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DNA methylation: A model system

for the study of ageing

Thomas Michael Stubbs

DNA methylation is an important epigenetic mark spanning all of life’'s kingdoms.
In humans, DNA methylation has been associated with a wide range of age-related
pathologies, including type II diabetes and cancer. More recently, in humans, changes
in DNA methylation at specific positions in the genome have been found to be pre-
dictive of chronological age. Interestingly, DNA methylation age is also predictive of
health status and time-to-death. A better understanding of what these DNA methyla-
tion changes represent and whether they might be causative in the ageing process will
be important to ascertain. However, at present there is no animal model system with
which this process can be studied at a mechanistic level.

Furthermore, it is becoming increasingly apparent that many disease states that in-
crease in prevalence with age are not caused by all cells within the individual, but
are often the result of changes to a subset of cells. This underscores the importance
of studying these processes at the single cell level. The recent advances in single cell
sequencing approaches now mean that we can study multiple layers of biology within
the same single cell, such as the epigenome and the transcriptome (scM&T-Seq). Un-
fortunately, we are still only able to probe these important aspects of single cell biology
in a static sense. This is a major limitation in the study of ageing because ageing and

age-related disease processes are inherently dynamic. As such, it is incumbent upon us



to develop approaches to assay single cell biology in a dynamic manner.

In this thesis, I describe an epigenetic age predictor in the mouse. This predictor is
tissue-independent and can accurately predict age (with an error of 3.33 weeks) and
can record deviations in biological age upon interventions including ovariectomy and
high fat diet both of which are known to reduce lifespan. Next, I describe the analysis
of a homogeneous population of muscle satellite cells (MuSCs) that I have interro-
gated at the single cell level, using single cell combined transcriptome and methylome
sequencing (scM&T-seq). I found that with age there was increased global transcrip-
tional variability and increased feature-specific methylome variability. These findings
explain the loss of functionality of these cells with age. Lastly, I describe two imaging
approaches to study DNA methylation dynamically in single cells. Using these meth-
ods, I demonstrate that it is possible to accurately determine methylation status across
a wide spectrum of global methylation levels and that by using such approaches novel
information about dynamic methylation processes can be obtained. These methods

represent the first to study DNA methylation dynamically.
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Summary

DNA methylation is an important epigenetic mark spanning all of life’'s kingdoms.
In humans, DNA methylation has been associated with a wide range of age-related
pathologies, including type II diabetes and cancer. More recently, in humans, changes
in DNA methylation at specific positions in the genome have been found to be pre-
dictive of chronological age. Interestingly, DNA methylation age is also predictive of
health status and time-to-death. A better understanding of what these DNA methyla-
tion changes represent and whether they might be causative in the ageing process will
be important to ascertain. However, at present there is no animal model system with
which this process can be studied at a mechanistic level.

Furthermore, it is becoming increasingly apparent that many disease states that in-
crease in prevalence with age are not caused by all cells within the individual, but
are often the result of changes to a subset of cells. This underscores the importance
of studying these processes at the single cell level. The recent advances in single cell
sequencing approaches now mean that we can study multiple layers of biology within
the same single cell, such as the epigenome and the transcriptome (scM&T-Seq). Un-
fortunately, we are still only able to probe these important aspects of single cell biology
in a static sense. This is a major limitation in the study of ageing because ageing and
age-related disease processes are inherently dynamic. As such, it is incumbent upon us
to develop approaches to assay single cell biology in a dynamic manner.

In this thesis, I describe an epigenetic age predictor in the mouse. This predictor is
tissue-independent and can accurately predict age (with an error of 3.33 weeks) and can
record deviations in biological age upon interventions including ovariectomy and high

fat diet both of which are known to reduce lifespan. Next, I describe the analysis of a



homogeneous population of muscle satellite cells (MuSCs) that I have interrogated at
the single cell level, using single cell combined transcriptome and methylome sequenc-
ing (scM&T-seq). I found that with age there was increased global transcriptional
variability and increased feature-specific methylome variability. These findings explain
the loss of functionality of these cells with age. Lastly, I describe two imaging ap-
proaches to study DNA methylation dynamically in single cells. Using these methods,
I demonstrate that it is possible to accurately determine methylation status across a
wide spectrum of global methylation levels and that by using such approaches novel
information about dynamic methylation processes can be obtained. These methods

represent the first to study DNA methylation dynamically.
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Chapter 1

Introduction

Ageing and the hope of reversing it have fascinated humans around the globe for
centuries. More recently however, the study of ageing has evolved from a curiosity
to an integral area of research in order to meet the demands of the currently ageing
population. But in spite of recent effort to understand the process of ageing, our
understanding of it is still limited and many fundamental questions remain. Such
questions include: what is ageing? Is ageing a selected or adaptive trait? Is ageing
a multicellular ensemble phenomenon or does it exist as a concept at the level of the
single cell? And what is the molecular definition of ageing and can we manipulate
it in order to reverse it? Definitions abound to try and describe ageing at different
complexity levels, from physiological definitions to molecular ones. In this thesis, I
define ageing broadly as a reduction in a cell or organism’s ability to efficiently interact

with its environment for its own propagation.

1.1 Theories of ageing

In the late 19th century, August Weismann proposed that ageing was the imperfect
adaptation of an individual to the detrimental injuries that occurred over the course of
their lifetime and that this imperfect adaptive process of ageing would in turn “make

room for the young” (Weismann, 1889). However, this concept of group selection-based
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adaptive ageing lost favour with evolutionary biologists due to its teleological narrative,
which did not offer a clear mechanism for the selection process. It was therefore replaced
by the Mutation Accumulation Theory of ageing. This theory postulates that non-
adaptive ageing is due to the reduced power of natural selection at advanced age. This
results in an increased burden of deleterious mutations that specifically effect the aged
(Medawar, 1952). This theory suggests that late-acting deleterious mutations in the
germline are responsible for the ageing phenomenon. It has since lost favour, because of
the observation that many genes are expressed in a tissue-specific, and developmental
stage-specific manner. As such, any late-life specific effect would require a late-life

specific genetic program to be activated in the first instance.

A theory that sought to rectify this discrepancy was of the theory of Antagonistic
Pleiotropy. This theory, also proposed under the umbrella of non-adaptive ageing,
differed from the Mutation Accumulation Theory of ageing in its assessment of the
influence of natural selection upon the formation of the ageing phenotype itself. Ac-
cording to this theory, natural selection acts strongly on genes that are beneficial early
in life, even if they will have detrimental effects in mature individuals (Hamilton, 1966,
Kirkwood and Melov, 2011 and Williams, 2001). This theory of ageing thus gives
natural selection an integral role in the ageing process. Moreover, the theory is not
considered an adaptive ageing theory, because the selection pressure is on the pheno-
typic traits that are beneficial during early life. As such, this theory hypothesises that

ageing is not directly caused by a genetic mechanism.

However, there is increasing observational and experimental evidence that calls this
Antagonistic Pleiotropy theory of ageing into question. For instance, it has been shown
in fruit flies that were selectively bred for a long lifespan that a long lifespan is not
correlated with a concomitant decrease in reproductive fitness (Leroi et al,), 1994), as
would be expected from Antagonstic Pleiotropy. In addition, it has been found that
certain ageing-related diseases have conserved genetic mechanisms that need to be
activated for the disease to occur (Bowles, 2000) and that such genetic mechanisms
don’t need to have a beneficial effect early in life (Brack et al., 2007, Goldsmith, 2006,
Kenyon, 2010, Khaidakov et al., 2006, Linnane et al., 1990, Mitteldorf, 2004, Pishel
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et al.; 2012 and Thum et al,, 2008).

The last of the three major non-adaptive theories of ageing is the Disposable Soma
Theory. This theory posits that there is a finite amount of resources that an individ-
ual has at their disposal, whether this resource be energy (as originally proposed by
Kirkwood, 1977) or time (as an adaptation of the theory proposed by Lorenzini et al.,
2011), and that these resources must be distributed among the cells of the body to
maximise successful procreation. From this it follows that a far greater proportion
of resources ought to be given to the cells of the germline than to those of the soma.
In turn this would predict that a reduction in available resources would result in a
reduction in lifespan and reproduction, assuming that the distribution ratio does not
change. Indeed, a reduction in caloric consumption reduces the reproductive output
in caloric restriction studies. However, caloric restriction experiments conducted since
the 1930s do not show that a reduction in energy input reduces lifespan, in fact it has
been shown to increase lifespan (Fontana et al., 2010), depending on the species, strains
and sexes studied (Colman et al,, 2014, Sohal and Forster, 2014 and Swindell, 2012).
This suggests that this simple assumption of a maintained germline-soma ratio is not
reflective of the reality. Perhaps instead, individuals are able to respond to short term
“hardship” in order to ensure successful procreation is feasible in the more “affluent”

long-term.

One characteristic that these non-adaptive ageing theories all share is the prediction
that faster ageing will evolve when there is a higher extrinsic death rate. In other
words, when selection cares less about the old due to an increased extrinsic death
rate, mutations that are prohibitive to long life would be allowed to survive within
the population. But this idea does not seem to be supported by evidence: guppies
living in regions of higher predation do not have an increased intrinsic death rate
due to aging (Reznick et al,, 2004). In an attempt to account for such contradictory
observations, adaptations to these classical non-adaptive theories of ageing have been
proposed. One such adaptation is the Theory of Robustness (Kriete, 2013). In addition
to the proposal of adaptations to these theories, these contradictions have also resulted

in the re-popularisation of adaptive ageing theories, as first proposed by Weismann
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and derivatives thereof (Bowles, 1998, Goldsmith, 2004, Goldsmith, 2008, Martins,
2011, Mitteldorf, 2006, Mitteldorf and Pepper, 2009, Skulachev, 2001, Travis, 2004
and Woodberry et al,, 2007). This is in large part due to the realisation that adaptive
theories of ageing are compatible with both the evidence for and contradictory evidence
against these non-adaptive theories of ageing (Goldsmith, 2006, Mitteldorf, 2004 and
Mitteldorf, 2010). In addition, these new adaptive theories of ageing are also compatible
with known individually-adverse behaviours present in nature. Such behaviours include:

altruism, sexual reproduction and suicidal behaviour in semelparous species.

Modern adaptive theories of ageing assume that evolution is acting at a group or kin-
ship level and incorporate ageing as an altruistic component (Mitteldorf and Wilson,
2000, [Taylor, 1992, Wilson et al/, 1992 and Yang, 2013). This description of adaptive
ageing within a group or kinship selection context has been widely criticised owing
to interpretations from analyses of classical evolutionary theories, including: Price’s
Theorem (Price et all, 1970), Evolutionarily Stable Strategy theory (Smith and Parker,
1976), and Kin Selection theory (Hamilton, 1964). However, these theories are limited
owing to their failure to adequately take into account differences between individuals
within a population and the impact of population dynamics. As such, analyses based
on them are inherently over-simplistic and biased. Such limitations are now becoming
more widely appreciated, which makes it increasingly apparent that ageing per se may
be actionable by evolution when considered as a kinship attribute within a viscous
population (Mitteldorf and Wilson, 2000, Mitteldorf, 2006). A viscous population is
defined as one with limited movement that in turn results in increased genetic related-
ness of individuals within it (Mitteldorf and Wilson, 2000). That being said, for such
kinship-based ageing adaptations to develop, there must be a dynamic carrying capac-
ity within the population, otherwise the kinship benefits are negated by the increased
pressure of the attribute ([Taylon, 1992 and Wilson et al., 1992). Excitingly, in recent
years these kinship theories have been modified to incorporate kinship selection at the
level of the individual (within viscous populations; [Yang, 2013). This study considered
all offspring to be non-equivalent, and further highlighted the potential for the evolu-

tion of ageing as a kinship attribute, by showing that the evolution of “programmed
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death” requires a less cooperative environment than does the evolution of gender (Yang,

2013).

1.2 Ageing at the molecular level

At the level of the individual, the above theories of ageing can be broadly split into
two categories: those implicating passive decay, potentially as a result of damage (for
example somatic mutations in the case of the Disposable Soma Theory); or those that
involve an actively procured state, either in a non-programmed manner such as a mis-
firing genetic program due to a mutation (as in Antagonistic Pleiotropy Theory) or
programmed (as in adaptive theories of ageing). However, it must be noted that, at
the molecular level, the characteristics of these various processes are by no means mu-
tually exclusive. In fact, it is often challenging to discern what the differences would
be between the evolutionary theories at the molecular level. For instance, one could
imagine that there existed a “program” that resulted in the accumulation of somatic
mutations responsible for the ageing process, and that this phenomenon would not nec-
essarily require an independent “ageing program”. For the purposes of understanding
whether or not the ageing process could be stalled or reversed, it is perhaps better to
understand, firstly, its molecular mechanism and then, secondarily, the evolutionary
rationale (if this existed) behind it. This is because the feasibility of stalling or revers-
ing the aged-state will be primarily due to the molecular causes of the aged-state in

the first place and not necessarily whether it was evolutionarily generated or not.

Another interesting question that remains largely unanswered is whether ageing is a
phenomenon that can be described at the single cell level or whether it is an ensemble
property of a multi-cellular organism. In other words, could the phenomenon of ageing
be described purely from the view of a single cell? Could a cell in and of itself be
described as aged, or can the ageing phenomenon only be considered in an organismal
context? Studies conducted on single-celled organisms such as S. cerevisiae have at-
tempted to address this point, but so far it has remained unclear whether the mother

cell is truly ageing in the same sense as we define it in a human setting, or whether it is
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simply acquiring a new state that serves an evolutionary purpose within a population

(Frenk et al., 2017).

The evidence available for answering these questions is in most instances circumstantial.
This is because a significant portion of the available evidence comes from observations
of the natural ageing process (either in a laboratory setting or in the field) and not from
hypothesis-driven experiments. Another reason is that ageing is intrinsically complex
and time-consuming to study in an experimental setting. In recent years, some evi-
dence collected at both the organismal and cellular level has emerged that strengthens
the idea that ageing could be an actively procured state. For instance, from observa-
tional studies evidence for the actively procured state has come from organism-level
observations such as: the existence of semelparous organisms like Oncorhynchus spp.;
the huge variability in lifespans of evolutionarily close species, such as in whales; and
the existence of vast lifespans in the kingdom Plantae, such as that of Pinus longaeva,
which is reported to live thousands of years (Crespi and Teo, 2002, Foote, 2008 and
Schulman et al}, 1956). From experimental studies, evidence in support of the actively
procured state has come from reprogramming, rejuvenation, senescence and immortal-
isation experiments that have been conducted both at a cellular level in vitro, and in
vivo. And lastly, in the case of reprogramming experiments, it has recently been shown
that differentiated cell types isolated from young and old individuals can be repro-
grammed to an induced pluripotent stem cell (iPSC) state and then re-differentiated,
at which point they both have the same “youthful” phenotype. In this sense the aged
phenotype appears molecularly reversible (Frobel et al), 2014). This work also suggests
that ageing as defined in this context is a cell-intrinsic property that can be reset during
the iPSC reprogramming process. It has been noted sporadically in the literature that
older cells are more refractory to the iPSC reprogramming process and more prone to
abnormalities (Frobel et al., 2014, Sardo et al., 2017 and Takahashi and Yamanaka,
2006). However, it is accepted in the field that the reprogramming efficiency of any
one cell type is dependent on a range of factors including the donor genotype, as such,
it is yet to be determined whether this idea of age-related inefficiency would hold true

in studies with larger donor sample sizes (Ebrahimi, 2015).
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In addition to observations on in vitro cellular reprogramming, scientists have demon-
strated the rejuvenating effect of reprogramming in vivo. Here, researchers cyclically
induced expression of the Yamanaka factors (Oct4, Sox2, Klf4, c-Myc; Mosteiro et al.,
2016 and Ocampo et al., 2016) in mice using doxycycline. The expression of these
factors resulted in the rejuvenation of multiple tissues, with a correlation between the
extent of rejuvenation and the degree of reprogramming in the specific tissue (Mosteiro
et al), 2016). The pancreas is an example of a tissue within which reprogramming is
highly efficient (Mosteiro et al., 2016). In addition, it has been shown in a progeria
mouse model that this cyclical reprogramming protocol can extend lifespan (Ocampo
et al., 2016). However, it should be noted that such a lifespan extension in a progeria
model might not be surprising, given that fibroblasts from progeria patients lost the
hallmarks of the disease for several passages when they were reprogrammed to iPSCs
and subsequently re-differentiated (ILiu et al), 2011). Furthermore, experiments using
cyclical reprogramming in wild type mice have shown no such lifespan extension (M.

Serrano personal communication).

Mechanistically, the rejuvenation that occurs during the cyclical protocol is thought
to be due to the removal of aged cells not cleared properly by the immune system
prior to the start of the reprogramming protocol. These aged cells are thought to
be cleared during the removal of the vast numbers of senescent cells induced during
the reprogramming process itself. Senescent cells are defined as cells that have irre-
versibly ceased cellular replication (Hayflick, 1965). This rejuvenation is then further
compounded by replacement of the aged cells with phenotypically young descendants
of the in vivo iPSCs generated during the reprogramming. The findings from these
in vivo reprogramming experiments are suggestive of an actively procured state, with
the iPSCs having had their state reset. However, the removal of senescent cells from

tissues would also be consistent with a passive decay process.

The phenomenon of cellular senescence was first observed by Hayflick in human fibrob-
lasts, in which he observed a limit to the number of passages that a cell can undergo
before it ceases to divide (Hayflick and Moorhead, 1961). This limit has since become

known as the Hayflick limit (Hayflick, 1965). It is caused by maximal telomere erosion,
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and the induction of a DNA damage response, and it has therefore been termed replica-
tive senescence. Cellular senescence can also be induced in a telomere-independent
manner, for instance through oncogenic induction or in response to DNA damage
(Di Leonardo et al), 1994, [Lin et al., 1998 and Serrano et al., 1997). Two typically
defined characteristics of senescent cells are their expression of senescence-associated
beta-galactosidase (SA-B-Gal) and cyclin-dependent kinase inhibitor 2A (p16™WK44),
pl6 expression is commonly seen in benign cancers, but it appears to be lost in malig-
nant samples, suggesting that in this setting senescence is tumour-suppressive (Braig
et al., 2005, Haugstetter et al., 2010 and Michaloglou et al., 2005). In addition, these
cells have a characteristic secretome termed Senescence Associated Secretory Pheno-
type (SASP), which contains inflammatory cytokines, growth factors and proteases
(Acosta et al.,, 2008, Coppé et al), 2008 and Kuilman et al., 2008). This SASP also

induces senescence in neighbouring cells (Acosta et al., 2013).

SASP is relevant to the ageing field because it contributes to a number of ageing-related
diseases such as atherosclerosis, cancer and type 2 diabetes through modulation of the
immune system (Ichkonia et all, 2013). Interestingly, although controversially, it has
been suggested that this senescent state could be reversible (Beauséjour et al), 2003).
This study proposes that the cause of senescence, whether by p53 inactivation or pRB
inactivation for instance, will determine how the senescence barrier can be overcome.
This study alongside others highlights two things: firstly that ageing, when considered
as a senescent state, is a cell-intrinsic phenomenon (although extrinsic factors are
hugely influential in the formation of the state); and secondly that the ageing process
as considered in this way is potentially reversible. However, it should be noted that
although senescence can be overcome, this reversal process is commonly associated with
chromatin defects such as ploidy and could potentially be one of the ways in which

cancers are able to evolve (Beauséjour et al., 2003).

Progeroid Syndromes are a family of rare genetic diseases characterised by the presence
of ageing phenotypes, from where they derive their name. The most commonly studied
Progeroid Syndromes within the field of ageing are Werner Syndrome (“adult proge-
ria”) and Hutchinson-Gilford Progeria Syndrome (HGPS; “progeria”), because they

8
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are believed to represent aspects of the “natural” ageing process. Werner Syndrome is
an autosomal recessive disease characterised in the majority of cases by a mutation in
the gene WRN. WRN encodes a protein with strong homology to recQ helicases and is
thought to be required for unwinding DNA during DNA repair and replication (Gray
et al), 1997). HGPS, conversely, is a rare genetic disease that is most commonly the
result of a de novo C-to-T mutation in the LMNA gene at position 1824 in the cod-
ing sequence (found in exon 11), which results in the incorporation of a cryptic donor
splice site into the transcript and a fifty-amino acid truncation of the Lamin A protein
(De Sandre-Giovannoli et al., 2003). This truncation results in incorrect processing of
the prelamin A protein within the nucleus, which in turn affects the nuclear lamina

(De Sandre-Giovannoli et al., 2003).

Studies of cells derived from people with HGPS, have provided us with insights into
the nature of ageing from a senescence perspective. HGPS patient-derived fibroblasts
exhibit premature cellular senescence alongside multiple other nuclear and chromatin
abnormalities, such as blebbing of the nuclear envelope and reduced telomere length
(Allsopp et all, 1992, Decker et al,, 2009, Goldman et al., 2004, Huang et al,, 2008, [Liu
et al., 2005, Liu et al., 2006 and Shumaker et al., 2006). Experiments reprogramming
these to iPSCs showed that the lamin A-associated nuclear defects, alongside many of
the other aberrant phenotypes, were absent in the HGPS-iPS cell lines but these nuclear
defects returned upon re-differentiation (Liu et al), 2011). This study highlights that
the progeria phenotype is reversible and that the hallmarks of senescence are reversible
too. It also reveals that the nuclear structure and chromatin are important features in

the induction of senescence and the propensity for its reversal.

This understanding of senescence has encouraged researchers to test its relevance to
ageing in vivo and whether or not it can be experimentally manipulated in order to
improve health or lifespan. Scientists have adopted several different approaches to
assess this. One such approach was to utilise a genetically engineered mouse called the
INK-ATTAC mouse (Baker et al., 2011). This mouse is genetically engineered to allow
apoptosis induction in pl6-expressing cells upon injection of AP20187. After biweekly

induction of apoptosis in otherwise wild-type mice (from the first year onwards), it was
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shown that the median but not maximum life expectancy was extended independently

of the genetic background or sex of the animal (tBaker et al.|, |2011‘). Moreover, the

researchers indicated that “removal of pl6-positive cells delayed tumorigenesis and
attenuated age-related deterioration of several organs without apparent side effects,
including kidney, heart and fat, where clearance preserved the functionality of glomeruli,

, R016).

These results highlight that a subpopulation of senescent cells can have a detrimental

cardio-protective KATP channels, and adipocytes, respectively.” (tBaker et al.

impact on an organism as a whole. This is consistent with both the passive decay

theories of ageing and ideas ascribing to an active process.

In addition to reprogramming and senescence experiments, parabiosis experiments have

provided insight into the nature of ageing and ways in which certain age-related symp-

toms, such as cardiac hypertrophy, can be alleviated in mammals (|Carlson et al., bOOS‘,
|Conboy et al.|, bOOS, IDemontis et al., I2014, lElabd et al., I‘ZOMJ, IHorrington et al., |1960
, bOléﬂ, ILoffredo et al., |2013, |MCCay et al.|, |195ﬂ, tRuckh et al., b012
, I\/illeda et al., |2014J, IVVagers et al., |2002

Parabiosis experiments involve the joining of the circulatory systems of two individu-

Y

IKatsimpardi et al.
I\/illeda et al., |2011

bl

and IVVright et al., lZOOI‘).

als. In the case of ageing research, parabiosis experiments are conducted by joining
old (typically more than 20 months of age) and young (typically 3 months of age) indi-
viduals together (heterochronic) and comparing them to control pairings (isochronic -
old/old and young/young pairings). Experiments conducted as such have shown that
many of the ageing phenotypes, for instance hypertrophy of the heart and thinning of
the epidermis, can be reversed in old mice (|Carlson et al], |2008, |Conb0y et a1.|, |2005
h)emontis et al., bOléﬂ, lElabd et al., IZOMl7 IHorrington et al., |196O
2014, Loffredo et al., 2013, McCay et al., 1957, Ruckh et all, 2012
|Villeda et al., lZOlZﬂ, |Wagers et al., |2002‘ and |Wright et al.

b

, t[(atsimpardi et al.
, |Villeda et al., bOll,
, lZOOl‘) . However, it should

Y

be noted that not all ageing phenotypes in all tissues are rejuvenated. Importantly,
this rejuvenation phenomenon has been validated in settings where cell transfer be-
tween the two parabiosed individuals has been inhibited, highlighting that it is factors
within the blood itself that are responsible for the rejuvenation. One such identified

factor, although it remains controversial, is growth differentiation factor 11 (GDF-11;
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Loffredo et al., 2013 and Sinha et al,, 2014). The findings from these parabiosis and
factor-intervention experiments are consistent with aging being the result of an active
process. These observations of rejuvenation would be more difficult to explain through

a passive decay process.

Interestingly, the young mice used in these parabiosis experiments appear to show
an increasingly aged phenotype concurrent with the rejuvenation of the older animals
(Katsimpardi et al., 2014). This suggests that, at least in these crude experiments,
ageing phenotypes are malleable in both directions. In addition, it raises the tantalising
possibility that the process responsible for the one phenomenon may also underlie the
other. In other words, perhaps there are finite amounts of “youthful” factors whose
concentrations are reduced upon the joining of the old and young individuals, resulting

in rejuvenation in the one and ageing in the other.

At present, it is still not clear why certain tissues become rejuvenated during parabiosis
experiments whilst others do not, nor how the rejuvenating effects are enacted at the
molecular level. This is largely due to the costly, time-consuming and technically
challenging nature of the experiments. However, some factors have been identified
that could play a role, such as GDF-11 and oxytocin (Elabd et al., 2014, Loffredo
et al), 2013 and Sinha et al., 2014). In addition, the rejuvenation of skeletal muscle
appears to be partly due to rejuvenation of the stem cell niche environment, which in
turn results in improved functionality of resident muscle satellite cells (Conboy et al.,

2005).

1.3 Epigenetic observations

1.3.1 Definition of epigenetics

Epigenetics was first defined by Conrad Waddington in the early 1940s as “the branch
of biology which studies the causal interactions between genes and their products which
bring the phenotype into being” (Waddington, 1953). For the purposes of this thesis,

epigenetics is defined as: the mechanism by which heritable changes in gene expression
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can be derived, without alterations to the underlying DNA sequence. Epigenetics
plays a key role in cell fate determination and differentiation (Zhu et al., 2013), with
aberrant modifications present in a wide range of diseases. For instance, some cancers
contain epigenetic but no genetic abnormalities (Mack et al), 2014 and Versteeg, 2014).
Additionally, dosage effects such as X-chromosome inactivation (Barakat and Gribnau,
2010) and genetic imprinting (Magenis et al), 1987) are also thought to be controlled
by epigenetic changes. In order for a modification to be classified as an epigenetic mark
it must be self-propagating, replicative and resulting in a phenotype. This thesis will
predominantly discuss one specific type of epigenetic mechanism/modification that is

relevant in the context of aging: DNA methylation.

1.3.2 Epigenetics

Many epigenetic changes occur during ageing (Lépez-Otin et al., 2013). These include
changes in modifications of histones, non-coding RNAs and modifications to the DNA
itself. Core histones are octameric protein complexes that are formed from four protein
subunits: H2A, H2B, H3 and H4 (Luger et al., 1997). These subunits are arranged
in two H2A-H2B dimers and a H3-H4 tetramer (Luger et al), 1997). These octameric
complexes are referred to as nucleosomes and each can bind 147 base pairs of DNA
(Richmond and Davey, 2003). The histone subunits can be chemically modified by
the addition of acetyl and methyl groups among other modifications (Jenuwein and
Allis, 2001). In turn, these modifications recruit chromatin remodelling proteins and
thus alter the chromatin state. Two such marks are methylation of lysine 4 of H3
(H3K4me), associated with active chromatin, and trimethylation of lysine 27 of H3
(H3K27me3), associated with repressive chromatin (Barski et al,, 2007, Boyer et al.,
2006 and Lauberth et al), 2013). The function of nuclear non-coding RNAs is less well
understood (Chu et al., 2015), but they also appear to be involved in nuclear organ-
isation (Luo et al), 2015) and transcriptional regulation (Dorn and Matkovich, 2015).
Xist, which plays a pivotal role in the inactivation of the X chromosome, is an example

that has been the subject of intensive research (Gendrel and Heard, 2011).
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1.3.3 Epigenetic changes with age

Research into the role of epigenetics in ageing has interrogated a diverse number of
cell types and tissues in a number of important model organisms. These studies have
resulted in the determination of some common epigenetic changes with age. For ex-
ample, it is often seen that histones become sparser and their positioning across the
genome becomes less well defined with age (Das and Tyler, 2012). In addition, studies
have shown increased levels of spurious transcription, alterations in splicing efficiencies
and mRNA processing (Busuttil et al., 2007, Heintz et al., 2017 and Rangaraju et al.,
2015). Common changes in DNA methylation with age have also been determined,
and these will be described in section @ One important caveat of these epigenetic
studies is that all measurements were made at a cell population level. This means that
any underlying heterogeneity within the cell population could have been masked or
averaged out. For ageing studies, this is a significant limitation because it may obscure

crucial characteristics of the decline in organismal fitness.

1.3.4 DNA methylation

DNA methylation is found in all kingdoms of life and involves the addition of a methyl
group onto a nucleobase. The most commonly methylated base is cytosine, although
there is some interspecies variation (Willbanks et al., 2016). For instance, adenine is
commonly methylated in many bacterial species with asymmetric DNA methyltrans-
ferases capable of methylating both N6’ of adenine and C5’ of cytosine (Ryazanova et al,,
2012). The high structural conservation among DNA methyltransferases suggests that
the emergence of DNA methylation was an evolutionarily distant event ([yer et al.,
2011). Some species have since lost the ability to methylate their genome, including
some model organisms such as C. elegans (Soojin, 2012). Although the catalytic sub-
domain, within the methyltransferase domain of DNA methyltransferases, is strongly
conserved at the structural level, the way in which the targeting of this activity has
evolved varies hugely. For instance plants can target DNA methylation using siRNA-

guided mechanisms not seen in other organisms (Zhang and Zhu, 2011). Additional to
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the targeting, the actual downstream role or function that the methylation itself has
(Ryazanova et al., 2012) varies hugely between species and even within different cell

types of the same organism.

In mammals, DNA methylation occurs primarily on the C5’ position of cytosines that
reside in the symmetric, heritable context of CpG dinucleotides. The enzymes respon-
sible for this modification in mice and humans are known as DNA methyltransferases
(DNMTs). Of the enzymes encoded in the mammalian genome, four are known to have
catalytic activity on DNA and one on tRNAs (Barau et al), 2016, Bestor, 2000 and
Dong et al., 2001). Three of these DNMTs are de novo DNMTs: DNMT3A, DNMT3B
and the most recently annotated, DNMT3C. DNMT3A and DNMT3B have distinct
but partially overlapping functions in different cell types (Challen et al.), 2014 and ILi
et al), 2015). In addition, both enzymes have been shown to complex with the catalyt-
ically inactive DNMT3L, which increases their activity in vitro (Suetake et al., 2004).
The principal DNA sequence methylated by both enzymes is 5-CpG-3’, with addi-
tional activity at 5’-CpA-3’ albeit 10-100-fold lower (Aoki et al., 2001). In addition to
this sequence specificity, these enzymes have preferences regarding the nucleobases up-
stream and downstream of this target site. The preferred sequence 5-RCGY-3’ (where
R=purine and Y=pyrimidine) can confer more than 10 times the enzymatic activity of
the least preferred sequence, 5-YCGR-3’ (Handa and Jeltsch, 2005). DNMT3A and
DNMT3B methylate DNA differently: DNMT3A methylates in a distributive fashion
whilst DNMT3B methylates in a progressive fashion (Gowher and Jeltsch, 2001 and
Norvil et al), 2016). This is seemingly due to a more positively-charged DNA binding
region in DNMT3B ensuring increased processivity (Norvil et al., 2016). DNMT3A can
form tetrameric complexes with DNMT3L (DNTM3A-DNMT3L-DNMT3L-DNMT3A)
that bind target DNA such that the catalytic sites of the two DNMT3A subunits re-
side 8-10 bp apart, allowing them to catalyse DNA methylation simultaneously (Jia
et al., 2007). Indeed, this 8-10 bp methylation spacing is seen in many maternally-
imprinted genes in mice and some highly-methylated regions in humans (Jia et all,
2007). DNMT3C is distinct from the other two de novo DNMTs in that it is solely

expressed in the male germ line, where it is responsible for methylating the promoters
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of evolutionarily young retrotransposons (Barau et al), 2016).

DNMT1, the maintenance DNMT, is primarily responsible for the symmetric re - estab-
lishment of DNA methylation, predominantly at CpG sites that are hemi-methylated
(i.e. only one of the two cytosine bases within this double-stranded DNA dinucleotide is
methylated). During DNA replication, maintenance of DNA methylation is ensured by
interaction of DNMT1 with the Ubiquitin-like with PHD and RING finger domains 1
(UHRF1) protein, which can bind hemi-methylated CpG dinucleotides and 5’- hydrox-
ymethyleytosine in DNA through a SET and Ring finger Associated (SRA) domain
(Bostick et al), 2007 and Sharif et al., 2007). UHRF1 also ubiquitylates histone H3
lysine K23 through its Really Interesting New Gene (RING) domain, which in turn
recruits DNMT1 to sites of hemi-methylation (Nishiyama et al,, 2013). In addition,
this activity is facilitated by the interaction of the N-terminus of DNMT1 with Prolifer-
ating Cell Nuclear Antigen (PCNA) via a putative PCNA Recognition Domain (PRD)
(Bestor et al,, 1988, Bostick et al., 2007 and Sharif et al), 2007). The specificity for
these hemi-methylated sites is achieved by the presence of Bromo-Adjacent Homology
Domains (BAH Domains) within the Target Recognition Domain (TRD). These BAH
domains contain tryptophan and other hydrophobic residues that create a shallow cleft

for recognition of the hemimethylated CpG islands.

1.3.5 The cytosine DN A methyltransferase domain

The cytosine DNA methyltransferase domain responsible for the addition of the methyl
group on to the 5’ position of cytosine nucleobases in the context of a DNA polymer
consists of a large and small subdomain, separated by a DNA binding cleft (Figure )
(Klimasauskas et al., 1994 and Song et al., 2011). The tertiary structure of the large
(catalytic) subdomain consists of 7 -sheets and 3 a-helices. Six of the 7 5-sheets are ar-
ranged in a parallel orientation. The large subdomain can be further broken down into
two separate regions. The region containing (-sheets 1-3 is responsible for S-Adenosyl
Methionine (SAM or AdoMet) binding and the region containing 3-sheets 4-7 is respon-
sible for the binding of the target cytosine. The small subdomain is known as the TRD.
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A Large subdomain B

Active site Cys
covalently bound to
C4’ of target cytosine

Small subdomain

DNA

Figure 1.1: Structure of the DNA Methyltransferase Domain: (A) Visualisation of
the overall structure of the C5 DNA methyltransferase domain with subdomains and cofactor
highlighted. Structure shown is Dnmt1l, PDB code 3PT6 (lSong et al., l2011). (B) shows

the active site of the C5” DNA methyltransferase domain with the target cytosine covalentls
bound. Structure shown is of Hhal DNA methyltransferase, PDB code IMHT (

et al., 1994)

This subdomain is responsible for target specificity and as such varies far more between
C5” DNA methyltransferases than the large (catalytic) subdomain. Interestingly, in-
sights into the processivity of different methyltransferases suggest that there is some
cross-talk between these two subdomains. For instance, DNMT1 appears to methylate

hemimethylated DNA distributively and unmethylated DNA processively with tens of

methylation events per processed stretch of DNA (|Vilkaitis et a1.|, bOOE)‘).

1.3.6 Catalysis of methylation by DN A methyltransferases

Cytosine methylation occurs via an SNy mechanism involving a covalently linked inter-
mediary step (Figure Iﬁl) The overall mechanism can be broken down into three steps

(tDu et al., b016‘). Firstly, the cytosine is flipped out of the DNA double helix. Next,

the enzyme-substrate intermediate is formed. This intermediate is formed by covalent
attachment of the side-chain sulphur atom of a particular cysteine (Cys) residue to the

C4’ of the target cytosine. However, there may be exceptions to the use of this cysteine,

as highlighted by mutational studies of DNMT3A (|Gowher and Jeltschl, IZOOQ‘ and @
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ither et al,, 2003). Lastly, the methyl group present in the SAM cofactor is attached
through an SN,-type reaction to the C5’ of the target cytosine. This 5’-methylcytosine
(5mC) product can then reform following basic-catalysed breakage of the covalent 5mC-
Cys bond. This release of 5mC has been shown to be the rate-limiting step for MHhal
(a bacterial methyltransferase; Du et al., 2016 and [Yang et al), 2013).

The above is the primary reaction of the enzyme, but side reactions can occur and there
are a number of publications that have validated the occurrence of such side-reactions
in vivo. One side reaction involves the deamination of cytosine to uracil (Figure )
This occurs when SAM and the cofactor product S-Adenosylhomocysteine (SAH) are
not bound, which allows water molecules to enter the active site and deaminate the
covalently bound cytosine. Interestingly, this side reaction introduces the possibility for
mutation should this formation of uracil go unchecked (Shen et al., 1995) similar to the
effects described for Activation-Induced cytidine Deaminase (AID) and apolipoprotein
B mRNA editing enzyme, catalytic polypeptide-like 3G (APOBEC3G). Another side
reaction occurs in the presence of SAM and absence of DNA, resulting in irreversible
automethylation of the cysteine responsible for the covalent attachment of the cytosine
(Siddique et alJ, 2011). This automethylation is thought to be an important regulatory
mechanism. Indeed, DNMT3A in complex with DNMT3L is far more likely to undergo
this automethylation than when DNMT3A is on its own in solution (Siddique et al.,
2011).

1.3.7 Demethylation and oxidative products

In contrast to this singular mechanism by which the DNA methyltransferases add
methylation to the cytosine 5’ position correctly, there is a huge variety of different
mechanisms by which this modification can be removed. Some of these processes have
been validated experimentally and others still await experimental validation (Hill et all,

2014).

These demethylation mechanisms can be broken down into passive or active removal

of the 5mC (Seisenberger et al., 2013). Passive removal is the result of DNA repli-
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decarboxylation

active processes passive processes

Figure 1.2: Mechanisms of DNA demethylation: DNA demethylation can occur by
active or passive mechanisms, shown separately (“active process” and “passive process” re-
spectively). Dotted arrows are used to indicate where there are intermediary steps that aren’t
shown.

cation in the absence of sufficient epigenetic maintenance (von Meyenn et al., 2016).
Active removal can involve the oxidation of the methyl group with Ten-Eleven Translo-
case (TET) enzymes, of which there are three (TET1, TET2 and TET3; [yer et al.,
2009, [Tahiliani et al., 2009 and Wu and Zhang, 2017; Figure @) These enzymes are
methylcytosine dioxygenases that catalyse the oxidation of methylcytosine to hydrox-
ymethylcytosine. In addition, they may also catalyse the formation of formylcytosine
and carboxycytosine. However, structural studies have suggested that these enzymes
are fine-tuned to ensure stability of the hydroxymethyl mark (Hu et al., 2015), suggest-
ing that this mark maybe a functional epigenetic mark in its own right ([urlaro et al,
2013). The enzymes themselves require both Fe(II)- and 2-oxoglutarate (20G) for
their oxidation activity, and are competitively inhibited by 2-hydroxyglutarate (2HG)
owing to its similarity to 20G (Yang et alj, 2014). Alternatively, active removal could
occur through deamination via proteins such as AID or members of the APOBEC
superfamily of proteins such as APOBEC3G (Nabel et al,, 2012). These oxidation

and/or deamination events can then be recognised as mismatches by the Base Excision
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Repair (BER) or Nucleotide Excision Repair (NER) pathway proteins and repaired,
resulting in the removal of the modified base and replacement where successful by a
cytosine (Zhu, 2009). Such proteins include Thymine DNA Glycosylase (TDG), Uracil
DNA Glycosylase (UDG) and Methyl Binding Domain 4 (MBD4); all of which are
DNA glycosylases. The exact mechanism employed for a given methylation event will
invariably involve a combination of these processes and multiple compensatory systems
may act within the same pathway. The mechanisms of demethylation described here
are indirect in nature owing to the difficulty in cleaving this stable aromatic-proximal
C-C bond. However, it has been shown in vitro that the DNMT enzymes themselves
are capable of catalysing this reverse reaction under correct substrate conditions (Chen

et al., 2013b).

1.3.8 DNA methylation in the study of ageing

The nature of the relationship between DNA methylation and ageing is complex. Sci-
entists have sought to explain this relationship by condensing observations down into
singular statements of global hypomethylation and focal hyper-methylation with age
(Jung and Pfeifer, 2015). However, the literature is contradictory in this regard. For
instance, numerous studies claim that 5mC levels drop with age (Heyn et al., 2012),
while many other studies report a gain in 5mC with age, including but not limited
to liver samples and haematopoietic stem cell (HSC) studies (Hahn et al., 2017 and
Sun et al., 2014). One possible reason for this variation is that the individual samples
considered are very rarely taken in a longitudinal fashion from the same individuals,
and as such they could be driven by variation between individuals irrespective of age.
The potential for this is highlighted by the magnitude of the global differences reported
typically being minute (<5%), and as such within the range of population variation
(Bjornsson et al,, 2008, Oey et al., 2015 and Xia et al), 2015). In fact, in one of the few
longitudinal studies that could address the question of whether there was a global hypo-
or hyper- methylation with age, the result was that in any given individual either could
be the case (Bjornsson et al., 2008). This highlights the importance of longitudinal

studies in ageing research, but also the care in evaluating the importance of drawing
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conclusions from large datasets containing small sample sizes.

Importantly, although these global simplifications of the link between DNA methylation

and ageing are often misleading, there are certain aspects of this relationship that do

appear to be highly conserved across cell types and across species (|Jung and Pfeifer,

2015).

One such aspect is that when genomic features are assessed for their enrichment in
ageing-associated DNA hypermethylation, these regions are highly enriched for Poly-
, |2014J7 IMaegawa et al., }2010‘ and

comb Group (PcG) target genes (bohnson et al.

h‘eschendorff et al., }2010‘). Interestingly, this is also seen in studies that have sought

to understand DNA hyper-methylation events in ageing-related diseases such as cancer
(tHahn et al,, |2()08, tKalari et al., l2013, bhm et al., bOO’ﬂ, tRauch et al., |2006, bchlesingeﬁ
let al.‘, }200# and |Widschwendter et al,

, bOOﬂ). Polycomb Group proteins act to stably

repress gene expression networks specific for cell states present in early development.

, IBlackledgeJ
. P006

This is achieved through the regulation of chromatin (tBernstein et a1.|, }2006
Iet al.|, |2014J, tBoyer et al., |2006, tBracken et al.|, |20()6‘ and tLee et al.
mals, these proteins comprise two complexes: Polycomb repressive complex 1 (PRC1)

and polycomb repressive complex 2 (PRC2) (IDI Croce and Helinl, b013‘ and bhao et al.

). In mam-

)

1999). These complexes were first identified in D. melanogaster, but are conserved in all
animals, including humans (, ) The components of PRC1 are CBX (Pc ho-
molog), PHC1, 2, and 3 (PH homologs), Ringla and Ringlb (dRING homologs), BMI1
, bOOQ‘) and PRC2 is composed of en-
hancer of zeste homolog 1 and 2 (EZH1/2), suppressor of zeste 12 (SUZ12), embryonic

ectoderm development (EED) and the histone binding protein RbBP4 (
, ) Although these are the main components of PRC1 and PRC2 there are

and six minor others (PSC homologs) (ILevine et al.

additional variants and homologs that could also function as part of these complexes
(tBrien et a1.|, }2012, tDi Croce and Helin, b013‘, tHunkapiller et al.|, bOlQ‘ and @,
). PRC2 is responsible for the tri-methylation of H3K27, via the catalytic action
of EZH2, to H3K27me3 (tFrancis et al.|, bOOZﬂ). This mark its self is stably maintained

over cell division and is repressive in nature (k}rossniklaus and Parol, |2014J). However,

it can also recruit PRC1, which recognises H3K27me3 through CBX, resulting in mono-
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ubiquitination of H2A on K119 via RING1/2, further compacting the chromatin and

resulting in stable repression (Eskeland et al), 2010 and Francis et al., 2004).

The mechanistic link between DNA hypermethylation and loss of PRC2 marks is still
not fully understood, but clues from the literature suggest that the most likely mech-
anism is one of competition between the de novo DNMTs (DNMT3A and DNMT3B)
and PRC2 (Cedar and Bergman, 2012, Gal-Yam et al., 2008 and Jung and Pfeifer,
2015). This erosion of PRC1 and PRC2 protection with age would then result in de
novo methylation and less plastic repression of gene expression, since DNA methylation
is assumed to be a less plastic mark. This mechanism has been hypothesised to be oc-
curring in cancer as well, where it is referred to as Polycomb switching (Gal-Yam et al.,
2008). One piece of evidence for this model comes from the suggestion that absence
of DNA methylation at CG dense regions of the genome is sufficient for recruitment of
PcG (Lynch et al., 2012). This was shown in mouse embryonic stem cells (ESCs) that
were double knock-out for both DNMT3A and DNMT3B. Another study showed that
regions of the genome that are predominantly hyper-methylated become enriched for
H3K27me3 upon inhibition of DNA methylation with 5-aza-2’-deoxycytidine (a compet-
itive inhibitor for DNA methyltransferases; Reddington et al., 2013). One mechanism
by which PRC2 is thought to be recruited to unmethylated DNA is through Lysine
Demethylase 2B (KDM2B), which demethylates lysine K4 and K36 in histone H3. Al-
though this strong association for hypermethylation has been found, so far it has not
been possible to strongly link any one particular genomic feature or mechanism to the
DNA hypomethylation that occurs. However, there are hypotheses that include: loss of
activity of DNMT1 with age, DNMT3A and DNMT3B (Xiao et al,, 2008), reduced ex-
pression of DNMT proteins with age, reduction in dietary intake of crucial one-carbon
metabolites, reduced basal metabolic rates resulting in reduced levels of methionine
and thus SAM alongside many others (Chiang et al., 1996, James et al., 2002, Mason,
2003, Schrack et al., 2014 and Ulrey et al), 2005).

Another conserved aspect of DNA methylation changes that occur with age, which is
suggestive of potentially the nature of ageing its self, is that the changes that are seen

appear to result in an entropic increase in the methylation at a given site (Hannum
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et al), 2013 and Slieker et al,, 2016). Entropy here defined as the Shannon Information
Entropy of the position. Put another way, sites that are lowly methylated will tend
to increase in methylation with age and sites that are highly methylated will tend to
become hypomethylated with age (i.e. tending towards an entropic maximum of 50%;
Hannum et al), 2013 and Slieker et al., 2016). This is of interest because it suggests
that perhaps the nature of epigenetic changes that are seen with age follow what would

be expected for ageing being a passive decay process.

However, it has recently become apparent that DNA methylation changes that occur
with age are predictive of chronological age in a highly accurately manner suggesting
that either this passive decay process at a population level is ordered enough to result
in a measurable direction (similar to radioactive decay processes) or that this process is
perhaps the result of an actively procured state (Bocklandt et al), 2011, Florath et all,
2013, Hannum et al,, 2013, Horvath, 2013 and Weidner et al., 2014).

1.3.9 Estimating age from DNA methylation

Many studies conducted in humans have shown that there are age-related changes in
DNA methylation or age-related differentially methylated regions (DMRs) and that
changes in methylation appear to occur consistently within large cohorts, suggesting
that they represent a consistent phenomenon. More recently, largely through utilisation
of the powerful DNA methylation array-based technology developed by illumina (27k,
450k and EPIC arrays), scientists have been able to utilise methylation changes at
single cytosine positions in the genome to define predictors of age (Bocklandt et all,
2011, Florath et al), 2013, Hannum et al., 2013, Horvath, 2013 and Weidner et al.,
2014).

These ‘epigenetic clocks’ have been defined using linear regression-based models. In
the case of Weidner and Florath, these models were derived from multivariate linear
regression models from sites that were previously selected as being age-correlated either
from Pearson correlation or from Spearman correlation respectively (Florath et al), 2013

and Weidner et al,, 2014). The data for the Weidner model came from four studies
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that utilised the 27k MethylArray and all utilised whole blood samples. In the case
of Florath, the data utilised in the study came from the ESTHER cohort (Bock et al.,
2016) and all samples were again whole blood, though this time run on the more recent
450k MethylArray. The Florath predictor was defined from 17 cytosine sites in the
genome and the Weidner predictor utilised only three. In both the median absolute

deviation (MAD) was <4yrs (Florath et al., 2013 and Weidner et al., 2014).

In the case of the Hannum predictor and the Horvath predictor, multivariate linear
regression was again performed, this time using implementations of an elastic-net linear
regression (Hannum et al., 2013 and Horvath, 2013). An elastic-net regression is a
combination of both a Lasso-style model in which the model attempts to greatly reduce
the number of parameters in order to define the predictor and a ridge-style model in
which the predictor utilises all positions in the model. This model was chosen in both
instances, because it has proven useful for linear regression-based approaches where
the number of parameters (or CG sites in this case) greatly outweigh the number of
samples that are available. An elastic-net based model, therefore, utilises both the L1
absolute value penalty (implemented in Lasso-based regression) and L2 quadratic value
penalty (implemented in Ridge-based regression). Both studies utilised the “glmnet”
implementation of the elastic-net model (Friedman et al., 2010). The extent to which
the elastic-net regression model utilises these two penalties is defined by a term alpha
(a), which is a ratio term and varies between 1 for a fully Lasso-based model and 0 for
a fully Ridge-based model. In glmnet the lambda terms that define the severity of the
L1 and L2 penalties are optimised via gradient descent. The alpha term that defines
the ratio between the two penalties can either be chosen arbitrarily or optimised during

training.

The Hannum predictor was defined using 450k MethylArray data of 656 whole blood
samples (Hannum et al., 2013). The predictor that ended up being defined, contained
71 cyotsines and had a test MAD error of 4.9 years (Hannum et al), 2013). In addi-
tion, to assess whether certain individuals within their study age faster than others
and what could be the cause of this, they defined an individual-specific term: apparent

methylomic aging rate (AMAR). This term could then be used to test a number of
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hypotheses about what may affect the apparent ageing rate, including ethnicity, BMI
and gender. For instance, they found that males were significantly more likely to age
faster than women, but that the distribution between the two was not different. In
addition, it was found in a number of studies that there are longevity-associated SNPs
in the human genome, and so, to understand whether there were any SNPs within
their human samples that could be affecting the AMAR of a given individual, they
performed exome sequencing on 252 of the individuals (Hannum et al), 2013). Al-
though a relatively small sample size for GWAS, this information would enable them
to decipher not only whether there were SNPs that were effecting methylation at the
designated cytosines, but also whether the cyotsines themselves were being mutated
at a relatively low level. As such, it would be possible to assess whether the observed
methylation changes are actually a result of changing methylation and not of an under-
lying level of DNA mutation, which are known to accumulate with age (Girard et al.,
2016). This analysis highlighted 303 methylation Quantitative Trait Loci (meQTLs;
Hannum et al., 2013). One that was particularly interesting, was a SNP (rs140692) in
an intron contained within MBD4 and the age-associated cytosine found just upstream
of the coding sequence of this gene. Importantly, the SNP fell outside of the range of
the probe sequence its self and so couldn’t be causing this effect from a purely techni-
cal stand point. Importantly, this study also tested their 71 cytosine model in tissues
other than blood using The Cancer Genome Atlas (TCGA) dataset. The importance
of this is due to it being known that the blood composition changes with age in a very
defined and predictable manner, and it is also known that the different blood cell types
within blood have different methylation signatures and so you could imagine how a
predictor could be built that only took these features into account, although previous
studies on purified cell types have shown that there are age-related changes in blood in-
dependently of cell heterogeneity changes (Rakyan et al), 2010). They found that their
model was able to predict age in these different tissues but found that there was a clear
linear offset in both the gradient and the slope (Hannum et al., 2013). Showing that
the epigenetic changes that they were using to predict in the blood are perhaps more
widespread. In addition, they show that when cancer samples are interrogated they

appeared to have an accelerated epigenetic age independent of the source of the tissue
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studied. Suggesting that cancer incidence accelerates the epigenetic ageing process.
Additional validation was conducted in whole genome bisulfite sequencing (WGBS)
samples validating that the predictor could function cross-platform. This predictor
is exciting because it suggested for the first time that not only could a chronological
predictor of age be defined from changes in DNA methylation with age, but that also

inter-individual differences in this prediction are perhaps biologically meaningful.

The Horvath predictor was different from the previous predictors mentioned in that it
was derived ab initio from multiple different tissues (Horvath, 2013). Horvath utilised
data from a large number of different datasets (82), combining more than 7,000 samples
from both the 27k MethylArray and the 450k MethylArray, as such he utilised fewer
sites in the training of the model than Hannum had used in his model (21,369 cytosines).
In addition, Horvath performed a split transformation of age, since he found that this
provided a better fit to the training data in addition to having a number of additional
properties. For instance, adding one to the function enabled negative ages (or pre-birth)

samples to be considered:

If age <= adult.age (set to 20 years of age in humans):

F(age) = log(age + 1) — log(adult.age + 1) (1.1)

Else if age > adult.age:
age — adult.age)
adult.age + 1

F(age) = ( (1.2)
The Horvath predictor contained 353 cytosine sites, although he also showed that a
similar predictive accuracy could be achieved with a reduced 110 of these sites. The test
MAD error of the 353-site predictor was 3.6 years, slightly less than that achieved by
Hannum, but more than the Weidner predictor (although this was only a blood-based
predictor; Horvath, 2013).

Horvath, was able to show that he could not only predict chronological age in human
tissues, but that he could also predict age in liquid samples such as saliva, in cell culture

samples, such as fibroblasts (Horvath, 2013). In addition, he was able to show that
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iPSCs have an epigenetic age of less than zero in the majority of cases (Horvath, 2013).
He was also able to show that, although nowhere near as accurate and only from a
very small sample size, he could predict chronological age in other great apes (Chim-
panzees, Bonobos and Gorillas; Horvath, 2013). This comparison is hindered because
the 450k MethylArray is optimised for the human genome and owing to it not being
a sequencing technology, it relies upon strong homology at the bases surrounding the
cytosine that is under study, which will often not be the case (Hernando-Herraez et all,
2013). In addition, the age transformation in the case of the great ape comparisons
was slightly altered with adult.age equating to 15 instead of 20. The Horvath predic-
tor also highlighted that there were a number of tissues that were less well calibrated.
These tissues fell into two categories: those that were hormonally regulated such as
breast tissue and uterine endothelium and muscle tissues such as skeletal muscle and
cardiac samples (Horvath, 2013). However, in contrast to Hannum’s predictor, the
Horvath study found no clear directionality to the change that cancer would have to
the epigenetic age, i.e. depending on the cancer or cancer cell line epigenetic age is
either accelerated or decelerated (Hannum et al., 2013 and Horvath, 2013). In addi-
tion, contrary to what could be expected from the known lifespan shortening effect
of HGPS, in immortalised B cells derived from these patients there was no significant
alteration to the epigenetic age in these individuals (Horvath, 2013). This could reflect
small sample sizes, since the majority of epigenetic age differences that are seen are
small and require large sample sizes in order to have the statistical power to call them
as significant, or it may be that this disease does not reflect the process of natural
ageing. Another interesting observation is that cells in culture age across passages, for
instance mesenchymal stromal cells have both been shown to have an increased epige-
netic age with increased passage (Horvath, 2013). More interesting still is the finding
that whether cells are proliferating in culture or whether they are senescent they still
age at the same rate, suggesting that this predictor is not measuring a mitotic rate,
but that it is potentially measuring “the cumulative effect of an epigenetic mainte-
nance system” (Horvath, 2013) that is at least partially independent of cell replication.
Additional circumstantial evidence for this is provided by samples from brain tissues

that are commonly thought of as being predominantly post-mitotic and samples from
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more actively turned over tissues such as blood having the same epigenetic ageing rate.
One interesting corollary of this is that perhaps this epigenetic maintenance system in
different tissues is maintained or managed through different processes, for instance in
non-replicative tissues perhaps hypomethylating sites are more closely linked to pro-
cesses of active demethylation involving hydroxymethylation. This is backed up by the
high levels of 5hmC seen in postmitotic tissues relative to replicative tissues (Meng

et al., 2014).

Both predictors, are intriguing from the point of view of suggesting that the phe-
nomenon of epigenetic drift or epigenetic ageing appears to be reflected in multiple
tissues (Hannum et al., 2013 and Horvath, 2013). Though it is important to note that
this does not mean that there are not large age-associated changes happening that are
not tissue specific. In addition, both studies find certain cytosine positions within the
gene Elongation Of Very Long chain fatty acids protein 2 (ELOVL2) to be strongly
correlated with age. ELOVL2 is responsible for the catalysis of the rate limiting first
step of the fatty acid elongation cycle (Leonard et al., 2004) and has previously been
associated with ageing (Garagnani et al., 2012). In fact, in all the predictors defined
by Hannum et al. cytosine sites in ELOVL2 are present (Hannum et al., 2013). Aside
from sites over this gene and a number of other genes it is interesting to note that
there is very little overlap between the sites chosen by these two models suggestive
that the epigenetic changes that are occurring may perhaps be happening at a more

global level.

Excitingly, both studies have shown that they are not only able to estimate chronolog-
ical age but also “biological age” (Hannum et al,, 2013 and Horvath, 2013). At present
“biological age” is loosely defined as a comparative measure of a disease state, attribute
or trait that is altered with increasing age. For instance, someone with obvious signs
of muscle weakness above what is expected for their age-group would be considered to
have an accelerated or increased “biological age”. In the case of the Horvath predictor
this has been more widely addressed in subsequent studies. Such studies have ad-
dressed the impact of Werner Syndrome, HIV-1, Down’s Syndrome, Menopause, fatty

liver disease, diet, Parkinson’s and many more (Carroll et al.,, 2017, Horvath et al., 2014,
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Horvath et al., 2015a, Horvath et al., 2015b, Horvath and Levine, 2015, Horvath and
Ritz, 2015, Horvath et al|, 2016a, Horvath et al., 2016h, Levine et al., 2015a, Levine
et al), 2015h, Lu et al, 2016, Marioni et al., 2015h and Vidal-Bralo et al., 2016). Inter-
estingly it has also been shown that this phenomenon of tissues coherently ageing falls
apart in super-centenarians for whom regions of the brain age at different rates with

the cerebellum for instance ageing more slowly than the cortex (Lu et al., 2016).

In addition to these observational studies, inadvertent manipulation based studies have
also been conducted that address questions as to the plasticity of the clock and how the
extrinsic environment effects it. A number of studies have now attempted to address the
impact of donor vs recipient age on the incumbent age of transplanted haematopoietic
stem cells (HSCs). In essence, they studied the introduction of HSCs into recipients
of older or younger age than the donors. These studies have utilised both the Weidner
and the Horvath clock (Stolzel et al), 2017 and Weidner et al., 2015). Together they
show that upon introduction into the recipient there is a brief reduction of age up
until 6 months of age (relative to the donor) after which the age of the blood begins
to rise. At about 1 year the age of the blood is back in line with the age of the donor.
However, by three years of age the epigenetic age is accelerated relative to the donor
and this continues to rise until the end of measurement (Stolzel et all, 2017). This
result suggests that the cells are intrinsically ageing and that their new environment
can alter the rate of epigenetic age increase but that it is unable to result in large

changes to the epigenetic age per se.

Interestingly, alongside studying the implication that different parameters have on
biological age, researchers have started applying these predictors and others built off
the same principles, to the question of mortality and lifespan prediction (Chen et al.,
2016, Marioni et al., 2015a and Thinggaard et al., 2016). In other words, can we predict
not simply how old someone is but how long they have to live and it appears that we
can. In a recent paper, Chen B. et al, showed that it was possible to predict time
to death using all measures of age acceleration (Chen et al., 2016). In another such
paper Marioni R. et al, show that it is possible to predict all-cause mortality from these

derivative metrics (Marioni et all, 2015a).
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Figure 1.3: Mechanisms of ageing: (A) The nature of ageing: is it programmed or a
stochastic and inevitable decline? (B) Schematic of changes associated with ageing that could
be responsible for our ability to predict age from epigenetics. (C) A depiction of the human
DNAmAge clock, highlighting that individuals of different ages can have their methylomes
interrogated at 353 CpG sites and an accurate prediction of their age made.

4

-

0

2

4

Weighted average methylation

o

20 40 60 80 100

Age

29



1.3. Epigenetic observations Chapter 1. Introduction

Although it seems unlikely that DNA methylation is the mechanism underlying age-
ing in of itself, since this epigenetic modification is not found in all organisms (Lee
et al., 2010). It does provide a useful readout of underlying chromatin and metabolic
changes that are potentially occurring with age. As such, a greater understanding of
the mechanism behind these epigenetic clocks would be immensely useful as a research
tool. In addition, they will be of key relevance to understand ageing in more detail and
will also be instrumental for the design of future interventions. However, at present
all of these predictors have been developed in humans and so there is a growing need
to firstly test the conservation of such an epigenetic system evolutionarily but also to

define an epigenetic age predictor in an experimentally tractable system.

As such, in this thesis I have set out to define a multi-tissue epigenetic predictor of age
in the mouse. At present the only evidence that such an epigenetic predictor may also
function in the mouse is based on one recent study using the Sequenom EpiTYPER to
assess the directionality of methylation changes in mouse at ageing-associated cytosine

sites identified in human, including at ELOVL2 (Spiers et al., 2016).

1.3.10 The study of heterogeneity

The study of heterogeneity is that of variation within a sample. This is a concept
that lies at the very heart of experimental science, where heterogeneity (or differences)
are often phenotypes that can lead investigations. At a single cell level, the study of
heterogeneity has been possible for many years owing to microscopy providing us with

the ability to interrogate individual cells visually.

In more recent times, the ability to study single cells in unprecedented detail is now
becoming possible with methodologies that utilise the power of next generation se-
quencing (NGS) based approaches. These approaches are hugely valuable for being
able to assess and study difference between single cells as they carry within them a
vast amount of data that can be analysed. At present, it is possible to interrogate ge-
nomic (scDNA-Seq; Xu et al., 2012), transcriptomic (scRNA-Seq; [slam et al., 2014 and
Picelli et al), 2013), nuclear conformation (scHi-C; Nagano et al), 2013), DNA accessi-
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bility (scATAC-Seq and scNOMe-Seq; Buenrostro et al., 2015 and Pott, 2017), DNA
methylation (scBS-Seq; Clark et al), 2017 and Smallwood et al., 2014), hydroxymethy-
lation and formylcytosine (scAba-Seq and CLEVER-Seq; Mooijman et al., 2016 and
Zhu et al.,; 2017) heterogeneity using single cell studies; with more techniques likely to
expand this list of possibilities in the near future. Many of these approaches have now
been expanded into high-throughput methods that can be used to study vast numbers

of single cells in any one experiment.

In addition, it is possible to now study both genomic and transcriptomic (scG&T-Seq;
Macaulay et al.,, 2015), DNA methylation and transcriptomic (scM&T-Seq; Anger-
mueller et al., 2016) and DNA methylation, transcriptomic and DNA accessibility
(seNMT-Seq; (Clark, S, et al., in review)) heterogeneity at single cell resolution in
combination. This has allowed, for the first time, a direct link between these different
layers of information to be studied. For instance, the association between promoter
methylation and transcriptional output can be directly interrogated without compro-

mise, as in bulk studies (Angermueller et al., 2016).

In addition to being able to assess these multiple layers of regulation and expression
both in single and combined settings, it is now becoming possible to assess these dif-
ferences between cells in relation to their relationships to the other cells present. This
is being done using a number of different approaches that more generally are referred
to as lineage tracing methods, some of which include the incorporation of barcodes
into the cells of interest, while others utilise the inherent behaviour of already present
host epigenetic marks, such as hydroxymethylation (Davis et al., 2016, Fischer et al.,
2016, Kalhor et al,, 2016, Li et al., 2016, McKenna et al., 2016, Mooijman et al., 2016
and Woodworth et al., 2017). These methods will be incredibly useful in the future
for the study of heterogeneity, cancer and ageing, since they will allow the scientist
to understand the life history of a given cell and how it came to be in its current

state.

However, there are currently limited methods available for the study of a given cell
across multiple time points. This would be incredibly useful for being able to look at

dynamics that are currently only being modelled/inferred from NGS-based single cell
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approaches. In particular, there are no methods currently available for the quantitation
of DNA methylation dynamics over time from the same cell. From the literature, there
have been a number of papers that have utilised a methyl binding domain (MBD) fused
to a fluorescent protein (Ingouff et al., 2017, Kimura et al., 2010, Ueda et al., 2014,
Yamazaki et al), 2007 and Yamagata, 2010). In most cases this protein was the MBD of
methyl binding domain protein 1 (MBD1) fused to enhanced green fluorescent protein
(eGFP). This construct is hereto referred to as MBD1-eGFP and has been used to
assess the global dynamics of DNA methylation at a qualitative level in previous studies
(Yamagata, 2010). For instance, it has been used to describe the changes in the nuclear
organisation of methylated regions of the genome during early development (Yamazaki
et al., 2007), however it has never been used for a quantitative assessment of DNA
methylation. In addition, other studies have assessed DNA methylation qualitatively
in live cells using constructs capable of differentiating between methylation in contexts
not commonly seen in mammalian settings such as CHH context (H = C, T or A;
Ingouff et all, 2017). With the quantitative experiments in this study all conducted on

fixed cells, negating the ability to study the cells across multiple time points.

As such, in this thesis I have detailed experiments set out to define a novel system
within which it is possible to study global methylation dynamics over a period of time
from the same cell. The method under development is called Differential Dynamic
Microscopy (DDM; Cerbino and Trappe, 2008) and has been previously used for the
study of colloidal particles in Brownian motion (Lu et al.; 2012) and more recently for

the study of ensemble bacterial motion (Lu et al., 2012 and Wilson et al., 2011).

1.3.11 Heterogeneity in ageing

The study of heterogeneity at the single cell level is of great interest in the study of
ageing because it will provide us with insight into the very nature of ageing its self.
Hopefully allowing us to tease apart whether ageing is the result of a passive decay
process, or an actively procured state. This will be made possible by the unprecedented

detail that we can now study single cells at allowing us to test hypotheses about how
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Figure 1.4: Potential models for heterogeneity with age: (A) Two proposed models
for how heterogeneity may be altered in different compartments during ageing. (B) A model
for how epigenetic drift with age may alter the capacity of an organism to maintain its
required cell types and in their required stoichiometries. Both epigenetic erosion and changes
in heterogeneity are likely playing a role in the ageing process, though erosion has been far
better documented than heterogeneic changes.

these two concepts could be differentiated. In addition, to the advances that studying
at this level of detail will provide in this abstract sense, it will also provide us with
huge amounts of information as to what defines the aged state of different cell types
and tissues. It will enable us to define and understand whether the proportions of cell
types within a given tissue are changing with age or whether the very nature of a given
cell type is changed with age. Information that will hopefully answer questions such

as why age-related diseases increase with age.

At present, there are very few studies that have addressed the nature of ageing at
the single cell level, one such study was performed in cardiomyocytes (éahar et al.,
). This study was based on previous work that showed that with ageing there
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was an increase in DNA mutations and genomic rearrangements in cardiomyocytes,
which they showed in mouse embryonic fibroblasts (MEFs) could result in increased
transcriptional variability (Dolle et al), 2000 and Dollé and Vijg, 2002). As such they
decided to characterise whether such variability could be seen for the cardiomyocytes
themselves by taking a panel of house-keeping and cardiomyocyte-specific transcripts.
They found that with age there was an increase in transcriptional heterogeneity and
that this increase in transcriptional heterogeneity could provide a mechanism to explain
the functional decline of the tissue with age, although no functional link was made

(Bahar et al), 2006 and Baris et al), 2015).

Another single cell transcriptome study, this time focused on ageing of the HSC com-
partment, also yielded valuable insights into the nature of ageing at the single cell level.
It is already known from bulk studies that with age the HSC compartment changes in
its propensity to differentiate into all of the defined lineages (Rimmelé et al., 2014 and
Rossi et alf, 2005). This change in propensity results in a myeloid lineage skew with
age (Rossi et al., 2005). In addition, it has been shown with age that the HSC com-
partment becomes more clonal in nature owing to a certain number of HSCs escaping
quiescence and expanding within the niche (Beerman et al), 2010). This phenomenon
has been further validated by the observation that in humans there are a large number
of cells carrying similar mutations in the peripheral blood suggesting that the majority
of them are derived from the same mother cells (Buscarlet et al., 2017). Of particu-
lar interest the two most frequently mutated genes in this system are DNMT3A and
TET2 (Buscarlet et al), 2017 and Zhang et al., 2016h). Excitingly, this single cell study
has identified that there was an age-specific subpopulation of HSCs that were myeloid
biased and appeared to be expressing pro- and anti-inflammatory signals at the same
time (Kirschner et al), 2017). The fact that these cells appeared to be myeloid biased
and expressing markers consistent with proliferation and DNA damage (p53), suggests
that they could represent the sub-population from which this clonal phenotype seen in

humans is derived.

Another interesting observation pertaining to stem cells is that it appears that they

are able to undergo asymmetric cell division at a number of levels, from chromosomal
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asymmetric division to asymmetric division of organelles such as mitochondria. One
curious hypothesis of this behaviour is that evolution is trying to maintain the most
faithful daughter cell in the least differentiated state (Katajisto et al., 2015). This
would suggest that you would expect alterations to the extent of heterogeneity within
a tissue dependent upon its differentiation potential, a hypothesis that is yet to be

tested in the setting of DNA methylation.

In this thesis, I describe the work conducted to address the question of whether a
homogeneous population of cells will exhibit concerted changes with age that would be
reminiscent of an actively procured state, or whether they would exhibit evidence of
cells that would more closely resemble that of a passive decay process. This question has
been addressed in an in vivo context, utilising the combined single cell DNA methylome
and transcriptome sequencing method recently developed in the group (Angermueller
et al}, 2016). This data, has enabled this question to be addressed at both the epigenetic
and transcriptomic level. The homogeneous cell population used as the model system
in this study was a highly quiescent skeletal tibialis anterior (TA) muscle satellite cell
subpopulation (TA-Hi MuSCs; Sambasivan et al,, 2011). In addition to being a useful
model system, these cells are of clinical importance in the study of ageing owing to the
burden of frailty in the general population and particularly with age (Janssen et all,

2002).
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Chapter 2

Material and Methods

2.1 Materials

Table 2.1: Kits

Product

Commercial supplier

Miniprep kit

Gel extraction kit

PCR Purification kit

DNeasy Blood & Tissue Kit
Kapa Library Quantification kit
High Sensitivity DNA kit
Nextera XT kit

Imprint® DNA modification kit

Qiagen

Qiagen

Qiagen

Qiagen

Kapa Biosystems
Agilent

[Nlumina

Sigma
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Table 2.2: Instruments

Product Commercial supplier
Pipettes Gilson Pipetman P
NanoPhotometer NanoDrop® Technologies
Thermocyclers Biorad

LSR Fortessa Cell Analyser
FACS MoFlo Astrios
Tablecentrifuge

Centrifuge

Vortex

Bioanalyzer

Bravo robotic system

HiSeq 2000 instrument
HiSeq 2500 instrument
LSM780 confocal microscope

Revolution spinning disk confocal microscope

Eclipse Ti-E microscope
Live cell chamber

BD Biosciences
Beckman Coulter
Eppendorf
Eppendorf
Genius 3
Agilent

Agilent
Illumina
Illumina

Zeiss

Andor

Nikon

Okolab

Table 2.3: Laboratory materials

Materials

Commercial supplier

1.5 ml reaction tubes

0.5 ml reaction tubes
Falcon tubes

TC dishes

Imaging petri dishes

4-well 11 slides

Petridish

Gloves

General glassware

Parafilm

Filter tips

Tissues

1.8 ml Cryotube

8 ml polystyrene round bottom tubes
14 ml round bottom tubes
Cell strainers

CellTrics® cell filters
96-well PCR plates

96-well LoBind PCR plates
PCR strips and lids
Scalpel

High-Sensitivity DNA chips

Axygen

Axygen

BD Biosciences

Fisher Nunc

IBIDI

IBIDI

Scientific Laboratory Supplies Ltd
Microflex

Fisherbrand

Pechiney Plastic Packaging
Starlab

Kimwipes

Fisher Scientific UK Ltd
BD Biosciences

BD Biosciences

Corning

Sysmex

VH Bio Ltd

Eppendorf

Axygen

Scientific Laboratory Supplies Ltd
Agilent
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2.1. Materials

Table 2.4: Reagents for tissue culture

Chemical Commercial supplier
DMEM Gibco
DMEM/F12 Gibco
Neurobasal medium Gibco
Fetal Bovine Serum (FBS) Gibco
Penicillin-Streptomycin Gibco
L-glutamine Gibco
Non-essential Amino Acids (NEAA) Gibco
[-mercaptoethanol Sigma

N-2 supplement

B-27 supplement

mouse LIF (mLIF)
PD0325901

CHIR99021

0.05% Trypsin-EDTA
0.25% Trypsin-EDTA
TrypLE™ Express (1X)
Phosphate Buffered Saline (PBS)
Gelatine

Optimem

FuGENE®

(G418 antibiotic

DMSO

ThermoFisher Scientific
ThermoFisher Scientific

Stem Cell Institute, Cambridge
Stem Cell Institute Cambridge
Stem Cell Institute Cambridge
Gibco

Gibco

Gibco

ThermoFisher Scientific

Sigma

Gibco

Promega

ThermoFisher Scientific

Sigma
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Table 2.5: Chemicals and Reagents 1

Chemical Commercial supplier
Propan-2-ol VWR Chemicals
Ethanol VWR Chemicals
Glycerol VWR Chemicals
Agarose Melford

TritonX-100 Sigma

Tween® 20 Sigma

EDTA Sigma

EGTA Sigma

SDS Sigma

Ampicillin Life Technologies
DHb5a bacteria ThermoFisher Scientific
SOC media ThermoFisher Scientific
RNase A Thermo Fisher Scientific

Collagenase D

DNAse I

FCS

PFA

DAPI

SlowFade Gold

BSA

Alexa Fluor conjugated secondary antibodies
Immersion oil
Immersol™ immersion oil
Sucrose

HEPES Buffer

MgCl,

KCl1

Tris-HCI pH 8.3

DTT

Roche

Roche

Invitrogen

Sigma

Sigma

Thermo Fisher Scientific
New England Biolabs
Molecular Probes
Nikon

Zeiss

Sigma

Gibco

Life Technologies
Sigma

Sigma

Life Technologies
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2.1. Materials

Table 2.6: Chemicals and Reagents 11

Chemical Commercial supplier
Agencourt AMPure XP beads Beckman Coulter
Mspl ThermoFisher Scientific

HiFi HotStart Uracil+ ReadyMix
RLT Plus buffer

RNAse inhibitor

RNAse inhibitor
Streptavidin-coupled magnetic beads
SuperScript II reverse transcriptase
Superscript II First-Strand 5x buffer
Betaine

Template-Switching oligo

Elution buffer

Ultrapure, nuclease-free HyO
Proteinase K

dATP

TE buffer

NEBuffer 2

T4 Polynucleotide Kinase

HC T4 DNA ligase

Shrimp Alkaline Phosphatase
Exonuclease I

Klenow Fragment, exo-

5x Phusion HF buffer

dNTPs

Phusion polymerase

BP Clonase 11

LR Clonase II

HyperLadders 100 bp & 1 kb
Orange G dye

Kapa Biosystems
Qiagen

Ambion

SUPERasin, Life Technologies
Dynabeads, Life Technologies
Life Technologies

Life Technologies
Sigma

Exiqon

Qiagen

Life Technologies
Sigma

New England Biolabs
Qiagen

New England Biolabs
New England Biolabs
New England Biolabs
Fermentas

New England Biolabs
Fermentas

New England Biolabs
New England Biolabs
New England Biolabs
ThermoFisher Scientific
ThermoFisher Scientific
Bioline

Sigma
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2.2 Methods

Since there is no overlap in methods between chapters, and to simplify access to meth-
ods relevant to particular chapters, the Materials and Methods section is broken down

by chapter.

2.3 Methods for The Ageing Clock

The methods detailed in this section are adapted and expanded from the published
methods section found in Stubbs et al., 2017.

2.3.1 Derivation of unique molecular identifier (UMI) adapters

Cytosine-methylated primers used to derive the adapters were ordered from IDT. The

sequences of the two primers were:

Top primer: A/5mC/A/5mC/T/5mC/TTT/5mC/5mC/5mC/TA/5mC/A/5mC/GA/
5mC/G/5mC/T/5mC/TT/5mC/5mC/GA*T*/5mC/*T

Bottom primer: 5-Phos/A/5mC/TGNNNNNNNNAGAT /5mC/GGAAGAG/5mC/G
GTT/5mC/AG/5mC/AGGAATG/5mC/5mC/*G*A*G

Where N is A, G, T or 5mC.

These primers were annealed at equimolar 100 pM concentration in TE buffer. Anneal-
ing was performed by heating the primer mixture to 95°C for 5 mins to remove any
secondary structure, then ramp cooling to 16°C at a rate of 1°C per minute. 10 nL of
fill-in master mix containing 1x NEB Buffer 2, 1mM dNTP mixture, 5 pl. of Klenow
Exo- and ultrapure water. This solution was incubated at 37°C for 60 minutes. This
solution was precipitated for 10 minutes with 1x AMPure XP solution and 2x propan-

2-ol, then was placed on a magnet and the supernatant removed. The precipitated
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product on beads was washed 2x with 80% EtOH. The beads were dried for 10 min-
utes before elution into an A-tailing master mix. This master mix contained 1x NEB
Buffer 2, 1 mM dATP and ultrapure water. Once in solution, 40 pL. of Klenow Exo- was
added (making the solution up to 400 nL) and the solution was incubated at 37°C for
45 minutes. This final product was precipitated over 10 minutes with 1x AMPure XP
solution and 2x propan-2-ol, before the solution was placed on a magnet and the super-
natant removed. The precipitated product on beads was washed 2x with 80% EtOH.
The beads were dried for 10 minutes prior to elution into TE buffer. The adapter
product was eluted to a final concentration of 15 uM, with the concentration quantified

using a NanoDrop. Adapters were aliquoted and stored at -20°C.

2.3.2 Sample collection - Babraham dataset

C57BL/6-BABR male mice were kept under standard conditions in the Babraham An-
imal Facility. For the initial dataset derived from these BABR mice (that used for
the age-association study), cortex, heart, liver and lung samples were collected at 4
different ages: newborn (<1 week), 14 weeks, 27 weeks and 41 weeks. All tissues were
snap frozen directly after isolation. Genomic DNA was isolated from ~10mg frozen
tissue using the DNeasy Blood & Tissue Kit. A total of 62 samples were collected, pro-
cessed and further analysed. The resulting dataset is referred here to as the Babraham

dataset.

2.3.3 UMI-RRBS library preparation

RRBS libraries were prepared from isolated DNA following published protocols (Meiss-
ner et al., 2005). Briefly, RRBS libraries were prepared by Mspl digestion of 100-
500ng genomic DNA, followed by end-repair and T-tailing using Klenow Exo-. T-
tailing was performed instead of the conventional A-tailing as my UMI-adapters are
more efficiently derived using an A-tailing protocol. Adapter ligation (UMI-adapters)
was performed overnight using HC T4 DNA Ligase, followed by a clean-up step using
AMPure XP beads (0.9x). Subsequently, libraries were bisulfite treated according to
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the manufacturer’s instructions (Sigma Imprint Kit; 2 step protocol) and purified us-
ing an automated liquid handling robotic system. The libraries were amplified using
KAPA HiFi Uracil™ HotStart DNA Polymerase, indexing the samples with individual
primers. These indexes were defined by the Sanger Institute, referred to as Sanger
indexes. All amplified libraries were purified (AMPure XP beads, 0.8x) and assessed
for quality and quantity using High-Sensitivity DNA chips on the Agilent Bioanalyzer.
High-throughput sequencing of all libraries was carried out with a 75 bp paired-end pro-
tocol on a HiSeq 2000 instrument. 75 bp paired-end sequencing was performed based
on a cost-benefit calculation conducted on an in silico Mspl digested mouse genome
(GRCm38). Paired-end sequencing was conducted to provide us with double the UMI

diversity.

2.3.4 Babraham UMI-RRBS data processing

All Babraham UMI-RRBS datasets had their raw paired-end Fast(Q files pre-processed
to remove the first 13 bp from the 5' ends containing the UMI sequence tags. Both
Read 1 and Read 2 UMIs and fixed sequences were written into the read IDs. All
samples were subjected to adapter and quality trimming with Trim Galore (http:
//www.bioinformatics.babraham.ac.uk/projects/trim_galore/; v0.4.2; options:
—paired —three_prime_clip_ R1 15 —three prime_ clip_ R2 15) to remove potential
UMI and fixed tag sequences from the 3" ends. The trimmed files were then aligned
to the mouse genome (GRCm38) using Bismark [35] (v0.16.3, default parameters).
The mapped sequences were deduplicated by chromosomal position combined with the
UMI sequences of both Read 1 and Read 2 (no mismatches tolerated) using the tool
UmiBam (https://github.com/FelixKrueger/Umi-Grinder; v0.0.1; options: —bam
—dual_umi). This deduplication step cannot be achieved without the UMI sequences,
since the very nature of RRBS precludes this. These UMI-deduplicated BAM files were
then further processed using the Bismark Methylation Extractor (default parameters)

to yield Bismark coverage files.
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2.3.5 Non-Babraham RRBS data processing

Datasets were processed in the following manner: Raw FastQ files were trimmed
with Trim Galore (v0.4.2; parameters: —1rbs) and then aligned to the mouse genome
(GRCm38) with Bismark (v0.16.3; default parameters). The aligned BAM files did
not undergo deduplication but were processed directly with the Bismark Methylation

Extractor (default parameters) to yield Bismark coverage files.

2.3.6 Calling of methylation at single CG sites

For the analysis of age-associated changes in DN A methylation and their subsequent use
in the generation of the epigenetic clock (Stubbs et al., 2017), calling of methylation
was conducted on an individual cytosine basis. Briefly, mean methylation levels of
each cytosine in a CG context that was covered in each sample was calculated from the
Bismark coverage files. In addition, a read count was performed for each cytosine in a
CG context in each sample, so that filtering could be done based on this information

in downstream analysis.

For the derivation of the improved epigenetic predictor described in Results section ,
calling of DNA methylation was conducted over individual CpG sites in the genome.
Briefly, mean methylation levels of each CpG site that was covered in each sample was
calculated from the Bismark coverage files. In addition, a read count was performed
for each CpG site, so that filtering could be done based on this information in down-
stream analysis. Information was calculated over the dinucleotide in this instance in

an attempt to reduce issues associated with missingness and to allow more samples to

be included.

2.3.7 Statistical analysis of age association at single CG sites

For the statistical analysis conducted on the 62 sample Babraham dataset, I first filtered
out positions that had a mean coverage of less than 2 reads or more than 100 reads.

This was done to remove spurious reads from library preparation and potential mapping
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artefacts. For the remaining positions, any positions that were covered with less than 5
reads in a sample were replaced with NA. Before calculating age association, I further
filtered such that positions were covered in at least 90% of samples (number of sites
= 1,921,569). Ages in days were used when computing the Spearman correlation for
each site using the R implementation of the Spearman correlation, and multiple testing
correction was performed using the Q-value package (Dabney et al., 2010). For the
tissue-specific analysis, a further filtering step was conducted to ensure that there were
at least 4 samples being considered for each correlation test. For data exploration, I

used PCA analysis of sites that were covered in all samples at 5x (number of sites =

729,785).

2.3.8 Genomic enrichment analysis of significant age-associated

sites

Normalised likelihood was calculated as:

B
91 (2.1)

s
Normalised likelihood, at © = (5 X

Where:

s= number of significant sites at a given =

S = total number of significant sites

b = number of background sites at a given x

B = total number of background sites

2.3.9 CG scarcity

CG scarcity was calculated as:

200
(no. of CG sites within a 200bp window, centered on a CG of interest)

(2.2)

CG scarcity =
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2.3.10 Gene ontology (GO) analysis of neighbouring genes

Neighbouring genes were defined for single cytosine positions that were within 4 kb
of a gene. GO terms were defined using the gprofiler online software (Reimand et al.,
2007). For the GO enrichment analysis, a background gene list was made consisting
of the neighbouring genes (max distance of 4 kb) for all sites considered in that anal-
ysis. Significant GO terms were ordered by p-value and the top six GO terms are

shown.

2.3.11 Human-comparative analysis

I defined 1 kb windows around the 21 k CpG sites that are interrogated by both
the 27 k and 450 k MethylArray (Horvath, 2013), to ensure that the sites could be
faithfully lifted over. These sites were then lifted over from the human genome to the
corresponding regions in the mouse genome (GRCm38). Of note, 91 % of the sites
selected by Horvath (Horvath, 2013) for the human clock were successfully lifted, i.e.
329 of 353. To be able to compare the Horvath human clock sites (Horvath, 2013) to
other sites in the mouse genome, I chose to use all ~21 k sites, of which I was able to
lift over 19 k regions. 175 regions corresponding to the 353 clock sites and 10 k regions
corresponding to all ~21 k sites were covered in the initial 62 sample Babraham dataset.
Adding additional datasets (e.g. the Reizel dataset; Reizel et al., 2015) reduced the
number of regions covered dramatically. As such, the comparison analysis with the

Horvath clock was conducted with the initial Babraham dataset alone.

Using these sites, I first assessed age association by comparing the correlation to age
of the Horvath clock regions versus that of random selections of all lifted-over regions.
I then built an age prediction model based on the 175 covered regions corresponding
to the Horvath clock sites. For this, I built a ridge model as implemented in glmnet
by fixing the a parameter to 0. The predictor reaches a median absolute error (MAE)
of 11.2 weeks. To compare this to background, I built 1000 random models, picking
a random set of 329 regions, regardless of coverage, from the 19 k regions I could lift

over. The average MAE was 10.65 weeks in these random models.
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Babraham  Reizel Cannon Zhang Schillebeeckx ‘ Total

Samples 62 143 36 4 3 248
Male 62 87 36 4 0 189
Female 0 56 0 0 3 59
Ages
1W 14 14 - - - 28
3w - 18 - - - 18
T™W - - - 4 - 4
8W - 10 - - - 10
IW - - 36 - - 36
13W 4 - - - - 4
14W 8 - - - - 8
16W - - - - 3 3
20W - 84 - - - 84
26W 4 - - - - 4
2TW 16 - - - - 16
28W - 13 - - - 13
31W - 4 - - - 4
41W 16 - - - - 16
Tissues

Liver 15 92 36 4 3 150
Lung 16 - - - - 16
Cortex 16 - - - - 16
Heart 15 - - - - 15
Muscle - 33 - - - 33
Cerebellum - 8 - - - 8
Spleen - 10 - - - 10

Table 2.7: Ages and tissue of the samples used to define the mouse epigenetic clock

2.3.12 Defining the published epigenetic predictor of age in

mice

Dataset overview for published epigenetic clock

For defining the published epigenetic mouse clock (Stubbs et al., 2017), I included
four additional external RRBS datasets, which were downloaded from the GenekEx-
pressionOmnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/): Reizel
(Reizel et all, 2015; GSE60012; n = 173); Cannon (Cannon et al), 2014; GSE52266;
n = 40); Zhang (Zhang et al., 2016a; GSE80761; n = 4); and Schillebeeckx (Schille-
beeckx et all, 2013; GSE45361; n = 23) datasets. A short description of these datasets

is provided.

48


https://www.ncbi.nlm.nih.gov/geo/

Chapter 2. Material and Methods 2.3. Methods for The Ageing Clock

Babraham Reizel Cannon Zhang Schillebeeckx ‘ Total

Maternal HF & Off- ) ) 8 . - 8
spring HF

ﬁjfﬁ;ﬂE;HF & Off ) } 10 - - 10
Maternal LF & Off- ) _ 9 _ - 9
spring HF

Maternal LF & Off- ) ; 9 - - 9
spring HF

Castration (YM) - 10 - B ) 10
Sham  castration ) 8 . - - 8
(YM)

Castration (OM) - 9 - } ) )
Sham  castration ) 8 . - - 8
(OM)

Testorone  control ) 4 - - - 4
(VM)

Ovariectomy (F) - 3 B B ) 3
Testosterone ~ 4 _ - - 4
ovariectomy (F)

Vehicle ovariectomy ) 6 - - - 6
(F)

Table 2.8: Treatments used to assess changes to biological age

Reizel dataset (Reizel et al., 2015):

The Reizel dataset was generated from 173 samples originating from four different
tissues (liver, muscle, cerebellum and spleen) and collected at six time points ranging
from 1 to 31 weeks. The original study investigated gender and tissue specificity of
demethylation during ageing. Additionally, a perturbation based on castration and
restoring testosterone levels after castration was performed. For the development of
my epigenetic mouse clock, the perturbations were not taken into the training but
were kept for the test-set. Further information can be found in the original publication

(Reizel et al., 2015). 143 samples remained after QC.

Cannon dataset (Cannon et all, 2014):

The Cannon dataset was generated from 40 samples, all liver at the age of nine weeks.

The original study investigated the effect of maternal diet on the metabolism of adult
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offspring. For the published epigenetic clock, I selected part of the data to be in the
training set to reflect the nine-week time point (n = 5). The other part of the data
was used to assess the effect of diet upon ageing. Further information can be found in

the original publication (Cannon et al), 2014). 36 samples remained after QC.

Zhang dataset (Zhang et al., 2016a):

The Zhang dataset was generated from four samples all originating from liver aged
between six and eight weeks. The original study investigated methylation differences
between different strains of mice and between mouse and zebrafish. For the published
epigenetic clock, these samples were used as a validation to see how the predictor works
for an unobserved time point. The age of these mice was set to seven weeks. Further
information can be found in the original publication (Zhang et al., 2016a). Four samples

remained after QC.

Schillebeeckx dataset (Schillebeeckx et al., 2013):

The Schillebeeckx dataset was generated from 23 samples all originating from the liver,
the adrenal gland and from endometrial cancer. The mice were ovariectomised at the
age of three to four weeks then samples were collected following an additional three
months. The original study introduced a laser capture microdissection RRBS method.
For the published epigenetic clock I selected the liver samples, which were generated
using normal RRBS; three samples remained after QC. These samples were used as
a validation to see how the predictor works for an unobserved time point. The age
of these mice was set to 16 weeks. Further information can be found in the original

publication (Schillebeeckx et al., 2013).

Age prediction

To predict mouse age, I adopted a similar approach to those utilised in human stud-
ies (Hannum et al., 2013 and Horvath, 2013), namely an elastic-net regression model.

Firstly, I selected the cytosine positions with more than five-fold coverage in all train-
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ing and test samples used, totalling to 17,992 positions. By selection of the positions
available in all datasets, I hope to have a set of methylation sites that will be present
in most RRBS studies, irrespective of size selection and data handling. In addition, I
filtered out both sex chromosomes (X and Y) and the mitochondrial genome to ensure
that the model would be neither sex-specific nor hampered by the unreliability of mito-
chondrial genome bisulfite conversion. After selection of the sites and samples, I used a
quantile normalisation to normalise methylation values, followed by a standardisation

that put the mean methylation per site to 0 and the standard deviation to 1.

For the predictor, I used the elastic-net generalised linear model as implemented in
the glmnet package (Friedman et al., 2010). In order to optimise the «, which defines
the elastic net mixing parameter (from 1 for lasso to 0 for ridge), and to optimise
the A, the regularisation parameter, I used a double-loop cross-validation setup. This
setup is described in Ronde et al. (de Ronde et al), 2014). I trained the model to
predict the log-transformed mouse age (in weeks); three weeks were added before log

transformation of the ages in order to be able to predict sample ages pre-birth.

For the training set, I selected 129 healthy samples from the Babraham, Reizel and
Cannon studies. By using an internal ten-fold cross-validation in the inner loop, the
optimal « (0.05) and optimal A\ (0.93) were identified. The actual performance of the
predictor was scored (as assessed by the mean squared error) in the outer loop. After
this cross-validation in the training set, I built the final model on all 129 samples. To
reach the final model, I took the  values as derived from glmnet for the selected sites
(329) and trained a quadratic function using the nls function in R to transform the raw
prediction scores (sum of the product of the § weights multiplied by their respective
methylation level) to the log age in weeks. This quadratic regression was performed
to correct for the age bias in the training and test datasets. The final function used

was:

log(age) = 0.12072* + 1.2424z — 2.5440 (2.3)

where x is the summed 3 score per sample.
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A set of healthy and treated samples originating from the same three studies, as well
as the Schillebeeckx and Zhang samples, were used to assess the usability of the final
model. The MAE of the prediction was found to be 3.33 weeks. Furthermore, the
model has been used to assess the influence of diet on methylation age using the Can-
non training samples, as well as the influence of female castration on the methylation

age.

MouseEpigeneticClock script

I have generated an easy-to-use R project to predict methylation age from new samples
and deposited it under GNU General Public License at Zenodo (Stubbs et al), 2017) and

as a GitHub project: https://github.com/EpigenomeClock/MouseEpigeneticClock.

2.3.13 Defining the improved epigenetic predictor of age in

mice
Dataset overview for improved epigenetic clock

For defining the improved epigenetic mouse clock, I included the four external
RRBS datasets that were utilised in the published epigenetic mouse clock (Materials
and Methods section ) In addition, I incorporated a further 6 publically
available datasets containing predominantly RRBS data, and two datasets of
population and single-cell WGBS data. These were also downloaded from the
GeneExpressionOmnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
or the SRA database (https://www.ncbi.nlm.nih.gov/sra/): Cimmino (Cim-
mino et al., 2015; GSE65919; n = 6); Ghahramani (Ghahramani et al), 2014;
GSE50218; n = 24); Kemp (Kemp et al., 2014; GSE48975; n = 15); Auclair (Auclair
et al), 2016; GSE71499, n = 10); Petkovich (Petkovich et al., 2017; GSE80672; n
= 255); Gravina (Gravina et al, 2016; SRP069120, n = 34); ENCODE mouse
WGBS (https://www.encodeproject.org/matrix/?type=Experiment&replicates.

library.biosample.donor.organism.scientific_name=Mus+musculus&assay_
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slims=DNA+methylation&assay_ title=WGBS; n = 72) datasets.

A short description of these datasets is provided.

Cimmino dataset (Cimmino et al., 2015):

The Cimmino dataset was generated from 6 samples all originating from lineage nega-
tive, Scal positive, c-kit negative (LSK) cells derived from mouse bone marrow at the
age of 26 weeks. The original study characterised DNA methylation in wild type and
TET1 knockout LSK cells. The age of these mice has been set to 25.8 weeks. Further
information can be found in the original publication (Cimmino et al), 2015). Four

samples remained after QC.

Ghahramani dataset (Ghahramani et al., 2014):

The Ghahramani dataset was generated from 24 samples all originating from bed nu-
cleus of the stria terminalis/preoptic area and striatum (BNST/POA) at 4 and 60 days
of age. The original study investigated DNA methylation differences owing to prenatal
exposure to testosterone. There were three experimental groups: males, females and
females exposed to testosterone. The age of these mice has been set to 1 and 9 weeks re-
spectively. Further information can be found in the original publication (Ghahramani

et al., 2014). 24 samples remained after QC.

Kemp dataset (Kemp et al., 2014):

The Kemp dataset was generated from 15 samples all originating from lung tissue
from 48 to 55 weeks of age. The original study investigated methylation differences
resulting from CTCF haploinsufficiency, of interest due to the susceptibility of CTCF
heterozygous mice to neoplasias. Both males and females were assessed in the study.
Female mice showed significantly increased susceptibility to neoplasias compared to
male mice upon knockdown of CTCF. The ages of these mice were defined individually,

between 48 and 55 weeks. Further information can be found in the original publication
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(Kemp et al., 2014). 15 samples remained after QC.

Auclair dataset (Auclair et all, 2016):

The Auclair dataset was generated from 10 samples all originating from mixed tissue
from E8.5 mouse embryos. The original study investigated the role of the lysine methyl-
transferase G9a in the control of DNA methylation during embryogenesis. The age of
these mice was defined as -1 weeks of age. Further information can be found in the

original publication (Auclair et al), 2016). 7 samples remained after QC.

Petkovich dataset (Petkovich et al., 2017):

The Petkovich dataset was generated from 255 samples all originating from whole
blood across a wide range of ages. In the original study, this data was used to define
a blood-specific predictor of epigenetic age using 90 CpG sites in the genome. Further
information can be found in the original publication (Petkovich et all, 2017). 236

samples remained after QC.

Gravina dataset (Gravina et al), 2016):

The Gravina dataset was generated from 34 samples originating from hepatocytes
(young=4 months; old=26 months), or fibroblasts from E13.5 mouse embryos. In the
original study, this data was used to probe epigenetic heterogeneity at the single cell
level. However, bulk datasets of relatively high coverage (more than 15x) were also
defined. Further information can be found in the original publication (Gravina et al.,

2016). Zero samples remained after QC.

ENCODE

The ENCODE dataset was generated from 72 samples originating from multiple dif-
ferent tissues including: forebrain, heart, hindbrain, midbrain, liver, embryonic facial

prominence, limb, neural tube, intestine, kidney, lung and stomach. The ages of these
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samples range from embryonic day E10.5 to day 0 (post-natal). This data is very high
coverage WGBS data that has been made available for the research community as part
of the ENCODE project. Further information can be found on the ENCODE website
in the mouse WGBS section (https://www.encodeproject.org/matrix/?type=
Experiment&replicates.library.biosample.donor.organism.scientific_name=
Mus+musculus&assay slims=DNA+methylation&assay_title=WGBS). After QC, all

72 samples were remaining.

Age prediction

To predict mouse age using this new model, a very similar computational workflow
to that for the published mouse epigenetic clock (described in Section ) was

employed. The differences between the two approaches will be described here.

Instead of calling methylation at unique cytosine positions in a CG context, methylation
was called over individual CpG sites (i.e. two cytosines). These CpG sites were filtered
for sites that exhibited more than five-fold coverage in all training and test samples used,
totalling 34,721 sites. In addition, as previously, both sex chromosomes (X and Y) and
the mitochondrial genome were filtered out. Following this selection, normalisation

and standardisation were performed, similarly to that described previously (Section
p.3.19).

For the predictor, again the elastic-net generalised linear model as implemented in the
glmnet package (Friedman et al., 2010) was used and a double-loop cross-validation

setup performed (de Ronde et al., 2014).

For the training set, 427 healthy samples from the Auclair, Cannon, Babraham, Reizel,
ENCODE and Petkovich studies were selected. By using an internal ten-fold cross-
validation in the inner loop, the optimal « (0.1) and optimal A (0.327168) were iden-
tified. Similar to what was conducted for the initial mouse epigenetic clock, the pre-
diction of a log-transformed, linear transformation versus a Horvath-style log-linear
transformation (Equations @ and @) was tested. In the Horvath-style approach,
adult.age is optimised during cross-validation (Section ) For this new model, I
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found the best fit for the data was a Horvath-style log-linear model, where adult.age is
defined as 46 weeks. As such I utilised this transformation for the final model derivation.

If age <= adult.age:
F(age) = log(age + 1) — log(adult.age + 1) (2.4)

Else if age > adult.age:
age — adult.age)

(
F =
(age) adult.age + 1

(2.5)

After the cross-validation in the training, the final model was built using all 427 samples.
The final model was defined as the 3 values derived from glmnet for the selected 275
sites. For this model, there was no need to fit a quadratic function using the nls
package in R. This is likely due to the offset being removed as a result of increased

sample numbers used for training for this predictor.

A set of healthy and treated samples from the same original studies and from Kemp,
Ghahramani, Cimmino and Zhang studies were used to assess the usability of the final

model. The MAE of the prediction was found to be 5.33 weeks.

2.4 Methods for Single Cell Ageing

2.4.1 Mice

Animals were handled according to national and European Community guidelines,
and an ethics committee of the Institut Pasteur (CTEA) in France approved proto-

cols.

2.4.2 Isolation of satellite cells

Six to eight-week-old (young) and 104 to 110 week-old (old) Tg:Pax7-nGFP mice (Sam-
basivan et al. 2009) were sacrificed by cervical dislocation. Tibialis anterior (TA)

muscles (Stuelsatz and Yablonka-Reuveni, 2016) were dissected and placed into cold
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DMEM. Muscles were then chopped and put into a 50 mL Falcon tube containing 10 mL
of DMEM, 0.1% collagenase D, 0.25% trypsin, 10 pgmL~! DNasel at 37°C under gen-
tle agitation for 30 minutes. Digests were then allowed to stand for 5 minutes at room
temperature and the supernatants were collected into 5mL of FBS on ice. The diges-
tion was repeated 4 times until the muscle was completely digested. The supernatants
were subsequently filtered through a 70 pm cell strainer. Cells were spun at 515¢ for
15 minutes at 4°C and the pellets were resuspended in 1mL freezing medium (10%

DMSO in fetal calf serum (FCS)) for long term storage in liquid nitrogen.

Before FACS isolation, samples were thawed in 50 mL of cold DMEM, spun at 515¢ for
15 minutes at 4°C. Pellets were resuspended in 300 pL. of DMEM 2 % FCS and filtered
through a 40 pm cell strainer. Cells were isolated based on size, granulosity and GFP

expression levels using a FACS MoFlo Astrios.

GFPhieh subpopulations (henceforth referred to as TA-Hi MuSCs) were FACS-isolated,
collected in 300 uL. cold DMEM 2% FCS, and re-sorted as single cells into 2.5 uL cold
RLT Plus buffer containing 1 U/uL. RNAse inhibitor in 96-well LoBind plates. These

were then flash-frozen on dry ice and stored at -80°C.

2.4.3 Single-cell combined methylome and transcriptome se-

quencing (scM&T-Seq) - library preparation

TA-Hi MuSCs that had been single-cell sorted into RLT Plus lysis buffer containing
RNase inhibitor in 96 well plates were processed using the scM&T-Seq method (Anger-
mueller et al.; 2016), which was developed using existing scG&T-Seq, scBS-Seq and
Smart-Seq2 protocols (Macaulay et al), 2015, Smallwood et al., 2014 and Picelli et al.,
2013). An adapted description from the methods papers is provided here for clarity,
since this scM&T-Seq method has been derived from four separate methods papers
and has not previously been fully described itself (Angermueller et al., 2016, Macaulay
et al., 2015, Picelli et al., 2013 and Smallwood et al., 2014).

Genomic DNA and mRNA were separated using the Agilent Bravo liquid-handling
robot. A modified oligo-dT primer (5'-biotin-triethyleneglycol-AAGCAGTGGTATC
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AACGCAGAGTACT30VN-3', where V is either A, C or G, and N is any base; IDT)
was conjugated to streptavidin-coupled magnetic Dynabeads as per the manufacturer’s
instructions. To capture polyadenylated mRNA, 10 pL. conjugated beads were added
to each well containing cell lysate and this was incubated for at least 15 minutes at
room temperature with mixing to prevent the beads from settling. The mRNA was
then collected to the sides of the well using a magnet and the supernatant, containing
the genomic DNA (gDNA), was transferred to a fresh plate. To maximize gDNA
capture, the beads were washed three times with a wash buffer (50 mm Tris-HC1 pH
8.3, 75mM KCI, 3mM MgCly, 10mM DTT, 0.5% Tween-20, 0.2x SUPERasin RNAse
inhibitor) at room temperature. The solution from each wash was pooled with the
original supernatant. To minimize sample loss, the same tips were used for all wash

steps.

Directly following the last wash, 10 pL. of a reverse-transcription master-mix (0.5 pL
SuperScript IT reverse transcriptase (200U /pL), 0.25 pL. RNAse inhibitor (20 U/pL),
2 uLL 5x Superscript I First-Strand Buffer, 0.25 pL. DTT (100 mM), 2 pLL betaine (5 M),
0.9 uLL MgCl, (1m), 1 pL Template-Switching Oligo: 5'-AAGCAGTGGTATCAACGC
AGAGTACrGrG+G-3"' where ‘1’ indicates a ribonucleic acid base and ‘+’ indicates a
locked nucleic acid base; 10 pM, Exiqon), 1 pL ANTP mix (10 mMm) and 3.6 uL. nuclease-
free water) were added to each well. Reverse transcription was performed on a PCR
machine for 60 minutes at 42°C followed by 30 minutes at 50°C and 10 minutes at 60°C.
The plate was vortexed during this process every 20 minutes, to ensure the beads were
maintained in suspension. PCR was then performed immediately by adding the PCR
master-mix (12.5ul, KAPA HiFi HotStart ReadyMix with 0.25 u, PCR primer: 5'-A
AGCAGTGGTATCAACGCAGAGT-3', 10mM)) to the 10 uL. of reverse-transcription
reaction mixture. The sample was then vortexed and thermally cycled as follows: 98°C
for 3 minutes, then 24 cycles of [98°C for 15 seconds, 67°C for 20 seconds, 72°C for
6 minutes| and finally 72°C for 5 minutes. Amplified cDNA was cleaned up with
0.8x solution of AMPure Beads and eluted with 25uL of elution buffer (Buffer EB,
Qiagen). The quality of the cDNA libraries was assessed using the Agilent Bioanalyzer.
RNA-sequencing (RNA-Seq) libraries were prepared from cleaned up single-cell cDNA
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libraries using the Nextera XT kit according to the manufacturer’s instructions, with
the exception that the volumes were reduced to one-fifth of the specified amounts.
384 RNA-Seq libraries were pooled per lane of 125 bp paired-end sequencing on a
HiSeq2500.

To avoid batch effects masking biological effects, libraries were prepared from young
and old individuals in parallel, in three separate batches. To control for contamination,

empty positions in the plates were also prepared and sequenced.

2.4.4 Single-cell combined methylome and transcriptome
sequencing (scM&T-Seq) - processing of sequencing

data

Libraries were sequenced on the Illumina HiSeq2000 platform using the default RTA
(v1.9) analysis software. The sequencing data generated from TA-Hi MuSC libraries
includes both DNA methylation data and transcriptomic data. These data types were
processed separately, and the link between the datasets was maintained within the

sample labelling.

DNA methylation - initial processing of sequencing data

Raw Bisulfite-Seq reads were trimmed to remove poor quality calls, read through
adapter contamination and first 6 bp from the 5" end of all reads to remove the sequence
bias introduced by the random priming step during the Post-Bisulfite Adapter Tag-
ging (PBAT) library preparation using Trim Galore (v0.4.2, parameters: —paired —gzip
—phred33 —clip_rl 6 —clip_r2 6, www.bioinformatics.babraham.ac.uk/projects/

trim_galore/, Cutadapt version: 1.9.1).

DNA methylation - subsequent processing of sequencing data

Trimmed reads were aligned to the mouse genome in paired-end mode using Bismark

v0.16.3 (Krueger and Andrews, 2011) with default parameters plus: —pbat (Bowtie2
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v2.2.9). Reads were then deduplicated with deduplicate bismark, selecting a random
alignment for each position that was covered more than once. CpG methylation calls
were then extracted using the Bismark methylation extractor (v0.16.3) with the follow-

ing parameters: —no_ overlap —bedGraph.

Filtering steps were performed as described in Results section lé;.2.6.

Transcriptome - initial processing of sequencing data

RNA-Seq reads were trimmed wusing Trim Galore (v0.4.2; http://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/) wusing default pa-
rameters to remove the Nextera adapter sequence and poor quality base calls.
Trimmed reads were mapped to the mouse genome (build GRCm38, to which the
ERCC spike-ins had been added) using HISAT2 (v2.0.5; options —sp 1000,1000

—no-mixed —no-discordant), guided by Ensembl gene models (release 74).

Transcriptome - subsequent processing of sequencing data

Normalised gene expression counts per cell were defined as: reads per million of mapped
reads, using featureCounts in R (Liao et al., 2013) with ensembl GTF file. Filtering

steps were performed as described in Results section E.2.2.

2.4.5 Mapping of public ChIP dataset

The publically available MuSC ChIP dataset from [Liu et al., 2013 was downloaded
from GEO (accession GSE47362), and uniquely aligned to the mouse genome (build
GRCm38) using Bowtie (v1.1.0; options: -m 1 —phred33-quals —strata —best).

Peaks were called using Model-based Analysis of ChIP-Seq 2 (MACS2; v2.1.0.20140616;
options —callpeak -f SAM —GSIZE mm -PVALUE 0.001). Peaks were called for
H3K4me3, H3K27me3, and H3K36me3.
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2.4.6 Cell Cycle Analysis

Classification of TA-Hi MuSCs with respect to cell-cycle was performed using a previ-

ously described classification algorithm (Scialdone et al., 2015).

2.4.7 t-Distributed Stochastic Neighbour Embedding (tSNE)-

based transcriptome clustering

tSNE dimensionality reduction was performed on the normalised gene expression counts
using the Rtsne package in R (van der Maaten and Hinton, 2008). Lowly-expressed
genes, defined as being expressed in less than three cells, were removed from this

analysis.

2.4.8 Transcriptional variability

Genes that were lowly- or highly-variable within a given individual were defined as
previously described in Mohammed et al., 2017. Briefly, the squared coefficient of vari-
ation was plotted against the mean expression for each gene within an individual. The
rolling median was then calculated. Distance from this rolling median was computed
for each gene, with directionality considered. Genes were then ordered by this distance
and selections made, based on a gene number cut-off, to define highest and lowest

variable genes within a given individual.

2.4.9 Cell-to-cell correlation of transcriptional variability

Cell-to-cell coordination of highly-variable genes was defined as previously conducted
in Mohammed, H. et al (Mohammed et al., 2017). Briefly, Spearman correlations were
calculated in R, using the base cor function. For these comparisons, any variable genes
that were not expressed in either of the cells being correlated were excluded. These
correlation matrices were then visualised as heatmaps. Genes were considered if their

mean expression was >1. To calculate heterogeneity from these correlations (p) this
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transformation was performed:

g 4=r (2.6)

2.4.10 Gene Ontology analysis of variable genes

Highly- and lowly-variable genes were assessed for GO enrichment. This was conducted
using the gprofiler software (Reimand et al., 2007) and a background list of genes. This
background list was defined as all genes that could have been deemed highly- or lowly-
variable within a given individual. If there were many significant GO terms, the top

six were shown; where there were six or less all were shown.

2.4.11 Conventional DNA methylation variability analy-

sis

Conventional DNA methylation variability analysis, not shown, was performed as previ-
ously described in Smallwood, S. et al (Smallwood et al., 2014). Analysis was conducted

defining binary methylation values.

2.4.12 Hamming distance (HD) DNA methylation variability

analysis

Before computing this Hamming distance (HD) measure of DNA methylation variabil-
ity, the methylation state at each cytosine within a CG context, within each cell, was
defined in binary. To compute the HD, a given set of genomic features had to be
defined. For every cell-cell pairwise comparison, the cytosines in a CG context that
intersect the feature list and are present in both cells are identified. The difference
in methylation state for each single cytosine comparison is then computed and the
mean derived from computing the sum of the comparisons. The directionality of the
differences is not computed. In addition to the HD, mean methylation across the fea-

ture set is defined for each cell within the comparison. This was implemented using a
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customised PERL script.

For comparison to expectation, a random derivative of this analysis was defined. The
workflow for this was the same as that conducted for the actual cell-cell comparison,
except that the vectors containing the methylation statuses for each cytosine within
a CG context for each cell within the comparison were randomised. This was con-
ducted using the random package within python (Van Rossum and Drake, 2011), 1000
times for each cell-cell comparison. This was implemented using a customised python2

script.

Parallelisation of this analysis was organised using bash.

2.4.13 Subsetting based on DNA methylation

To enable the HD variability analysis to be conducted on feature lists subsetted based
on DNA methylation levels, methylation needed to be defined over individual cytosine
positions from a ‘bulk’ sample. This was achieved by counting forward and reverse reads
from the coverage files output from bismark (Krueger and Andrews, 2011) for each cell
from all individuals, old and young included together, and counting the number of cells
that contained information at each position. This was performed using a customised
python2 script. For HD variability analyses, this ‘bulk’ cov file was filtered for positions
that contained information from at least 5 cells and each cytosine position in CG
context in the genome was binned into 10% intervals of DNA methylation. These

bins were then used for feature list subsetting before HD variability calculations were

conducted as described in section .

2.4.14 Defining CG-density for maximal coverage

To ensure that as much as possible of the available DNA methylation information
could be utilised for the interrogation of CG-density-related behaviour, a customised
approach to the calling of CG-density was defined. To ensure CG-density was defined

over regions with coverage and not blindly from the genome fasta file, the ‘bulk’ cov file
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defined in the subsetting script (Section ) was utilised. Using this cov file, regions
of CG-density were defined over fixed numbers of ‘seen’ cytosine positions. Using these
fixed coordinates, the true CG-density was then defined from the genome fasta file. Ns
in the fasta file were removed so as not to confound the calculation of CG-density. In
addition, a maximal size was defined (default=100kb). This was implemented using a

customised python2 script.

A secondary python2 script was defined to enable these CG-density regions to be
segregated into bins of CG-density as defined by the user in either loglO or linear
space. The defaults are 10 bins and log-transformed. In the paper, the values used are

specified if they deviate from these defaults.

2.4.15 DNA methylation patterning

A computational approach was developed to assess neighbourhood similarity within
a given list of features, within a single cell. This approach computes the absolute
difference for every cytosine position relative to every other cytosine position within a
given feature. This calculation of distance is subsetted into two based on methylation
status of the site being used as the reference (or comparison) site. These metrics are
then computed for every single feature within the list of features. This produces a
dataframe, with columns corresponding to sum of absolute differences and number of
observations, and rows representing distance from the reference position. A similarity
score is then calculated for each distance from the reference using this dataframe. The

similarity score is defined as:

> |dif ferencel

>~ observations

Similarity Score = (2.7)

This was implemented using a customised python2 script. This method is agnostic to
the strand of the cytosine, although future iterations of the software could take this
into account. In addition, the cov files being provided are presently not allele-split, as

such a 1-n genome is assumed.
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For comparison to expectation, a randomised background was computed. This was
computed in the same way as for the real data, except that for each feature within
each cell, the positions were randomised. This was a relatively computationally expen-
sive process, therefore in this analysis only ten random comparisons were calculated.
This was not a poor background comparison set, since within a given feature there
are a relatively small number of cytosine positions covered. Randomisation was per-
formed using the random package in python. This was implemented using a customised

python2 script.

Parallelisation of this analysis was organised using bash.

2.4.16 DNA methylation-transcription correlation analy-

sis

The association between DNA methylation at promoters or gene-bodies and expression
of the corresponding gene was assessed. This analysis was conducted on a filtered
set of genes. The filtering removed lowly-expressed transcripts. This ensured that
there were enough cells with coverage for the analysis. The minimal criteria that were
chosen for the analysis detailed in Results section were: 20 cells with methylome
coverage (where coverage is defined as >2 cytosines in CpG context present (within the
promoter)). For this analysis promoters were defined as +/-2 kb from the transcription
start site (T'SS). Both Pearson and Spearman correlations were computed using the
cor package in R and visualised as volcano plots. A multiple-testing correction was

applied using the p.adjust package in R and a false discovery rate (FDR) of 10%.

2.4.17 DNA methylation-transcription feature-based analy-
sis
The relationship between DNA methylation variability (measured using the HD met-

ric) and transcriptional variability was calculated. To conduct this analysis, genes

were classified into states of variability. For each of these bins, feature lists were de-
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fined for the promoters or gene bodies of these genes and DNA methylation variability

calculated.

2.5 Methods for Live Cell DNA Methylation

2.5.1 Phusion PCR

The standard Phusion PCR reaction was: 10pulL 5x Phusion HF buffer, 2L 5 mM
dNTPs, 1L 10 pM primer mix, 1 pl DNA (1:1000 dilution of miniprep if used), 0.5 pL
Phusion polymerase (2,000 U/ml), 36.5pL. HyO. Variations of the following cycling
conditions were used: 30 seconds at 98°C followed by 35 cycles of (10 seconds at 98°C,
10 seconds at temperature 3°C above the lower primer T, 3 minutes at 72°C) then a

final 5 minute incubation at 72°C before holding at 4°C.

2.5.2 BP and LR cloning

For BP or LR cloning, the following were added to a 1.5 mL microcentrifuge tube at
room temperature and mixed: 1-7 L attB-PCR product (>10ngpL~!; final amount
15-150ng), 1 uL Donor vector (150 ng pL.=!), and TE buffer pH 8.0 to 8 pL total volume.
The BP or LR Clonase II enzyme was thawed and vortexed. 2pL of the enzyme was
added to each reaction and mixed well. The reaction was then incubated at 25°C for 1
hour or overnight for larger fragments. The reaction was stopped by addition of 1L
of Proteinase K and incubation at 37°C for 10 minutes. Product was then transformed

into bacteria.

2.5.3 Bacterial transformation

Plasmids were transformed into DH5«a bacteria. 50 pL. of bacteria were incubated with
10 nL of DNA on ice for 10 minutes. A 40-second heat shock was performed at 42°C.

Samples were incubated on ice with 200 pL. SOC for a further 5 minutes, followed by
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incubation in a shaker at 37°C for 1 hour. Bacteria were then plated on agar plates
containing the relevant antibiotic and incubated at 37°C overnight. Bacterial colonies
were picked and grown up in LB liquid culture for plasmid DNA extraction, validation

and use.

2.5.4 Plasmids defined for future applications

A number of plasmids were cloned that could be useful for future experiments measuring
more targeted DNA methylation changes in living cells. A brief description of these
plasmids is provided in Table @

Linker
Original
Protein Backbones lengths Fluorophores
constructs
(aa)
(Koushik
MBD et al., 2006
pDONR, and pDest Venus,
of 5, 10, 15 and Ya-
RESISTANCE Cerulean
MBD1 magata,
2010)
Histone pDONR and pDest (Koushik
5, 10, 15 Cerulean
H2A RESISTANCE et al., 2006)
(Chen et all,
pDONR and pDest 2013a and
dCas9 5, 10, 15 Cerulean
RESISTANCE Koushik
et al., 2006)

Table 2.9: Plasmids generated for future FRET-style experiments

The starting plasmids for this cloning were predominantly gifts. mVenus N1 was a
gift from Steven Vogel (Addgene plasmid # 27793), and mCerulean N1 was a gift
from Steven Vogel (Addgene plasmid # 27795). MBD1-eGFP was a gift from Kazuo
Yamagata. mCerulean-H2A-10 was a gift from Michael Davidson (Addgene plasmid
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# 55373). pSLQ1658-dCas9-EGFP was a gift from Bo Huang & Stanley Qi (Addgene
plasmid # 51023).

2.5.5 Mouse embryonic stem cell culture

Mouse embryonic stem cells (mESCs) and mutant derivatives thereof were either grown
in 15% serum media (450 mL DMEM, 75mL fetal bovine serum (FBS), 5mL 100x
Penicillin-Streptomycin antibiotic, 5 mL 100x L-glutamine, 5 mL 100x NEAA 500 pL 3-
mercaptoethanol, 500 pL. 1000x mLIF) or 2i/LIF media (250 mL DMEM/F12, 250 mL
Neurobasal, 2.5mL N-2 Supplement, 5mlL B-27 Supplement, 5mlL L-Glutamine,
5mL 100x Penicillin-Streptomycin antibiotic, 500 pL. S-mercaptoethanol, 500 uL. 1000x
mLIF, 3pLmL™! of 10mM CHIR99021 and 1 pLmL~! of 10 mm PD0325901.

When passaged, serum-grown mESCs were washed once with 1x PBS following removal
of media. PBS was removed and cells were incubated with trypsin at 37°C for 5
minutes or until cells had detached. Four volumes of media were added to inactivate
the trypsin. Appropriate volumes of the cell suspension were then transferred to new
plates to achieve the desired cell density. New plates had been pre-coated with 0.1%

gelatin for 15 minutes , then the gelatine removed prior to use.

When passaged, 2i/LIF-cultured mESCs were washed once with 1x PBS following
removal of media. PBS was removed and cells were incubated with TrypLE for 1
minute at room temperature. Cells were then resuspended in PBS and spun down at
200g for 3 mins. The supernatant was removed and the cell pellet was washed with
PBS and spun down again. Following supernatant removal, the cell pellet was then
resuspended in 2i/LIF media and replated at the desired density. Similar to serum-

cultured mESCs, 2i/LIF-cultured mESCs were cultured on gelatin.

2.5.6 Freezing and thawing mESCs

Cells were prepared for freezing as described for passage procedures, with the exception

that for the last resuspension step cells were resuspended in 0.5 mL of media. To this
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0.5mL, 0.5 mL of 2x freezing media (for serum-cultured mESCs 50% serum media, 30%
FBS and 20% DMSO; for 2i/LIF-cultured mESCs 80% 2i/LIF media and 20% DMSO)
was gently added. 2x freezing media was stored at 4°C and was used within 2 weeks.
Following addition of freezing medium, samples were transferred to labelled cryovials
before being placed at -80°C in a Mr Frosty, allowing the cells to cool slowly. After 2-3

days, cryovials were transferred to liquid nitrogen for long-term storage.

Thawing of cells was conducted in a timely manner to minimise damage to the cells.
Cryovials were thawed at 37°C for one minute, then 4 ml of appropriate media was
added and the samples transferred to gelatinised plates. The following day the media

was changed. Cells were passaged at least once before being used for experiments.

2.5.7 Transfection

Transfections were performed using FuGENE® in a 6-well plate format. 250 pL of Opti-
MEM™ was added to tubes containing 2 pg of DNA in total. In separate tubes 250 pL
of Opti-MEM™ was incubated with 6 pL. of FuGENE®. Both sets of tubes were left
to incubate at room temperate for 5 minutes, then the two mixes were combined and
incubated together for a further 20 minutes. This transfection mix was then added to

the respective wells of cells.

2.5.8 Stable cell line derivation

To generate stable cell lines, cells were selected for 10-14 days with G418 post-
transfection. Selected cells were sorted to enrich for highly-expressing GFP-positive
cells in order to facilitate imaging experiments. In preparation for analysis by
fluorescence-activated cell sorting (FACS), cells were washed with PBS, resuspended
in PBS 0.1% BSA, and filtered through a 50 pm filter to ensure a single-cell suspension.
GFP-positive cells were identified by comparison to a wildtype mESC line.
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2.5.9 Preparation of cells for live cell experiments

Cells were split as described in section @, except for a few subtle differences. Firstly,
cells were filtered through a 50 pm filter to ensure a single-cell suspension prior to re-
plating. Secondly, only a very thin coating of gelatin was applied to the plate surface,
to ensure that this did not interfere with the imaging. Lastly, cells were re-plated onto
IBIDI dishes or 4-well p-slides. These formats were chosen due to their compatibility
with high-quality imaging at high magnifications and with the microscope oils utilised
for high magnification imaging. Upon re-plating, cells were allowed to adhere to the
gelatin surface in the standard cell culture incubators for one hour before they were
taken to the microscope. The cells were then given a further 30 minutes to adjust to

the environment of the live cell chamber on the microscope prior to imaging.

2.5.10 Immunofluorescence and imaging

Antibody staining was performed as previously described (Santos et al), 2003) on
mESCs grown on coverslips, after fixation with 2% PFA for 30 minutes at room
temperature. Briefly, cells were permeabilised with 0.5% TritonX-100 in PBS for 1
hour; blocked with 1% BSA 0.05% Tween-20 in PBS (BS) for 1h; incubated with
the appropriate primary antibody diluted in BS; washed in BS; and incubated with
secondary antibody for 30 minutes. For simultaneous detection of DNA methyla-
tion, after the first round of antibody staining samples were washed in PBS, post-
fixed in 2% PFA for 10 minutes, treated with 2N HCI for 30 minutes at 37°C and
washed extensively with PBS before incubating with anti-bmC diluted in BS. All sec-
ondary antibodies were Alexa Fluor conjugated, diluted 1:1000 in BS. Incubations
were performed at room temperature unless otherwise stated. DNA was counter-
stained with 5 pg/ml DAPI in PBS. Single optical sections were captured with a Zeiss
LSM780 microscope (63x oil-immersion objective) and the images pseudo-coloured us-
ing Adobe Photoshop CS4. For visualization, images were corrected for brightness
and contrast, within the recommendations for scientific data. ImageJ 1.51p (NIH)

was used for fluorescence semi-quantification and the Colocalization_Finder plugin
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(https://imagej.nih.gov/ij/plugins/colocalization-finder.html) for colocali-

sation analysis.

Antibody Cat. no. Company Dilution
Anti-Dnmt1 ab87654 Abcam 1:1000
Anti-bmC BI-MECY-0100 Eurogentec 1:500

Table 2.10: Antibodies used for immunofluorescence

2.5.11 Fluorescence Recovery After Photobleaching (FRAP)

imaging and primary analysis

MBD1-eGFP mobility was assessed in a number of different mESC lines. The regions
chosen to be photobleached were non-peripheral regions of the nucleus to ensure that

recovery could occur unhindered in all directions.

Cells were imaged using an Andor Revolution spinning disk confocal microscope, com-
prising Nikon Ti-E frame, Nikon 100x 1.4 NA plan apochormat lens or Nikon 60x
1.45 plan apochromat lens, Yokogawa CSU-X scanhead, Andor laser combiner, Andor
FRAPPA photobleaching unit and Andor iXon 897 EM-CCD camera. The system was
configured and controlled using Andor iQ) software. GFP was imaged with 100 ms expo-
sure (EM gain set to 300) using 488 nm laser excitation (set at 6%) with emitted light
filtered using a 525/40 nm bandpass filter. The photobleached regions chosen included
regions containing heterochromatic foci and regions without. The photobleached area
was 15x15 pixels (where the diameter of one pixel is 0.166 667 pm at 100x magnification
and 0.266 pm at 60x magnification), except where specified in the control experiments.
Twenty images were acquired prior to photobleaching using continuous capture. Pho-
tobleaching was performed using 50% laser power and a pixel dwell time of 40 ps,
repeated twice. A further 480 images were then acquired using the imaging settings
described above to assess recovery. Two FRAP experiments were conducted per cell
to verify robustness of the method. A live cell chamber surrounds the microscope, and

temperature and CO, levels were maintained at 37°C and 5% respectively.
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The fluorescence of the photobleached region, of the entire nucleus, and of a background
region outside of the cells in the image was quantified for each frame in the image
stack. This was conducted using FIJI (Schindelin et al., 2012). Briefly, regions of
interest (ROIs) were annotated and metrics extracted across each image stack. These
three ROI metrics were stored in a .txt file and exported. The Full Normalisation
detailed in Results section p.2.3 was performed on these to ensure independence from
the total fluorescence present in the nucleus of a given cell, and to enable us to disregard
differences in recovery due to differences in the proportion of protein in the immobile
fraction. The contribution of newly-synthesised protein to the recovery was assumed
to be negligible, owing to the short time window of the experiment. The recovery was

fit as described in Results section 5.2.3.

2.5.12 Gaussian Mixture Model (GMM) to describe DNMT1-
iKO

To model the behaviour of the DNMT1-iKO, a Gaussian Mixture Model was defined
from the data. Four states were defined. The parameters for each state were initialised
using a K-means based clustering approach and these initialised parameters were then
refined by the GMM and state-likelihoods computed. The most likely state was then

assigned to each cell.

2.5.13 Differential Dynamic Microscopy (DDM) imaging

MBD1-eGFP mobility was assessed in a number of different mESC lines. Fluorescence
images were taken using a Nikon Ti-E equipped with a 100x 1.4 NA plan apochromat
lens, Lumencor Spectra-X LED light source and Hamamatsu Orca Flash 4.0 CMOS
camera. GFP excitation used the 470 nm LED, with a 488/10 bandpass excitation
filter and 525/50 bandpass emission filter. The system was configured and controlled
using Nikon Elements software. It was imperative that each image contained only one
single cell. One thousand frames were acquired for each image of one cell. These frames

were acquired at 50 Hz, i.e. 20 images per second. This frame rate was achieved by
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reducing the field of view to 512 x 512 pixels, with the camera attached to the PC
using CameralLink. Images were saved from the microscope in .nd2 files. An OKO lab
live cell chamber surrounded the microscope, and temperature and COy levels were

maintained at 37°C and 5% respectively, except where detailed in the results.

Nikon Elements JOBS software was used to enable multiple cells to be imaged in the
same experiment. This software marked cell positions using x,y,z coordinates and al-

lowed for stage movement to different locations between image acquisition bursts.

For experiments where single cells were imaged over time, Nikon Elements JOBS soft-
ware was utilised again. However, it was run separately for each time interval due to cell
movement between image intervals. As such, cellular positions were recalculated prior
to DDM imaging using a reduced intensity LED excitation and longer exposure time

(100 ms). This was done to ensure minimal quenching prior to the DDM imaging.

Images were converted from .nd2 files to .tiff files using FIJI (Schindelin et al), 2012).

Primary and secondary analysis were developed as part of this thesis and as such is

described in Results section .
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Chapter 3

The Ageing Clock

3.1 Introduction

DNA methylation has been shown to be an accurate readout of chronological age and
possibly biological age in humans. At present, however, there is no method to predict
chronological and biological age in an experimentally tractable model system. This
means that we are both unable to probe the mechanisms of this epigenetic predictor
but also that it is not presently possible to utilise the time-saving benefits that such a
clock can produce in ageing studies in a mammalian model system setting. Such as the
ability to rapidly test ageing interventions in an in vivo model. In this chapter, I will
define an epigenetic age predictor for mice using data from a modified form of reduced

representation bisulfite sequencing (RRBS).

RRBS is a simple means of genomic enrichment based on the premise that the genome
has a non-random base composition. By judicious choice of restriction enzyme, these
base composition biases can be exploited to enrich for sites of interest. The most
commonly used RRBS method for enriching cytosine-guanine dinucleotide sequences
(CpGs) in the genome, is to digest isolated DNA with the methylation insensitive
restriction enzyme Mspl. Enzymes such as Bglll, Xmal and Tagal have also been used
(Lim et al. (2016), Meissner et al), 2005 and [Tanas et al,, 2017). Mspl cuts at the

recognition sequence C|CGG. This Mspl digestion of the genome can capture 10% of
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CpGs in the genome, whilst reducing the number of fragments sequenced by ~30 fold
compared to whole genome bisulfite sequencing (WGBS). This cost reduction means
that it is possible to use RRBS to obtain a far higher coverage per sample than is
achievable using WGBS. This is important for epigenetic age prediction, because the
magnitude of changes observed at single CpG sites in these predictors is often small
and as such would require high depth sequencing to observe the changes. The use
of RRBS also makes sequencing more efficient, since reportedly 70-80% of standard

sequencing reads contain no CpGs and thus no relevant information.

There are many additional approaches to enrich genomic regions of interest (Martin-
Herranz et al., 2017). However, I chose RRBS over these for a number of reasons.
Firstly, RRBS is a depletion-based method, rather than a positive selection-based ap-
proach. This means that the sites of interest are not actively acquired in the selection
step and as such fewer biases are introduced, making these approaches more readily
quantifiable. Secondly, unlike some of the other methods such as antibody pulldown
based approaches (e.g. using an anti-5mC antibody), RBBS can provide information
at single base resolution. Thirdly, RRBS is able to provide access to a large number
of CpG sites (typically >2M sites) in a reproducible manner. This is not the case for
amplicon-based polymerase chain reaction (PCR) approaches, which can only assay a
small number of sites, or antibody-based approaches, which do not provide any infor-
mation on the regions that will be sequenced. Fourthly, there are already high quality
RRBS datasets generated that are well-documented and include aged mouse samples
in the public domain. As such, in new RRBS experiments, these datasets can be in-
corporated into the analysis to reduce biases in mice or sample preparation. Lastly,
although mouse samples have previously been run on the human MethylArray systems,
a MethylArray was not utilised, because a dedicated instrument is not currently avail-
able for the mouse genome and as such the number of CpGs that could be interrogated
would be greatly reduced due to lack of homology. However, would such an array-
based system have been available, this would have been preferable owing to the higher
reproducibility. This is due to the Poisson distribution of reads sequenced, inherent

in the sequencing process, which reduces the number of sites that can be utilised in a

76



Chapter 3. The Ageing Clock 3.2. Results

linear modelling-based approach without requiring imputation.

3.2 Results

3.2.1 Enabling deduplication in the RRBS datasets

In the human epigenetic predictors, it is common for very small changes in the individ-
ual methylomes to result in large changes in the predicted age. As such, I decided to
refine the current RRBS protocol to incorporate unique molecular identifiers (UMIs)
into the library preparation, to ensure that I could subsequently remove any duplicate
reads that could mask subtle changes in DNA methylation. A schematic of this is
shown in Figure @
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Figure 3.1: Deduplication from paired UMIs: Schematic of the library process utilising
UMIs and paired-end next generation sequencing. In brief, adapters containing UMIs are
ligated to genomic DNA. This adapter ligated DNA can then be bisulfite treated and amplified
in a stranded manner. Upon sequencing this will result in 4 independent types of information
that can be deciphered from the directionality of the PCR and the UMI. Two example UMIs
are shown, labelled A and B.

7



3.2. Results Chapter 3. The Ageing Clock

In WGBS, deduplication is usually achieved by removing reads that start and end at
the exact same coordinates in the genome. In RRBS, this is not a feasible method for
deduplication, since all fragments that cover the same region of a genome will likely all
originate from digested fragments that start and end at the exact same positions. The
problem of deduplication is greater in an RRBS setting than a WGBS setting, owing to
the increased number of PCR cycles performed in the RRBS setting in comparison to
the WGBS setting, inherent in the reduced number of fragments that will be sequenced

from the same starting amount of DNA.
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Figure 3.2: Derivation of double-stranded UMI adapters: Schematic of the steps
involved in deriving double-stranded UMI adapters. Oligonucleotides are annealed together.
This double-stranded oligo is then filled-in ensuring that the two strands containing the UMI
(depicted with Ns) are complementary. These double-stranded adapters can then be A-tailed
to improve ligation efficiency.

To uniquely label all fragments in an RRBS library, I modified the adapters that are lig-
ated to the ends of the restriction digested DNA in such a way that they included eight
random bases from the nucleotides adenine, guanine, thymine and 5-methylcytosine
(A, G, T, 5mC, respectively). I chose 5-methylcytosine over cytosine, because these
ligated adapters will subsequently be bisulfite converted, which would convert any cy-
tosines in the adapter to uracils and these would then be amplified as thymines in turn.
To ensure that the adapters would contain complementary UMIs on both strands of the
adapter, DNA oligonucleotides (oligos) were ordered that represented the top and bot-
tom strands of the future adapters. The top DNA oligo was designed to only contain
the standard illumina adapter sequence, whereas the bottom DNA oligo was designed

to contain the standard illumina sequence, followed by an 8N sequence, followed by
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a 4-base constant CAGT sequence. The purpose of the 4-base constant sequence was
to reduce any ligation bias during the ligation of the 8N sequence. Such biases could
be dependent on the sequence of the genomic DNA being ligated and could affect the
complexity of the subsequent library. These oligos were slowly annealed to favour
the correct formation of the partially double-stranded adapter. Subsequently, the top
strand of the adapter was filled in using Klenow exo- using A, 5bmC, G and T in order
to ensure that the sequence complementary to the 8N barcode was obtained on the top
strand and that the complementary nature would remain following bisulfite treatment.
Following the fill in reaction, an A-tailing reaction was performed on the adapter to

improve the ligation efficiency with the T-tailed genomic DNA. A schematic is shown
in Figure @

Preliminary sequencing experiments showed that the 8N barcode was mostly random,
with a slight A-bias. This A-bias disappeared when subsequent oligo batches were
utilised, suggesting that it could have been due to a bias in base availability during
oligo synthesis. Next, I wanted to ensure that there was no bias in the sequence content
of the barcode in relation to the sequence content of the genomic fragment that it was
ligated to. I therefore compared the GC-content of the DNA and adapter and found

no sequence bias (Figure @)

Following these initial whole genome experiments, I tested the adapters in an RRBS
experiment and found that I could generate libraries. Importantly, quantification of the
libraries showed that from a similar number of cycles these libraries were equivalent
to those generated with the standard illumina adapters, suggesting that my A and

T-tailing reversal was no less efficient than their approach.

In collaboration with Felix Krueger, creator of Bismark (Krueger and Andrews, 2011), I
next derived a computational approach for calling and removing duplicates. In essence,
fragments were first compared by their start and end positions in the genome. Then
these putative duplications were assessed to see whether their read 1 (R1) and read 2
(R2) barcodes (16N in total) were highly similar (which I defined as identical or one
base different) both in a direct match setting and in a reverse complement setting. A

one base mismatch was chosen from empirical evidence as this showed that any more
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Figure 3.3: There is no GC bias in UMI incorporation: Scatterplot depicting the
GC-content of the UMI against that of the neighbouring ligated genomic sequence. There
was no relationship detected.

subsequent mismatches would likely be the result of a separate barcode.

Overall, these observation show that I have successfully developed a method that is
capable of deduplicating RRBS data. Additionally, though not detailed in this thesis,
I have shown that these adapters can be used to call SNPs, rare base modifications,

and hemi-methylation.

3.2.2 DNA methylation correlations with age in mice

Before deriving an epigenetic predictor in mouse, I first set out to confirm and expand
upon what is known about age-associated changes in DNA methylation in mice. To
this end, I collected liver, lung, heart and brain (cortex) samples from newborn to
41-week old mice. To ensure that the effects I was seeing were related to age and not
an additional variable, such as genetic or hormonal variability within the dataset, I
restricted our cohort of mice to inbred C57BL/6 BABR male mice and sampled 3-5

animals per time point. In total, I successfully collected 62 samples and extracted
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genomic DNA for methylation analysis from these samples (Figure @)
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Figure 3.4: Schematic of the Babraham dataset: Graphic summary of the Babraham
dataset, with mouse age differentiated by colour. DNA was isolated from liver, lung, heart
and cortex of newborn mice and mice aged 14, 27 and 41 weeks, and reduced-representation
bisulfite (RRBS) libraries made from this.

I subsequently generated UMI-style RRBS libraries of all samples to assess DNA methy-
lation changes at a wide range of CpG sites. To ensure that there was no batch effect
in the sample preparation that could be misconstrued as ageing-related methylation
changes, samples were prepared in one batch. These libraries were sequenced to an
average of 15x genomic coverage. This level of coverage was a compromise between the
cost of the sequencing, the number of samples that I wanted to interrogate, and the
magnitude of changes that I was hoping to be able to detect. Per sample I achieved
an average coverage of more than 1.23 million CpG sites with at least 5-fold cover-
age and of these 0.73 million CpG sites had more than 5-fold coverage in all samples

analysed.

I next analysed the global CpG methylation levels of the samples and found that the
newborn samples had average global methylation levels of (43%) methylation (Figure
@A). I did not observe any differences between the global methylation levels found
in the different newborn tissues. In contrast, in the samples from adult mice, I found
that the global methylation levels were slightly higher than those of the newborn sam-
ples at 45%. Again, there were no major differences among the different adult mouse

tissues nor were there difference between the methylation levels of the mice across the
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age groups. In WGBS datasets global levels of methylation are typically between 70
and 80% (Ehrlich et al), 1982). The reason for the low levels of global methylation
seen in these samples is due to the fact that RRBS enriches for CpGs in CpG Islands,
which tend to be hypomethylated (Meissner et al., 2005). To check that the bisulfite
conversion of the samples was successful, I assessed the levels of non-CpG methyla-
tion. I defined poorly converted samples as having non-CpG methylation levels greater
than 10%. This highlighted that a couple of samples had been poorly converted and
these were subsequently discarded from my further analyses. Overall, I observed very
low levels of non-CpG methylation in the liver, lung and heart samples (~0.4%) with
slightly higher levels of non-CpG methylation in the brain (~1.4%). In addition, when
the cortex samples were grouped by age, I found that newborn cortex samples had
far lower levels of non-CpG methylation than the older samples (Figure @B) This is
consistent with the idea that de novo methylation in non-dividing cells results in accu-
mulation of CHH methylation (H=C, A, or T; Lister et al,, 2013). Lastly, to validate
that all samples were correctly assigned and that there had not been any confusion in
the annotation prior to sequencing, I performed a Manhattan distance-based hierarchi-
cal clustering of the most variable sites in the dataset (Figure @C) This approach
selects for sites that would likely fall within CpG Islands and that are differentially
methylated dependent on the tissue type. From this cluster-based analysis, I found
that I could correctly group the majority of the samples by their key tissue-specific
methylation signatures. The only samples that did not cluster correctly were the new-
born lung samples, which grouped together with the heart samples. The reason for
this discrepancy in the newborn lung samples could be a result of some contamination
during the tissue extraction, or it could reflect the additional time required for the lung

to fully acquire its adult methylation signature (Christensen et alJ, 2009).

Having verified the expected global and tissue-specific properties of the DNA methy-
lomes in our dataset, I then wanted to assess whether I could identify not merely regions
of the genome that were hypo- or hypermethylated with age, but whether I could iden-
tify single cytosine positions in the genome that were hypo- or hypermethylated with

age. The main reason for wanting this single position resolution was to ensure that any
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Figure 3.5: QC of the Babraham dataset: (A) Percentage global CpG methylation
level of different tissues at different ages, ordered by age (weeks). Mean CpG methylation
levels were calculated for each sample, with colour indicating sample tissue. (B) Global levels
of DNA methylation in a CHH context in different tissues at different ages. ‘Other tissues’
includes heart, liver and lung samples of all four ages whilst ‘Cortex’ was segregated into
newborn (less than one week old) and adult (14, 27 and 41 week old) samples. (C) Hierarchical
clustering using Manhattan distance clusters samples of different ages predominantly by tissue
of origin. Age and tissue type of each sample is colour labelled.

age-associated methylation changes that I identified were not confounded by coverage.
This would occur due to the spacing of the CpG sites in the genome compounded
by the frequency of Mspl restriction sites in regions of high CG density resulting in
varying coverage of neighbouring cytosines in CpG context. In addition, I wanted to
be sure that I wasn’t diluting any potential site-specific changes by assessing changes
regionally. From a correlation analysis of DNA methylation changes with age, I was
able to identify a substantial number of sites that were significantly correlated with
age in a tissue independent manner (Spearman’s correlation, with a multiple testing
corrected p-value <0.05). I conducted this analysis in a tissue independent manner,
because I wanted to assess the likelihood of defining a multi-tissue epigenetic predictor
of age in the mouse. I conducted this analysis both with and without the newborn
samples to ensure that any developmental-specific changes were abrogated. Unfortu-
nately, owing to the reduced number of time points, I was only able to identify sites
that were nominally significantly associated with age, but none of these passed my
multiple testing cut-off. An example of a tissue-independent correlation is shown for
the correlation analyses conducted with and without newborn samples (Figure @A

and B respectively).
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Figure 3.6: Example tissue independent correlations: (A) An example single CG
site, chr8:120397660, whose methylation level has a Spearman correlation with age of 0.651.
Tissue of origin is specified by colour and jitter is purely for aesthetic purposes. (B) shows the
same for a CG site, chr13:111347442, that is identified as correlated with age when newborn
samples are excluded from the analysis. Spearman correlations when newborn samples are
included or excluded are detailed.

In addition, I conducted a correlation analysis in a tissue-dependent manner to assess
whether sites were also correlated with age in a tissue specific manner. This analysis
was again conducted with and without newborn samples. In this analysis, I found
a large number of sites that were exclusively tissue specifically correlated with age
(Figure @) From Figure @B, it is also interesting to note that some of the sites
that are correlated with age in a newborn-excluded manner tend to exhibit a change in
correlation directionality between postnatal-development (<1 to 14 weeks of age) and

adulthood (14 to 41 weeks of age).

Looking more generally at the tissue-independent correlations I find a skew in the
newborn-inclusive correlation analysis for sites that are gaining methylation or becom-
ing hypermethylated with age (Figure @A and B). This skew is removed when the
newborns are excluded from the analysis and this is likely a reflection of the global in-

crease in methylation that is occurring in the first 14 weeks after mice are born (Figure

@C and D).

Interestingly, when the correlation coefficients for all sites that were present in both the
newborn inclusive and exclusive, tissue-independent correlation analyses are compared,
I observe a strong tendency for the directionality of the coefficient to be maintained, as
is highlighted by the shape of the distribution (Figure @) However, it is interesting

to note that similar to the tissue-dependent correlations, there are sites that exhibit a
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Figure 3.7: Example tissue dependent correlations: (A) Examples of tissue-specific
Spearman correlations with age in cortex, liver, lung and heart. Percentage CpG methyla-
tion level in all samples is shown, with those of the relevant tissue highlighted. Associated
Spearman correlations are shown for both all tissues and for the relevant tissue. Jitter is
purely for aesthetic purposes. (B) shows the same for tissue-specific correlations identified
when newborn samples are excluded from the analysis. Spearman correlations when newborn
samples are included or excluded are detailed.

85



3.2. Results Chapter 3. The Ageing Clock

>
loy)

|

509

o
o
I

404

4
=
I

301

o
~
1

20

104
n=11891
l:l n=558

o _

proportion relative to
nominal positive correlations

Frequency [x1E3]

o
N}
L

e S —
PSS -05 0.0 05
R AR RN Correlation coefficients
&
e o
1.0 60 -
2
o | 50 A
o =08 —
S 2]
0@ w
= = % 404
E=2e] fla
T 306
—_ >
20 e
g = % 30 A
[
£ 8 044 2
I sles 2 2
85 & ]
5 So02d
o 10
=
ol n=0 n=0
A@Q} '&\Q; .'&\0 @QJ 04 . . .
09\ Q}b") 06\ @Q[b -0.5 . 0.0 - 0.5
QP QX Correlation coefficients
QQ Q&
> O

Figure 3.8: Summarised tissue—independent correlations: Summary of Spearman
correlations calculated across all tissues. The bar plot (A) depicts proportionate numbers
of correlations and the histogram (B) depicts distributions of correlation estimates. Nomi-
nal correlations (p value<0.05) are coloured light orange (positive) and light blue (negative),
whilst significant correlations (g-value<0.05) are coloured orange (positive) and blue (neg-
ative). N numbers above the bar plot signify the number of CG sites within a particular
category. (C) and (D) show the same for Spearman correlations calculated excluding new-
born samples from the analysis. There are no significant correlations when newborn samples
are excluded.

36



Chapter 3. The Ageing Clock 3.2. Results

change in correlation directionality between postnatal-development (<1 to 14 weeks of
age) and adulthood (14 to 41 weeks of age). This correlation dichotomy, found both
tissue-dependently and independently, intriguingly fits well with the theory of antag-
onistic pleiotropy (Williams, 2001), whereby misregulation of integral developmental

processes with age are thought to be responsible for ageing.

Correlation coefficient without newborn mice

—6.6 —6,4 —6.2 D.b 0.‘2 0.‘4 0.‘6
Correlation coefficient with newborn mice

Figure 3.9: Comparison of tissue—independent correlations with and without
newborns: Scatterplot of conservation of Spearman correlation estimates when newborn
samples are included or excluded from analysis. Correlations that are either positive or
negative in both cases are highlighted red or blue respectively. Correlations that differ in
directionality with newborn-inclusive correlations being positive are coloured green, and with
newborn-inclusive correlations negative pink. Significance of correlation is signified by shad-
ing.

To understand whether there was any simple explanation for the significantly positively
or negatively correlated tissue-independent sites in the genome (newborns included), I
assessed whether they were enriched for any genomic element specifically. From the
analysis shown in Figure A7 I found that both positively and negatively correlated
sites were enriched and depleted for relatively similar features, suggesting that it is
not the features themselves that are determining the directionality of the changes with
age. In particular, I found that CpG Islands and CpG Island-rich promoters were
depleted for age-associated sites, whereas CpG Island shores and CpG Island shelves
were strongly enriched for age-associated sites. To ensure that this test took into ac-
count the background distribution of potential sites that could have been significantly
associated with age (owing to the inherent feature biases of RRBS), I performed a bino-
mial test to determine which enrichments were significant (multiple testing corrected

p-value <0.05). CpG Island shores were defined as the surrounding 0-2 kb upstream
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and downstream of CpG Islands, and CpG Island shelves were defined as regions 2-4 kb
upstream and downstream of CpG Islands. There was also minor enrichment for other
genomic elements, such as introns. This analysis suggests that tightly controlled regu-
latory regions of the genome, such as CpG Islands, are less prone to ageing-associated
changes in DNA methylation, suggesting that they are better maintained than the rest
of the genome. In addition, the depletion of CpG Islands could have suggested that
there was a CpG density-based association to the changes that I was seeing. To test
the above hypothesis, I calculated the inverse of the CpG density, or CpG scarcity
for the significantly age-associated sites and compared these to what is seen from a
background (random) distribution of sites (Materials and Methods section P.3.9; Fig-
ure B). A two-tailed t-test with Bonferroni correction was performed to assess the
significance of any CpG scarcity difference in these sites. Using a p-value of 0.05 as
significance cut-off, I found in this analysis that both CpGs that were positively and
negatively associated with age were significantly more likely to be found in regions with
higher CpG density (lower CpG scarcity) than would be expected by chance. This is
perhaps not surprising, since I was measuring the CpG density of the surrounding re-
gions and I had already seen from the previous analysis that these sites were enriched
in CpG Island shores and shelves, i.e. regions that would by definition be proximal to
regions of high CpG density. However, it should be noted that although these sites
are significantly associated with higher CpG density, high CpG density is not strongly
predictive of a site changing its DNA methylation status with age (AUC = 0.58 and
0.61).

In addition to assessing simple genomic features and CpG density, I also wanted to
assess whether the age-associated DNA methylation changes were enriched in regions
surrounding genes that were associated with any specific process or ontology. As such,
I performed a gene ontology (GO) analysis of the genes closest to the cytosine of inter-
est, with a maximum cut-off of 4 kb away from the transcript its self. Positively and
negatively correlated sites were assessed separately. From this analysis, I found a num-
ber of GO processes that were highly significantly associated with positively correlated

DNA methylation changes (i.e. sites in the genome that are associated with gains in
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Figure 3.10: Genomic feature enrichment of age-associated sites: (A) Enrichment
of both positively and negatively age-correlated CG sites according to genomic feature. This
was tested using a binomial test, *p value<0.05. The background used was all CG sites with
five-fold coverage in 90% of samples. (B) CpG content 500 bp either side of significantly age-
correlated sites. The background was calculated using all CG sites with five-fold coverage in
90% of samples; CpG scarcity is defined as the average distance to a CpG within this 1 kb
region. *Bonferroni corrected p value<0.05.

methylation; Figure A). These GO terms included “anatomical structure morpho-
genesis”, “anatomical structure development” and “developmental process” (Figure 8).
These GO terms fit with the concept that sites that gain methylation are associated
with potential PRC2-associated genes, and with the idea that an attempted restriction
of developmental pathways is at least partially driving the ageing process. In the case of
genes neighbouring negatively correlated cytosines, I found a significant enrichment for
processes including nucleotide and enzyme binding, which is suggestive of potentially

more metabolically associated changes (Figure A). These findings suggest that the

age-associated changes that I observe could alter important biological processes.

In order to determine whether the age-associated changes that I observe for the tissue-
independent newborn analysis are truly tissue-independent, I intersected these sites
with the tissue-dependent correlation analysis to determine whether the sites were
significantly correlated in all tissues independently, and to ensure that there wasn’t
a single tissue driving any specific correlation. What I found (Figure B) is that
almost all of the sites are shared amongst the four tissues with a subset of sites being
only shared amongst three of the tissues. The reason for this lack of overlap of all sites
could be due to a lack of statistical power owing to a reduced depth of the sites or

a reduced sample number. Overall these results suggest that these ageing associated

89



3.2. Results Chapter 3. The Ageing Clock

sites that have been identified are truly tissue independent.
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Figure 3.11: Tissue—independent age—associations assessed: (A) The six most signif-
icant Gene Ontology (GO) terms for significantly age-correlated CG sites. Terms are plotted
against -log(corrected p value), with positive correlations in orange and negative in blue. (B)
The overlap between tissues of tissue-independent age-associated Spearman correlations with
a corrected p-value (g-value) of <0.05.

In addition, I conducted a similar correlation conservation analysis for the tissue-
independent correlations conducted without the newborn samples. However, owing
to the lack of statistical power, this analysis was performed with highly nominally
significant correlations (p-value <0.005) and not multiple-testing corrected significant
correlations. As such, this analysis could contain false positives. Moreover, owing to
the arbitrary nature of the p-value threshold, this analysis could also contain false
negatives. From this analysis, [ found that contrary to the high levels of conservation
seen for the newborn-inclusive correlations there was very little tissue-dependent con-
servation when newborns were excluded (Figure ) In other words, the majority
of tissue-independent correlations are seemingly being derived from single tissues and
are not truly tissue-independent. These results have to be taken with some scepti-
cism, owing to the inherent limitations of the dataset. However, they suggest that the
age-associated changes that are being called with the newborns included are more re-
flective of the regulation of a core-developmental programme, whereas the changes that

are seen with the newborns excluded more likely reflect tissue-specific processes.

Lastly, I assessed whether correlations that were called in a tissue-dependent fashion
were conserved across the different tissues (Figure ) This analysis highlighted that

tissue-specific correlations, both with (multiple-testing corrected p-value <0.05; Figure
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Liver Lung
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Figure 3.12: Tissue—independent age—associations assessed (newborns excluded):
Overlap between tissues of tissue-independent age-associated Spearman correlations with a
corrected p-value (g-value) of <0.005.

A) and without the newborns (p-value <0.005; Figure B) present, were truly

tissue-specific changes that are not readily seen in the other tissues.
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Figure 3.13: Tissue—dependent age—associations assessed: (A)Overlap between tis-
sues of tissue-specific age-associated Spearman correlations, with these defined as correlations
with a corrected p-value (g-value) of <0.1 for any of the four tissues. (B) The same represen-
tation of tissue-specific correlations with a p-value of <0.005.

This fact is further validated by the GO analysis in Figure , which has been con-
ducted on the tissue-specific significantly correlated changes (newborns included) and
highlights that tissue-specific changes are associated with tissue-specific processes, such
as neuronal processes in the cortex. Interestingly, although there is very little overlap
between these tissues from the perspective of the cytosines themselves, and although
the precise processes are different, again there seems to be a common theme of devel-
opmental processes appearing. This is once more suggestive of ageing being associated

with regulation of a core developmental programme.
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Figure 3.14: Tissue—dependent age—association GO—analysis: The six most signifi-
cant GO terms for significantly tissue-specific, age-correlated CG sites, plotted for each tissue.
Terms are plotted against -log(corrected p value).

3.2.3 DNA methylation levels at a discrete set of CpGs are

predictive of age

Having seen that many individual cytosines in a CpG context correlate with age, I
set out to define an epigenetic predictor of age in mice. In keeping with the work
done in humans, I decided to define my predictor using an elastic-net regression model

,2010). In

implemented within the glmnet package in R (Figure B.15|; lFriedman et al.

addition, to our own dataset, I also included a number of publically available RRBS
datasets in my analysis. These datasets contained samples from liver, lung, muscle,

spleen, and cerebellum and were derived from both male and female C57BL/6 mice,

with ages ranging from newborn to 31 weeks of age (lCannon et al., lZOléﬂ, [Reizel et al.
015

)

, bchillebeeckx et al., I2013‘ and hhang et al.l, b016a). The rationale behind the

inclusion of additional samples was predominantly fourfold. Firstly, more samples
would mean that a larger training dataset would be available to define a predictor from,
improving the model. Secondly, having samples from mice kept under slightly different
conditions, with libraries made using slightly different approaches would mean that

the model would be less prone to overfitting, and my model would potentially be more
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generalizable. Thirdly, additional datasets mean that it would be possible to keep some
datasets completely external from the modelling process and so these could be used for
an independent validation of the predictor. Lastly, these datasets contained treatments
that could be utilised to assess whether the model would be able to measure biological
age in addition to chronological age. A more detailed description of the samples can

be found in the Materials and Methods section.

Datasets

Beas : CGsaa

age
predictor

Figure 3.15: Schematic of the modelling procedure: Graphical representation of
model definition and testing. Different datasets make up circles and are coloured in agree-
ment with later figures, namely: Reizel (R) in brown, Cannon (C) in green, Babraham (B)
in purple, Zhang (Z) in pink and Schillebeeckx (S) in light green. The two datasets not used
in training are shown in a different circle and lines represent the processing of DNA methy-
lation data. Training of the model is represented by the screen with caption ‘glmnet’ and
resulting prediction sites and their corresponding weighting are transferred to the ‘epigenetic
age predictor’. Test data is then fed into the predictor and age is predicted, represented by
the pocket watches.

In summary, 129 healthy samples were utilised for the training set and the remain-
ing 189 samples were utilised for the test set, including two datatsets (Zhang and
Schillebeeckx datasets), both derived from different experimental settings, that had no
samples present in the training set and as such could be used as truly independent test
sets, to assess the robustness of the model. All samples were processed as described

in Materials and Methods section @ Importantly, all cytosines in CpG context on
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the sex chromosomes or found in mitochondrial DNA were excluded from the analy-
sis. This was done for a number of reasons. Firstly, to ensure that the model would
be sex independent. Secondly, to ensure that it would be compatible with library
preparation approaches that may result in loss of the mitochondrial DNA. Thirdly,
the mitochondrial DNA was removed because it is commonly poorly converted during

bisulfite treatment.

To define the model I decided to utilise sites that were covered by at least 5 reads in
all samples. This resulted in there being only ~18k sites that could be used, which
represents about 2% of the total number of sites present in all datasets. One of the

reasons that there were so few usable sites was because there was not 100% convergence

between the sites of the different datatsets (Figure )

The reason for this lack of overlap is due to the size selection step in the RRBS protocol
being different for the different RRBS datasets. The reason for setting this threshold
of at least 5 reads in all samples was to ensure that I could be confident that there
were at least six-states that each cytosine in a CpG could be in (i.e. 0, 20, 40, 60,
80 and 100% methylated). In addition, it ensured that there was no need to attempt
imputation-based approaches. 1 had previously attempted both mean and median
based imputation, whereby I chose all sites that were represented in 80% of samples
with greater than or equal to five reads per sample. However, I found in cross-validation
experiments that the results were similar to or worse than starting with fewer sites for

which no such imputation was required.

Additionally, I found in the initial cross-validation testing experiments that there was
a consistent over prediction at young ages and a consistent under prediction at old
ages. This suggested that perhaps the age required a mathematical transformation
prior to training. This had previously been done for the multi-tissue predictor de-
fined by Horvath in humans. In humans, the transformation that was applied was
a split transformation, as described in the introduction, with a logarithmic transfor-
mation from pre-birth to 20 and a linear transformation after 20. As such I decided
to test whether a pure logarithmic transformation, a pure linear transformation or a

split transformation (similar to the Horvath transformation (Equations and ),
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Reizel

chillebeeckx

Babraham

Cannon

Figure 3.16: Overlap of the datasets used to define the mouse predictor: Venn
diagram of the site overlap between the datasets used to define and test the mouse predictor.
The dataset is highlighted next to its segment.
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but with adult.age set to 12 weeks) would be best. I found from these experiments
that the pure logarithmic transformation performed slightly better than the log-linear
transformation, with both performing better than the linear transformation. As such
I decided to define the model using a logarithmic transformation of the data. Perhaps
with data spread more evenly across the time course, I would also have found that a
log-linear transformation would be similarly optimal but this will only be possible to

assess as more time points are assayed.

The model was defined using cross-validation to optimise the model parameters, details
can be found in the Materials and Methods section . In addition to the optimi-
sation performed by glmnet for lambda (\), I performed alpha («) optimisation as
part of the cross-validation. Previously, in the human tissue-specific models (Florath
et al., 2013, Hannum et al., 2013 and Weidner et al., 2014) the alpha parameter was
defined arbitrarily, whereas in the case of the multi-tissue predictor alpha was set to
0.5 (halfway between Lasso and Ridge; Horvath, 2013). By contrast, I wanted to define
alpha empirically using the training dataset. Following this cross-validation, the model
I defined contained 329 CpG sites. The model will hereto be referred to as the mouse
clock. Coincidentally, the number of sites in the mouse clock is similar to that defined

for the human multi-tissue predictor of Horvath (Horvath, 2013).

This mouse clock performed well in the training dataset, as was to be expected, with
a correlation of 0.977 between the predicted ages and the actual ages (Figure M ).
In addition, in the training set the model had a median absolute error (MAE) of 0.97
weeks. In the test set the model performed worse than in the training set, but was still
able to relatively accurately predict age (Figure B). In the test set the correlation
between predicted and actual age was 0.839 and the MAE was larger at 3.33 weeks
(Figure A). This test set error corresponds to a 8.5% measurement error at the
oldest age tested (41 weeks). I calculated that my epigenetic predictor was accurate to
within a similar margin of error as the human predictors when expressed as a proportion
of lifespan. This calculation was made assuming that the expected lifespan for a mouse
is (>100 weeks) and that of a human is (>85 years). In addition to defining the error

across all samples, I also split the MAE into two groups based upon the ages of the
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Figure 3.17: Age predictions for training and test data: (A) The ages of samples
from the training set, predicted by the model, with actual age in x and predicted age in
y. Data points are coloured by tissue and jitter shows experimental error in estimates of
age. (B) The ages of samples from the test set, predicted by the model. Training set data is
additionally shown.

samples and found that with increasing age there was an increasing error associated
with the predictions made by the model (2.14 weeks in the <20 weeks test set, and
4.66 weeks in the >20 weeks text set; Figure B). Interestingly, this was found both
in the training and in the test samples, suggesting that it is a phenomenon not just

associated with poor test predictions at increased ages.

Importantly, I find that the samples from the two independent datasets are very well
predicted, suggesting that this model isn’t simply over-fitting to the datasets themselves
(Figure ) This was a legitimate concern in the derivation of this model, because
each dataset has very characteristic ages associated with it, and so any dataset-specific
difference could manifest itself as a potential confounding ageing signature (for instance

the Cannon dataset only has samples at 9 weeks of age).

In addition, I wanted to assess whether there were any additional potential confounders
or biases in my model. As such, I wanted to assess whether there was any dataset that
was making the model less well calibrated , but saw that this did not appear to be the
case (Figure ) In addition, I wanted to see whether there was any relationship
between the error in the prediction and the median depth of coverage of the given

sample, but found none (Figure ) Lastly, I wanted to assess whether a gender
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Figure 3.18: Median absolute deviation of age predictions: (A) The absolute error
in age prediction for training and test samples, with median error labelled. (B) The absolute
error in age prediction for training and test samples by age group (under and over 20 weeks
of age), with median error labelled.
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Figure 3.19: Independent validations of age prediction: Age prediction by the model

of age of samples from two unobserved datasets (bchillebeeckx et al.L I2013| and chang et al.l,
), with training data also shown.
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bias could be affecting the accuracy of prediction (Figure ) Again this could have
been expected owing to the two genders not being equally represented in the training

dataset. However, I found no significant difference between the prediction error for

males and females.
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Figure 3.20: Controlling for biases in age predictions: (A) Age prediction of test
samples by the model, with samples coloured based on dataset. Training data also shown.
(B) Age prediction of test samples by the model, with samples coloured based on average
sequencing coverage of prediction sites. (C) Age prediction of test samples by the model,
with samples coloured based on sex.

To attempt to understand the nature of the variation within the samples with relation
to the 329 sites that define the mouse epigenetic predictor, I performed a principle com-
ponent analysis (PCA) on the training set. Ninety percent of the observed variability
was explained by 69 principal components (PCs), of which 2 PCs (PC1 and PC13)
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displayed a clear age relation (p<0.05; Figure )
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Figure 3.21: Variance explained by age: Percentage explained variation of principal
components that segregate samples using the chosen clock sites. 1 and 13 (red) are nominally
significant related to age.

Shown in Figure M are PC1 and PC2. PC1 captures age-dependent variation,
whereas PC2 is able to differentiate well between liver samples, which made up a
vast proportion of the training set and the other tissues. This analysis of variation
at these sites highlights that the major variation within the mouse clock sites in the
training set is due to a number of factors, including tissue and age and importantly
that factors such as dataset and other technical variables such as bisulfite reagent are

not.

An elastic-net regression model is a multiple linear regression model and as such will
select sites that are most informative when combined, whilst allowing some redundancy
and ensuring robustness. One implication of this is that the clock sites do not necessar-
ily represent the most strongly age-associated sites, but instead reflect those that will be
the most informative when combined. As such I wanted to assess what the relationship

between age-association and weight of the clock sites was (Figure )

This figure shows that although there are a number of clock sites that are highly
correlated with age and have a proportionately large weight associated with them, the
majority of the sites are not strongly correlated with age. In addition, it is possible

to see that a number of sites are negatively correlated with age, but have a positive
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Figure 3.22: PCA visualisation of predictive sites: (A) PCA of training samples using
clock prediction sites, with samples coloured by age (weeks). (B) PCA of training samples
using clock prediction sites, with samples coloured by tissue.
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Figure 3.23: Predictive weighting is correlated with age-association: Scatter plot
illustrating the weights of clock sites against their age-associated correlation, with negatively
correlated sites in blue and positively correlated sites in orange.
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weight. One interpretation of this could be that such sites are reflective of the sites that
exhibit opposing behaviour during development and in adulthood. In addition, I find
that there are slightly more positively weighted clock sites than negatively weighted
clock sites and that the weightings themselves are relatively uniform. This suggests
that there is no single site that is vastly more important than the rest, which hints at

this model describing a more systemic, genome wide effect (Figure , Figure
and Figure M ).
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Figure 3.24: Methylation levels of predictive sites across the training set: Heatmap
showing the percentage methylation of clock sites. Specified by column side bars are: sex
(female pink; male blue), dataset (Babraham purple; Cannon green; Reizel orange), tissue
(liver green; lung orange; heart purple; muscle pink; spleen yellow-green; cerebellum mustard;
cortex brown), and age (a spectrum from red (<1 week of age) to blue (41 weeks of age)).
The clock sites are clustered by Euclidean distance and samples are ordered primarily by age
but then by tissue, dataset and sex.

Next, I assessed how the methylation at the clock sites behaved across the samples,

visualised in the heatmap in Figure . I find that there are tissue- and dataset-
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specific changes in the levels of methylation at any given clock site. However, this does
not appear to be the case when gender is considered. In addition, it is possible to see
from the heatmap that the changes with age are mainly the result of gradual gains or
losses in methylation. This suggests that the ageing process that is depicted by this
epigenetic model is gradual and not the result of any sudden changes in methylation
at specific sites. This is in keeping with the hypothesis that these changes are the “cu-
mulative effect of an epigenetic maintenance system” as defined by Horvath (,

2013).

A B

0.024

pajybiam
aAisod

0.01

0.0

100

weighting of clock CGs

% CpG methylation

-0.02-

pajybrom
aAnebau

clock sites ordered by magnitude and directionality of weighting

10 20 30 40
Age [weeks]

Figure 3.25: Weighting and methylation levels of predictive sites: (A) Barplot
illustrating the weighting and directionality of clock sites, with sites ordered from highest
to lowest based on this measure. Positively weighted sites are coloured red and negatively
weighted blue. (B) A regression plot illustrating overall directionality of methylation changes
at clock sites. Positively weighted sites are coloured red and negatively weighted blue. The
initial width of each regression line is based on the standard deviation for newborn samples
and the final width on the standard deviation for samples of 41 weeks of age.

I also wanted to assess whether, similar to what Hannum saw, the ageing related
changes that I see in the clock sites are a result of a tendency towards increased en-
tropy (Figure ) I found that clock sites that were highly methylated on average lost
methylation and that clock sites that were lowly methylated on average gained methy-
lation. In other words, the starting level of methylation in the newborn is strongly
predictive of the direction that the change in methylation will occur in. This is consis-
tent with the hypothesis that ageing related changes are a result of increased entropy

in the system, i.e. a tendency to become 50% methylated.
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Figure 3.26: Ideogram of the location of the predictive sites: Ideogram illustrating
clock site genomic locations, with positively weighted sites indicated in red and negatively
weighted sites in blue.

1

Having assessed the weights of the clock sites, I next wanted to understand whether
I could infer any biological mechanism from their location in the genome. To get a
first look at the location of the sites in the genome, I generated an ideogram of the
clock sites (Figure ) From this it was not possible to identify any specific isochore,
chromosome or other large genomic feature that the clock sites seemed to be associated
with. In addition, there did not seem to be a difference, in terms of distribution of the
sites, between the positively and negatively weighted sites (Figure ) Next I decided
to assess whether the clock sites were enriched in any broad genomic annotation, such as
CpG Islands (Figure A). I found that similar to the significantly age-associated sites
there was a significant enrichment of the sites in CpG Island shores and non-CpG Island
promoters (Binomial test, corrected p-vaue < 0.05). Similarly, I observed a depletion in
CpG Islands for both positively and negatively weighted sites similar to age-associated
sites (Binomial test, corrected p-vaue < 0.05). However, I see that although there
is a significant enrichment of the sites in CpG Island shelves for negatively weighted
sites, there is no detectable enrichment in either direction for the positively weighted
sites. Interestingly, I observe a significant enrichment for both positively and negatively
weighted sites in intergenic regions (Binomial test, corrected p-vaue < 0.05). This is
in contrast to the age-associated sites where negatively correlated sites are actually
depleted in intergenic regions, but are mildly enriched in positively correlated sites.
Additionally, I wanted to see whether there was a significant enrichment for the sites
to fall within regions of low or high CpG scarcity (Figure ) However, I found that

there was no difference either between positively weighted sites, negatively weighted
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sites, or random sets of sites defined from the background available set of filtered RRBS
sites utilised in model derivation. Lastly, I wanted to assess whether there were any
specific GO terms associated with the clock sites in general or defined separately as
positive and negatively weighted sites, but found that the sites were not significantly
associated with any specific GO term. One interpretation of this is that the clock
sites represent an ensemble of many different biological processes that are occurring.
Another interpretation would be that the number of mouse clock sites is so low as to

preclude any GO enrichment.
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Figure 3.27: Feature enrichment of predictive sites: (A) Enrichment of positively
(red) and negatively (blue) weighted clock sites according to genomic feature. Enrichment
tested using a binomial test with (*) indicating a p-value of <0.05. (B) CG scarcity of
the chosen clock sites compared to a random set of CG sites, with positively weighted sites
indicated in red and negatively weighted sites in blue.

3.2.4 DNA methylation age is altered in ovariectomised fe-

males and by diet

Following on from the design of the mouse predictor, validation that it can function to
predict chronological age and assessment of the clock sites themselves, I next wanted
to assess whether I could predict biological age differences. Fortunately, in the publicly

available datasets that were available to me, I could assess whether gender, ovariectomy
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or diet resulted in measurable age differences. From an initial inspection I found strong
agreement between the chronological age and epigenetic age of the mice independent off
treatment or control, suggesting that any change that I would see would be relatively
minor. This is in keeping with what has been seen both for Hannum’s cancer validation
and for the validations conducted using the Horvath predictor, all of which required

large sample sizes to detect these biological age effects.

n.s.

Epigenetic Age [weeks]

—_

female male

Figure 3.28: There are no gender biases in prediction accuracy: The ages predicted
by the model of 20-week-old liver samples (Reizel et al., 2015), with samples segregated by
sex. A t-test generated a p-value of 0.58.

In the case of gender, I tested whether there was a significant difference between the
predictions of age in females and males from the test dataset (Figure ) In the
literature, it has been reported that there are gender-specific DNA methylation patterns
(Reizel et al., 2015). In addition, it is known that males and females have differing life
expectancies, with female mice commonly outliving their male counterparts, although
this finding is strain dependent (Austad and Fischer, 2016). In the samples that I
tested I found no significant difference between males and females (Figure ) This
highlights that the model is able to accurately predict both genders, and suggests
that there is no skewing in the predictions, derived from a bias in the training set
genders. However, it was noticeable that the female mice had a greater variability in
their predictions (Figure ) One explanation for this is that there were very few
female samples in the training set and as such the model was better calibrated to male

mice.
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Figure 3.29: Epigenetic age predictions are elevated upon ovariectomy: Age predic-
tion by the model of liver samples from normal females and from female mice that underwent
ovariectomy and were administered either vehicle or testosterone (Reizel et al., 2015). An
unpaired two-tailed t¢-test was performed to assess the impact of ovariectomy and gave a
p-value of 0.014.

From the literature, it has been known for many years that ovariectomy in mice and
rats results in a considerable decrease in average lifespan (Asdell et al., 1967). It
has also been shown that, in the case of rats, this lifespan phenotype is not reversed
when the ovariectomised individuals are treated with testosterone (Asdell et all, 1967).
As such I wanted to assess whether the ovariectomised mice in the Reizel dataset ap-
peared epigenetically younger than control mice and in addition whether this difference
remained when these mice were treated with either testosterone (Smg/ml) or vehicle
(Figure ) I found that ovariectomy resulted in a significant increase in epigenetic
age in mice. Additionally, I found that mice that were ovariectomised and then treated
with testosterone or vehicle did not have a significantly different epigenetic age from
the ovariectomised mice. These results are in keeping with an accelerated epigenetic
age (or increased biological age) that is associated with a decreased lifespan. In turn,
this result suggests that hormonal differences in mice can result in biological age dif-
ferences. This is in keeping with what is seen in human breast and endometrial tissue
where epigenetic age is known to be poorly calibrated relative to other tissues (Horvath,

2013).

The last treatment that I could assess from the test dataset that I had available was

diet. In the literature there is a huge body of evidence that calorie restriction can
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Figure 3.30: Epigenetic age predictions are elevated by high fat diet: Age prediction
by the model of samples from a diet alteration study (Cannon et al), 2014). Liver samples
were from mice that had undergone the following diet perturbations: maternal high fat diet
and subsequently offspring high fat diet, maternal high fat diet and subsequently offspring
low fat diet, maternal low fat diet and subsequently offspring high fat diet, and maternal low
fat diet and subsequently offspring low fat diet. A two-way ANOVA was performed, with
p-values displayed where significant.

alter lifespan, most commonly by increasing it. In the case of high fat diet there is
also evidence that it results in an increased likelihood of medical complications and
concomitantly a shortened lifespan. In addition, it is known from human studies that
dietary alterations to the pregnant mother can result in metabolic phenotypes in the
offspring. This has been noted in human studies of natural disasters such as famines,
but has also been documented in more controlled experimental settings (Cannon et al.,
2014 and O’Rourke, 2014). The study by Cannon et al., characterised the effects
of lipid content in the maternal and offspring diet on a range of variables such as
physiology, body weight and DNA methylation levels in the liver. In this study they
found that there was a significant increase in the likelihood of the offspring suffering
from metabolic disease and obesity if the mother was fed a high fat diet (Cannon et al.,
2014). In addition, they found that the greatest adverse effect was observed when a
maternal low fat diet was combined with an offspring diet. In contrast they found
that the least adversely effected were offspring fed a low fat diet following a maternal
high fat diet. These results are in keeping with calorie restriction improving health
and the notion that a high fat diet is inherently bad for health (Partridge et al., 2005).

I assessed whether there was firstly a significant difference between the ages of the
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offspring fed on high and low fat diet independent of the diet that the mother was
fed. I found that indeed there was a significant epigenetic increase in the offspring that
were fed a high fat diet, i.e. an accelerated epigenetic age or increased biological age
(Figure ) However, although it appears as though there is a minor tendency for
the maternal low fat diet to perform worse than the maternal high fat diet my results
were not significant (Figure ) This suggests that diet is able to effect epigenetic
age and that potentially even maternal diet can also have an impact, though more

samples would be need to test this hypothesis.

These results are of particular interest because both of these studies are performed
on mice that are far younger than their median lifespan. This is particularly true
in the case of the diet study where the mice were only 9 weeks of age and suggests
that this epigenetic predictor could be incredibly useful for speeding up the iteration
time between ageing experiments conducted in the mouse. Although validation of key

experiments would clearly still be required.

3.2.5 Age predictions using the human clock sites in mouse

Having seen that it is possible to define an epigenetic predictor for age in the mouse
with a similar error to that of the human predictors (as a proportion of lifespan), I next

wanted to assess how well conserved, if at all, the human predictor is in mouse.

This comparison was made more difficult owing to the difficulty in lifting over single
base coordinates in the genome into mouse. As such, 1kb regions surrounding each
of the 353 Horvath epigenetic predictor sites were defined, to aid the liftover. Three
hundred and twenty-eight of the 353 regions that I defined could be lifted over to the
mouse genome (release mm10). Of these 328 regions, I found that only 175 overlapped
with regions that were covered within our RRBS dataset, when only the Babraham
RRBS data was considered. The reason I chose to conduct the analysis solely on the
Babraham samples was to maximise the number of regions that would overlap. These
175 regions will hereto be referred to as the Horvath clock regions in mouse. It is

important to note that just because these 175 regions contained at least one cytosine
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in a CpG context, they did not necessarily contain the exact cytosine that existed in
the human genome. Additionally, it should be noted that often there was more than
one cytosine in a CpG context within each of these regions that were covered. In these
instances, the methylation level of the region was defined as the sum of the methylated
counts divided by the total number of counts over the region. This could lead to biases
in depth between the different regions, and may also result in averaging biases due to
the different cytosines being covered by different fragments within the RRBS dataset,
something that I avoided by using single positions in the mouse predictor. Knowing
these caveats, I assessed how well correlated the human clock regions in mouse were
compared to a random set of matched regions (Figure A). From this analysis, I
found that the absolute mean correlation of the Horvath clock regions in mouse were
weakly correlated with age, and were not significantly more correlated with age than
the random region comparison, although they were shifted to the more correlated side
of the distribution. This was not unexpected, since the human clock sites were also

weakly correlated with age in humans, owing to the nature of the elastic-net regression

method.
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Figure 3.31: Conservation of the Horvath predictive sites in mouse: (A) The mean
absolute age correlation of the 175 Horvath clock regions in mouse (red line) and the average
absolute age distribution of 1000 random sets of 175 regions (blue). (B) A comparison of
the weightings of the predictive sites in the Horvath human clock (Horvath, 2013) with the
weightings of the corresponding regions in the epigenetic predictor built using the Horvath
clock regions in mouse.

Having assessed the association of these regions with age, I next wanted to assess
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whether the Horvath sites, when used to predict age in mice, exhibited similar behaviour
within the model, i.e. had weights that had the same directionality as those seen in
humans. As such I defined a ridge model of the Horvath clock regions in the mouse.
From this analysis, I found that the sites did not have a similar directionality in the
two organisms (Figure m ). This suggests that the behaviour of these sites are
potentially different in these two organisms. However, it again should be noted that
these results are comparing the regional weights in one organism against single site

weights in another organism and as such no strong conclusions can be drawn.
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Figure 3.32: The whole genome is predictive of age: Prediction evaluation of the
Horvath human prediction sites in mouse. The red line illustrates the MAE of the age pre-
diction model built using the human clock sites (, ) The distribution illustrates
the MAEs of 1000 age prediction models each generated using 329 random regions defined in
the mouse genome.

This epigenetic predictor, defined from the Horvath clock regions in mouse, was able to
predict age with an MAE of 11.2 weeks (from cross-validation), indicating that these
sites are in some way predictive of age (Figure ) Unfortunately, it was not possible
to directly compare my epigenetic predictor of age in mice with this Horvath predictor,
owing to a number factors. One such factor is that my predictor was based on a training
set that included samples from a number of publicly available datasets. Another factor
was the fact that my predictor was defined from single cytosines in CpGs and not
regions containing multiple cytosines averaged. As such to get an impression of the

predictive power of the Horvath predictor in comparison to other potential models,
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I defined random sets of regions, each containing 175 regions, that were matched, as
much as possible, for regional size and number of cytosines contained within each region.
Ridge models were then defined for each random set of regions and these were compared
to that obtained from the Horvath predictor (Figure ) Predictions that were made
in cross-validation were then used as the test set to assess predictive accuracy (MAE).
This analysis showed that the Horvath predictor was not significantly more predictive
of chronological age in the Babraham dataset than the predictors defined from random
sets of regions. In fact, the average MAE from the predictors defined from random
sets of regions was 10.6 weeks, slightly better than the Horvath predictor. This was
interesting because it highlighted not that the Horvath predictor was not predictive
of age in mouse, but, more curiously, that the whole genome its self appears to be

predictive of age to a greater or lesser extent.

In summary, these results assessing the predictive power of the Horvath clock regions
in mouse, have highlighted that there are potential differences between the regions
of the genome that are most predictive of age in the two species. This result could
speculatively suggest that the specifics of the two processes are different, which is not
so surprising owing to the different time scales that they are occurring over. More
importantly though, they suggest the intriguing possibility that DNA methylation
genome wide is changing with age, and as such all regions of the genome are to some
extent predictive of age. The exact nature of this predictive power at any given cytosine
in a CpG is potentially reflective of context-specific properties and will potentially

provide insights into the mechanism behind these age-related changes.

3.2.6 Attempts to include WGBS samples

I wanted to assess whether my predictor would work in WGBS samples as well as RRBS
samples. This was for a number of reasons. Firstly I wanted to see how generalizable
my model was to different experimental protocols for measuring DNA methylation
levels. Secondly and perhaps more importantly, I also wanted to assess the reliability

of my model in mice of older ages, for which there was only WGBS data available
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Figure 3.33: QC of WGBS datasets: (A) Boxplot of fold coverage of sites required by
the model. (B) Heatmap of fold coverage of the sites required by the model. Shown are
publically available WGBS datasets from lGraVina et al.‘, 201d and lReizel et al.l, l2015|7 for
comparison two Babraham RRBS samples are shown.

(lG.ravina et al.l, I2016‘).

As such I attempted to include publicly available WGBS samples from Reizel et al.
and Gravina et al.. In particular, I was interested in the Gravina samples because they
contained samples derived from 104 week old animals. Unfortunately, these samples
were not of high enough coverage over the predictive sites in my model. In fact even
when I allowed for 20% of sites to be of insufficient coverage, still none of the WGBS
samples passed. This result is detailed in Figure alongside two passing example
Babraham RRBS samples for reference. The boxplot in Figure A, displays the
coverage across all sites to highlight the genome wide depth of these samples. Figure
B highlights the depth at the specific CG sites that are required by the model itself.
In the future, it will be very interesting to see how my model performs in a WGBS
setting, should there be any samples of sufficient coverage, and in an amplicon setting.
The fact that I could not include the samples from the Gravina dataset also means
that I am still unsure as to how well my model would perform at ages far greater than

the 41 weeks that I have data for.
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3.3 Discussion

In this work I have defined a very comprehensive set of matched single base resolution
methylomes of mice across multiple ages and tissues. Using this dataset, I was able
to determine that there are many thousands of cytosines throughout the genome that
exhibit changes in DNA methylation that are significantly linearly correlated with age,
both positively and negatively. In addition, I could derive some biological insight into
the processes that these sites are likely to affect. However, future experiments will
be required to validate whether such processes are truly being altered in an age- and
methylation-dependent manner. For instance, it will be interesting to determine how
well correlated the DNA methylation changes that I see are in relation to changes to

the transcriptome.

I then went on to derive a mouse epigenetic predictor of chronological age that utilises
information from 329 cytosines in CpG context. I have validated that this clock is
accurate and able to determine chronological age in samples from independent datasets.
However, I have only been able to validate that my model works up to 41 weeks
of age, which is still relatively young in terms of the lifespan of a mouse (~30% of
the median lifespan of the Babraham mice). As such, future work will be incredibly
important to further refine this model such that it is accurate across a far greater range
of ages. In addition, I have shown that similar to the human epigenetic clocks that have
been defined I am also able to determine aspects of biological age from manipulations
or interventions, including diet and ovariectomy at very young ages. This is very
exciting, because it means that the experimental iteration time for mammalian ageing
experiments could be greatly reduced. This will make mechanistic manipulations and
blue sky experimentation far cheaper and mean that these sorts of experiments in

ageing studies will be far more readily undertaken.

3.3.1 Other epigenetic clocks

At the same time that the work from this chapter was being published in Genome

Biology, two additional mouse clocks were defined (Petkovich et al., 2017 and Wang
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et al), 2017). In addition, to this a Wolf clock was also defined (Thompson et al,,
2017). These studies further validate the hypothesis that such a mechanism is highly

conserved, at least among placental mammals.

These two mouse clocks were both defined in specific tissues. The Wang et al. epi-
genetic predictor was defined using publicly available liver data and the Petkovich et
al. predictor was defined in whole blood. These predictors were both defined using
elastic-net regression models. However, they differed slightly in the specifics of the way
in which sites were chosen for the modelling. For instance, in the coverage thresholds

that were set.

The Wang predictor utilised 107 samples to define and test their predictor. The pre-
dictor itself was defined from 148 CpG sites in the genome and was accurate to within
4.2 months (~18 weeks). This is in contrast to my predictor, which was defined from
329 cytosines in CpG context and for which there was an error of 3.33 weeks. How-
ever, it should be noted that their error measure includes mice up to 104 weeks of age
whereas ours only includes mice up to 41 weeks of age, which could in part explain this
discrepancy in recorded measurement error. Another reason for this discrepancy could
be due to the difference in size of the training set that was used to define the model
and the number of folds of cross-validation, together with the lack of optimisation of

the alpha parameter in their model.

In their study, Wang et al. assessed whether there was any detectable differences in
biological age for the well-studied, long-lived genetic mutant Ames Dwarf mouse, for
the life extending intervention of calorie restriction, and for the life extending treatment
of rapamycin. They found that all resulted in a decrease in epigenetic age relative to

chronological age, consistent with the idea of these animals ageing at a slower rate.

The Petkovich predictor was defined using newly generated RRBS data from 141 male
mice. The Petkovich predictor utilises 90 CpG sites in the genome and is highly
correlated with chronological age both in the training and test samples. The error in
the predictions for the samples assessed are 4 to 14 weeks up to 43 weeks of age and

21 to 30 weeks of age for mice older than 43 weeks of age. This lower bound of error
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is comparable with my error measurement of 3.33 weeks of age, and suggests that this

model is relatively precise.

In this study Petkovich et al. assessed whether there were any detectable differences
in biological age for two well-studied long-lived genetic mutants: the Snell Dwarf and
the growth hormone receptor knockout (GHR-KO) mice. In addition, they assessed
biological age upon calorie restriction in two different mouse strains, in fibroblasts and
in reprogrammed iPSCs. They found that for the Snell Dwarf mice, the GHR-KO mice,
and the calorie restricted mice, independent of strain, there was a reduced epigenetic
age relative to the epigenetic ages of the control samples. In addition, they found that
iPSCs had a reset epigenetic age when compared to the epigenetic age of the lung and
kidney fibroblasts from whence they were derived. This is similar to what is seen in

the human setting.

Interestingly, both these studies and ours found that ageing-associated changes tended
to result in an increase in entropy of the site under study. Curiously these studies also
suggest that this epigenetic clock phenomenon is a genome wide one. Another piece of
evidence in support of this is that there is very little overlap between the three models.
However, this could also be due to the filtering criteria and the nature of the models
being derived in different tissue settings. This is particularly evident from the work
conducted by Petkovich et al. who defined two independent models that were both
strongly predictive of age and our study where I found that even randomly selected

sets of regions were predictive of age.

In addition, all found that it was possible to predict biological age in a number of
different settings. In contrast to both of these studies, ours was the only study to report
accelerated epigenetic age relative to controls. However, these results taken together
highlight that it is possible for epigenetic age to both increase and decrease upon
treatment, but also to tick slower more generally in the case of the genetic mutants.
Importantly, our study was the only one that defined an epigenetic predictor in a
tissue independent fashion. This is important because it reduces the likelihood of the
predictor being cell composition derived and suggests that similar to the human setting,

an epigenetic predictor can be defined solely from cell intrinsic changes. Although it
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is likely that in the other studies the predictors are also being derived from such cell
intrinsic changes too. This is particularly likely to be the case for the Petkovich et
al. study since they are able to show that they can predict the “expected” epigenetic
ages for non-blood samples, namely iPSCs and fibroblasts derived from two separate

origins.

Unfortunately, it was not possible to directly compare the predictive power of the
various models against one another. This was due to a number of technical reasons.
The main constraint being coverage, this is due in part to the sequencing depth achieved
in the different datasets but also due to the different library preparation protocols that
were performed. In an attempt to counter this I tried performing a number of different
imputation-based approaches. These included mean and median imputation, alongside
imputation derived from a deep learning approach called DeepCpG (Angermueller et al.,
2017). Unfortunately, there were so many sites missing that the predictions that came
out were more a reflection of the imputation than of the samples themselves. This was
compounded by the other limitation in this comparison, which is that I would want to
ideally compare the two other clocks in samples that they did not utilise from public
data but that came from the same or similar tissue. This further reduced the available
samples that could meet the coverage criteria. In the case of the Wang study another
issue was that they derived their clock from samples that I also utilised, as such any

prediction that did hold would not be strictly from an independent dataset.

Due to the now increased number of available samples from these studies and from
additional public studies, together with newly generated data from ourselves, which
now spans ages up to and including 104 weeks (Figure ), I decided to focus on
defining a more general epigenetic predictor that encompasses all of these datasets
rather than spending time trying to imperfectly compare the different predictors against
one another. This model now contains data from almost 1000 samples including RRBS
and WGBS, from a multitude of different treatments, strains and ages. With ages
ranging from early pre-birth to over 3 years of age. This model is still being derived

and will form the basis for future work.

However, from what I have seen from preliminary cross-validation experiments it is
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Figure 3.34: Schematic of the Babraham dataset extended: Graphic summary of
the Babraham dataset. DNA was isolated from liver, lung, heart and cortex of newborn mice
and mice aged 14, 27, 41, 66 and 105 weeks, and reduced-representation bisulfite (RRBS)
libraries made from this.
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Figure 3.35: Median absolute deviation of age predictions from extended model:
The absolute error in age prediction for training and test samples.
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clear that the model encompassing all of these datasets performs far better than any
of the models individually with an MAE across all ages of 5.33 weeks (Figure ) I
hope that future work on this model will validate the findings pertaining to biological
age that the previous mouse epigenetic predictors demonstrated. In addition, I hope
that the model will provide a solution to the issue of missingness and open the door

for use of this predictor in a more general ageing research setting.
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Chapter 4

Single cell ageing

4.1 Introduction

Insights into the ageing process that are made at the single cell level will improve our
understanding of the true nature of ageing and how it is occurring. Studying ageing at
this level of detail will enable us to interrogate hypotheses to examine whether ageing
is the result of a passive decay process, or an actively procured state. Amongst other
hypotheses, we could ask for instance whether the aged state results from changes in
cell type composition or stem cell exhaustion. In addition to enabling us to ask these
perhaps more abstract questions regarding ageing, studying the process of ageing at
this level of detail in specific cell types and tissues will also help us understand the root
causes of age-related pathologies in said cell types and tissues and why they increase

with age.

In this present study, I wanted to ask the question of whether I could detect and
characterize the process of ageing in a predominantly quiescent stem cell population
at the single cell level from epigenetic and transcriptomic information. There were
many reasons for why a quiescent stem cell population was chosen. Firstly, in order
to simplify the analysis, I wanted to study a population of cells that were diploid and
not polyploid, such as cardiomyocytes, which exhibit a range of ploidy that has been
shown to be age dependent (Laflamme and Murry, 2011). Secondly, I wanted to study
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a quiescent population of cells to mitigate as much as possible against any confounding
heterogeneity that could be the likely result of cell cycle differences between young and
old cells. Thirdly, I wanted a population of cells that were very homogeneous, again,
to remove any confounding heterogeneity associated with variation in cell composition.
Fourthly, I wanted to study a population of stem cells that represented the greatest
differentiation potential within their lineage(s). This is because it is known that many
stem cells are able to divide to differing extents in an asymmetric fashion (Conboy et all,
2007, Kuang et al), 2007 and Rocheteau et al., 2012), as such I wanted to determine
whether detrimental epigenetic effects have already manifested themselves in this stem
cell pool and as such could they be passed on to more differentiated/functional cells
upon division. Fifthly, a strong link has been made between ageing and the loss of
methylation of histone H3 at lysine K27, (H3K27me3), an epigenetic modification
that is important for ensuring correct lineage specification early in development and
is maintained in adult stem cells. Sixthly, I wanted to assess a population of cells
in an in vivo context. In addition, I wanted to study stem cells that had a simple
differentiation trajectory, such that future work studying cell types downstream of our
chosen stem cells could be assessed comparatively easily. The system that I chose
to study that fit all these criteria were the quiescent stem cells of the mouse skeletal

muscle system.

In the skeletal muscle system, ageing is accompanied by a decline in muscle mass and
strength (Brack and Munoz-Cénoves, 2016 and Evans and Campbell, 1993) as well as
a hampered regenerative capacity (Bernet et al., 2014, Chakkalakal et al., 2012, Cos-
orove et al., 2014, Price et al., 2014, Sousa-Victor et al,, 2014 and [Tierney et al.,, 2014).
This commonly results in physical incapacitation of individuals within the elderly pop-
ulation (Jang et al), 2011 and Renault et al., 2002). Skeletal muscle homeostasis and
regeneration are ensured by tissue-specific Pax7-expressing satellite (stem) cells (Lep-
per et al., 2011, Sambasivan et al., 2011 and yvon Maltzahn et al), 2013; Figure El!)
In adult mice these cells are largely quiescent in homeostatic muscles. However, upon
muscle injury satellite cells are activated, proliferate and either differentiate to form

new muscle fibers or self-renew to reconstitute the stem cell pool (Brack and Rando,
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3 days days 28 days

Figure 4.1: Schematic of the muscle lineage: (A) Diagram of the muscle lineage;
from Pax7 positive quiescent muscle satellite cells, to activated muscle satellite cells, to Pax7
negative myoblasts and onto fused muscle fibers. (B) Images of mouse TA muscle upon injury.
Images are taken at defined time points displayed under each image. Blue staining indicates
the position of nuclei within the muscle tissue. Images courtesy of Dr Brendan Evano.

f2012, bonboy and Rando‘, fZOOZ, blguin and Olwin, l‘ZOOéﬂ and hammit et al.l, l‘ZOOé\J). Age

is associated with a reduction in the regenerative potential of muscles and has been at-

tributed to impaired intrinsic regenerative potential of the satellite cells (,
hOMJ, lChakkalakal et al., bOlQ, lCosgrove et a,l.l, hOMJ and bousa,—Victor et al., hOMJ).

This is thought to be partly due to the influence of extrinsic environmental cues (

lboy et al., l2005‘) that are known to alter the niche. This is further exacerbated by the

decrease of satellite cell numbers in both mouse (tBrack et al.l, l2005‘, lCollins et al., bOOﬂ

and lConboy et al., l‘ZOOS‘) and humans with age (tRenault et al., fZOOQ‘). Importantly, for

this current study, this reduction in stem cell number is far less than that observed in

other stem cell systems such as the hematopoietic system.

Exposure of old mouse muscle satellite cells to a youthful environment or growth factors
has been shown to partly restore the proliferation and differentiation properties of

the stem cells (tBrack et al.l, fZOOﬂ, bollins et al., IZOOﬁ and lConboy et al.l, }2005). In

addition, calorie restriction has been shown to improve the functionality of satellite

cell and muscle regeneration of both young and old animals (lCerletti et al.l, [2012‘). The

plasticity of these changes suggests that the functional decline seen for aged satellite
cells could at least be partially a result of changes to their epigenome. Interestingly,

DNA methylation is widely increased in old human myoblasts, which notably suppress
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Sproutyl (SPRY1) expression, a crucial factor for ensuring re-entry into quiescence

and self-renewal following activation during homeostasis (Bigot et al), 2015).

The muscle satellite cell population is itself phenotypically and functionally heteroge-
nous, both during homeostasis and also upon regeneration (Chakkalakal et al,, 2012,
Conboy et al., 2007, Kuang et al), 2007 and Rocheteau et al), 2012). Many different
methodologies have been used to identify muscle satellite cell subpopulations and to
characterize their properties. This has resulted in an understanding that subsets of
muscle satellite cells exhibit different proliferation histories and a range of self-renewal,
differentiation and regeneration capacities (Zammit et al), 2004). The extent to which
this heterogeneity is important /required for tissue homeostasis and regeneration is at
present unknown. In addition, it remains unclear how this heterogeneity progresses
during ageing. Nevertheless, it has been suggested that the satellite cell population
becomes more homogenous with age, with a reduced proportion of cells having a high
regeneration potential and increased fraction of cells having low proliferative capacity
(Brack and Munoz-Canoves, 2016 and Chakkalakal et al), 2012). Therefore, one major
unanswered question in the field is whether age-associated decline in satellite cell func-
tion is associated with a global functional drift of the population, or with the selection
of a few unfit clones. As such, to reduce the functional heterogeneity within our present
study, I decided to focus on a subpopulation of functionally homogeneous, quiescent
muscle satellite cells from the tibialis anterior (TA) skeletal muscle. These cells were
defined as being the most highly expressing of all Pax7 positive muscle satellite cells
(MuSC) and are thought to undergo asymmetric cell division. These Pax7-high stem
cells will hereto be referred to as TA-Hi MuSCs. These cells represent not only a pow-
erful model system but they are also hugely important in the study of ageing owing to

the burden of muscle frailty in the aged population.

To characterize how the process of ageing is defined in a predominantly quiescent
stem cell population, I created a combined epigenome and transcriptome single cell
dataset from young (approximately 3 months of age) and old (more than 24 months
of age) TA-Hi MuSCs. This dataset represents the first combined epigenomic and

transcriptomic single cell dataset investigating adult cell populations and provides us
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with an unparalleled resource to address this exciting question.

4.2 Results

4.2.1 Description of the samples collected

TA-Hi MuSCs were collected from male mice containing a GFP reporter under the ex-
pression of a Pax7 promoter (Tg:Pax7-nGFP (Sambasivan et al., 2009), on a B6D2F1/JRj
background (mixed Black6/DBA2)). Subsequent to euthanisation, the TA muscle was
carefully dissected from these mice (Figure @A) Next, the satellite cells were dis-
sociated from the muscle before fluorescence-activated cell sorting (FACS) for GFP
(Figure B). The FACS was performed twice to ensure that the cells being collected
were single cells. The TA-Hi MuSCs were defined through gating of the satellite cell
population and defined as the top 10% of Pax7 expressing cells (Figure @C) A more

detailed description of the isolation of these cells is provided in Materials and Methods

section E.4.2.

The TA-Hi MuSCs were collected into lysis buffer and the single cell combined protocol
was performed (Materials and Methods section @) Due to the fact that these
cells are highly quiescent and thus contained less RNA than cycling cells, 24 cycles
of amplification were required to generate a library from the polyA-containing RNA.
This is in contrast to the typical 16-18 cycles commonly used, for instance for mESCs.

Approximately, 96 cells were collected per mouse.

4.2.2 Quality-control of the transcriptome data

Transcriptome information was assessed from five young and three old individuals. Fol-

lowing alignment of the transcriptome to mm10, gene expression counts were quantified

(Materials and Methods sections b.4.4 and }2.4.4) and the number of transcripts for a

given cell were plotted to assess the quality of the libraries.
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Figure 4.2: Flow sorting of TA Hi MuSCs: (A) Schematic of the location of the TA
muscle that was isolated to extract MuSCs. (B) FACS plot of the gating used to sort the
TA-Hi MuSCs from the background. (C) FACS plot of the gating used to define the TA-Hi
MuSC population from the rest of the TA MuSCs. The channel on the y-axis is staining for
Phycoerythrin (PE) and the FITC channel on the x-axis is for GFP. Images courtesy of Dr
Brendan Evano.

From this preliminary analysis, I observed that in contrast to previous libraries gener-
ated from mESCs, there were, on average, fewer genes expressed for a given cell (>1,000
genes here, compared with >4,000 for mESCs; Figure @) This is likely due to these
cells being quiescent and as such requiring little transcription to remain functional.
Importantly, the majority of cells were expressing a consistent number of transcripts
and the expression profile across the transcriptome was consistent with what would
be expected from the distribution of counts. However, it can be seen that there are
some cells that express very few transcripts (Figure @) As such, we decided to set
an arbitrary quality threshold on the number of genes expressed in a given cell. We
set this cut-off at 1,000 genes. The remaining number of cells that passed this quality
cut-off and the individuals that were chosen for subsequent analysis are highlighted on

an individual basis in Table @

4.2.3 Assessment of cell cycle from the transcriptome

One of the largest sources of variation in single cell transcriptome analysis is that of
cell cycle. As such, although the cells I selected were quiescent, I wanted to ensure

that any results I obtained were not a result of variation in proportions of cells in
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Figure 4.3: Gene count QC of cells: Scatterplots to depict the number of genes per
cell. Each point represents a single cell. Each scatterplot represents an individual. Young
individuals are depicted with a “Y” and old individuals with an “O”. The red line is the
cut-off threshold that was used (set to 1,000 genes per cell).

127



4.2. Results Chapter 4. Single cell ageing

Individual Total cells Pass Chosen
Y2 96 0 No
Y4 96 84 Yes
Y5 96 50 No
Y7 96 79 Yes
Y8 96 77 Yes
01 96 69 Yes
05 96 83 Yes
08 96 5 No

Table 4.1: QC of single cell transcriptomes

different stages of the cell cycle. The reason I decided to assess TA-Hi MuSCs was in
part due to their predominantly quiescent nature, which I hoped would minimize this
potential issue. However, as a means of performing an additional quality control step,
I assessed stages of the cell cycle across all cells that passed the initial quality control.
This assessment of cell cycle was performed using a previously described classification
algorithm (Scialdone et al), 2015) which assigns a stage in the cell cycle (G1, S or
G2/M) to each cell. Since these cells are predominantly thought to be in GO, I would
expect these to be classified as G1. This expectation was because GO cells exit the
cell cycle through G1 and these cells still reflect G1 cells in terms of DNA content and

many other cellular attributes.

This analysis, highlighted that the majority of cells were in fact classified as G1, as was
expected from what was known about these cells being highly quiescent (Figure Q)
However, there were a number of cells that were classified in separate cell cycle stages.
This could reflect the fact that within any homeostatic muscle there are constant,
though minimal, requirements for tissue regeneration. The number of cells that seem
to be classified outside of G1 appear to be variable between individuals. This further
suggests that this could be related to homeostasis upon minor damage that is individual
specific. Interestingly, there seem to be a slightly larger number of cells that were not
in GO in the younger individuals. This could be due to the increased activity and/or
exercise exhibited in younger mice that results in more regeneration being required to
maintain homeostasis. Whatever the reason, in order to ensure that I was studying the

effects of ageing and not the potential effects of cell cycle, I decided to exclude from
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Figure 4.4: Cell cycle QC of cells: Scatterplots to display the cell cycle classifications
defined using Bcialdone et a1.|, |2015|. The red dotted lines depict the boundaries of the three
states (G1 G2/M and S). Each individual is depicted in a separate scatterplot, where “Y”
individuals are young and “O” individuals are old.
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Figure 4.5: tSNE plot of TA—Hi MuSC: A scatterplot of the first two dimensions
of the tSNE. Each individual is depicted with a colour, identified in the legend. Young
individuals are depicted with a “Y” and old individuals with an “O”. There was no idenitifable
substructure.

any downstream analysis cells that failed to be classified as G1.

4.2.4 Comparison of transcriptomes between old and young

Having determined which transcriptomes met the quality criteria, I wanted to deter-
mine whether it would be possible to separate the old and young TA-Hi MuSCs from
one another based solely on their transcriptome profiles. To assess this a tSNE di-

mensionality reduction-based approach was utilised (Materials and Methods section

R.AT).

From this analysis it was not possible to identify any discrete substructure (sub-
populations) in the dataset (Figure @) Other clustering methods such as PCA and

hierarchical clustering were also tested with similar results. This highlights that there
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were no major batch effects in our dataset between individuals. Whilst I had aimed to
minimize any confounding batch effects by conducting young and old library prepara-
tion for any one individual in parallel, it was important to verify that there were no
batch effects. In addition, it suggested that in this subpopulation of muscle satellite
cells, any age-related differences in the functionality of these cells could not be detected
purely from an expression level perspective. This suggests that the age-related changes
that have been observed for this sub-population are not the result of a consistent age-
associated drift in expression profiles, as has been previously postulated (Liu et al.,

2013 and Sousa-Victor et al., 2014).

4.2.5 Comparison of transcriptome variability between old and

young

Having determined that the cells appear to be homogeneous with regards to their
expression profiles, I next assessed whether I could detect differences in the variability
of the transcriptomes between young and old. To assess this, the distance between
the squared coefficient of variation for each gene and the rolling median of the squared
coefficient of variation for a given mean expression level were computed (Figure @)
Lowly expressed genes were removed from the analysis, due to them having large
numbers of drop-outs. A more detailed explanation of the analysis can be found in the

Material and Methods. The most highly variable genes were then analysed.

This analysis highlighted that there was an elevated average distance from the median
for highly variable genes in the old cells relative to the young (Figure @) In other
words there was an increase in variability seen in the old cells compared to the young
(Figure @) This finding held for each individual within the study. In addition, this
finding was independent of the exact number of highly variable genes that were assessed
(top 100, 300 and 500 were all tested and showed the same behaviour). This is in keep-
ing with the hypothesis that with age, satellite cells become misregulated resulting in
their functional decline. Interestingly, there is limited overlap between the most highly

variable genes from any one individual. This could partly be a result of the technical
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Figure 4.6: Squared coefficient of variance by individual: Scatterplots are shown for
the squared coefficient of variance as a function of the mean count per gene. Highlighted in
red are the top 500 most variable genes. These are calculated for each individual separately,
as the 500 most distant genes from the rolling median. Young individuals are depicted with
a “Y” and old individuals with an “O”.
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Figure 4.7: Transcriptional variability defined by distance: Boxplot of the distance
to median of the 500 most variable genes per individual. Shown in pink are the young
individuals and in green the old individuals.

limitations of the single cell approaches and the inherently low expression levels exhib-
ited by these cells, but could also reflect an underlying lack of homogeneity in these
cells. This increased variability seems unlikely to be due to sample preparation, since
all libraries were amplified the same number of cycles and the library quantification
from the bioanalyser did not highlight an inherently lower or higher expression level
in the old TA-Hi MuSCs. Since I could not determine any inherent direct overlap of
the most highly variable genes, I decided to assess whether the genes that were most
or least variable in our dataset were enriched for any functional category. As such, I
performed a gene ontology (GO) analysis of the most and least highly variable genes
for each individual and for the old and young as groups. For this analysis, the back-
ground was defined as the genes expressed in each individual that were considered in

the variability analysis.

This analysis highlighted that the least variable genes for both young and old individ-
uals were enriched in gene ontology terms associated with basic cellular processes such
as “ribosome” and “structural molecule activity” (Figure @) This is not unsurprising
owing to the importance of these processes. More curiously, I found that this was not

the case for the highly variable genes in old cells when compared to young cells. T found
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Figure 4.8: GO analysis of variable genes by individual: A barplot depicting the top
5 most significant GO terms for the most and least variable genes. Where there were 5 signif-
icant GO terms or less, all significant GO terms were visualised. GO terms assoicated with
lowly variable genes are depiected in blue. GO terms associated with highly variable genes
were visualised with yellow. Young individuals are depicted with a “Y” and old individuals

with an “O”.
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that highly variable genes in young cells were associated with terms such as “response
to cytokine stimulus” and “chemokine receptor binding” (Figure @) In contrast, I
find that highly variable genes in old cells were associated with terms associated with
“chemotaxis” (Figure @) Interestingly, in aged individual O5, I found that there was
a significant enrichment for the genes bound by the transcription factor NeuroD (Fig-
ure @) This is interesting because NeuroD has an overlapping position weight matrix
(PWM) with MyoD. Crucially, the activity of NeuroD is frequently lineage restricted
owing to chromatin accessibility (Fong et al., 2012). As such, this finding suggests the

tantalizing possibility that such regulation is eroded with age.

To assess cell-to-cell variability of these highly variable genes, a pairwise correlation
analysis of these genes was performed between cells of a given individual (Materials
and Methods section E.4.9). These pairwise correlations were visualized as correlation

heatmaps, one per individual (Figure @) and summarized in a violin plot (Figure

4.10).

This analysis led to the interesting finding that the highly variable genes contained
within old TA-Hi MuSCs are less correlated to one another than is seen for young
TA-Hi MuSCs (Figure ) This suggests that not only do old TA-Hi MuSCs have
more variable genes per se but that the expression of these highly variable genes, are
in of themselves more random in nature. In other words, with age there appears to be
a loosening of the transcriptional network. Interestingly, such low correlations are not
even seen in the characteristically heterogeneous environment of the mESC culture or
the early embryo (Mohammed et al., 2017). However, this comparison should be taken
with some caution, because it could be biased by the difference in number of transcripts
that are expressed in any one cell being far lower in the TA-Hi MuSCs than the mESCs

or early embryo cells, although this in itself could be considered biological.

Overall, these results show that the MuSC transcriptome is relatively stable, in terms
of average expression levels of any given gene, with age. However, the variability
of given genes and between cells within an individual is significantly increased upon
ageing. There are many reasons why this could be the case, for instance, one could

imagine that it is related to the number of cell divisions that have occurred resulting
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correlation

Figure 4.9: Transcriptional correlations between cells: A heatmap is shown per
individual. Each position within each heatmap depicts the pairwise Spearman correlation
coefficient for the 500 most variable genes between two cells. The correlation values range
from 0 (blue) to 1 (red). Young individuals are depicted with a “Y” and old individuals with
an “O”.
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Figure 4.10: Violin plot of transcriptional heterogeneity: A violin plot of the tran-
scriptional heterogeneity within each individual. This is computed as previously described in

ohammed et ali 017 from the Spearman correlation coefficients. Shown in pink are the
young individuals and in green the old individuals.

in the cells in of themselves being more distantly related or due to a loosening of
the transcriptional network. Interestingly, it also alludes at a potential mechanism
by which these cells have reduced functionality with age owing to a loss of coherent

transcriptional regulation.

4.2.6 Quality-control of the methylation data

Next, I wanted to assess the methylation data that I had generated for these cells.
Before any analysis could be conducted, I first had to check the quality of the cells. In
terms of single cell methylation data, this predominantly means ensuring that there
is a sufficient number of reads present within the library for a given cell, that the
proportion of reads that align uniquely is not too low, and that the bisulfite conversion
had been successful. In addition, I checked that the negative controls had remained

uncontaminated throughout the protocol.

In contrast to the sequencing of the transcriptome where I aimed to sequence approx-

imately ninety cells, in the case of the methylome sequencing I aimed to sequence
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Figure 4.11: Paired end read count QC for the single cell methylomes: Scatterplots
to depict the number of uniquely mapping paired-end reads that were achieved from each
single cell (each dot). Ome scatterplot is shown for each cell. Young cells are depicted in
green and old cells are depicted in red. The cut-off used for downstream analysis was 500,000
paired end reads, visualised here as a dotted black line.
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approximately thirty cells. The reason for this owes to the present cost of sequencing
single cell bisulfite libraries. The increased cost relative to the transcriptome is due to
a number of factors. For instance, in bisulfite sequencing a greater proportion of the
genome is being assayed. In addition, in single cell bisulfite sequencing a far greater
fraction of the sequencing reads fail to map than is the case for single cell transcrip-
tomics. Single cell methylomes are typically sequenced in a long paired-end read mode,
compared to a single cell transcriptome that would be sequenced using a short read
single end mode, exacerbating this cost inequality. The reason for this being that in
the case of transcriptomics one simply wants to map the reads and there are four intact
bases to map with. In contrast, for DNA methylomes, one is not merely interested in
mapping the reads but also in specific information that is contained at specific posi-
tions within each read, namely the methylation status of cytosines, predominantly in

a CG context.

From the quality analysis, I found that the majority of cells were successfully bisulfite
converted. This is defined as having CHH and CHG methylation of less than 5%
globally, which would likely be due to poor bisulfite conversion. In addition, I found
that the majority of cells had more than 500,000 uniquely mapped and deduplicated
reads. As such, I defined this as an arbitrary coverage threshold under which cells
would not be considered for future analysis (Figure ) The number of cells that
remained following this cut-off is detailed in Table @, sorted by individual. Due to a
large number of cells being removed from individual Y7, this indvidual was removed
from further analysis. In addition, I found that our negative controls had remained
uncontaminated throughout the process, due to them having poor mapping quality
(<10% of reads mapping). This gave us confidence that the single cell data I have

generated is valid (data not shown).

However, this analysis of the quality of the libraries highlighted that there was a bias
in the sequencing depth with the older samples on average having higher coverage than
the younger samples (Figure ) From an initial analysis of the samples (not shown),
I found that such a bias was detrimental to the integrity of the downstream analyses.

As such, the .bam files of all cells were randomly down-sampled such that they had a
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Individual Total cells Pass Chosen
Y2 40 38 Yes
Y7 48 20 Yes
Y8 48 35 Yes
o1 43 40 Yes
05 48 45 Yes
08 48 4 No

Table 4.2: QC of single cell methylomes

similar representation of reads before continuing with the analysis.

1500000
|

Paired end reads
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Figure 4.12: Sequencing depth bias in methylomes: Boxplot of the number of paired
end reads. Each boxplot represents an individual. Young individuals are depicted in green
and old individuals are depicted in orange.

4.2.7 Description of the methylation landscape of these cells

TA-Hi MuSCs have not previously had their DNA methylomes interrogated at a global
level. Therefore, I wanted to first assess the DNA methylation profiles of the cells that
I was using as my model system to study ageing. The first analysis that I conducted
on the methylomes from the cells was to compute the mean methylation, on a cell by

cell basis.
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Figure 4.13: Global methylation levels are low in TA-Hi MuSCs: Plot of mean
methylation levels for each cell. Young individuals are depicted in two shades of purple and

old individuals are depicted in two shades of green. There is an apparent batch difference
observed globally between Y2 and O1, and Y8 and O5.

This analysis highlighted that from a global DNA methylation perspective, these cells
were unusual for a somatic cell, with global CpG methylation levels of approximately
45% (Figure ) Typically, a somatic cell has approximately 70-80% CG methylation
and indeed for many cell types and tissues this has been shown to be the case (Ehrlich
et al., 1982). This includes other quiescent stem cell populations for which methylomes
are available (Sun et al., 2014). This observation is interesting because it is typically
assumed that a high level of DNA methylation is defined during early development
and that this level of methylation is maintained at a relatively constant level across the
lifespan of an organism (Hackett and Surani, 2013). This suggests that these cells may
lose methylation after their specification. In addition, it has been shown for human
and sheep differentiated muscle methylomes that the global levels of methylation are
as expected (70-80%), suggesting that this methylation must be put back upon or soon
after differentiation. One important point to bear in mind with this measurement of
global methylation from single cell data, is that it will be slightly lower than obtained
from a population-based sequencing experiment. This is likely due to the nature of the
polymerases involved and the large number of amplification cycles required. However,
even with this considered, the level of methylation that I observed for these cells is

far lower than expected. Interestingly, I found that there was no large deviation with
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Figure 4.14: DNA methylation assessed for broad feature categories: (A-D) Scat-
terplots depicting levels of DNA methylation across broad feature classes. (A) Assessment of
CGIs (A), exons (B), introns (including repeats; C) and Intra-cisternal A-type particle (IAP)
elements (D) was performed. Each dot represents one cell. Each cell is ordered and coloured
by individual. Green dots represent young individuals and orange/red dots represent old
individuals.

regards to global level of DNA methylation across cells within an individual, nor across
individuals nor age. This highlights the robustness of the single cell bisulfite sequencing
protocol that I am using, but also the high homogeneity of our cells when assessed in

this manner.

Next, I decided to assess whether this global reduction in DNA methylation relative
to other somatic cell types was associated with a specific genomic feature or whether
it was truly a genome wide phenomenon (Figure ) This is of interest because
it is commonly thought that the methylation of repetitive elements in the genome
is responsible for ensuring genome stability in the majority of cell types, with a few

notable exceptions during early development.

From this analysis I found that, as is typically seen for almost all cell types, DNA

methylation was high in repetitive regions of the genome such as IAP elements and

142



Chapter 4. Single cell ageing 4.2. Results

LINE elements. In addition, I found that archetypally lowly methylated regions of
the genome such as CpG island promoters (CGI-promoters) were lowly methylated.
Surprisingly, I found that introns and exons appeared to be the regions of the genome
that were behaving abnormally, and contained far lower levels of DNA methylation than
is commonly observed in other cell types. This is exciting, because to my knowledge it
is the first cell type to be assessed that exhibits this feature-specific patterning of DNA
methylation. Typically, the level of methylation across exons and introns is correlated
with the level of methylation over repetitive regions of the genome. For instance,
in lowly methylated cell types such as 2i/LIF mESCs, low levels of methylation in
exons and introns is observed alongside lowly methylated repetitive portions of the
genome (Ficz et al., 2013). One exciting possibility for this low level of exon and
intron methylation could be the highly quiescent nature of the stem cells that I am
studying. I suggest this because high levels of DNA methylation over gene bodies
(exons and introns inclusive) is commonly correlated in bulk datasets with increased
expression of the gene under study (Kulis et al), 2012, Maunakea et al., 2010 and
Varley et al., 2013). Furthermore, I found that independent of feature there was a
subtle increase in DNA methylation with age. The implication of this being that lowly
methylated regions gain entropy with age, whereas highly methylated regions become

more ordered with age.

4.2.8 Calculation of inter-individual variability from single cell

methylomes

Having assessed the nature of the unusual methylation landscape of these TA-Hi
MuSCs, I next assessed whether there were differences in the methylome variability

of different regions of the genome with age.

Methylation variability, in a similar manner to transcriptomic variability, is to a large
extent influenced by the level of the metric across the population (i.e. transcriptional
variability tends to increase with increased levels of expression). In the case of DNA

methylation, this metric is the methylation of the population and variability can largely
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be defined as a function of methylation level. Unlike transcriptomics, where variability
is increased with increasing mean expression, in the case of DNA methylation, variabil-
ity is maximal at 50%. This is because methylation levels are derived from methylated
and unmethylated bits of information. When assessing variability in DNA methylation
at the single cell level, it is therefore important to ensure the population level of DNA
methylation that is being measured is properly controlled. In addition, owing to the
sparsity of single cell DNA methylation data, DNA methylation in a single cell context
is commonly studied over windows. These windows are commonly defined as regions of
the genome containing a certain fraction of the genome, whether defined in base pairs
or number of underlying CG sites. This, however, introduces another complication
in the study of single cell DNA methylation variation that is frequently overlooked:
that the exact positions that are covered within a given window across a given number
of cells will more often than not, not overlap equivalent positions. This means that
attempts to utilize metrics such as standard deviation or variance of a mean level of
methylation across a feature will potentially be misleading. This in turn can generate
false impressions of the nature of variability across a feature or between cells. This is

highlighted diagrammatically in Figure .

To address these inadequacies in the analysis of DNA methylation variability, I de-
veloped a computational approach based on Hamming Distance (HD; Materials and
Methods section ) Briefly, the mean methylation and HD from a given pairwise
comparison is calculated for a given feature between cells within a given individual.
These pairwise comparisons ensure that I only compare sites that are present in both
cells such that there is no missingness. Importantly, each pairwise comparison can
differ with respect to the exact positions that are utilized when comparing any two
cells. This is important as it maximizes the number of events that are being studied
within any particular comparison, whilst at the same time eliminating the missingness
problem detailed earlier. The exact positions that are utilized in the pairwise compar-
isons are pre-defined by the features that are chosen for a given analysis. For instance,

it would be possible to compute pairwise comparisons for CGI-promoters.

In order to correct for the variability-relation to mean methylation of each cell within
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Figure 4.15:

A
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B

cell for a given feature.

Exon 1 - identical

Cell A 33% methylated
Cell B 66% methylated
Cell N 33% methylated

Variability

Exon 2 - non identical
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Cell A 40% methylated
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Exon 2

The implications of missingness for variance calculations:
Schematic representation of two exons that are present to differing extents in cells A to
N. Exon 1 depicted here is theoretically identical in its distribution of methylation across
cells. In contrast exon 2 is variable across the cells under study. Methylation status of cy-
tosines within a CG-context are displayed as 0 (unmethylated) or 1 (methylated). (B) A
barplot of the variability determined from these two exons as assessed using the standard
approach. Briefly, the standard deviation is computed from the average methylation of each
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A Exon 1 - identical Exon 2 - non identical
CellA | 1 0 - - 0 0 1 0 - 1
Cell B 1 - 1 - 0 1 - - - 0 1
CellA | 1 0 - - 0 0 1 0 - 1 0
Cell N - 0 1 0 - 0 - 1 1 - -
Cell B 1 - 1 - 0 1 - - - 0 1
Cell N - 0 1 0 - 0 - 1 1 - -
B g
% Exon 2
:
=
z
z Exon 1

Figure 4.16: Solution to the missingness for variability calculations: (A) Schematic
representation of two exons that are present to differing extents in cells A to N. Exon 1
depicted here is theoretically identical in its distribution of methylation across cells. In
contrast exon 2 is variable across the cells under study. Methylation status of cytosines
within a CG-context are displayed as 0 (unmethylated) or 1 (methylated). Highlighted are
cytosine positions that are present in both cells in each pairwise comparison. (B) A barplot
of the variability determined from these two exons as assessed using the Hamming distance
approach.
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a pairwise comparison, I compute randomized pairwise comparisons (Materials and
Methods section ) With these metrics, it is possible to randomly assign zeros
and ones to two independent vectors equal to the size of the comparison being made
and such that they result in exact matches to the methylation states observed. These
vectors can then be utilized to compute the HD. This can be done thousands of times
and the resulting distribution can be compared to the true pairwise comparison to
assess whether there is more or less variability than would be expected by chance.

This is schematically described in Figure .

The results from this analysis showed that there was a huge difference between the
expected heterogeneity for a given feature and the randomized pairwise comparisons
(Figure ) This was particularly the case for genomic features that had intermediate
levels of methylation. This suggested that these features were perhaps not wholly
unbiased in the distribution of their methylation states, and as such, perhaps I was
artificially deflating the variability seen for a given feature. For instance, a region with
half of sites having 100% methylation and the other half of sites having 0% methylation
will be very different in terms of variability from a region where all sites are 50%
methylated. However, although this was likely an issue for any independent comparison
to random, these results did reveal differences between young and old in terms of

variability.

Considering this issue from the previous approach to the analysis of variability, I next
decided, prior to computing the HD for our given features, to first sub-divide the
features based upon our knowledge of the state of methylation at each single cytosine
position in a CG context in the genome (Materials and Methods section ) To do
this I computed the methylation status at every single CG site in the genome, from an
in silico combined dataset containing all the single cells. T then filtered for sites that
contained more than 10 reads and segmented the genome in to methylation bins of
10%. These bins could then be intersected with the feature annotations that I wished
to compute over, and the metrics and randomized comparisons could then be calculated
again. This time with a reduced likelihood of the results for the random analysis being

confounded by the variable methylation levels that are present within a given feature,
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Figure 4.17: Variability in DNA methylation by feature: (A) Violin plot of average
pairwise methylation for all individual-contained pairwise comparisons. Broad genome fea-
tures were assessed (CGIs, CGI shores and shelves, exons, introns and various repeat classes.
In addition, a number of muscle-specific features were assessed. Histone mark features studied
were identified from MuSC ChIP data (Y=young cells and O=old cells). Exons and introns
from genes upregulated upon regeneration after 36 and 60 hours were assessed (exon/intron
36 = 36 hours and exon/intron 60 = 60 hours). (B) Violin plot of Hamming distance of each
individual-contained pairwise comparison. Features as defined for (A).
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Figure 4.18: Variability with methylation level accounted for: (A) Schematic repre-
sentation of two exons that are present to differing extents in cells A to N. Exon 1 depicted
here is theoretically identical in its distribution of methylation across cells. In contrast exon 2
is variable across the cells under study. Methylation status of cytosines within a CG-context
are displayed as empty (white) lollipops (unmethylated) or filled (black) lollipops (methy-
lated), positions for which there is no information do not contain lollipops. The shading
depicts the average methylation level of each cytosine across the whole population of cells
(white=0% methylated and black=100% methylated). (B) Graphical depiction of the results
for variability as a function of methylation, once the features have been split by population
level methylation bins. The blue shaded line represents what would be expected by a wholly
random process.

such as exons (Figure )

4.2.9 Comparison of methylome variability between old and

young

Having defined this method for assessing methylome variability, I then wanted to assess
whether there were regions in the genome that were more or less variable than would be
expected by chance and how these compared between young and old. The first feature

that I assessed was CGIs (Figure )

The results from this CGI analysis highlighted the improvement in this randomization
approach now that I am considering the “bulk” methylation for each site that I am

assaying, with the majority of sites exhibiting the same level of heterogeneity as ex-
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Figure 4.19: Lowly methylated CGIs are homogeneous: (A) Plot of variability in
CGlIs as a function of methylation for each individual. The two young individuals are shown
in differing shades of purple and the two old individuals in differing shades of green. The grey
curve represents a smoothed fit of the random trials from each individual combined. Error
bars for each individual are described by the median absolute distance (MAD). (B) Density
plot of the CGIs that are 20-30% methylated. Background has been subtracted from each
individual pairwise comparison. The young individuals are represented in pink and the old
individuals in green.

pected by chance. Excitingly, I observed that with age, sites that are lowly methylated
gain heterogeneity and sites that are highly methylated lose heterogeneity in CGIs.
Strikingly I found a strong CGI-specific homogeneity in both young and old cells for
sites that are 10-30% methylated in bulk. Although the young cells were more ho-
mogeneous than the old cells. Importantly, this is above what would be expected by
chance. These results suggest that lowly methylated CGIs are specifically maintained
at a higher degree of homogeneity than the rest of the genome and that with age this

maintenance is eroded.

I next decided to investigate a broad range of feature annotations including; exons, in-
trons, repeat elements and published histone marks for these cells (H3K27me3, H3K4me3,
H3K36me3). CGIs were assessed again too for comparison. The calculated difference

in heterogeneity between young and old for these features is shown in Figure .

The results from this analysis showed that sites in the genome that were lowly methy-
lated tended to gain heterogeneity with age. In contrast highly methylated sites either

did not change substanially or became more homogeneous with age. Perhaps unsurpris-
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Figure 4.20: Methylation variability changes with age are feature dependent: (A)
Heatmap of the difference in variability between old and young for a number of features. The
histone modifications are labelled as being from quiescent satellite cells (QSCs) as defined
in the original paper (ILiu et al,, l2013|). Differences are represented on a linear colour scale,
where blue is more variable in old, white is no change in variability and orange is more
variable in young. Methylation levels were segregated into bins of 10%. (B) Heatmap of the
average number of sites utilised for each variability comparison. Colours are shown on a log
scale, where the darker the shade of orange the more sites were utilised.

ingly, histone marks that are associated with promoters showed strikingly increased
heterogeneity similar to CGls (of which many fall within promoter regions; Figure
A). The number of sites in each comparison is shown here to evaluate whether
this could be biasing the results (Figure A). This does not seem to be the case as
there is no apparent relation between the number of sites assayed and the heterogeneity

metric computed.

Having assessed these broad annotated feature classes, I next computed HD using
this method taking bins of CpG density as my feature classes. This was of particular
interest because we know from biochemical studies that the different enzymes involved
in the process of adding and removing methylation have differing processivities. As
such, it could be imagined that regions of the genome will differ in terms of variability
as a function of CG density, since this will affect processivity. To assess this, I defined
overlapping regions of even CG coverage throughout the genome, with the caveat that
a CG site had to be observed in at least one of our samples (Materials and Methods
section ) These regions were then split into bins of CG density. To ensure that

the bins of CG density were not biased by the presence of Ns in the genome scaffold,
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Figure 4.21: Age—dependent changes in methylation variability are CG—density
dependent: (A) Heatmap of age-dependent changes in DNA methylation as a function of
CG-density. Differences are represented on a linear colour scale, where blue is more variable
in old, white is no change in variability and orange is more variable in young. CG-density
was segregated into 10 bins. These bins were defined on a logarithmic scale. Methylation
levels were segregated into bins of 10%. (B) Heatmap of the average number of sites utilised
for each variability comparison. Colours are shown on a log scale, where the darker the shade
of orange the more sites were utilised.

CG densities were recalculated from the genome fasta files (Materials and Methods

section ).

This analysis showed that changes in DNA methylation variability with age were dif-
ferent at differing CG densities (Figure A). The lowest levels of variability, relative
to expectation, were seen for the highest levels of CG density. In addition, at these
high CG dense regions I found that the level of variability was dependent on the level
of DNA methylation and that variability was lowest for 10-30% methylation. This is
perhaps not surprising since I previously saw this phenomenon for CGIs with 10-30%
methylation. However, there are far more positions being considered in this CG-density
analysis. This suggests that this could be a genome-wide phenomenon relating to CG-
density and methylation level and not merely a CGI phenomenon. The number of sites
were again computed to assess whether these could be biasing the results B). This

did not appear to be the case.

Lastly, I wanted to assess whether the epigenetic clock sites that I defined previously

(btubbs et al., IZOlﬂ) or regions surrounding these sites would become more or less
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Figure 4.22: Clock—containing regions are as heterogeneous as the background:
Plot of variability of clock-containing regions as a function of methylation for each individual.
The two young individuals are shown in differing shades of purple and the two old individuals
in differing shades of green. The grey curve represents a smoothed fit of the random trials
from each individual combined. Error bars for each individual are described by the MAD.

heterogeneous with age. As such I defined fixed distance (5kb) regions around the

positions defined in my elastic-net regression model and computed HD for young and

old.

From this analysis I found that the regions containing the clock sites in TA-Hi MuSCs
mimicked the changes observed for the rest of the genome. Namely, that all regions on
average gained methylation, resulting in sites with methylation below 50% increasing
in variability and sites with methylation above 50% decreasing in variability. This
finding was independent of the directionality of the clock weight (data not shown). In
addition, in contrast to what was observed for 10-30% methylated CGIs, the clock
regions were not more homogeneous than expected by chance. As such, these changes
in variability can be predominantly explained by changes to the DNA methylation
levels of the regions themselves. These findings are interesting because they do not
align perfectly with what is expected of these sites in bulk tissues, namely that they
would all tend to increase in entropy. This could be a reflection of the unusual nature
of the DNA methylation in these cells and the fact that 5kb regions around these sites
are being observed, not simply the sites themselves. Alternatively it could be related
to the stem cell nature of these cells, since no epigenetic predictor to date has assessed

predictor site changes in adult stem cells with age.
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Together these findings support the clock sites being a representation of the failures
of an epigenetic maintenance system and not a “special” set of sites or positions that

behave counter to the rest of the genome.

4.2.10 Calculation of methylation patterning from single cell

methylomes

Next, I wanted to develop a method that I could use to assess the patterning of methy-
lation in the genome from single cell data. In essence, I wanted to assess whether the
proximity to a neighboring cytosine in a CG context was capable of influencing the
methylation status of that site. As such, I developed a computational approach to

assess this (Materials and Methods section ) A schematic of this is shown in

Figure .

Briefly, from each individual cell I determined the cytosines in CG context for which
there is coverage. I then intersected these positions with our features of interest. For
each cytosine in a CG context that falls within a given feature I then computed the dis-
tance to every other cytosine in a CG context within that given feature. I then assessed
for each cytosine-to-cytosine distance whether the two cytosine bases share the same
methylation status. In other words, were they both methylated, unmethylated or one
methylated and the other unmethylated. I computed this for each individual feature
within our list of features for each individual cell. In addition, I subset methylated and
unmethylated reference cytosines when computing this similarity metric. This separa-
tion was conducted so that I could assess whether there was any difference between
similarity score based upon whether it was being computed for methylated reference
cytosines or unmethylated reference cytosines. For instance, it could be hypothesized
that methylated sites have a stronger similarity score than unmethylated states owing
to the processivity of the DNMT enzymes. These similarity scores for each distance
from a given cytosine can then be averaged across the various features, such that a

relatively continuous similarity metric can be defined.

Similar to the variability metrics, much of this similarity score was defined by the in-
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Figure 4.23: Schematic of methylation patterning within single cells: Schematic
of the analysis of methylation appterning. In the diagram an example single cell is shown,
from which multiple features can be assessed for patterning (shown here are CGIs and exons.
The essence of the computational assay is to assess the influence that a reference methy-
lated cytosine (red) or unmethylated cytosine (blue) can have on the methylation status of

neighbouring cytosines.
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herent methylation status for each feature. As such, similar to the variability metric
I defined a randomized control set. In brief, I indexed each cytosine position within
each given feature of interest. These indexed positions were then randomly shuffled
within each given feature for each cell independently. This enabled a set of randomly
defined similarity scores to be computed, enabling me to determine whether what I
was observing was more or less than would be expected by chance. Unfortunately, the
randomized metric is relatively expensive to compute 1000s of times for each individ-
ual cell within our study. Therefore, to assess whether the method was performing

as anticipated, I assessed CGls in one cell derived from a young individual (Figure

b.24).

The results from this analysis showed that I was able to compute similarity scores for
both methylated and unmethylated reference cytosines in CGls. Interestingly, I saw
that similarity score decays with increasing distance for both the random and the ac-
tual values for the methylated reference but not the unmethylated reference. However,
I saw that the slope of the decay with distance is greater for the actual values than
the random values. As such, I found that at shorter distances (less than 100 bp), the
similarity score for the actual values is greater than that for the random values. This
suggests that the knowledge of a neighboring methylated or unmethylated cytosine at
a given position increases the predictive power of determining the status of a given
cytosine under study over and above what would be possible from methylation status
of the feature alone. This is unsurprising for CGIs and is the reason that many DNA
methylation imputation-based approaches utilize neighboring site information (Anger-
mueller et al., 2017 and Zhang et al,, 2015). As expected, I found that there is a
difference between the similarity score for methylated and unmethylated reference po-
sitions, with unmethylated sites being far more likely to be neighboring unmethylated
sites than methylated sites. This is unsurprising owing to the relatively low levels of
methylation found in CGI features throughout the genome, and more specifically in
our dataset. Interestingly, when I subtracted the random from the actual data, in
an attempt to normalize to the background expectation, I found that the methylated

reference sites exhibited an increased similarity over and above background relative to
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Figure 4.24: Example patterning of a cell in CGIs: (A and C) Similarity score of
cytosines in CGIs in an example young cell. The similarity score displayed is that derived
when the reference cytosine is methylated (A) or unmethylated (C). Shown in black are the
real values for the similarity and shown in red is the background comparison (standard devi-
ation displayed as two pale red lines either side of the smoothed fit). (B and D) Background
normalised similarity plots. The reference cytosine is methylated in B and unmethylated
in D. The blue line is a smoothed fit of the data, and the shading represents the standard
deviation of the background.
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the unmethylated reference sites. This is interesting because it suggests that methy-
lated sites contain more information governing neighborhood methylation status than
unmethylated sites. This could, however, also be due to the levels of methylation be-
ing assessed. This analysis would need to be conducted on additional features with

differing methylation levels in order for this to be assessed more clearly.

Unfortunately, owing to the time taken to derive each random computation for each
cell, it was not feasible to run the randomized analysis thousands of times. As such, I
defined 10 randomised controls for each list of features for each cell. These were then
averaged to compute the difference. The standard deviations for these randomized
comparisons were also recorded, such that this information could be used to define con-
fidence intervals around the randomized trials that could be used to assess deviation
from the background expectations. In addition, this information would allow compar-
isons to be drawn from multiple cells and multiple individuals, enabling me to assess

age-related differences.

In short, I have developed a method that seems capable of assessing similarity as a

function of distance across features within single cells.

4.2.11 Comparison of methylation patterning between old and

young

This method has the benefit of averaging across each feature for a given distance,
allowing many data points to be considered in any specific analysis and resulting in a
finer, more continuous distribution of values. The first comparison that I made using

this analysis was of similarity in CGIs between young and old cells (Figure )

From this analysis, I found that old cells tended to have more similarity between
neighbouring cytosines than young cells. Interestingly, I found that this is true for
both methylated and unmethylated reference positions. Although the results were more
striking for unmethylated positions. This result suggests that with age the information
carried by a methylated position is greater than is observed in a young cell. Since this

is background normalised to remove any differences that could be due to differences
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Figure 4.25: Neighbourhood similarity in CGIs: (A and B) Scatterplots showing simi-
larity score as a function of distance (bp) for methylated (A) and unmethylated (B) reference
cytosines within CGIs. (C and D) Boxplots of similarity score for windowed distances of
100 bp within CGIs. Methylated reference similarities are shown in C and unmethylated
reference similarities in D. Asterisks reflect significant differences between young and old
(Mann-Whitney Test; Bonferroni corrected p-value <0.05).
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Figure 4.26: Neighbourhood similarity in exons: (A and B) Scatterplots showing
similarity score as a function of distance (bp) for methylated (A) and unmethylated (B) ref-
erence cytosines within exons. (C and D) Boxplots of similarity score for windowed distances
of 100 bp within exons. Methylated reference similarities are shown in C and unmethylated
reference similarities in D. Asterisks reflect significant differences between young and old
(Mann-Whitney Test; Bonferroni corrected p-value <0.05).

in DNA methylation levels between the various cells, this suggests that the manner
in which DNA methylation is being added and removed is resulting in an increase in
the order within CGIs over time. One possible explanation for this would be that
over time DNA damage results in the removal of more heterogeneous regions. When
DNA methylation is re-established within these regions it is re-established in a manner

defined by broader methylation levels of the region and not so locally defined.

Next, I decided to assess whether the same behavior could be seen for exons (Figure
1.26). I found that indeed the same pattern of change with age was observed in the
case of exons. In fact, I found that this pattern of increasing similarity was more

striking than that seen for CGIs. Curiously, the decay with distance is more distorted
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Figure 4.27: Neighbourhood similarity in L1 LINEs: (A and B) Scatterplots showing
similarity score as a function of distance (bp) for methylated (A) and unmethylated (B)
reference cytosines within L1 LINEs. (C and D) Boxplots of similarity score for windowed
distances of 100 bp within L1 LINEs. Methylated reference similarities are shown in C and
unmethylated reference similarities in D. There were no significant differences between young
and old (Mann-Whitney Test; Bonferroni corrected p-value <0.05).

for exons than was seen for CGls (Figure A and B, Figure A and B). One
explanation for this is the larger variation in size seen in the case of exons. These
results suggest that the behavior I observed for CGlIs, is not specific to that genomic
feature but is potentially a more genome wide phenomenon. To assess, this I decided
to examine what would happen in the case of long interspersed elements (LINEs) in

the genome.

In contrast to exons and CGIs, LINEs are highly methylated in this cell type, and
in general appear to become more homogeneous with age. These results showed that
there was no difference between young and old cells with regards to similarity (Figure

). This was true for both methylated and unmethylated reference positions. This
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result was important because it suggests that the gains in similarity observed for other
features were not the result of sequencing bias or batch. These results also suggest that
although gains in similarity are seen for exons and CGlIs, perhaps this phenomenon is

not wholly genome-wide.

Lastly, I wanted to assess whether the regions surrounding the epigenetic clock sites
that I had identified also followed this behavior (Figure ) This was of particular
interest as it could suggest a mechanism behind the changes in DNA methylation that
are observed for the clock. This may seem counter intuitive, since one of the key
observations from the analysis of the sites of my epigenetic clock and others, is that
with age there is an increase not a decrease in entropy. However, it should be noted
that we and others have identified epigenetic clock sites to be associated with regions
containing very defined boundaries in terms of methylation status, such as CpG shores.
As such, one could imagine, owing to randomly occurring events of DNA damage and
increasing order within individual cells in repairing this damage, that on a bulk level

this would result in increased entropy or variability.

From this analysis, I saw that with age there was an increasing amount of predictive
power from neighboring sites within these regions. This is in keeping with the rest
of the genome. Excitingly, this was the largest increase in similarity seen of any of
the features assessed, this was particularly true for unmethylated reference cytosines.
This suggests that these regions, although in keeping with the rest of the genome
are exaggerated in this regard and could be one of the reasons they are identified as

predictive in my multi-tissue predictor.

In summary, I find that with age there is an increasing similarity within a given cell
between neighboring positions. I observe that this is in contrast to the heterogeneous
nature of the changes in variability which seem to be feature and methylation state

dependent.
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Figure 4.28: Neighbourhood similarity in clock regions: (A and B) Scatterplots
showing similarity score as a function of distance (bp) for methylated (A) and unmethy-
lated (B) reference cytosines within 5 kb of the mouse epigenetic predictor sites. (C and
D) Boxplots of similarity score for windowed distances of 100 bp within 5 kb of the mouse
epigenetic predictor sites. Methylated reference similarities are shown in C and unmethy-
lated reference similarities in D. Asterisks reflect significant differences between young and
old (Mann-Whitney Test; Bonferroni corrected p-value <0.05).
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4.2.12 Association of transcriptome and methylome

Having observed that with age there is an increase in transcriptional variability along-
side an increase in DNA methylation variability, I wanted to assess whether the two
types of variability were correlated with one another. This was of particular inter-
est owing to previous work conducted in mESCs where it has been shown that when
methylation levels are low, for instance in 2i/LIF-cultured mESCs there is no or little
correlation between methylation and transcription (Angermueller et al), 2016). This
was hypothesized at the time to be due either to a technical lack of cell numbers or
due to the early developmental stage that these cells are emulating, and not due to
the low levels of DNA methylation per se. Until now, there has not be an alternate
cell type that has been assayed at the single cell level using the combined method that
also exhibited decidedly low levels of DNA methylation.

I derived correlations between DN A methylation and transcription for all available com-
parisons using a similar method to the previously published work in mESCs (Anger-
mueller et al), 2016). The number of available comparisons is slightly more limited
than the number of genes and promoters covered individually, owing to the criteria of
requiring coverage of the methylome and the transcriptome from within the same cell
(Materials and Methods section ) I calculated Pearson and Spearman correla-
tions assessing associations between expression of a given transcript and promoter or

gene body methylation of said transcript.

From this analysis, I observed that in our TA-Hi MuSCs there are very few significantly-
associated correlations that are either negative or positive (Figure ) In fact, I
observed that methylation and transcription were not significantly correlated for any
of the genes analyzed when Spearman correlation was performed (Figure ) In the
case of Pearson correlations, there were a small number of significantly-associated cor-
relations (Figure ) Interestingly, there was a positive skew in the distribution of
correlation values. In other words, with increasing promoter DNA methylation, there
was a concomitant increase in expression. This is counter to what was expected from

analyses in bulk settings and also counter to what has been observed previously for
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Figure 4.29: Pearson correlations of promoter methylation with transcription:
Volcano plots of correlation coefficient against -log(p-value) for Pearson correlations between
promoter methylation levels and transcription. Red points are multiple-testing significant
using a false discovery rate (FDR) of 10%. There is a volcano plot for each individual.
Young individuals are depicted with a “Y” and old individuals with an “O”.
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Figure 4.30: Spearman correlations of promoter methylation with transcription:
Volcano plots of correlation coefficient against -log(p-value) for Spearman correlations be-
tween promoter methylation levels and transcription. There were no significant correlations
found using a FDR of 10%. There is a volcano plot for each individual. Young individuals
are depicted with a “Y” and old individuals with an “O”.
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serum-grown mESCs from a single cell combined dataset (Angermueller et al., 2016).
Interestingly, this positive skew is exactly what is seen for 2i/LIF-cultured mESCs.
This suggests that perhaps this skew in the distribution is not so much of a devel-
opmental stage phenomenon, or even a cell number phenomenon as was previously
thought but instead relates to the actual low levels of DNA methylation. For instance,
it might perhaps be the case that at low levels, DNA methylation is unable to act in
its usual repressive fashion and perhaps its presence more closely resembles gene body

methylation.

Having assessed promoter methylation correlations with transcription, I next wanted
to investigate how gene body methylation correlated with transcription. From this
analysis, I found that there were no significant correlations for the Spearman analysis
and there was a positive skew in correlation in the case of Pearson correlation, similar to
what I saw for promoter methylation (data not shown). This was not too surprising, as
it has been shown numerous times that gene body methylation is correlated with active

transcription (Kulis et al., 2012, Maunakea et al., 2010 and [Varley et al), 2013).

4.3 Discussion

I have generated the first in vivo single cell combined dataset allowing the process
of ageing to be assessed in unprecedented detail. This dataset was derived from a
homogeneous population of TA-Hi MuSCs. The reason for choosing a homogeneous
population of cells was to remove confounding variables in my analysis of changes

occurring with age, enabling the focus to be solely on cell intrinsic changes.

From the transcriptome, I found that with age there was an increase in variability. I
found that this increase in variability was not restricted to a subset of genes but could
be found in hundreds of genes. I identified that in young individuals the highly variable
genes were associated with GO processes such as “response to cytokine stimulus” and
“chemokine receptor binding”. In contrast, I found that highly variable genes in old
cells were associated with GO processes such as “chemotaxis” and “cell chemotaxis”.

This change in processes that are being defined as highly variable could highlight the in-
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creased proportion of cells in old individuals that are now being relied upon to maintain
homeostasis of the muscle. Alternatively, it could suggest that these old cells are more
likely to become mobile or activated. In addition, I found that there was an enrichment
in one of the old individuals for processes associated with the neural lineage-specific
transcription factor NeuroD, this is interesting because NeuroD is another basic-helix-
loop-helix protein with an incredibly similar motif (position weight matrix (PWM))
to MyoD, the transcription factor responsible for downstream differentiation of muscle
satellite cells into myoblasts (Fong et al., 2012). MyoD and NeuroD are known to be
regulated in their functionality through the restriction of their epitopes in lineages that
they should not be functioning on (Fong et al), 2012). As such, this suggests that there
is a loss of regulation of the muscle lineage in old TA-Hi MuSCs with age, and that
potentially this could be interfering with the ability of these cells to function properly
upon activation. In addition, I assessed cell-to-cell variability in young and old TA-Hi
MuSCs, finding that with age there was an increase in cell-to-cell transcriptional vari-
ability. Curiously, I saw that this variability was over and above what is seen for the
early embryo dataset I compared it with (Mohammed et al), 2017). This is interest-
ing, because it is commonly thought that with a reduction in differentiation potential
there would be a concomitant reduction in cell-to-cell variability. This suggests that
although TA-Hi MuSCs are an incredibly homogeneous population of cells, and have a
very well defined differentiation potential, when similarity in variable genes is assessed
across cells, there is less concerted expression than for embryonic stem cells. This could
be perhaps due to technical considerations owing to the quiescent nature of these cells,
and low levels of transcription, resulting in apparently less coordinated transcriptional
regulation owing to the drop-out rate in the single cell transcriptomic method. How-
ever, this seems unlikely, since I filter out lowly expressed transcripts (Materials and
Methods section @) Alternatively, it could be due to the fact that in embryonic
stem cells the cell-to-cell variability in variable genes is more coordinated and regulated
in perhaps some sort of cyclical process, that is perhaps important for ensuring lineage
proportions are defined properly. It will be interesting to assess the levels of cell-to-cell

variability across cells as more cell types become available for interrogation.
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I defined the first ever TA-Hi MuSC whole genome methylome data. From this methy-
lome data I found that TA-Hi MuSCs had an unusual methylation composition. This
was associated with a globally lower level of methylation than is commonly seen for
somatic cells. Interestingly, I found that this global reduction in methylation was not
genome wide, as is seen in the case of for instance 2i/LIF-cultured mESCs but was in
fact localized to specific features. These features included genic regions, for instance
exons and introns. This pattern of methylation is interesting, because it is very rare
to find a cell type that contains highly methylated repetitive regions of the genome
while simultaneously having lowly methylated exons and introns. As such, it could be
an incredibly useful model system for future studies interested in understanding the
placement of DNA methylation. It will also be fascinating to see whether other highly
quiescent cellular populations exhibit similar patterns of methylation deposition. This
would be interesting, because one hypothesis for the lack of methylation found in gene
-bodies would be the low levels of transcription in these cells. I found that with age
there was an increase in methylation across a number of features including repetitive
elements such as LINEs. In addition, I defined novel computational approaches for
the robust assessment of DNA methylation variability between cells and the pattern-
ing of methylation within cells. These methods enabled me to identify regions of the
genome that are less variable than would be expected by chance, such as in CGIs that
are 10-30% methylated. In addition, these approaches allowed changes in methylation
variability with age to be assessed, in addition to whether they are independent of
changes in DNA methylation levels or not. I found that with age there was a tendency
for regions of the genome that were lowly methylated to gain methylation and with it
heterogeneity, and for regions of the genome that were highly methylated to further
gain methylation and lose heterogeneity. In addition, I found that there were certain
regions of the genome such as CGls, that gained heterogeneity, with a minimal change
in methylation level. From my patterning analysis, I found that with age there was
an increase in the predictive power of neighboring positions in the genome, suggest-
ing a reduction in complexity of the methylome in exons and CGIs amongst other

features.
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Figure 4.31: Model of epigenetic changes in TA Hi MuSCs with age: (A) Depiction
of DNA methylation heterogeneity in young and old cells. The reason shown was lowly
methylated in young, hence gain in heterogeneity. Methylated cytosines are shown using
filled lollipops and red shading. Unmethylated cytosines are shown using empty lollipops
and blue shading. (B) Visualisation of methylation changes with age and the implication for
heterogeneity. Lowly methylated regions in the young will tend to gain heterogeneity and
highly methylated regions will tend to lose heterogeneity. (C) Visualisation of the incrceasing
similarity between neighbouring cytosine positions in the genome with age. (D) Model of
how increasing similarity could result in increased variability. Lightning bolts represent DNA
damage and the pacman represents a DNA methyltransferase.

This is exciting because it hints at a potential mechanism for the age-associated changes
in DNA methylation that are perhaps paradoxically often associated with gains in en-
tropy. The mechanism that I would like to propose for this is that random DNA
damage results in DNA repair, that erases DNA methylation from the genome. At the
same time, DNA methylation is being added to the genome by enzymes that act in
a biased or more processive manner, resulting in cell intrinsic homogeneity or loss of
switching. This I suggest is partially CG-density dependent, suggesting the importance
of processive enzymatic processes in this enhancement of neighborhood similarity. Ow-

ing to this process being, to a certain extent random, when this process occurs across
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many cells in concert it results in changes that could result in gains or losses in het-
erogeneity. Interestingly, one would hypothesise that losses in heterogeneity would be
associated with regions of the genome that were more prone to DNA damage than the
genome as a whole, resulting in more homogeneous methylation patterning across cells.
It will be exciting to test this hypothesis further with DNA damage induction and in

other cell types, to assess the generalizability of this phenomenon.

When comparing variability in transcription and methylation, I found very little corre-
lation between the two. This suggests that the sources of variability may be different.
In the future, to improve such analysis, it would be interesting to assess this relation-
ship in an allele specific fashion, rather than making the assumption of a 1n genome.
In this present study, this was not performed due to the cross being derived from one
heterozygous (containing the pax7-GFP reporter) and one homozygous parent. This
was done to ensure that I could define our homogeneous cell population accurately. It
would also be exciting to assess whether this coupling between transcription and DNA

methylation increases upon differentiation of these cells.

In summary, I have found that increases in variability that are seen with age can be
the result of cell intrinsic gains in homogeneity. This is an exciting proposition that

will be possible to test in the future.
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Chapter 5

Live cell imaging of DNA

methylation in single cells

5.1 Introduction

DNA methylation dynamics are hugely important in a number of settings, including but
not limited to development, cancer and ageing. In addition, with the advent of single
cell methods to study DNA methylation, it is now becoming increasingly apparent that
heterogeneity between cells within a given population is also of great importance in

our understanding of these processes and others.

At present, whole genome bisulfite sequencing-based approaches are the gold standard
in studies on DNA methylation, since they allow interrogation of this mark at single
base-resolution. Although the cost of sequencing is reducing at pace, these sequencing-
based approaches are still expensive owing to the size of the genome under study
(Lander et al., 2001, Sierro et al., 2014 and Waterston and Pachter, 2002). This is
particularly true for DNA methylation, where one is studying a continuum of values
between a fully methylated site and a fully unmethylated state. This is in contrast to
most genomics studies where typically there are three states to consider (homozygous
reference, heterozygous, and homozygous alternate). This necessitates many multiple

copies of the same position in the genome being sequenced in order to observe small
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yet meaningful changes in DNA methylation. This is especially the case for single cell
epigenetic approaches that typically require as few as 20 cells to be sequenced on a
single lane (Angermueller et al., 2016). As such, for larger scale studies of epigenetic
heterogeneity, additional methodologies are required to sample a given population of
cells. These cost issues are trying to be dealt with presently. For instance, there are now
pooling-followed-by-regional-pull-down-based approaches that are attempting to enrich
for genomic regions of interest while reducing the cost per cell (Mulqueen et al.,, 2017).
These approaches, however, are still expensive/ineffective owing to them still being in
their infancy and at present are little better than conventional single cell whole genome
bisulfite sequencing (Angermueller et al., 2016, Clark et al., 2017 and Smallwood et al.,
2014). Unfortunately, none of these sequencing methods are currently applicable to
the direct observation of DNA methylation dynamics. This has meant that at present
it has only ever been possible to infer dynamic behaviour from static snapshots. This

remains a large technical limitation.

These limitations are not sequencing-specific, and apply also to all other methods cur-
rently available for the study of DNA methylation, including, for instance, mass spec-
trometry and immunofluorescence (IF) measurements. The destructive nature of the
sample preparation makes these techniques incompatible with continuous observation

of the same cell or cells over multiple time points.

A few studies have been conducted to qualitatively assess the dynamics of the distribu-
tion of DNA methylation in living cells (Ingouff et al., 2017, Kimura et al., 2010,Ueda
et al), 2014, Yamagata, 2010, Yamazaki et al., 2007 and Zhang et al., 2017). These
studies have utilised various methyl-binding domain proteins as a proxy to visualise
DNA methylation dynamics. These studies have shown that it is possible to visualise
DNA methylation in living cells in several different contexts, such as DNA methylation
in CpG and CHH contexts (Ingouff et al), 2017). At present, these papers have solely
assessed the distribution and nature of DNA methylation in a qualitative fashion. For
instance, assessing how the dynamics of the distribution of DNA methylation changes
during early mouse development (Yamazaki et al., 2007). However, these studies have

not attempted to utilise the fluorophore fused to the MBD to derive a quantitative
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assay of global DNA methylation dynamics.

The aim of this work was to develop a system for real-time quantitative measurement of
DNA methylation in live single-cells. To achieve this, I utilised a previously defined and
validated MBD-NLS-eGFP (hereto referred to as MBD1-eGFP) construct (Yamagata,
2010). In achieving this, I wanted to develop a method that could be extended to
assess the dynamics of large populations of cells cheaply and effectively and would
enable epigenomics to be studied at the single cell level at a far greater throughput

than is currently attainable.

5.2 Results

5.2.1 Method design

The most commonly used protein for visualising CpG methylation in the field has
been the methyl binding domain (MBD) of methyl binding domain 1 protein (MBD1).
MBD1 is a member of a family of proteins that bind to single symmetrically methy-
lated CpG dinucleotides. All MBD family members share a common MBD consensus
sequence (Zou et al., 2011; Figure lil])

The MBD of MBD1 was chosen for live cell imaging applications over the other family
members due to it previously being observed to have the highest sensitivity to methy-
lation changes (Baubec et al), 2013, Ohki et al., 2001 and Zou et al., 2011). This MBD
domain is known to have an approximately 10-fold increased affinity for CpG sites
that are fully methylated than those that are unmethylated (Baubec et all, 2013, Ohki
et al), 2001 and Zou et al., 2011). For visualisation, this protein domain is fused at its
C-terminus to a fluorescent protein such as green/red fluorescent protein (GFP/RFP)
spaced by a nuclear localisation signal (NLS) to ensure correct folding, flexibility of
the MBD itself and efficient nuclear localisation of the folded reporter protein. The
potential utility of the MBD of MBD1 for the study of DNA methylation has now been
validated using several approaches. Briefly, pull-down experiments for DNA methyla-

tion and RFP (linked to the MBD) have been used to show that both the methyl mark
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Figure 5.1: MBD alignment across MBD-containing family members: (A) Align-
ment of the MBD domain for both human and mouse is displayed. Secondary stucture is
displayed above the alignment. Sequence conservation is shown on a blue, white, red scale;
where dark blue is highly conserved. (B) The solution nuclear magnetic resonance (NMR)
structure of the MBD of human MBD1 is shown. In the structure the domain is bound to a
CpG methylated dsDNA. Figure adapted from (tZou et al., |2011|)
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and the RFP-linked MBD occupy similar regions of the genome (correlation coefficient

of >0.597 for regions larger than 5kB; IUeda et al.|, }2014). In addition, comparison of

the distribution and localisation of the MBD domain with 5’'methyl-cytosine has been
conducted using IF: both are found to stain heterochromatic regions of the genome

, 2014). Excitingly,

containing predominantly major and minor satellites (IUeda et al.

recent studies have also shown that it is possible to incorporate these reporters into

live animals, enabling the assaying of DNA methylation distribution from the early

embryo to the adult in both mice and zebrafish (chang et a1.|, bOlﬂ).

To ensure the widest applicability of a quantitative live single cell approach it needed
to be minimally damaging to the cell to enable as many time points to be assayed
as possible. In addition, it needed to allow time points to be collected from single
cells across a broad range of intervals, from seconds to weeks so as to maximise its
utility. Lastly, I required that the method utilised no more than one fluorophore, so
as to minimise any bias associated with cooperative effects that would result from the
necessity of proximity within the nucleus (as seen for fluorescence resonance energy
transfer (FRET)) or derived from the DNA sequence itself (as seen for cooperative

antibody binding). The method that I decided to implement is called Differential
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Dynamic Microscopy (DDM). DDM is an image analysis method that uses Fourier
transform techniques to determine ensemble dynamics of isotropic processes, a more
detailed description of the approach is provided in Materials and Methods section
and Results section . This method has been previously used to study the motion
of particles in solutions (Cerbino and Trappe, 2008). In addition, this approach has
also been used to assess the dynamics of ensemble bacterial motion, using a modified
version of the method known as confocal-DDM (Lu et al., 2012 and Wilson et al), 2011).
However, for this current study, there are two hurdles that will need to be overcome
before this method can be made applicable. Namely, that DDM has not been applied
in an intracellular manner, nor has it been applied in a fluorescence manner to assess

a biological system.

In addition, to the development of this DDM-approach, I developed an alternative
fluorescence recovery after photo-bleaching (FRAP) approach. FRAP is a fluorescence-
based imaging method that determines diffusion kinetics from the observation of the
recovery rate of a sample region following photo-bleaching, a more detailed description
of the approach is provided in Materials and Methods section and Results section
@ This FRAP approach was used to determine the feasibility of the novel DDM
approach for quantifying DNA methylation dynamics. In addition, since FRAP is
itself, an inherently live cell measure of DNA methylation, it represents an interesting
alternative approach to explore for certain applications. However, there are several
drawbacks to FRAP reducing the potential utility of this approach over DDM for
future applications. For instance, the destructive nature of the imaging process limits
the number of time points that could be captured for any single cell, and results in
increased confounding factors such as cell damage and death. In addition, the time
resolution of FRAP is limited by the time required to achieve recovery following photo-
bleaching. This in turn limits the minimal time interval to observe DNA methylation

dynamics to minutes.
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Figure 5.2: Construct map of the MBD1-eGFP construct: A schematic of the plas-
mid is shown. Highlighted are integral plasmid features. Underneath the plasmid schematic,
a sequencing-based annotation for the MBD domain is displayed. This sequence annotation
highlights the location of the eGFP and NLS with respect to the MBD domain. Figure
adapted from (|Yamagata|, |2()1d).

5.2.2 MBD1-eGFP localisation recapitulates 5mC staining

Before attempting to quantify DNA methylation in living cells, I first wanted to validate
that I could reproduce the expected patterns characteristic of DNA methylation in the

nucleus (IYamagatal, lZO 10‘). A graphical representation of the construct that was utilised

in my experiments is shown in Figure @

To assess the distribution of the protein derived from the MBD1-eGFP construct, I
performed transfections in serum-grown mouse embryonic stem cells (mESCs), before
fixing the cells and imaging them on a confocal microscope. These images, shown
in Figure @ highlight that the same pattern of localisation can be achieved for the
construct as has been previously defined for DNA methylation in a CpG context (




Chapter 5. Live cell imaging of DNA methylation in single cells 5.2. Results

MBD1-GFP 5mC DAPI+mask

Figure 5.3: Co—localisation of DNA methylation and MBD1-eGFP protein in
serum mESCs: Exemplar fixed serum mESCs are shown. The first column displays the
localisation of the MBD1-eGFP protein as measured from the eGFP. The second column
displays the 5’-methylcytosine for the same cells, as measured by IF. The third column
displays the DAPI stain of the nucleus overlayed by a colocalisation mask of the MBD1-
eGFP and 5-methylcytosine. The scale bar represents 10 pum.

et al), 2014). Namely, that the construct is visibly associating with heterochromatic

foci within these mESCs.

5.2.3 Description of the FRAP method used

Having seen that the construct is behaving as was expected from the previous publica-
tions that have utilised it, I next decided to perform FRAP experiments to determine
the feasibility of using this construct for the quantification of global DNA methylation

levels in living cells.

The concept of FRAP is to identify a small region of interest containing a number
of fluorophores that are in an equilibrium state and using either laser excitation or
LED excitation to photo-excite all the fluorophores in the region of interest until they

are no longer able to emit de-excitation photons, this area is referred to as being
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Figure 5.4: FRAP recoveries explained: (A) An example FRAP image. Regions of
interest (ROI) are highlighted. ROI1 is the ROI in the nucleus that is photo-bleached. ROI2
contains the nucleus of the cell from which measurments are being taken. ROI3 is a back-
ground region of the image that does not contain a cell. (B-D) Example raw recovery curves
(pre-normalisation) for ROI1 (B), ROI2 (C) and ROI3 (D).

photo-bleached. For a static system e.g. a fixed cell, the area that is photo-bleached
will never recover to become fluorescent again simply because the fluorophores are
immobile. Likewise, in a diffusive system e.g. a fluorescent dye suspended in water
the region of interest will eventually recover to the original level of fluorescence after a

period of time (Figure @)

The time for full recovery is dependent on many factors including: the size of the
photo-bleached region and the size /hydrodynamic radius of the fluorophore under study.
Lastly, it should be taken into consideration that in non-diffusion mediated systems

, }2012‘), such

e.g. driven/trafficked motion, such as is found for lipid rafts (tDay et al.

recovery would be dependent on the efficiency and type of mediated motion that is

involved.

The resolution limits of a FRAP system are measurements of the intensity levels of

the fluorophore and that the recovery time of the photo-bleached area is much greater
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than integration time of the instrument, particularly the initial frame subsequent to
photo-bleaching. A general FRAP recovery curve will be able to be fit to the form
(Klein and Waharte, 2010).

ft) = A1 —e77) (5.1)

where A is the amplitude of the signal, t is the time of measurement and is the

recovery rate. The recovery rate can be converted into a recovery half-life with,

In(0.5)

T

t1/2 — (52)

This recovery half-life (¢;/,) was used to compare across conditions and experiments.
The recovery half-life in the region of interest, w?, is also related to the diffusion of the

fluorophore, assuming the photobleached area is spherical and gaussian,
w?

D—
4ty /9

(5.3)

The amplitude A in equation 1 can be determined as the long-time asymptote value

and has no bearing on the argument of either equation.

f(t) lim = A(1 — e (7))

(t—00)

=A(l —e™)
= A(1-0)
=A (5.4)

This is because the amplitude of the FRAP curve can be normalized, leaving only
the argument of the equation as important for determining the diffusion or type of

anomalous diffusion that is present in the experiment.

The measurements in this particular FRAP setup were made using a square photo-

bleached area. For mathematical ease of deriving the recovery dynamics, the square
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bleached area can be approximated as a circle of radius half the side of the square.

7TT’2

ratio = 53
2r

T
4

= 0.785 (5.5)

The area difference will result in a systematic bias that at most will correspond to
10-12% measurement error. The rationale for approximating the area as a circle is due

to the derivation of the mathematics used to establish equation @

In these experiments a full normalisation was performed, briefly this involved the scal-
ing of the fluorescence at t=0 to 0 and the fluorescence upon full recovery to 1. Math-

ematically, this is represented by equation @

f(t) = f(tn)
f(tasym) - f(t21)

Full Normalisation =

Where:

f(ta1) = Fluorescence upon bleaching

This normalization results in an amplitude term that in some cases would be not equal
to unity due to the fluctuations on the source data, however it can subsequently be
used as a filter on the quality of the data sets. If a particular fit did not return a
value of A ~1 then these data could be excluded from further analysis as they are not

representative of a standard FRAP curve due to noise levels.

All samples were normalised and fit using equation @ to obtain measures of recovery

half-life.
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Figure 5.5: MBD1-eGFP has a longer recovery half-life than eGFP-only: Plot
showing the recovery half-lives of MBD1-eGFP and eGFP-only serum-grown mESCs. Signif-
icance was assessed using a two-tailed t-test, the difference between the two conditions was
highly significant, p-value <0.001.

5.2.4 MBD1-eGFP diffusion can be quantified in live cells

To assess the feasibility of quantifying global levels of DNA methylation in living cells,
I performed some preliminary FRAP experiments using serum-grown mESCs as my

model system.

The first experiment that was performed was to compare the MBD1-eGFP construct
to an eGFP-only construct. The FRAP imaging and primary analysis was conducted
as detailed in the Materials and Methods section . The resulting quantification
was then fully normalised before curve fitting of equation lS:l] was performed using the

nls function in R (R Core Team|, 2017; Section 5.2.3).

The results from this experiment in serum-grown mESCs showed that as expected the
recovery half-lives for the MBD1-eGFP mESCs were significantly increased relative
to the eGFP-only construct (Figure ISE) This showed for the first time that it was
possible to measure the relative difference in recovery half-life between a eGFP-only
(mean ;5 = 0.6 seconds) construct and one that contains an MBD protein (mean ¢;/, =
6.2 seconds). This experiment suggested to me that it may be possible to measure DNA
methylation dynamics in living cells, owing to the magnitude of the difference between

these two constructs and the precision of the recovery half-life between replicates.
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Figure 5.6: Recovery speed of the eGFP-only mESCs precludes accurate mea-
surement: (A and B) Normalised and cell averaged recovery plots for eGFP-only mESCs (A)
and MBD1-eGFP mESCs (B). Error bars represent standard deviation in the measurement
and far larger in the case of eGFP-only.

Unfortunately, the speed with which the eGFP recovered was too fast to enable accurate
measurement of the recovery half-life (Figure @) This led to difficulty in assessing the
extent of the photo-bleaching and also greatly reduced the number of time points with
which it was feasible to assess the recovery over. This in turn resulted in increased noise
within the fitting and in many cases difficulty in converging on a fit. As an alternative
control for the eGFP-only cells to ensure that they were actually being photo-bleached
to a similar extent as the MBD1-eGFP cells, I fixed cells before performing the FRAP
(using the same settings as previously). As expected, in this instance the bleaching
was visible and matched in magnitude to the MBD1-eGFP-containing cells (Figure
@) As such I concluded that the MBD1-eGFP protein is at least 10-fold slower in
serum mESCs than the eGFP-only control, and that this likely reflects the MBD1-
eGFP binding to DNA.

5.2.5 Maximising the signal from the FRAP experiment

Having seen that it was possible to measure differences in the recovery half-life of
MBD1-eGFP and eGFP in serum mESCs, I next wanted to ensure that for future
experiments | was maximising the FRAP signal whilst minimising any experimental

confounding factors that I can control. These experiments were conducted in serum-
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Figure 5.7: eGFP-only serum mESCs were photo-bleached: (A and B) Frames from
pre-bleach (¢=0 frames), bleach (t=20 frames) and post-bleach (=400 frames) for MBD1-
eGFP serum mESCs (A) and eGFP-only serum mESCs (B). Insets are shown to highlight
the region of the nucleus that was photo-bleached. ROI1 is depicted with a yello or black
square.

grown mESCs containing the MBD1-eGFP construct. Unfortunately, certain variables
although potentially confounding of my results, are beyond the limits of our control,

it is not possible for us to achieve a uniform and circular photo-bleach, for instance

(Section 5.2.3).

Assessing photo-bleach diameter

The first parameter that I assessed was the diameter of the photo-bleached square. I
wanted to ensure that I was maximising the size of the photo-bleached region under
study. This is important since the limit of the accuracy in the measurement of the
recovery upon photo-bleaching is in part due to the number of pixels that are assessed
within the bleached area. As such the more pixels that are visualised within the
bleached area the more information there is to average over and determine a recovery
curve. There is a linear relationship between the area of the photo-bleached region and

the recovery half-life (t1/). In other words, the larger the area of the photo-bleached
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Figure 5.8: Recovery is size invariant over measured bleach diameters: (A) Recov-
ery half-life is displayed as a function of increasing pixel size. Error bars represent standard
deviation. (B) Recovery half-life shown as a function of photo-bleaching area. Measurements
were made in MBD1-eGFP serum mESCs.

region the longer the recovery takes, since the diffusion coefficient itself should remain
constant (equation @) However, there is a limit to this gain in accuracy, and that
is due to the constraint of the bounds of the cell. The mathematics for deriving
the diffusion coefficient from these FRAP-based measurements, makes the assumption
that the space around the photo-bleached area is uniform and infinite. Both of these
assumptions are inherently wrong when applied to a cellular context, however, they
are true enough that equation @ holds as long as the photo-bleached area is not too
large. As such, I decided to perform a control experiment to test the assumption of
linearity with increasing bleach area. To assess this, I performed FRAP experiments

using different diameters of bleaching area.

This experiment showed that it was possible to derive recovery half-lives across a range
of photo-bleached areas (Figure @) In addition, it exemplified the purpose of the ex-
periment, which was to reduce the noise associated with small photo-bleached areas,
since at low photo-bleaching areas the standard deviation in the measurement increased.
In addition, this experiment showed that the assumption of infinite area outside of the
photo-bleached area held for all photo-bleached regions tested (up to 10.24 pm?). To
ensure that I maximised the number of pixels and to reduce the chance of any future is-
sues, where cells with slightly smaller nuclei could result in these boundary effects again,

I decided to utilise a photo-bleaching area of 5.76 um? for future experiments.
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Assessing the impact of expression differences

The second potentially confounding factor that I wanted to address came from the
observation that even if I derived a stable cell line containing the MBD1-eGFP con-
struct, different cells within the population would be expressing differing amounts of
the protein (as measured by eGFP levels that are visible from confocal microscopy).
One possible explanation for this is that this protein is being expressed in a cell cycle
dependent manner. Since I want to be able to quantitatively assess DNA methylation
levels and not simply to describe patterns of the modification within cells, I wanted
to ensure that the different levels of MBD-eGFP in the cells were not confounding my
results. Theoretically, assuming that the substrate that the protein is binding to is not
limiting there should be no difference between a cell expressing low or high amounts of
the construct in terms of apparent diffusion. Since there are 3x10° bp in the genome
with approximately 2.5x107 CpG dinucleotides in the genome, of which in a serum
mESC (assuming 70% CpG methylation) approximately 1.75x107 of these CpG dinu-
cleotides will be symmetrically methylated this seemed unlikely to be the case but still

warranted testing.

As such I addressed whether there was a relationship between the apparent recovery
half-life of any given serum-grown mESC, and the expression level of the MBD1-eGFP
protein within a given serum-grown mESC; measured as the average fluorescence in-

tensity of the nucleus.

This experiment showed that there was no correlation between the mean fluorescence
intensity of a given cell and the recovery half-life of the FRAP experiment conducted
on that cell (Figure @) As such, it was concluded that the expression level of the
protein, as far as it was assessed, does not appear to be correlated to the recovery half-
life measured. This is perhaps not surprising when the number of CpG dinucleotides in
the genome is considered in relation to the likely protein expression level within the cell
(Milo, 2013). This result is important because it not only means that the variability in
the levels of the construct are not an issue for this approach, but it also means that in

the future, these experiments do not require deriving a stable clonal cell line.
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Figure 5.9: Recovery is independent of protein level: Scatterplot comparing mean
ROI2 fluorescence intensity and recovery half-life. No significant correlation was found be-
tween the two.

5.2.6 Measuring DNA methylation using FRAP

Having determined the optimal photo-bleaching area and having validated that the
system functions in a manner that is MBD-eGFP expression independent, I sought to
assess whether it would be possible to differentiate between serum-grown mESCs with
and without DNA methylation. To conduct this experiment, stable clonal cell lines con-
taining the MBD1-eGFP construct were derived in two genetically-independent DNA
methyltransferase triple knock-out (DNMT-TKO) mESC lines and the corresponding
control genetically-identical background cell lines (hereto referred to as DNMT-TKO-
C). These mESCs were HA36CB1/159-2 (denoted hereafter as 159; Domcke et al,,
2015). This comparison was made because DNMT-TKO mESCs are known to have
incredibly low/no DNA methylation, whereas in contrast the DNMT-TKO-C mESCs
have approximately 75% CpG DNA methylation genome-wide when grown in serum.
This meant that I could assess whether it was possible to differentiate between MBD1-
eGFP in contexts containing low or high amounts of CpG DNA methylation.
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Figure 5.10: Measurement of DNA methylation is possible using FRAP: (A) Com-
parison of serum DNMT-TKO and control cell lines containing the MBD1-eGFP construct.
eGFP-only serum mESCs are shown for comparison. Control MBD1-eGFP is significantly
different from both DNMT TKO MBD1-eGFP and eGFP-only (p-value <0.001). DNMT
TKO MBD1-eGFP has a significantly slower recovery than eGFP-only (p-value <0.01). (B)
Comparison of 159 DNMT TKO serum mESCs and control cell lines containing the MBD1-
eGFP construct. The control 159 mESCs are significantly different from the 159 DNMT
TKO cells (p-value <0.001).

The FRAP images were processed and primary analysed as in Materials and Methods
section . The resulting output was then normalised and fitted using equation
15:11. The results from this experiment showed that the two DNMT-TKO cell lines both
had shorter recovery half-lives than the DNMT-TKO-C cell lines (Figure ) This is
consistent with them containing less DNA methylation than the control cell lines and
hence the MBD1-eGFP construct being less constrained in its motion. In addition, I
found that, where compared, the DNMT-TKO cell lines, although faster recovering
than the control cell line were still decidedly slower than the eGFP-only serum-grown
mESCs. This is consistent with the biochemical observations made previously that
this protein is still capable of interacting with unmethylated DNA, albeit with lower
binding efficiency than methylated DNA, thus hindering its motion. This experiment,
was an important next step in the development of the method because it had previously
been shown that, although with lower affinity, the MBD of MBD1 will bind to both
CpG contexts in hemi-methylated and unmethylated contexts, alongside binding to
DNA in non-CpG contexts altogether (Baubec et al|, 2013, Ohki et al., 2001 and Zou
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et al., 2011). Importantly, the ability to undertake this experiment in two completely
independent DNMT-TKO cell lines was important, to ensure that any change I saw was
not dependent on the characteristics of any one knock-out. One potential confounder
of these experimental systems, is that the shape and structure of the cell/nucleus is
very different between serum-grown DNMT-TKO mESCs and serum-grown DNMT-
TKO-C mESCs. As such, I could be attributing differences in recovery half-lives to
simply differences in cell shape. The next two experimental systems that were studied

were conceived to address this question, amongst others.

5.2.7 Measuring different levels of DNA methylation using
FRAP

Having seen that it is possible to measure an approximately 70% difference in DNA
methylation, I wanted to assess the sensitivity of my FRAP-based quantification of

DNA methylation. To assess this, I utilised two experimental systems.

Serum-grown mESC comparison FRAP

The experimental system chosen to assess very subtle changes in DNA methylation was
that of serum-grown mESCs derived from different mouse strains. This was chosen since
it is known that mESCs from different mouse strains exhibit differences in global levels
of CpG methylation in their genomes (<5%). As such, I compared serum-grown 159
and E14 mESCs.

The results of this comparison (Figure ) showed that I could detect population
differences between the cells from the different origins that were in keeping with what
is known from mass spectrometry and sequencing-based approaches. Unfortunately,
it was not possible to isolate the two different populations on a cell-by-cell basis. In
other words, it was not possible to predict the population that any one cell came
from with any great certainty. This, however, is potentially not a technical limitation

of the FRAP methodology but could also be due to the nature of DNA methylation
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Figure 5.11: Detection of methylation differences between mESC strains: Com-
parison of serum E14 mESCs containing the MBD1-eGFP construct (serum mESC A) and
serum 159 mESCs containing the MBD1-eGFP construct (serum mESC B). A significant
difference was observed between these two conditions (p-value<0.01).

heterogeneity itself. It has previously been shown that mESCs exhibit heterogeneous
levels of DNA methylation globally, when assessed at the single cell level using the
gold standard bisulfite sequencing-based approach (Angermueller et al), 2016, Clark
et al), 2017 and Smallwood et al,, 2014). I conclude therefore that this FRAP-based
method is able to determine very subtle differences in terms of global levels of DNA
methylation dynamics, however, it is difficult to determine how much of the differences
in recovery half-life measurements are down to technical or biological noise. This is
not a simple question to determine an answer to, because the nature of the cell culture-
based protocol results in huge variability in the measured amounts of DNA methylation
within a population of mESCs. In addition, although serum-grown mESCs are very
similar morphologically to one another, there is still the debated question of whether
the subtle differences that I observe, although consistent with mass spectrometry and
sequencing measurements, are still merely a reflection of differences in, for instance,

cell shape. This concern is addressed further in section 5.2.7.

DNMT1-inducible knock-out FRAP

To address this outstanding issue of cell morphology and to assess perhaps more clearly

the sensitivity of the FRAP-based methodology for assessing DNA methylation, I
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conducted FRAP-based experiments utilising the DNMT1 fl/fl doxycycline-inducible
knock out mESC line (hereto referred to as DNMT1-iKO; Sharif et al., 2016). Upon
induction with doxycycline a region of the DNMT1 gene spanning exons 2-5 is removed
from the protein. This results in a misfolded protein that is unable to methylate DNA
resulting in a loss of methylation maintenance. As such, it has been shown that upon
induction of the deletion in mESCs there is a concomitant passive loss in DNA methy-
lation owing to cellular replication (unpublished Berrens, R. and Sharif et al., 2016).
Recently, the dynamics of this process have been assessed using RRBS and WGBS
across a number of defined time points (unpublished Berrens, R. and Sharif et al.,
2016). These results have shown that within 3 days the genome has lost roughly 35%
of its methylation, and by 6 days the global methylation levels drop to 30% globally.
It should be noted that, due to the costly nature of single cell methylome studies, the
dynamics of this demethylation process have not been studied using single cell bisul-
fite sequencing. As such the hypothesis of passive demethylation, although likely, has

never been directly proven.

To study this demethylation process using this FRAP-based system, I performed an
experiment whereby I induced demethylation using doxycycline and performed FRAP
on the resulting DNMT1-iKO mESCs at intervals of 24 hrs over four days and compared

these results to an uninduced control.

To validate that this experiment had been successful, IF quantitation of DNMT1 pro-
tein levels were made. Figure shows that as expected the levels of DNMT1
expressed in the cells is reduced as a function of time following doxycycline induc-

tion.

This experiment showed that it was possible to discern methylation changes across the
whole time course upon induction with doxycycline (Figure ) This is in keeping
with our ability to detect even subtle differences in DNA methylation levels using this
method. Indeed, from averaging across recovery half-lives of the cells it is possible to
obtain a fit of loss of methylation that recapitulates the demethylation dynamics seen
from WGBS (Figure A). Excitingly, I was able to detect subtleties in the dynamics

of the loss of DNA methylation in single, living cells. These subtleties have not been
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Figure 5.12: DNMT1 protein level declines upon doxycycline induction in
DNMT1fl/fl mESCs: (A) Example images from IF and fluorescence measurements on
fixed cells. In the first column DNMT1 fI/fl mESCs are shown (pre-induction). In the sec-
ond column, DNMT1 fl/fl mESCs are shown four days post-induction with doxycycline. (B)
A quantitation of DNMT1 protein levels as a function of time post-induction. Error bars
represent standard deviation.

A B
25+
X 80 ) °
= g
Ke) =
= o
z 2
3 40 >
£ z
2 8 5] %
O X
0.
C T T T T T T
& N
WT 136 911 & S FFFF
Dnmt1 KO Q O
S Q
(day) X

Figure 5.13: FRAP measurement of DNA methylation changes upon DNMT1
deletion: (A) Violin plot of DNA methylation levels following DNMT1 knock-out (unpub-
lished, Berrens, R.). (B) FRAP recovery half-lives following DNMT1 knock-out. Day0-minus
(pre-induction) Day0-plus (post-induction).
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detected using IF-based measurements, and would be incredibly costly to observe using
current scBS-Seq approaches. I was able to detect four sub-populations of cells across
the entire time course. These four cell clusters were determined using an expectation-
maximisation approach with a Gaussian Mixture Model (GMM) containing four states
(Figure B). Cells were assigned to their maximal states and the dynamics of state
transitions visualised across time (Figure C). This suggested that the spectrum of
global methylation levels that were observed in the bulk WGBS dataset, were simply
mixtures of varying numbers of cells from these four states. This is not necessarily
surprising as it is hypothesised that this process would result in a largely passive,
replication-dependent demethylation, but it is exciting to see the single cell behaviour
of these dynamics. However, it should be noted that by assigning states I am inherently

biasing for their existence.

It is interesting to note that although this is thought to be a passive, replication
dependent process, the cellular states do not represent mid-way methylation states,
ie. 70% to 35%. This is likely because the de novo DNMTs are still functioning
normally in this situation. In addition, I observe that there appears to be no fifth state,
suggesting that cells are unable to lose more methylation than the amount present in
this state. Also, I find that at day 4 not all cells are in this final state, i.e. the maximal
demethylation is yet to have occurred in all cells (Figure D). It would be interesting
in the future to extend the time course to validate that all cells are in state-3 by day

6, as expected from WGBS (Figure A).

Lastly, I was able to identify two separate clusters of cells within the starting population

of mESCs that differed with respect to their recovery rates (Figure )

This is intriguing because I had not previously seen this behaviour before in my own
serum-grown mESC experiments, but is in keeping with what has previously been
observed on occasion when comparing more or less pluripotent mESCs. More or less
pluripotent mESCs are characterised as having high or low levels of nanog expression.
More pluripotent mESCs (nanog high) are associated with reduced levels of global
methylation, whereas less pluripotent mESCs (nanog low) are associated with high

levels of DNA methylation. (unpublished, Lee, H.; Figure )
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Figure 5.14: Model of DNA methylation loss: (A) Smoothed fit of the reciprocal
average recovery rate with days post-induction with doxycycline. (B) Histogram of maximal
membership probabilities for the four-states. Each cell was assigned to it’s maximal state.
(C) Barplot of the proportion of cells in each state at a given time point. (D) The states that
cells are occupying on Day 4 of induction. Not all cells are assigned to State-3.
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Figure 5.15: Two populations of serum mESCs measured by FRAP: (A) Histogram
of recovery rate for DNMT1 fl/fl serum mESCs (uninduced, day 0). (B) The same histogram
mapped on to the four states defined from the whole time course. The majority of day 0 cells
are in states 0 and 1.
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Figure 5.16: Nanog expression is inversley associated with DNA methylation
levels: Boxplot to visualise global DNA methylation levels (as measured using scM&T-Seq)
for high and low Nanog expression. The expression cut-off between high and low was set at
100 counts per million (CPM).

Comparison to gold-standard methods

Lastly, I wanted to assemble the results from these experiments together to assess
whether the relationship between recovery half-life and global DNA methylation levels

is strictly linear, or whether a non-linear function is required to explain the relation-
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ship. To assess this, I derived global methylation levels from existing sequencing-based
datasets. Fitting a linear function using the /m function in R (R Core Team, 2017),
I found that indeed the relationship between global DNA methylation levels and the
recovery half-life appears linear (R?>0.99). This is exciting because it greatly reduces
the complexity of interpreting differences between DNA methylation levels when utilis-
ing this sort of approach. However, it is important to note that it is still possible that I
am missing a better fit using a more complex function owing to the limited number of
DNA methylation points that I am assessing, allthough this seems unlikely. One way
this could be addressed in the future is by including additional cell types with differing
global methylation levels.
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Figure 5.17: FRAP measurements correlate with WGBS: Plot to visualise the
strength of correlation between WGBS and recover half-life measurements of global CpG
methylation levels (R?>0.99). Error bars represent standard deviation in the recovery half-
life measurement.

5.2.8 Making multiple measurements from the same cell using

FRAP

Lastly, I wanted to assess whether in principle I could obtain multiple measurements
of global levels of DNA methylation from the same single cell. This was an important
experiment for two main reasons. Firstly, I wanted to determine whether the exposure

to the FRAP experiment altered the recovery half-life that was being calculated. One
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Figure 5.18: QC of multiple measurements from the same cell: A histogram of
background pairwise mean absolute differences computed for the population of serum mESCs.
Highlighted as an orange line is the mean absolute difference between true replicates from
the same cells. There is no statistical difference between the two.

could imagine that for instance the DNA damage induced during the experiment could
perhaps alter the viscosity of the cell or perhaps the accessibility of the MBD1-eGFP
protein to the DNA itself. Secondly, assuming that this was not the case, I wanted to
assess how reproducible any two FRAP measurements were when taken from the same
cell. The reason for assessing this question from the same cell is to minimise any bio-
logical variability in the system, enabling me to get a stronger grasp on the magnitude
of the technical variability. To assess this, I conducted paired FRAP experiments on

serum mESCs.

I observed that it is possible to derive multiple measurements from the same cell. In
addition, I could show that the variability between the measurements for any paired
FRAP experiment was on average lower than you would expect by chance compared
to random sampling, although not significantly so (p-value >0.05; Figure ) This
suggests that the variability that I am seeing in the population is potentially not
solely due to technical variability in the measurement, however this cannot be fully

excluded.
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5.2.9 Conclusion from the FRAP experiments

These FRAP experiments have demonstrated that it is possible to measure global
levels of DNA methylation in a highly reproducible fashion using the recovery half-life
of the MBD1-eGFP protein. Importantly, these measurements have been conducted
in single, live cells, validating that such measurements are indeed possible. It has
been possible to demonstrate that the method can discern differences between global
levels of DNA methylation that are on par with those observed for the gold standard
single cell bisulfite sequencing approach. I have shown that such live, single cell, global
methylation measurements are possible through the use of a single fluorophore, greatly
reducing the potential for any confounding effects due to cooperativity. Excitingly, I
have shown that this method is able to add interesting insights into a well-established
and well-studied DNA methylation model system, that of the DNMT1-iKO mESCs. In
addition, I have been able to demonstrate, although only over time intervals of minutes,
that it is possible to assess global levels of DNA methylation in a dynamic fashion.
Lastly, these experiments have enabled me to define important baseline and parameter
relationships that can be utilised in the development of a DDM-based imaging method

that is perhaps more amenable to long-term DNA methylation measurements.

5.2.10 Comparison of FRAP and Differential Dynamic Mi-
croscopy (DDM)

Having shown that it is possible to measure quantitative methylation levels in living
single cells using FRAP, I next wanted to begin to assess whether it would be possible to
define an alternate approach that could be utilised to capture many same-cell snapshots.
As such I developed a differential dynamic microscopy (DDM) approach. There are
a number of imaging and data analysis benefits to this method over FRAP. Firstly,
no manual image annotation is required. This is in contrast to FRAP where regions
of the image, namely, the photo-bleached region, the region containing the cell and
a background control region, have to be defined post-image acquisition. Secondly,

the imaging can be conducted on a standard wide-field microscope and as such does
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not require any of the specialized equipment or software specific to the FRAP-based
experiment. Thirdly, the image acquisition time itself is far shorter. In comparison
to FRAP, the data acquisition in DDM is more than 10x faster, which enables faster
imaging and greater time resolution, whilst minimising damage to the cell. Lastly,
cellular damage is also minimized by the absence of any high-intensity laser treatment
of the cellular material in DDM, this is in contrast to FRAP, which relies upon laser

ablation.

5.2.11 Description of the Differential Dynamic Microscopy ap-

proach

Differential dynamic microscopy (DDM) is an image analysis method that applies
Fourier transform techniques that can be used to determine ensemble dynamics of

isotropic processes (Cerbino and Trappe, 2008, Lu et al., 2012 and Wilson et al|, 2011;
Figure )

The principal of DDM involves calculating the mean Fourier transform of the time
correlated difference of a series of images, I(r,t) (Figure ) Mathematically this
is described here, adapted from previous publications (Cerbino and Trappe, 2008, Lu
et al., 2012 and Wilson et al., 2011).

B(r,7)=1I(r,t+71)—I(r,t) (5.7)

where r is the 2-dimensional vectorial position in the image, ¢ is the frame number of
the image and 7 is the correlation time used to calculate the difference and is less than
the total number of frames, T. It should also be noted that to remove all static and
non-motile components in the images the initial frame is subtracted from all images so

in effect equation @ is,
B(r, ) = [(r,t +7) = I(r,0)] = [[(r, 1) = I(r,0)] (5.8)

However, for ease of following the mathematics equation @ will be used. The Fourier
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Time Point 1 Time Point 2

Subtract images at increasing intervals

Correlation Time

Figure 5.19: Diagram of DDM imaging steps: A visualisation of DDM imaging. A
cell is shown at two separate time points to depict the motion of the eGFP within the cell.
This motion is captured in an ensemble manner in the images shown below. All images are
subtracted from one another to define regions that change in pixel intensity over a given time
frame. These subtracted images are then Fourier transformed and averaged for each time
difference (correlation time) for downstream processing.
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transform of equation @ is calculated for and multiplied by its complex conjugate.

Fp(q,7) = /B(z, T)e' tdr (5.9)
|Fp(q,7)|” = Fs(q, 7)F*p(g,7) (5.10)
(IFs(q, 7)) = (Fa(g, 7)F*5(q, 7)) (5.11)

where the parenthesis ( ... ) denotes the mean for all increments of 7 in the time series

t to T and ¢ is the reciprocal distance (Figure )

(1Fs(q, 7)) = Alg)[1 = f(g,7)] + C(q) (5.12)

If there is no variation or correlation in the image the values for (|Fp(g,7)|*) will
vanish rapidly to zero. It has been established for an isotropic (frequently occurring)
process that equation , the differential intensity correlation function (DICF) can

be expressed as,

(1Fs(q,7)I*) = Alg)[1 = f(g,7)] + C(q) (5.13)
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Figure 5.20: Depiction of reciprocal distance, ¢q: Example DDM images of a cell
are shown. These images are subtracted from one another to identify regions where the
pixel intensity has increased (shown in green) or decreased (dotted white circles). A Fourier
transform then identifies patterns that can explain these gains and losses. Distance in inverse
space is described by reciprocal distance, ¢ (Equation ). Shown in the Fourier-space, short
distances correspond to long g-values and long distances to short g-values.
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5.2.12 Development of the Differential Dynamic Microscopy
method

Deriving initial DDM imaging parameters

To ensure that I could capture the dynamics of the MBD1-eGFP using DDM, T first
had to optimise the image acquisition for our microscope system (Materials and Meth-
ods section ) This is important because the shorter the interval between any
two frames of the DDM image (of which there are 1000 frames in total), the shorter
the correlation time I can resolve. The limit to the frame rate for a given microscope is
defined by a number of parameters including: the storage size of any given frame, the
magnification, image binning, the shutter-speed, the aperture, and software considera-
tions (such as location determination). In addition, to these imaging parameters, there
are constraints placed on this limit owing to the nature of the sample under study. For
instance, the amount of incident light required to excite enough eGFP molecules, which
in turn will then emit enough photons to enable detection. In addition, an increase in
intensity of the incident light will result in an increased quenching burden, which in
turn would result in a reduction in image quality across the frames and result in fewer
independent snapshots captured from any single cell. From testing a range of these
various parameters, I qualitatively determined that the optimal frame acquisition rate
was b0Hz (i.e. an image every 0.02 seconds; Materials and Methods section )
Since I aim to capture 1000 frames per single cell, this results in an overall image ac-

quisition time of 20 seconds. This was achieved at 100x zoom, with a reduced field of

view ( Materials and Methods section )

Description of secondary DDM analysis

Having determined the optimal image acquisition parameters for our system, I next
assessed whether it was possible to detect differences in diffusion using DDM in an
intracellular manner. To do this, DDM images were derived from MBD1-eGFP con-

taining serum-grown mESCs and eGFP-only containing serum-grown mESCs.
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Primary Secondary
analysis analysis
Pairwise Determine |:
frame :| system noise |:
subtraction |: term :
: 2D-FFT Determine
: | calculation for |: | structure |:
subtractions | :| function term |:
Live cell : Outputted
image | ———> pveragefor || > Fttoobtain || > | Measures of
acquisition | comelation | | values for |} motion
;| times (avFFTB) |: ;| 9(q. t) perg
il Fit to obtain
quadrant tau(q)
transform
radially |} [ Determine
average | :| motility and
avFFTs : :| speed terms

Figure 5.21: Image analysis workflow for DDM: A flow chart of the image analysis
steps in the DDM pipeline. Highlighted in red are the primary analysis steps and in green
are the secondary analysis steps.

From these .nd2 files I derived .tiff stacks, using ImageJ, that could be utilised by
an initial implementation of the primary DDM image analysis written in matlab (un-
published Harrison, A.). This script derives the quadrant-transformed, averaged fast-
Fourier Transform (FFT)-differences for each inverse distance given each correlation

time.

This inverse distance averaging, assumes that the averaged 2D FFT is symmetric about
the central point (¢=0). This is not strictly the case in this setting because the image
that I have contains defined boundaries within it. This is due to the field of view
not representing a homogenously fluorescent region, but a bounded cell surrounded by
background. In addition, there are strong edge effects, this can be seen from the inten-
sity along the y-axis (Figure ) However, since these appear to be systematic effects

across all correlation times, I reasoned that the 1D simplification was acceptable.

From this outputted secondary dataset, I then visualised the decay of averaged FFT in-

tensity for every inverse distance (¢) as a function of correlation time (Figure )

To derive the auto-correlation function I first had to remove the system noise term B(q)
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Figure 5.22: Systematic effects found that are independent of correlation time:
(A-D) Representations of Fourier-transformed pixel intensities as a function of ¢. The rep-
resentations differ with respect to correlation time (1 second (A), 5 seconds (B), 10 seconds
(C), 15 seconds (D).
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Figure 5.23: Diagramatic representation of the data following primary analysis:
(A) Theoretical plot of the 1D Fourier-transformed pixel intensity as a function of correlation
time (7). Insets (B and C) depict the Fourier transformed pixel intensity (pre-radial averag-
ing) for a ¢-value at two correlation times (B = 1 second and C = 15 seconds). (D) Real data
plot of the 1D Fourier-transformed pixel intensity as a function of reciprocal distance (gq) for
a given correlation time (7). The inset (E) depicts the Fourier transformed pixel intensity
(pre-radial averaging) for all ¢g-values at a given correlation time (7). (F) Plot to visualise the
change in Fourier-transformed pixel-intensity as a function of correlation time and reciprocal
distance.
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Figure 5.24: Exemplar autocorrelation functions for serum mESCs: (A and B)
Plots of auto-correlation function against correlation time for each g-value ((A) is of serum
mESCs containing MBD1-eGFP, and (B) is of serum mESCs containing eGFP-only).

and the structure function term A(q) both of which are correlation time (¢) independent.

Fortunately, g(q,t) in the formalism,

A(g,t) = A(g)[1 — g(q,1)] + B(q) (5.14)

Is defined by the exponential function, for Brownian diffusion,

and as such, at t = 0,
and,
A(g,0) = B(q)
Whilst as t tends to infinity,
and,
A(g,0) = A(q)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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Having determined ¢(q,t) as a function of correlation time (Figure ), it is then
possible to fit for,
glq.t) = 7@ (5.20)

to obtain 7(q) for each value of ¢. This 7(gq) corresponds to a lifetime decay, and from
this it is possible to derive an effective speed and motility, which gives us our measure

for diffusion,

7(q) = A" (5.21)

where A = effective speed, b = motility and where 7(q) decays with b = —1 for speed,

b = —2 for diffusion and b < —2 for sub-diffusive behaviour.

It is important to note that constraints had to be set on this subsequent fitting. This
is due to short ¢’s representing distances that are unreasonable to expect to have cap-
tured within a single cell. Where,

2T

= 5.22
1 pixelsize x 256 ( )

In addition, the signal-to-noise ratio at long ¢, very short distances, is such that these

are also excluded.

From the initial images, it was possible to determine effective speed and motility (Figure
). All values for motility were sub-diffusive, as was hypothesised from the nature
of the MBD1-eGFP protein.

In addition, I compared the speed of the MBD1-eGFP construct to that of the eGFP-
only mESCs and found that as expected the MBD1-eGFP construct was far slower
than that of the eGFP-only. This is encouraging because it reflects the expectation that
increased 5'methylcytosine binding will result in retarded diffusion. This experiment
enabled the rough set up of the DDM analysis to be defined and highlighted that such
an approach could work robustly. In addition, the eGFP-only data shows that DDM

is able to reliably detect faster motion than my FRAP system, which was previously
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Figure 5.25: Differences in motion between MBD1-eGFP and eGFP-only de-

tected with DDM: (A and B) Plots of slowness (A) and motility (B) for serum mESCs

containing either MBD1-eGFP or eGFP only. Slowness is equal to % and motility is b

(Equation ) Slowness for the two conditions were significantly different (p-value<0.05),
motility differences were not significant.

confounded by the speed of recovery from the photo-bleaching and the limit of the

speed of the microscope to capture the first frame following the bleach.

5.2.13 Implementing the primary analysis in a cluster-friendly

manner

The primary analysis in this protocol is computationally costly, owing to the number
of calculations that need to be made. As such, in order to increase the throughput
of the approach so that I could analyse hundreds of images, I needed to develop a
fast implementation of the software. As such, a primary analysis workflow was defined
in java, that could be run on the cluster. Importantly, this software reduced the

computational time required by any single image by a factor of 10.

In addition, a java interface was developed that could allow the interrogation of any

single intermediary file, pre-radial averaging, to assess the state of the averaged FFT

in all three-dimensions (Figure )
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Figure 5.26: Visualisation software of primary analysis: (A-C) Screenshots of the
visualisation software at different correlation times ((A) correlation time = 0s, (B) correlation
time = 7s, (C) correlation time = 20s).
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5.2.14 Attempts to automate the secondary analysis

Having derived a fast, cluster-compatible software pipeline, I next wanted to assess
whether it would be possible to automate the fitting steps of the secondary analysis,
such that many cells could be processed in batches. This is particularly important for
an approach such as DDM, where for a given cell there are hundreds of curves that
must be fit. This curve fitting requirement, is a positive aspect of the method in that
it reduces the importance of any single fit in the output derived from the analysis.

However, from an analysis point-of-view it is incredibly time-consuming.

Many approaches were trialed to fully automate the fitting stages, however, these
largely failed. This was due to many factors. Firstly, it is hard to define all the potential
ways in which one sample could fail, for instance owing to cell movement during the
imaging process. Secondly, it is difficult to define objective criteria for pass and fail for
the initial fitting in the secondary analysis, ideally such criteria would be independent
of ¢. Lastly, although there are more, it is difficult to define parameters that you can
initialize the nls function that will work in all possible scenarios, downstream of these
initial problems. This does not mean that such an approach is not possible but it will

require a large amount of work.

However, it was possible to derive a semi-automated secondary analysis that only re-
quired the user to determine the suitability of one fit in the second fitting step of the
secondary analysis. Although this analysis was far from perfect, it enabled me to make
an initial determination of the applicability of this method for measuring global levels

of DNA methylation inside single, living cells.

5.2.15 Validation of the DDM method

Having built a semi-automated pipeline for the DDM analysis, I next wanted to validate

that what I was measuring matched expectations in a number of control settings.
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Figure 5.27: Fixed cells to do not exhibit a decay with correlation time: Plot
to exemplify the fact that serum mESCs that are fixed before imaging do not decay with
correlation time and as such cannot be fitted to obtain any measure of motion. Shown in
different colours are the different g-values.)

Fixed cells do not exhibit a decay in correlation function

The first question I addressed was: could I measure a correlation function decay over
increasing time in fixed cells or not? It was expected that owing to the MBD1-eGFP
protein being immobile in fixed cells, it would not be possible to measure a decay
above the threshold of noise. In keeping with this idea it was not possible to obtain a

measurable decay coefficient in the fixed cells (Figure )

Blank images within the cell culture dish were also taken to assess background noise.
These images showed little gain in pixel intensity with correlation time and so were not
FFT processed (Figure ) These results gave us confidence that what was being
measured in the live-cell experiments were true correlation function decays resulting

from the motion of the protein within the cells.
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Figure 5.28: Pixel intensity of blank images does not increase with correlation
time: (A) Pixel intensity plotted as a function of correlation time (7). (B) Pixel intensity
plotted as a function of reciprocal distance (g).
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Figure 5.29: DDM measurements increase with temperature: Plot of slowness
against temperature.

Temperature-relation of the speed parameter

As I am measuring the ensemble motion of protein molecules predominantly freely dif-
fusing in the cell, I wanted to ensure that my measure of effective speed increased with
an increase in thermal energy in the system, as would be expected for diffusive motion

as described by the Stokes-Einstein equation (Dill and Bromberg, 2010; Equation )

KT
~ 6mr

D (5.23)

As such I measured the effective speed for MBD1-eGFP serum-grown mESCs at a range
of temperatures (25-39°C). To ensure that the microscope and the stage had reached
the desired temperature, the microscope was left for a number of hours to equilibrate
and the cells within the live cell chamber on the microscope were left for 30 minutes to

adjust from the incubator temperature of 37°C to the experimental temperature.

The results from this experiment showed that there was a correlation between tem-
perature and effective speed as would be expected. However, the correlation itself is
relatively weak. This is likely due to a number of factors, including the inherent dif-
ficulty in controlling the temperature within the cell. In addition, the motion of the

MBD1-eGFP protein is known to be on average sub-diffusive, suggesting that there
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are multiple forms of motion being measured. Although one of these forms of motion
would be free diffusion, the other aspects of the ensemble motion may not be so lin-
early related to temperature. Lastly, mESCs are inherently not behaving “naturally”
at any temperatures that deviate from 37°C, as such I could partially be measuring

the physiological effects of temperature on the cell, which could be confounding my

measurement.

5.2.16 Measurement of DNA methylation in live cells using

DDM

Having seen that I am able to measure differences between the MBD1-eGFP construct
and the eGFP construct in live cells, and having validated that what I am measuring
is consistent with the motion of a protein in a sub-diffusive manner, I wanted to assess
whether the method could detect the differences between the presence and absence of

DNA methylation.

To answer this question, I assessed methylation using one of the DNMT-TKO cell lines
that I previously utilized for my FRAP analysis (see section E.2.6).

These results highlighted that, similar to FRAP, using my semi-automated analysis
pipeline, I was able to determine that there was a marked difference in effective speed
of the MBD1-eGFP protein in serum-grown DNMT-TKO-C mESCs and DNMT-TKO
mESCs. This difference is consistent with the idea that more methylation would result
in a reduction in effective speed and it matches what was previously seen for the FRAP

experiments.

5.2.17 Measurement of different levels of global DNA methy-

lation in live cells using DDM

Having seen that I could measure a difference in slowness between cells with and
without DNA methylation, I next wanted to assess whether I could detect differences

between differing levels of DNA methylation. To assess this, I compared serum-grown
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Figure 5.30: DDM can measure DNA methylation in serum mESCs: Plot de-
picting slowness of serum mESCs containing eGFP-only, control serum mESCs containing
MBD1-eGFP and serum DNMT-TKO mESCs containing the MBD1-eGFP construct. The
serum mESCs containing the MBD1-eGFP construct are significantly slower than the other
conditions (p-value<0.05). There is no significant difference between the other conditions.
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Figure 5.31: DDM measurements of serum and 2i mESCs: Plot depicting slowness
of serum mESCs containing eGFP-only, serum DNMT-TKO mESCs containing the MBD1-
eGFP construct and control mESCs containing MBD1-eGFP in both serum and 2i/LIF. The
serum mESCs containing the MBD1-eGFP construct are significantly slower than the other
conditions (p-value<0.05). There is no significant difference between the other conditions.

mESC lines (derived previously for the FRAP study) to the 2i/LIF-cultured versions
of these mESCs. Serum mESCs contain ~70% CpG methylation globally and 2i/LIF
mESCs contain less than 40% DNA methylation globally.

This experiment highlighted that using this method it was possible to define differences
between serum and 2i/LIF mESCs and in the majority of cases it was possible to
correctly predict the cell type based on this effective speed metric. However, it is
clear from this experiment that in the present form of my analysis, the FRAP-based

measurement of diffusion is better than the DDM measure.
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5.2.18 Multiple measurements of global DNA methylation in
live cells using DDM

Having shown that the method can in principle define differences between cells in terms
of global levels of methylation, I next decided to assess whether this method could truly
be used to define global DNA methylation levels at many snapshots. To assess this, I
decided to track serum-grown mESCs across 8 hours and to image each individual cell

every 30 minutes.

Figure 5.32: Multiple DDM measurements are possible across time: Two example
cells are shown. These cells have had images taken of them every 20 minutes for >8hours.
Four example images at different times are shown.

This experiment validated the utility of the DDM approach when multiple time points
are required, since it was still possible to image cells following more than 10 snapshots.
This is in contrast to FRAP where the cells are beginning to exhibit signs of cell
death following two image acquisitions. In fact the limit to the number of snapshots
that can be acquired in this instance, appear to be reliant on two main factors: the
amount of incident light that is utilized for the imaging process and the recovery time
allowed between snapshots. Although not shown here, I have further validated that it
is possible to acquire images from the same cell using this DDM approach over time

intervals from 20 seconds to more than 24 hours. Unfortunately, at present the error
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associated with the analysis is still far too large.

5.2.19 Conclusions from the DDM experiments

In the DDM section of this chapter, I have shown that it is possible to measure the
motion of a protein within a single cell using a standard wide-field microscope. In
addition, I have shown that it is possible to measure changes to the diffusion of said
protein due to methylation. In addition, I have validated that I am not able to measure
diffusion in fixed cells and that the measurements being made are proportionate to
temperature. Most importantly, I have shown that it is possible to take a large number
of images of the exact same live cell and that the time interval for such images can

range from seconds to more than a day.

Unfortunately, it has not been possible as of yet to fully address the nuances of the
secondary analysis. This has resulted in poor curve fitting and a reduction in both
the precision and accuracy of my measurements. There are a number of practical
reasons for this failing, in addition, to some more technical issues. I hope in future
iterations of the scripts used to define this analysis that I will be able to effectively
remove many of these issues. For instance, one aspect of the secondary analysis that
needs to improve is the initialization of parameters during the first fit, such that I can
incorporate additional terms to separate out the multiple forms of motion that are
potentially occurring. Another issue that has not been mentioned, but that I hope
to overcome is that presently, it is a requirement of the methodology that there is
only one cell in the field of view. I hope in future iterations to be able to develop an
analysis pipeline that will enable multiple cells to fall within the field of view. This
would dramatically improve the ease of applicability of this approach to a large variety
of systems under study, including but not limited to in vivo contexts, such as early

development and ageing.
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5.3 Discussion

I have developed two independent systems for the quantification of DNA methyla-
tion dynamics in live single cells. These approaches are non-overlapping and hence
depending on the requirements of a given live cell experiment either could be more

appropriate.

This FRAP-based system, is similar to previously described FRAP systems assessing
different proteins and different motions (Conn et al,, 2013 and Kang et al,, 2015).
It is able to discern very subtle differences in DNA methylation levels and appears
to be independent of nuclear shape and size. In addition, the measure seems to be
independent of the expression level of the construct. Unfortunately, this approach is
not applicable to scenarios where multiple images required. To overcome this obstacle,
I simultaneously adapted a novel imaging approach; DDM. At present, much work
remains to be done to further improve the secondary analysis, and with it the accuracy
of this approach. However, I think that this approach is exciting and that it will be
widely applicable both within the field of DNA methylation, but also for assessing

dynamics of other processes within cells.

Lastly, it will be of interest to see whether these approaches will be adaptable to more
targeted live cell quantifications of DNA methylation, for example using FRET. To
enable future development of such a system, I have generated a number of constructs

detailed in the Materials and Methods section E.5.4.
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Chapter 6

Conclusions and Outlook

In this thesis I have developed and utilised novel experimental and computational
methods for the study of DNA methylation dynamics. Taking DNA methylation as my
model system, I have applied these methods to gain insights into the nature of ageing;

both at the whole tissue level and at the single cell level.

In this thesis, I defined a multi-tissue epigenetic predictor in the mouse. This predictor
is accurate with an error of 3.33 weeks and can determine deviations in biological age
upon interventions including ovariectomy and high fat diet, both of which are known
to reduce lifespan in mice. Next, I described the analysis of a homogeneous population
of muscle satellite cells (MuSCs) that I interrogated at the single cell level, using
single cell combined transcriptome and methylome sequencing (scM&T-Seq). T found
that with age there was increased global transcriptional variability and a reduction
in transcriptional network connectivity. I discovered that there was decreased feature-
specific methylome homogeneity with age, and that this was in contrast to the increased
predictability of methylation status from neighbouring positions within the same cell.
These findings explain the loss of functionality of these cells with age and suggest a
mechanism for how an epigenetic predictor may work at a single cell level. Lastly,
I describe two imaging approaches to study DNA methylation dynamically in single
cells. Using these methods, I demonstrate that it is possible to accurately determine

methylation status across a wide spectrum of global methylation levels and that by
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using such approaches novel information about dynamic methylation processes can be
obtained. These methods represent the first to study DNA methylation dynamically

in a living system.

Since the publication of this multi-tissue epigenetic predictor of age in the mouse
(Stubbs et al,, 2017), I have been working to define an updated multi-tissue epigenetic
predictor. There were a number of reasons for this as outlined in Chapter . At
present, the dataset used for this new predictor contains >700 samples and the predictor
itself has an accuracy of 5.33 weeks (Chapter 3). This accuracy represents a marked
improvement over the current predictor when normalised by the maximal chronological
age used in prediction (>8% vs <4% error). In the future, this predictor will utilise
more than 1,000 samples that will span the whole lifespan of a mouse from pre-birth
to 3 years. Included within the overall dataset will be samples derived from additional
tissues not included in the published predictor including whole blood, kidney and skin.
Alongside this, the predictor will be defined using data from three methods: WGBS,
RRBS and scBS-Seq. Defining the predictor using these multiple sources of epigenetic
information will not only make it more roust but also more amenable to different

experimental systems.

In addition to developing an elastic-net regression model using this dataset, it would
also be interesting in the future to utilise other modelling approaches to improve the
robustness of this prediction of biological age. Machine Learning approaches such
as Random Forrest are potentially interesting in this setting owing to the built-in
redundancy inherent in these models potentially providing a solution to the problem of
missingness in epigenetic data (particularly sequencing data). However, such models
come with caveats, for instance, designing cheaper, higher throughput assays in the
future may be difficult owing to the number of sites that information is interrogated

over.

In the imminent future, it will be exciting to assess predictions of biological age in
putative rejuvenation systems. In particular those that have so far precluded lifespan
studies due to ethical or time considerations. Such systems include, the assessment of

heterochronic parabionts and in vivo reprogrammed mice. Neither of which have been
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studied in a lifespan setting; due to ethical and time constraints respectively (McCay

et al., 1957 and Mosteiro et al., 2016).

It will also be incumbent upon us in the future to develop a simple and affordable assay
of the mouse epigenetic clock. This is integral to ensuring that the promise of such a
predictor is realised. There are a number of ways that such a test could be developed.
One such approach would be that of amplicon sequencing, this approach would enable
precise targeting of the sites of interest, whilst maintaining the benefits of NGS. The
disadvantage of such an approach would be that it is complex to set up in the first
instance owing to the number of PCR primers that would be required for the current
iterations of the multi-tissue predictors. An alternative approach would be to utilise
a customised methylArray. This approach is more straight forward to develop in the
first instance, owing to the simple requirement of hybridisation of the targets to the
probes, without the necessity of targeted PCR. The disadvantage of such an approach

relate to the reduced throughput and increased cost relative to the amplicon.

Utilising measurements derived from epigenetic age as a proxy for healthspan and/or
lifespan combined with a cheap assay for epigenetic age in the mouse would greatly
reduce the iteration time of mammalian ageing studies. Genetic, environmental and
drug manipulations could be screened for reduced biological age, enabling screening for
ageing in a mammalian context. This in turn would enable new and unexpected leads

to be followed in a rational, open-minded fashion.

My work has shown that it is possible to define an epigenetic predictor in not just
humans, the great apes and canines but also now the mouse. My work has now shifted
the question of conservation further back in evolutionary time. Is the ability to define
epigenetic predictors of age limited to placental mammals? Or is it conserved outside
of mammalia? To address these questions future models would need to be derived from
methylome datasets in other species. The implications of this conservation together
with the finding that these predictors seem to be reflecting genome wide behaviour raise
many interesting questions about the nature of lifespan and ageing. For instance, are
the genomes of long lived species inherently more able to repair epimutations resulting

from the ravages of time? Or are their genomes inherently less prone to epimutations
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owing to the nature of the DNA sequence or 3D organisation? Answers to these
questions and others would greatly benefit from future work set upon defining a pan-
species epigenetic predictor. Such a predictor, would also give insight into whether
the epigenetic changes that are seen with age are causative in ageing or a passive

bystander.

Deep insights into these questions will likely also come from future work defining sin-
gle cell based epigenetic predictors, or experimentation-led single cell models for how
such an ensemble measurement could arise from single cell information. Such infor-
mation could test the hypothesis described by Horvath (Horvath, 2013) that these
epigenetic predictors are the “cumulative effect of an epigenetic maintenance system”.
Consequently, one would expect the “burden of age” to be shared by all cells if this
hypothesis were to be true. Should the “burden of age” be limited to a small number of
cells, this would suggest a wholly different mechanism for the clock. Another important
implication of defining a single cell predictor is that it would enable rare populations of
cells to be assayed for biological age. This would be important for understanding the
changes to the epigenetic predictor during early development that could inform when
and how such a predictor is initialised. Furthermore, it would allow the assessment of
rare stem cell populations with age, such as the TA-Hi MuSCs assessed in this thesis.
This is of enormous interest because such rare cell populations are potentially the most

amenable to regenerative interventions and rejuvenation.

The work described in Chapter 4 on the TA-Hi MuSC single cell combined epigenomic
and transcriptomic dataset has resulted in the development of two novel computational
approaches for the study of single cell DNA methylation data. In the future, it will
be interesting to further develop and test these approaches in this and other systems.
For instance, further analysis of the current dataset could interrogate the differences
between young and old cells using experimentally determined feature annotations. Such
annotations are available from chromatin immunoprecipitation (ChIP) and Assay for
Transposase-Accessible Chromatin using sequencing (ATAC-Seq) methods performed
on these cells, and cell-culture models thereof (Asp et al), 2011, Blum et al,, 2012 and

Lilja et al., 2017) and more differentiated counterparts of them. More broadly, it will
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be of interest to apply these computational approaches to other single cell bisulfite
datasets. For instance, in the context of the zygote and early embryo where there are
large-scale dynamic changes in DNA methylation (Amouroux et alj, 2016 and Santos

et al., 2002), the mechanics of which are still not fully understood.

The analysis of this single cell dataset has also alluded to a potential mechanism for the
epigenetic predictors: a mechanism of increasing intracellular homogeneity and resul-
tant changes in cell-to-cell heterogeneity. In the future it will be exciting to understand
whether this model that was developed from analysis of specific features in the genome,
is true for the large majority of the genome. In addition, it will be important to develop
a model that is able to predict the nature of these changes from initial methylation
states in single cells from young individuals. Such a model would provide insights as
to the nature of ageing and may help in deriving a pan-species epigenetic predictor of

age.

Together with such a model, it would be of great interest to know whether this be-
haviour holds in more differentiated cell types in the muscle lineage. For instance,
do more differentiated cells exhibit this tendency to increase intracellular epigenetic
homogeneity whilst increasing cell-to-cell heterogeneity too? Will the heterogeneity be
increased due to the asymmetric cell division known to occur in these TA-Hi MuSCs?
To answer these questions and more it will be of interest in the future to assess acti-
vated MuSCs, myoblasts and nuclei from fused myofibers at the single cell combined
level. In addition, such a study would be invaluable for asking more fundamental
questions about the biology of these cells. For instance, does the correlation between
transcription and DNA methylation increase through differentiation? At what stage
do DNA methylation levels reach those expected for somatic tissues and known to
exist in the bulk muscle? This last question could be addressed using the MethylRO
mouse (contains an MBD1-fluorophore construct; Ueda et al., 2014) and the dynamic
measures of DNA methylation that I developed in Chapter 5. Utilising the live cell
approaches would be of particular advantage should the global gain in methylation only
occur upon cell fusion with pre-existing muscle fibers. The live-cell method would allow

these newly incorporated nuclei to be assessed directly even within the fibre, negating
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the need for complicated extraction protocols.

To enable wider applicability of the DDM live cell measure of DNA methylation dy-
namics, it will be important in the future to increase the robustness of the image
analysis and to enable it to become more user friendly. It will also be exciting, when
this analysis is made more robust to apply it to the study of other dynamic live cell
processes as the approach itself is not limited to DNA methylation. Such systems could
include histone marks or transcription factors. In addition, using either DDM or FRAP
it is possible to make measurements of different fluorophores at the same time. One
system that would be interesting to assess in the context of development and ageing
would be the dynamics of PRC2 and H3K27me3. Such a study would provide insights
into the nature of the relationship between the two with age. Do the global protein
levels of PRC2 change? Or do the dynamics with which it interacts with the DNA

change?

At a more fundamental level, it will be fascinating to study DNA methylation dynamics
in different cell types in a relatively high throughput manner. This would enable
screening of systems of interest that could then be followed up with more intensive
and higher resolution approaches such as scM&T-Seq. As mentioned, the currently
available MethylRO mouse (Ueda et al., 2014) already makes the application of these
methods in an in vivo setting possible. Initial studies using this system have found
that there are large differences in the patterning of methylation in different cell types.
As such, I think that in the future it will be exciting to employ these quantitative
dynamic measures to assess DNA methylation in an in vivo context. In particular, I
think that it will be fascinating to assess these dynamics during early development and

ageing.

In addition to utilising the quantitative and dynamic measures of DNA methylation
described in this thesis, I think that in the future it will be important to adapt these
methods to enable loci-specific measurements of DNA methylation dynamics to be
made. One way this could be achieved is through a FRET-based system using the
constructs derived in Materials and Methods section @ Such an adapted system

could potentially enable dynamic single cell measurements of the epigenetic predictor
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sites that could be followed across time. However, there will be a limit to the number
of independent sites that can be uniquely identified from any one image, owing to the
number of separable excitation/emission spectra. As such, it may perhaps require the
adaptation of the predictor weights to a singular positive weight and singular negative

weight that would require maximally 4 fluorophors.

In this thesis I have developed multiple tools to measure and analyse DNA methylation.
I have shown that these tools can provide exciting insights into the nature of both DNA
methylation dynamics and ageing. I hope that the additions I have made to the DNA
methylation toolbox will now enable DNA methylation to be a model system for the

study of ageing.
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single-cell Nucleosome Occupancy and Methylome sequencing
Single-strand selective Monofunctional Uracil-DNA Glycosylase
Single Nucleotide Polymorphism

Super Optimal broth with Catabolite repression

Sproutyl

SET and Ring finger Associated

Sequence Read Archive

Suppressor of Zeste 12 homolog

Tibialis anterior

Tibialis anterior Pax7-highly-expressing muscle satellite cells
The Cancer Genome Atlas

Thymine-DNA Glycosylase

methylcytosine dioxygenase

Target Recognition Domain

t-Distributed Stochastic Neighbor Embedding

Transcription Start Site

Ubiquitin-like, containing PHD and RING finger domains, 1
Unique Molecular Identifier

Uracil-DNA Glycosylase

Whole Genome Bisulfite Sequencing
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