
Supporting information for “Metacommunity dynamics and the detection of species
associations in co-occurrence analyses: why patch disturbance matters” (Functional
Ecology, 2022)

Appendix S21

Stochastic simulations2

Vincent Calcagno, Nik J. Cunniffe, Frédéric M. Hamelin3

S2-1 Monte Carlo algorithm4

We first present the Monte Carlo algorithm used to sample random co-occurrence5

matrices. The goal is to generate a s × N co-occurrence matrix, with co-occurrence6

patterns drawn randomly from the steady state probabilities of the general meta-7

community model (Eq. A-1 in Supporting Information A).8

One approach would be to compute the steady state co-occurrence probabilities9

for every type of patch, i.e. for every possible combination of species, similar to what10

is done with q,j,• for species pairs in Supporting Information A, section A4. Then,11

one can draw randomly N patches from the corresponding multinomial distribution,12

and fill the co-occurrence matrix accordingly. However, as the number of species13

combinations quickly explodes with s, this approach is very inefficient numerically.14

An efficient approach consists in the following Monte Carlo algorithm:15

1. Compute the steady-state patch age distribution (Supporting Information A,16

section A1.2) and the steady state overall occupancies (Supporting Information17

A, section A1.4) once and for all;18

2. Draw one random patch age  from the steady-state patch age distribution19

(Eq. A-3 in Supporting Information A);20

3. For every species, compute its steady-state probability of occupancy condi-21

tional on patch age , p|, from Eq. A-4 in Supporting Information A;22

4. For each species, draw a random number to determine if it is present in the23

focal patch, based on p|;24

1



5. Complete the column of the co-occurrence matrix accordingly;25

6. Repeat 2-5 for as many patches (matrix columns) as desired.26

Note: Species that are immune to patch disturbances, if any, should have p| in27

Step 3 replaced with their steady state overall occupancy with μ = 0 for all  (see28

Supporting Information A, section A4). The latter can be computed from the classical29

metapopulation model results (Eq. A-11 in Supporting Information A).30

The above approach is implemented as a set of R functions available at the loca-31

tion specified in the main text32

Step 2 is implemented by sampling patch ages from the distribution p•, defined33

in Eq. A-3 (in Supporting Information A) using inversion (Devroye, 1986). The requi-34

site calculations can be done more quickly if the form adopted for μ, the death rate35

for patches of age , allows the user to specify36

M() =
∫ 

0
μydy

in closed form (this can be done by passing the argument integratedDeathRateFunc37

to the function initPatchDeath()). However, if an explicit functional form for M()38

is not available, the values of the function at a large number of values of  are pre-39

calculated during the initiation step of our algorithm by way of numerical integration40

via the library cubature (Narasimhan et al., 2020). This allows values of M() for41

arbitrary  to be obtained efficiently via linear interpolation between two pre-cached42

values. In either case, given a function that returns M() for any value of , the43

probability density of patch ages in Eq. A-3 (in Supporting Information A) can be44

written as45

p•, = p•,0 exp (−M()) ,

in which p•,0 is the normalisation factor ensuring p•, is a probability density function.46

The cumulative density function for patch ages is then47

C() = p•,0

∫ 

0
exp (−M(z))dz.

Patch ages can then be sampled by choosing a uniformly distributed random num-48

2



ber, R, between 0 and 1, and solving the equation R = C() to sample the age of49

a single patch, . This is done using the base R function uniroot(), with the nu-50

merical integration that is necessary to find C() done using cubature (Narasimhan51

et al., 2020).52

S2-2 Parameter values53

Our illustrative set in the main article was μ = 0.2 and X = 20. There was no54

external immigration (m = 0). The 31 species used had colonisation rates (c) in55

the range in (0.33, 7.1) and extinction rates (e) in the range (1e−3, 3.4). Their56

overall steady-state occupancies were drawn randomly in the range (0.3, 0.7). Co-57

occurrence matrices were sampled for N = 1000 sites (patches).58

All details can be found in the provided R markdown file.59

S2-3 Direct independence tests60

We used function fisher.test in R to test for independence of every species pair.61

All the code used can be found in the R markdown available at the location spec-62

ified in the main text.63

S2-4 Null permutation schemes64

We used permutation algorithms to tests whether the partial C-score values for65

species pairs significantly differed from the null expectation. To this end, we used66

the functions provided in the R ecosimR package (Gotelli, 2000). We used the fixed-67

equiprobable (Sim2) and fixed-fixed (Sim9) permutation algorithms.68

All the code used can be found in the R markdown available at the location spec-69

ified in the main text.70

S2-5 Hmsc models71

We used the Hmsc package in R (Ovaskainen and Abrego, 2020) to fit joint species72

distribution models to null sample matrices generated from the metacommunity73

3



model. We used four different models, differing in the fixed and random effects they74

incorporate to describe the presence/absence probabilities. MCMC convergence,75

model predictions and species associations were analyzed following Tikhonov et al.76

(2020). The different models are summarized in Table S2-1.77

Table S2-1: Hmsc models used.

Hmsc model Habitat covariates Random factors†

M0 none none
M1 none 1 (levels of patch richness 1 . . . s)
M2 1 (log(patch age)) none
M2’ 1 (patch richness) none

† in all models, a dummy random factor, with patch identity as a grouping factor, was also
incorporated to permit the computation of species associations.

All the code used can be found in the R markdown available at the location spec-78

ified in the main text. Note that results can vary slightly, in quantitative terms,79

depending on the exact sample matrix (i.e. random seed) used. The results pre-80

sented were obtained on a matrix generated with 1 as a random seed, but results81

are representative of what one obtains with other seeds.82

References83

Devroye, L. (1986). Non-Uniform Random Variate Generation. Springer- Verlag, New84

York.85

Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. Ecology,86

81(9):2606–2621.87

Narasimhan, B., Johnson, S. G., Hahn, T., Bouvier, A., and Kiêu, K. (2020). cubature:88

Adaptive Multivariate Integration over Hypercubes. R package version 2.0.4.1.89

Ovaskainen, O. and Abrego, N. (2020). Joint species distribution modelling: with90

applications in R. Cambridge University Press.91

Tikhonov, G., Opedal, Ø. H., Abrego, N., Lehikoinen, A., de Jonge, M. M., Oksanen, J.,92

and Ovaskainen, O. (2020). Joint species distribution modelling with the R-package93

Hmsc. Methods in ecology and evolution, 11(3):442–447.94

4




