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Supplementary Methods: 

 

Exclusion Criteria 

Exclusion criteria included history of esophageal stricture, pregnancy or breastfeeding, history 

of esophageal varices or liver impairment of moderate or worse severity (Child’s Pugh class B or C), 

history of esophageal surgery except for uncomplicated fundoplication, history of coagulopathy 

(INR>1.3 and/or platelet count <75000) or on clopidogrel and/or anti-coagulant medication for high risk 

condition and unable to withhold medication temporarily. 

 

Classification using Deep-Learning 

To classify the attenuation spectra, a 1D convolutional neural network (CNN) model was 

trained. Classical 1D CNN convolution kernels were used to obtain feature maps and a rectified linear 

unit (ReLU) was used as an activation function. Each convolution was also followed by a max pooling 

layer with stride of 2. Dropout was introduced in the 2nd, 3rd and the 4th layers to reduce the overfitting 

of the network as this could be the case, for e.g., the marginal gaps between NDBE and neoplasia. A 

log-softmax classifier was used for improved gradient optimization and to compute the logarithmic 

probability of each class. The complete block diagram is shown in Figure 5 in the main text. An Adam 

(adaptive moment estimation) optimizer with a learning rate (LR) hyperparameter of 0.001 and weight 

decay of 0.0001 x LR was used to minimize negative log likelihood loss. The hyperparameters β1 and 

β2, which represent exponential decay rate for the first and second moment, respectively, are 

empirically chosen to be β1 = 0.90 and β2 = 0.999. To account for a smaller number of samples in the 

balanced dataset and presence of narrow variability in class instances, we have adjusted the LR to 

0.0008 and weight decay to 0.00001 x LR that allowed to obtain a smoother loss computation and 

avoid overfitting. An open-source PyTorch platform (1) was used to implement the described model 

architecture. All training was performed on NVIDIA GeForce RTX 2080 Ti with batch size of 16 and 

20% validation (random) split on the training data. The train-time was approximately 1 min and test-

time per-spectrum was < 1 ms.   



Spectral Acquisition and Processing 

 

Dark Spectra Acquisition 

During each trial, dark spectra, 𝐷!"𝜆, 𝑡"#$&, were incidentally captured when both the SOC and 

spectral endoscope light sources were switched off, where 	𝑡"#$ is the exposure time. 	𝑡"#$ is manually 

controlled to achieve good images during endoscopy. 

 

Dark Spectra Processing 

For each exposure time, the mean dark spectrum across all trials was calculated, 

 
𝐷("𝜆, 𝑡"#$& = 	

1
𝑛%"𝑡"#$&

, 𝐷!"𝜆, 𝑡"#$&

&!'("#$)

!*+

  (S1) 

where 𝑛%"𝑡"#$& is the number of dark spectra per exposure time. 

 

White Spectra Acquisition 

At the end of each trial, a series of white reflectance spectra, 𝐼!,"𝜆, 𝑡"#$&, were captured from a 

diffusely reflecting white tile, where 𝑡"#$ is the exposure time. 

 

White Spectra Processing 

1. Saturated white reflectance spectra, max 1𝐼!,"𝜆, 𝑡"#$&2 > 16383, were excluded. 

2. White reflectance spectra with low signal, max 1𝐼!,"𝜆, 𝑡"#$&2 £ 500, were excluded. 

3. Using the dark spectrum with the appropriate exposure time for a given spectral data 

acquisition, dark subtraction was performed according to, 

 𝐼!,"𝜆, 𝑡"#$& = 	 𝐼!,"𝜆, 𝑡"#$& − 𝐷("𝜆, 𝑡"#$&  (S2) 

Since the exposure time was regularly changed during each endoscopy, some trials included 

spectral data captured at an exposure time for which no dark spectra were captured. In this 



case, the dark spectrum was linearly interpolated from the dark spectra at the other exposure 

times. 

4. An additional background subtraction was performed by fitting a first-degree polynomial to each 

spectrum in the regions from 170 – 400 nm and 950 – 1100 nm, where no illumination is 

present, and subtracting the result. 

5. White reflectance spectra were normalized to area under the curve (AUC) = 1, 

 
𝐼!,,(𝜆, 𝑡"#$) = 	

𝐼!,"𝜆, 𝑡"#$&
∫ 𝐼!,"𝜆, 𝑡"#$&dλ

  (S3) 

6. For each exposure time, the mean white reflectance spectrum was calculated, 

 
𝐼,,999"𝜆, 𝑡"#$& = 	

1
𝑛-"𝑡"#$&
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  (S4) 

where 𝑛-"𝑡"#$& is the number of white reflectance spectra per exposure time. Note: since 

𝐼!,,(𝜆, 𝑡"#$) was normalised to AUC=1, it should be independent of 𝑡"#$, but 𝐼,,999"𝜆, 𝑡"#$& could be 

plotted prior to the final averaging step (Step 16) to check this. 

7. Over all exposure times, and all trials with reliable white reflectance spectra (as determined by 

consistency with other trials), the mean white reflectance spectrum 𝐼,,999(𝜆) was calculated. 

8. The mean white reflectance spectrum, 𝐼,,999(𝜆), was smoothed using the MATLAB® function 

‘smooth’ using a moving average with a window size of 30, corresponding to ~15 nm. 

 

Signal Spectra Processing 

The raw acquired signal, 𝑆(𝜆), was processed as follows (Supplementary Fig. 2). 

1. Saturated spectra, max"𝑆(𝜆)& > 16383, were excluded (𝑆(𝜆) is a 14-bit unsigned integer so it 

has maximum value 16384). 

2. Using the dark spectrum with the appropriate exposure time for a given spectral data 

acquisition, dark subtraction was performed according to, 

 𝑆,"𝜆, 𝑡"#$& = 	𝑆"𝜆, 𝑡"#$& − 𝐷("𝜆, 𝑡"#$&  (S5) 



Since the exposure time was regularly changed during each endoscopy, some trials included 

spectral data captured at an exposure time for which no dark spectra were captured. In this 

case, the dark spectrum was linearly interpolated from the dark spectra at the other exposure 

times. 

3. An additional background subtraction was performed by fitting a first-degree polynomial to each 

spectrum in the regions from 170 – 400 nm and 950 – 1100 nm, where no illumination is 

present, and subtracting the result. 

4. Spectra with low signal, max"𝑆,(𝜆)& £ 100, were excluded. 

5. Spectra, 𝑆,(𝜆), were smoothed using the MATLAB® function ‘smooth’ using a moving average 

with a window size of 30, corresponding to ~15 nm. 

6. Spectra containing negative values in the range 470 – 720 nm, 𝑆,(470 − 720)< 0, were 

excluded. 

7. Spectra containing low signal in the range 500 – 700 nm, min"𝑆,(500 − 700)& £ 1, were 

excluded. 

8. The tissue reflectance was calculated as, 

 
𝑅(𝜆) =

	𝑆,(𝜆)
𝐼,,999(𝜆)

  (S6) 

9. The attenuation was calculated as, 

 𝐴(𝜆) = − log. 𝑅(𝜆)  (S7) 

10. Finally, attenuation spectra were normalized by subtracting the minimum attenuation from 500 – 

720 nm, 

 𝐴,(𝜆) = 𝐴(𝜆) − min
/*0112341	67

"𝐴(𝜆)&  (S8) 

  



Variance in Tissue Attenuation Spectra 

The tissue attenuation spectra for each individual trial are shown in Supplementary Fig. 5. The 

differences between spectra of different pathology classes are conserved within each patient but 

substantial variation is clearly evidence between patients. 

To quantify the nature of the variation in the spectra, one-way analysis of variance was 

performed. This proceeded by calculating the within-group and between-group variance at each 

wavelength according to, 

 
MS8(𝜆) =

∑ (𝑛! − 1)𝑠(𝜆)!49
!*+

𝑛 − 𝑘
  (S9) 

and 

 
MS:(𝜆) =

∑ 𝑛!"𝑦;((𝜆) − 𝑌9(𝜆)&
49

!*+
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  (S10) 

where 𝑖 = 1 − 𝑘 is the index of each group within the dataset, 𝑘 is the total number of groups, 𝑛! is the 

number of observations in group 𝑖, 𝑛 is the total number of observations, 𝑠(𝜆)!4 is the variance of all 

observations in group 𝑖 at wavelength	𝜆, 𝑦;((𝜆) is the mean of all observations in group 𝑖 at wavelength 𝜆 

and 𝑌9(𝜆) is the global mean of all observations at wavelength 𝜆. 

The variance ratio, 

 
F(𝜆) =

MS:(𝜆)
MS8(𝜆)

  (S11) 

describes the ratio of the within-group to between-group variance. 

Finally, these measures were averaged over the wavelength range of interest (470 – 720 nm) 

and the square root taken to reach, 

 

√F = Q
1
𝑁

, F(𝜆)
341
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  (S12) 

 

RMS8 = TMS8 = Q
1
𝑁

, MS8(𝜆)
341
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  (S13) 
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  (S14) 

where 𝑁 = 433 is the number of wavelengths. 

These metrics were calculated using two distinct groupings. First, in patients where two distinct 

regions of the same tissue pathology were available, the spectra were grouped by region. Thus, 

RMS8
=">?@6 represents the intra-region variance and RMS:

=">?@6 represents the inter-region variance and 

√F=">?@6 represents their ratio. Second, all patients were grouped by patient, thus RMS8
$AB?"6B represents 

the intra-patient variance (irrespective of region) and RMS:
$AB?"6B represents the inter-patient variance 

and √F$AB?"6B represents their ratio. 

An F-test for equality of variances cannot be accurately applied to the acquired F-statistics as 

these are an average of non-independent F(𝜆), but an F-test was performed using F(550	nm) to give an 

indication of the significance of the variation between vs. within the groups. The inter-region variance 

was significant in 1/4 of the patients with multiple NDBE regions (trial number 8, p<0.001) and in 2/3 

patients with multiple neoplastic regions (trial numbers 12 and 18, p=0.040, p<0.001 respectively). The 

inter-patient variance was significant in all pathologies (p<0.001).  

 

  



Simulation of Multispectral Images 

Details of the procedure used to simulate images from the acquired spectra are as follows. 

 

Data Preparation 

1. The acquired tissue spectra were processed to yield reflection spectra (see Supplementary 

Equation 6), 𝑅(𝜆), because it is the reflected light, rather than the attenuated light, that enters a 

detection system, which is the process we intended to model. 

2. These were normalized to the maximum from 470 – 720 nm. 

3. These were trimmed to the wavelength range 470 – 750 nm, the region where the reflection 

spectra are reliably measured. 

4. For each pathology, the mean spectrum across all patients, 𝑅9(𝜆), was calculated. 

 

Data Augmentation 

To enable the generation of an arbitrarily large set of noised reflection spectra, the next step 

was to perform principal component analysis (PCA)-based noising of 𝑅9(𝜆). PCA-based noising was 

used as it ensures the spectral shape of the simulated noise reproduces that of the measured noise. 

1. Principal components of variation in 𝑅(𝜆), and the associated eigenvalues were determined; 

 𝑃𝐶!(𝜆), 𝑖 = 1 − 𝑁  (S15) 

 𝐸! , 𝑖 = 1 − 𝑁  (S16) 

where 𝑁 is the number of principal components, which is equal to the number of wavelengths. 

Note that only 𝑛 − 1 of these are non-trivial, where 𝑛 is the number of spectra. 

2. Next, these were used to augment 𝑅9(𝜆) to generate noised spectra, 

 
𝑅YC(𝜆) = 𝑅9(𝜆) + 𝐷,[ρ ∙ 𝑃𝐶!(𝜆) ∙ ^𝑠4 ∙

𝐸!
𝐸D
_

E

!*+

  (S17) 

with, 

 
𝐸D =,𝐸!

E

!*+

  (S18) 



where ρ is a random number drawn from a standard normal distribution, 𝑠4 is the sum of 

variances across all wavelengths, and 𝐷 is a dimensionless constant representing the degree of 

noise to augment. A value of 𝐷 = 1 represents equal noise to that found in the original dataset 

and a value of 𝐷 = 0 represents zero noise. For modelling purposes, a value of 𝐷 = 0.25 was 

used. This was repeated 𝑀 times to generate 𝑗 = 1 −𝑀 augmented reflection spectra 𝑅YC(𝜆). 

3. Since narrow band imaging uses a narrow band centered at 415 nm, it was necessary to 

extrapolate the augmented data in the low wavelength region. Since the reflection spectra are 

relatively flat and smooth in this region, this extrapolation was performed by fitting a first-degree 

polynomial to the region from 470 – 500 nm and using this to extrapolate the region 380 – 470 

nm for each augmented spectrum 𝑅Y(𝜆). 

 

Spectral Band Optimization 

To select the spectral bands for simulated spectral endoscopy, the following steps were taken. 

1. Data augmentation steps 1 – 2 were performed as described above to generate augmented 

reflection spectra 𝑅YC(𝜆) in the region 470 – 750 nm. 

2. Gaussian spectral response bands with full width half maxima of 10 nm were generated 

according to, 

 
 

𝑆(𝜆F9 , 𝐻G , 𝜆) = 𝐻G ∙ exp f
−4 ∙ log(2) ∙ (𝜆 − 𝜆F9)4

104
g,  (S19) 

where the center wavelengths are, 

 
𝜆F9 = h

490, 𝑘 = 	1
500, 𝑘 = 	2

⋮
720, 𝑘 = 24

 
 (S20) 

and the sensitivities are, 

 
𝐻G = h

0.2, 𝑙 = 	1
0.4, 𝑙 = 	2

⋮
1.0, 𝑙 = 5

 
 (S21) 



3. The augmented spectra 𝑅YC(𝜆) were propagated through the spectral response bands to 

generate signals, 

 
𝐼C(𝜆F9 , 𝐻G) = l 𝑆(𝜆F9 , 𝐻G , 𝜆)

341

<31
𝑅YC(𝜆)	𝑑𝜆  (S22) 

4. The average signal for each band was calculated as 

 
𝐼(𝜆F9 , 𝐻G) =

1
𝑀
,𝐼C(𝜆F9 , 𝐻G)
H

C*+

  (S23) 

5. For every combination and permutation of 3 spectral response bands (not allowing repetition of 

𝜆1, but allowing repetition of 𝐻), an rgb color, 𝐶IJK, was constructed. 

For example, for 𝑘 = 1, 6, 19 and 𝑙 = 1, 3, 2, 

 𝑟 = 𝐼(490, 0.2), g = 𝐼(540, 0.6), b = 𝐼(670, 0.4),  (S24) 

 
𝐶IJK =

0.8
max(r, g, b)

f
r
g
b
g  (S25) 

where the color is normalized to a peak value of 0.8. This normalization is applied because (i) 

we don’t have relative intensity information for our acquired spectra and (ii) we are interested in 

chromaticity (color independent of brightness). The value of 0.8 is selected to produce a bright 

but not saturated image. 

For 𝐾 center wavelengths, 𝐿 sensitivities, this results in a total of 𝑁F colors, 𝐶IJK, where 𝑁F is 

given by, 

 𝑁F =
𝐾!

(𝐾 − 3)! 3!
∙ 3! ∙ 𝐿L  (S26) 

6. The above process was repeated for NDBE and neoplasia and the International Commission on 

Illumination Delta E 2000 (CIEDE2000) color difference (Δ𝐸11) calculated (2).  

7. The set of 3 spectral response bands that resulted in the largest CIEDE2000 color difference 

was selected as the spectral endoscopy filter set. 

 

Image Simulation 



To simulate images, augmented reflection spectra 𝑅YC(𝜆) were first generated as described 

above. For narrow band and spectral endoscopy, the color of each pixel was simulated as follows. 

1. Using a novel 𝑅YC(𝜆) for each pixel, the rgb color, 

 
w
rC
gC
bC
x = l [

𝑆=(𝜆)
𝑆>(𝜆)
𝑆:(𝜆)

_
301

LM1
𝑅YC(𝜆)	𝑑𝜆  (S27) 

was calculated, where 𝑆=/>/:(𝜆) are the red/green/blue spectral response bands of the sensor. 

2. And thus the rgb color of the pixel is defined as above, 

 
𝐶=>:C =

0.8
max"rC , gC , bC&

w
rC
gC
bC
x  (S28) 

 

The r/g/b spectral response bands 𝑆=/>/:(𝜆) for narrow band imaging are proprietary and 

unpublished, so they were estimated from the responses shown in the product information brochures 

(3) (Supplementary Fig. 8). Since the spectral response bands 𝑆=/>/:(𝜆) of standard of care HR-WLE 

are not published, a different approach to simulate HR-WLE color images was adopted. We assumed 

that the response and post-processing occurring in HR-WLE is such that the images represent the 

human visual response as closely as possible. So, the International Commission on Illumination (CIE) 

color matching functions were used to determine the rgb color as follows: 

1. The xyz color coordinates were determined as, 

 
[
𝑋C
𝑌C
𝑍C
_ =

1

∫ 𝑦9(𝜆)301
LM1 𝑑𝜆

∙ l [
𝑥̅(𝜆)
𝑦9(𝜆)
𝑧̅(𝜆)

_
301
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𝑅YC(𝜆)	𝑑𝜆  (S29) 

and normalized such that, 

 
w
𝑥C
𝑦C
𝑧C
x =

1
𝑋 + 𝑌 + 𝑍

∙ [
𝑋C
𝑌C
𝑍C
_  (S30) 

2. The xyz coordinates are transformed to rgb using the MATLAB® function ‘xyz2rgb’ using the 

standard CIE illuminant D65 and sRGB conversion, which applies a gamma correction. 

3. The rgb coordinates are normalized as above so, 



 
𝐶=>:C =

0.8
max"rC , gC , bC&

w
rC
gC
bC
x  (S31) 

  



Supplementary Figures: 

 

 

Supplementary Figure 1 | Spectral endoscope user interface. The interface used to control the 

spectral endoscope and display images and spectra in real time (developed in LabVIEW [National 

Instruments, USA], slightly modified for presentation). 

  



 

Supplementary Figure 2 | Summary schematic of the spectral processing pipeline as described 
in “Spectral Acquisition and Processing”. 1. Saturated spectra removal; 2. Subtraction of measured 

dark signal; 3. Additional dark subtraction from linear fit to low signal regions; 4. Low max signal 

removal; 5. Smoothing; 6. Negative value removal; 7. Low min signal removal; 8. Reflectance 

calculation by division by measured white reflectance signal; 9. Attenuation calculation; 10. Minimum 

normalization.



 
Supplementary Figure 3 | 1D convolutional neural network (CNN)-model used for classification 
of attenuation spectra in this study. Classical 1D CNN convolution kernels were used to obtain 

feature maps and a rectified linear unit (ReLU) was used as an activation function. Each convolution 

was also followed by a max pooling layer with stride of 2. Dropout was introduced in the 2nd, 3rd and 

the 4th layers to reduce the overfitting of the network as this could be the case for the marginal gaps 

between NDBE and neoplasia. A log-softmax classifier was used for improved gradient optimization 

and to compute the logarithmic probability of each class. N, number of classes; p, probability. 
 
  



 

Supplementary Figure 4 | Recruitment flowchart. 
EMR, endoscopic mucosal resection; IMC, intramucosal carcinoma; NDBE, non-dysplastic Barrett’s 

esophagus; SOC, standard of care. 

 
  



 

Supplementary Figure 5 | Per-patient per-region attenuation spectra captured with the spectral 
endoscope across all patients. The shaded region represents the standard error. 
 

 



 

Supplementary Figure 6 | Variance of acquired attenuation spectra. (a) Intra-region vs inter-region 

variance (RMSregion). Grey lines connect points representing different regions captured from the same 

patient. Trial numbers are shown to the right-hand side of points for cross reference to Table 1. Colored 

points are the mean across patients (n=4 NDBE, n=3 neoplasia). (b) The variance ratio √F=">?@6, 

describing the ratio of inter-region to intra-region variance. (c) Intra-patient vs inter-patient variance 

(RMSpatient). (d) The root mean variance ratio √F$AB?"6B, describing the ratio of inter-patient to intra-

patient variance. NDBE, non-dysplastic Barrett’s esophagus. 

 

  



 

Supplementary Figure 7 | t-distributed Stochastic Neighbor Embedding (t-SNE). Components for 

3 classes are plotted for (a) training, (b) test, and (c) predicted log probability from our trained CNN-

model. t-SNE is a non-linear projection that allows us to project a high-dimensional feature vector (433-

point spectrum in this case) to a 2-dimensional point. 

t-SNE, t-distributed Stochastic Neighbor Embedding. 

  



 

Supplementary Figure 8 | (a) Schematic representation of the process for simulating the propagation 

of the tissue reflectance spectrum through color filters to calculate detected intensities in the red, green 

and blue channels, IR, IG and IB, thus generating a 3-channel color swatch. (b) The color filter 

responses used to simulate WLE and NBI images. The International Commission on Illumination (CIE) 

color matching functions were used to simulate the WLE color images from the acquired reflection 

spectra. The NBI response bands were calculated by multiplying the Olympus light source spectrum (3) 

(shown in black), with the narrow band response spectra shown in the product information brochures 

(3). The narrow band centered at 540 nm is applied to the red color channel and the narrow band 

centered at 415 nm is applied to the green and the blue channel. WLE, white light endoscopy; NBI, 

narrow band imaging.  



Supplementary Tables 

 

Supplementary Table 1 | Patient Demographics and Clinical Characteristics 

Trial 
# 

 

Trial Date 

Collection of 
Matched Spectra 

and Histopathology Comments Sex 
Age / 
years 

Barrett’s Length 
(C = Circumferential, 
M = Maximum Extent) 

/ cm 

Lesion 
Morphology 

(Paris 
Classification) 

1 
 

30/05/2018 N 
Insufficient spectral endoscope 

illumination 
M 71 C3M7 0-IIb 5 mm 

2 
 

25/09/2018 N 
Insufficient spectral endoscope 

illumination 
M 68 C3M5 0-IIb 5 mm 

3  12/03/2019 Y  M 65 C0M2 0-IIb 5 mm 

4  18/06/2019 Y  M 74 C4M6 0-IIa 10 mm 

5  02/07/2019 Y  M 74 C5M7 no visible lesion 

6  09/07/2019 Y  M 71 C11M14 no visible lesion 

7  09/07/2019 Y  M 86 C11M12 no visible lesion 

8  23/07/2019 Y  M 62 C6M7 no visible lesion 

9  13/08/2019 Y  M 72 C5M7 0-IIb 15 mm 

10  10/09/2019 Y  F 78 C14M14 0-IIb 10 mm 

11  10/09/2019 Y  M 55 C2M5 0-IIb 4 mm 

12  17/09/2019 Y  M 75 C2M4 0-IIb 5 mm 

13 
 

24/09/2019 N 
Visible lesion too small for spectral 

imaging 
M 59 C1M5 0-IIb 1 mm 

14  24/09/2019 Y  M 80 C0M3 0-IIb 2 mm 

15  01/10/2019 Y  M 74 C3M4 0-IIb 25 mm 

16  15/10/2019 Y  M 67 C0M4 0-IIa 20 mm 

17  15/10/2019 Y  F 67 C0M2 0-IIb 2 mm 
18  12/11/2019 Y  F 72 C5M7 0-IIb 20 mm 

19  19/11/2019 N 
Subject was considered unfit for 

endoscopic procedure due to 
concomitant acute comorbidity 

M NR NA NA 

20  17/12/2019 N SOC recording failed M 81 C8M9 0-IIb 10 mm 

 

 

  



Supplementary Table 2 | Performance of k-Nearest-Neighbor-(KNN)-Based Classification of 
Tissue Attenuation Spectra. 
 

 Classification Performance 

Comparison 
Accuracy 
% (n/total) 

Sensitivity 
% (n/total) 

Specificity 
% (n/total) 

Positive 
Predictive Value 

% (n/total) 

Negative 
Predicative Value 

% (n/total) 

3-way Classification      

Squamous 97.9 (140/143) 90.9 (20/22) 99.2 (120/121) 95.2 (20/21) 98.4 (120/122) 
NDBE 82.5 (118/143) 88.9 (56/63) 77.5 (62/80) 75.7 (56/74) 89.9 (62/69) 

Neoplasia 83.2 (119/143) 70.7 (41/58) 91.8 (78/85) 85.4 (41/48) 82.1 (78/95) 

2-way Classificationa      

NDBE vs. Squamous 97.9 (94/96) 98.3 (59/60) 97.2 (35/36) 98.3 (59/60) 97.2 (35/36) 
Neoplasia vs. Squamous 97.5 (77/79) 97.9 (47/48) 96.8 (30/31) 97.9 (47/48) 96.8 (30/31) 

Neoplasia vs. NDBE  81.2 (91/112) 74.4 (32/43) 85.5 (59/69) 76.2 (32/42) 84.3 (59/70) 
 

k-fold cross-validation (k=5) was used during training 
NDBE, non-dysplastic Barrett’s esophagus. 
a In 2-way comparisons, the class in italics is the target for purposes of classification performance metric. 

 
 
Supplementary Table 3 | Performance of Support-Vector-Machine-(SVM)-Based Classification of 
Tissue Attenuation Spectra  
 

 Classification Performance 

Comparison 
Accuracy 
% (n/total) 

Sensitivity 
% (n/total) 

Specificity 
% (n/total) 

Positive 
Predictive Value 

% (n/total) 

Negative 
Predicative Value 

% (n/total) 

3-way Classification      

Squamous 98.6 (141/143) 95.5 (21/22) 99.2 (120/121) 95.5 (21/22) 99.2 (120/121) 
NDBE 83.2 (119/143) 95.2 (60/63) 73.8 (59/80) 74.1 (60/81) 95.2 (59/62) 

Neoplasia 81.8 (117/143) 62.1 (36/58) 95.3 (81/85) 90.0 (36/40) 78.6 (81/103) 

2-way Classificationa      

NDBE vs. Squamous 99.0 (95/96) 100.0 (60/60) 97.2 (35/36) 98.4 (60/61) 100.0 (35/35) 
Neoplasia vs. Squamous 97.5 (77/79) 97.9 (47/48) 96.8 (30/31) 97.9 (47/48) 96.8 (30/31) 

Neoplasia vs. NDBE  87.5 (98/112) 76.7 (33/43) 94.2 (65/69) 89.2 (33/37) 86.7 (65/75) 
 

k-fold cross-validation (k=5) was used during training 
NDBE, non-dysplastic Barrett’s esophagus. 
a In 2-way comparisons, the class in italics is the target for purposes of classification performance metric. 

 
  



Supplementary Table 4 | Performance of Convolutional Neural Network (CNN)-based 
Classification of Tissue Attenuation Spectra in Training Set 
Results from the training set used to train the CNN for which classification results are presented in the 

main manuscript. 
 

 Classification Performance 

Comparison 
Accuracy 
% (n/total) 

Sensitivity 
% (n/total) 

Specificity 
% (n/total) 

Positive 
Predictive Value 

% (n/total) 

Negative 
Predicative Value 

% (n/total) 

3-way Classification      

Squamous 98.8 (565/572) 99.3 (136/137) 98.6 (429/435) 95.8 (136/142) 99.8 (429/430) 
NDBE 97.7 (559/572) 98.1 (252/257) 97.5 (307/315) 96.9 (252/260) 98.4 (307/312) 

Neoplasia 97.6 (558/572) 93.8 (167/178) 99.2 (391/394) 98.2 (167/170) 97.3 (391/402) 
      

 

NDBE, non-dysplastic Barrett’s esophagus. 

  



Supplementary Table 5 | Performance of Convolutional Neural Network (CNN)-based 
Classification of Tissue Attenuation Spectra for Different k-fold Cross Validation 
 

 Classification Performance 

Comparison 
Accuracy 
% (n/total) 

Sensitivity 
% (n/total) 

Specificity 
% (n/total) 

Positive Predictive 
Value 

% (n/total) 

Negative Predicative 
Value 

% (n/total) 
k = 2 

train      
Squamous 96.2 (550/572) 93.4 (128/137) 97.0 (422/435) 90.8 (128/141) 97.9 (422/431) 

NDBE 86.9 (497/572) 88.3 (227/257) 85.7 (270/315) 83.5 (227/272) 90.0 (270/300) 
Neoplasia 86.5 (495/572) 73.0 (130/178) 92.6 (365/394) 81.8 (130/159) 88.4 (365/413) 

 
test 

     

Squamous 97.2 (139/143) 95.5 (21/22) 97.5 (118/121) 87.5 (21/24) 99.2 (118/119) 
NDBE 83.2 (119/143) 90.5 (57/63) 77.5 (62/80) 76.0 (57/75) 91.2 (62/68) 

Neoplasia 81.8 (117/143) 65.5 (38/58) 92.9 (79/85) 86.4 (38/44) 79.8 (79/99) 
k = 3 

train      
Squamous 97.9 (560/572) 97.1 (133/137) 98.2 (427/435) 94.3 (133/141) 99.1 (427/431) 

NDBE 89.7 (513/572) 93.8 (241/257) 86.3 (272/315) 84.9 (241/284) 94.4 (272/288) 
Neoplasia 89.3 (511/572) 74.2 (132/178) 96.2 (379/394) 89.8 (132/147) 89.2 (379/425) 

 
test 

     

Squamous 97.2 (139/143) 95.5 (21/22) 97.5 (118/121) 87.5 (21/24) 99.2 (118/119) 
NDBE 85.3 (122/143) 93.7 (59/63) 78.8 (63/80) 77.6 (59/76) 94.0 (63/67) 

Neoplasia 85.3 (122/143) 69.0 (40/58) 96.5 (82/85) 93.0 (40/43) 82.0 (82/100) 
k = 4 

train      
Squamous 97.9 (560/572) 95.6 (131/137) 98.6 (429/435) 95.6 (131/137) 98.6 (429/435) 

NDBE 92.0 (526/572) 93.4 (240/257) 90.8 (286/315) 89.2 (240/269) 94.4 (286/303) 
Neoplasia 92.0 (526/572) 83.7 (149/178) 95.7 (377/394) 89.8 (149/166) 92.9 (377/406) 

 
test 

     

Squamous 96.5 (138/143) 90.9 (20/22) 97.5 (118/121) 87.0 (20/23) 98.3 (118/120) 
NDBE 83.2 (119/143) 88.9 (56/63) 78.8 (63/80) 76.7 (56/73) 90.0 (63/70) 

Neoplasia 82.5 (118/143) 69.0 (40/58) 91.8 (78/85) 85.1 (40/47) 81.2 (78/96) 
k = 5 

train      
Squamous 98.3 (562/572) 93.4 (128/137) 99.8 (434/435) 99.2 (128/129) 98.0 (434/443) 

NDBE 93.9 (537/572) 89.1 (229/257) 97.8 (308/315) 97.0 (229/236) 91.7 (308/336) 
Neoplasia 92.5 (529/572) 96.1 (171/178) 90.9 (358/394) 82.6 (171/207) 98.1 (358/365) 

 
test 

     

Squamous 97.2 (139/143) 90.9 (20/22) 98.3 (119/121) 90.9 (20/22) 98.3 (119/121) 
NDBE 85.3 (122/143) 85.7 (54/63) 85.0 (68/80) 81.8 (54/66) 88.3 (68/77) 

Neoplasia 85.3 (122/143) 79.3 (46/58) 89.4 (76/85) 83.6 (46/55) 86.4 (76/88) 
k = 6 

train      
Squamous 99.3 (568/572) 99.3 (136/137) 99.3 (432/435) 97.8 (136/139) 99.8 (432/433) 

NDBE 97.2 (556/572) 96.9 (249/257) 97.5 (307/315) 96.9 (249/257) 97.5 (307/315) 
Neoplasia 96.9 (554/572) 94.4 (168/178) 98.0 (386/394) 95.5 (168/176) 97.5 (386/396) 

 
test 

     

Squamous 97.9 (140/143) 95.5 (21/22) 98.3 (119/121) 91.3 (21/23) 99.2 (119/120) 
NDBE 86.0 (123/143) 90.5 (57/63) 82.5 (66/80) 80.3 (57/71) 91.7 (66/72) 

Neoplasia 85.3 (122/143) 74.1 (43/58) 92.9 (79/85) 87.8 (43/49) 84.0 (79/94) 
k = 7 

train      
Squamous 99.8 (571/572) 99.3 (136/137) 100.0 (435/435) 100.0 (136/136) 99.8 (435/436) 

NDBE 94.8 (542/572) 96.9 (249/257) 93.0 (293/315) 91.9 (249/271) 97.3 (293/301) 
Neoplasia 94.6 (541/572) 87.6 (156/178) 97.7 (385/394) 94.5 (156/165) 94.6 (385/407) 

 
test 

     

Squamous 97.9 (140/143) 95.5 (21/22) 98.3 (119/121) 91.3 (21/23) 99.2 (119/120) 
NDBE 79.7 (114/143) 88.9 (56/63) 72.5 (58/80) 71.8 (56/78) 89.2 (58/65) 

Neoplasia 
 

79.0 (113/143) 60.3 (35/58) 91.8 (78/85) 83.3 (35/42) 77.2 (78/101) 

 

NDBE, non-dysplastic Barrett’s esophagus.  



Supplementary Table 6 | Performance of Convolutional Neural Network (CNN)-based 
Classification of Tissue Attenuation Spectra (for balanced dataset) 
 

 Classification Performance 

Comparison 
Accuracy 
% (n/total) 

Sensitivity 
% (n/total) 

Specificity 
% (n/total) 

Positive Predictive 
Value 

% (n/total) 

Negative 
Predicative Value 

% (n/total) 

3-way Classification      

Squamous 96.7 (87/90) 96.9 (31/32) 96.6 (56/58) 93.9 (31/33) 98.2 (56/57) 
NDBE 87.8 (79/90) 82.1 (32/39) 92.2 (47/51) 88.9 (32/36) 87.0 (47/54) 

Neoplasia 84.4 (76/90) 68.4 (13/19) 88.7 (63/71) 61.9 (13/21) 91.3 (63/69) 

2-way Classificationa      

NDBE vs. Squamous 97.1 (66/68) 97.3 (36/37) 96.8 (30/31) 97.3 (36/37) 96.8 (30/31) 
Neoplasia vs. Squamous 98.2 (54/55) 100.0 (18/18) 97.3 (36/37) 94.7 (18/19) 100.0 (36/36) 

Neoplasia vs. NDBE  72.4 (42/58) 50.0 (10/20) 84.2 (32/38) 62.5 (10/16) 76.2 (32/42) 
 

NDBE, non-dysplastic Barrett’s esophagus. 
a In 2-way comparisons, the class in italics is the target for purposes of classification performance metric. 

 

 
 
Supplementary Table 7 | Performance of k-Nearest-Neighbor-(KNN)-Based Classification of 
Tissue Attenuation Spectra (for balanced dataset) 
 

 Classification Performance 

Comparison 
Accuracy 
% (n/total) 

Sensitivity 
% (n/total) 

Specificity 
% (n/total) 

Positive 
Predictive Value 

% (n/total) 

Negative 
Predicative Value 

% (n/total) 

3-way Classification      

Squamous 95.6 (86/90) 90.6 (29/32) 98.3 (57/58) 96.7 (29/30) 95.0 (57/60) 
NDBE 82.2 (74/90) 76.9 (30/39) 86.3 (44/51) 81.1 (30/37) 83.0 (44/53) 

Neoplasia 82.2 (74/90) 68.4 (13/19) 85.9 (61/71) 56.5 (13/23) 91.0 (61/67) 

2-way Classificationa      

NDBE vs. Squamous 95.6 (65/68) 97.3 (36/37) 93.5 (29/31) 94.7 (36/38) 96.7 (29/30) 
Neoplasia vs. Squamous 90.9 (50/55) 88.9 (16/18) 91.9 (34/37) 84.2 (16/19) 94.4 (34/36) 

Neoplasia vs. NDBE  67.2 (39/58) 25.0 (5/20) 89.5 (34/38) 55.6 (5/9) 69.4 (34/49) 
 

k-fold cross-validation (k=5) was used during training 
NDBE, non-dysplastic Barrett’s esophagus. 
a In 2-way comparisons, the class in italics is the target for purposes of classification performance metric. 

 
 

 
 
 
 
 



Supplementary Table 8 | Performance of Support-Vector-Machine-(SVM)-Based Classification of 
Tissue Attenuation Spectra (for balanced dataset) 
 

 Classification Performance 

Comparison 
Accuracy 
% (n/total) 

Sensitivity 
% (n/total) 

Specificity 
% (n/total) 

Positive 
Predictive Value 

% (n/total) 

Negative 
Predicative Value 

% (n/total) 

3-way Classification      

Squamous 96.7 (87/90) 100.0 (32/32) 94.8 (55/58) 91.4 (32/35) 100.0 (55/55) 
NDBE 82.2 (74/90) 76.9 (30/39) 86.3 (44/51) 81.1 (30/37) 83.0 (44/53) 

Neoplasia 81.1 (73/90) 52.6 (10/19) 88.7 (63/71) 55.6 (10/18) 87.5 (63/72) 

2-way Classificationa      

NDBE vs. Squamous 98.5 (67/68) 100.0 (37/37) 96.8 (30/31) 97.4 (37/38) 100.0 (30/30) 
Neoplasia vs. Squamous 92.7 (51/55) 94.4 (17/18) 91.9 (34/37) 85.0 (17/20) 97.1 (34/35) 

Neoplasia vs. NDBE  69.0 (40/58) 50.0 (10/20) 78.9 (30/38) 55.6 (10/18) 75.0 (30/40) 
 

k-fold cross-validation (k=5) was used during training 
NDBE, non-dysplastic Barrett’s esophagus. 
a In 2-way comparisons, the class in italics is the target for purposes of classification performance metric.  
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