying recency bias over three previous stimuli.

Results

We used all three models to simulate participants’
responses using the stimuli and experimental structure
provided by the authors (824 trials with fully random-
ized stimuli). We sought to replicate three statistical
effects observed in the behavioral experiments: zero-

Figure 7. Mixture model. (A) Values of the mixing coefficient h over past states (zt�1; . . . ; zt�m) based on different b values. h
represents the proportion of a past state zt in the mixture distribution (Equation 7). (B) Evolution of the latent state p(z) over four

trials.
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mean distribution of the errors, DoG-like fit of the
recency bias (Figure 1B), and significant recency bias
over multiple past trials (Figure 1C). See Statistical
effects of interest in Methods for details.

Von Mises filter

The best fitting VMF could not successfully replicate
any of the three statistical effects. The distribution of
errors was centered around zero but its concentration
was significantly different from human data (Figure
8A, VMF; p ¼ 0.026). Similarly, the maximum of the
simulated recency bias was significantly removed from
the human data (ca 208 for humans; ca 458 for the
VMF; Figure 8B, VMF). Furthermore, it can be shown
that the VMF cannot even theoretically have a
maximum of the bias at less than p/4 radians (or 458),
which means it is incapable of replicating the DoG-like
curve of the human recency bias (see Von Mises filter
properties in Supplementary Figure S1). The VMF also
could not replicate recency biases for stimuli presented
two or three trials ago (Figure 8C, VMF). In sum, the
VMF can simulate a recency bias but it is qualitatively
different from human bias and only extends one trial
back.

Natural prior model

The NPM could only partially replicate the behav-
ioral effects. The error distribution was centered
around zero but was significantly different from
participants’ data (Figure 8A, NPM; p , 0.001).
However, because NPM’s prior and posterior distri-
butions are not Von Mises it was able to capture the
DoG-shaped curve of the recency bias (Figure 8B,
NPM). The NPM was still not able to capture either
the amplitude of the recency bias or extend it back
more than one previous trial (Figure 8C, NPM). This
was to be expected since the NPM, like the VMF, also
predicts the next state based only on the previous one
(first order Markovian). In sum, the NPM was able to
replicate the DoG-shaped recency bias curve but only
for stimuli one trial back. Furthermore, the error
distributions simulated by the NPM were significantly
different from participants’ average with variance of
the response reduced by approximately twofold.

Mixture model

The mixture model was able to successfully simulate
all three statistical effects of interest: The distribution
of errors was not significantly different from the
participants’ data (Figure 8A, MM; p¼ 0.23); the

recency bias fit the DoG-shaped curve (Figure 8B,
MM); and a significant recency bias was evident over
multiple past states (Figure 8C, MM). Importantly, the
best-fitting b parameter value for the mixture model
was b¼ 0.75, which effectively sets the time window for
the mixture distribution at three to four past states (see
Figure 7A, column 2, b ¼ 0.7).

Discussion

In this paper we investigated the internal model of
the environment that leads people to show a recency
bias.

First, we showed that participants cannot be using a
simple Bayesian filter that predicts the orientation on
the current trial based only on the previous one.
Furthermore, we showed that a first-order identity
model is theoretically incapable of producing the
recency bias observed in the orientation estimation
task. This suggests that previous proposals that a
simple first-order Bayesian model (such as Kalman or
VMFs) could explain the temporal continuity over
trials and hence the recency bias (Burr & Cicchini,
2014; Rao, 1999; Wolpert & Ghahramani, 2000) are
misplaced. Second, we showed that a more complex
model, where participants use the natural statistics of
the environment in addition to the previous stimulus, is
similarly incapable of simulating the recency bias.
Although such an approach is significantly better at
replicating the DoG-like shape of the recency bias
curve, it still lacks a mechanism to extend the bias
beyond the most recent state. Finally, we showed that a
model where the prediction about the next stimulus
incorporates information from multiple past orienta-
tions can successfully simulate all aspects of the recency
bias. Specifically, the participant’s model of the
environment is assumed to be a mixture of multiple
past states so that more recent states contribute more
than older ones.

The classical Bayesian interpretation of our results
suggests that the recency bias is a result of model
mismatch: People infer an incorrect model for data
resulting in suboptimal inference. This view posits that
people are either incapable of recognizing randomness
or inevitably assume a model for the data since it is an
efficient strategy for the natural environment, where
random data is rare (Bar-Hillel & Wagenaar, 1991).
Specifically, if a recency-weighted prediction works well
in the natural environment, where temporal continuity
prevails, people would also wrongly apply that model
to random data. However, a more parsimonious
explanation exists. Perhaps, rather than inferring the
wrong model (out of many models that might be
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Figure 8. Results. Comparison of model simulation results (black) with human data from Experiment 1 (red; Fischer & Whitney, 2014).

(A) Error histograms: black—model simulation, red—average human participant. Solid lines depict Von Mises fits to error

distributions. (B) Recency bias: Black circles show errors of the simulated responses. Solid black line shows a DoG curve fit to the

simulated errors, red line shows the human recency bias (average DoG fit to human errors). Dotted vertical lines show the location of

the maxima of the recency biases (black—model; red—human participants). (C) Average recency bias amplitude computed for stimuli

presented one, two, and three trials back from the present. Gray bars—model; red bars—human participants. Error bars represent

61 SD of the bootstrapped distribution.
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inferred), the recency bias may simply be a consequence
of the way past experiences are represented in memory.

This can be made explicit in the framework of
Bayesian filtering: The prediction for the next state is
calculated by applying a state transition function a(�) to
m past states:

zt ¼ aðzt�1; . . . ; zt�mÞ þ q;

where q is state noise. According to the model
mismatch explanation, the state transition function a(�)
is the recency-weighed mixture function (Equation 7).
Importantly, this assumes that all data from past m
states is potentially available for the state transition
function a(�) to generate a prediction. Participants’
suboptimal behavior is hence caused by applying the
mixture model to data representing past m states.
However, exactly the same prediction would be
generated if the state transition function a(�) would not
perform any transform at all—is identity—but the data
from the past m states is itself a recency weighed
mixture. This is a more realistic interpretation since the
former hypothesis assumes unlimited storage for past
experiences. Similarly, the latter interpretation does not
require any model selection at all (out of possibly
infinite models) and is hence a more parsimonious view.

Consider what happens when the model of the
environment is unknown and needs to be inferred in
real time: For random data, such model inference is
always bound to end in failure as no model can explain,
compress, or more efficiently represent random input.
The most efficient representation of a random latent
variable is the data itself and not data plus model. In
other words, people might not be applying the wrong
model to the data; rather they may be failing to apply
any model at all. The recency-weighted bias over
multiple past states instead reflects the observer’s
representation of the past. This is in agreement with
previous proposals that stimulus representation in
visual estimation tasks might include partially ‘‘over-
writing’’ previous representations with newer ones
(Matthey, Bays, & Dayan, 2015). Note that abandon-
ing Bayesian inference altogether by simply ignoring
the previous states would actually result in optimal
performance in the task with random data. However,
this strategy would immediately run into trouble should
a pattern begin to emerge in data that is initially
random.

Therefore we propose that instead of having the data
and just applying a ‘‘wrong’’ model to it—a classic case
of Bayesian model mismatch—the recency bias emerges
because participants are continuously and unsuccess-
fully attempting to infer a model based on previous
states. In formal terms, the state transition model
contains no information (it is identity) and hence the
predictive prior distribution simply reflects the observ-
er’s representation of the past.

In sum, our results indicate that the recency bias that
appears when participants are confronted with random
data must be driven by a mixture of past states. We
suggest that the most parsimonious explanation of our
results is that participants fail to infer a model for the
data and fall back on treating the internal representa-
tion of the data itself as the best prediction for the
future.

Supporting information

Bayesian orientation estimation

We can model participants’ behavior on the orien-
tation estimation task (Figure 1) as probabilistic
inference by combining their prior expectations about
the orientation of the Gabors with immediate sensory
evidence on a given trial (see any of Fiser, Berkes,
Orbán, & Lengyel, 2010; Ghahramani, 2015; Griffiths,
Chater, Kemp, Perfors, & Tenenbaum, 2010; Pouget,
Beck, Ma, & Latham, 2013, for a primer on human
probabilistic inference).

Hence, we can model the participants’ internal
representation (zt) given the orientation of the pre-
sented Gabor (yt) on trial t as Bayesian inference:

pðztjytÞ
zfflfflffl}|fflfflffl{posterior

} pðytjztÞ
zfflfflffl}|fflfflffl{likelihood

� pðztÞ
zffl}|ffl{prior

:

The posterior distribution p(ztjyt) represents a partic-
ipant’s estimate of the orientation on trial t and their
response can be thought of as a sample from the
posterior distribution. Since orientation is a circular
variable we need to use a probability distribution
wrapped on a circle to represent variables of interest
(here we use a Von Mises distribution; Figure 2A). We
model the sensory evidence, or the likelihood distribu-
tion, as Von Mises noise around the value of the
stimulus yt on trial:

pðytjztÞ;VMðyt;jLÞ:
We fix the value of the likelihood noise parameter jL

for every trial and derive it from the participants’
average JND as derived with Experiment 3 in Fischer
and Whitney (2014). See Measurement noise concen-
tration parameter in Supporting information for details.

Bayesian filtering

We assume that at every time-step t observation yt
corresponds to a latent variable zt (internal represen-
tation of orientation), which over time forms a Markov
chain, giving rise to the latent state space model. Hence,
the state of the latent variable zt is inferred at every
time step t using the Bayes theorem based on the
previous state zt–1 and current observation (sensory
information) yt:
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pðztjytÞ } pðytjztÞ � pðztjzt�1Þ:
Assuming that noise in the internal representation

and observation is additive, then the evolution of the
latent variable z is predicted by the state transition
model and the likelihood of the observations y are
given by the measurement model:

zt ¼ a zt�1ð Þ þ qt ð9Þ

yt ¼ hðztÞ þ rt: ð10Þ
Assuming that the state transition and measurement

models (a and h) are arbitrary but known functions and
qt and rt are additive noise, we can carry out Bayesian
inference at every time step by first predicting the next
state of the latent variable given the past state
(Equation 9) and then updating this prediction when
observable data is measured (Equation 10) to give us a
Bayesian posterior distribution of the latent variable
(see Bishop, 2006; Sarkka, 2013, for a detailed
description of state space models).

This two-step process is called Bayesian filtering. If
the evolution of the state-space is linear and the noise is
Gaussian, then the optimal probabilistic state space
model is the Kalman filter (Kalman & Bucy, 1961).
Kalman filters have been extensively used for problems
where the future state of the environment can be
predicted from just the previous few states with
sufficient accuracy, such as in object tracking or
phoneme recognition. An in-depth mathematical ex-
planation of the Kalman filter, and how it is derived
from the Bayesian estimation problem, can be found in
any good book covering digital signal processing—for
example, in Sarkka (2013). However, Gaussian distri-
butions are not appropriate when the latent state space
is wrapped on a circle. A circular analogue of the
Kalman filter is the VMF.

Measurement noise concentration parameter

Participants’ psychometric functions were estimated
in Fischer and Whitney (2014) as JNDs by using a two-
interval forced-choice task (experiment 3 in Fischer &
Whitney, 2014). We converted the JND values (rP) to
the measurement concentration parameter jL as JND
relates to the standard deviation (r) of the normal
distribution:

r ¼ rPffiffiffi
2
p ð11Þ

and since the concentration of the Von Mises
distribution can be approximated as j ¼ 1=r2 we get

j ¼ 2

r2
P

: ð12Þ

The mean JND (rP) across subjects was 5.398

(Fischer & Whitney, 2014), so we used r¼ 3.81138 and
jL ¼ 0.0688.

Product of two von Mises distributions

Given two von Mises probability density distribu-
tions, pðx; l1; j1Þ and pðx; l2;j2Þ, the resulting product
is an unnormalized von Mises distribution (Murray &
Morgenstern, 2010):

pðx; l; jÞ ¼ expðj cosðx� lÞÞ
4p2I0ðj1ÞI0ðj2Þ

ð13Þ

where the mean l and concentration j are respectively:

l ¼ l1 þ arctan2ð� sinðl1 � l2Þ;
j1

j2
þ cosðl1 � l2ÞÞ ð14Þ

j ¼ ðj2
1 þ j2

2 þ 2j1j2 cosðl1 � l2ÞÞ�1: ð15Þ

VMF properties

In the VMF the recency bias at any trial t is given as
the distance that posterior mean lEt

has moved away
from the presented stimulus yt towards some previous
stimulus value yt–n. Since the posterior in VMF is a
product of two individual Von Mises distributions
(likelihood and prior) such distance (yt � lEt

, recency
bias on trial t) can be computed analytically by
evaluating lEt

as Equation 14:

yt � lEt
¼ yt � ðl1 þ arctan2ð� sinðl1 � l2Þ;

j1

j2
þ cosðl1 � l2ÞÞÞ:

ð16Þ

Since yt is the mean of the likelihood and hence l1 of
the first Von Mises components, we can fix the prior
mean (l2 of the second Von Mises component) to zero,
and hence assign:

l1 ¼ yt j1 ¼ jLt
ð17Þ

l2 ¼ 0 j1 ¼ jQt
: ð18Þ

Making these replacements in Equation 16 gives us:

yt � lEt
¼ yt � ðyt þ arctan2ð� sinðytÞ;

jLt

jQt

þ cosðytÞÞÞ;

ð19Þ

which after some rearranging becomes:
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yt � lEt
¼ arctan

jQt
sin yt

jQt
cos yt þ jLt

: ð20Þ

It follows that the estimation error (Equation 4) is
only dependent on two parameters: (a) distance
between the prior mean and stimulus (lQt

� yt; x-axis
on Figure 5); and (b) ratio of likelihood to prior
concentration (jLt

=jQ
t
, differently colored lines on

Figure 5B). Such mapping of all possible shapes of the
recency bias reveals several interesting findings.

First, in order to observe a recency bias the
concentration of the likelihood has to be greater than
the concentration of the prior: jLt

.jQt
. Conversely,

when jLt
, jQt

, the posterior mean will be closer to the
prior mean than to the stimulus and the bias curves on
Figure 5 will be inverted. In other words, likelihood
concentration has to be on the average greater than
prior for a participant’s response error distribution to
be centered around zero. In general terms this means
that perceptual noise in the task has to be smaller than
uncertainty about the next stimulus.

Second, one would intuitively expect the estimation
error (yt � lEt

, y-axis), and hence the recency bias, to
be greatest when the distance between the prior and
stimulus (lQt

� yt;) is greatest (x-axis maxima and
minima on Figure 5B). However, as shown in Figure
5B for various values of jLt

=jQ
t
, this is not the case

because of the circular nature of Von Mises. As the
distance between the prior mean and stimulus ap-
proaches maximum (antipodean angle), the influence of
the prior decreases so that the mean of the posterior
tends back towards the stimulus. At maximum distance
(6p/2 on the x-axis on Figure 5B) the influence of the
prior is zero and the posterior mean is equal to the
stimulus.

Finally, and most importantly, no value of jLt
=jQ

t

can even theoretically yield a DoG-like recency bias
shape as observed in Fischer and Whitney (2014;
Figure 1B): The Von Mises recency bias cannot have
maxima or minima between –p/4 and p/4 (see Minima
and maxima of the recency bias in Von Mises filter
below for details). In other words, when Von Mises
distributions are used for Bayesian inference, the
recency bias always peaks more than halfway through
the x-axis. Contrastingly, DoG curves fitted to
participant data in Fischer and Whitney (2014) peak
close to zero and between 6p/4 (Figure 1B). In sum, a
DoG-shaped recency bias is not even theoretically
possible if participants use Bayesian inference and Von
Mises distributions for orientation estimation.

Minima and maxima of the recency bias in VMF

We find the extrema of Equation 4 by setting its first
derivative to zero:

j2
Qt
þ jLt

cosðxÞjQt

j2
Lt
þ 2 cosðxÞjLt

jQt
þ j2

Qt

¼ 0; ð21Þ

which gives us maximum and minimum at

p 6 arccosðjQt
=jLt
Þ: ð22Þ

In order to observe a positive recency bias, the
likelihood concentration has to be greater than prior’s
ðjQt

=jLt
� 1Þ and therefore arccosðjQt

=jLt
Þ can only

take values between [0, p/2].
Finally, we need to convert this result to the stimulus

space used in the behavioral experiments—the Von
Mises distribution is wrapped on a full circle [0, 2p],
while in the orientation estimation task, stimulus values
were wrapped on the top half of the circle [–p/2, p/2]
(Fischer & Whitney, 2014). Equation 22 wrapped
between 6p/2 gives 6p/4 as the new limits to the
extrema.

Recency bias amplitude as measured by fitting the
derivative of Gaussian

The errors as a function of between-trial orientation
distance (Figure 1B) were fitted with a first DoG curve
as given by Fischer and Whitney (2014):

y ¼ xawce�wx
2

; ð23Þ
where x is the relative orientation of the previous trial,
a is the amplitude of the curve peaks, w scales the curve
width, and c is the constant

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=e�0:5

p
, which rescales

the curve so that the a parameter numerically matches
the height of the positive peak of the curve for ease of
interpretation: The amplitude of serial dependence (a)
is the number of radians that perceived orientation was
pulled in the direction of the previous stimulus.

Model fitting and parameter optimization

To evaluate how well the simulated recency bias fit
with the observed behavioral data we measured the
distance between the simulated recency bias DoG curve
to the one observed in the behavioral experiments
(Fischer & Whitney, 2014). The distance between the
simulated and observed curves was measured as the
sum of squared errors (SSE) across orientations bins.
Figure 0.1 displays the average DoG curve recency bias
fit across the participants. To find the value of free
parameters (latent state noise and mixing coefficient)
that yielded recency biases most similar to behavioral
results, we performed a grid search across parameter
space. We used state noise jQ values from 48 to 480
(step size log(x)) and b values from 0.2 to 0.9 (step size
0.05). We used the parameter values that yielded the
lowest SSE to the average participants’ DoG curve
(Supplementary Figure S1).
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Natural prior

Here we used the average participants’ prior as
reported in Girshick et al. (2011) as the natural prior
distribution. This was modeled as a mixture of two von
Mises distributions with means fixed at 0 and p radians,
respectively.

b1VMðz; 0; j1Þ þ b2VMðz;p;j2Þ

¼ expðj1 cosðzÞÞ
2pI0ðj1Þ

þ expðj2 cosðz� pÞÞ
2pI0ðj2Þ

: ð24Þ

We used MATLAB’s nonlinear and derivative-free
model fitting function fminsearch with 108 iterations
and an ordinary least squares cost function to estimate
the values of mixing coefficients (b1 ¼ 0.0215, b2¼
0.0178) and von Mises concentrations (j1¼0.8365, j2¼
0.8728). The resulting mixture and its fit with data from
Girshick et al. (2011) is depicted on Figure 3C.

Discrete circular filter with Dirac components

A detailed derivation of the circular filter using Dirac
mixtures can be found in Kurz et al. (2013, 2016).
Briefly, a wrapped Dirac mixture with L components
and Dirac positions b1; . . . ; bL 2 ½0; 2p� is defined as:

fðxÞ ¼
XL
j¼1

xjdðx� bjÞ; ð25Þ

where xj are weighting coefficients and
PL

j¼1 xj ¼ 1. A
Von Mises distribution can be approximated by a
wrapped Dirac mixture,

fdðxÞ ¼ dðx� ðl� aÞÞ1=3þ dðx� lÞ1=3
þdðx� ðlþ aÞÞ1=3

by calculating l as the circular mean

l ¼ arctan2
XL
j¼1

sinðbjÞ;
XL
j¼1

cosðbjÞ
 !

(i.e., the argument of the first circular moment), and by
matching the first circular moment to obtain j.

Mixture model

A detailed derivation of the mixture model and the
sampling algorithm can be found in Kalm (2017) and
Raftery (1985). What follows is a brief overview of the
approach.

The latent state z can be modeled as the mixture of
its past states by using a mixture state transition
function (see Berchtold & Raftery, 2002; Raftery, 1985,
for details). This method considers the effect of the
each of the past m states separately. Specifically, the
conditional probability distribution pðztjzt�1; . . . ; zt�mÞ

is modeled by a mixture distribution of past m states:

pðztjzt�1; . . . ; zt�mÞ ¼ h1fðztjzt�1Þ þ . . .
þ hmfðztjzt�mÞ

¼
XM
m¼1

hm ; fðztjzt�mÞ; ð26Þ

where h is a mixing coefficient so that

0, hm � 1; and
XM
m¼1

hm ¼ 1:

We assume that the mixing coefficient h, declines
over m time steps as given by some decay function /
and the rate of decay parameter b:

hm ¼ /ðm; bÞ:
Here we use an exponential decay function /, so that:

hm ¼ /ðm; bÞ ¼ ah0ð1� bÞm; ð27Þ
where b is the rate of decrease (0 � b , 1) and a
normalizing constant. Substituting hm into Equation 26
gives:

pðztjzt�1; . . . ; zt�mÞ ¼
XM
m¼1

ah0ð1� bÞm ; fðztjzt�mÞ:

ð28Þ
In order to limit the computational cost of per-

forming inference at every time step, we represent the
distribution of latent variable z with a fixed number of
samples L. As a result the proportion of samples
assigned to a particular component of the mixture
distribution (representing a past state) is determined by
the mixing coefficient h:

pðztjzt�1; . . . ; zt�mÞ ¼
XM
m¼1

hm ; fðztjzt�mÞ

’
XM
m¼1

XhL
l¼1
ffðztjzt�mÞgl; ð29Þ

where L is the total number of samples, hL is rounded
to the nearest integer, and ffðztjzt�mÞgl is a set of l
samples drawn from pðztjzt�mÞ.

The property of constant number of samples l for
every m-th component of the mixture at any time-step
(fztjzt�mgl) is important since it greatly simplifies the
approximation of the mixture distribution (Equation
28) algorithmically. If at every time-step t we take a
fixed proportion b from the existing mixture distribu-
tion and reassign those samples to represent the most
recent component, then after m steps we end up with
the same proportion of components as given by
Equation 28. It follows that a mixture distribution of
past m states with exponentially decaying proportions
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of past m components can be approximated by
sampling from just fðztjzt�1Þ and the previous state of
the mixture fzt�1g at every time step t.

Keywords: orientation perception, optimal behavior,
implicit memory
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