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S2-1 Monte Carlo algorithm4

We first present the Monte Carlo algorithm used to sample random co-occurrence5

matrices. The goal is to generate a s × N co-occurrence matrix, with co-occurrence6

patterns drawn randomly from the steady state probabilities of the general meta-7

community model (Eq. A-1 in Supporting Information A).8

One approach would be to compute the steady state co-occurrence probabilities9

for every type of patch, i.e. for every possible combination of species, similar to what10

is done with q,j,• for species pairs in Supporting Information A, section A4. Then,11

one can draw randomly N patches from the corresponding multinomial distribution,12

and fill the co-occurrence matrix accordingly. However, as the number of species13

combinations quickly explodes with s, this approach is very inefficient numerically.14

An efficient approach consists in the following Monte Carlo algorithm:15

1. Compute the steady-state patch age distribution (Supporting Information A,16

section A1.2) and the steady state overall occupancies (Supporting Information17

A, section A1.4) once and for all;18

2. Draw one random patch age  from the steady-state patch age distribution19

(Eq. A-3 in Supporting Information A);20

3. For every species, compute its steady-state probability of occupancy condi-21

tional on patch age , p|, from Eq. A-4 in Supporting Information A;22

4. For each species, draw a random number to determine if it is present in the23

focal patch, based on p|;24
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5. Complete the column of the co-occurrence matrix accordingly;25

6. Repeat 2-5 for as many patches (matrix columns) as desired.26

Note: Species that are immune to patch disturbances, if any, should have p| in27

Step 3 replaced with their steady state overall occupancy with μ = 0 for all  (see28

Supporting Information A, section A4). The latter can be computed from the classical29

metapopulation model results (Eq. A-11 in Supporting Information A).30

The above approach is implemented as a set of R functions available at the loca-31

tion specified in the main text32

Step 2 is implemented by sampling patch ages from the distribution p•, defined33

in Eq. A-3 (in Supporting Information A) using inversion (Devroye, 1986). The requi-34

site calculations can be done more quickly if the form adopted for μ, the death rate35

for patches of age , allows the user to specify36

M() =
∫ 

0
μydy

in closed form (this can be done by passing the argument integratedDeathRateFunc37

to the function initPatchDeath()). However, if an explicit functional form for M()38

is not available, the values of the function at a large number of values of  are pre-39

calculated during the initiation step of our algorithm by way of numerical integration40

via the library cubature (Narasimhan et al., 2020). This allows values of M() for41

arbitrary  to be obtained efficiently via linear interpolation between two pre-cached42

values. In either case, given a function that returns M() for any value of , the43

probability density of patch ages in Eq. A-3 (in Supporting Information A) can be44

written as45

p•, = p•,0 exp (−M()) ,

in which p•,0 is the normalisation factor ensuring p•, is a probability density function.46

The cumulative density function for patch ages is then47

C() = p•,0

∫ 

0
exp (−M(z))dz.

Patch ages can then be sampled by choosing a uniformly distributed random num-48
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ber, R, between 0 and 1, and solving the equation R = C() to sample the age of49

a single patch, . This is done using the base R function uniroot(), with the nu-50

merical integration that is necessary to find C() done using cubature (Narasimhan51

et al., 2020).52

S2-2 Parameter values53

Our illustrative set in the main article was μ = 0.2 and X = 20. There was no54

external immigration (m = 0). The 31 species used had colonisation rates (c) in55

the range in (0.33, 7.1) and extinction rates (e) in the range (1e−3, 3.4). Their56

overall steady-state occupancies were drawn randomly in the range (0.3, 0.7). Co-57

occurrence matrices were sampled for N = 1000 sites (patches).58

All details can be found in the provided R markdown file.59

S2-3 Direct independence tests60

We used function fisher.test in R to test for independence of every species pair.61

All the code used can be found in the R markdown available at the location spec-62

ified in the main text.63

S2-4 Null permutation schemes64

We used permutation algorithms to tests whether the partial C-score values for65

species pairs significantly differed from the null expectation. To this end, we used66

the functions provided in the R ecosimR package (Gotelli, 2000). We used the fixed-67

equiprobable (Sim2) and fixed-fixed (Sim9) permutation algorithms.68

All the code used can be found in the R markdown available at the location spec-69

ified in the main text.70

S2-5 Hmsc models71

We used the Hmsc package in R (Ovaskainen and Abrego, 2020) to fit joint species72

distribution models to null sample matrices generated from the metacommunity73
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model. We used four different models, differing in the fixed and random effects they74

incorporate to describe the presence/absence probabilities. MCMC convergence,75

model predictions and species associations were analyzed following Tikhonov et al.76

(2020). The different models are summarized in Table S2-1.77

Table S2-1: Hmsc models used.

Hmsc model Habitat covariates Random factors†

M0 none none
M1 none 1 (levels of patch richness 1 . . . s)
M2 1 (log(patch age)) none
M2’ 1 (patch richness) none

† in all models, a dummy random factor, with patch identity as a grouping factor, was also
incorporated to permit the computation of species associations.

All the code used can be found in the R markdown available at the location spec-78

ified in the main text. Note that results can vary slightly, in quantitative terms,79

depending on the exact sample matrix (i.e. random seed) used. The results pre-80

sented were obtained on a matrix generated with 1 as a random seed, but results81

are representative of what one obtains with other seeds.82
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