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Summary 1 

The obesity epidemic is a significant global health issue. Improved understanding of the 2 

mechanisms which regulate appetite and body weight will provide the rationale for the 3 

design of anti-obesity therapies. Thyroid hormones play a key role in metabolic homeostasis 4 

through their interaction with thyroid hormone receptors (TR), which function as ligand 5 

inducible transcription factors. The TR beta isoform (TRβ) is expressed in the ventromedial 6 

hypothalamus (VMH), a brain area important for control of energy homeostasis. Here we 7 

report that selective knock down of TRβ in the VMH of adult mice results in severe obesity 8 

due to hyperphagia and reduced energy expenditure. The observed increase in body weight 9 

is of a similar magnitude to murine models of the most extreme forms of monogenic obesity. 10 

These data identify TRβ in the VMH as a major physiological regulator of food intake and 11 

energy homeostasis. 12 

 13 

Introduction 14 

Energy homeostasis is regulated by neurotransmitters and by humoral factors including 15 

thyroid hormones, which act within the hypothalamus and systemically to regulate food 16 

intake (Coppola et al.,2007; Coll et al.,2007) and energy expenditure (Kim, 2008). The 17 

effects of the active form of thyroid hormone, 3,5,3'-L-triiodothyronine (T3), are mediated by 18 

two thyroid hormone receptors (TRα and TRβ), encoded by Thra and Thrb respectively 19 

(Brent, 2012). 20 

 21 

Metabolic phenotypes have been described in mice and humans with TR mutations. Mice 22 

with heterozygous dominant negative mutations of TRα display a variety of metabolic 23 

phenotypes ranging from hypermetabolism, hyperphagia and resistance to diet induced 24 

obesity (Sjogren et al.,2007) to increased visceral adiposity, hypophagia and impaired cold 25 

induced adaptive thermogenesis (Liu et al., 2003). The variation in described phenotypes is 26 

likely to be due to the differing actions of individual mutant receptors on wild type TR function 27 

(Ortiga-Carvalho et al.,2014). Humans with heterozygous dominant negative mutations of 28 
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TRα (resistance to thyroid hormone α, RTHα) may be overweight or obese with reduced 1 

energy expenditure (Bochukova et al., 2012; Moran et al., 2013; Moran et al., 2014). 2 

Humans with heterozygous dominant negative mutations of TRβ have RTHβ resulting in 3 

high levels of circulating thyroid hormones and thyroid stimulating hormone (TSH) due to 4 

impaired negative feedback of the hypothalamic-pituitary-thyroid axis (Ortiga-Carvalho et 5 

al.,2014). Humans with RTHβ may be overweight and hyperphagic (Mitchell et al.,2010) 6 

despite features of hyperthyroidism such as tachycardia and raised energy expenditure due 7 

to T3 actions in TRα responsive tissues. These extensive studies demonstrate that thyroid 8 

hormone is an essential regulator of food intake and energy expenditure. Despite this, 9 

clinical and global gene targeting studies cannot differentiate between the developmental 10 

and adult, or systemic and central, effects of thyroid hormones. 11 

 12 

The ventromedial hypothalamus (VMH) is a critical region of the brain involved in energy 13 

homeostasis. TRβ is the predominant TR isoform expressed in the VMH (Cook et al.,1992; 14 

Barrett et al.,2007) and previous studies suggest that thyroid hormones acting in the VMH 15 

regulate both food intake (Kong et al.,2004) and energy expenditure (Lopez et al.,2010). 16 

Thus, we hypothesize that, in the VMH, TRβ physiologically regulates food intake and body 17 

weight. To investigate this hypothesis directly we used stereotaxic Cre-lox gene targeting to 18 

generate a VMH-specific model of TRβ knock down in adult mice. 19 

 20 

Results 21 

Tissue specific knock down of TRβ in the VMH in adult mice 22 

We knocked down TRβ in the VMH of adult male mice using Cre-mediated excision of a 23 

floxed critical exon in the Thrb gene. This approach enabled temporally and spatially 24 

controlled reduction of TRβ expression specifically in the VMH of adult mice. This model 25 

eliminates the developmental consequences and abnormal systemic thyroid hormone levels 26 

that occur in global TRβ mutant mice (Ortiga-Carvalho et al.,2014) or in hypothyroid and 27 

thyrotoxic animals (Ishii et al.,2003; Lopez et al.,2010). 28 
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The Thrbflox allele contains loxP sites flanking exon 5 of Thrb (Winter et al.,2009) (Figure 1 

S1A). Cre-recombinase mediated excision of this critical exon results in inactivation of Thrb 2 

(Winter et al.,2009). Cre recombinase was introduced into the VMH of adult male Thrbflox/flox 3 

mice by stereotaxic injection of recombinant adeno-associated virus (rAAV) expressing a 4 

Cre-GFP fusion protein to generate mice with reduced TRβ expression in the VMH (VMH-5 

TRβ-) mice. Thrbflox/flox mice injected with rAAV encoding GFP into the VMH (VMH-GFP) were 6 

used as controls. Cre-mediated excision of the Thrbflox allele was confirmed by PCR of DNA 7 

from whole hypothalami of VMH-TRβ- mice (Figure S1B). The Thrbflox allele was not excised 8 

in either the cerebellum or brainstem, indicating rAAV did not enter the ventricular system 9 

following stereotaxic injection (Figure S1B). Fluorescence microscopy and in situ 10 

hybridisation (ISH) both confirmed transgene expression localized to the VMH in both groups 11 

of mice (Figure S2A,B). ISH using a probe specific for the floxed exon of Thrb demonstrated 12 

reduced expression within the VMH of VMH-TRβ- mice compared with controls (Figure 13 

S2C,D). 14 

 15 

Selective knock down of TRβ in the VMH in adult mice results in hyperphagia and 16 

obesity 17 

VMH-TRβ- mice consumed more food and gained more weight than controls (Figure 1A,B). 18 

Weight gain in VMH-TRβ- mice was three times greater than that of control mice by the end 19 

of the study (Figure 1C,D). 20 

 21 

Whole hypothalami for RNA-Seq analysis were collected from mice before significant 22 

changes in body weight had occurred. This was so that changes in expression are likely to 23 

be due to changes in thyroid hormone signalling rather than secondary effects of the 24 

increase in body weight and food intake. Differential expression analysis was performed 25 

(Table S1). Pathway analysis of differentially expressed genes revealed an over-26 

representation of genes involved in dopamine, growth hormone and leptin signalling 27 

pathways, as well as genes that are involved in neuronal activity regulation including long-28 
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term potentiation (LTP) and long-term depression (LTD), these results were qualitatively the 1 

same when the FDR for analysis was set between 0.001 and 0.1 (Table S2). Among the 2 

genes differentially expressed Pomc expression was decreased (log Fc -1.38, p= 9.33x10-7) 3 

(Figure 1E) whilst Npy expression was increased (log Fc 0.7 p = 9.42 x 10 -6) (figure 1F) 4 

whilst that of Thrb was not altered at the level of the whole hypothalamus (Table S1). 5 

Expression of steroidogenic factor 1 (Sf-1), and uncoupling protein-2 (Ucp-2) both of which 6 

are implicated in hypothalamic control of energy homeostasis (Majdic et al., 2002; Coppola 7 

et al., 2007) were unchanged. The differentially expressed genes were compared to those 8 

previously reported to be T3 responsive or directly regulated by T3 in cerebrocortical cells 9 

(Table S1 and S2 and Figure S3) (Gil-Ibanez et al., 2017). Of the genes directly regulated by 10 

T3 in cerebrocortical cells we identified 89 (approx. 15%) were also significantly changed in 11 

our samples among which was hairless (Hr). For genes regulated indirectly by T3 we 12 

identified one-hundred and thirty three that were also changed (approx. 9%). 13 

 14 

Total, visceral, subcutaneous, and epididymal fat mass were all increased in VMH-TRβ- mice 15 

compared to controls (Figure 2A-E). In keeping with the increased adiposity, VMH-TRβ- mice 16 

had a higher plasma leptin concentration than controls (Figure 2F). 17 

 18 

VMH-TRβ- mice are systemically euthyroid 19 

Alterations in circulating thyroid hormones affect food intake and body weight (Pijl et 20 

al.,2001). Measurement of plasma TSH, thyroxine (T4) and T3 confirmed that both VMH-21 

TRβ- and control mice were euthyroid (Figure S4A-C). 22 

 23 

VMH-TRβ- mice are insulin resistant but do not show changes in the expression of 24 

genes involved in hypothalamic glucose sensing 25 

Obese VMH-TRβ- mice had high levels of fasting insulin (Figure S4D) as expected. However 26 

when glucose tolerance and insulin tolerance were tested before the development of obesity 27 

in the VMH-TRβ- mice there were no differences between the VMH-TRβ- and VMH-GFP 28 
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mice (Figure S4E,F). RNA-Seq analysis did not identify changes in expression of 1 

hypothalamic glucose sensing genes. 2 

 3 

Obesity in VMH-TRβ- mice is not due to TRβ knock down in other brain areas 4 

To confirm that the observed weight gain and hyperphagia in VMH-TRβ- mice resulted from 5 

reduced TRβ expression in the VMH and not spread through the ventricular system into 6 

other brain regions, recombinant rAAV-Cre was injected into both lateral ventricles of 7 

Thrbflox/flox mice; a control group of mice were injected with rAAV-GFP. There was no 8 

difference in cumulative food intake or body weight gain between these two groups (Figure 9 

S4G,H). 10 

 11 

VMH-TRβ- mice fail to mount an orexigenic response to administered T3 12 

In order to validate loss of T3 signalling following TRβ inactivation in the VMH, we 13 

administered T3 to VMH-TRβ- and VMH-GFP mice by subcutaneous injection. Over the 24 14 

hour study period, T3 significantly increased food intake in VMH-GFP mice but VMH-TRβ- 15 

mice failed to mount an orexigenic response to the administered T3 (Figure S4I). 16 

 17 

VMH-TRβ- mice do not become obese when pair-fed to the food intake of lean controls 18 

To investigate whether the hyperphagia contributed to, or was a consequence of, the 19 

development of the obese phenotype, VMH-TRβ- mice were pair-fed to the food intake of a 20 

weight-matched VMH-GFP littermate for five weeks. During pair-feeding, there was no 21 

difference in cumulative body weight change or food intake (Figure 3A,B) or locomotor 22 

activity between the two groups. 23 

 24 

After five weeks of pair-feeding, ad libitum access to food was restored for four weeks. 25 

Following restoration of free feeding, VMH-TRβ- mice gained significantly more weight and 26 

consumed significantly more food than controls (Figure 3A,C). 27 

 28 
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VMH-TRβ- mice have reduced energy expenditure and reduced locomotor activity 1 

The contribution of changes in energy expenditure to the obese phenotype was investigated. 2 

Oxygen consumption (VO2), carbon dioxide production (VCO2) and locomotor activity were 3 

all decreased during the dark phase in ad libitum fed VMH-TRβ- mice both before and after 4 

the onset of obesity (Figure 4A-C). By contrast, there was no difference in VO2, VCO2 or 5 

locomotor activity during the light phase (Figure 4A-C). The decrease in nocturnal 6 

locomotion in VMH-TRβ- mice was confirmed by behavioural analysis (Table S3). There was 7 

no difference in respiratory exchange ratio (RER) (Figure 4D) and no difference in brown 8 

adipose tissue (BAT) uncoupling protein-1 (Ucp-1) expression (Figure 4E) between VMH-9 

TRβ- and control mice. In addition, VMH-TRβ- mice have a normal body temperature (Figure 10 

S4J). 11 

 12 

Discussion 13 

These studies identify hypothalamic TRβ as an important physiological regulator of appetite 14 

and body weight. Reduced TRβ expression in the VMH resulted in marked weight gain, 15 

comparable to severe forms of monogenic obesity (Tecott et al.,1995; Yaswen et al.,1999). 16 

The weight gain was a consequence of increased total body fat, and in particular a marked 17 

increase in subcutaneous and visceral white adipose tissue, the latter being an important 18 

risk factor for cardiovascular disease and diabetes (Montague and O'Rahilly, 2000). 19 

 20 

VMH-TRβ- mice ate more than control animals and pair-feeding studies indicated that 21 

hyperphagia contributed directly to the obesity. Thus, VMH-TRβ- mice remained lean when 22 

food intake was restricted but rapidly became obese when ad libitum feeding was restored. 23 

 24 

Selective TRβ knock down specifically in the VMH was confirmed by ISH and fluorescence 25 

microscopy. Although expression of Thrb was not reduced in the RNA-Seq analysis, these 26 

samples are derived from whole hypothalami and therefore the decrease in the level in the 27 

VMH is likely masked by the expression of Thrb throughout the rest of the sample. Indeed 28 
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the loss of TRβ function in the VMH was demonstrated by the failure of the expected 1 

orexigenic response to administered T3 in VMH-TRβ- mice and further supported by the 2 

appropriate changes in genes directly regulated by T3. The possibility of the phenotype 3 

arising through virus spread to other CNS areas was excluded by rAAV-Cre injection into the 4 

lateral ventricles, which did not result in hyperphagia or obesity. 5 

 6 

Previous work in rats has reported the acute orexigenic effect of exogenously administered 7 

T3 (Kong et al., 2004). Here we show the endogenous effect of thyroid hormone action 8 

following selective TRβ knock down. We suggest that our current work describes a local 9 

circuit within the VMH that physiologically regulates food intake as distinct from the feeding 10 

response to administered pharmacological doses of T3 analogous to the contrasting effects 11 

of NPY and PYY. 12 

 13 

To investigate the underlying cause of hyperphagia in VMH-TRβ- mice, hypothalamic gene 14 

expression patterns were determined by RNA-Seq. The expression of Pomc and Fto were 15 

down-regulated in the hypothalamus, whilst Npy was upregulated. POMC and FTO are 16 

thought to inhibit food intake whilst NPY simulates food intake; therefore these changes in 17 

expression may explain in part the phenotype observed. 18 

 19 

Energy expenditure in VMH-TRβ- mice was reduced both before and after the onset of 20 

obesity. There was no difference in BAT uncoupling protein-1 (Ucp-1) expression between 21 

VMH-TRβ- and control mice suggesting that adaptive thermogenesis was unaffected. It is 22 

likely that changes in energy expenditure in VMH-TRβ- mice resulted from decreased 23 

locomotor activity. The reduced locomotor activity is not a consequence of the obesity since 24 

it occurred before differences in body weight. In addition, during pair-feeding studies the 25 

reduction in locomotor activity was lost, possibly due to food seeking behaviour. This is likely 26 

to explain why body weight gain did not differ between the two groups before the restoration 27 

of ad libitum feeding. The energy expenditure and pair-feeding data indicate that both 28 
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increased food intake and reduced locomotor activity contribute to obesity in VMH-TRβ- 1 

mice. 2 

 3 

In contrast to VMH-TRβ- mice, global heterozygous TRβ knockout mice do not have an 4 

obese phenotype (Ortiga-Carvalho et al.,2014). This may be explained by the peripheral 5 

hyperthyroidism of these mice. In addition, the appetite circuits within the hypothalamus are 6 

subject to developmental plasticity and compensatory redundancy (Bouret et al.,2004; 7 

Horvath, 2005). For example, neither global deletion of Agrp and/or Npy nor ablation of 8 

arcuate AgRP/NPY neurons in neonatal mice results in a metabolic phenotype (Erickson et 9 

al.,1996; Qian et al.,2002; Luquet et al.,2005), whereas ablation of these neurons in adult 10 

mice produces profound hypophagia and starvation (Luquet et al.,2005; Gardiner et 11 

al.,2005; Bewick et al.,2005). Similar developmental compensation may occur in global TRβ 12 

knockout mice. 13 

 14 

Studies using adenovirus mediated expression of a dominant negative TR (DN-TR) in the rat 15 

VMH have been reported (Lopez et al.,2010). Although, VMH DN-TR expression did not 16 

affect food intake or body weight in euthyroid animals, it prevented weight loss in thyrotoxic 17 

rats and resulted in reduced hypothalamic AMP-activated protein kinase (Ampk) expression 18 

(Lopez et al.,2010). Ampk expression was unchanged in our model. DN-TR interferes with 19 

the actions of both TRα and TRβ and exerts a marked repressive effect on gene 20 

transcription (Ortiga-Carvalho et al.,2014; Ferrara et al.,2012). By contrast, VMH-TRβ- mice 21 

have only reduced TRβ activity rather than the pathological repression of TR target genes 22 

that is present in animals expressing a dominant negative receptor. This fundamental 23 

difference is likely to explain the contrasting phenotypes observed in these two models. 24 

 25 

In summary, we have shown that hypothalamic TRβ is an important physiological regulator 26 

of energy homeostasis because TRβ knock down in the VMH results in a phenotype of 27 

hyperphagia and severe obesity that is comparable to some of the most extreme forms of 28 
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monogenic obesity (Tecott et al.,1995; Yaswen et al.,1999). Our findings provide insights 1 

into the central regulation of energy homeostasis by TRβ that could be a target for anti-2 

obesity therapies.  3 
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Experimental Procedures 1 

Animals 2 

Thrbflox/flox mice (Winter et al.,2009) were genotyped by PCR using specific oligonucleotide 3 

primers (Figure S1). Mice were housed in single cages and maintained under a 4 

controlled environment (temperature 21–23 °C, 12-h light–dark cycle, lights on at 5 

07:00) with ad libitum access to chow and water (RM1; SDS Diets), except where 6 

stated. Male mice which were eight weeks old at the start of procedures were used 7 

in all experiments. All animal studies were approved under the Animals (Scientific 8 

Procedures) Act (1986) (Project License number 70_7229) and approved by the 9 

Animal Welfare and Ethical Review Body, Imperial College London, which is signed 10 

up to the ARRIVE guidelines. 11 

 12 

Recombinant AAV preparation 13 

Recombinant AAV was produced (Grimm et al.,1998) and isolated (Zolotukhin et al.,1999) 14 

as previously described. 15 

 16 

Confirmation of rAAV transgene expression, Thrb excision and reduced TRβ 17 

expression in the VMH 18 

Excision of the Thrbflox allele within the hypothalamus was confirmed by PCR (Figure S1). 19 

ISH using a probe specific to the excised portion of TRβ was performed to confirm reduced 20 

TRβ expression within the VMH (Smith et al., 2008). 21 

 22 

Measurement of energy expenditure 23 

Metabolic parameters were measured by indirect calorimetry using an open-circuit Oxymax 24 

system of the Comprehensive Lab Animal Monitoring System (Columbus, OH, USA) 25 

(Gardiner et al., 2010). 26 

 27 
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RNA-Seq analysis 1 

RNA-Seq analysis was performed using hypothalamic RNA from VMH-GFP (n=3) and VMH-2 

TRβ- (n=4) mice using Next Generation Sequencing (NGS) technologies (Imperial BRC 3 

Genomics Laboratory, Imperial College London). For further details see Supplemental 4 

Experimental Procedures. 5 

 6 

Statistical Analyses 7 

Cumulative food intake and body weight data were analyzed using generalized estimating 8 

equations with exchangeable correlation matrix and robust standard errors. Differences 9 

between two groups at individual time points were analyzed by unpaired t-tests, for multiple 10 

comparisons a Bonferroni correction was applied. Values from the behavioural study were 11 

analyzed using a one way ANOVA followed by Kruskal-Wallis test. Data from the energy 12 

expenditure test were analyzed using a one way ANOVA followed by a Newman-Kuels test. 13 

Plasma thyroid hormones were compared using Mann-Whitney U test. Differences between 14 

groups were considered statistically significant at the 95% confidence level (P<0.05). 15 

  16 



13 
 

Author Contributions 1 

SH, MP, WSD, SAR, YM, CH, WF and JVG conducted the majority of the experiments. SH, 2 

WSD, SRB, JHDB, GRW and JVG wrote the manuscript. SAR and AG maintained the mice. 3 

AG and JHDB prepared the TRβ probe. JB and JA performed the MRI study. GSHY, BYHL 4 

and JPW performed the RNA-Seq experiments and analysis, JS generated the Thrbflox/flox 5 

mice. WSD, SRB, JHDB, GRW and JVG conceived of and supervised the project. All 6 

authors discussed the results and commented on the manuscript. 7 

 8 

Accession numbers 9 

The accession number for the RNA-Seq data reported in this paper is GEO: GSE98690 10 

 11 

Acknowledgements 12 

We thank Dr Roy Weiss, Dr Samuel Refetoff and Dr XiaoHui Liao (University of Chicago) for 13 

measurement of tT3, tT4 and TSH concentrations. This work is funded by the BBSRC 14 

BBlF021704. Investigative Medicine is funded by grants from MRC, BBSRC, NIHR, an FP7- 15 

HEALTH- 2009- 241592 EuroCHIP grant and the NIHR Imperial Biomedical Research 16 

Centre. SH receives a MRC CRTF, an NIHR CL and a Society for Endocrinology ECG. WSD 17 

is funded by an NIHR Research Professorship. GRW and JHDB are supported by a 18 

Wellcome Trust Strategic Award (101123/Z/13/A), Wellcome Trust Investigator Award 19 

(110141/Z/15/Z & 110140/Z/15/Z), EU HORIZON 2020 Grant (THYRAGE-666869) and MRC 20 

funding (MR/N01121X/1). This work used the computing resources of the UK MEDical 21 

BIOinformatics partnership - aggregation, integration, visualisation and analysis of large, 22 

complex data (UK MED-BIO) which is supported by the MRC [grant number MR/L01632X/1]. 23 

University of Cambridge Metabolic Research Laboratories are supported by the UK Medical 24 

Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_12012/1 and 25 



14 
 

MRC_MC_UU_12012/5), a Wellcome Trust Strategic Award (100574/Z/12/Z) and the 1 

Helmholtz Alliance ICEMED. 2 

  3 



15 
 

References 1 

 2 

Barrett, P., Ebling, F.J., Schuhler, S., Wilson, D., Ross, A.W., Warner, A., Jethwa, P., 3 

Boelen, A., Visser, T.J., Ozanne, D.M., et al., (2007). Hypothalamic thyroid hormone 4 

catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. 5 

Endocrinology 148, 3608-3617. 6 

 7 

Bewick, G.A., Gardiner, J.V., Dhillo, W.S., Kent, A.S., White, N.E., Webster, Z., Ghatei, M.A., 8 

and Bloom, S.R. (2005). Post-embryonic ablation of AgRP neurons in mice leads to a lean, 9 

hypophagic phenotype. FASEB J 19, 1680-1682. 10 

 11 

Bochukova, E., Schoenmakers, N., Agostini, M., Schoenmakers, E., Rajanayagam, O., 12 

Keogh, J.M., Henning, E., Reinemund, J., Gevers, E., Sarri, M., et al., (2012). A mutation in 13 

the thyroid hormone receptor alpha gene. N Engl J Med 366, 243-249. 14 

 15 

Bouret, S.G., Draper, S.J., and Simerly, R.B. (2004). Trophic action of leptin on 16 

hypothalamic neurons that regulate feeding. Science 304, 108-110. 17 

 18 

Brent, G.A. (2012). Mechanisms of thyroid hormone action. J Clin Invest 122, 3035-3043. 19 

 20 

Chatonnet, F., Flamant, F., and Morte, B. (2015). A temporary compendium of thyroid 21 

hormone target genes in brain. Biochim Biophys Acta 1849, 122-129. 22 

 23 

Coll, A.P., Farooqi, I.S., and O'Rahilly, S. (2007). The hormonal control of food intake. Cell 24 

129, 251-262. 25 

 26 

Cook, C.B., Kakucska, I., Lechan, R.M., and Koenig, R.J. (1992). Expression of thyroid 27 

hormone receptor beta 2 in rat hypothalamus. Endocrinology 130, 1077-1079.  28 



16 
 

Coppola, A., Liu, Z.W., Andrews, Z.B., Paradis, E., Roy, M.C., Friedman, J.M., Ricquier, D., 1 

Richard, D., Horvath, T.L., Gao, X.B., et al., (2007). A central thermogenic-like mechanism in 2 

feeding regulation: an interplay between arcuate nucleus T3 and UCP2. Cell Metab 5, 21-33. 3 

 4 

Erickson, J.C., Clegg, K.E., and Palmiter, R.D. (1996). Sensitivity to leptin and susceptibility 5 

to seizures of mice lacking neuropeptide Y. Nature 381, 415-421. 6 

 7 

Ferrara, A.M., Onigata, K., Ercan, O., Woodhead, H., Weiss, R.E., and Refetoff, S. (2012). 8 

Homozygous thyroid hormone receptor beta-gene mutations in resistance to thyroid 9 

hormone: three new cases and review of the literature. J Clin Endocrinol Metab 97, 1328-10 

1336. 11 

 12 

Gardiner, J.V., Kong, W.M., Ward, H., Murphy, K.G., Dhillo, W.S., and Bloom, S.R. (2005). 13 

AAV mediated expression of anti-sense neuropeptide Y cRNA in the arcuate nucleus of rats 14 

results in decreased weight gain and food intake. Biochem Biophys Res Commun 327, 15 

1088-1093. 16 

 17 

Gardiner, J.V., Bataveljic, A., Patel, N.A., Bewick, G.A., Roy, D., Campbell, D., Greenwood, 18 

H.C., Murphy, K.G., Hameed, S., Jethwa, P.H., et al., (2010). Prokineticin 2 is a 19 

hypothalamic neuropeptide that potently inhibits food intake. Diabetes 59, 397-406. 20 

 21 

Gil-Ibanez, P., Garcia-Garcia, F., Dopazo, J., Bernal, J., and Morte, B. (2017). Global 22 

Transcriptome Analysis of Primary Cerebrocortical Cells: Identification of Genes Regulated 23 

by Triiodothyronine in Specific Cell Types. Cereb Cortex 27, 706-717. 24 

 25 

Grimm, D., Kern, A., Rittner, K., and Kleinschmidt, J.A. (1998). Novel tools for production 26 

and purification of recombinant adenoassociated virus vectors. Hum Gene Ther 9, 2745-27 

2760. 28 



17 
 

Horvath, T.L. (2005). The hardship of obesity: a soft-wired hypothalamus. Nat Neurosci 8, 1 

561-565. 2 

 3 

Ishii, S., Kamegai, J., Tamura, H., Shimizu, T., Sugihara, H., and Oikawa, S. (2003). 4 

Hypothalamic neuropeptide Y/Y1 receptor pathway activated by a reduction in circulating 5 

leptin, but not by an increase in circulating ghrelin, contributes to hyperphagia associated 6 

with triiodothyronine-induced thyrotoxicosis. Neuroendocrinology 78, 321-330. 7 

 8 

Kim, B. (2008). Thyroid hormone as a determinant of energy expenditure and the basal 9 

metabolic rate. Thyroid 18, 141-144. 10 

 11 

Kong, W.M., Martin, N.M., Smith, K.L., Gardiner, J.V., Connoley, I.P., Stephens, D.A., Dhillo, 12 

W.S., Ghatei, M.A., Small, C.J., and Bloom, S.R. (2004). Triiodothyronine stimulates food 13 

intake via the hypothalamic ventromedial nucleus independent of changes in energy 14 

expenditure. Endocrinology 145, 5252-5258. 15 

 16 

Liu, Y.Y., Schultz, J.J., and Brent, G.A. (2003). A thyroid hormone receptor alpha gene 17 

mutation (P398H) is associated with visceral adiposity and impaired catecholamine-18 

stimulated lipolysis in mice. J Biol Chem 278, 38913-38920. 19 

 20 

Lopez, M., Varela, L., Vazquez, M.J., Rodriguez-Cuenca, S., Gonzalez, C.R., Velagapudi, 21 

V.R., Morgan, D.A., Schoenmakers, E., Agassandian, K., Lage, R., et al., (2010). 22 

Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy 23 

balance. Nat Med 16, 1001-1008. 24 

 25 

Luquet, S., Perez, F.A., Hnasko, T.S., and Palmiter, R.D. (2005). NPY/AgRP neurons are 26 

essential for feeding in adult mice but can be ablated in neonates. Science 310, 683-685. 27 

  28 



18 
 

Majdic, G., Young, M., Gomez-Sanchez, E., Anderson, P., Szczepaniak, L.S., Dobbins, R.L., 1 

McGarry, J.D., Parker, K.L. (2002). Knockout mice lacking steroidogenic factor 1 are a novel 2 

genetic model of hypothalamic obesity. Endocrinology 143, 607-614. 3 

 4 

Mitchell, C.S., Savage, D.B., Dufour, S., Schoenmakers, N., Murgatroyd, P., Befroy, D., 5 

Halsall, D., Northcott, S., Raymond-Barker, P., Curran, S., et al., (2010). Resistance to 6 

thyroid hormone is associated with raised energy expenditure, muscle mitochondrial 7 

uncoupling, and hyperphagia. J Clin Invest 120, 1345-1354. 8 

 9 

Montague, C.T., and O'Rahilly, S. (2000). The perils of portliness: causes and 10 

consequences of visceral adiposity. Diabetes 49, 883-888. 11 

 12 

Moran, C., Schoenmakers, N., Agostini, M., Schoenmakers, E., Offiah, A., Kydd, A., Kahaly, 13 

G., Mohr-Kahaly, S., Rajanayagam, O., Lyons, G., et al., (2013). An adult female with 14 

resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. J Clin 15 

Endocrinol Metab 98, 4254-4261. 16 

 17 

Moran, C., Agostini, M., Visser, W.E., Schoenmakers, E., Schoenmakers, N., Offiah, A.C., 18 

Poole, K., Rajanayagam, O., Lyons, G., Halsall, D., et al., (2014). Resistance to thyroid 19 

hormone caused by a mutation in thyroid hormone receptor (TR)alpha1 and TRalpha2: 20 

clinical, biochemical, and genetic analyses of three related patients. Lancet Diabetes 21 

Endocrinol 2, 619-626. 22 

 23 

Ortiga-Carvalho, T.M., Sidhaye, A.R., and Wondisford, F.E. (2014). Thyroid hormone 24 

receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 10, 582-591. 25 

  26 



19 
 

Pijl, H., de Meijer, P.H., Langius, J., Coenegracht, C.I., van den Berk, A.H., Chandie Shaw, 1 

P.K., Boom, H., Schoemaker, R.C., Cohen, A.F., Burggraaf, J., et al., (2001). Food choice in 2 

hyperthyroidism: potential influence of the autonomic nervous system and brain serotonin 3 

precursor availability. J Clin Endocrinol Metab 86, 5848-5853. 4 

 5 

Qian, S., Chen, H., Weingarth, D., Trumbauer, M.E., Novi, D.E., Guan, X., Yu, H., Shen, Z., 6 

Feng, Y., Frazier, E., et al., (2002). Neither agouti-related protein nor neuropeptide Y is 7 

critically required for the regulation of energy homeostasis in mice. Mol Cell Biol 22, 5027-8 

5035. 9 

 10 

Sjogren, M., Alkemade, A., Mittag, J., Nordstrom, K., Katz, A., Rozell, B., Westerblad, H., 11 

Arner, A., and Vennstrom, B. (2007). Hypermetabolism in mice caused by the central action 12 

of an unliganded thyroid hormone receptor alpha1. EMBO J 26, 4535-4545. 13 

 14 

Smith, K.L., Gardiner, J.V., Ward, H.L., Kong, W.M., Murphy, K.G., Martin, N.M., Ghatei, 15 

M.A., and Bloom, S.R. (2008). Overexpression of CART in the PVN increases food intake 16 

and weight gain in rats. Obesity (Silver Spring) 16, 2239-2244. 17 

 18 

Tecott, L.H., Sun, L.M., Akana, S.F., Strack, A.M., Lowenstein, D.H., Dallman, M.F., and 19 

Julius, D. (1995). Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. 20 

Nature 374, 542-546. 21 

 22 

Winter, H., Ruttiger, L., Muller, M., Kuhn, S., Brandt, N., Zimmermann, U., Hirt, B., Bress, A., 23 

Sausbier, M., Conscience, A., et al., (2009). Deafness in TRbeta mutants is caused by 24 

malformation of the tectorial membrane. J Neurosci 29, 2581-2587. 25 

  26 



20 
 

Yaswen, L., Diehl, N., Brennan, M.B., and Hochgeschwender, U. (1999). Obesity in the 1 

mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat 2 

Med 5, 1066-1070. 3 

 4 

Zolotukhin, S., Byrne, B.J., Mason, E., Zolotukhin, I., Potter, M., Chesnut, K., Summerford, 5 

C., Samulski, R.J., and Muzyczka, N. (1999). Recombinant adeno-associated virus 6 

purification using novel methods improves infectious titer and yield. Gene Ther 6, 973-985. 7 

  8 



21 
 

Figure Legends 1 

Figure 1 Effect of reduced TRβ expression in the VMH 2 

(A) Cumulative food intake 3 

(B) Cumulative body weight change 4 

(C) Body weight on day forty-two 5 

(D) Photograph of VMH-GFP and VMH-TRβ- mouse 6 

(E) Hypothalamic expression of Pomc  7 

(F) Hypothalamic expression of Npy  8 

A-C Results are mean ± SEM n=10 for VMH-GFP and 11 for VMH-TRβ-, E and F results are 9 

median, whiskers are minimum and maximum n=3 for VMH-GFP and 4 for VMH-TRβ-, 10 

*P<0.05; ** P<0.01.-Food intake and body weight were analyzed using a generalized 11 

estimating equation exchangeable correlation matrix and robust standard errors (GEE), body 12 

weight data t-test 13 

See also Figure S1-S3 Table S1 and S2 14 

 15 

Figure 2 White adipose tissue mass and distribution  16 

MRI quantification of fat demonstrated that VMH-TRβ- mice had significantly higher fat mass 17 

(A) Representative transverse T1 weighted MR images through the abdominal region of a 18 

VMH-GFP and VMH-TRβ- mouse 19 

(B) Total body fat 20 

(C) Visceral fat 21 

(D) Subcutaneous fat 22 

(E) Epididymal fat pad weight on day 42 (n=10) 23 

(F) Plasma leptin levels on day forty-two (n=10). 24 

Results are mean ± SEM (n=3 per group unless stated); **P<0.01 versus control. t-test with 25 

Bonferroni correction 26 

See also Figure S4 27 

 28 



22 
 

Figure 3 Effect of pair-feeding on VMH-TRβ- mice 1 

(A) Weight gain over the entire period of the experiment. During weeks 0-5, food intake of 2 

each VMH-TRβ- mouse was limited to that of a weight-matched, VMH-GFP littermate. From 3 

weeks 5-9, ad libitum access to food was restored. 4 

(B) Food intake during the pair-feeding period 5 

(C) Food intake during the ad libitum feeding period 6 

Results are mean ± SEM n=9; GEE, *P<0.05; *** P<0.001 7 

 8 

Figure 4 Energy expenditure and locomotor activity in mice with reduced expression 9 

of TRβ in the VMH 10 

(A) Oxygen consumption 11 

(B) Carbon dioxide production 12 

(C) Locomotor activity 13 

(D) Respiratory exchange ratio 14 

(E) Ucp-1 expression in BAT (n=7 VMH-GFP and 11 VMH-TRβ-) 15 

L= light phase D= dark phase, 1=1 week, 6 = six weeks, after recovery 16 

Data are mean ± SEM (n= 5 VMH-GFP; n=6 VMH-TRβ-) ANOVA with Student-Newman-17 

Keuls analysis ** P< 0.01 See also Table S3 18 

 19 

Table S1 RNA-Seq data of hypothlamic RNA related to figure 1  20 

Hypothalamic RNA was extracted from whole hypothalami of VMH-TRβ- or VMH-GFP mice 21 

and subject to RNA analysis.   22 

 23 

Table S2 Canonical pathway analysis of RNA-Seq data related to figure 1 24 

Differentially expressed genes were subject to pathway analysis. Additional pathway 25 

analysis was conducted on genes reported to be regulated by thyroid hormone and directly 26 

regulated by thyroid hormone in cerebrocortical cells as reported by Gil-Ibaňez et al.,2017. 27 
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Summary 1 

The obesity epidemic is a significant global health issue. Improved understanding of the 2 

mechanisms which regulate appetite and body weight will provide the rationale for the 3 

design of anti-obesity therapies. Thyroid hormones play a key role in metabolic homeostasis 4 

through their interaction with thyroid hormone receptors (TR), which function as ligand 5 

inducible transcription factors. The TR beta isoform (TRβ) is expressed in the ventromedial 6 

hypothalamus (VMH), a brain area important for control of energy homeostasis. Here we 7 

report that selective knock down of TRβ in the VMH of adult mice results in severe obesity 8 

due to hyperphagia and reduced energy expenditure. The observed increase in body weight 9 

is of a similar magnitude to murine models of the most extreme forms of monogenic obesity. 10 

These data identify TRβ in the VMH as a major physiological regulator of food intake and 11 

energy homeostasis. 12 

 13 

Introduction 14 

Energy homeostasis is regulated by neurotransmitters and by humoral factors including 15 

thyroid hormones, which act within the hypothalamus and systemically to regulate food 16 

intake (Coppola et al.,2007; Coll et al.,2007) and energy expenditure (Kim, 2008). The 17 

effects of the active form of thyroid hormone, 3,5,3'-L-triiodothyronine (T3), are mediated by 18 

two thyroid hormone receptors (TRα and TRβ), encoded by Thra and Thrb respectively 19 

(Brent, 2012). 20 

 21 

Metabolic phenotypes have been described in mice and humans with TR mutations. Mice 22 

with heterozygous dominant negative mutations of TRα display a variety of metabolic 23 

phenotypes ranging from hypermetabolism, hyperphagia and resistance to diet induced 24 

obesity (Sjogren et al.,2007) to increased visceral adiposity, hypophagia and impaired cold 25 

induced adaptive thermogenesis (Liu et al., 2003). The variation in described phenotypes is 26 

likely to be due to the differing actions of individual mutant receptors on wild type TR function 27 

(Ortiga-Carvalho et al.,2014). Humans with heterozygous dominant negative mutations of 28 
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TRα (resistance to thyroid hormone α, RTHα) may be overweight or obese with reduced 1 

energy expenditure (Bochukova et al., 2012; Moran et al., 2013; Moran et al., 2014). 2 

Humans with heterozygous dominant negative mutations of TRβ have RTHβ resulting in 3 

high levels of circulating thyroid hormones and thyroid stimulating hormone (TSH) due to 4 

impaired negative feedback of the hypothalamic-pituitary-thyroid axis (Ortiga-Carvalho et 5 

al.,2014). Humans with RTHβ may be overweight and hyperphagic (Mitchell et al.,2010) 6 

despite features of hyperthyroidism such as tachycardia and raised energy expenditure due 7 

to T3 actions in TRα responsive tissues. These extensive studies demonstrate that thyroid 8 

hormone is an essential regulator of food intake and energy expenditure. Despite this, 9 

clinical and global gene targeting studies cannot differentiate between the developmental 10 

and adult, or systemic and central, effects of thyroid hormones. 11 

 12 

The ventromedial hypothalamus (VMH) is a critical region of the brain involved in energy 13 

homeostasis. TRβ is the predominant TR isoform expressed in the VMH (Cook et al.,1992; 14 

Barrett et al.,2007) and previous studies suggest that thyroid hormones acting in the VMH 15 

regulate both food intake (Kong et al.,2004) and energy expenditure (Lopez et al.,2010). 16 

Thus, we hypothesize that, in the VMH, TRβ physiologically regulates food intake and body 17 

weight. To investigate this hypothesis directly we used stereotaxic Cre-lox gene targeting to 18 

generate a VMH-specific model of TRβ knock down in adult mice. 19 

 20 

Results 21 

Tissue specific knock down of TRβ in the VMH in adult mice 22 

We knocked down TRβ in the VMH of adult male mice using Cre-mediated excision of a 23 

floxed critical exon in the Thrb gene. This approach enabled temporally and spatially 24 

controlled reduction of TRβ expression specifically in the VMH of adult mice. This model 25 

eliminates the developmental consequences and abnormal systemic thyroid hormone levels 26 

that occur in global TRβ mutant mice (Ortiga-Carvalho et al.,2014) or in hypothyroid and 27 

thyrotoxic animals (Ishii et al.,2003; Lopez et al.,2010). 28 
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The Thrbflox allele contains loxP sites flanking exon 5 of Thrb (Winter et al.,2009) (Figure 1 

S1A). Cre-recombinase mediated excision of this critical exon results in inactivation of Thrb 2 

(Winter et al.,2009). Cre recombinase was introduced into the VMH of adult male Thrbflox/flox 3 

mice by stereotaxic injection of recombinant adeno-associated virus (rAAV) expressing a 4 

Cre-GFP fusion protein to generate mice with reduced TRβ expression in the VMH (VMH-5 

TRβ-) mice. Thrbflox/flox mice injected with rAAV encoding GFP into the VMH (VMH-GFP) were 6 

used as controls. Cre-mediated excision of the Thrbflox allele was confirmed by PCR of DNA 7 

from whole hypothalami of VMH-TRβ- mice (Figure S1B). The Thrbflox allele was not excised 8 

in either the cerebellum or brainstem, indicating rAAV did not enter the ventricular system 9 

following stereotaxic injection (Figure S1B). Fluorescence microscopy and in situ 10 

hybridisation (ISH) both confirmed transgene expression localized to the VMH in both groups 11 

of mice (Figure S2A,B). ISH using a probe specific for the floxed exon of Thrb demonstrated 12 

reduced expression within the VMH of VMH-TRβ- mice compared with controls (Figure 13 

S2C,D). 14 

 15 

Selective knock down of TRβ in the VMH in adult mice results in hyperphagia and 16 

obesity 17 

VMH-TRβ- mice consumed more food and gained more weight than controls (Figure 1A,B). 18 

Weight gain in VMH-TRβ- mice was three times greater than that of control mice by the end 19 

of the study (Figure 1C,D). 20 

 21 

Whole hypothalami for RNA-Seq analysis were collected from mice before significant 22 

changes in body weight had occurred. This was so that changes in expression are likely to 23 

be due to changes in thyroid hormone signalling rather than secondary effects of the 24 

increase in body weight and food intake. Differential expression analysis was performed 25 

(Table S1). Pathway analysis of differentially expressed genes revealed an over-26 

representation of genes involved in dopamine, growth hormone and leptin signalling 27 

pathways, as well as genes that are involved in neuronal activity regulation including long-28 
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term potentiation (LTP) and long-term depression (LTD), these results were qualitatively the 1 

same when the FDR for analysis was set between 0.001 and 0.1 (Table S2). Among the 2 

genes differentially expressed Pomc expression was decreased (log Fc -1.38, p= 9.33x10-7) 3 

(Figure 1E) whilst Npy expression was increased (log Fc 0.7 p = 9.42 x 10 -6) (figure 1F) 4 

whilst that of Thrb was not altered at the level of the whole hypothalamus (Table S1). 5 

Expression of steroidogenic factor 1 (Sf-1), and uncoupling protein-2 (Ucp-2) both of which 6 

are implicated in hypothalamic control of energy homeostasis (Majdic et al., 2002; Coppola 7 

et al., 2007) were unchanged. The differentially expressed genes were compared to those 8 

previously reported to be T3 responsive or directly regulated by T3 in cerebrocortical cells 9 

(Table S1 and S2 and Figure S3) (Gil-Ibanez et al., 2017). Of the genes directly regulated by 10 

T3 in cerebrocortical cells we identified 89 (approx. 15%) were also significantly changed in 11 

our samples among which was hairless (Hr). For genes regulated indirectly by T3 we 12 

identified one-hundred and thirty three that were also changed (approx. 9%). 13 

 14 

Total, visceral, subcutaneous, and epididymal fat mass were all increased in VMH-TRβ- mice 15 

compared to controls (Figure 2A-E). In keeping with the increased adiposity, VMH-TRβ- mice 16 

had a higher plasma leptin concentration than controls (Figure 2F). 17 

 18 

VMH-TRβ- mice are systemically euthyroid 19 

Alterations in circulating thyroid hormones affect food intake and body weight (Pijl et 20 

al.,2001). Measurement of plasma TSH, thyroxine (T4) and T3 confirmed that both VMH-TRβ- 21 

and control mice were euthyroid (Figure S4A-C). 22 

 23 

VMH-TRβ- mice are insulin resistant but do not show changes in the expression of 24 

genes involved in hypothalamic glucose sensing 25 

Obese VMH-TRβ- mice had high levels of fasting insulin (Figure S4D) as expected. However 26 

when glucose tolerance and insulin tolerance were tested before the development of obesity 27 

in the VMH-TRβ- mice there were no differences between the VMH-TRβ- and VMH-GFP 28 
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mice (Figure S4E,F). RNA-Seq analysis did not identify changes in expression of 1 

hypothalamic glucose sensing genes. 2 

 3 

Obesity in VMH-TRβ- mice is not due to TRβ knock down in other brain areas 4 

To confirm that the observed weight gain and hyperphagia in VMH-TRβ- mice resulted from 5 

reduced TRβ expression in the VMH and not spread through the ventricular system into 6 

other brain regions, recombinant rAAV-Cre was injected into both lateral ventricles of 7 

Thrbflox/flox mice; a control group of mice were injected with rAAV-GFP. There was no 8 

difference in cumulative food intake or body weight gain between these two groups (Figure 9 

S4G,H). 10 

 11 

VMH-TRβ- mice fail to mount an orexigenic response to administered T3 12 

In order to validate loss of T3 signalling following TRβ inactivation in the VMH, we 13 

administered T3 to VMH-TRβ- and VMH-GFP mice by subcutaneous injection. Over the 24 14 

hour study period, T3 significantly increased food intake in VMH-GFP mice but VMH-TRβ- 15 

mice failed to mount an orexigenic response to the administered T3 (Figure S4I). 16 

 17 

VMH-TRβ- mice do not become obese when pair-fed to the food intake of lean controls 18 

To investigate whether the hyperphagia contributed to, or was a consequence of, the 19 

development of the obese phenotype, VMH-TRβ- mice were pair-fed to the food intake of a 20 

weight-matched VMH-GFP littermate for five weeks. During pair-feeding, there was no 21 

difference in cumulative body weight change or food intake (Figure 3A,B) or locomotor 22 

activity between the two groups. 23 

 24 

After five weeks of pair-feeding, ad libitum access to food was restored for four weeks. 25 

Following restoration of free feeding, VMH-TRβ- mice gained significantly more weight and 26 

consumed significantly more food than controls (Figure 3A,C). 27 

 28 
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VMH-TRβ- mice have reduced energy expenditure and reduced locomotor activity 1 

The contribution of changes in energy expenditure to the obese phenotype was investigated. 2 

Oxygen consumption (VO2), carbon dioxide production (VCO2) and locomotor activity were 3 

all decreased during the dark phase in ad libitum fed VMH-TRβ- mice both before and after 4 

the onset of obesity (Figure 4A-C). By contrast, there was no difference in VO2, VCO2 or 5 

locomotor activity during the light phase (Figure 4A-C). The decrease in nocturnal 6 

locomotion in VMH-TRβ- mice was confirmed by behavioural analysis (Table S3). There was 7 

no difference in respiratory exchange ratio (RER) (Figure 4D) and no difference in brown 8 

adipose tissue (BAT) uncoupling protein-1 (Ucp-1) expression (Figure 4E) between VMH-9 

TRβ- and control mice. In addition, VMH-TRβ- mice have a normal body temperature (Figure 10 

S4J). 11 

 12 

Discussion 13 

These studies identify hypothalamic TRβ as an important physiological regulator of appetite 14 

and body weight. Reduced TRβ expression in the VMH resulted in marked weight gain, 15 

comparable to severe forms of monogenic obesity (Tecott et al.,1995; Yaswen et al.,1999). 16 

The weight gain was a consequence of increased total body fat, and in particular a marked 17 

increase in subcutaneous and visceral white adipose tissue, the latter being an important 18 

risk factor for cardiovascular disease and diabetes (Montague and O'Rahilly, 2000). 19 

 20 

VMH-TRβ- mice ate more than control animals and pair-feeding studies indicated that 21 

hyperphagia contributed directly to the obesity. Thus, VMH-TRβ- mice remained lean when 22 

food intake was restricted but rapidly became obese when ad libitum feeding was restored. 23 

 24 

Selective TRβ knock down specifically in the VMH was confirmed by ISH and fluorescence 25 

microscopy. Although expression of Thrb was not reduced in the RNA-Seq analysis, these 26 

samples are derived from whole hypothalami and therefore the decrease in the level in the 27 

VMH is likely masked by the expression of Thrb throughout the rest of the sample. Indeed 28 
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the loss of TRβ function in the VMH was demonstrated by the failure of the expected 1 

orexigenic response to administered T3 in VMH-TRβ- mice and further supported by the 2 

appropriate changes in genes directly regulated by T3. The possibility of the phenotype 3 

arising through virus spread to other CNS areas was excluded by rAAV-Cre injection into the 4 

lateral ventricles, which did not result in hyperphagia or obesity. 5 

 6 

Previous work in rats has reported the acute orexigenic effect of exogenously administered 7 

T3 (Kong et al., 2004). Here we show the endogenous effect of thyroid hormone action 8 

following selective TRβ knock down. We suggest that our current work describes a local 9 

circuit within the VMH that physiologically regulates food intake as distinct from the feeding 10 

response to administered pharmacological doses of T3 analogous to the contrasting effects 11 

of NPY and PYY. 12 

 13 

To investigate the underlying cause of hyperphagia in VMH-TRβ- mice, hypothalamic gene 14 

expression patterns were determined by RNA-Seq. The expression of Pomc and Fto were 15 

down-regulated in the hypothalamus, whilst Npy was upregulated. POMC and FTO are 16 

thought to inhibit food intake whilst NPY simulates food intake; therefore these changes in 17 

expression may explain in part the phenotype observed. 18 

 19 

Energy expenditure in VMH-TRβ- mice was reduced both before and after the onset of 20 

obesity. There was no difference in BAT uncoupling protein-1 (Ucp-1) expression between 21 

VMH-TRβ- and control mice suggesting that adaptive thermogenesis was unaffected. It is 22 

likely that changes in energy expenditure in VMH-TRβ- mice resulted from decreased 23 

locomotor activity. The reduced locomotor activity is not a consequence of the obesity since 24 

it occurred before differences in body weight. In addition, during pair-feeding studies the 25 

reduction in locomotor activity was lost, possibly due to food seeking behaviour. This is likely 26 

to explain why body weight gain did not differ between the two groups before the restoration 27 

of ad libitum feeding. The energy expenditure and pair-feeding data indicate that both 28 



9 
 

increased food intake and reduced locomotor activity contribute to obesity in VMH-TRβ- 1 

mice. 2 

 3 

In contrast to VMH-TRβ- mice, global heterozygous TRβ knockout mice do not have an 4 

obese phenotype (Ortiga-Carvalho et al.,2014). This may be explained by the peripheral 5 

hyperthyroidism of these mice. In addition, the appetite circuits within the hypothalamus are 6 

subject to developmental plasticity and compensatory redundancy (Bouret et al.,2004; 7 

Horvath, 2005). For example, neither global deletion of Agrp and/or Npy nor ablation of 8 

arcuate AgRP/NPY neurons in neonatal mice results in a metabolic phenotype (Erickson et 9 

al.,1996; Qian et al.,2002; Luquet et al.,2005), whereas ablation of these neurons in adult 10 

mice produces profound hypophagia and starvation (Luquet et al.,2005; Gardiner et 11 

al.,2005; Bewick et al.,2005). Similar developmental compensation may occur in global TRβ 12 

knockout mice. 13 

 14 

Studies using adenovirus mediated expression of a dominant negative TR (DN-TR) in the rat 15 

VMH have been reported (Lopez et al.,2010). Although, VMH DN-TR expression did not 16 

affect food intake or body weight in euthyroid animals, it prevented weight loss in thyrotoxic 17 

rats and resulted in reduced hypothalamic AMP-activated protein kinase (Ampk) expression 18 

(Lopez et al.,2010). Ampk expression was unchanged in our model. DN-TR interferes with 19 

the actions of both TRα and TRβ and exerts a marked repressive effect on gene 20 

transcription (Ortiga-Carvalho et al.,2014; Ferrara et al.,2012). By contrast, VMH-TRβ- mice 21 

have only reduced TRβ activity rather than the pathological repression of TR target genes 22 

that is present in animals expressing a dominant negative receptor. This fundamental 23 

difference is likely to explain the contrasting phenotypes observed in these two models. 24 

 25 

In summary, we have shown that hypothalamic TRβ is an important physiological regulator 26 

of energy homeostasis because TRβ knock down in the VMH results in a phenotype of 27 

hyperphagia and severe obesity that is comparable to some of the most extreme forms of 28 
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monogenic obesity (Tecott et al.,1995; Yaswen et al.,1999). Our findings provide insights 1 

into the central regulation of energy homeostasis by TRβ that could be a target for anti-2 

obesity therapies.  3 
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Experimental Procedures 1 

Animals 2 

Thrbflox/flox mice (Winter et al.,2009) were genotyped by PCR using specific oligonucleotide 3 

primers (Figure S1). Mice were housed in single cages and maintained under a 4 

controlled environment (temperature 21–23 °C, 12-h light–dark cycle, lights on at 5 

07:00) with ad libitum access to chow and water (RM1; SDS Diets), except where 6 

stated. Male mice which were eight weeks old at the start of procedures were used 7 

in all experiments. All animal studies were approved under the Animals (Scientific 8 

Procedures) Act (1986) (Project License number 70_7229) and approved by the 9 

Animal Welfare and Ethical Review Body, Imperial College London, which is signed 10 

up to the ARRIVE guidelines. 11 

 12 

Recombinant AAV preparation 13 

Recombinant AAV was produced (Grimm et al.,1998) and isolated (Zolotukhin et al.,1999) 14 

as previously described. 15 

 16 

Confirmation of rAAV transgene expression, Thrb excision and reduced TRβ 17 

expression in the VMH 18 

Excision of the Thrbflox allele within the hypothalamus was confirmed by PCR (Figure S1). 19 

ISH using a probe specific to the excised portion of TRβ was performed to confirm reduced 20 

TRβ expression within the VMH (Smith et al., 2008). 21 

 22 

Measurement of energy expenditure 23 

Metabolic parameters were measured by indirect calorimetry using an open-circuit Oxymax 24 

system of the Comprehensive Lab Animal Monitoring System (Columbus, OH, USA) 25 

(Gardiner et al., 2010). 26 

 27 
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RNA-Seq analysis 1 

RNA-Seq analysis was performed using hypothalamic RNA from VMH-GFP (n=3) and VMH-2 

TRβ- (n=4) mice using Next Generation Sequencing (NGS) technologies (Imperial BRC 3 

Genomics Laboratory, Imperial College London). For further details see Supplemental 4 

Experimental Procedures. 5 

 6 

Statistical Analyses 7 

Cumulative food intake and body weight data were analyzed using generalized estimating 8 

equations with exchangeable correlation matrix and robust standard errors. Differences 9 

between two groups at individual time points were analyzed by unpaired t-tests, for multiple 10 

comparisons a Bonferroni correction was applied. Values from the behavioural study were 11 

analyzed using a one way ANOVA followed by Kruskal-Wallis test. Data from the energy 12 

expenditure test were analyzed using a one way ANOVA followed by a Newman-Kuels test. 13 

Plasma thyroid hormones were compared using Mann-Whitney U test. Differences between 14 

groups were considered statistically significant at the 95% confidence level (P<0.05). 15 

  16 
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Figure Legends 1 

Figure 1 Effect of reduced TRβ expression in the VMH 2 

(A) Cumulative food intake 3 

(B) Cumulative body weight change 4 

(C) Body weight on day forty-two 5 

(D) Photograph of VMH-GFP and VMH-TRβ- mouse 6 

(E) Hypothalamic expression of Pomc  7 

(F) Hypothalamic expression of Npy  8 

A-C Results are mean ± SEM n=10 for VMH-GFP and 11 for VMH-TRβ-, E and F results are 9 

median, whiskers are minimum and maximum n=3 for VMH-GFP and 4 for VMH-TRβ-, 10 

*P<0.05; ** P<0.01.-Food intake and body weight were analyzed using a generalized 11 

estimating equation exchangeable correlation matrix and robust standard errors (GEE), body 12 

weight data t-test 13 

See also Figure S1-S3 Table S1 and S2 14 

 15 

Figure 2 White adipose tissue mass and distribution  16 

MRI quantification of fat demonstrated that VMH-TRβ- mice had significantly higher fat mass 17 

(A) Representative transverse T1 weighted MR images through the abdominal region of a 18 

VMH-GFP and VMH-TRβ- mouse 19 

(B) Total body fat 20 

(C) Visceral fat 21 

(D) Subcutaneous fat 22 

(E) Epididymal fat pad weight on day 42 (n=10) 23 

(F) Plasma leptin levels on day forty-two (n=10). 24 

Results are mean ± SEM (n=3 per group unless stated); **P<0.01 versus control. t-test with 25 

Bonferroni correction 26 

See also Figure S4 27 

 28 
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Figure 3 Effect of pair-feeding on VMH-TRβ- mice 1 

(A) Weight gain over the entire period of the experiment. During weeks 0-5, food intake of 2 

each VMH-TRβ- mouse was limited to that of a weight-matched, VMH-GFP littermate. From 3 

weeks 5-9, ad libitum access to food was restored. 4 

(B) Food intake during the pair-feeding period 5 

(C) Food intake during the ad libitum feeding period 6 

Results are mean ± SEM n=9; GEE, *P<0.05; *** P<0.001 7 

 8 

Figure 4 Energy expenditure and locomotor activity in mice with reduced expression 9 

of TRβ in the VMH 10 

(A) Oxygen consumption 11 

(B) Carbon dioxide production 12 

(C) Locomotor activity 13 

(D) Respiratory exchange ratio 14 

(E) Ucp-1 expression in BAT (n=7 VMH-GFP and 11 VMH-TRβ-) 15 

L= light phase D= dark phase, 1=1 week, 6 = six weeks, after recovery 16 

Data are mean ± SEM (n= 5 VMH-GFP; n=6 VMH-TRβ-) ANOVA with Student-Newman-17 

Keuls analysis ** P< 0.01 See also Table S3 18 

 19 

Table S1 RNA-Seq data of hypothlamic RNA related to figure 1  20 

Hypothalamic RNA was extracted from whole hypothalami of VMH-TRβ- or VMH-GFP mice 21 

and subject to RNA analysis.   22 

 23 

Table S2 Canonical pathway analysis of RNA-Seq data related to figure 1 24 

Differentially expressed genes were subject to pathway analysis. Additional pathway 25 

analysis was conducted on genes reported to be regulated by thyroid hormone and directly 26 

regulated by thyroid hormone in cerebrocortical cells as reported by Gil-Ibaňez et al.,2017. 27 
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Excised Thrb flox allele (601bp)  
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Supplemental Data Items 
Figure S1 Schematic representation of the Thrbflox allele and verification of excision of the Thrbflox allele related to figure 1 
A) Genomic structure of Thrb (NC_000080.6 (17660960-18038088)) showing the locations of the thyroid hormone receptor beta 
1 (TRβ1: NM_001113417.1) and beta 2 (TRβ2: NM_009380.3) isoforms.  White boxes represent untranslated exons, shaded 
boxes indicate unique 5’ Thrβ1 exons, the black box shows the unique 5’ Thrβ2 exon, and the light grey boxes show the 6 exons 
common to both isoforms.  The positions of the two LoxP sites flanking exon 5 are indicated by the white triangles.  The wild 
type and Thrbflox alleles were amplified using the forward (F1: 5’-CAGCCACTGGAAGCAGAAG-3’) and reverse primers (Rc: 
5’-AACGTCACTGTTGTGGTGTACAGG-3’). PCR amplification of the wild type allele resulted in a 931bp product whereas the 
product of the Thrbflox allele was 1111bp in size. The excised Thrbflox allele was amplified using the forward primer (F2: 5’-
CATCTATGTTGGCATGGCAACAGACT-3’) and reverse primer (Rc) the resulting product being 601bp in size. 
B) Agarose gel visualized under UV illumination of PCR on DNA to demonstrate excision of the Thrbflox allele in Thrbflox/flox 
mice, restricted to the hypothalamus, following intra-VMH injection of rAAV-Cre. Arrows donate position of Thrbflox allele 
(1111bp), wildtype allele (931bp) and the excised Thrbflox allele (601bp). Lane 1: HyperLadder I™ (DNA molecular weight 
marker). Lanes 2 and 5: hypothalamic DNA from two Thrbflox/flox mice injected with rAAV-Cre into the VMH, denoted as VMH-
TRβ- mouse 1 and VMH-TRβ- mouse 2 respectively, each showing a band at 1111bp representing the Thrbflox allele and a band at 
601bp representing the excised ThrbΔVMH allele. Lanes 3 and 6: PCR performed on DNA extracted from the cerebellum (lane 3, 
VMH-TRβ- mouse 1; lane 6, VMH-TRβ- mouse 2). Lanes 4 and 7: PCR performed on DNA extracted from and brainstem (lane 4, 
VMH-TRβ- mouse 1; lane 7, VMH-TRβ- mouse 2). In these lanes only the band at 1111bp representing the Thrbflox allele is 
present. The absence of a band at 601bp in these lanes demonstrates that the Thrbflox allele has not been excised in these extra-
hypothalamic brain tissues. Lanes 8 and 11: hypothalamic DNA from two Thrbflox /flox mice injected with rAAV-GFP into the 
VMH, denoted as VMH-GFP-mouse 1 and VMH-GFP-mouse 2 respectively, each showing a band at 1111bp representing the 
Thrbflox allele. The absence of a band at 601bp in these lanes demonstrates that the Thrbflox allele has not been excised in the 
hypothalami of the rAAV-GFP injected mice. Lanes 9 and 12: PCR performed on DNA extracted from the cerebellum (lane 9, 
VMH-GFP-1-mouse 1; lane 12, VMH-GFP-mouse 2). Lanes 10 and 13: PCR performed on DNA extracted from the brainstem 
(lane 10, VMH-GFP-mouse 1; lane 13, VMH-GFP-mouse 2). Lane 14: PCR of DNA extracted from the hypothalamus of a 
Thrbflox/flox mouse injected with rAAV-Cre. Lane 15: PCR of DNA extracted from the hypothalamus of an un-injected Thrbflox/flox 

mouse.  Lane 16: PCR of DNA extracted from the hypothalamus of a wildtype mouse. Lane 17: negative control (autoclaved 
glass distilled water). Lane 18: HyperLadder I™ (DNA molecular weight marker).  
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Figure S2 Localization studies, verification of rAAV-Cre transgene expression and excision of the TRβflox allele within the 
ventromedial hypothalamus related to figure 1 
(A) GFP fluorescence within the VMH which sits adjacent to the third ventricle (3V) (scale bar represents 6µm). (B) 
Representative in situ hybridization image of a VMH-TRβ- mouse brain radio-labelled with woodchuck hepatitis post-regulatory 
element (WPRE) antisense riboprobe which localizes transgene expression to the VMH. The WPRE sequence is part of the 
expression cassette of rAAV vectors but is not endogenously expressed by mammalian cells. Its detection therefore confirms 
successful rAAV neuronal infection and transgene expression. Scale bar is 0.2mm (C) Representative in situ hybridization image 
of a VMH-GFP mouse brain radio-labelled with TRβ antisense riboprobe showing expression of TRβ within the VMH (hashed 
area). This is in comparison to the in situ hybridization image (D) showing a VMH-TRβ- mouse brain radio-labelled with Thrb 
antisense riboprobe. The lack of riboprobe binding in the VMH-TRβ- mouse brain (D) (area marked by hashed lines) in 
comparison to the control brain (C) suggests reduced expression of TRβ in the VMH of VMH-TRβ- mice.  Scale bar 25µm. 
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Figure S3: Venn diagram of comparison of differentially regulated gens in VMH-TRβ- mice and those 
reported to be T3 sensitive in cerebrocortical cells and heat map of significantly altered genes directly 
regulated by T3 related to figure 2 
RNA was extracted from hypothalami from VMH-GFP (n=3) and VMH-TRβ- (n=4) mice and subject to RNA seq 
analysis.  
A. Significant differential expression genes were compared to those reported by Gil-Ibaňez al 2017.   
B. Significant differential expression genes were compared to those reported by Gil-Ibaňez al 2017 and shown are 
the 93 genes reported to be directly regulated by T3 that were significantly altered in our samples. 
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Figure S4: Systemic thyroid function and glucose homeostasis body temperature and response to exogenous T3 injection 
of VMH-TRβ- and VMH-GFP and effect of lateral ventricle injection of rAAV-Cre (LV-Cre) or rAAV-GFP (LV-GFP) 
into the lateral ventricles (LV) of Thrbflox/flox mice mice related to figure 2 
(A) Plasma mTSH. 
(B) Plasma total T4. 
(C) Plasma total T3. 
(D) Fasting plasma insulin. 
(E) Glucose tolerance test performed before development of obesity in mice. 
(F) Insulin tolerance test performed before development of obesity in mice.  
(G) Weight change in LV-Cre and LV-GFP mice 
(H) Cumulative food intake in LV-Cre and LV-GFP mice 
(I) Twenty-four hour food intake in VMH-GFP or VMH-TRβ- mice in response to exogenous T3 or vehicle.  
(J) Body temperature in VMH-TRβ- and VMH-GFP mice. 
Results (A-C) are mean ± s.e.m. (n=7 per group). Data were analyzed by Mann-Whitney U test. 
Results D are mean ± s.e.m. (n=10 per group). Results E-F are mean ± s.e.m. (n=9 per group).  
Results G and H are mean ± s.e.m. (n=8-10 per group). Data were analyzed using generalized estimating equations with 
exchangeable correlation matrix and robust standard errors  
Results I are mean ± s.e.m (n=5-7 per group) Results J are mean ± s.e.m (n=4 per group) Data were analyzed by t-test. 
. 
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 Dark phase Light phase 

VMH-GFP VMH-TRβ- VMH-GFP VMH-TRβ- 

Feeding 19 (16-23) 21 (9-25) 14 (13-17) 9 (9-14) 
Drinking 2 (0-3) 0 (0-0) 0 (0-1) 0 (0-0) 

Grooming 24 (22-26) 17 (11-24) 15(10-19) 13 (4-16) 
Burrowing 1 (0-2) 1 (0-3) 3 (0-4) 6 (1-8) 

Rearing 2 (0-3) 0 (0-1) 0 (0-0) 0 (0-0) 
Locomotion 21 (17-22) 11 (7-13)** 9 (7-10) 6 (3-8) 

Sleep 24 (19-24) 36 (32-41) 60 (42-65) 60 (48-68) 
Head down/still 17 (11-21) 21 (13-32) 10 (3-15) 15 (13-18) 

 
Table S3 Effect of TRβ inactivation in the VMH on mouse behavior related to figure 4. At least twenty eight days after 
rAAV injection, behavioral patterns were monitored continuously for sixty minutes at 08.30h, 12.30h, 16.30h, 19.30h, 00.00h and 
04.00h by observers blinded to the experimental treatment. At every time point, each animal was observed for three five second 
periods every five minutes and the behavior noted. There was a significant reduction in nocturnal locomotor activity in VMH-
TRβ- compared with the control group. There was no difference in abnormal behaviors (defined by a significant increase in head 
down, burrowing or rearing) between VMH-TRβ- and control mice. Results are median (interquartile range) (n=7-10 per group); 
** P<0.01 versus control data were analyzed by Kruskal-Wallis one way analysis of variance. 
 
  



Supplemental Experimental Procedures 
 
Stereotaxic surgery 
Stereotaxic surgery was performed on eight week old male Thrbflox/flox mice (Gardiner et al., 2005). The VMH injection 
coordinates were 1.3mm posterior, 0.4mm lateral and 6mm ventral. The LV coordinates were 0.5mm posterior, 1.1mm lateral and 
2.4mm ventral. Each mouse received a 0.5 µl bilateral injection of either rAAV-Cre 7.63x1013 gp/ml or rAAV-GFP, 8.57x1013 
gp/ml. Mice were individually housed at 21-23°C with a 12-h light/dark cycle with ad libitum access to food (RM1 diet; DS, 
Witham, UK) and water unless otherwise specified.  
 
RNA seq analysis  
RNA-Seq analysis was performed using hypothalamic RNA from VMH-GFP (n=3) and VMH-TRβ- (n=4) mice using Next 
Generation Sequencing (NGS) technologies (Imperial BRC Genomics Laboratory, Imperial College London). TruSeq Stranded 
mRNA libraries were multiplexed and sequenced with the average of 40 million DNA fragments per sample (100 bp paired-end 
reads). Quality control was performed using FastQC software (version 0.11.2). Sequencing reads were aligned to GRCm38 
reference mouse genome by Tophat (version 2.0.10) using the set of known genes provided by Ensembl database (release 75) 
with the average alignment rate of 85%. The raw number of read pairs mapped to each Ensemble gene was calculated with 
HTSeq (version 0.6.0) in 'union' mode. Reads (or read pairs) that overlap more than one gene or mapped to multiple locations 
were discarded. Differential expression analysis was performed using EdgeR and an FDR cutoff of 0.05 was used to generate the 
lists of DE genes.  The lists of T3 responsive genes and direct T3 responsive genes were obtained from Gil-Ibañez et al. 2017 and 
overlapped with DE expressed genes from the present study. Ingenuity Pathway Analysis was performed using the resultant sets 
of DE genes.  A heatmap comparing gene expression in 89 direct T3 responsive genes in the present study was generated using 
GeneSpring.    
 
Quantitation and distribution of white adipose tissue by MRI  
VMH-TRβ- and VMH-GFP mice (n=3 per group) were scanned using a 4.7 Tesla Varian INOVA imaging system. SliceOmatic 
software (version 4.2) was used to separate and quantify tissue volumes (Mystkowski et al., 2000). Quantitation of fat depots was 
normalized to total body fat and total body fat was normalized to body weight.  

Glucose and insulin tolerance tests 
Glucose and insulin tolerance tests were carried out as previously described (Bewick et al., 2009). Plasma glucose was measured 
using the Acensia Contour blood glucose monitoring system (Bayer HealthCare, Newbury, U.K.). 
 
Peripheral (subcutaneous) administration of T3 (75nmol/kg) and food intake 
In a randomized crossover, VMH-TRβ- mice and VMH-GFP mice control mice (n=5-7 per group) received either subcutaneous 
T3 (75nmol/kg) or vehicle as previously described (Kong et al., 2004) and food intake measured.  
 
GFP visualization 
Animals were terminally anaesthetized and the brains dissected, incubated and sliced as previously described (Gardiner et al., 
2005). Fluorescence was detected by a Zeiss deconvoluting microscope (Axiovert S100 TV, Carl Zeiss, Jena, Germany) using a 
FITC filter. Images were acquired using a MetaMorph imaging system (Universal Imaging, West Chester, USA) as previously 
described (Gardiner et al., 2005). 
 
Pair-feeding of VMH-TRβ- mice to the food intake of VMH-GFP mice  
Twenty eight days after rAAV injection, VMH-TRβ- mice were pair-fed to the mean daily food intake of a weight matched VMH-
GFP litter mate (n=9 per group). After 5 weeks of pair-feeding, ad libitum feeding was re-instated for a further 4 weeks.  
 
Plasma assays  
Total T4, T3 and TSH were measured by radioimmunoassay (RIA) (Pohlenz et al., 1999). Fasting leptin and fasting insulin were 
measured by enzyme linked immunosorbent assay (Crystal Chem, IL).  

Quantitation of Ucp1 mRNA expression in BAT by northern blot analysis  
RNA was extracted from inter-scapular BAT of VMH-TRβ- and VMH-GFP mice (n=7-11 per group) and Ucp1 mRNA 
expression determined by northern blot analysis as previously described (Smith et al., 2008). 
 
Measurement of energy expenditure 
The study commenced 21 days after rAAV injection. One week and 6 weeks into the study, metabolic parameters were measured 
for 24h (12h light phase, 12h dark phase) by indirect calorimetry using an open-circuit Oxymax system of the Comprehensive 
Lab Animal Monitoring System from Columbus Instruments (Columbus, OH, USA). Animals (n=5-6 per group) were maintained 
at 21-23°C with a 12-h light/dark cycle with ad libitum access to food (RM1 diet; DS, Witham, UK) and water. To measure 
oxygen consumption and carbon dioxide production exhaust air from each tight chamber was sampled for 1min at 30min 
intervals. Oxygen consumption and carbon dioxide production were normalized to surface area (Tschop et al., 2011) (body weight 
to the power of 0.75). The ambulatory activity of each animal was assessed simultaneously using the optical beam technique as 
previously described (Gardiner et al., 2010). 
 
 
 
 



Behavioral Analysis 
At least 28 days after rAAV injection, behavioral patterns of VMH-TRβ- and VMH-GFP mice (n=7-10 per group) were 
monitored continuously for sixty minutes at 08.30h, 12.30h, 16.30h, 19.30h, 00.00h and 04.00h, by observers blinded to the 
experimental treatment. At every time point, each animal was observed for three, five second periods every five minutes and the 
behavior noted. Behavior was classified into eight categories: feeding, drinking, grooming, burrowing, rearing, locomotion, sleep, 
head down/still as previously described (Fray et al., 1980; Abbott et al., 2001). Abnormal behavior was defined by a significant 
increase in head down, burrowing or rearing as previously described (Abbott et al., 2001). 
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