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ABSTRACT
Nested sampling is an increasingly popular technique for Bayesian computation, in particular
for multimodal, degenerate problems of moderate to high dimensionality. Without appropriate
settings, however, nested sampling software may fail to explore such posteriors correctly, for
example producing correlated samples or missing important modes. This paper introduces new
diagnostic tests to assess the reliability of both parameter estimation and evidence calculation
using nested sampling software, and demonstrates them empirically. We present two new di-
agnostic plots for nested sampling and give practical advice for nested sampling software users
in astronomy and beyond. Our diagnostic tests and diagrams are implemented in NESTCHECK,
a publicly available

1
PYTHON package for analysing nested sampling calculations, which is

compatible with output from MULTINEST, POLYCHORD, and DYPOLYCHORD.

Key words: methods: data analysis – methods: numerical – methods: statistical.

1 IN T RO D U C T I O N

Nested sampling (Skilling 2006) is a method for Bayesian analysis
that simultaneously provides Bayesian evidences and posterior sam-
ples. The popular MULTINEST (Feroz & Hobson 2008; Feroz et al.
2008, 2013) and POLYCHORD (Handley et al. 2015b,a) implemen-
tations are now used extensively in many areas of science, and in
particular in astronomy (see e.g. Samushia et al. 2014; Desvignes et
al. 2016; Joudaki et al. 2016; Planck Collaboration XX 2016b; Chua
et al. 2018; DES Collaboration 2018). Though originally designed
for evidence calculation, nested sampling is now widely employed
for parameter estimation and performs well compared to Markov
chain Monte Carlo (MCMC)-based alternatives for multimodal and
degenerate posteriors due to having no thermal transition property.
In addition the POLYCHORD implementation is designed to handle
higher dimensional problems.

Methods for numerically estimating the uncertainty in nested
sampling results due to the stochasticity of the nested sampling
algorithm are now available for both evidence calculation (see
Skilling 2006; Keeton 2011) and parameter estimation (see Hig-
son et al. 2018). However, all of these techniques assume that the
nested sampling algorithm was executed perfectly – which requires
sampling randomly from the prior within a hard likelihood con-
straint. This can only be done exactly in special cases, such as
for spherically symmetric calculations using PERFECTNS (Higson
2018c). Nested sampling software used for practical problems can
only perform such sampling approximately and as a result may pro-
duce additional errors – for example due to correlations between
samples or due to sampling from only part of the prior volume

� E-mail: e.higson@mrao.cam.ac.uk
1Available at https://github.com/ejhigson/nestcheck.

contained within a likelihood constraint. We term these additional
errors implementation-specific effects to distinguish them from the
intrinsic stochasticity of the nested sampling algorithm.

Diagnosing whether significant implementation-specific effects
are present is of great practical importance for researchers as they
can cause large uncertainty in results and lead to potentially incor-
rect conclusions – for example if the calculation misses a significant
mode2 in a multimodal posterior. Conversely, if implementation-
specific effects are shown to be negligible, users can simply increase
the number of live points for more accurate results and can confi-
dently use standard techniques to estimate numerical uncertainty
from the nested sampling algorithm.

Typically a software has a setting that the user can adjust to reduce
implementation-specific effects at the cost of increased computa-
tion, such as POLYCHORD’s num repeats and MULTINEST’s efr
(see Section 7 for more details). Assessing whether the software
is able to explore the posterior reliably is therefore particularly
useful when taking significantly more samples is computationally
costly, as is often the case for high-dimensional problems. In the au-
thors’ experience, software users typically try to check their results
by running a calculation several times and qualitatively assessing
whether the posterior distributions look similar in each case. How-
ever, this is not very reliable and does not differentiate between

2Here we refer to cases where the software does not detect the mode and,
as a result, samples are not drawn from the entire prior volume within
specified likelihood constraints. Another less common problem is that, if
the number of live points is very low, a given run might not contain a single
sample within a particular mode even when the nested sampling algorithm is
performed perfectly; this is not an implementation-specific effect according
to our definition.
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implementation-specific effects and the expected variation from the
inherent stochasticity of the nested sampling algorithm.

We are not aware of any diagnostic tests in the literature for check-
ing calculation results for practical problems for implementation-
specific effects, although Buchner (2016) proposes a diagnostic for
evidence calculations that uses analytically solvable test problems.
In contrast, MCMC-based methods, which do not require sampling
within a hard likelihood constraint, have an extensive literature on
diagnostics for practical problems (see e.g. Cowles & Carlin 1996;
Hogg & Foreman-Mackey 2018).

This paper introduces new heuristic tests and diagrams to check
the reliability of nested sampling results for practical problems, and
to determine whether the software settings should be changed. It is
also intended to serve as a practical guide for nested sampling prac-
titioners based on the authors’ experience using nested sampling
software. We begin with a brief overview of the nested sampling
algorithm and its associated errors in Section 2 and discuss the chal-
lenges of detecting implementation-specific effects in Section 3. We
then introduce our new diagnostic tests:

(i) Section 4 discusses diagnostic plots and presents two new
diagrams for nested sampling ;

(ii) Section 5 describes how the implementation-specific effects
can be measured from a number of nested sampling runs;

(iii) Section 6 introduces diagnostic tests that can be applied to
pairs of nested sampling runs and are useful when few runs are
available.

We empirically test the effects of changing nested sampling
software settings and the dimension of the problem on both
implementation-specific effects and total calculation errors in Sec-
tion 7; the tests use POLYCHORD, although the discussion and con-
clusions are relevant for other software. Our practical advice for
software users is summarized in Section 7.5. Finally in Section 8
we apply our methods to astronomical data from the Planck survey.
Our diagnostic tests and diagrams are implemented in NESTCHECK

(Higson 2018a), an open source PYTHON package for analysing
nested sampling calculations. NESTCHECK is compatible with out-
put from a variety of nested sampling software packages, including
MULTINEST, POLYCHORD, and DYPOLYCHORD (Higson 2018b).

2 BAC K G RO U N D : N E S T E D S A M P L I N G A N D
SAMPLING ER RORS

This section provides a brief overview of the nested sampling al-
gorithm and the sampling errors involved in the process – for more
details see Higson et al. (2018). A comparison of nested sampling
with other sampling methods is beyond of the scope of this paper;
for this we refer the reader to Allison & Dunkley (2014) and Murray
(2007).

Nested sampling (Skilling 2006) performs Bayesian computa-
tions by maintaining a set of samples from the prior π (θ), called
live points, and repeatedly replacing the point with the lowest like-
lihood L(θ) with another sample from the region of the prior with
a higher likelihood. The samples that have been removed, termed
dead points, are then used for evidence calculations and posterior
inferences (the live points remaining when the algorithm terminates
can also be included). The fraction of the prior volume remaining
after each point i with likelihood Li , which is defined as

X(Li) ≡
∫
L(θ)>Li

π (θ) dθ, (1)

Figure 1. Illustration of nested sampling with a constant number of live
points n (reproduced from Higson et al. 2018). The algorithm samples an
exponentially shrinking fraction of the prior X as it moves towards increasing
likelihoods. The relative posterior mass contained at each log X value is
proportional to L(X)X, where L(X) ≡ X−1(L).

shrinks exponentially; this process is illustrated schematically in
Fig. 1. The shrinkage at each step is unknown but is estimated
statistically and used to weight the samples produced.

The sampling errors from this process can be estimated by di-
viding a completed nested sampling run with some number of live
points into many valid nested sampling runs with only one live point.
These single live point runs, termed threads, can then be resampled
using standard techniques such as the bootstrap as described in sec-
tion 4 of Higson et al. (2018). The resampling is valid as the log X
values of the dead points of a nested sampling run with n live points
are a Poisson process with rate n, so the log X values for the dead
points in each of its constituent threads form a Poisson process of
rate 1. Here and in the remainder of this paper log denotes the
natural logarithm.

3 MEASURING IMPLEMENTATION-SPECIFIC
EFFECTS

This paper is concerned with developing practical diagnostics
for assessing whether nested sampling calculation results contain
implementation-specific effects due to imperfect execution of the
nested sampling algorithm. It is important to emphasize that diag-
nosing such effects without additional information about the likeli-
hood and prior is very challenging, and it is impossible to conclude a
priori with certainty that they are not present. For example, one can-
not eliminate the possibility of missing an extremely narrow mode
for a general posterior without an exhaustive search of the param-
eter space (Wolpert & Macready 1997). Hogg & Foreman-Mackey
(2018, section 5) provide an interesting and analogous discussion
of the similarly heuristic nature of MCMC convergence tests. In
addition, nested sampling’s iteration towards successively higher
likelihoods means it never reaches a steady state. As a result heuris-
tics based on autocorrelation of samples like those used in testing
for MCMC convergence cannot be applied.

The main idea behind the diagnostic tests we present is to assess
whether the variation of the results of different nested sampling runs
is consistent with the statistical properties expected of nested sam-
pling without implementation-specific effects. Consequently, these
diagnostics require multiple nested sampling runs. A limitation of
this approach is that a systematic bias in the calculation results will
lead to the implementation-specific effects being underestimated,
although they are still likely to be detectable. Such cases have been
observed in the literature for evidence calculations with challenging
posteriors (see e.g. Beaujean & Caldwell 2013); we discuss system-
atic bias in detail in Section 7.3. Furthermore our diagnostics are
unable to detect implementation-specific effects that do not change
the variation of the runs, although we have not come across such a
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2046 E. Higson et al.

case in practice. A theoretical example would be if every run avail-
able missed a significant mode while exploring all the rest of the
parameter space correctly.

3.1 Test problems

We now introduce two test problems, which we will use to demon-
strate the diagnostic tests presented in the following sections.

As an example of a simple likelihood, we consider a d-
dimensional Gaussian with σ = 1 centred on the origin

L(θ) = (2π )−d/2e−|θ|2/2. (2)

We also use the challenging LogGamma–Gaussian mixture model
likelihood introduced by Beaujean & Caldwell (2013), which
was designed to represent a particle physics problem involving
heavy-tailed distributions and several distinct modes. In this case
L(θ) = ∏d

i=1 L(θî) with

L(θ1̂) = 1

2
LogGamma(θ1̂ − 10|1, 1) + 1

2
LogGamma(θ1̂ + 10|1, 1),

L(θ2̂) = 1

2
Normal(θ2̂ − 10|0, 1) + 1

2
LogGamma(θ2̂ + 10|0, 1),

and, if d > 2,

L(θî ) =
{

LogGamma(θî |1, 1) for 3 ≤ i ≤ d+2
2 ,

Normal(θî |0, 1) for d+2
2 ≤ i ≤ d.

(3)

Here the number of dimensions d is even and the LogGamma
distribution is

LogGamma(x|α, β) = eβxe−ex/α

αβ�(β)
, (4)

where � denotes the gamma function.
Our numerical tests all use uniform priors ∈ [−30, 30] for each

parameter. As equations (3) and (2) are both normalized to 1 and
there is negligible posterior mass outside the prior, in both cases the
evidence is almost exactly equal to the normalization constant on
the uniform prior – i.e.

Ztrue = 60−d . (5)

4 D I AGNOSTIC PLOTS

Before discussing quantitative diagnostics in Sections 5 and 6, we
first introduce some diagnostic plots which illustrate nested sam-
pling and its associated errors. It is good practice for users of sam-
pling software to represent their results visually, in order to assess
whether they are reasonable given background knowledge about
the problem. Many software packages exist for plotting one - and
two-dimensional marginalized distributions from weighted samples
using kernel density estimation. As an example, Fig. 2 shows pos-
terior distributions for the LogGamma mixture likelihood (equation
3); this was made usinggetdist (Lewis 2015) with a zero-centred
Gaussian kernel and the default settings.

While plots like Fig. 2 are useful, it is unclear to what extent
the differences between the two nested sampling runs are due to
implementation-specific effects or merely what is expected from
the stochasticity of the nested sampling algorithm. Furthermore,
these plots do not illustrate the distinctive manner in which nested
sampling iterates towards higher likelihoods. We therefore propose
two additional diagnostic plots in Section 4.1 and 4.2, which can
be calculated from nested sampling runs to show this extra infor-
mation. These are focused on distributions of parameters and so do

Figure 2. Triangle plot of the posterior distributions for two nested sam-
pling runs (red and blue lines), calculated using the ten-dimensional
LogGamma mixture likelihood (equation 3) and a uniform prior. The on-
diagonal plots show one-dimensional marginalized posterior distributions
on the first three parameters, and the remaining plots show calculated two-
dimensional 68 per cent and 95 per cent credible intervals on the joint poste-
rior distribution. The results for the two runs differ due to errors from both the
intrinsic stochasticity of the nested sampling algorithm and implementation-
specific effects. Each nested sampling run has 250 live points, and uses the
POLYCHORD setting num repeats = 20 – this low setting is deliberately
chosen to illustrate large implementation-specific effects.

not directly assess evidence calculations, but any significant incon-
sistencies in sample allocations observed between runs may also
impact evidence estimates.

4.1 Plotting the uncertainty on posterior distributions

The uncertainty on the posterior distributions due to nested sam-
pling stochasticity can be estimated from a run by creating boot-
strap resamples of the run using the procedure described in Higson
et al. (2018; section 4). This uncertainty can be visually represented
by plotting the distribution of the posteriors obtained from each
resample (which is a nested sampling run) to give an uncertainty
distribution on the posterior distribution. Such plots can be used for
assessing whether the calculation error is sufficiently small for the
given use case, and are illustrated in Fig. 3. If they are of interest, the
posterior distributions of functions of parameters can also be plot-
ted; Figs 3a and b both show the radial coordinate |θ| = (

∑
i θ2

î
)
1/2

.
The coloured contours are plotted using the FGIVENX package (Han-
dley 2018). 3

Plotting results from multiple runs on the same axis allows visual
assessment of whether implementation-specific effects are present.
If posterior distributions differ by more than would be expected from

3When calculating plots like those in Fig. 3, the posterior distribution for
each bootstrap replication must be calculated from the weighted samples
without reducing them to evenly weighted samples in a stochastic manner –
such as by including each sample with probability proportional to its weight
– as this adds extra variation. NESTCHECK contains an implementation of
one-dimensional kernel density estimation that takes sample weights as an
argument, and does not require conversion to evenly weighted samples.
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(a) Posterior distributions of the first parameter and the radial coordinate 
for a 10-dimensional Gaussian likelihood (2).

(b) Posterior distributions of the first 3 parameters and        for a 10-
dimensional LogGamma mixture likelihood (3). The nested sampling runs
are the same ones used in Figure 2 with the corresponding colours.

Figure 3. Diagrams of posterior distributions for two nested sampling
runs (red and blue), showing the uncertainty due to the stochasticity
of the nested sampling algorithm. Each run uses 250 live points, and
has num repeats = 20 deliberately set to a low value to illustrate
implementation-specific effects. The coloured contours show iso-probability
credible intervals on the marginalized posterior probability density function
at each parameter value. The dashed dark blue and dark red lines show
the estimated posterior means of each parameter for the blue and red runs,
respectively.

their bootstrap sampling error distribution, then implementation-
specific effects are likely to be the cause. For example, the top
left-hand panel of Fig. 3b, in which the coloured distributions are
clearly separated, suggests large implementation-specific effects are
present in this case with the settings used. Fig. 3 deliberately uses
low values for the POLYCHORD num repeats and number of live
points settings to illustrate implementation-specific effects; these
effect can be reduced with a more appropriate choice of settings
(discussed in Section 7).

4.2 Plotting distributions of samples in log X

We now propose a diagram to illustrate the distinctive manner
in which a nested sampling run progresses by sampling from
the prior with successively higher likelihood constraints, based
on the discussion in Higson et al. (2018; section 3.1). This in-
volves plotting sample parameters and weights against the frac-
tion of the prior volume remaining, X, which is defined in equa-
tion (1). A log scale is used as the shrinkage in X at each step is
exponential.

In each plot the top right-hand panel shows the relative pos-
terior mass L(X)X (i.e. the weight assigned to samples in that
log X region) on a relative scale; this is similar to Fig. 1. The log X
coordinates of the samples are estimated statistically, with their
uncertainty distribution displayed using coloured contours. Each
subsequent row represents a parameter or function of parameters,
with the right-hand panel showing the parameter value of each sam-

Figure 4. Diagram of samples’ distributions in log X for a single run with a
ten-dimensional Gaussian likelihood (2). The top right-hand panel shows the
relative posterior mass (total weight assigned to all samples in that region)
as a function of log X. The next two rows show the first parameter and the
radial coordinate |θ|; for each the right-hand panel plots its sampled values
against log X and the left-hand panel shows its posterior distribution in the
same way as Figs 3a and b. The coloured contours show iso-probability
credible intervals on the marginalized posterior probability density function
at each parameter or log X value. The nested sampling run shown uses
250 live points and num repeats = 20. The solid black line shows the
evolution of an individual thread (chosen at random). The estimated mean
value of the posterior distribution for each row is marked with a dashed line.

ple on the same log X scale. 4 The left-hand panel is the same as the
plots in the previous section (Figs 3a and b), and shows the posterior
distribution on the parameter values on a shared scale with the left
plot (including the uncertainty due to the stochasticity of the nested
sampling algorithm).

Our proposed diagram is illustrated in Figs 4 and 5. The lower
limit of the log X axis is chosen to include all points with non-
negligible posterior mass, and the upper limit is set to 0 (the start of
the nested sampling run). The y-axis limits of the plots in the right
column are simply chosen to include all samples with non-negligible
posterior weight, or which are otherwise of interest.

In addition, the evolution of individual threads can be traced by
drawing lines linking their constituent points. 5 This shares simi-
larities with MCMC trace plots but, unlike for a converged MCMC
chain, the distribution of parameters changes as the algorithm it-
erates over different log X values. Furthermore, as the algorithm
progresses towards lower values of log X it moves from right to left
in the diagram; in MCMC trace plots, chains typically move from
left to right.

Figs 4 and 5 are useful for visualizing the nested sampling pro-
cess and parts of the posterior such as degeneracies and modes
with which nested sampling software may struggle. Furthermore,
if additional information about the posteriors is available, such as
that they should have certain symmetries or be unimodal, this type
of diagram can be useful in working out where the sampler is not

4The scatter plots in the right-hand column of Figs 4 and 5 can be replaced
with a colour plot of the estimated distribution of values at each log X using
kernel density estimation (similar to the colour distributions shown in fig. 3
of Higson et al. 2018). However, doing this accurately is computationally
challenging and requires a lot of samples, so simple scatter plots are typically
more convenient for checking calculation results.
5Plots that trace individual threads in log X are also produced by the DYNESTY

dynamic nested sampling package. See https://github.com/joshspeagle/dyn
esty for more information.
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2048 E. Higson et al.

Figure 5. Diagram of samples’ distributions in log X for two nested sam-
pling runs from a ten-dimensional LogGamma mixture likelihood (equation
3). The two runs (shown in red and blue) are the same ones used for Figs 2
and 3b; each uses 250 live points and num repeats = 20. The top right-
hand panel shows the relative posterior mass (total weight assigned to all
samples in that region) as a function of log X. The next four rows show the
first three parameters and the radial coordinate |θ|; for each the right-hand
panel plots its sampled values against log X and the left-hand panel shows
its posterior distribution in the same way as Figs 3a and b. The coloured
contours show iso-probability credible intervals on the marginalized poste-
rior probability density function at each parameter or log X value. In each
row, the estimated posterior means for the blue and red runs are shown with
dashed dark blue and dark red lines. The solid and dot–dashed black lines
show the evolution of an individual thread chosen at random from the red
and blue runs, respectively.

behaving as expected. For example, Fig. 5 clearly shows the mul-
timodality of the LogGamma mixture likelihood, as well as giving
an indication of when in the nested sampling process the modes
separate. In addition the bottom right-hand panel of Fig. 4 shows
that the radial coordinate |θ| has negligible spread at any given log X
value in this case; this is due to the likelihood and prior’s spherical
symmetry.

Furthermore, multiple nested sampling runs can be added to the
same axis – as shown in Fig. 5. This allows comparison of where
runs differ; for example, one may be able to see on the plot that one
of the runs had missed a mode that the other run found (although
in Fig. 5 the samples from the two runs overlap). One can also see
from Fig. 5 that the two runs agree closely on the relative weights
assigned at different log X values (top panel), meaning that the
difference between the posterior distributions (left-hand panels) is
due to the parameter values sampled in each log X region rather than
the distribution of posterior mass.6

6It is common for the parameter values sampled to be the main difference
between parameter estimation calculations using different runs, as only the
relative weights of points affect the calculation (see Higson et al. 2018 for
more details).

5 ESTIMATING IMPLEMENTATION-SPECIFIC
EFFECTS

Following the diagnostics plots of the previous section, the
remainder of this paper discusses quantitatively measuring
implementation-specific effects. The total error on nested sampling
calculations can be estimated by measuring the variation of results
when a calculation is repeated multiple times, as this includes both
implementation-specific effects and the intrinsic stochasticity of the
algorithm. This provides a lower bound on the total error, but will
underestimate it in the case that implementation-specific effects
cause calculation results to be systematically biased.

While the nature of implementation-specific effects depends on
the specific software used, they are very likely to be uncorrelated
with the errors from the stochasticity of the nested sampling al-
gorithm, which can be calculated using the bootstrap resampling
approach. Assuming that they are indeed uncorrelated, the variance
in posterior inferences (such as the calculated values of parameter
means or the Bayesian evidence) due to implementation-specific
effects σ 2

imp is related to the variance estimated from bootstrap re-
sampling σ 2

bs and the sample variance of calculation results σ 2
values

by the standard relation for the sum of the variances of uncorrelated
random variables (the Bienaymé formula)

σ 2
values = σ 2

bs + σ 2
imp. (6)

Using this result, we propose calculating the standard deviation of
the uncertainty distribution due to implementation-specific effects
σ imp as

σimp =
{√

σ 2
values − σ 2

bs if σ 2
values > σ 2

bs,

0 otherwise.
(7)

To summarize, here σ values is the observed sample standard devi-
ation of results, σ bs represents the standard deviation we would
expect if the nested sampling algorithm was performed perfectly,
and σ imp represents the implementation-specific effects causing the
difference.

If a number of nested sampling runs are available, the
implementation-specific effects on calculations of scalar quanti-
ties such as the mean and median of parameters can be calculated
directly from equation (7) and compared to the variation of re-
sults. One can also estimate the fraction of the observed variation
that is due to implementation-specific effects σ imp/σ values – when
implementation-specific effects are large this is easy to measure ac-
curately as the variation of results is much greater than the bootstrap
error estimates and

σimp

σvalues
=

√
σ 2

values − σ 2
bs

σvalues
= 1 − σbs

2σvalues
+ O

(
σ 2

bs

σ 2
values

)
. (8)

The number of runs required to estimate σ imp is primarily deter-
mined by the accuracy of the sample standard deviation σ values.
Ahn & Fessler (2003) give a formula for the fractional uncertainty
of the sample standard deviation as a function of the number of data
points; for computationally expensive problems in our research, we
typically use ∼10 runs to estimate σ imp. In practice σ bs makes a
negligible contribution to the uncertainty on σ imp; it can be esti-
mated accurately from a single run, and the accuracy can be further
improved by averaging estimates from all the runs available.

Fig. 6 shows the ratio of the inferred implementation error to
the total variation of results for 100 nested sampling runs using ten-
dimensional Gaussian (equation 2) and LogGaussian mixture (equa-
tion 3) likelihoods. As for Figs 2, 3, 4, and 5 we use the POLYCHORD

setting num repeats = 20, which is deliberately chosen to be
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Figure 6. Ratios of estimated implementation-specific effects (equation
7) to variation of results for ten-dimensional Gaussian (equation 2) and
LogGamma mixture (equation 3) likelihoods. The dashed horizontal line
at σimp/σvalues = 1√

2
shows the level where implementation-specific effects

and the stochasticity of the nested sampling algorithm make equal contri-
butions to the total error; ratios above this value imply the majority of the
error is due to implementation-specific effects. Each bar is calculated using
100 POLYCHORD runs, each with 250 live points and num repeats = 50.
Results are shown for the log-evidence, the mean of the two parameters, the
mean radial coordinate, and the second moment of θ1̂. The numerical results
plotted in this figure are given in Tables B1 and B2 in Appendix B.

low in order to illustrate implementation-specific effects. The nu-
merical results plotted in Fig. 6 are given in Tables B1 and B2
in Appendix B, along with the absolute values of the variation of
results, root-mean-squared-errors, and implementation error esti-
mates. With these POLYCHORD settings, implementation-specific
effects are the dominant source of parameter estimation errors for
the LogGamma mixture likelihood. However, the implementation
fraction of the error for the log-evidence calculations is significantly
lower than for parameter estimation; this is because errors from the
stochasticity of the nested sampling algorithm are much larger for
evidence calculation than for parameter estimation.

The mean calculated value of logZ for the LogGamma mixture
likelihood (equation 3), shown in Table B2, differs by 0.10 ± 0.03
from the true value from (equation 5) of logZtrue = −d log(60).
This systematic bias is due to POLYCHORD failing to consistently
explore the posterior in this challenging case with the deliberately
low setting used – it can be reduced by increasing num repeats.
However, despite the bias, our approach successfully detected
implementation-specific effects in this case. Furthermore, using the
true value, we can calculate implementation-specific effects by us-
ing the rms error (RMSE) in equation (7):

σimp,RMSE =
{√

RMSE2 − σ 2
bs if RMSE2 > σ 2

bs,

0 otherwise.
(9)

In this case the estimated σ imp/σ values ratio of 0.43 ± 0.23
shown in Fig. 6 is only a small underestimate compared to
σ imp,RMSE/RMSE = 0.50 ± 0.14. Assessing results for systematic
bias when the true value of the quantity is not available is discussed
in Section 7.3.

Skilling (2006) recommends that inferences from multiple nested
sampling runs are made by combining them into a single run rather
than simply averaging the results from each run, as this allows more
accurate estimation of sample weights. If implementation-specific
effects are negligible, then uncertainty estimates can be calculated
from the combined run using standard techniques, but this will
be inaccurate if implementation-specific effects are the dominant
source of error. In the latter case, the approximate error on the
combined inference σ combined from N nested sampling runs with the
same settings can be roughly estimated as

σcombined = σvalues/
√

N. (10)

This may be an overestimate as it does not including the benefits of
combining the runs, but in practice this effect is likely to be small
compared to the uncertainty in the sample standard deviation of the
separate runs σ values unless N is very large.

6 D I AGNOSTI C TESTS FOR W HEN FEW RU NS
A R E AVA I L A B L E

For computationally expensive problems there may not be enough
nested sampling runs available to calculate the implementation-
specific effects directly using the method described in the previous
section. In Section 6.1 and 6.2 we therefore consider diagnostics that
assess whether two nested sampling runs have consistently explored
a parameter space while accounting for the stochastic nature of
the nested sampling algorithm. Due to the relatively small amount
of information available in this case, it is useful to also consider
qualitative comparisons using diagnostic plots of the types shown
in Section 4 as well as any problem-specific knowledge of what the
results should be. If N > 2 runs are available, then

(
N

2

)
pairwise tests

can be computed and their results combined for greater accuracy.

6.1 Testing for correlations between threads

We now introduce a test to assess whether a nested sampling soft-
ware is consistently exploring a posterior by comparing the statis-
tical properties of the set of constituent threads (single live point
runs) of two nested sampling runs. Each thread represents a valid
nested sampling run and can be used to make posterior inferences
about quantities such as the evidence and the mean and median of
parameters. The actual values calculated from each thread will have
large errors due their small number of samples, but this does not
matter for testing if the distributions of values obtained from each
run’s threads are consistent.

We propose applying the two-sample Kolmogorov–Smirnov
(KS) test (Massey 1951) to different runs’ constituent threads by
using each thread to calculate an estimate of a scalar quantity of
interest (such as parameter means or the Bayesian evidence Z) with
the following procedure:

(i) divide the first nested sampling run into its n1 constituent
threads, and calculate an estimate of the quantity from each;

(ii) divide the second nested sampling run into its n2 constituent
threads, and calculate an estimate of the quantity from each;

(iii) apply the two-sample KS test to the n1 and n2 values calcu-
lated from the first and second runs, respectively.

As a test statistic for distributions p(x) and q(x), the KS test uses
the maximum distance between their cumulative distributions Fp(x)
and Fq(x)

Dp,q = sup
x

|Fp(x) − Fq (x)|, (11)

where sup is the supremum. If n1 and n2 samples from p(x) and q(x)
respectively are used, the corresponding p-values are

α = 2 exp

(
− 2n1n2

n1 + n2
D2

p,q

)
. (12)

In this case the p-value produced represents the probability of ob-
serving a KS statistic Dp,q of this size or greater if the threads in the
two runs were drawn from the same distribution. A p-value close
to zero implies that the values obtained from the threads in the two
runs are statistically inconsistent, and hence that implementation-
specific effects are likely to be present. This procedure can also
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Figure 7. Distributions of KS p-values from pairwise comparison of dif-
ferent runs’ constituent threads, using logZ and the first two parameters. A
p-value of 0 means the quantities calculated from threads in the two runs
are from different distributions, implying the threads within each run are
correlated with each other and implementation-specific effects are present.
The black dashed line shows the median p-value for each plot. The nested
sampling runs are the same ones that were used for Fig. 6 – the 100 runs
allow

(100
2

) = 4950 pairwise statistics to be computed.

be used with other distribution-free tests such as the two-sample
Anderson-Darling test (Scholz & Stephens 1987) as an alternative
to the KS test.

Fig. 7 shows distributions of the p-values computed by apply-
ing this procedure to different pairs of nested sampling runs. For
the LogGamma mixture likelihood the median p-values for θ1̂ and
θ2̂ are 2 × 10−4 and 5 × 10−5, respectively, strongly suggest-
ing that implementation-specific effects are present (in agreement
with Fig. 6). However, the approach is not able to detect significant
evidence of implementation-specific effects in logZ calculations,
as implementation-specific effects comprise only a fraction of the
total variation of results in this case and so the pairs of runs do not
provide enough information.

In addition there are many quantities that can be tested – for exam-
ple the Bayesian evidence and the mean, median, higher moments,
and credible intervals of each parameter.7 Considering a number of
quantities allows sensitive testing for implementation-specific er-
rors from only two runs, even if the implementation-specific effects
are smaller than in the LogGamma mixture case. One could also
test multiple quantities together using a multidimensional KS test,
although this is challenging as there is no unique order for quan-
tity values in more than one dimension (see Fasano & Franceschini
1987 for a more detailed discussion). An alternative is to use mul-
tiple hypothesis testing with p-value corrections, for example with
the Holm–Bonferroni method (Holm 1979).

For MULTINEST runs using the setting mmodal = True, when
a new mode is recognized, the run is split and live points assigned
to the mode remain in that mode and evolve independently from
the remainder of the run. As a result, even when there are no
implementation-specific effects, the threads within such a run are
not independently drawn from the same distribution and the KS test
will not give correct p-values. The test is valid for POLYCHORD runs

7Tests on functions of the same parameter will not be independent.

Figure 8. Plots of the sampling error distribution calculated from bootstrap
resampling threads for different quantities. Each plot shows two nested sam-
pling runs (represented by different line colours), each with 250 live points
andnum repeats = 20. The kernel density estimation of the posterior dis-
tributions uses a Gaussian kernel with the bandwidth selected using Scott’s
rule (Scott 2015). These plots are designed for use when the true values
are not available (although in this case the true values for the distributions
shown can be found in Tables B1 and B2).

and MULTINEST runs with mmodal = False as in these cases
threads move between modes; this can be seen in Fig. 5.

It is important to note that the KS p-value only determines
whether implementation-specific effects are present and does not
provide information about the size of implementation error, which
must be assessed to determine whether they are problematic for
a given use case. 8 This can be done with the help of bootstrap
resamples, as discussed in the next section.

6.2 Testing the consistency of sampling error distributions

Our second diagnostic assesses whether calculations of scalar quan-
tities from the two different runs differ by more than would be ex-
pected given the estimated uncertainties from the intrinsic stochas-
ticity of the nested sampling algorithm. These uncertainty distribu-
tions on posterior point estimates can be calculated from bootstrap
resamples using the method described in Higson et al. (2018), and
are illustrated in Figs 8a and b. This has some similarities with
Figs 3a and b but considers only errors on single numbers (such
as the means of parameters shown by dashed vertical lines in those
figures) rather than on whole posterior distributions. As a result this
approach can also be applied to the Bayesian evidence Z, which is
a number rather than a distribution.

Bootstrapped point estimates can be qualitatively compared
across runs using plots like Fig. 8, or the statistical distance be-
tween the distributions can be quantified. As with the comparisons
of threads in Section 6.1 it may be hard to draw conclusions from
any one quantity, but the two runs can be compared using many dif-
ferent posterior estimates. Quantification may be more convenient
than plotting graphs when comparing many different quantities or
pairs of runs.

We use the KS statistic (equation 11) as a statistical distance mea-
sure; this constitutes a metric as it is non-negative, zero if and only if
the distributions are equal, symmetric, and satisfies the triangle in-
equality. Its numerical values are also easy to interpret, with a value

8In particular with enough data (threads) one can get very low p-values
even if the implementation-specific effects are relatively small and/or not
important for the practical problem being examined.
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Figure 9. Distributions of KS statistical distances (equation 11) between
bootstrap uncertainty distributions on point estimates of the type shown
in Fig. 8. For each likelihood, the three columns show results for logZ
calculations and for the mean of the parameters θ1̂ and θ2̂. The nested
sampling runs are the same ones that were used for Fig. 6; the 100 runs are
compared pairwise to give

(100
2

) = 4950 KS statistical distances for each
quantity. A KS statistic of close to 1 means there is little overlap between
the distributions, implying that the differences in the runs’ values cannot
be explained by the intrinsic stochasticity of the nested sampling algorithm
and that implementation-specific effects are present. The black dashed line
shows the median KS distance for each plot.

of 0 meaning the distributions are the same and a value of 1 meaning
they do not overlap. KS statistical distances between bootstrapped
posterior point estimates from different pairs of nested sampling
runs are shown in Fig. 9. These distributions show strong evidence
for implementation-specific effects in parameter estimation for the
LogGamma mixture case, with calculations of θ1̂ and θ2̂ having
65.7 per cent and 67.9 per cent of their pairwise statistical distances
equalling 1, respectively. These estimates are particularly sensitive
to changes in the relative weighting of different modes in the pos-
terior. However, as for the diagnostic introduced in Section 6.1,
two runs do not provide enough information to detect the relatively
weaker implementation-specific effects in the LogGamma mixture
logZ estimates.

The KS statistical distances are more difficult to interpret than the
p-values in Section 6.1, but they have the advantage that together
with plots like Fig. 8 they contain information about the size of any
implementation-specific effects. In this context, the KS statistic val-
ues are simply used as a distance measure and cannot be interpreted
as p-values. This is because, even without implementation-specific
effects, nested sampling runs will differ due to the stochasticity of
the algorithm, and these differences mean bootstrap resamples of
different runs are drawn from different distributions.

7 IMPLEMENTATION-SPECIFIC EFFECTS IN
PRAC TICE

Having introduced our diagnostic tests, we now empirically test how
different software settings and problem dimension affect the size
of implementation-specific effects. As an example we use POLY-
CHORD, but we intend this section to be informative for users of
other software packages such as MULTINEST and DYPOLYCHORD.
The section finishes with practical advice for software users.

Figure 10. The effect of POLYCHORD’s num repeats setting on results’
errors; each subfigure shows calculations of the log-evidence and the mean
of the first two parameters. Results for every num repeats value were
calculated using 100 nested sampling runs, each with 250 live points. Blue
solid lines show the mean bootstrap error estimate and orange dashed lines
show implementation-specific effect estimates from equation (7). Green
dotted lines show the implementation-specific effects calculated using the
rms error (9); where the green dotted and orange dashed lines are equal,
there is no systematic bias in the results. Error bars show the uncertainty on
results for each num repeats value considered.

7.1 Effect of sampling efficiency settings

Nested sampling software packages typically have settings control-
ling the process of sampling within a hard likelihood constraint
which can reduce implementation-specific effects at the cost of in-
creased computation. POLYCHORD and DYPOLYCHORD both have a
num repeats setting, which controls the number of slice samples
taken before sampling each new live point – increasing this value
reduces correlation between points and increases the accuracy with
which they perform the nested sampling algorithm. Other examples
of similar parameters include MULTINEST’s efr, which controls
the efficiency of its rejection sampling algorithm by determining
the size of the ellipsoid within which MULTINEST samples. If efr
is lowered, samples are drawn from a larger ellipsoid, increasing the
rejection rate whilst consequently decreasing the chance of miss-
ing part of the parameter space within the iso-likelihood contour.
Hence, in contrast with num repeats, implementation-specific
effects are made smaller by reducing efr.

Fig. 10 shows the effect on calculation errors of POLYCHORD’s
num repeats setting. As expected, we see that asnum repeats
is increased the implementation-specific effects are reduced – show-
ing POLYCHORD is performing the nested sampling algorithm with
increasing accuracy. However, the num repeats value required
for implementation-specific effects to be a small fraction of the
total error is highly problem dependent, even for the same num-
ber of dimensions. For the ten-dimensional Gaussian likelihood
num repeats = 10 is easily sufficient, but for the challenging
ten-dimensional LogGamma likelihood num repeats > 103 is
needed. num repeats can be tuned by, for example, doubling
it until results show small implementation errors. In principle a
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Figure 11. The effect of the number of live points on errors in POLYCHORD

calculations; the two subfigures both show calculations of the log-evidence
and the mean of the first two parameters. Results for each number of live
points considered were calculated using 100 nested sampling runs with
num repeats = 10. Blue solid lines show the mean bootstrap error esti-
mate and orange dashed lines show implementation-specific effect estimates
from equation (7). Green dotted lines show the implementation-specific ef-
fects calculated using the rms error (9); where the green dotted and orange
dashed lines are equal, there is no systematic bias in the results. Error bars
show 1σ uncertainties on results for each number of live points considered.

sufficiently high num repeats value can make such errors negli-
gible even for challenging likelihoods, but this will become imprac-
tically computationally expensive and gives diminishing returns
in cases like the LogGamma mixture shown in Fig. 10b. Once
num repeats is high enough that the calculations are not sys-
tematically biased, simply repeating the calculation many times
is more efficient at improving accuracy. One can check for such
a bias by assessing whether the mean value of results changes
when num repeats is increased (if a bias is present, increasing
num repeats should reduce it).

7.2 Effect of the number of live points

In addition to software-specific settings, the main choice a nested
sampling user must make is the number of live points, which con-
trols the resolution of sampling and is proportional to the expected
number of samples produced. For simplicity we consider only runs
with a constant number of live points n, although our conclusions
also apply to dynamic nested sampling (Higson et al. 2017) – in
which the number of live points varies to increase calculation ac-
curacy. Furthermore, NESTCHECK is compatible with the output of
several dynamic nested sampling software packages including DY-
POLYCHORD, DYNESTY,9 and PERFECTNS.

The changes in calculation errors with changes in the number of
live points used are shown in Fig. 11. As expected, increasing the
number of live points reduces the implementation-specific effects,

9See https://github.com/joshspeagle/dynesty for more information.

as well as the errors from the stochasticity of the nested sampling
algorithm (measured by bootstrap resampling), which are approx-
imately proportional to 1/

√
n. The fraction of the total error made

up by implementation-specific effects does not necessarily decrease
with increased n – this depends on how the implementation-specific
effects scale with n. For the Gaussian likelihood, implementation-
specific effects cause only a small part of the total variation of
results, whereas for the more challenging LogGamma mixture like-
lihood they are the main source of errors.

Given that increasing n reduces both implementation-specific
effects and errors from the stochasticity of the nested sampling al-
gorithm, this is often a better way to reduce total errors for the same
computational cost than increasing num repeats. However, it
may not reduce the fraction of errors caused by implementation-
specific effects. Consequently, techniques for estimating nested
sampling errors that do not account for implementation-specific
effects may still underestimate the total uncertainties.

7.3 Calculation results with a systematic bias

Figs 10 and 11 show that for logZ calculations, if nlive and
num repeats are set too low, estimates of the implementation-
specific effects using the standard deviation of results and the rms
error can start to differ. This is due to the algorithm failing to fully
explore the posterior and iterating inwards too quickly, which leads
to a systematic bias in logZ (this is discussed in detail in Buchner
2016). The nlive and num repeats settings required to remove
the bias depend on the posterior, with challenging multimodal or de-
generate posteriors needing more samples (as for implementation-
specific effects). The challenging LogGamma mixture likelihood
shows a bias with the POLYCHORD settings used (as shown in Ta-
ble B2 in Appendix B), but this is small compared to the standard
deviation of calculation results and can be reduced by increasing
num repeats or the number of live points. Systematic biases in
a parameter estimation calculation are also possible with inappro-
priate settings, but in the authors’ experience this is much rarer.

The failure to fully explore the posterior that causes a system-
atic bias typically also results in differences between runs that are
not explained by the stochasticity of the nested sampling algorithm
– these implementation-specific effects can be detected the diag-
nostic tests presented in this paper. However, the bias causes these
diagnostics to underestimate the size of the implementation-specific
effects. If significant implementation-specific effects are detected
in runs and the results of logZ calculations are of interest, one can
check for bias by repeating the calculation with higher nlive and
num repeats settings and checking if the mean calculated result
changes.

7.4 Effect of dimensionality

Fig. 12 shows implementation errors for the Gaussian and
LogGamma mixture likelihoods for different numbers of di-
mensions d. Each calculation uses 25 × d live points and
num repeats = 5 × d (the default settings in POLYCHORD’s
PYTHON interface). These are proportional to d in order to give ap-
proximately constant errors in log Z (Handley et al. 2015a), with the
additional samples produced for higher d leading to lower param-
eter estimation errors. With these settings, as d increases, our plot
shows no strong upwards or downwards trend in the implementation
error. Furthermore, the small bias in the logZ calculation results
for the LogGamma mixture likelihood (shown by the difference
between the green dotted and orange dashed lines in the top panel
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Figure 12. The effect of increasing the dimension d on errors in POLY-
CHORD calculations: Each subfigure shows calculations of the log-evidence
and the mean of the first two parameters. Results for every dimension d use
25 × d live points and the POLYCHORD setting num repeats = 5 × d.
Blue solid lines show the mean bootstrap error estimate and orange dashed
lines show implementation-specific effect estimates from equation (7).
Green dotted lines show the implementation-specific effects calculated us-
ing the rms error (equation 9); where the green dotted and orange dashed
lines are equal, there is no systematic bias in the results. Error bars show 1σ

uncertainties on results for different numbers of dimensions.

of Fig. 12b) remains much smaller than the standard deviation of

the result values σvalues =
√

σ 2
bs + σ 2

imp.

7.5 Practical advice for software users

We finish by giving a summary of the authors’ approach to checking
nested sampling calculations for challenging likelihoods where im-
plementation errors may be present, based on our experience using
nested sampling software.

We advise performing multiple nested sampling runs and plot-
ting the results to first assess their variation by eye as de-
scribed in Section 4. One can then perform a rough check for
implementation-specific effects using the techniques described in
Section 5 and/or Section 6, depending on how many runs are avail-
able. If implementation-specific errors are negligible,

(i) Accuracy can be increased by simply calculating more runs
and/or increasing the number of live points.

(ii) The computational cost of future runs can be reduced by re-
ducing the computational effort spent decorrelating samples (e.g.
halving POLYCHORD’s num repeats, doubling MULTINEST’s
efr or changing the equivalent setting in the software package
used). After large changes to the settings, the new results should be
checked for implementation-specific effects.

(iii) Uncertainties on the results can be calculated using stan-
dard nested sampling methods such as the bootstrap resampling of
threads, which will be accurate in this case.

In contrast, if implementation-specific effects are significant or
are the dominant source of error,

(i) Results should be recalculated with more live points and/or
using more computational effort decorrelating samples (e.g. dou-
bling POLYCHORD’snum repeats, halving MULTINEST’sefr, or
changing the equivalent setting in the software used). If the calcula-
tion is already very computationally costly, increasing the number
of live points is typically the best option as this will also reduce
errors from the stochasticity of the nested sampling algorithm.

(ii) There may be an additional systematic bias present in the
results of evidence calculations. The mean calculated value for
results using the new settings should be checked to see if it is
significantly different to the mean result produced with the previous
settings.

(iii) The uncertainty on the combined results from the nested
sampling runs can be roughly estimated from equation (10).

8 A PPLI CATI ON TO PLANCK SURV EY DATA

We now apply the tests introduced in this paper to astronomical
data from the Planck survey, which measures anisotropies in the
cosmic microwave background (CMB). A detailed description of
the associated cosmology and the lambda cold dark matter (	CDM)

Figure 13. Implementation-specific effects in calculations using Planck
data for different POLYCHORD num repeats settings. The left-hand col-
umn shows results for the evidence logZ and the mean of the present-day
Baryon density 
bh2, present-day cold matter density 
ch2, and Thompson
scattering optical depth of the CMB τ . The right-hand column shows results
for calculations of the mean of the ratio of the sound horizon to angular
distance (scaled by 100) 100θMC, the log power of the primordial curvature
perturbations log (1010As), the spectral index of the scalar primordial power
spectrum ns, and the present-day Hubble constant (derived from the other pa-
rameters) H0. Results for every num repeats value were calculated using
25 runs, each with 500 live points. Blue solid lines show the mean bootstrap
error estimate and orange dashed lines show implementation-specific effect
estimates from equation (7). Green dotted lines show the implementation-
specific effects calculated using the rms error (equation 9); where the green
dotted and orange dashed lines are equal, there is no systematic bias in the re-
sults. Error bars show the 1σ uncertainty on results for each num repeats
value considered.
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Figure 14. As for Fig. 3 but using the Planck survey likelihood. The first row
shows the present-day Baryon density 
bh2 and the present-day cold matter
density 
ch2; the second row shows the optical depth of the CMB τ and
the present-day Hubble constant H0. Each run uses 500 live points, and has
num repeats = 1 – the low value is chosen to illustrate implementation-
specific effects. The coloured contours show iso-probability credible in-
tervals on the marginalized posterior probability density function at each
parameter value due to the stochasticity of the nested sampling algorithm.
The dashed dark-blue and dark-red lines show the estimated posterior means
of each parameter for the blue and red runs, respectively.

concordance model is beyond the current scope; for this we refer
the reader to Planck Collaboration (2013).

Given the 	CDM concordance model, we can describe the Uni-
verse’s cosmology using only six parameters. Four of these are
‘late-time’ parameters, governing the physics of the Universe dur-
ing and after reionization: the present-day values of the Hubble
constant H0, the baryonic and cold dark matter fractions 
b and

c, and the optical depth of the CMB τ . The remaining two pa-
rameters delineate the primordial Universe through the amplitude
As and tilt ns − 1 of the power spectrum of comoving curvature
perturbations. To aid with MCMC sampling techniques, cosmomc
(Lewis & Bridle 2002) reparametrizes the matter fractions as 
bh2

and 
ch2 in terms of the reduced Hubble constant h, defined by
H0 = 100h km s−1 Mpc−1, and in place of the Hubble constant uses
100θMC (100 × the ratio of the approximate sound horizon to the

angular diameter distance). For more details about the parameters,
see the first Planck parameters paper (Planck Collaboration 2013).

Given a set of cosmological parameters, using a Boltzmann code
such as camb (Lewis et al. 2000), one may compute theoretical
CMB power spectra, which are then provided as inputs to cos-
mological likelihoods derived from CMB observations. We use
the Plik lite TT likelihood detailed by Planck Collaboration
XI (2016a) and the default CosmoChord priors (see Handley et al.
2015b for more information); these were used in Planck Collabo-
ration XX (2016b). The likelihood introduces a single additional
nuisance parameter for measurement calibration, increasing the di-
mensionality of the parameter space to seven.

Fig. 13 shows estimates of implementation-specific effects for
calculations using the Planck likelihoods and priors. Each cal-
culation uses 500 live points. As expected, there is a clear
trend showing increasing num repeats reduces implementation-
specific effects. Furthermore in this case the POLYCHORD set-
ting num repeats = 35 (5 times the number of dimensions)
is sufficient to make such effects small for all the calculations
shown.

However, as in the test cases in previous sections, signifi-
cant implementation-specifics are present in the calculations if
num repeats is set too low. This is illustrated in Fig. 14 for
num repeats = 1; with this setting the two runs (in red and blue)
differ by more than the uncertainty expected from the stochasticity
of the nested sampling algorithm shown by the coloured distribu-
tions. Such implementation-specific effects can also be detected
with the diagnostic tests described in Section 6 (we do not show
these for brevity). In addition, Fig. C1 in Appendix C1 shows a plot
of the type described in Section 4.2 for the two runs in Fig. 14.

It should be noted that in cosmology one traditionally uses like-
lihoods with many more nuisance parameters than in this analysis.
One of the innovations that POLYCHORD provided to the Planck
collaboration was its ability to exploit a fast–slow hierarchy of pa-
rameter speeds (Lewis 2013). In this context, nuisance parameters
that do not require recomputation of expensive parts of the like-
lihood may be varied at negligible cost in comparison with the
slower cosmological parameters. Increasing the number of steps in
nuisance parameter directions greatly aids mixing and the reduction
of implementation-specific errors. However, a full analysis of this
specific case is beyond the scope of this paper.

Table 1. Summary of the diagnostic tests and plots introduced in this paper.

Diagnostic Introduced Summary

Posterior distribution
uncertainty plots

Section 4.1 Illustrates uncertainty on posterior distributions due to the stochasticity of the nested sampling algorithm.
Useful for comparing two or more runs to visually assess whether their variation imples
implementation-specific effects are present. Examples are shown in Figs 3 and 14.

log X plots Section 4.2 Shows the distribution of samples through the nested sampling process. Can be used to understand and
visualize posteriors and the manner in which the software explores them, as well as to assess whether two
runs are consistent. Examples are shown in Figs 4, 5, and C1.

Calculating errors due to
implementation-specific
effects

Section 5 Quantitatively estimates errors due to implementation-specific effects. This diagnostic provides the most
information about the size implementation-specific effects, but it requires enough nested sampling runs to
be able to estimate the standard deviation of their results.

Testing correlations between
threads

Section 6.1 Checks whether point estimates using threads from two runs are drawn from the same distribution. Can
detect implementation-specific effects when only two runs are available, but does not give insight about
their size.

Testing sampling error
distributions

Section 6.2 Checks whether point estimates from different runs are consistent with each other given the stochasticity
of the nested sampling algorithm. This can be done qualitatively with plots or quantitatively using
statistical distances, and can be used when only two runs are available.
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9 SU M M A RY

In this paper we introduced diagnostic tests for nested sam-
pling software, which uses numerical techniques to generate
approximately uncorrelated samples within hard likelihood con-
straints. As a result additional errors may be produced that would
not be present if the nested sampling algorithm was performed per-
fectly; we term these implementation-specific effects. Detecting the
presence of significant implementation-specific effects is of great
importance for software users as it determines whether results and
estimates of uncertainties can be relied upon, and if the settings
should be changed.

We suggested two new diagnostic diagrams for visualizing nested
sampling results and uncertainties, and comparing runs; these are
shown in Figs 3, 4, 5, 14, and C1. Section 5 introduced a quantita-
tive measure of implementation-specific effects, which can be used
to estimate them directly if enough runs are available to estimate
the standard deviation of results. In addition, Section 6 provided
two diagnostic tests that can be applied with only two runs. The
diagnostic tests and plots introduced in this paper are summarized
in Table 1. We find that due to the larger errors from the stochas-
ticity of the nested sampling algorithm in evidence calculations,
implementation-specific errors form a smaller fraction of the total
error in this case – and are consequently less important and harder
to detect than in parameter estimation.

In Section 7 we empirically tested the effects of software settings
and the number of dimensions on implementation-specific effects
and discussed dealing with cases where nested sampling results
are systematically biased. The authors’ practical advice for nested
sampling software users based on our experience is summarized in
Section 7.5. Finally, Section 8 demonstrated the application of our
diagnostics to an astronomical problem using data from the Planck
survey.

We have written a publicly available software package
NESTCHECK (Higson 2018a), which performs diagnostics on input
nested sampling runs and produces plots like Figs 3, 4, 5, 14, and
C1; it can be downloaded at https://github.com/ejhigson/nestcheck.
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APPENDI X A : C ODE

The code used to perform the numerical tests and generate the
results in this paper can be downloaded at https://github.com/ejhig
son/diagnostic; this provides examples of NESTCHECK’s use.

APPENDI X B: NUMERI CAL RESULT TA BLES

Tables B1 and B2 given numerical results for the nested sampling
runs plotted in Fig. 6.

Table B1. Calculation error results for the 100 nested sampling runs with
a Gaussian likelihood shown in Fig. 6. The first two rows shows the true
value for each estimator and the mean calculation result. The next three rows
show the bootstrap error estimate, implementation error estimate (equation
7), and ratio of the implementation estimate to the standard deviation of
results. The final three rows show the rms error, the implementation-specific
effects estimate from equation (9), and the ratio of the two. Columns show
results for the log-evidence and the mean of the first three parameters.
Numbers in parentheses show the 1σ numerical uncertainty on the final
digit.

logZ θ1̂ θ2̂ θ3̂

True value − 40.9434 0.0000 0.0000 0.0000
Mean result − 40.93(3) 0.002(2) 0.000(2) 0.000(2)
σ values 0.33(2) 0.022(2) 0.019(1) 0.019(1)
σ bs 0.326(3) 0.0223(2) 0.0223(2) 0.0221(2)
σ imp 0.07(11) 0.000(7) 0.000(3) 0.000(3)
σ imp/σ values 0.20(33) 0.00(34) 0.00(17) 0.00(17)
Values RMSE 0.33(2) 0.022(2) 0.019(1) 0.019(1)
σ imp, RMSE 0.06(11) 0.000(7) 0.000(2) 0.000(3)
σ imp, RMSE/RMSE 0.17(33) 0.00(34) 0.00(17) 0.00(19)
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Table B2. As in Table B1 but for calculations using the LogGamma mix
likelihood (equation 3).

logZ θ1̂ θ2̂ θ3̂

True value − 40.9434 − 0.5772 0.0000 − 0.5772
Mean result − 40.84(3) − 0.49(18) − 0.22(18) − 0.572(3)
σ values 0.34(2) 1.78(13) 1.81(13) 0.032(2)
Values RMSE 0.36(2) 1.77(12) 1.81(10) 0.032(2)
σ bs 0.309(3) 0.217(2) 0.215(2) 0.0300(3)
σ imp 0.15(8) 1.76(13) 1.80(13) 0.01(1)
σ imp/σ values 0.43(23) 0.993(1) 0.993(1) 0.31(30)
σ imp, RMSE 0.18(6) 1.76(13) 1.80(10) 0.011(9)
σ imp, RMSE/RMSE 0.50(14) 0.992(1) 0.9930(8) 0.33(28)

APP ENDIX C : PLANCK SURV EY DATA LO G X
PLOT

Fig. C1 shows a plot of samples’ distributions in log X (of the type
described in Section 4.2) using the same runs as Fig. 14. In this case
as the posterior is relatively simple and unimodal, and the samples
overlap closely.

Figure C1. As for Section 6 but using the Planck survey likelihood. The
two runs (shown in red and blue) are the same ones used for Fig. 14. The top
right-hand panel shows the relative posterior mass (total weight assigned
to all samples in that region) as a function of log X. The final four rows
show the present-day Baryon density 
bh2, the present-day cold matter
density 
ch2, the optical depth of the CMB τ , and the present-day Hubble
constant H0. The coloured contours show iso-probability credible intervals
on the marginalized posterior probability density function at each parameter
or log X value. In each row, the estimated posterior means for the blue and
red runs are shown with dashed dark-blue and dark-red lines. The solid and
dot–dashed black lines show the evolution of an individual thread chosen at
random from the red and blue runs, respectively.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 483, 2044–2056 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/483/2/2044/5184484 by U
niversity of C

am
bridge user on 31 January 2019


