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ABSTRACT 

Nearshore sediments have a major influence over the functioning of aquatic ecosystems, but 

predicting their response to future environmental change has proven difficult. Previous 

manipulative experiments have faced challenges controlling environmental conditions, 

replicating sediment mixing dynamics, and extrapolating across spatial scales. Here we 

describe a new approach to manipulate lake sediments that overcomes previous concerns 

about reproducibility and environment controls, whilst also bridging the gap between smaller 

microcosm or litterbag experiments and whole-ecosystem manipulations. Our approach 

involves submerging moderate-sized (~15 L) artificial substrates that have been standardised 

to mimic natural sediments within the littoral zones of lakes.  We show that this approach can 

accurately mirror the absolute dissolved organic carbon concentrations and pH of pore water, 

and to a lesser degree inorganic carbon concentrations, from natural lake sediments with 
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similar organic matter profiles. On a relative basis, all measured variables had similar 

temporal dynamics between artificial and adjacent natural sediments. Late-summer 

zooplankton biomass also did not differ between natural and artificial sediments.  By offering 

a more realistic way to manipulate freshwater sediments than previously possible, our 

approach can improve predictions of lake ecosystems in a changing world. 

 

INTRODUCTION 

Freshwater sediments, particularly the top few centimetres in nearshore environments, are of 

key importance to global biogeochemical cycles and aquatic food webs because they are sites 

where large amounts of organic matter (OM) are transformed and mineralised (Wetzel, 2001). 

Annually, lake sediments are a sink for up to 0.6 Pg carbon (C) year-1 (Tranvik et al., 2009), 

and emit around 0.05 and 0.2-1.2 Pg C (CO2-equivalents) of CO2 and CH4, respectively 

(Bastviken et al., 2004; Pace and Prairie, 2005). The high levels of OM processing 

consequently allow lake sediments to host phototrophic algal, bacterial, and fungal 

communities that can be many times more productive than in open waters (Fischer and Pusch, 

2001; Vadeboncoeur et al., 2002; Ask et al., 2009; Wurzbacher et al., 2010). Additionally, 

nutrient exchange between decomposing surface sediments and overlying waters promotes 

harmful algal blooms and contaminant release in human-impacted waters that can further 

influence food webs (Eggleton and Thomas, 2004; Carpenter, 2005).  

Experiments provide a controlled way of predicting how sediment functioning might respond 

to future changes in OM inputs. Here we introduce a new experimental approach to bridge the 

gap between smaller microcosm or litterbag experiments and whole-ecosystem manipulations. 

The approach involves submerging containers with moderate-sized (~15 L) artificial 

sediments, informed by geochemical surveys of natural ecosystems, within real lakes. Our 

work builds upon a recent technique described by Orihel and Rooney (2012) by offering the 

potential to link fine-scale geochemical studies with large-scale ecological studies of entire 

communities. Ecological studies have rarely manipulated sediments that have been 

standardised to mimic natural conditions, despite this strategy being fundamental to fields 

such as environmental toxicology (Suedel and Rodgers, 1994; but see Feuchtmayr et al., 

2009). Traditionally, studies have added OM either to field-collected sediments, which have 

been relocated to laboratories or outdoor mesocosms (Wood and Richardson, 2009; 

Liboriussen et al., 2011; Song et al., 2013), or in situ by burying decomposing leaves into 
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sediment surfaces (Herbst, 1980; Jackson et al., 1995; Longhi et al., 2008;	Costantini et al., 

2009; Marmonier et al., 2010). 

Our new experimental platform has at least three major advantages over previous methods for 

manipulating freshwater sediments.  First, our approach permits a level of reproducibility that 

is unachievable in experiments that simply manipulate field-collected samples and are limited 

by pre-existing OM, i.e. OM can be added but never subtracted from natural sediment. In situ 

experiments also cannot control the many parameters that vary horizontally across surface 

sediments at fine spatial scales (i.e. <10 m), such as geochemical composition (Korsman et 

al., 1999; Yu et al., 2015). By contrast, relocating field-collected sediments to new settings, 

such as the laboratory, may fail to replicate in situ conditions (Orihel and Rooney, 2012). 

Second, our approach offers a more realistic simulation of long-term mineralisation and 

decomposition processes than, for example, leaf litterbags, which have been widely used to 

study biogeochemistry and ecosystem metabolism (Herbst, 1980; Jackson et al., 1995; Longhi 

et al., 2008;	Costantini et al., 2009). As an OM amendment, litterbags often sit flush on the 

sediment surface and are not directly incorporated into sediment profiles. Mesocosms 

similarly isolate experimental units on shore and away from natural waters, e.g. in cattle 

tanks.  Isolation in each method is problematic because it prevents mixing with sediments and 

overlying surface waters, respectively, which may be important for processes such as 

oxidation and nutrient recycling. Finally, our approach is sufficiently large and designed in 

such a way that it allows continuous monitoring of geochemistry and biotic communities that 

would not be possible with other methods. Lab and litterbag experiments are also often ≤0.04 

m2 in size, so may have limited value for broader ecosystem-level generalisations. The only 

studies performed at a whole-ecosystem level have focused on removing entire sediment 

horizons, such as for lake restoration or fisheries management, without manipulating OM 

directly (Peterson, 1982). New approaches are therefore needed to manipulate natural 

sediments over large spatial scales. 

 

Sediment boxes: creating a new world within lake benthic zones 

We originally developed our sediment incubation approach to study linkages between 

terrestrial and aquatic ecosystems. Our interest was in manipulating the quantity and quality 

of terrestrial organic matter (tOM) that accumulated in littoral sites under different water 

qualities. Previously, we discovered that the productivity of bacteria, zooplankton, and young-
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of-the-year fish in a single lake environment was greater beneath catchments that received 

larger inputs of tOM (Tanentzap et al., 2014). We were subsequently interested in testing how 

tOM was processed and mobilized into aquatic food webs at much greater resolution. The 

incubation approach therefore offered numerous advantages over our observational studies, 

not the least of which was the ability to control for variation in the delivery and processing of 

OM by catchments with different geomorphologies. 

The premise of our sediment boxes involved mixing inorganic and organic substrates within 

containers that were submerged in the bottom of a common lake environment. We used 17.5 

L (surface area: 0.19 m², depth: 0.13 m) open-top high-density polyethylene (HDPE) 

containers, as these could be replicated at high number and easily manoeuvred when 

waterlogged. In principle, the HDPE containers could be much larger. For example, we tried 

preparing 365 L containers, but were constrained by the availability of organic materials and 

weight of inorganic substances. Here, we outline the setup of our sediment boxes with 

integrated biogeochemical samplers, describe how we prepared a sediment material that 

mimicked the natural environment, and present some potential data that can be generated 

using this approach. 

 

Box preparation 

We made three important modifications to each HDPE container (Fig. 1a). First, we wanted to 

ensure mixing of the sediment bottom with the external environment, partly to avoid 

artificially promoting anoxic conditions. We therefore drilled nine 8 mm holes in the bottom 

of each container to ensure that the mesocosms were freely draining. Second, we wanted to 

sample sediment pore water at high resolution, so we permanently secured a 3 mL 

polypropylene syringe immediately beneath the sediment surface along one side of the HDPE 

container. The syringe was placed horizontally in the upper 1 cm of sediment, with the wall 

facing the sediment partially removed and covered in ca. 250 µm nylon mesh to avoid 

clogging (Fig. 1b). This sampler is effectively analogous with other methods for measuring 

pore water, such as dialysis (Carignan, 1985) or suction (Bertolin et al., 1995) samplers, and 

studies interested in vertical profiling can of course layer syringes at different depths in the 

sediment. To each syringe, we connected nylon tubing (inside diameter: 3.2 mm, outside 

diameter: 4.8 mm), which met a float on the water surface and allowed us to sample without 
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disturbing the lake bottom. Finally, we attached light and temperature loggers and customised 

redox probes (Swerhone et al., 1999) to as many boxes as possible. 

 

Sediment mixture 

Here we outline how we created a sediment with 5% tOM on a dry weight basis to mimic the 

natural conditions in Lake Laurentian, Ontario, Canada (46°27’30” N, 80°56’0” W). Lake 

Laurentian is a small (157 ha area, 5.2 m maximum depth) circumneutral lake with relatively 

high dissolved organic carbon (DOC) concentrations around 7 mg L-1. The lake is surrounded 

by boreal forest and located in a 970 ha conservation area with little contemporary human 

disturbance aside from hiking and skiing trails. 

Our artificial sediment was prepared by mixing organic and inorganic particles to mimic size 

fractions and vertical structuring observed in a survey of nearshore lake sediments with 

varying tOM inputs from adjacent streams (see Supplementary Text S1). First, we mixed 0.25 

kg of each of deciduous (primarily Acer rubrum, Betula papyrifera, Populus tremuloides, 

Quercus spp.) and coniferous (Pinus spp.) litterfall representative of the surrounding forest, 

where these two tree types occurred in relatively equal proportions. Litterfall had been air-

dried at ca. 25°C over at least 7 days to a constant mass. Air-drying ensured no chemical and 

physical changes occurred from exposing material to higher temperatures (e.g. >50°C), 

thereby better reflecting natural processes. We sorted dried litterfall into <1 and 1-10 mm 

diameter fractions at a 3:7 ratio to reproduce average fragment sizes observed in the natural 

sediments (Fig. S1).  

Next, the tOM was homogenously mixed with 9.5 kg of minerogenic material consisting of 

clay/silt, fine sand, and sand/gravel (<0.063 mm, 0.063-1 mm, >1mm diameter particles, 

respectively), which was sourced from a local quarry. As our interest was in testing the effects 

of different tOM on sediment dynamics, we pre-mixed the clay/silt, fine sand, and sand/gravel 

fractions into a constant 2:5:3 ratio by dry-weight, respectively, to reproduce conditions seen 

in one of our sampling sites (site J, Fig. S1). We chose site J, despite variability in 

composition among sites (Fig. S1), because its relatively large size (area of stream-lake 

confluence zone = 359 m2; catchment area = 39 ha) and gentle slope (mean catchment slope ± 

standard deviation [SD] from a 10-m digital elevation model: 5.6° ± 4.2°) were typical of 

geomorphology in the wider region (Rasmussen et al., 1989). Moreover, we wanted to avoid 

high concentrations of clay/silt and fine sand that were less indicative of fluvial transport of 
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tOM (Håkanson and Jansson, 1983). The final sediment mixture was then laid upon 7 kg of 

crushed granitic rock (ca. 2 mm diameter) and filled to a height of 0.08 m in each mesocosm 

(Fig. 1c). There was also no clear evidence of vertical structuring of organic matter or particle 

size in the top 10 cm of our natural sediment survey (Fig. S1), so we did not incorporate such 

variation into our design.  Lake sediments typically vary in their vertical structure over much 

greater depths than studied here because surface mixing dissipates (Håkanson and Jansson, 

1983).  

Finally, a 1 mm × 1 mm nylon mesh was affixed to the top of each mesocosm to limit 

physical disturbance and provide standardised shading. Each box was then soaked for 5 to 7 

days with Lake Laurentian water to ensure that the tOM became waterlogged and settled 

(Hoover et al., 2010). We further minimised physical disturbance during initial lake 

installation by temporarily attaching HDPE lids to each container for 24-48 hours. After 1 

month in the lake, we made an 80-mm wide slit in the centre of each mesh to promote 

colonisation by organisms larger than 1 mm in size.    

 

Anchoring sediment boxes to the real world 

Although our sediment boxes were constructed based upon detailed surveys of natural 

sediments, a key question is whether they functioned as in nature. To test this, we first 

compared pore water from natural surface sediments in Lake Laurentian to sediment boxes 

that were installed in the littoral zone between 22nd and 23rd July 2015 at a depth of ca. 0.5 m. 

Pore water samples were taken from the upper 1 cm of the natural sediments (hereafter ‘lake 

bottom samples’) by permanently installing one of our modified syringe samplers adjacent to 

each of three sediment boxes. The sediment boxes were built as described in the previous 

section (5% tOM) so as to mirror the mean OM content ± SD associated with the lake bottom 

samples of 3.9% ± 0.8%. After 14 months, the sediment boxes still had a mean OM content ± 

SD of 5.9 ± 2.2%.  

Pore water samples were collected approximately every 3 days for two weeks from the lake 

bottom and sediment boxes for our comparison.  The samples were collected 14 months after 

the initial installation. Each sampling syringe was connected to 122 cm of nylon tubing that 

was purged of water prior to extracting 45 mL of pore water into duplicate 60 mL syringes at 

the lake surface. To measure DOC, we filtered one of the samples through a 0.5 µm glass 

fibre filter (Macherey-Nagel MN 85/90) and into a 20-mL scintillation vial pre-acidified with 
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125 µl of 4N HCl. Samples were then run in NPOC mode on a Shimadzu TOC5000A 

analyser. We used the other pore water sample to measure total inorganic carbon (TIC) and 

CO2 concentrations. We acidified the second 45 mL water sample to a pH of ca. 2.0 with 2 

mL of 0.5N HCl in situ, introducing 13 mL of headspace to the syringe. We then shook the 

syringe for 2 min to equilibrate gasses in the acidified sample with the 13 mL of ambient-air 

headspace. After extracting 10 mL of the headspace into a separate airtight syringe, we 

detected both CO2 and TIC as CO2 within 48 h on a SRI 8610C gas chromatograph (0.5 mL 

sample loop, 105°C column temperature). Partial pressures of CO2 and TIC in pore water 

were calculated from headspace concentrations after Åberg and Wallin (2014) by subtracting 

ambient air additions, applying the Bunsen solubility coefficient and ideal gas law, and 

accounting for pH and water temperature concurrently measured in the field.  

We tested whether sediment boxes differed from lake bottom samples in pH and log-

transformed concentrations of each of DOC, TIC, and CO2 using linear mixed effects models 

fitted with restricted maximum likelihood.  The models accounted for random variation from 

repeated measurements of individual syringes and sampling dates with sample type, either 

natural or artificial sediment, as a fixed explanatory effect. We then calculated 95% 

confidence intervals (CIs) from the fitted likelihood profiles and considered sediment boxes to 

differ from lake bottoms for a given response if the 95% CI for their effect excluded zero.  All 

analyses were carried out with the lme4 package in R v3.2. 

We found that sediment boxes reproduced DOC and pH trends observed in pore waters of 

natural lake sediments with similar OM composition one year after installation, but had 

slightly more TIC and CO2 (Fig. 3). Over a 14-day period, DOC and pH in sediment boxes 

were indistinguishable from lake bottoms (95% CI for difference: - 0.73 to 1.21 mg L-1 and -

0.05 to 0.22, respectively; black points overlapping grey polygons in Fig. 3 a,b). By contrast, 

TIC, which was mostly comprised of CO2 (compare Fig. 3c and 3d), and CO2 itself were 0.63 

to 5.88 mg L-1 and 0.33 to 3.97 mg L-1 higher in the sediment boxes, respectively. 

Nonetheless, temporal trends in box TIC and CO2 generally mirrored those in lake bottoms 

(Fig. 3 c,d). 

We also compared zooplankton biomass between the natural surface sediments and sediment 

boxes studied for pore water in Lake Laurentian. Vertically-migrating animals were collected 

on two nights toward the end of our pore water sampling using a 500-mL funnel trap 

deployed at a height of 5 cm above the centre of each sediment sample as in Tanentzap et 
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al., (2014). Traps were collected the morning after deployment, immediately filtered 

through an 80-µm mesh, and live-sorted into pure zooplankton. To have sufficient mass for 

analyses, we pooled freeze-dried biomass between nights from the same trap. We then 

compared biomass between natural and artificial sediment using a linear model (lm function 

in R) with sample type as a fixed effect, while also accounting for sampling block, i.e. 

northerly or southerly exposure around the central dock (Fig. 2). Consistent with the pore 

water results, the mean (95% CI) zooplankton biomass of 0.31 (0.23 to 0.43) g m-2 sediment 

in the artificial boxes did not differ from the 0.31 (0.22 to 0.42) g m-2 sediment in the natural 

lake bottoms with similar OM content (95% CI for difference: -0.13 to 0.09 g m-2 sediment). 

 

DISCUSSION 

We found a relatively close correspondence between natural and artificial sediments. While 

CO2 concentrations were slightly higher in our sediment boxes than adjacent lake bottoms, 

this likely reflects the more labile nature of the fresher tOM amendments. Labile tOM can be 

more quickly turned over through microbial biomass, elevating heterotrophic respiration and 

DOC production, the latter of which primes additional microbial activity, without necessarily 

increasing DOC concentrations (Bengtson and Bengtsson, 2007). We also found that littoral 

zooplankton occurred at similar standing biomass in natural and artificial sediments, although 

the colonisation of organisms larger than 1000 µm could have been limited by the mesh above 

each sediment box. Future work will now need to test whether these mesocosms similarly 

reflect other geochemical and biological variables in neighbouring lake bottoms (Dzialowski 

et al., 2014), such as nitrogen fluxes and bacterial composition. Previous work with artificial 

sediments suggests that contained microbial communities may be less diverse (Goedkoop et 

al., 2005), but has not attempted to replicate natural conditions as we have done here. 

Field experiments aim to apply a perturbation to natural assemblages of organisms and 

generalise the findings, often across larger spatial and temporal scales (Pace, 2001). Our 

method aids this process by allowing us to consider biogeochemical and ecological dynamics 

in sediments and benthic habitats with greater realism than previously possible. For example, 

we found that we could recreate natural DOC concentrations in sediment pore water. This 

finding is important because whole-ecosystem experiments have differed from smaller lab-

based incubations in estimates of DOC dynamics (Zwart et al., 2016). Our method may 

therefore bridge contrasting approaches to studying lake sediments, i.e. lab vs whole 
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ecosystem. Of course, our sediment boxes have caveats just like any other approach. First, 

there is an issue of scale and whether C dynamics across a 0.19 m² box can mirror those 

across the whole >50,000 m2 area of littoral sediment in lakes such as Lake Laurentian. 

Second, container walls have been shown to promote periphyton growth and shift community 

composition (Chen and Kemp, 2004). We routinely cleaned container walls to minimise such 

effects, but have not quantified them as such. Container depth and surface area could also be 

reduced to minimise this wall effect, but at the cost of biological realism. Finally, all of our 

tOM amendments had a similar age. This differs from natural sediments where the same 

concentration of OM as in our boxes has accumulated over many years (Heathcote et al., 

2015). Amending sediments with tOM also bypasses the priming and inoculation of material 

with microorganisms as it is exported from land into receiving waters. We tried to account for 

some of this priming by pre-soaking sediments with water from the study lake, which should 

have bacterial communities that reflect broader flow networks (Ruiz-González et al., 2015).   

 

CONCLUSIONS 

Here we have described a new experimental approach for studying the biogeochemistry and 

ecology of freshwater sediments at high spatial and temporal resolution. We have also shown 

that this method successfully mirrors both the absolute concentrations and temporal dynamics 

of biogeochemical parameters, especially those involved in carbon cycling, of natural 

sediments with similar organic matter inputs. Encouraged by our comparisons with natural 

lake bottoms, we believe that our method offers a way for better predicting how the important 

functions performed by lake sediments might respond to a changing world. 
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Fig. 1. Photo of experimental sediment boxes. a) Schematic drawn to scale (dimensions 
shown) of a sediment box, drainage holes, and sampling syringe with bottom wall exposed 
and wrapped in nylon mesh (denoted by hatched bars); the box is underlain by larger granitic 
bedrock and filled with artificial sediment consisting of a homogenous mixture of inorganic 
and organic material; the syringe is fastened with nylon cable ties onto a 64-mm nylon bolt 
drilled through the box lip; temperature-light loggers are also attached to the bolt with nylon 
cable ties. b) Boxes with granitic bedrock and drainage holes. c) Boxes filled with sediment 
containing progressively more tOM from left to right. 
 
 
 
 

 
 
Fig. 2. Lake Laurentian study site with sediment boxes randomly deployed in a block design 
around three sampling docks. Left: view into lake from one sampling bay. Right: view into 
shore from other sampling bay. 
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Fig. 3. Pore water chemistry in sediment boxes and their surrounding lake sediment during 
late summer 2016. a) DOC concentrations. b) pH. c) TIC concentrations. d) dissolved CO2 
concentrations. Black points are means, with vertical bars denoting the range of observations, 
in n = 3 sediment boxes. Grey polygon is range of values in n = 3 samplers installed in 
surrounding lake bottoms. 
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