
RESEARCH ARTICLE

phastSim: Efficient simulation of sequence

evolution for pandemic-scale datasets

Nicola De MaioID
1☯*, William BoultonID

1☯¤a, Lukas WeilgunyID
1, Conor R. WalkerID

1,2¤b,

Yatish Turakhia3, Russell Corbett-DetigID
4,5, Nick GoldmanID

1

1 European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom,

2 Department of Genetics, University of Cambridge, Cambridge, United Kingdom, 3 Department of Electrical

and Computer Engineering, University of California San Diego, San Diego, California, United States of

America, 4 Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz,

California, United States of America, 5 Genomics Institute, University of California Santa Cruz, Santa Cruz,

California, United States of America

☯ These authors contributed equally to this work.

¤a Current address: School of Computing Sciences, University of East Anglia, Norwich, United Kingdom

¤b Current address: New York Genome Center, New York, New York, United States of America

* demaio@ebi.ac.uk

Abstract

Sequence simulators are fundamental tools in bioinformatics, as they allow us to test data

processing and inference tools, and are an essential component of some inference meth-

ods. The ongoing surge in available sequence data is however testing the limits of our bioin-

formatics software. One example is the large number of SARS-CoV-2 genomes available,

which are beyond the processing power of many methods, and simulating such large data-

sets is also proving difficult. Here, we present a new algorithm and software for efficiently

simulating sequence evolution along extremely large trees (e.g. > 100, 000 tips) when the

branches of the tree are short, as is typical in genomic epidemiology. Our algorithm is based

on the Gillespie approach, and it implements an efficient multi-layered search tree structure

that provides high computational efficiency by taking advantage of the fact that only a small

proportion of the genome is likely to mutate at each branch of the considered phylogeny.

Our open source software allows easy integration with other Python packages as well as a

variety of evolutionary models, including indel models and new hypermutability models that

we developed to more realistically represent SARS-CoV-2 genome evolution.

Author summary

One of the most influential responses to the SARS-CoV-2 pandemic has been the wide-

spread adoption of genome sequencing to keep track of viral spread and evolution. This

has resulted in vast availability of genomic sequence data, that, while extremely useful and

promising, is also increasingly hard to store and process efficiently. An important task in

the processing of this genetic data is simulation, that is, recreating potential histories of

past and future virus evolution, to benchmark data analysis methods and make statistical

inference. Here, we address the problem of efficiently simulating large numbers of closely

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: De Maio N, Boulton W, Weilguny L,

Walker CR, Turakhia Y, Corbett-Detig R, et al.

(2022) phastSim: Efficient simulation of sequence

evolution for pandemic-scale datasets. PLoS

Comput Biol 18(4): e1010056. https://doi.org/

10.1371/journal.pcbi.1010056

Editor: Ville Mustonen, University of Helsinki,

FINLAND

Received: September 24, 2021

Accepted: March 25, 2022

Published: April 29, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010056

Copyright: © 2022 De Maio et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code and data

used for this project are available at https://github.

com/NicolaDM/phastSim. phastSim can be easily

installed across most platforms (see PyPI

https://orcid.org/0000-0002-1776-8564
https://orcid.org/0000-0002-8258-4673
https://orcid.org/0000-0001-6459-0431
https://orcid.org/0000-0001-5617-5086
https://orcid.org/0000-0001-6535-2478
https://orcid.org/0000-0001-8486-2211
https://doi.org/10.1371/journal.pcbi.1010056
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010056&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010056&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010056&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010056&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010056&domain=pdf&date_stamp=2022-05-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010056&domain=pdf&date_stamp=2022-05-11
https://doi.org/10.1371/journal.pcbi.1010056
https://doi.org/10.1371/journal.pcbi.1010056
https://doi.org/10.1371/journal.pcbi.1010056
http://creativecommons.org/licenses/by/4.0/
https://github.com/NicolaDM/phastSim
https://github.com/NicolaDM/phastSim

related genomes, similar to those sequenced during SARS-CoV-2 pandemic, or indeed to

most scenarios in genomic epidemiology. We develop a new algorithm to perform this

task, that provides not only computational efficiency, but also extreme flexibility in terms

of possible evolutionary models, allowing variation in mutation rates, non-stationary evo-

lution, and indels; all phenomena that play an important role in SARS-CoV-2 evolution,

as well as many other real-life epidemiological scenarios.

This is a PLOS Computational Biology Methods paper.

Introduction

Sequence evolution simulation is important for many aspects of bioinformatics [1]. Its most

ubiquitous applications are for testing and comparing the performance of various essential

tools (such as alignment, phylogenetic, and molecular evolution inference software, see e.g.

[2–4]). However, simulating sequence evolution is also often used for testing hypotheses (e.g.

[5]) and for inference, either for example through Approximate Bayesian Computation [6, 7],

see [8, 9], or, more recently, using deep learning, see [10–12].

Many simulators address the task of simulating gene trees, or ancestral recombination

graphs, as well as simulating evolution along these trees (e.g. [13–16]). Instead, here we focus

on the problem of generating sequences given an input tree, as done by “phylogenetic” simula-

tors (e.g. [17–19]). Realistic simulation of sequence evolution along a phylogenetic tree is

essential, for example, for assessing and improving our methods for inference of SARS-CoV-2

phylogenies, which is a largely still open problem [20]. One important factor is the large num-

bers of available genome sequences for SARS-CoV-2 (> 3, 000, 000 in the GISAID database

[21] as of September 2021). Despite this, there are currently no available simulation frame-

works capable of simulating the scale and complex evolutionary features of SARS-CoV-2 and

similar genome datasets. For this reason, we focus on the issue of simulating realistic substitu-

tion patterns for large datasets of closely related samples, as broadly observed in genomic epi-

demiology sequence data, and for arbitrarily complex substitution and indel models.

Here we show that sequence simulation for such large numbers of genomes is exceedingly

computationally demanding for existing software. Complex evolutionary models, for example

codon substitution models and rate variation, can cause significant further slow-downs. Fur-

thermore, many existing methods do not allow the simulation of mutational patterns realistic

for SARS-CoV-2, such as non-stationary and highly variable mutational processes [22–24], or

don’t allow the simulation of indels. We propose a new approach to efficiently simulate the

evolution of many closely related genomes along a phylogenetic tree and under general

sequence evolution models. Our approach simulates one mutation (substitution or indel) at a

time using the Gillespie method [25], and is further tailored to reduce time and memory

demand by efficiently representing and storing information regarding non-mutated positions

of the genome. Furthermore, we use a multi-layered search tree structure to efficiently sample

mutation events along the genome even when each position has its own mutation rate, and to

efficiently traverse the phylogenetic tree and avoid redundant operations. Our approach

empowers extremely flexible and fine-grained evolutionary models. For example, non-station-

ary models are specifiable, with each nucleotide position of the genome assigned a distinct

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 2 / 24

repository https://pypi.org/project/phastSim/)

using the pip installer.

Funding: NDM, WB, LW, CRW, and NG were

supported by the European Molecular Biology

Laboratory (EMBL), https://www.embl.org/. CRW

was funded by the National Institute of Health

Research (NIHR https://cambridgebrc.nihr.ac.uk)

Cambridge Biomedical Research Centre, grant

number IS-BRC-1215- 20014. R.C.-D. was

supported by funding from the Schmidt Futures

Foundation https://schmidtfutures.com/, by an

Alfred P. Sloan foundation https://sloan.org/

fellowship, and by NIH/NIGMS https://www.nigms.

nih.gov/ grant R35GM128932. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010056
https://pypi.org/project/phastSim/
https://www.embl.org/
https://cambridgebrc.nihr.ac.uk
https://schmidtfutures.com/
https://sloan.org/
https://www.nigms.nih.gov/
https://www.nigms.nih.gov/

mutational profile, and each codon a distinct nonsynonymous/synonymous rate ratio. Simi-

larly flexible indel models are also specifiable.

Materials and methods

We consider the problem of simulating evolution of a DNA (or RNA) sequence along a speci-

fied input phylogenetic tree, and under a given evolutionary model. Our simulation approach

is based on the Gillespie method [25], as is typically used in molecular evolution simulators

[18, 19]. We assume that each position of the genome (either nucleotide or codon) evolves

independently of the others, and under a time-homogeneous substitution process; that is, the

rates of evolution at each position are initially specified by the user or are sampled randomly

by the simulator. We focus on the efficient simulation of sequence evolution for large phyloge-

netic trees with short branches: we assume that only a few mutations happen on each branch

across the genome, which is typical for genomic epidemiology, and in particular for SARS-

CoV-2 [26].

Simple approach

If we assume that evolutionary rates are homogeneous across the genome, it is simple to use

the Gillespie approach efficiently in this scenario by adopting an efficient representation of

ancestral genomes in terms of differences with respect to a root genome [27]. As a very simpli-

fied example, let’s consider the case in which there is no selective force at play, mutation rates

are constant across the genome, there are no indels, and all bases mutate into all other bases at

the same rate (JC69 model [28] with equal nucleotide frequencies). Throughout the manu-

script, we will not assume equilibrium or stationarity in sequence evolution, but instead

assume that we are given a genome at the root of the phylogeny, which we then evolve down

the tree according to given rates.

In this simplified scenario, the total mutation rate across the genome is equal to the muta-

tion rate for one base, 3r, times the genome length (which we assume constant), L. Starting

from the root and its genome, we visit each branch of the tree one at the time in preorder tra-

versal. For each branch of the tree, we consider its length tb, and we recursively sample a time

for the next mutation from an exponential distribution with rate parameter 3rL. If the sampled

time t is over tb, we move to the next branch. Otherwise, we decrease tb by t and we sample a

mutation event. In the considered scenario, this simply means sampling one position of the

genome at random (a random integer number 1� i� L), and then a random allele b, different

from the current allele at position i, to mutate into. Additional steps are also required to keep

track of mutations which have already occurred and allow them to further mutate, for exam-

ple, possibly reversing a mutated allele back to the reference allele. We track each sampled

mutation by adding it to a list of mutations for the current branch. It is worth noting however

that there are more efficient ways to keep track of mutations that have already occurred, which

we discuss in subsequent sections.

A pseudocode description of the algorithm is given in Algorithm 1. So overall, the total cost

of this simple algorithm is constant in genome size, and is linear in the number of tips N. It

does however scale with the number of mutation events (total tree length) M = O(Nl) where l
is the average number of mutations per branch. The initialization step has cost O(N) in order

to read the phylogenetic tree, and further O(L) with more complex models in order to keep

track of the positions of different alleles. Performing the simulations has cost O(M log(N) + M2

log(N)/N) = O(l2 N log(N)); the main cost here is to screen previous mutation events at each

new mutation, and this can be significantly reduced as explained in the next section. There is a

caveat however. The default output of our software phastSim is a concise representation of the

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 3 / 24

https://doi.org/10.1371/journal.pcbi.1010056

simulated sequences. If, however, we want to produce a file containing the full alignment in

FASTA or PHYLIP formats, the memory and time cost of the algorithm will become O(NL).

Algorithm 1 Simple algorithm for one phylogenetic branch.
Here evolution on one branch is considered. tb is initialized as the
length of the considered branch. r is the mutation rate from one
nucleotide to any other nucleotide. L is genome size. ref[i] is the
reference allele at position i. “Node” is the child node of the cur-
rently considered branch.
Sample t (the time to next mutation event) from an exponential dis-

tribution with rate parameter 3rL.
while t < tb do
Sample a random integer 0 < i � L
if i is not a position previously mutated in an ancestor of Node

then
a ref[i].

else
a is the current allele for Node

end if
Sample a random new allele b 6¼ a.
Add mutation (i, a, b) to the list of mutations of Node.
Update current allele for Node at position i as b.
tb tb − t
Sample t from an exponential distribution with parameter 3rL.

end while
In classical implementations of sequence evolution simulators [17], for each node of the

tree we need to update each base of the genome one at the time, therefore incurring in cost O
(NL). Therefore, when the number of expected mutations is M� NL we expect an advantage

in using this approach.

A considerable limitation of the above simple approach is that we assume that rates are the

same across the genome, and this is hardly realistic [29, 30]. We implemented an extension of

this algorithm above which accounts for both an arbitrary nucleotide substitution model

(UNREST [31]), and for rate variation across the genome in terms of a finite number of rate

categories. To achieve this, we extended the algorithm above to keep track of which positions

of the genome have which rates. This allows us to efficiently calculate total mutation rates for

each class of sites, and to efficiently sample sites within a class.

We also implemented a new model of rate variation in order to better fit the patterns of

hypermutability observed in SARS-CoV-2. In this model, small proportions of hypermutable

sites are given a (possibly much) higher mutation rate. At an hypermutable site, only one spe-

cific mutation rate (from one nucleotide to one other nucleotide) is enhanced. For example,

one such site with hypermutability might have only the G!T mutation rate increased

100-fold, while all other rates at that site remain the same. This is to model the effects observed

in SARS-CoV-2 which are possibly attributable to APOBEC and ROS activity (or other still

unclear mechanisms) [22, 23].

However, as the number of site classes increases, and as the number of alleles increase (for

example when considering codon models), the efficiency of the extension of the simple

approach described above deteriorates, especially when each site of the genome is given differ-

ent evolutionary rates. For this reason, we developed a more complex (“hierarchical”) algo-

rithm that remains efficient in light of rate variation, with only a small efficiency sacrifice

relative to the simple method in the scenario of no rate variation. We allow phastSim users to

choose between the simple approach or the more complex hierarchical one, that we describe

below. Advanced features, for example simulation of indels, are only implemented with the

hierarchical algorithm.

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 4 / 24

https://doi.org/10.1371/journal.pcbi.1010056

Hierarchical approach

Binary genome search tree. We first describe the structure and algorithm that allow us to

efficiently sample a mutation event along the genome when each position might have a distinct

mutation rate. This structure needs to be efficiently updatable following a mutation event; in

fact, a mutation event changes the allele at a position of the genome, and therefore also its

mutation rate. This is very similar to the problem of sampling from a categorical distribution

with many elements, where the probabilities can be slightly modified at each sample [32]. A

Huffman tree [33] would be close to optimal for this task, however, here we implement a

binary search tree, which has a slightly higher expected cost [32] but allows us to more effi-

ciently model blocks of contiguous nucleotides, and therefore to efficiently simulate indels.

In our “genome” search tree (which is distinct from, and should not be confused with, a

phylogenetic tree), each node corresponds to a contiguous block of nucleotides along the

genome. The root node represents the whole genome, and contains a rate value corresponding

to the global mutation rate of the whole genome. The two children of the root correspond to

the first and the second half of the genome, respectively. There is no overlap between the

regions considered by each child node, and their union gives the region considered by the par-

ent node. Consequently, the sum of the rates of the children of a node is equal to the rate of the

node. Given this structure, we also refer to this binary search tree as the “genome” tree. A ter-

minal node of the genome search tree corresponds to one unit of the genome, either a base or

a codon, depending on the model we choose for simulations. A terminal node contains not

only information about the position of the unit along the genome, but also the reference allele

at this position and the mutation rates associated with it, to allow sampling of a specific muta-

tion event at the given position/node. A graphical representation of an example genome search

tree is depicted in Fig 1.

Sampling a mutation time is done as in the simple approach: sampling from an exponential

distribution with rate parameters determined by the total mutation rate at the root of the

genome search tree. Then, to sample a specific substitution event at a specific genome position,

we first sample a random value uniformly in [0, 1) and multiply it by the total mutation rate R.

Then, we traverse the tree from the root to the terminal node corresponding to the mutated

position, which takes log(L) time. Finally, once reaching the corresponding terminal node

(genome position) we choose a random substitution event affecting this position and corre-

spondingly a new allele a for this position. An example mutation sampling is depicted in Fig 1.

A pseudocode description of this algorithm is given in Algorithm 2. The cost of this approach

is linear in the number of alleles, making it much more efficient than classical simulation

methods based on matrix exponentiation when large state spaces (e.g. codon models) are con-

sidered. Furthermore, the computation cost for simulating under a codon model can be fur-

ther reduced by considering that typically a codon model only allows a maximum of 9

substitution events from any codon, so at each terminal node we only need to consider a maxi-

mum of 9 events and rates at any time. Thanks to this, the cost of running a codon model with

this approach is similar to the cost of running a nucleotide model.

Algorithm 2 Sampling of a substitution event along a genome search tree, and updating the

genome search tree.
We assume we are given node “Root”, the root of a genome search tree
structure. For any given genome node, “Node”, Node.rate represents the
corresponding total subtree rate. Node.children represents the list of
its child nodes (2 children for internal nodes, 0 for terminal nodes).
Node.parent is the parent node of “Node”. Node.allele is its current
allele. Node.rates (which is only allocated for terminal nodes) repre-
sents the 2-dimensional matrix of mutation rates (from any allele to

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 5 / 24

https://doi.org/10.1371/journal.pcbi.1010056

any other allele) at the given position, and for simplicity here we
assume that a rate of an allele into itself (a matrix diagonal entry)
is 0; for codon models, for efficiency the rows of the matrix are only
allocated and filled when they are needed for the first time. Node.
position (only defined for terminal nodes) refers to the genome posi-
tion represented by the node. The list “mutations” is used to record
the mutation events simulated on the considered phylogenetic branch.
The function “sample(rates)” samples a rate from a list proportional
to its value. We are also given a random number 0 � R < Root.rate for
which we want to sample the corresponding mutation event.
Node Root
while Node is not terminal do
for Child in Node.children do
if Child.rate < R then
R R − Child.rate

else
Node.rate Node.rate − Child.rate

Fig 1. Example genome search tree and its use. An example genome search tree for ancestral genome ACGGT. Blue nodes

are terminal and red nodes are internal. Inside each node we represent on top the genome positions represented by the node; at

the center inside terminal nodes we show the allele of the node; at the bottom of nodes is their total rate. Under each terminal

node we show the example relevant mutation rates. The path highlighted in orange shows an example sampling of one

mutation event. A parameter R is assigned an initial random number sampled uniformly between 0 and the total rate 8.1, in

this case it is R = 4.7. As we move downward, the value of R can decrease, as described in Algorithm 2, determining which site

will mutate and how. Here, an initial R = 4.7 results in the sampling of a G!T mutation at genome position 4.

https://doi.org/10.1371/journal.pcbi.1010056.g001

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 6 / 24

https://doi.org/10.1371/journal.pcbi.1010056.g001
https://doi.org/10.1371/journal.pcbi.1010056

Node Child
break

end if
end for

end while
oldAllele Node.allele
Node.allele sample(Node.rates[oldAllele])
mutations.append([Node.position,oldAllele,Node.allele])
Node.rate ∑bNode.rates[Node.allele][b]
NewRate Node.rate
while Node.parent is not null do
Node Node.parent
Node.rate Node.rate + NewRate
NewRate Node.rate

end while
As mentioned before, once a mutation event is sampled, we need to modify the sampling

process so that the change in allele at the mutated position is taken into account, since this

change usually affects local and global mutation rates (a rare exception is for example when

substitution rates are all equal). Modifying our genome search tree following a substitution

event is both simple and efficient: we simply need to modify the rates and allele at the mutated

terminal node, and then update the rate of all ancestors of this terminal node accordingly.

Algorithm 2 for example describes how to sample a substitution event from a genome search

tree as well as how to update the genome search tree accordingly. Again, this can be done in

log(L) time for each new substitution event sampled. However, while this is efficient for simu-

lating evolution along a temporal line, that is, along a single branch of the phylogeny descen-

dant from the root, it becomes inefficient for simulating evolution along a phylogenetic tree.

This is because, if we modify the tree, then we cannot use it as it is for the sibling nodes. In

other words, when we reach a split in the phylogenetic tree, and we have two children of the

same phylogenetic node, we need to pass the same genome search tree of the phylogenetic par-

ent node to both phylogenetic children. However, we can’t only pass a pointer to the same tree

to both children, because evolving along one branch leading to one sibling would modify the

genome search tree also for the other sibling. If we take the approach of duplicating the

genome search tree at each phylogenetic split, we end up with a cost O(NL), which we are try-

ing to avoid. For this reason, we devise an alternative, hierarchical, multi-layered approach to

evolving a genome search tree, described below. Later on in the text we also describe the exten-

sion of our approach and of the genome search tree structure to simulate indels.

Hierarchical, multi-layer evolving genome search tree. In order to use our genome

search tree structure to sample mutations along a phylogenetic tree, we add a further “vertical”

dimension to it. At each branch of the phylogenetic tree, instead of modifying a genome search

tree, we take the approach of building on it, without modifying the starting genome search tree

nodes, so that the original genome search tree is not lost but instead is preserved at “layer 0” of

our multi-layer structure. When we sample a mutation, we create a few new genome search

tree nodes in the corresponding layer of the structure, instead of not an entire new genome

search tree. By doing this, we can effectively adapt a (multi-layer) genome search tree as new

mutations are sampled without losing the original genome search tree. This means that when

we can pass the same genome search tree to two children of a phylogenetic node without need-

ing to duplicate the genome search tree structure. Instead, we simply remove (de-allocate, or

ignore) the genome search tree nodes that have been added to other layers by the descendants

of the first child node, and pass the same genome search tree structure to the two considered

child nodes. A graphical representation of an example multi-layer genome search tree and its

evolution is given in Fig 2.

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 7 / 24

https://doi.org/10.1371/journal.pcbi.1010056

We start with a genome search tree at the phylogenetic root node; additional nodes are then

added at further layers. A genome search tree layer n represents the genome nodes specific to a

particular depth of the phylogenetic tree; phylogenetic nodes closer to the root (in terms of

number of branches that need to be traversed from the root) will be associated with a lower n,

Fig 2. Example of multi-layer genome search tree and its evolution. We track the evolution of the multi-layer genome search tree starting from the genome

search tree of Fig 1. Colors for the genome search tree are the same as in Fig 1 (right side of each panel). On the left side of each panel, we show an extract of the

phylogenetic tree containing three nodes (“P” for parent, which in this example is the root of the phylogeny, and “L” and “R” for left and right node). “L” has

further descendants, but we don’t show them here and only focus on this triplet of nodes as an example. The green arrow along the phylogenetic tree shows the

current step of the preorder traversal being considered by the given panel. Black arrows show past steps. Vertical dashed lines in the multi-layer genome search

tree connect nodes that represent the same portions of the genome but that are in different layers. “L0” stands for “Layer 0” and “L1” for “Layer 1”, etc. A At the

phylogenetic root “P” we initialize the genome search tree for layer 0. B As we move to child “L”, a new substitution is sampled (as in Fig 1) and 3 corresponding

genome nodes are created in layer 1. These nodes correspond to the nodes in the original genome search tree whose rate is affected by the new mutation. C As we

traverse the subtree of the descendants of L, new nodes and mutations might be added in the layers below. D We are finished traversing the subtree of the

descendants of L, and we return to L, at which point all nodes in layer below 1 have either been removed or have become irrelevant. E We return to P, at which

point the genome search tree nodes previously added layer 1 are also ignored or deleted. F We move from P to R, and in doing so new mutation events might be

sampled and the corresponding genome nodes might be added to layer 1 (new genome search tree nodes corresponding to 1 new substitution are shown in the

new layer 1).

https://doi.org/10.1371/journal.pcbi.1010056.g002

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 8 / 24

https://doi.org/10.1371/journal.pcbi.1010056.g002
https://doi.org/10.1371/journal.pcbi.1010056

and those more distant from the root with higher n. All the initial nodes of the original genome

search tree belong to layer 0, the layer corresponding to the phylogenetic root. Then, as we

move from the phylogenetic root to its first child, we add nodes to the tree in layer 1, repre-

senting the consequences of mutation events happening along the branch between the phylo-

genetic root and the first child. Nodes in layer 0 only point to nodes in layer 0, and never to

nodes in other layers. More generally, nodes in layer n only point to nodes in layers m� n.

Every time the multi-layer genome search tree is passed from phylogenetic parent (layer n) to

child (layer n + 1), new nodes are added to the corresponding layer (n + 1) if mutation events

occur on the corresponding phylogenetic branch.

We traverse the phylogenetic tree in preorder traversal, so, starting from the root, we move

to the first child, to which we pass the initial genome search tree, add new layers, then do the

same for this child’s children. For each new mutation occurring on this phylogenetic branch

connecting the root and its first child, we traverse the genome search tree, and every time we

would modify the genome search tree (to update the mutation rates following a change of allele

at a position) we instead create new genome search tree nodes in the child layer. Once we have

traversed the whole phylogenetic subtree of the first child of the root, we have to move to sec-

ond child of the root. This operation does not incur the cost of duplicating any part of the

genome search tree, as we only need to pass to the second child the pointer to the root of layer

0 of the hierarchical genome search tree. Similarly, at any internal phylogenetic node at layer

n, to both children we pass the pointer to the root of layer n of the genome search tree. The

only additional step which might be required is the de-allocation of nodes in layer n + 1 as we

move from one node to its sibling (thanks to our preorder traversal, the nodes currently in and

below this layer will not be used again), but this step at most only slows simulations by a small

constant factor.

At the start of the simulations for each branch, moving from layer n to n + 1, we first create

a new genome root node for layer n + 1. This root initially points to the same children as the

genome root at layer n, and it also has the same total rate. After creating a new layer root, we

sample mutation events for the current phylogenetic branch. To sample mutations, we follow

the binary search tree determined by the root of layer n + 1. As a new mutation event is picked,

we either create new layer n + 1 nodes, or modify existing layer n + 1 nodes. When sampling a

new mutation, every time we reach a node in the genome search tree, we either modify the rate

of the node, if it’s in layer n + 1, or we create a new layer n + 1 node, if the original node was in

a different layer. The new node is given at first the same children as the original node. When a

terminal node is reached, we calculate its new rates (unless they have already been created

before for some other node in the phylogenetic tree, in which case we just retrieve them from a

dictionary) and total rate, and we pass the new total rate to its parent node, which uses it to

update its own total rate, and so on. In total, the cost of sampling a new mutation event and

updating the multi-layered structure is O(log(L)). A sketch of the mutation sampling process

and multi-layer genome search tree update is given in Algorithm 3. The total cost of the algo-

rithm is then O(L + N + M log(L)), where the addendum L is due to the initial creation of the

layer 0 genome search tree, and N is due to the tree traversing process. In a scenario like

SARS-CoV-2 genomic epidemiology, this can lead to dramatic reduction in computational

demand compared to the standard O(NL) in the field, since M appears typically not distant

from N [22–24]. We give a summary of the global hierarchical method in Algorithm 4.

Algorithm 3 SampleMutation(Node,Layer,R): Sampling of a mutation event along a multi-

layer genome search tree.
This function is initially run on the root node “Root” of a genome
search tree for layer “Layer”. Parameters are as in Algorithm 2; in
addition, Node.layer represents the layer of the considered node.

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 9 / 24

https://doi.org/10.1371/journal.pcbi.1010056

While below we simplify a few details, in reality we don’t recalculate
rates at every mutation, but we only calculate them the first time
they are needed, and then store them in dictionaries.
if Node.layer 6¼ Layer then
create a new node NewNode copy of Node
NewNode.layer Layer
Node NewNode

end if
if Node is terminal then
sample mutation event from Node.allele using Node.rates and R.
expand if needed Node.rates, and update Node.rate and Node.allele
return Node

else
for c in Length(Node.children) do
Child Node.children[c]
if Child.rate < R then
R R − Child.rate

else
Node.rate Node.rate − Child.rate
NewChild SampleMutation(Child,Layer,R) {note that SampleMu-

tation is the current function, so this function is called
recursively}

Node.children[c] NewChild
Node.rate Node.rate + NewChild.rate
return Node

end if
end for

end if
Algorithm 4 SimulatePhyloNode(Node,GenomeNode,Layer): Hierarchical algorithm for

simulating sequence evolution along a branch of the phylogenetic tree.
Here evolution on a branch of the phylogenetic tree is considered. The
branch is passed through Node, which represents the child node of the
branch. The branch length is Node.length. Simulation of the whole phy-
logeny is performed by calling SimulatePhyloNode(Root,GenomeRoot,0),
where Root is the root of the phylogenetic tree (we assume Root.
length = 0) and GenomeRoot is the root of the initial genome search
tree for layer 0. This layer 0 genome search tree is created by consid-
ering the genome of the phylogenetic root, which is typically either
sampled at random or read from a reference genome.
Sample t (the time to next mutation event) from an exponential dis-

tribution with rate parameter GenomeNode.rate
CurrentTime t
while CurrentTime < Node.length do
Sample a random uniform vaule 0 � R < GenomeNode.rate
GenomeNode SampleMutation(GenomeNode,Layer,R) {note that this

is the function defined by Algorithm 3}
Sample t (the time to the next mutation event) from an exponential

distribution with rate parameter GenomeNode.rate
CurrentTime CurrentTime + t

end while
for Child in Node.children do
run SimulatePhyloNode(Node,GenomeNode,Layer+1) {note that this

function is the one defined in the current Algorithm, which is there-
fore recursive in nature}
end for
if needed, de-allocate all nodes of layer Layer from GenomeNode down

to its descendants. {Because genome nodes with layer Layer are

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 10 / 24

https://doi.org/10.1371/journal.pcbi.1010056

descendant only from nodes with layer Layer, we do not need to traverse
the whole multi-layer genome search tree, but only its layer Layer.}

Indels

We further extended the multi-layer genome search tree approach to efficiently simulate inser-

tions and deletions. Each leaf on the genome search tree is assigned a deletion rate, insertion

rate, and substitution rate, denoted Rd, Ri, and Rs respectively, and the total mutation rate for

the leaf will be Rd + Ri + Rs. The substitution rate Rs itself is the sum of all substitution rates

from the current allele of the leaf. Insertions are modeled as occurring on the right (30 end) of

the sampled position; to model insertion at the 50 end of the genome, a dummy terminal

genome search tree node is employed representing the leftmost end of the genome, and is ini-

tialized with Rs = Rd = 0 but with non-zero Ri. Just as with the substitution rates, which can be

site specific, Rd and Ri can be drawn from a gamma distribution, or can be constant across the

genome. When a mutation event is sampled at a node, it will be sampled as a deletion, an inser-

tion, or a substitution proportionally to Rd, Ri and Rs.

Our software allows for indels with lengths drawn from a number of parametric distribu-

tions following the options allowed with INDELible, see Table 1 for an overview of the various

distributions that have been implemented. Sampled indels have always length� 1.

Below we explain in more detail the algorithm used to efficiently simulate insertions and

deletions using multi-layered genome search trees. In short, insertion events are simulated by

adding new small subtrees to the genome search tree in the current layer. Deletion events are

instead simulated by setting substitution and indel rates to 0 in deleted nodes.

Insertion algorithm. The algorithms for simulating insertions and deletions mostly pro-

ceed as the one simulating substitutions (Algorithm 3) in that we traverse the genome search

tree to find the terminal node “Leaf” affected by the next sampled mutation. We then sample

the type of the next mutation event (insertion, deletion, or substitution) proportional to the

corresponding mutation rates Ri, Rd and Rs of “Leaf”. The process for simulating a substitution

remains the same as before. If instead a new insertion event is simulated, we sample a length l
for the inserted material from the corresponding prior distribution, and then add a new sub-

tree to the genome search tree as detailed in Algorithms 5 and 6.

Algorithm 5 insertNode(Node, l): this function inserts a new genome subtree at the given

terminal genome search tree node “Node” at which the insertion is sampled, given the inser-

tion length l. We assume that Node is part of the current layer, and that new nodes are created

at the current layer.
insertionRootNode populateGenomeTree(l) {This calls algorithm 6

to generate an insertion subtree of size l.}
Create a new genome search tree internal node newInternalNode
newInternalNode.parent Node.parent
Replace Node with newInternalNode as child of Node.parent.
Node.parent newInternalNode

Table 1. Indel length distribution options.

Distribution Parameters P(X = n), n> 0

Geometric p (1 − p)n−1p
Negative Binomial p, k kþn� 1

n

� �
ð1 � pÞn� 1pk

Zeta a n−a/z(a)

Lavalette a, k kn
k� nþ1

� �� a
for n � k

Discrete vector v vn

https://doi.org/10.1371/journal.pcbi.1010056.t001

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 11 / 24

https://doi.org/10.1371/journal.pcbi.1010056.t001
https://doi.org/10.1371/journal.pcbi.1010056

insertionRootNode.parent newInternalNode
newInternalNode.children [Node, insertionRootNode]
newInternalNode.rate Node.rate + insertionRootNode.rate

Algorithm 6 populateGenomeTree(l): this function recursively creates a new genome sub-

tree for a given insertion of length l, and returns the root node of the subtree.
Create a new node genome search tree node Node.
if l = 1 then
Sample Node.allele from a prior distribution (typically the refer-

ence nucleotide or codon frequencies).
Sample mutation rates Ri, Rd, Rs for Node.
Node.rate Ri + Rd + Rs

else
leftL bl/2c
rightL l—leftL
leftNode populateGenomeTree(leftL)
rightNode populateGenomeTree(rightL)
leftNode.parent Node
rightNode.parent Node
Node.children [leftNode, rightNode]
Node.rate leftNode.rate + rightNode.rate

end if
return Node

If the user specifies a root genome, inserted nucleotides are randomly and independently

sampled from the root genome nucleotide frequencies; if the user does not specifies a root

genome, but instead specifies root nucleotide frequencies for phastSim to sample a random

root genome from them, then the same sampling is done for inserted sequences. The substitu-

tion model for each inserted nucleotide/codon is chosen at the time of insertion in the same

way as for the root genome (in particular also accounting for rate variation).

Note that the addition of new subtrees to the genome search tree will typically make it less

balanced, and a potentially less efficient search tree. In typical scenarios considered here, that

is, when divergence is low and all genomes are closely related to the root, the effect of this

imbalance on the overall search-efficiency of the genome search tree will be extremely minor.

Deletion algorithm. If the next mutation event at Leaf will instead be a deletion, again, we

first sample a deletion length l, and then we proceed to set to 0 the total mutation rate for node

Leaf and its following l − 1 positions of the genome in the current layer, ignoring positions

that are already deleted. The main subtlety of this approach is to avoid traversing the whole

genome search tree (incurring a cost of O(L) operations), to delete these l characters. Algo-

rithm 7 below performs this task efficiently employing at most O(l log(L)) operations. This

algorithm returns the number of characters deleted. If Leaf represents a position near the 30

end of the genome, the sampled deletion length might overflow past the end of the genome,

and so fewer than l positions might be effectively deleted.

Algorithm 7 deleteNodes(Rand,GenomeNode,Layer,RemainingDeletions): recursive algo-

rithm for deleting nodes of the genome search tree following a deletion event. It returns the

number of positions deleted. “Rand” is the random number that has been used to sample the

deletion event—here it’s used to direct the search to the first deleted positions and the follow-

ing ones.
if GenomeNode.isTerminal then
{Skip gap characters and only delete nodes with a non-gap symbol.}
if GenomeNode.allele 6¼ “-” then
GenomeNode.allele “-”
GenomeNode.rate 0
return 1

else

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 12 / 24

https://doi.org/10.1371/journal.pcbi.1010056

return 0
end if

else
deletedPositions 0
totalRate 0
for Child in GenomeNode.children do
if RemainingDeletions = 0 then
return 0

end if
if Rand > child.rate then
Rand = Rand—child.rate

else
if child.layer 6¼ Layer then
create newChild, copy of child in layer Layer.

else
newChild child

end if
newDeletions deleteNodes(Rand,newChild,Layer,

RemainingDeletions)
RemainingDeletions RemainingDeletions—newDeletions
deletedPositions deletedPositions + newDeletions
totalRate totalRate + newChild.rate

end if
end for
GenomeNode.rate totalRate
return deletedPositions

end if

Further details of the implementation

Substitution models. Thanks to our algorithm, we can allow any substitution model with-

out incurring a dramatic increase in computational demand, and without risking numerical

instability (which can sometimes be a problem with classical matrix exponentiation

approaches). Users can easily specify different nucleotide substitution matrices (e.g. JC [28],

HKY [34], or GTR [6]). By default, we adopt the most general nucleotide substitution model,

UNREST [31], using as default rates those we estimated from SARS-CoV-2 [22].

We also implemented codon models, which, with our hierarchical approach, come at only a

small additional computational demand compared to nucleotide models. To define substitu-

tion rates of codon models, we use an extension of the GY94 [35] model, and separately model

the nucleotide mutation process and the amino acid selection one. Unlike GY94 (which

assumes an HKY nucleotide mutation process), we allow any general nucleotide mutation pro-

cess as defined by an UNREST matrix. Then, nonsynonymous mutations rates are modified

by a single factor ω (see next section for variation of ω across codons). Under this model, a

substitution from codon c1 to codon c2 therefore has rate:

rc1!c2
¼

mn1!n2
; if c1 and c2 are synonymous and differ only by

nucleotides n1 and n2 at a position ;

omn1!n2
; if c1 and c2 are non‐synonymous and differ only by

nucleotides n1 and n2 at a position ;

0 ; if c1 and c2 differ by more than one nucleotide ;

ð1Þ

8
>>>>>>>>>><

>>>>>>>>>>:

where mn1!n2
is the mutation rate from nucleotide n1 to nucleotide n2.

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 13 / 24

https://doi.org/10.1371/journal.pcbi.1010056

We don’t allow, at this stage, instantaneous multi-nucleotide mutation events, or amino

acid substitution models, but we plan to address them in future extensions. A description of

currently implemented models and a comparison with those in other similar simulation soft-

ware is given in Table 2.

Models of rate variation. We consider four types of variation in rates across the genome.

These types can be used in combination, or separately, as required.

The first type of variation is changes in the position-specific mutation rate across the

genome. Every nucleotide position i in the genome (even when using a codon model) is

assigned its own mutation rate scaling factor γi. This means that, at position i, the mutation

rate from any nucleotide n1 to any other nucleotide n2 becomes gimn1!n2
. We allow two ways

to sample values of γi for each i. One way is to sample them from a continuous Gamma distri-

bution with parameters Γ(α, α), with α specified by the user; this results in each genome posi-

tion having a distinct γi. Alternatively, we allow the definition of discrete categories, with a

finite number of categories, each with its own proportion of sites and γ rate.

The second type of variation we model is variation in ω, with each codon position i across

the genome being given its own ωi. As with γi, values of ωi can either be sampled from a con-

tinuous Gamma or a finite categorical distribution.

Lastly, to accommodate the strong variation in mutation rates observed in SARS-CoV-2

[22, 23] attributable to APOBEC, ADAR, or ROS activity, we introduce a new model of rate

variation. This model allows, for a certain position, to have one specific mutation rate (from

one specific nucleotide to another specific nucleotide) enhanced by a certain amount μ. In this

case we only allow a categorical distribution, with the first category having no enhancement (μ
= 1) and the other categories having μ> 1. For any nucleotide position i that is assigned a

hypermutable category and therefore has μi> 1, we then sample uniformly a start nucleotide

ns and a destination nucleotide nd. The mutation rates mi
n1!n2

for position i then become:

mi
n1!n2

¼

gimn1!n2
; if n1 6¼ ns or n2 6¼ nd ;

gimimn1!n2
; otherwise :

8
<

:
ð2Þ

Rate normalization. We assume that, for the given input phylogenetic tree, branch

lengths represent expected numbers of substitutions per nucleotide (no matter if a nucleotide

or a codon model is used) for the root genome. As mutations accumulate across the phylogeny,

the total mutation rate of the genome might slightly change; this is particularly true because we

allow substitution models that are not at equilibrium. This also means that while branch

lengths near the root represent the expected numbers of substitutions per nucleotide, as one

moves down the tree the expected number of nucleotide substitutions expected on a branch

might not be a simple function of the branch length.

Table 2. A comparison of features of different sequence evolution simulation software packages.

phastSim Seq-Gen [17] INDELible [18] pyvolve [36]

Indels Yes No Yes No

Nucleotide Models � UNREST � GTR � UNREST � GTR

Codon Models Extended GY94 No GY94-style GY94, MutSel and MG94-style

Amino Acid Models No Yes Yes Yes

Hypermutability Yes No No No

https://doi.org/10.1371/journal.pcbi.1010056.t002

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 14 / 24

https://doi.org/10.1371/journal.pcbi.1010056.t002
https://doi.org/10.1371/journal.pcbi.1010056

Output formats. As default, our software creates an output file where it stores informa-

tion about which genome position evolved under which rate. It also creates a file where each

tip name is listed together with the mutations it contains that distinguish its genome from the

reference genome. In scenarios similar to SARS-CoV-2 datasets (where each genome is very

similar to the reference), this format requires much less space and time to generate than

FASTA or PHYLIP formats (see the “Simple approach” subsection).

An optional output format that our software can create is a tree in Newick format, where

each branch of the input phylogeny is annotated with a list of mutation events that occurred

on that branch. This format is richer than the others, as it provides information regarding each

mutation event, even those that might be over-written by other mutations at the same position;

it is also more efficient than multiple sequence alignment formats in the scenario of short

branch lengths considered here. We also allow a binary analogue of this annotated Newick

tree, called a MAT (mutation annotated tree) [37], which is compatible with the phylogenetic

software UShER [27].

Finally, we also allow the creation of unaligned FASTA output. However, note that the crea-

tion of a FASTA file costs O(NL) in time and space. In the case simulations are performed

without indels, we also allow the generation of a PHYLIP format alignment output.

Python package. Our software phastSim is implemented as a Python package, and can be

found at https://github.com/NicolaDM/phastSim or https://pypi.org/project/phastSim/. phast-

Sim uses the ETE3 library [38] to robustly read input trees in different variants of the Newick

format. We tested the correctness of our simulator with a series of tests, some of which are

showcased in S1 Text.

Comparisons with other methods

To assess the performance of our approach we compare it to other popular sequence simula-

tion methods. INDELible [18] is a sequence evolution simulation software that is particularly

useful since it allows simulation of indels and evolution of codon sequences. INDELible allows

simulations under two different algorithms: method 1 (“INDELible-m1”) uses matrix expo-

nentiation to model substitutions, while method 2 (“INDELible-m2”) uses instead the Gillespie

approach for the same task. Here we consider both algorithms. Seq-Gen [17] is a particularly

popular and efficient simulation tool, but it does not allow simulation under complex models,

and in particular it does not allow simulation of indels. Finally, we consider the software

pyvolve [36], which offers an extremely broad choice of models of sequence evolution, and,

like phastSim, is implemented in Python.

SARS-CoV-2 datasets. As a ground for comparison between existing sequence evolution

simulators we consider different scenarios typical for genomic epidemiology. First, we con-

sider the simulation of a scenario similar to SARS-CoV-2 evolution. We simulate trees with a

custom script (an adapted version of the simulator NGESH [39]) and under a Yule process

with birth rate equal to genome length (29,903), so to have in the order of one mutation per

branch. We use these trees as input for different sequence simulation methods, tracking their

computational demand. We simulate sequence evolution under an UNREST model [31] with

rates inferred from SARS-CoV-2 data [22] where possible (for phastSim, pyvolve [36] and

INDELible [18]) and a GTR model [6] otherwise (for Seq-Gen [17]).

While in the basic simulation setting we consider a simple model of nucleotide evolution

without substitution rate variation across the genome, without selection and without indels,

we also extend this scenario so to measure the impact of different simulation parameters on

the performance of different methods. In the scenario of discrete category rate variation, we

consider a nucleotide model with 10 categories of substitution rates across the genome. In the

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 15 / 24

https://github.com/NicolaDM/phastSim
https://pypi.org/project/phastSim/
https://doi.org/10.1371/journal.pcbi.1010056

scenario of continuous rate variation we consider a nucleotide model with continuous varia-

tion in rate (each site has a distinct rate sampled from a Gamma distribution). In the the

codon model scenario we consider a codon substitution model with substitution rates derived

from the nucleotide model. In the codon model with discrete rate variation scenario, we con-

sider in addition 10 discrete rate categories across the genome for the selection parameter ω.

In the codon model with continuous rate variation scenario, we consider a codon model

where each codon is allowed its own value of ω (only allowed in phastSim). Finally, for meth-

ods that allow indels (INDELible and phastSim) we also consider the scenario of a nucleotide

sequence evolving with the same UNREST substitution model described before in addition to

uniform insertion and deletion rates of 0.1 and with indel length distribution of Geo(0.5).

Bacterial datasets

To demonstrate a scenario in which we are interested in simulating bacterial genome evolution

within one outbreak, we use the E. Coli reference genome (https://www.ncbi.nlm.nih.gov/

nuccore/U00096.3 [40], 4,641,652 nucleotides) as our root genome sequence. Here we only

consider the scenario of a nucleotide model without rate variation. We again assume a scenario

typical for genomic epidemiology, that the birth rate of the simulated tree is equal to the

genome length. The number of mutations simulated is therefore comparable to the number of

branches in the tree.

Results

SARS-CoV-2 scenario

Due to the vast size of current SARS-CoV-2 genome datasets, simulation of SARS-CoV-2

genomes is expected to be an application where simulator efficiency will be particularly impor-

tant. While phastSim and pyvolve are both Python implementations, therefore sharing similar

benefits (high compatibility with other packages and ease of extensions) and draw-backs

(reduced efficiency compared to some other languages), we see that the two approaches have

dramatically different run time demands (Fig 3): simulating 50 sequences under pyvolve

requires on average more time than simulating 500,000 in phastSim. We can also see that

INDELible-m2 is marginally faster than INDELible-m1 in this scenario, due to the low num-

ber of mutations per branch. However, while phastSim and INDELible-m2 are both similar

Gillespie approaches, simulating 5,000 sequences with INDELible-m2 requires slightly more

time than simulating 500,000 sequences in phastSim (Fig 3), despite the fact that INDELible is

coded in C++. Seq-Gen appears to be very efficient, but it’s still more than one order of magni-

tude slower than phastSim on large phylogenetic trees in this scenario. Also note that, for large

trees considered here, we can reduce computational demand in phastSim by more than 5-fold

by not producing a FASTA output alignment; this way we can also save very significant

amounts of memory demand. Regarding small trees (< 104 tips) most of the demand in phast-

Sim is associated with initializing the simulations (loading packages and initializing the

genome search tree structure); these initialization costs do not depend on tree size, and instead

depend on genome size, and they are why phastSim is relatively less efficient on small trees. If

simulation on small trees are indeed of interest, these initialization costs could be reduced by

re-using the same genome search tree structure over multiple replicates, or, in the case of sim-

ple evolutionary models, by using our simple, non-hierarchical simulation approach. Differ-

ences in memory demands between methods are similar to time demands, with the benefits of

phastSim being even more evident (S1 Text).

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 16 / 24

https://www.ncbi.nlm.nih.gov/nuccore/U00096.3
https://www.ncbi.nlm.nih.gov/nuccore/U00096.3
https://doi.org/10.1371/journal.pcbi.1010056

Bacterial scenario

To showcase the impact of simulated genome size on the performance of different methods,

we consider the simulation of the evolution of an entire bacterial genome. As genome size

increases, time and memory demand of traditional simulators is expected to grow linearly.

Indeed, we now see that Seq-Gen takes considerably more time to simulate the same number

of genomes than in the SARS-CoV-2 scenario (Fig 4). phastSim also has an increased compu-

tational demand, but only in terms of the initial step of generating an initial genome search

tree. This initial cost is linear with respect to genome length, but does not increase with the

number of samples or with the number of mutations simulated. In total, in this scenario phast-

Sim can simulate sequence evolution along trees with more than 1000 times more samples

than Seq-Gen. A further reduction in computational demand, in particular in terms of the ini-

tial cost of generating a genome search tree, can be obtained by using the simple non-hierar-

chical algorithm (Fig 4), which however comes at the cost of narrowing the choice of

evolutionary models to less complex ones. Similar results are observed with respect to memory

demand (S1 Text).

Fig 3. Comparison of running times of different simulators in a scenario similar to SARS-CoV-2 data. On the Y axis we show the number of seconds it takes to

perform simulations using different software. On the X axis is the number of tips simulated. Each point represents ten replicates. We do not run the most

demanding simulators when each replicate would take substantially more than 1 minute to run. In red is the time to run phastSim with a concise output, and in

orange is the time for phastSim with additionally generating a FASTA format output. In green is the demand of pyvolve, and in purple of Seq-Gen. In yellow and

brown are respectively the time for running INDELible with method 1 (matrix exponentiation) and method 2 (Gillespie approach).

https://doi.org/10.1371/journal.pcbi.1010056.g003

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 17 / 24

https://doi.org/10.1371/journal.pcbi.1010056.g003
https://doi.org/10.1371/journal.pcbi.1010056

Evolutionary and indel models

One of the advantages of the approach we present here is that simulating evolution under

increasingly complex models comes at almost no additional time or memory cost (Fig 5 and

S1 Text). It can be seen, for example, that INDELible-m1 and Seq-Gen incur a significantly

higher time cost when using a continuous variation in mutation rate. Running INDELible-m2

with a codon model appears to come with no additional computational demand, similarly to

phastSim (Fig 5). For these comparisons we have considered the SARS-CoV-2 simulation

scenario.

Our algorithm also allows efficient simulation of insertion and deletion events (indels).

Among the other simulators considered here, only INDELible can simulate indels. In the

SARS-CoV-2 scenario, phastSim can simulate substitutions and indels under about 10 times

larger phylogenies than INDELible for the same computational run time (Fig 6), and under

about 200 times larger phylogenies for the same memory demand (S1 Text).

The impact of branch lengths

Probably the main limiting factor in the applicability of the approach presented here are tree

branch lengths. Since the demand of our approach is affected linearly by the number of

Fig 4. Comparison of running times of different simulators in a scenario similar to E. Coli outbreak data. On the Y axis we show the number of seconds it

takes to perform simulations using different software. On the X axis is the number of tips simulated. Each point represents ten replicates. We do not run Seq-Gen

for more than 1000 tips due to high computational demand. In red is the time to run phastSim, and in orange is the time for phastSim with the simple, non-

hierarchical approach. In purple is the time demand of Seq-Gen.

https://doi.org/10.1371/journal.pcbi.1010056.g004

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 18 / 24

https://doi.org/10.1371/journal.pcbi.1010056.g004
https://doi.org/10.1371/journal.pcbi.1010056

mutation events, and as we scale up the length of the tree we need to simulate more mutation

events, then the length of the phylogenetic branches will significantly affect the performance of

our approach. We can see that, in the SARS-CoV-2 scenario, the impact is not strictly linear

(Fig 7). This is because there are additional factors which contribute to phastSim demand in

addition to the number of mutation events. For example, one also has to consider the time to

initialize the genome search tree, which is linear in genome size, as well as the time to read, ini-

tialize, and traverse the input phylogenetic tree, which are linear in the number of tips. Predict-

ably, the computational demands of Seq-Gen and INDELible-m1 seem not affected by the

length of the branches. It is instead surprising to see that the computational demand of

INDELible-m2 seems also not affected by the branch lengths, despite it using a Gillespie

approach; the reason is that probably other factors, independent of the number of mutations,

cause the bulk of the demand in this scenario.

Discussion

We have introduced a new approach to simulating sequence evolution that is particularly effi-

cient when used on phylogenies with many tips and with short branches. Our software

Fig 5. Comparison of running times of different simulators in a SARS-CoV-2 scenario using different evolutionary models. On the Y axis we show the

number of seconds it takes to perform simulations using different software. On the X axis is the model used for simulations: “nucleotide” is a nucleotide

substitution model without variation; “nuc+10cat” is a nucleotide model with 10 rate categories; “nuc+alpha” is a nucleotide model with continuous variation in

rate (each site has a distinct rate sampled from a Gamma distribution); “codon” represents a codon substitution model; “codon+10cat” represents a codon

substitution model with 10 categories for ω; “codon+alpha” is a codon model with continuous rate variation in mutation rate and in ω (only allowed in phastSim).

Each value represents ten replicates. Seq-Gen does not allow codon models. Colors are as in Fig 3. Here we used alignments of 1000 tips.

https://doi.org/10.1371/journal.pcbi.1010056.g005

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 19 / 24

https://doi.org/10.1371/journal.pcbi.1010056.g005
https://doi.org/10.1371/journal.pcbi.1010056

phastSim implements this new algorithm and is implemented in Python, allowing it to be eas-

ily extended and combined with other Python packages. phastSim relies on the ETE 3 tree phy-

logenetic structure, and in particular it uses ETE 3 to read input phylogenetic trees. This allows

flexibility in the phylogenetic tree input format. Furthermore, thanks to the fact that the effi-

ciency of the algorithm is not affected by the complexity of the substitution model used, we

allow a broad choice of evolutionary models, such as codon models with position-specific

mutation rates and selective pressures. We also implement a new model of hypermutability to

more realistically describe the mutational process in SARS-CoV-2. Also, we can efficiently

simulate indel events, which are rarely modeled by other simulation packages.

We show that, compared with other simulators, phastSim is more efficient in the scenarios

common to genomic epidemiology, that is, when simulating many closely related bacterial or

viral genomes. Its particular efficiency with bacterial genomes means that it ideally matches

the needs of software that simulate bacterial ancestral recombination graphs (e.g. [9, 41]).

phastSim can also be easily run using the output of phylogenetic simulator, most relevantly

VGsim [42] which allows fast simulations of very large and short phylogenies typical of

SARS-CoV-2 and other genomic epidemiological scenarios, and which also allows the simula-

tion of the effects of selection on the phylogenetic tree shape. phastSim is implemented as a

Python package, which allows for easy integration into other Python pipelines.

Fig 6. Comparison of running times of Indelible and phastSim simulators in a SARS-CoV-2 scenario with indels. In this scenario we compare phastSim

against Indelbile-m1 and Indelible-m2 (the only other methods considered here that model indels). Each value represents ten replicates.

https://doi.org/10.1371/journal.pcbi.1010056.g006

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 20 / 24

https://doi.org/10.1371/journal.pcbi.1010056.g006
https://doi.org/10.1371/journal.pcbi.1010056

In the future, it would be possible, and of interest, to expand the features of phastSim, in

particular allowing a broader spectrum of models, for example allowing column-specific

amino acid fitness profiles; also, it could be possible to implement the described algorithm in

more efficient programming languages.

In conclusion, we have presented a novel algorithm, and corresponding software imple-

mentation phastSim, to efficiently simulate sequence evolution along large trees of closely

related sequences. This new approach considerably outperforms other methods in the scenar-

ios of genomic epidemiology, for example when simulating SARS-CoV-2 genome sequence

datasets. This approach also allows for more realistic models of sequence evolution, allowing

more efficient and accurate sequence data simulation and inference.

Supporting information

S1 Text. Supplementary text. Supplementary file containing results regarding memory

demand of different methods and containing results from testing of phastSim features.

(PDF)

Fig 7. Comparison of running times of different simulators in a SARS-CoV-2 scenario after rescaling the tree branch lengths by different factors. On the Y

axis we show the number of seconds it takes to perform simulations using different software. On the X axis is the rescaling factor we use to make the phylogenetic

tree branch lengths longer or shorter. Colors are as in Fig 3. Here we used alignments of 5000 tips.

https://doi.org/10.1371/journal.pcbi.1010056.g007

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 21 / 24

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010056.s001
https://doi.org/10.1371/journal.pcbi.1010056.g007
https://doi.org/10.1371/journal.pcbi.1010056

Acknowledgments

We are very thankful to Vladimir Shchur for the valuable suggestions on our work.

Author Contributions

Conceptualization: Nicola De Maio.

Data curation: Nicola De Maio.

Formal analysis: Nicola De Maio, William Boulton.

Funding acquisition: Nick Goldman.

Investigation: Nicola De Maio, William Boulton.

Methodology: Nicola De Maio, William Boulton.

Project administration: Nicola De Maio, Nick Goldman.

Software: Nicola De Maio, William Boulton, Lukas Weilguny, Conor R. Walker.

Supervision: Nicola De Maio, Nick Goldman.

Validation: Nicola De Maio, William Boulton.

Visualization: Nicola De Maio, William Boulton.

Writing – original draft: Nicola De Maio, William Boulton.

Writing – review & editing: Nicola De Maio, William Boulton, Lukas Weilguny, Conor R.

Walker, Yatish Turakhia, Russell Corbett-Detig, Nick Goldman.

References
1. Arenas M. Simulation of molecular data under diverse evolutionary scenarios. PLoS Comput Biol. 2012;

8(5):e1002495. https://doi.org/10.1371/journal.pcbi.1002495 PMID: 22693434

2. Fletcher W, Yang Z. The effect of insertions, deletions, and alignment errors on the branch-site test of

positive selection. Molecular biology and evolution. 2010; 27(10):2257–2267. https://doi.org/10.1093/

molbev/msq115 PMID: 20447933

3. Jordan G, Goldman N. The effects of alignment error and alignment filtering on the sitewise detection of

positive selection. Molecular biology and evolution. 2012; 29(4):1125–1139. https://doi.org/10.1093/

molbev/msr272 PMID: 22049066

4. Vialle RA, Tamuri AU, Goldman N. Alignment modulates ancestral sequence reconstruction accuracy.

Molecular biology and evolution. 2018; 35(7):1783–1797. https://doi.org/10.1093/molbev/msy055

PMID: 29618097

5. Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V, Joy JB, et al. The emergence of SARS-CoV-2 in

Europe and North America. Science. 2020; 370(6516):564–570. https://doi.org/10.1126/science.

abc8169 PMID: 32912998

6. Tavaré S, et al. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures

on mathematics in the life sciences. 1986; 17(2):57–86.

7. Beaumont MA, Zhang W, Balding DJ. Approximate Bayesian computation in population genetics.

Genetics. 2002; 162(4):2025–2035. https://doi.org/10.1093/genetics/162.4.2025 PMID: 12524368

8. Wilson DJ, Gabriel E, Leatherbarrow AJ, Cheesbrough J, Gee S, Bolton E, et al. Rapid evolution and

the importance of recombination to the gastroenteric pathogen Campylobacter jejuni. Molecular biology

and evolution. 2009; 26(2):385–397. https://doi.org/10.1093/molbev/msn264 PMID: 19008526

9. De Maio N, Wilson DJ. The bacterial sequential Markov coalescent. Genetics. 2017; 206(1):333–343.

https://doi.org/10.1534/genetics.116.198796 PMID: 28258183

10. Zou Z, Zhang H, Guan Y, Zhang J. Deep residual neural networks resolve quartet molecular phyloge-

nies. Molecular Biology and Evolution. 2019; 37(5):1495–1507. https://doi.org/10.1093/molbev/msz307

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 22 / 24

https://doi.org/10.1371/journal.pcbi.1002495
http://www.ncbi.nlm.nih.gov/pubmed/22693434
https://doi.org/10.1093/molbev/msq115
https://doi.org/10.1093/molbev/msq115
http://www.ncbi.nlm.nih.gov/pubmed/20447933
https://doi.org/10.1093/molbev/msr272
https://doi.org/10.1093/molbev/msr272
http://www.ncbi.nlm.nih.gov/pubmed/22049066
https://doi.org/10.1093/molbev/msy055
http://www.ncbi.nlm.nih.gov/pubmed/29618097
https://doi.org/10.1126/science.abc8169
https://doi.org/10.1126/science.abc8169
http://www.ncbi.nlm.nih.gov/pubmed/32912998
https://doi.org/10.1093/genetics/162.4.2025
http://www.ncbi.nlm.nih.gov/pubmed/12524368
https://doi.org/10.1093/molbev/msn264
http://www.ncbi.nlm.nih.gov/pubmed/19008526
https://doi.org/10.1534/genetics.116.198796
http://www.ncbi.nlm.nih.gov/pubmed/28258183
https://doi.org/10.1093/molbev/msz307
https://doi.org/10.1371/journal.pcbi.1010056

11. Suvorov A, Hochuli J, Schrider DR. Accurate inference of tree topologies from multiple sequence align-

ments using deep learning. Systematic biology. 2020; 69(2):221–233. https://doi.org/10.1093/sysbio/

syz060 PMID: 31504938

12. Leuchtenberger AF, Crotty SM, Drucks T, Schmidt HA, Burgstaller-Muehlbacher S, von Haeseler A.

Distinguishing Felsenstein zone from Farris zone using neural networks. Molecular Biology and Evolu-

tion. 2020; 37(12):3632–3641. https://doi.org/10.1093/molbev/msaa164 PMID: 32637998

13. Beiko RG, Charlebois RL. A simulation test bed for hypotheses of genome evolution. Bioinformatics.

2007; 23(7):825–831. https://doi.org/10.1093/bioinformatics/btm024 PMID: 17267425

14. Hudson RR. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformat-

ics. 2002; 18(2):337–338. https://doi.org/10.1093/bioinformatics/18.2.337 PMID: 11847089

15. Laval G, Excoffier L. SIMCOAL 2.0: a program to simulate genomic diversity over large recombining

regions in a subdivided population with a complex history. Bioinformatics. 2004; 20(15):2485–2487.

https://doi.org/10.1093/bioinformatics/bth264 PMID: 15117750

16. Ewing G, Hermisson J. MSMS: a coalescent simulation program including recombination, demographic

structure and selection at a single locus. Bioinformatics. 2010; 26(16):2064–2065. https://doi.org/10.

1093/bioinformatics/btq322 PMID: 20591904

17. Rambaut A, Grass NC. Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolu-

tion along phylogenetic trees. Bioinformatics. 1997; 13(3):235–238. https://doi.org/10.1093/

bioinformatics/13.3.235 PMID: 9183526

18. Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence evolution. Molecular biology

and evolution. 2009; 26(8):1879–1888. https://doi.org/10.1093/molbev/msp098 PMID: 19423664

19. Sipos B, Massingham T, Jordan GE, Goldman N. PhyloSim-Monte Carlo simulation of sequence evolu-

tion in the R statistical computing environment. BMC bioinformatics. 2011; 12(1):1–6. https://doi.org/10.

1186/1471-2105-12-104 PMID: 21504561

20. Morel B, Barbera P, Czech L, Bettisworth B, Hübner L, Lutteropp S, et al. Phylogenetic analysis of

SARS-CoV-2 data is difficult. bioRxiv. 2020.

21. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data–from vision to reality. Euro-

surveillance. 2017; 22(13):30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494 PMID:

28382917

22. De Maio N, Walker CR, Turakhia Y, Lanfear R, Corbett-Detig R, Goldman N. Mutation rates and selec-

tion on synonymous mutations in SARS-CoV-2. Genome Biology and Evolution. 2021; 13(5):evab087.

https://doi.org/10.1093/gbe/evab087 PMID: 33895815

23. Turakhia Y, De Maio N, Thornlow B, Gozashti L, Lanfear R, Walker CR, et al. Stability of SARS-CoV-2

phylogenies. PLOS Genetics. 2020; 16(11):e1009175. https://doi.org/10.1371/journal.pgen.1009175

PMID: 33206635

24. Rice AM, Morales AC, Ho AT, Mordstein C, Mühlhausen S, Watson S, et al. Evidence for strong muta-

tion bias towards, and selection against, U content in SARS-CoV-2: implications for vaccine design.

Molecular Biology and Evolution. 2020.

25. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. The journal of physical chemis-

try. 1977; 81(25):2340–2361. https://doi.org/10.1021/j100540a008

26. Hodcroft EB, De Maio N, Lanfear R, MacCannell DR, Minh BQ, Schmidt HA, et al. Want to track pan-

demic variants faster? Fix the bioinformatics bottleneck; 2021. PMID: 33649511

27. Turakhia Y, Thornlow B, Hinrichs AS, De Maio N, Gozashti L, Lanfear R, et al. Ultrafast Sample place-

ment on Existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic.

Nature Genetics. 2021; 53(6):809–816. https://doi.org/10.1038/s41588-021-00862-7 PMID: 33972780

28. Jukes TH, Cantor CR, et al. Evolution of protein molecules. Mammalian protein metabolism. 1969;

3:21–132. https://doi.org/10.1016/B978-1-4832-3211-9.50009-7

29. Ellegren H, Smith NG, Webster MT. Mutation rate variation in the mammalian genome. Current opinion

in genetics & development. 2003; 13(6):562–568. https://doi.org/10.1016/j.gde.2003.10.008 PMID:

14638315

30. Yang Z. Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolu-

tion. 1996; 11(9):367–372. https://doi.org/10.1016/0169-5347(96)10041-0 PMID: 21237881

31. Yang Z. Estimating the pattern of nucleotide substitution. Journal of molecular evolution. 1994; 39

(1):105–111. https://doi.org/10.1007/BF00178256 PMID: 8064867

32. Tang D. Efficient algorithms for modifying and sampling from a categorical distribution. arXiv preprint

arXiv:190611700. 2019.

33. Huffman DA. A method for the construction of minimum-redundancy codes. Proceedings of the IRE.

1952; 40(9):1098–1101. https://doi.org/10.1109/JRPROC.1952.273898

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 23 / 24

https://doi.org/10.1093/sysbio/syz060
https://doi.org/10.1093/sysbio/syz060
http://www.ncbi.nlm.nih.gov/pubmed/31504938
https://doi.org/10.1093/molbev/msaa164
http://www.ncbi.nlm.nih.gov/pubmed/32637998
https://doi.org/10.1093/bioinformatics/btm024
http://www.ncbi.nlm.nih.gov/pubmed/17267425
https://doi.org/10.1093/bioinformatics/18.2.337
http://www.ncbi.nlm.nih.gov/pubmed/11847089
https://doi.org/10.1093/bioinformatics/bth264
http://www.ncbi.nlm.nih.gov/pubmed/15117750
https://doi.org/10.1093/bioinformatics/btq322
https://doi.org/10.1093/bioinformatics/btq322
http://www.ncbi.nlm.nih.gov/pubmed/20591904
https://doi.org/10.1093/bioinformatics/13.3.235
https://doi.org/10.1093/bioinformatics/13.3.235
http://www.ncbi.nlm.nih.gov/pubmed/9183526
https://doi.org/10.1093/molbev/msp098
http://www.ncbi.nlm.nih.gov/pubmed/19423664
https://doi.org/10.1186/1471-2105-12-104
https://doi.org/10.1186/1471-2105-12-104
http://www.ncbi.nlm.nih.gov/pubmed/21504561
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
http://www.ncbi.nlm.nih.gov/pubmed/28382917
https://doi.org/10.1093/gbe/evab087
http://www.ncbi.nlm.nih.gov/pubmed/33895815
https://doi.org/10.1371/journal.pgen.1009175
http://www.ncbi.nlm.nih.gov/pubmed/33206635
https://doi.org/10.1021/j100540a008
http://www.ncbi.nlm.nih.gov/pubmed/33649511
https://doi.org/10.1038/s41588-021-00862-7
http://www.ncbi.nlm.nih.gov/pubmed/33972780
https://doi.org/10.1016/B978-1-4832-3211-9.50009-7
https://doi.org/10.1016/j.gde.2003.10.008
http://www.ncbi.nlm.nih.gov/pubmed/14638315
https://doi.org/10.1016/0169-5347(96)10041-0
http://www.ncbi.nlm.nih.gov/pubmed/21237881
https://doi.org/10.1007/BF00178256
http://www.ncbi.nlm.nih.gov/pubmed/8064867
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1371/journal.pcbi.1010056

34. Hasegawa M, Kishino H, Yano Ta. Dating of the human-ape splitting by a molecular clock of mitochon-

drial DNA. Journal of molecular evolution. 1985; 22(2):160–174. https://doi.org/10.1007/BF02101694

PMID: 3934395

35. Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA

sequences. Molecular biology and evolution. 1994; 11(5):725–736. PMID: 7968486

36. Spielman SJ, Wilke CO. Pyvolve: a flexible Python module for simulating sequences along phylogenies.

PloS one. 2015; 10(9):e0139047. https://doi.org/10.1371/journal.pone.0139047 PMID: 26397960

37. McBroome J, Thornlow B, Hinrichs AS, Kramer A, De Maio N, Goldman N, et al. A daily-updated data-

base and tools for comprehensive SARS-CoV-2 mutation-annotated trees. Molecular Biology and Evo-

lution. 2021. https://doi.org/10.1093/molbev/msab264 PMID: 34469548

38. Huerta-Cepas J, Serra F, Bork P. ETE 3: reconstruction, analysis, and visualization of phylogenomic

data. Molecular biology and evolution. 2016; 33(6):1635–1638. https://doi.org/10.1093/molbev/msw046

PMID: 26921390

39. Tresoldi T. Ngesh, a tool for simulating random phylogenetic trees. Version 0.5; 2021. https://github.

com/tresoldi/ngesh.

40. Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome

sequence of Escherichia coli K-12. science. 1997; 277(5331):1453–1462. https://doi.org/10.1126/

science.277.5331.1453 PMID: 9278503

41. Brown T, Didelot X, Wilson DJ, De Maio N. SimBac: simulation of whole bacterial genomes with homol-

ogous recombination. Microbial genomics. 2016; 2(1). https://doi.org/10.1099/mgen.0.000044 PMID:

27713837

42. Shchur V, Spirin V, Pokrovskii V, Burovski E, De Maio N, Corbett-Detig R. VGsim: scalable viral geneal-

ogy simulator for global pandemic. medRxiv. 2021;. https://doi.org/10.1101/2021.04.21.21255891

PMID: 33948608

PLOS COMPUTATIONAL BIOLOGY Pandemic-scale simulation of genome evolution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010056 April 29, 2022 24 / 24

https://doi.org/10.1007/BF02101694
http://www.ncbi.nlm.nih.gov/pubmed/3934395
http://www.ncbi.nlm.nih.gov/pubmed/7968486
https://doi.org/10.1371/journal.pone.0139047
http://www.ncbi.nlm.nih.gov/pubmed/26397960
https://doi.org/10.1093/molbev/msab264
http://www.ncbi.nlm.nih.gov/pubmed/34469548
https://doi.org/10.1093/molbev/msw046
http://www.ncbi.nlm.nih.gov/pubmed/26921390
https://github.com/tresoldi/ngesh
https://github.com/tresoldi/ngesh
https://doi.org/10.1126/science.277.5331.1453
https://doi.org/10.1126/science.277.5331.1453
http://www.ncbi.nlm.nih.gov/pubmed/9278503
https://doi.org/10.1099/mgen.0.000044
http://www.ncbi.nlm.nih.gov/pubmed/27713837
https://doi.org/10.1101/2021.04.21.21255891
http://www.ncbi.nlm.nih.gov/pubmed/33948608
https://doi.org/10.1371/journal.pcbi.1010056

