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1 Introduction

Empirical evidence from the United States and other countries shows that media outlets
manipulate information with a partisan slant, i.e. in a way that systematically favours
one side of the political spectrum or the other. The determinants of such media slant
have been widely analysed by the theoretical literature; however, little attention has
been given to the fact that the information reported by media can spread in the public
by word of mouth. The aim of this paper is to develop a model of partisan media
slant with diffusion by word of mouth, in order to better understand media outlets’
motivations for becoming more partisan.

To set the scene, consider an example of a pro-Republican media outlet (e.g., a
newspaper, a website, or a TV channel), whose objective is to make as many people
as possible support the Republican Party. The outlet can manipulate the news which
it reports by giving them a pro-Republican slant. The news reports are first seen by
the outlet’s Republican audience and then spread in the public by word of mouth.
In the public, there are people with heterogeneous political views: Republicans and
Democrats, which means they have their own incentives to share or not share the news
with others.

The above example motivates the following model. There is a manipulator and a
population of agents. The state of the world is binary: it is good or bad. During the
course of the game, each agent in the population chooses an individual action; if her
action is sufficiently high, then we say that she has been persuaded. The manipulator’s
objective is to maximise the number of persuaded agents. There are two types of
agents in the population: high-type (H-type) and low type (L-type). Each type of
agent prefers a higher action if the state is good than if the state is bad, but H-type
agents are biased in favour of the manipulator: for a given state of the world, they
prefer a higher action than L-type agents. Each agent wants other agents to take an
action that is as close as possible to her own action.

The game unfolds as follows. First, the manipulator designs an information policy,
which is a map from each possible state of the world (good and bad) to a probability
distribution over possible news reports (good and bad). The news report generated by
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the information policy is observed by a randomly selected H-type agent and then dif-
fuses via a communication chain: each agent, upon receiving the report, meets another
agent, observes her type, and chooses whether to pass it on to her or not. The assorta-
tivity of meetings determines how likely it is that an agent meets an agent of the same
or the opposite type. Diffusion continues until (a) an agent fails to meet a successor,
which happens with an exogenous positive probability to each agent, or (b) an agent
decides not to pass the news report on. At that point, each agent in the population
chooses her individual action and the game ends.

This paper studies the optimal information policy for the manipulator. In the
optimal policy, the news report must be good whenever the state is good, so the key
question is: how often should the news report be good when the state is bad? In other
words, how often should the manipulator lie in his favour? I refer to the probability
that the news report is good when the state is bad as the slant of the information policy.
Thus, the slant captures here lying in the most direct form, i.e. negating the truth.

The manipulator needs to consider two effects of the information policy: (1) on the
credibility of news reports and (2) on the agents’ incentives to pass the news reports
on. First, if the slant is too high, then a good report is not credible enough, and the
agents are not persuaded by it (due to their bias, H-type agents can be persuaded
under a higher slant than L-type agents). Second, more interestingly, if the slant is too
high, then a good report does not spread so well, as some of the agents no longer have
an incentive to pass it on (more specifically, L-type agents prefer not to pass it on to
H-type agents). These two effects provide an incentive for the manipulator to lower
the slant. On the other hand, he would like to keep the slant high so that the report is
good as often as possible. This creates a trade-off that shapes the optimal information
policy.

The model identifies a spectrum of available information policies. At one extreme
is a “mainstream” policy, which aims to spread information among and persuade both
types of agents. It requires a relatively low slant because the report must be credible
enough for both types of agents and incentives must be provided for L-type agents to
pass a good report on to H-type agents. At the other extreme is a “partisan” policy,
which aims to diffuse the information primarily among H-type agents and to persuade
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only them. Hence, it can be achieved with a relatively high slant.
The presence of a spectrum of policies leads to the following question: what fea-

tures of the environment make the manipulator choose a particular policy, for example
a mainstream one or a partisan one? My analysis puts emphasis on two features of
the environment: (i) the polarisation of the preferences of H-type and L-type agents,
measured by the upward bias of the former, and (ii) the assortativity of meetings in the
communication chain. These two features correspond to two important trends in mod-
ern societies: political polarisation, for example between Republicans and Democrats
in the US, and homophily, which is a tendency of individuals to interact with those
who are similar to them.

The analysis elucidates how polarisation and assortativity can make the partisan
policy optimal for the manipulator. This occurs through three channels. First, as polar-
isation increases, L-type agents become more and more difficult to persuade relative to
H-type agents, as the former require information of higher and higher credibility relative
to the latter. Second, as polarisation and assortativity increase, providing incentives for
L-type agents to pass the information on to H-type agents becomes more difficult, i.e.
the slant required for such diffusion becomes lower. Finally, as assortativity increases,
it becomes more likely that only H-type agents appear in the communication chain, so
providing incentives for L-type agents to pass the information on to H-type agents has
actually little effect on the diffusion of information.

I then explore two extensions of the model. In the first extension, I modify the
communication between agents by assuming that each agent does not observe the type of
her successor in the communication chain; however, she is still aware of the assortativity
of meetings. This extension recognises that diffusion by social media such as Facebook
or Twitter differs from conventional word of mouth; in particular, people can post
information to their friends or followers but they do not know who will actually read the
information and potentially pass it further on. I show that, under unobservable types of
successors, higher assortativity makes maximal diffusion easier to induce, unlike under
observable types of successors. This suggests that the growing role of social media
makes media outlets less constrained by diffusion.

In the second extension, I assume that agents misestimate the slant chosen by the
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manipulator: L-type agents overestimate it and H-type agents underestimate it. Thus,
this extension studies the impact of the tendency of people to trust those media outlets
which match their views and distrust those which do not. The analysis reveals that
such misestimation of the slant increases the chances that the manipulator chooses a
partisan policy.

The paper is organised as follows. The rest of this section discusses the empirical
motivation for the model and the related literature. Section 2 presents the model. Sec-
tion 3 characterises the equilibrium in the communication chain for a given information
policy. Section 4 analyses the optimal information policy for the manipulator. Section
5 considers the extensions of the model. Section 6 concludes.

1.1 Empirical Motivation

Although the model is stylised, the main ingredients of the modelling approach are
supported by empirical evidence. I discuss these key ingredients below.

The first main ingredient of the model is that media slant is supply-driven, as it is
driven by the manipulator’s internal incentives to influence the agents’ actions. These
incentives could arise directly from the preferences of media owners or indirectly from
the preferences of editors or journalists. This contrasts with demand-driven media
slant, in which case the driver of the slant is the demand from consumers (e.g., for news
which confirm their views). Empirical evidence shows that both supply-side factors and
demand-side factors influence media slant. Here, I briefly discuss papers which suggest
that media slant is supply-driven. Larcinese, Puglisi and Snyder (2011) and Durante
and Knight (2012) provide case studies (Los Angeles Times in the former and Italian
TV station TG1 in the latter) where a change of the owner of a media outlet led to
a rapid change in the news content of the outlet. Ansolabehere, Lessem and Snyder
(2006) find a discrepancy between the slant of newspapers in the US in the 20th century
and the political preferences of people living in the market areas of these newspapers,
which suggests that demand-side factors cannot fully explain the observed slant. In a
similar vein, Martin and Yurukoglu (2017) discover that the observed slant of Fox News
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is much more pro-Republican than the viewership-maximising slant.1

The second main ingredient is that individuals’ beliefs and behaviour can be changed
by what they see in the media. Numerous studies have found evidence of media’s in-
fluence on people’s beliefs and behaviour. DellaVigna and Kaplan (2007) discover that
availability of Fox News increased the Republican vote share in the 2000 US presidential
elections. Gerber, Karlan and Bergan (2009) identify a positive effect of subscriptions
to the Washington Post on the support for the Democratic candidate in the 2005 Vir-
ginia gubernatorial election. Enikopolov, Petrova and Zhuravskaya (2011) find that
availability of an independent TV station, NTV, had a positive effect on the vote on
opposition parties in the 1999 Russian parliamentary elections. Chiang and Knight
(2011) use daily survey data on voting intentions before the 2000 and 2004 US pres-
idential elections to find that people are more likely to support a candidate after a
publication of a newspaper endorsement for that candidate. Martin and Yurukoglu
(2017) exploit cable channel positions as exogenous shifters of their viewership to show
that watching Fox News increases Republican vote shares.2

The third main ingredient is that people detect and discount the media slant. Ev-
idence suggests that people do not blindly trust news reports, but they are aware of
media slant and they attempt to filter it out. A survey by YouGov from June 2017
reports that 70% of Americans think that media outlets “tend to provide only one
side of the story depending on who owns them or funds them”.3 Chiang and Knight
(2011) find that endorsements for Democratic candidates from left-leaning newspapers
are less effective than those from neutral or right-leaning newspapers, and vice versa
for Republican candidates. Gentzkow, Shapiro and Sinkinson (2011) analyse a data set
of US daily newspapers from 1869 to 2004 and find that the persuasive effect of parti-
san newspapers is limited, which they argue is consistent with people filtering partisan
information.

1Papers which show that media slant can be driven by demand-side factors include Gentzkow and
Shapiro (2010), Puglisi and Snyder (2011) and Larcinese, Puglisi and Snyder (2011). For a survey of
empirical literature on the demand-side and supply-side factors of media slant, see Puglisi and Snyder
(2015).

2For summaries of evidence on these effects, see DellaVigna and Gentzkow (2010), Prior (2013),
and Puglisi and Snyder (2015).

3https://today.yougov.com/news/2017/06/20/Americans-agree-media-is-biased/
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Finally, the fourth main ingredient of the model is that information spreads through
assortative but exogenous meetings. There is large amount of evidence on assortativity
in social networks, also referred to as homophily. McPherson, Smith-Lovin and Cook
(2001) provide a survey of studies on homophily in a wide range of characteristics such as
race, ethnicity, sex, gender, age, religion, education, occupation, social class, and others.
When it comes to political views more specifically, a 2014 survey by Pew Research
Center shows that the majority of people with consistently conservative or consistently
liberal views say that most of their close friends share their views on government and
politics.4 Evidence also shows that the choice of whom to discuss politics with is
exogenous, i.e. people do not consciously choose individuals to discuss politics, but
they simply tend to discuss politics with the same people with whom they discuss other
important matters in their lives (Klofstad, McClurg and Rolfe, 2009).

The first extension of the model is motivated by the growing role of social media as
a source of news for people. A 2017 study by Pew Research Center shows that 67% of
Americans now report that they get news from social media. Among social media sites,
Facebook is the dominant leader, with 45% of Americans saying that they get news
from it, while YouTube is second (18%) and Twitter is third (11%).5 An important
characteristic of social media, especially Facebook and Twitter, is that people often do
not share information with a specific person (like in traditional word of mouth) but
with their social network.

The motivation for the second extension is the observation that people with different
ideological views tend to trust (and distrust) different sources of news; in particular,
they trust more those sources which match their views and distrust those which do
not. A 2014 report by Pew Research Center finds stark differences in the sources
that Americans trust. For example, Fox News—generally considered as Republican-
leaning—is trusted by 88% of Americans with consistently conservative views but is
distrusted by 81% of those with consistently liberal views. When it comes to CNN,
which is often viewed as having a liberal slant, 61% of consistent conservatives distrust

4Pew Research Center, October 2014, “Political Polarization and Media Habits”.
5Pew Research Center, September 2017, “News Use Across Social Media Platforms 2017”.
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it, while 56% of consistent liberals trust it.6

1.2 Related Literature

My paper contributes to the research on the economics of media, in particular to the
study of media slant (often also referred to as media bias). Empirical studies of media
slant have analysed the measurement of media slant (e.g., Ansolabehere, Lessem and
Snyder, 2006; Groseclose and Milyo, 2005; Gentzkow and Shapiro, 2010), the determi-
nants of media slant (e.g., Gentzkow and Shapiro, 2010; Puglisi and Snyder, 2011; Larci-
nese, Puglisi and Snyder, 2011), and the effects of media slant on political behaviour
(e.g., DellaVigna and Kaplan, 2007; Gerber, Karlan and Bergan, 2009; Chiang and
Knight, 2011; Gentzkow, Shapiro and Sinkinson, 2011; Enikopolov, Petrova and Zhu-
ravskaya, 2011). Puglisi and Snyder (2015) provide an excellent survey of the empirical
literature on media slant. Theoretical studies have developed models of supply-driven
media slant (e.g., Baron, 2006; Anderson and McLaren, 2012; Gehlbach and Sonin,
2014) and demand-driven media slant (e.g., Mullainathan and Shleifer, 2005; Gentzkow
and Shapiro, 2006; Stone, 2011). An excellent survey of the theoretical literature is in
Gentzkow, Shapiro and Stone (2015). My paper adds to the theoretical literature by
studying the role of diffusion of information as a determinant of supply-driven media
slant.

My paper contributes also to the economic study of strategic communication, in
particular to the literatures on information design and information diffusion. It bridges
these two strands by showing that, on the one hand, the design of an information struc-
ture can influence the diffusion of information and, on the other hand, that diffusion
can be a factor that affects the optimal information structure for the designer.

The literature on information design has grown rapidly and has focused on Bayesian
persuasion, following the work of Kamenica and Gentzkow (2011). To the best of my
knowledge, my paper is the first that studies Bayesian persuasion followed by diffusion.
My paper is related to those extensions of Kamenica and Gentzkow (2011) which take
account of multiple receivers: Alonso and Câmara (2016), Taneva (2016), and Laclau

6Pew Research Center, October 2014, “Political Polarization and Media Habits”.
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and Renou (2017), but none of these papers feature strategic communication between
the receivers. Like me, Gehlbach and Sonin (2014) apply the Bayesian persuasion
framework to study information manipulation by media; however, in their paper the
additional effect of the way the news are manipulated—beyond the effect on people’s
beliefs—is that it influences whether people decide to read the news, whereas in my
paper the additional effect is that it influences how well the news spread by word of
mouth.

The literature on information diffusion is very large. The most closely related papers
to mine are those which study cheap-talk communication chains (Ambrus, Azevedo and
Kamada, 2013; Anderlini, Gerardi and Lagunoff, 2012) and the diffusion of rumours
(Bloch, Demange and Kranton, 2017). Apart from the communication protocol (cheap
talk instead of verifiable disclosure), the communication chain in Ambrus, Azevedo and
Kamada (2013) differs from mine in that it is finite and only the final receiver takes
an action, while the chain in Anderlini, Gerardi and Lagunoff (2012) differs in that
the incentive to communicate strategically is created by the fact that each agent in
the chain prefers to take a lower action than his predecessors would like, whereas in
my paper it is created by the heterogeneity of agents’ preferences. Bloch, Demange
and Kranton (2017) is similar to mine in that a rumour starts when one agent learns
the true state of the world and it then spreads among biased and unbiased agents;
however, the agents are arranged in an exogenous network and the focus of the paper is
on identifying paths in the network along which rumours can diffuse. My paper adds to
this literature, first, by analysing diffusion via a communication chain in a population
of agents with heterogeneous preferences, and second, by investigating the impact of
the information structure on that diffusion.

2 Model

Players. There is a manipulator, M , and an infinite population of agents, N =
{1, 2, 3, ...}. The population consists of two types of agents with different preferences:
high-type (H-type) agents and low-type (L-type) agents. The set of types of agents is
denoted by T = {H,L}.
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State of the world. There are two possible states of the world, ω ∈ {0, 1}. The
state of the world is ex ante unknown both to the manipulator and to the agents. From
the perspective of the manipulator, ω = 1 can be interpreted as a good state and ω = 0
as a bad state. All players have a common prior belief that ω = 1 with probability p.

Timeline. The game proceeds as follows:

1. The manipulator chooses an information policy π, which maps each state ω ∈
{0, 1} to a distribution over possible signal realisations s ∈ {0, 1}. From the
perspective of the manipulator, the realisation s = 1 can be interpreted as a good
news report and s = 0 as a bad news report. All agents observe the information
policy π.

2. The state of the world ω ∈ {0, 1} is realised, with the signal realisation s deter-
mined according to π.

3. The information about s diffuses via a communication chain C.

• One randomly selected H-type agent, say i ∈ N , observes s. She meets
another agent (her successor), say j ∈ N , observes j’s type, and decides
whether to pass s on to j or not.

• Upon receiving s, agent j meets yet another agent, say k ∈ N , observes k’s
type, and decides whether to pass s on to k or not, and so on.

• The chain C = {i, j, k, . . .} continues until (i) an agent fails to meet a suc-
cessor, which happens with exogenous probability ε ∈ (0, 1) to each agent,
or (ii) an agent decides not to pass s on to her successor. If an agent decides
not to pass s on to her successor, then the successor is left outside the chain.

• Meetings are assortative, with r ∈ [0, 1] being the measure of assortativity:
an agent meets a successor of the same type with probability r and a successor
of the other type with probability 1− r.7

7Thus, r = 1 describes a perfectly assortative population, r = 0.5 a non-assortative population,
and r = 0 a perfectly disassortative population. In the rest of the paper, assortativity is referred to as
lower or higher depending on the distance of r from 0.
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• Each agent can appear only once in the chain.

4. Once the chain breaks, each agent in the population chooses an action.

The information policy π is effectively fully specified by the vector (π(1 | 1), π(1 | 0)),
where π(1 | 1) and π(1 | 0) denote the probabilities that the signal realisation is s = 1
when the state is ω = 1 and when the state is ω = 0, respectively. Without loss of
generality, I assume that π(1 | 1) ≥ π(1 | 0) so that the realisations s = 1 and s = 0
have intuitive meanings. The signal realisation is verifiable by the agents; hence, each
agent can only either pass the signal realisation on or not, but cannot transform it.

Information sets. From the perspective of each agent, her own type is denoted by
t0 ∈ T and her own action is denoted by a0 ∈ R. The type and action of an agent’s
successor are denoted by t1 and a1. The type and action of the successor of the agent’s
successor are denoted by t2 and a2, and so on.

Each agent knows her own type, t0. An agent’s own information set, I0, describes the
agent’s additional information beyond her own type. Each agent in the communication
chain observes I0 = {s, t1} (conditional on meeting a successor). Since the content
of communication is verifiable, once an agent receives s from her predecessor, it is
irrelevant whether the predecessor’s type is observable. The information set is empty,
i.e. I0 = {}, for all agents outside the chain.

Beliefs. An agent’s belief that ω = 1 upon observing information set I0 is denoted by
β(I0). For agents in the communication chain, I simply write β(s) to indicate the belief
about ω = 1 upon observing I0 = {s, t1}, as t1 is irrelevant for the belief. Any agent
outside the communication chain is assumed to keep her prior belief, i.e. β({}) = p.
Therefore, if an agent does not pass s on to her successor, then the successor as well as
all remaining agents in the population keep their prior belief.8

8Given that not passing on is endogenous, an agent may form a belief β({}) 6= p. However, since
the population is infinite and the probability of exogenous breakdown of the chain is strictly positive
at each meeting, the probability of observing {} tends to 1 regardless of the signal realisation and the
equilibrium strategies. Therefore, β({})→ p in any equilibrium.
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Strategies. The manipulator’s strategy is his information policy, effectively given by
a vector (π(1 | 1), π(1 | 0)). Each agent has a communication strategy (conditional on
being in the communication chain) and an action strategy. I will consider equilibria such
that all agents of the same type have the same strategies. Thus, the communication
strategy of an agent of type t0 ∈ {L,H} is a function µt0 : {s, t1} → {s,Ø}, where
µt0(s, t1) = s denotes passing s on to the successor of type t1 and µt0(s, t1) = Ø denotes
not passing s on to her. The action strategy of an agent of type t0 ∈ {L,H} is a
function σt0 : {s} → R for agents in the communication chain, and σt0 : {} → R for
agents outside the chain.

Manipulator’s payoffs. The manipulator obtains a payoff from the actions of agents
in the communication chain. Fix an infinite sequence of actions a = {a(1), a(2), a(3), ...},
where a(i) denotes the action of the agent in ith position in a communication chain of
infinite length.

The payoff to the manipulator from action a(i) (where i = 1, 2, 3, ...) is given by a
threshold function v(a(i)):

v(a(i)) =

1 if a(i) ≥ ā

0 if a(i) < ā
, (1)

where a is an exogenous threshold. If an agent takes an action weakly above a, then
we say that she is persuaded.

The manipulator’s payoff function is assumed to be separately additive for agents’
actions. The payoff to the manipulator from a fixed infinite sequence of actions a is
written as

V (a) =
∞∑
i=1

δi−1v(a(i)), (2)

where δ = 1 − ε is the discount factor that reflects the fact that the communication
chain breaks with probability ε at each meeting.

When choosing his information policy (π(1 | 1), π(1 | 0)), the manipulator maximises
the expected value of V (a) given the strategies of agents.
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Agents’ payoffs. Each agent obtains a payoff from her own action, a0, and from
the actions of her successors in the communication chain, a1, a2, a3, ...

9 Fix an infinite
sequence of actions a0 = {a0, a1, a2, ...}, where ai denotes the action of the agent’s ith
successor in a communication chain of infinite length.

I assume that agents have the same preferences regarding their own action and
regarding the actions of their successors. The payoff to an agent of type t0 from action
ai (where i = 0, 1, 2, ...) in state ω is expressed as ut0(ai, ω). I assume the following
functional forms: uL(ai, ω) = −(ai−ω)2 for an L-type and uH(ai, ω) = −(ai− (ω+ b))2

for an H-type agent, where b > 0 is the bias of H-type agents. Thus, b measures the
polarisation of H-type and L-type agents’ preferences.

Each agent’s payoff function is assumed to be separately additive for his own action
and the actions of his successors. The payoff to an agent of type t0 from a fixed infinite
sequence of actions a0 = {a0, a1, a2, ...} in state ω (conditional on her meeting her
successor) is

Ut0(a0, ω) = ut0(a0, ω) +
∞∑
i=1

δi−1ut0(ai, ω), (3)

where δ = 1− ε is the discount factor.
At the time of deciding whether to pass s on and what action to take, the agent

maximises the expected value of Ut0(a0, ω) given her information set, I0, and given the
agents’ strategies. However, note that when choosing her action, a0, each agent in fact
maximises only the value of ut0(a0, ω) given her information set, I0, because her action
cannot affect other agents’ actions.10

9In principle, each agent could also receive a payoff from the actions of the predecessors and of the
agents outside the communication chain but, in this setup, she cannot affect these actions, and so—as
far as payoff maximisation is concerned—these actions can be neglected in her payoff function.

10The setup makes some simplifying assumptions. Allowing each agent to meet multiple agents
would change the formulation of the agents’ payoff function but each agent’s decision whether to pass
on or not would still be driven by the forces highlighted in this model, in particular by the extent to
which the successors’ preferences are aligned with hers (which in turn is determined by assortativity
and polarisation). Receiving multiple messages would not make the agents’ inference problem more
complex because the content of messages is verifiable. A cheap-talk setup would allow the agents to
costlessly transform the signal that they pass on; however, the usefulness of such transformation for an
agent would be constrained by the fact that receivers would be aware of her incentives to transform.
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3 Equilibrium in the Communication Chain

In this section, I analyse the equilibrium in the communication chain for a given in-
formation policy (π(1 | 1), π(1 | 0)). Therefore, the probabilities that the realisation of
the signal is s = 1 when the state is ω = 1 and when the state is ω = 0 are taken as
given throughout this section.

The solution concept is the perfect Bayesian equilibrium (henceforth, simply referred
to as an equilibrium), which is defined in the usual way. An equilibrium consists of
communication strategies, action strategies and beliefs, (µ, σ, β), where µ = (µL, µH)
and σ = (σL, σH), such that each agent’s strategy is sequentially rational given the
strategies and beliefs of other agents, and beliefs are derived by Bayes’ rule from the
strategies whenever it is possible.

Proposition 1 describes the strategies of the agents in the communication chain in
the unique equilibrium.11 For the agents outside the communication chain, the belief is
β({}) = p, and hence their action strategy is trivially σL ({}) = p and σH ({}) = p+ b.

Proposition 1. In the unique equilibrium:
(i) the agents’ beliefs are

β(s) =


pπ(0|1)

pπ(0|1)+(1−p)π(0|0) for s = 0
pπ(1|1)

pπ(1|1)+(1−p)π(1|0) for s = 1
,

(ii) the agents’ action strategies are

σt0(s) =

β(s) for t0 = L

β(s) + b for t0 = H
for s ∈ {0, 1} ,

11I assume that if an agent is indifferent between passing s on and not, then she chooses to pass it
on.

14



(iii) the agents’ communication strategies are

µL(s, t1) =



s for s ∈ {0, 1} and t1 = L

s for s = 0 and t1 = Hs if and only if β(1) ≥ β(1)∗

Ø if and only if β(1) < β(1)∗
for s = 1 and t1 = H

where β(1)∗ = p+ 2b 1−δr
1+δ−2δr , and

µH(s, t1) =



s for s ∈ {0, 1} and t1 = H

s for s = 1 and t1 = Hs if and only if β(0) ≤ β(0)∗

Ø if and only if β(0) > β(0)∗
for s = 0 and t1 = L

where β(0)∗ = p− 2b 1−δr
1+δ−2δr .

The agents form their beliefs through Bayesian updating. Thus, given an informa-
tion policy (π(1 | 1), π(1 | 0)), if an agent observes a signal realisation s = 0, then she
forms a posterior belief

β(0) = Pr (ω = 1 | s = 0) = pπ (0 | 1)
pπ (0 | 1) + (1− p)π (0 | 0) , (4)

and if she observes a signal realisation s = 1, then she forms a posterior belief

β(1) = Pr (ω = 1 | s = 1) = pπ (1 | 1)
pπ (1 | 1) + (1− p)π (1 | 0) . (5)

The equilibrium action strategies are such that an L-type agent takes an action that
equals his posterior belief, while an H-type agent takes an action that equals his poste-
rior belief plus her bias. Therefore, the information policy—by influencing the agents’
posterior beliefs—also influences their actions, withH-type agents taking higher actions
than L-type agents for a given belief. More formally, the equilibrium action strategies
are σL(s) = argmaxa0uL (a0, ω | β(s)) = β(s) and σH(s) = argmaxa0uH (a0, ω | β(s)) =
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β(s) + b.
The communication strategy is such that an L-type agent passes s on to her successor

under any information policy, except when s = 1 and her successor is of type t1 = H:
in that case she passes it on if and only if β(1) is high enough or—put differently—if
and only if π (1 | 1) is high enough and π (1 | 0) is low enough. Conversely, an H-type
agent passes s on to her successor under any information policy, except when s = 0
and her successor is of type t1 = L: in that case she passes it on if and only if β(0)
is low enough, i.e. if and only if π (0 | 0) is high enough and π (0 | 1) is low enough.
Therefore, an information policy that is sufficiently informative about ω = 1 (ω = 0)
can improve the diffusion of s = 1 (s = 0) by inducing L-type agents to pass s = 1 on
to H-type agents (H-type agents to pass s = 0 on to L-type agents).

The reasoning behind the communication strategy is as follows. Consider an L-type
agent (an analogous logic applies to an H-type agent). She clearly has no incentive to
suppress s = 0 from any agent. If she suppresses it, then all remaining agents take an
action based on the prior belief, but if she passes it on, then she can only be better off
because her successor—and potentially further successors—take lower actions, which
moves them closer to her optimal action for s = 0. An L-type agent also has no
incentive to suppress s = 1 from an L-type successor because their preferences are
perfectly aligned. Finally, if an L-type agent receives s = 1 and meets an H-type
agent, then her communication depends on the information policy, given by π (1 | 1)
and π (1 | 0), which determine the belief β(1). More precisely, she passes s = 1 on if
and only if β(1), i.e. if and only if s = 1 is sufficiently informative about ω = 1. Figure
1 provides an illustration of how a change in β(1) (and β(0)) affects the incentives of
an L-type agent to pass s = 1 (and s = 0) on to an H-type successor.

For simplicity, Figure 1 shows only the immediate H-type successor, but L-type
agent naturally takes into account also the actions of further successors in the chain.
In Panel A, β(1) is high, which means that s = 1 is relatively informative about ω = 1
and so the optimal actions for s = 1 are relatively high for both types of agents—and
far away from their optimal actions for the prior belief. Consequently, the L-type agent
prefers passing s = 1 on to the H-type agent to not passing it on. On the other hand,
in Panel B, a lower β(1) means that s = 1 becomes less informative about ω = 1, which
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Figure 1: Graphical illustration of how a change in β(1) and β(0) affects the incentives
of an L-type agent to pass s = 1 and s = 0 on to an H-type agent.

moves the optimal actions for s = 1 closer to the optimal actions for the prior belief.
Then, the L-type agent is better off by not passing s = 1 on to the H-type agent. In
addition, we can see that β(0) increases as we move from Panel A to Panel B, which
means that s = 0 becomes less informative about ω = 0. However, this does not affect
the incentive of the L-type agent to pass s = 0 on to the H-type agent.

Overall, the main message behind Proposition 1 is that the information policy has
two effects: (1) it influences the beliefs of agents, and hence also their actions, upon
receiving s = 0 and s = 1, and (2) it influences the agents’ incentives to pass s = 0
and s = 1 on to their successors, and thus affects the diffusion in the communication
chain. These two effects will play an important role in the analysis of the manipulator’s
optimal information policy in Section 4.

4 Optimal Information Policy

In this section, I analyse the manipulator’s optimal information policy, which is the
policy that maximises his expected payoff.
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4.1 Preliminaries

I start the analysis by making the following assumption.

Assumption 1. The prior belief p is such that, for all agents, the optimal action of an
agent with a belief p is below a, i.e. argmaxa0ut0 (a0, ω | p) < ā for t0 ∈ {L,H}. This
assumption is satisfied if and only if p < ā− b.

This assumption means that all agents are ex ante unpersuaded.12 Therefore, the
manipulator receives a payoff of 0 from an action of any agent whose posterior belief is
the same as the prior. To see why this assumption is satisfied if and only if p < ā−b, note
that the optimal actions for agents with a belief p are given by argmaxa0uH (a0, ω | p) =
p+ b for an H-type agent and by argmaxa0uL (a0, ω | p) = p for an L-type agent.

It is important to note that, in the optimal information policy, π (1 | 1) = 1 must
hold, i.e. whenever the state of the world is ω = 1, the signal realisation must be
s = 1. In other words, whenever the state is good, the news report must also be good.
The manipulator has an incentive to increase π (1 | 1) as much as possible because it
increases the probability that the signal realisation is s = 1, increases the agents’ actions
upon observing s = 1, and can only enhance the agents’ incentives to pass s = 1 on.

On the other hand, π (1 | 0) may be weakly positive in the optimal information
policy. Yet, π (1 | 0) = 1 cannot be optimal because, combined with π (1 | 1) = 1, it
would make the signal uninformative and so—given Assumption 1—all agents would
remain unpersuaded upon observing s = 1. The conditional probability π (1 | 0) ∈ [0, 1)
then fully specifies any optimal information policy.

Definition 1. The slant of the information policy is defined as π (1 | 0), i.e. the prob-
ability that the signal realisation is s = 1 given that the state of the world is ω = 0.

In the context of media, the slant is defined here as the tendency of a media outlet
to publish a good (from the perspective of the outlet) news report when the state of
the world is bad (from the perspective of the outlet). Thus, the slant is modelled here

12If all agents were ex ante persuaded, then the manipulator’s optimal information policy would be
to make the signal completely uninformative. If H-type agents were ex ante persuaded but L-type
agents were not, then the manipulator would prefer to target an L-type agent as the first agent in the
chain. Under Assumption 1, the manipulator prefers to target an H-type agent.
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as lying in the most direct form, i.e. negating the truth. Naturally, this is not the
only possible form of media slant. Gentzkow, Shapiro and Stone (2015) distinguish
two categories of media slant: distortion of information and filtering of information.
Put briefly, the former captures manipulation by reporting outright false information,
whereas the latter captures manipulation by selective reporting of information and
biased summarising of information. The definition of slant used in this paper falls
under the category of distortion. Other papers modelling media slant as distortion
include Mullainathan and Shleifer (2005), Baron (2006), and Gentzkow and Shapiro
(2006).

4.2 Two Effects: on Persuasion and on Diffusion

As already mentioned in Section 3, the information policy has two effects: (i) it in-
fluences the agents’ beliefs and actions upon receiving s = 0 and s = 1, and (ii) it
influences whether the agents pass s = 0 and s = 1 on to their successors. In short,
the information policy influences (i) persuasion and (ii) diffusion. I now analyse these
effects in the context of the slant.

Effect of the information policy on persuasion. First, I consider the effect of
the slant on whether the agents are persuaded.

Proposition 2. In the optimal information policy:
(i) an H-type agent is persuaded by s = 1 if and only if the slant is π (1 | 0) ≤ πH ,
where

πH = p

1− p
1− (ā− b)
ā− b

, (6)

(ii) an L-type agent is persuaded by s = 1 if and only if the slant is π(1 | 0) ≤ πL,
where

πL = p

1− p
1− ā
ā

. (7)

The thresholds πH and πL are increasing in prior belief p and decreasing in a, and πH

is increasing in polarisation b.
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Proposition 2 uses the equilibrium action strategies described in Proposition 1 and
the observation that π (1 | 1) = 1 must hold in the optimal policy. Given (4), (5), and
π (1 | 1) = 1, the posterior belief about ω = 1 upon receiving s = 1 is

β(1) = p

p+ (1− p) π (1 | 0) , (8)

and the posterior belief belief about ω = 1 upon receiving s = 0 is β(0) = 0. Then, an
H-type agent takes action above ā if and only if β(1) + b ≥ ā, which can be rearranged
to π (1 | 0) ≤ πH , where πH is given by (6). Similarly, an L-type agent takes action
above ā if and only if β(1) ≥ ā, which can be rearranged to π (1 | 0) ≤ πL, where πL is
described by (7). It follows easily that πH > πL.

Hence, the message behind Proposition 2 is that the manipulator must choose a
low enough slant in order to be able to persuade the agents. The thresholds πH and
πL denote the maximum levels of slant for which s = 1 persuades an H-type and an
L-type agent, respectively. The relation πH > πL means that H-type agents are more
easily persuaded than L-type agents.

Effect of the information policy on diffusion. Second, I consider the effect of the
slant on the diffusion of information. Given Assumption 1, the signal realisation s = 0
cannot persuade any agents, so the manipulator is concerned only about the diffusion
of s = 1. Therefore, I focus on the effect on the diffusion of s = 1.

Proposition 3. In the optimal information policy:
(i) an H-type agent passes s = 1 on to an H-type agent under any slant,
(ii) an H-type agent passes s = 1 on to an L-type agent under any slant,
(iii) an L-type agent passes s = 1 on to an L-type agent under any slant,
(iv) an L-type agent passes s = 1 on to an H-type agent if and only if the slant is
π(1 | 0) ≤ πD, where

πD = p

1− p
1−

(
p+ 2b 1−δr

1+δ−2δr

)
p+ 2b 1−δr

1+δ−2δr
. (9)

The threshold πD is decreasing in assortativity r, ∂πD
∂r

< 0, and decreasing in polarisation
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b, ∂πD

∂b
< 0, with ∂2πD

∂r∂b
< 0 for sufficiently low r and b, and ∂2πD

∂r∂b
≥ 0 otherwise.

Proposition 3 uses the equilibrium communication strategies in Proposition 1 and
the observation that π (1 | 1) = 1 in the optimal information policy. As stated in
Proposition 1, an L-type agent passes s = 1 on to an H-type agent if and only if
β(1) ≥ β(1)∗. Given that π (1 | 1) = 1, this condition becomes π (1 | 0) ≤ πD, where
πD is given by (9).

The message behind Proposition 3 is therefore that, by decreasing the slant, the
manipulator can facilitate the diffusion of s = 1 from L-type to H-type agents, and
thus improve the diffusion of s = 1. Figure 2 illustrates how a change in slant π (1 | 0)
can affect an L-type agent’s incentives to pass s = 1 on to an H-type agent.

action of  
L-type agent 

optimal action 
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Figure 2: Graphical illustration of how a change in slant π (1 | 0) can affect an L-type
agent’s incentives to pass s = 1 on to an H-type agent.

The slant is lower in Panel A than in Panel B. As the slant increases, the L-type
agent’s optimal action for s = 1 becomes relatively closer to the agents’ optimal actions
for the prior belief than to the H-type agent’s optimal action for s = 1. Consequently,
when the slant is high enough, the L-type agent no longer has an incentive to pass
s = 1 on to the H-type agent. The threshold πD denotes the maximum slant under
which the L-type agent would pass s = 1 on to the H-type agent. The optimal actions
for s = 0 are not affected by the slant; in fact, they coincide with the optimal actions
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in state ω = 0 because the agent’s belief about ω = 1 upon observing s = 0 must equal
zero in the optimal information policy (which follows from π (1 | 1) = 1).

The threshold πD is decreasing in polarisation and assortativity. In other words, as
polarisation and assortativity increase, it becomes more difficult to facilitate diffusion
of s = 1 from L-type to H-type agents. The intuition for the effect of polarisation is
clear: as the preferences of the two types of agents become less aligned, L-type agents
are less willing to share s = 1 with H-type agents. The intuition for the effect of
assortativity is that, as assortativity increases, an L-type agent who meets an H-type
agent realises that the H-type agent’s successors are more likely to be H-type agents
too. Thus, the preferences of the L-type agent and her successors in the chain are less
likely to be aligned.

For sufficiently low assortativity and polarisation, ∂2πD

∂r∂b
< 0 holds, i.e. polarisation

and assortativity reinforce each other’s negative effect on the threshold πD. However,
when assortativity and polarisation are high, then ∂2πD

∂r∂b
≥ 0 holds, which means that

polarisation and assortativity dampen each other’s negative effect on πD.

Relation between the two effects. The relation between the values of thresholds
πH , πL and πD depends on the parameters of the model. Since πH > πL always
holds, there are three possibilities: (i) πD < πL, (ii) πL ≤ πD < πH , and (iii) πD ≥ πH .
Proposition 4 describes how the relation between πH , πL and πD depends on polarisation
b and on assortativity r.

Proposition 4. (a) As far as assortativity r is concerned, the relation between πD, πL

and πH is:
(i) πD < πL if and only if r > r∗∗,
(ii) πL ≤ πD < πH if and only if r∗ < r ≤ r∗∗,
(iii) πD ≥ πH if and only if r ≤ r∗,

where r∗ and r∗∗ are functions of other parameters, and r∗ < r∗∗.
(b) As far as polarisation b is concerned, the relation between πD, πL and πH is:

(i) πD < πL if and only if b > b∗∗,
(ii) πL ≤ πD < πH if and only if b∗ < b ≤ b∗∗,
(iii) πD ≥ πH if and only if b ≤ b∗,
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where b∗ and b∗∗ are functions of other parameters, and 0 < b∗ < b∗∗ < a− p.

Proposition 4 uses the thresholds πH , πL and πD derived in Propositions 2 and 3.
Part (a) follows from the fact that πD is decreasing in r, while both πL and πH do not
depend on r. Part (b) follows from the fact that πD is decreasing in b, πL does not
depend on b, and πH is increasing in b. It is worth noting that r∗ and r∗∗ take values
in [0, 1] only under some conditions for other parameters. On the other hand, b∗ and
b∗∗ take values in (0, a− p) regardless of the values of other parameters.

Overall, Proposition 4 tells us that polarisation and assortativity of the population
determine how difficult it is for the manipulator to induce the diffusion of s = 1 from
L-type agents to H-type agents relative to persuading L-type and H-type agents. High
polarisation and high assortativity both contribute to this diffusion being relatively
more difficult to induce.

4.3 Characterisation of the Optimal Information Policy

I now characterise the optimal information policy under the following assumption.

Assumption 2. The values of parameters of the model are such that πD < πL holds.

The objective of this analysis is to illuminate the role of diffusion for the optimal
information policy. Thus, it makes sense to assume that πD < πL. As πD increases
above πL, the impact of diffusion on the optimal information policy diminishes. Ulti-
mately, when πD > πH , the diffusion of s = 1 from L-type to H-type agents is so easy
to induce that even persuading H-type agents requires a slant such that the diffusion
is induced anyway. Therefore, I focus here on πD < πL and briefly discuss the cases
πL ≤ πD < πH and πD ≥ πH at the end of the section.

The relation πD < πL has implications for persuasion and diffusion under various
levels of slant. These implications are summarised in the following table.
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Slant of the
information

policy, π (1 | 0)

Are H-type
agents persuaded

by s = 1?

Are L-type
agents persuaded

by s = 1?

Do L-type agents
pass s = 1 on to
H-type agents?

[0, πD] yes yes yes

(πD, πL] yes yes no

(πL, πH ] yes no no

(πH , 1] no no no

Table 1: Persuasion and diffusion under various levels of slant in the case πD < πL.

Naturally, the slant in the optimal information policy cannot be higher than πH , as
then no agents could be persuaded. Therefore, there are three possible persuasion and
diffusion patterns that can be induced in the optimal information policy, which are listed
below. These patterns correspond to a spectrum of possible information policies, which
I refer to as “mainstream”, “intermediate”, and “partisan”. They differ in the expected
payoff to the manipulator conditional on s = 1, which is given by E [V (a) | s = 1]. The
expressions for E [V (a) | s = 1] in the three different policies are denoted by V D, V L,
and V H , respectively.

1. For π (1 | 0) ∈ [0, πD], both types of agents are persuaded by s = 1, and s =
1 is always passed on by agents. This pattern corresponds to a “mainstream”
information policy, which aims to persuade and spread the information across
both types. The expected payoff to the manipulator conditional on s = 1 is

V D =
∞∑
i=1

δi−1 = 1 + δ

1− δ , (10)

which follows from the fact that diffusion can only stop exogenously and all agents
in the communication chain are persuaded.

2. For π (1 | 0) ∈ (πD, πL], both types of agents are persuaded by s = 1, and s = 1
is passed on by agents, except from L-type agents to H-type agents. This pattern
is an “intermediate” information policy, which aims to persuade both types of
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agents but is not concerned about spreading the information across both types.
The expected payoff to the manipulator conditional on s = 1 is

V L =
∞∑
i=1

δi−1
(
ri−1 + (i− 1) ri−2 (1− r)

)
= 1 + δ (1− δr2)

(1− δr)2 , (11)

which follows from the fact that the diffusion of s = 1 stops as soon an L-type
agent meets an H-type agent, but all agents are persuaded along the way.

3. For π (1 | 0) ∈ (πL, πH ], only H-type agents are persuaded by s = 1, and s = 1
is passed on by agents, except from L-type agents to H-type agents. This pattern
corresponds to a “partisan” information policy, whose objective is to persuade H-
type agents only and spread the information primarily among them. The expected
payoff to the manipulator conditional on s = 1 is

V H =
∞∑
i=1

δi−1ri−1 = 1 + δr

1− δr , (12)

which follows from the fact that agents pass s = 1 on and are persuaded by it as
long as only H-types agents appear in the communication chain.

It is straightforward to see that the mainstream information policy gives the highest
expected payoff to the manipulator conditional on s = 1, while the partisan information
policy gives the lowest one, for any r < 1. In a perfectly assortative population, i.e.
with r = 1, the expected payoff to the manipulator conditional on s = 1 is the same in
all three patterns and equals the one guaranteed by the mainstream information policy,
i.e. V H = V L = V D = 1 + δ

1−δ .
The manipulator’s optimal information policy is the one that maximises his expected

payoff. His expected payoff from an information policy with a slant π (1 | 0) is given
by Pr(s = 1)E [V (a) | s = 1], where both Pr(s = 1) and E [V (a) | s = 1] depend on
π (1 | 0). The term Pr(s = 1) is clearly increasing in π (1 | 0), as Pr(s = 1) = p + (1−
p)π (1 | 0). The term E [V (a) | s = 1] is weakly decreasing in π (1 | 0), as a higher slant
weakly worsens the persuasion and diffusion pattern.

It is important to note that the optimal slant can only be equal to πD, πL, or πH :
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if the slant does not take one of these values, then the manipulator can increase the
slant without affecting the persuasion and diffusion pattern, which necessarily increases
his expected payoff. Thus, the choice of the manipulator is effectively between (i) πD

(which corresponds to the mainstream policy), (ii) πL (the intermediate policy), and
(iii) πH (the partisan policy).

Proposition 5 characterises the optimal information policy in the context of two key
characteristics of the environment: assortativity r and polarisation b.13

Proposition 5. (a) As far as assortativity r is concerned, the optimal information
policy for the manipulator is:

(i) the mainstream information policy if and only if r ≤ min{rDL, rDH},
(ii) the intermediate information policy if and only if r > rDL and r ≤ rLH ,
(iii) the partisan information policy if and only if r > max{rDH , rLH},

where rDL, rDH and rLH are functions of other parameters of the model, with rLH <

rDH < rDL, rLH = rDH = rDL, and rDL < rDH < rLH being the only possible relations.
For all parameter values, max{rDH , rLH} < 1 holds.
(b) As far as polarisation b is concerned, the optimal information policy for the manip-
ulator is:

(i) the mainstream information policy if and only if b ≤ min{bDL, bDH},
(ii) the intermediate information policy if and only if b > bDL and b ≤ bLH ,
(iii) the partisan information policy if and only if b > max{bDH , bLH},

where bDL, bDH and bLH are functions of other parameters of the model, with bLH <

bDH < bDL, bLH = bDH = bDL, and bDL < bDH < bLH being the only possible relations.

The first immediate observation from Proposition 5 is that the possibility of diffusion
weakly decreases the slant. In a setup without diffusion, i.e. where the signal realisation
is observed by an H-type agent but cannot diffuse further, the optimal information
policy would have a slant πH , whereas here lower slants of πL and πD can be optimal
too.

13I assume that if the manipulator is indifferent between information policies, then he chooses the
one with a lower slant.
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The mainstream information policy, i.e. slant πD, is optimal for the manipulator
in a population with low polarisation and low assortativity. Several effects contribute
to this. First, low polarisation means that L-type agents can be persuaded almost as
easily as H-type agents. Second, low polarisation and low assortativity imply that it is
easy for the manipulator to induce L-type agents to pass s = 1 on to H-type agents.
Third, due to low assortativity, there is likely to be a mix of both types of agents in the
chain, so inducing L-type agents to pass s = 1 on to H-type agents can significantly
improve the extent of diffusion.

At the other extreme, in a highly polarised and highly assortative population, the
optimal choice is the partisan information policy, i.e. slant πH . High polarisation means
that H-type agents are much easier to persuade than L-type agents. Furthermore, both
high polarisation and high assortativity make it difficult for the manipulator to induce
L-type agents to pass s = 1 on to H-type agents. Finally, high assortativity means
that it is likely that there are only H-type agents in the communication chain, and
hence a lack of transmission of s = 1 from L-type to H-type agents has little influence
on the extent of diffusion. For any given values of other parameters, once assortativity
becomes high enough, then the partisan policy must be optimal. Eventually, in a
perfectly assortative population (r = 1), the partisan policy is optimal for all possible
values of other parameters, as only H-type agents appear in the communication chain.

The intermediate information policy, i.e. slant πL, is optimal when polarisation and
assortativity are at a moderate level. More specifically, the following conditions must be
satisfied: (i) polarisation must be low enough to make L-type agents comparably easy
to persuade to H-type agents, (ii) polarisation and assortativity must be high enough
to make it difficult to induce diffusion of s = 1 from L-type to H-type agents, and (iii)
assortativity must be high enough to ensure that not much is lost by not inducing such
diffusion but must be low enough to ensure that it makes sense to aim to persuade
L-type agents. It is important to note that, under some conditions, the intermediate
policy is never optimal. This happens if the relation between rDL, rDH and rLH is
rLH < rDH < rDL, in which case there are no values of r that satisfy both r > rDL and
r ≤ rLH .

For illustration, Figure 3 shows the optimal information policy in the (r, b) parameter
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space for values of r and b that satisfy πD < πL, with fixed values of other parameters.14
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Figure 3: Regions of parameter values under which the mainstream, the intermediate
and the partisan policies are the optimal information policies for the manipulator,
illustrated in the (r, b) parameter space for values of r and b that satisfy πD < πL, with
other parameters fixed at δ = 0.2, p = 0.1, a = 0.12.

We can now make an observation about how the expected diffusion of s = 1 depends
on assortativity and polarisation. The expected diffusion of s = 1 is measured by the
expected length of the communication chain conditional on s = 1.

Corollary 1. (a) The expected diffusion of s = 1 is non-monotonic with respect to
assortativity r: it is constant in r for r < min{rDL, rDH}, decreases discontinuously at
r = min{rDL, rDH}, and is increasing in r for r > min{rDL, rDH}.

14The white region in the bottom-left corner corresponds to values of r and b that do not satisfy
πD < πL. Other parameters are fixed at δ = 0.2, p = 0.1, a = 0.12. These values are calibrated so
that all three policies (mainstream, intermediate and partisan) are optimal for some values of r and b.
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(b) The expected diffusion of s = 1 is weakly decreasing in polarisation b: it is constant
in b for b < min{bDL, bDH}, decreases discontinuously at b = min{bDL, bDH}, and is
constant in b for b > min{bDL, bDH}.

The result in Corollary 1 follows in a straightforward way from Proposition 5. When-
ever the mainstream policy is chosen by the manipulator, the expected diffusion of s = 1
is equal to V D, as the diffusion can only be stopped exogenously. Whenever the inter-
mediate or partisan policy is chosen, it is equal to V L because the diffusion stops as
soon as an L-type agent meets an H-type agent. The result follows from the fact that
V D is constant in r and b, while V L is increasing in r and constant in b, and V D > V L

always holds (unless r = 1, in which case V D = V L). As r approaches 1, the expected
diffusion of s = 1 approaches V D, since r → 1 implies that there are only H-type agents
in the chain.

For illustration, Figure 4 shows the expected diffusion of s = 1 as a function of
assortativity for fixed values of other parameters.15
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Figure 4: The non-monotonic relation between the expected diffusion of s = 1 and
the assortativity of the population, with other parameters fixed at δ = 0.2, p = 0.1,
a = 0.12, b = 0.013.

15Other parameters are fixed at δ = 0.2, p = 0.1, a = 0.12 (same as in Figure 3), and b = 0.013.
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I close this subsection with a brief discussion of the cases πL ≤ πD < πH and
πD ≥ πH . By and large, the insights that these two cases provide are similar to those
in the case of πD < πL, with the role of diffusion being less prominent.

The available information policies are a little different than those in the case πD <

πL. Under πL ≤ πD < πH , the slants πL and πH correspond respectively to the
mainstream policy and the partisan policy, which are defined the same way as earlier.
However, the slant πD corresponds to a new type of intermediate policy: s = 1 are
always passed by both types of agents but only H-type agents are persuaded by it.16

Thus, we could say that this intermediate policy is diffusion-oriented, whereas the
previous one was persuasion-oriented. Under πD ≥ πH , the manipulator’s choice is
effectively only between the slants πL (which corresponds to the mainstream policy)
and πH (the diffusion-oriented intermediate policy), both of which induce L-type agents
to pass s = 1 on to H-type agents. Hence, under πD ≥ πH , the possibility of improving
diffusion plays no role for the optimal information policy.

Despite the difference in the available policies, the channels through which polari-
sation and assortativity influence the optimal policy work in a similar manner as in the
case πD < πL. Consider assortativity, for example. Low assortativity favours especially
the mainstream policy because there is likely to be a mix of both types of agents in the
chain, so the manipulator cares about persuading and spreading information among
both types of agents. High assortativity makes the partisan policy particularly attrac-
tive because it is likely that only H-type agents appear in the chain, so there is no need
to persuade L-type agents and to make sure that information is passed from L-type
to H-type agents. The new intermediate policy is affected by increased assortativity
in two opposite ways: the required slant πD decreases, which makes this policy less
attractive to the manipulator, but on the other hand, it becomes more likely that only
H-type agents appear in the chain, which makes the policy more attractive since not
much is lost by not persuading L-type agents.

16The formulation of the expected payoff from this intermediate policy is more complicated because
persuasion of n-th agent in the chain depends on whether that agent is an H-type agent; thus, for
each n, one needs to consider all possible combinations of same-type and opposite-type meetings that
make the n-th agent an H-type agent.
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4.4 Graphical Interpretation

In this subsection, I provide a graphical interpretation of the result on the optimal in-
formation policy by using the concavification method (Kamenica and Gentzkow, 2011).
Again, I consider the case of πD < πL, but the method can be applied to other cases
equally well. The concavification method relies on two observations by Kamenica and
Gentzkow (2011), which I discuss below in the context of my model.

The first observation by Kamenica and Gentzkow (2011) is that, in their setting,
the manipulator’s payoff is fully determined by the posterior induced by the signal real-
isation. This is also true in my setting in the following sense: the manipulator’s interim
(i.e. after the realisation of the signal but before the length of the communication chain
is known) expected payoff is fully determined by the posterior induced by the signal
realisation on the first agent in the communication chain. The reasoning behind this
statement is as follows.

Let the manipulator’s interim expected payoff, given posterior belief β, be denoted
by Eβ [V (a∗(β))] with a∗(β) denoting the equilibrium actions of agents in the com-
munication chain given that the first agent has posterior belief β. Naturally, if the
posterior belief is β < p, then the interim expected payoff is 0. Given that π (1 | 1) = 1
must hold in the optimal information policy, the only possible β < p is for s = 0 and
equals zero, i.e. β(0) = 0. The posterior belief β ≥ p can be achieved only for s = 1.
Given that π (1 | 1) = 1, the posterior belief for s = 1, denoted by β(1), is determined
by the slant, π (1 | 0). For the case πD < πL, there are thresholds βD, βL, and βH such
that the posterior belief β(1) is:

(i) β(1) ≥ βD if and only if π (1 | 0) ≤ πD;
(ii) βL ≤ β(1) < βD if and only if πD < π (1 | 0) ≤ πL;
(iii) βH ≤ β(1) < βL if and only if πL < π (1 | 0) ≤ πH ; and
(iv) p ≤ β(1) < βH if and only if π (1 | 0) > πH .

Then, the posterior belief β(1) determines the persuasion and diffusion pattern and,
in effect, the interim expected payoff, which is: (i) V D for β(1) ≥ βD, (ii) V L for
βL ≤ β(1) < βD, (iii) V H for βH ≤ β(1) < βL, and (iv) 0 for p ≤ β(1) < βH .
Hence, overall, the manipulator’s interim expected payoff is indeed fully determined by
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the posterior belief that is induced by the signal realisation on the first agent in the
communication chain. We can write V̂ (β) = Eβ [V (a∗(β))], i.e. if the posterior belief
of the first agent in the communication chain is β, then the interim expected payoff to
the manipulator is V̂ (β).

The second observation by Kamenica and Gentzkow (2011) is that for any distribu-
tion of posteriors τ such that the expected posterior under this distribution equals the
prior, i.e. Eτ [β(s)] = p, there exists a signal π which, given the prior p, induces the
distribution of posteriors τ . This allows us to express the manipulator’s problem as

maxτ s.t. Eτ [β]=pEτ
[
V̂ (β)

]
, (13)

i.e. we can simply look for the optimal distribution of posteriors such that Eτ [β] =
p. The solution to this problem of the manipulator can be easily found using the
concavification of V̂ , i.e. the smallest concave function that is everywhere weakly greater
than V̂ . Let V denote the concavification of V̂ . The ex-ante expected payoff from the
manipulator’s optimal signal—which I refer to as the value of the optimal signal—is
then simply V(p), i.e. the value of the concavification at prior belief p (Kamenica and
Gentzkow, 2011).

In order to find the optimal signal, we need to obtain the concavification of V̂ . The
function V̂ takes a value of (i) 0 for 0 ≤ β < βH , (ii) V H for βH ≤ β < βL, (iii) V L

for βL ≤ β < βD, and (iv) V D for β ≥ βD. The exact shape of V̂ thus depends on the
values of βH , βL, βD, V H , V L , and V D. That shape determines the concavification V
and hence the optimal signal.

Figures 5, 6, and 7 illustrate the manipulator’s interim expected payoff V̂ and its
concavification V as functions of β for three different combinations of parameter values.

In Figure 5, high polarisation b keeps βH far away to the left from βL, as well as βD

far away to the right from βL. High assortativity r keeps V H high, close to V L and V D.
The value of the optimal signal is identified by finding the value of the concavification
V at prior belief p. Once we find the value of the optimal signal, V(p), it is easy to
identify the posterior beliefs induced by the optimal signal. The value V(p) is a linear
combination of V̂ (0) and V̂ (βH). Hence, the posterior beliefs induced by the optimal
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signal are 0 and βH . Having identified the induced posterior beliefs, it is straightforward
to derive the unique signal that induces these beliefs: it is given by π(1 | 1) = 1 and
π(1 | 0) = πH . We conclude that the optimal slant is π(1 | 0) = πH .

In Figure 6, moderate b moves βH to the right, closer to βL. Moderate b and
moderate r keep βD relatively far away to the right from βL. Moderate r keeps V L

high, close to V D, while making V H relatively low. The optimal signal then induces
posterior beliefs 0 and βL. Therefore, the optimal signal is given by π(1 | 1) = 1 and
π(1 | 0) = πL. The optimal slant is thus π(1 | 0) = πL.

In Figure 7, low b and low r shift βD to the left, closer to βL. Low b also shifts βH

to the right, closer to βL. Low r means that both V L and V H are low relative to V D.
The optimal signal induces posterior beliefs 0 and βD. Therefore, the optimal signal is
given by π(1 | 1) = 1 and π(1 | 0) = πD. Hence, the optimal slant is π(1 | 0) = πD.
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Figure 5: An illustration of the manipulator’s interim expected payoff V̂ and its con-
cavification V such that the optimal slant is π (1 | 0) = πH .
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Figure 6: An illustration of the manipulator’s interim expected payoff V̂ and its con-
cavification V such that the optimal slant is π (1 | 0) = πL.
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Figure 7: An illustration of the manipulator’s interim expected payoff V̂ and its con-
cavification V such that the optimal slant is π (1 | 0) = πD.

34



On a final note, it is instructive to compare these three figures with the concavifi-
cation in a setup without diffusion, i.e. where the signal realisation is received only by
one H-type agent. In such a setup, the manipulator’s payoff would simply be a step
function of β that takes values of 0 for 0 ≤ β < βH and 1 for βH ≤ β ≤ 1. The posterior
beliefs induced by the optimal signal would then be 0 and βH , and so the optimal slant
would be π(1 | 0) = πH .

5 Extensions

This section considers two extensions: (i) diffusion in a communication chain where
agents do not observe the types of their successors, and (ii) misestimation of the slant
by the agents, with H-type agents underestimating it and L-type agents overestimating
it. I also discusses the implications of these extensions for the optimal information
policy of the manipulator. As discussed earlier, the first extension is motivated by the
growing role of social media, where people often share news with their social network
rather than with specific individuals, while the second is motivated by the tendency of
people to trust media which match their political views and distrust those which do
not.

5.1 Diffusion with Unobservable Types of Successors

The main model assumes that each agent observes the type of her successor in the
communication chain. Here, I analyse a modified model, where each agent does not
observe her successor’s type in the chain.

Formally, the modification of the model is that the information set of each agent
in the communication chain (conditional on meeting a successor) is I0 = {s}, rather
than I0 = {s, t1}. It follows then that the communication strategy of an agent of type
t0 ∈ {L,H} is a function µt0 : {s} → {s,Ø}, where µto(s) = s denotes passing s on and
µto(s) = Ø denotes not passing s on. Otherwise, the model is unchanged. In particular,
the value of the assortativity parameter, r, is still common knowledge. Therefore, each
agent knows that, if she passes s on, it will be received by an agent of the same type
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with probability r and by an agent of the opposite type with probability 1− r.17

In this modified setup, the game has a unique equilibrium, which is described in the
following proposition.

Proposition 6. In the unique equilibrium, the agents’ beliefs and action strategies are
the same as in Proposition 1, and the agents’ communication strategies are

µL(s, t1) =


s for s = 0s if and only if β(1) ≥ β(1)∗UT

Ø if and only if β(1) < β(1)∗UT

for s = 1

where β(1)∗UT = p+ 2b 1−r
1+δ−2rδ , and

µH(s, t1) =


s for s = 1s if and only if β(0) ≤ β(0)∗UT

Ø if and only if β(0) > β(0)∗UT

for s = 0

where β(0)∗UT = p− 2b 1−r
1+δ−2rδ .

Thus, the equilibrium communication strategy is such that an L-type agent always
passes s = 0 on, and passes s = 1 on if and only if β(1) is high enough, i.e. if and only
if s = 1 is sufficiently informative about ω = 1. Conversely, an H-type agent always
passes s = 1 on, but passes s = 0 on if and only if β(0) is low enough, i.e. if and only
if s = 0 is sufficiently informative about ω = 0. The reasoning behind this is similar
to the one in the main setup: as the information policy becomes more informative, the
preferences of the two types of agents regarding actions become relatively more aligned,
and so an L-type agent (an H-type agent) prefers to pass s = 1 (s = 0) on rather to
suppress it, even if it is received with some probability by an H-type agent (L-type
agent).

Like in the main model, the information policy has two effects: (i) on persuasion
and (ii) on diffusion. Given Assumption 1, π (1 | 1) = 1 must hold in the optimal

17I use subscript “UT” (for “Unobservable Types”) to distinguish the notation in this extension from
the one in the main setup.
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information policy, and hence I can analyse these effects in the context of the slant,
π (1 | 0). The effect on persuasion is the same as in the main model, i.e. as described
in Proposition 2. However, the effect on diffusion is now somewhat different. It is
described in the following proposition.

Proposition 7. In the optimal information policy:
(i) an H-type agent passes s = 1 on under any slant,
(ii) an L-type agent passes s = 1 on if and only if the slant is π (1 | 0) ≤ πDUT, where

πDUT = p

1− p
1−

(
p+ 2b 1−r

1+δ−2rδ

)
p+ 2b 1−r

1+δ−2rδ
. (14)

The threshold πDUT is increasing in assortativity r, ∂πDUT
∂r

> 0, and decreasing in polar-
isation b, ∂πDUT

∂b
< 0, with ∂2πDUT

∂r∂b
< 0 for sufficiently low r and sufficiently high b, and

∂2πDUT
∂r∂b

≥ 0 otherwise.

Proposition 7 uses the equilibrium communication strategies in Proposition 6 and
the observation that π (1 | 1) = 1 must hold in the optimal information policy. As stated
in Proposition 6, an L-type agent passes s = 1 on if and only if β (1) > p + 2b 1−r

1+δ−2rδ .
Given that π (1 | 1) = 1, this condition is equivalent to π (1 | 0) ≤ πDUT, where πDUT is
given by (14).

The main difference between the setups with unobservable and observable types
of successors is that the threshold πDUT is increasing in assortativity r, whereas πD is
decreasing in r. In other words, as assortativity increases, inducing maximal diffusion
becomes easier under unobservable types of successors, but more difficult under observ-
able types. The intuition is that, under unobservable types, as r increases, it becomes
more likely that an L-type agent’s successor is of the same type, which means that she
has a greater incentive to pass s = 1 on. Under observable types, as r increases, an
L-type agent who meets an H-type agent realises that the H-type agent’s successors
are more likely to be H-type agents too, so the incentive to pass s = 1 on to the H-type
successor diminishes.

What this implies for the optimal information policy is that, under unobservable
types, as assortativity increases, the manipulator becomes less constrained by diffusion.
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Eventually, when r is high enough, the relation πDUT ≥ πH holds, which follows from the
fact that πH does not depend on r and πDUT is increasing in r. Then, the manipulator
is not constrained by diffusion at all: even persuading H-type agents requires a slant
such that the diffusion of s = 1 by L-type agents is induced anyway. On the other
hand, under observable types, as assortativity increases, the manipulator becomes more
constrained by diffusion. When r is high enough, the relation πD < πL holds, and thus
the slant that is needed to induce L-type agents to pass s = 1 on to H-type agents is
lower than the slant that is needed to persuade L-type agents.

5.2 Misestimation of the Slant by the Agents

In the main model, the agents observe the information policy—effectively described by
the slant—chosen by the manipulator. Put differently, they correctly estimate the slant.
Here, I assume that the agents misestimate the slant: L-type agents overestimate it,
while H-type agents underestimate it.

Formally, suppose that if the manipulator chooses a slant π (1 | 0), then an L-type
and an H-type agent’s beliefs upon observing s = 1 are respectively βL(1) = β(1) − e
and βH(1) = β(1) + e, where e ≥ 0 measures the extent to which an L-type agent
overestimates and H-type agent underestimates the slant. If e = 0, then both types
of agents form a belief βL(1) = βH(1) = β(1), which means that they update their
beliefs using a correct estimate of the slant. I assume that the value of e is such that
β(1)− e ≥ p and β(1) + e ≤ 1 hold, i.e. even if they misestimate the slant, an L-type
agent’s belief upon observing s = 1 is not lower than the prior belief and an H-type
agent’s belief is not higher than 1.

Proposition 8 describes how misestimation of the slant changes the effects of the
slant on persuasion and diffusion, both under observable and unobservable types of
successors.

Proposition 8. Suppose that agents misestimate the slant, with e ≥ 0 measuring how
much an L-type agent overestimates it and an H-type agent underestimates it. In the
optimal information policy:
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(i) an H-type agent is persuaded by s = 1 if and only if the slant is π (1 | 0) ≤ πH ,
where πH is increasing in e,
(ii) an L-type agent is persuaded by s = 1 if and only if the slant is π (1 | 0) ≤ πL,
where πL is decreasing in e,
(iii) under observable types of successors, both types of agents pass s = 1 on to their
successor regardless of the successor’s type if and only if the slant is π (1 | 0) ≤ πD,
where πD is decreasing in e; otherwise, s = 1 is passed on by agents except when an
L-type agent meets an H-type agent,
(iv) under unobservable types of successors, both types of agents pass s = 1 on to their
successor if and only if the slant is π (1 | 0) ≤ πDUT, where πDUT is decreasing in e;
otherwise, s = 1 is passed on only by H-type agents.

Thus, as H-type agents underestimate the slant more and more while L-type agents
overestimate it more and more, it becomes easier for the manipulator to persuade H-
type agents, but more difficult to persuade L-type agents. Furthermore, it becomes
more difficult to induce maximal diffusion—both under observable and unobservable
types of successors.

Figure 8 provides a graphical illustration of how the incentives of an L-type agent
to pass s = 1 to an H-type agent are shaped by the misestimation of the slant. In
Panel A, the misestimation is lower than in Panel B. As the overestimation by the
L-type agent and the underestimation by the H-type agent increase, the L-type agent’s
optimal action for s = 1 decreases while the H-type agent’s optimal action for s = 1
increases. In effect, the L-type agent’s optimal action for s = 1 moves closer to the
agents’ optimal actions for the prior belief and hence not passing s = 1 on to an H-type
agent becomes more attractive than passing it on.
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Figure 8: Graphical illustration of how an increase in the overestimation of the slant
by L-type agents and its underestimation by H-type agents affects the incentives of an
L-type agent to pass s = 1 to an H-type agent.

Misestimation of the slant (with L-type agents overestimating it and H-type agents
underestimating it) has clear implications for the optimal information policy. First,
both under observable and unobservable types of successors, it contributes to making
the partisan information policy possible because, by decreasing πD (πDUT) and increasing
πH , it can make the relation between πD (πDUT) and πH be πD < πH (πDUT < πH). Then,
a slant π (1 | 0) = πH corresponds to a partisan policy. Second, by decreasing both
πD (πDUT) and πL while increasing πH , it makes the partisan information policy more
profitable and other policies less profitable. Therefore, overall, the misestimation of
the slant increases the chances that the manipulator chooses the partisan information
policy.

6 Conclusion

Partisan slant is a common feature of today’s media landscape and it is widely docu-
mented that it can influence people’s beliefs and behaviour. It is therefore important
to study what drives media outlets to have a partisan slant. The existing theoretical
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work has given little attention to the fact that news reported by media outlets do not
only reach their direct audience, but can also spread to the wider public.

This paper aims to fill this gap by developing a model of media slant where manipu-
lation of information by an outlet is followed by diffusion of the information by word of
mouth. It features a manipulator who designs an information policy, which is a mapping
from facts to news reports. The reported news then spread via a communication chain
in a population of agents with heterogeneous preferences. At the methodological level,
the model combines Bayesian persuasion with diffusion via a communication chain.
The model is stylised but its simplicity allows us to see clearly the mechanisms through
which diffusion can influence media slant. The key to the results is that the slant of the
information policy has an effect not only on whether the agents find the news credible,
but also on the agents’ incentives to pass them on to others. The interplay between
these two effects gives a spectrum of possible information policies, ranging from a par-
tisan policy to a mainstream policy. The analysis elucidates how two characteristics
of the environment, i.e. polarisation and assortativity of the population, influence the
choice of policy by the manipulator.

The model offers plenty of scope for further analysis. One simplifying assumption is
that there are only two types of agents. In future work, one could introduce a spectrum
of types of agents, with assortativity varying along the spectrum. The media outlet’s
strategy could then be two-dimensional: it could consist of choosing not only the slant
but also the type of its audience, i.e. the type of the first agent in the chain. Another
simplifying assumption is that there is a single media outlet, while in the real world
there are usually multiple media outlets that compete with each other. It would be
interesting to analyse whether—in an environment where diffusion by word of mouth
is possible—competition between media outlets leads to lower or higher media slant.
Finally, a promising avenue is to analyse the role of word of mouth in demand-driven
slant. For example, a media outlet may care about the diffusion of its news because its
advertising revenue depends on the number of people who enter its website (e.g., after
receiving a link from a friend) to read the news. At the same time, people may prefer
to receive and pass on confirmatory news, i.e. news which match their preferences or
prior beliefs. Then, the outlet may prefer to report its news with a partisan slant even
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in the absence of a direct preference to influence people’s beliefs.
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Appendix

Proof of Proposition 1

The proofs for the equilibrium beliefs and action strategy follow from the main text.
For the equilibrium communication strategy, consider first s = 1. From the payoff
functions it follows that

uH (β(1) + b, ωi | β(1)) > uH (p+ b, ωi | β(1)) , (15)

uH (β(1), ωi | β(1)) > uH (p, ωi | β(1)) . (16)

Given (15) and (16), for any µL (1, t1), a sequentially rational strategy must have
µH (1, H) = 1 and µH (1, L) = 1.

From the payoff functions it also follows that

uL (β(1), ωi | β(1)) > uL (p, ωi | β(1)) , (17)

Given (17), and given that in equilibrium µL(1, H) is sequentially rational, a sequen-
tially rational strategy must have µL(1, L) = 1.

It remains to consider µL(1, H) given that µH(1, H) = 1, µH(1, L) = 1, and
µL(1, L) = 1. Denote by ŨL (a0(1) | {1, t1}) the expected payoff to an L-type agent—
who has received s = 1—from passing s = 1 on to a t1-type agent, and denote by
ŨU (a0(Ø) | {1, t1}) the expected payoff to an L-type agent—who has received s = 1—
from not passing s = 1 on to t1-type agent. If ŨL (a0(1) | {1, H}) ≥ ŨL (a0(Ø) | {1, H}),
then a sequentially rational strategy must have µL(1, H) = 1; otherwise it must have
µL(1, H) = Ø.

We derive ŨL (a0(1) | {1, H}) by solving the simultaneous equations:

ŨL (a0(1) | {1, H}) = −b2 + rδŨL (a0(1) | {1, H}) +

+(1− r)δŨL (a0(1) | {1, L}) (18)

ŨL (a0(1) | {1, L}) = rδŨL (a0(1) | {1, L}) +

+(1− r)δŨL (a0(1) | {1, H}) . (19)
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We obtain
ŨL (a0(1) | {1, H}) =

(
−b2

) 1− rδ
(1− rδ)2 − (1− r)2δ2 . (20)

Similarly, we derive ŨL (a0(Ø) | {1, H}) by solving the simultaneous equations:

ŨL (a0(Ø) | {1, H}) = − (β(1)− p− b)2 + rδŨL (a0(Ø) | {1, H}) +

+(1− r)δŨL (a0(Ø) | {1, L}) (21)

ŨL (a0(Ø) | {1, L}) = − (β(1)− p)2 rδŨL (a0(Ø) | {1, L}) +

+(1− r)δŨL (a0(Ø) | {1, H}) . (22)

We obtain

ŨL (a0(Ø) | {1, H}) =
(
− (β(1)− p− b)2 − (1− r)δ

1− rδ (β(1)− p)2
)
×

× 1− rδ
(1− rδ)2 − (1− r)2δ2 . (23)

Then, ŨL (a0(1) | {1, H}) ≥ ŨL (a0(Ø) | {1, H}) if and only if

(β(1)− p− b)2 + (1− r)δ
1− rδ (β(1)− p)2 − b2 ≥ 0, (24)

which can be rearranged to

β(1) ≥ p+ 2b 1− δr
1 + δ − 2δr . (25)

We repeat analogous steps to derive the equilibrium communication strategy for
s = 0. First, we show that µL(0, L) = 0, µL(0, H) = 0 and µH(0, H) = 0 must
hold in equilibrium. Then, we consider µH(0, L) and show that ŨH (a0(0) | {0, L}) ≥
ŨH (a0(Ø) | {0, L}) if and only if

(p− β(0)− b)2 + (1− r)δ
1− rδ (p− β(0))2 − b2 ≥ 0, (26)

46



which can be rearranged to

β(0) ≤ p− 2b 1− δr
1 + δ − 2δr . (27)

Proof of Proposition 2

The proof follows from the main text.

Proof of Proposition 3

The proof follows from the main text. To see that ∂πD

∂r
< 0 and ∂πD

∂b
< 0, note that the

term 2b 1−δr
1+δ−2δr is increasing in r and b. In terms of b, one can show that ∂2πD

∂r∂b
≥ 0 if

and only if b ≥ p(1+δ−2δr)
2(1−δr) , and ∂2πD

∂r∂b
< 0 otherwise. In terms of r, one can show that

∂2πD

∂r∂b
≥ 0 if and only if r = 1 for b = p

2 ,
p(1+δ)−2b

2δ(p−b) ≤ r < 1 for p
2 < b ≤ 1

2p (1 + δ), and
0 ≤ r ≤ 1 for b > 1

2p (1 + δ), and ∂2πD

∂r∂b
< 0 otherwise.

Proof of Proposition 4

(a) The derivatives with respect to r are ∂πD

∂r
< 0, ∂πL

∂r
= 0, and ∂πH

∂r
= 0. Since πH > πL

holds, this implies that there exists r∗∗ such that πD < πL if and only if r > r∗∗ (and
πD ≥ πL otherwise) and r∗ such that πD < πH if and only if r > r∗ (and πD ≥ πH

otherwise), where r∗∗ > r∗. The result in the proposition follows.
(b) The derivatives with respect to b are ∂πD

∂b
< 0, ∂πL

∂b
= 0, and ∂πH

∂b
> 0. Since πH > πL

holds, this implies that there exists b∗∗ such that πD < πL if and only if b > b∗∗ (and
πD ≥ πL otherwise) and r∗ such that πD < πH if and only if b > b∗ (and πD ≥ πH

otherwise), where b∗∗ > b∗. The result in the proposition follows. The values of b∗ and
b∗∗ are

b∗ = (ā− p)
(

1 + δ − 2δr
3 + δ − 4δr

)
, (28)

b∗∗ = (ā− p)
(

1 + δ − 2δr
2− 2δr

)
. (29)

It is then straightforward to show that b∗ ∈ (0, a− p) and b∗∗ ∈ (0, a− p).
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Proof of Proposition 5

Let Ṽ (π (1 | 0)) denote the manipulator’s expected payoff from an information policy
with a slant π (1 | 0). The expected payoffs from slants πD, πL, and πH are

Ṽ (πD) =
(
p+ (1− p) πD

)
V D, (30)

Ṽ (πL) =
(
p+ (1− p) πL

)
V L, (31)

Ṽ (πH) =
(
p+ (1− p) πH

)
V H . (32)

(a) The derivatives with respect to r are

∂Ṽ (πD)
∂r

< 0, (33)

∂Ṽ (πL)
∂r

> 0, (34)

∂Ṽ (πH)
∂r

> 0. (35)

It follows from (33) and (34) that there exists rDL, expressed as a function of other
parameters, such that Ṽ (πD) ≥ Ṽ (πL) if and only if r ≤ rDL. Similarly, it follows from
(33) and (35) that there exists rDH , expressed as a function of other parameters, such
that Ṽ (πD) ≥ Ṽ (πH) if and only if r ≤ rDH . Finally, we can check that Ṽ (πL) ≥ Ṽ (πH)
if and only if r ≤ rLH , where rLH = δā−(1+δ)b

δ(ā−2b) and ā > 2b.
Note that r > rLH implies rDL > rDH , and it follows that rLH < rDH < rDL as

there is a contradiction otherwise. Suppose for example that rDH < rDL < rLH . Then,
for r ∈ (rDH , rDL), r > rDH implies Ṽ (πH) > Ṽ (πD), r < rDL implies Ṽ (πD) > Ṽ (πL),
and r < rLH implies Ṽ (πL) > Ṽ (πH), and hence we reach a contradiction. Similarly,
r < rLH implies rDL < rDH , and it follows that rDL < rDH < rLH as there is a
contradiction otherwise. Finally, if r = rLH , then we must have rLH = rDH = rDL,
rLH < rDH < rDL, or rDL < rDH < rLH , as there is a contradiction otherwise.

The above implies that Ṽ (πD) ≥ max{Ṽ (πL), Ṽ (πH)} holds if and only if r ≤
min{rDL, rDH}; Ṽ (πL) > Ṽ (πD) and Ṽ (πL) ≥ Ṽ (πH) hold if and only if r > rDL and
r ≤ rLH ; and Ṽ (πH) > max{Ṽ (πD), Ṽ (πL)} holds if and only if r > max{rDH , rLH}.
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To see that max{rDH , rLH} < 1 holds, note that Ṽ (πH) > Ṽ (πD) and Ṽ (πH) >
Ṽ (πL) for r = 1 for all values of other parameters and that Ṽ (πD), Ṽ (πH), and Ṽ (πL)
are continuous.
(b) The derivatives with respect to b are

∂Ṽ (πD)
∂b

< 0, (36)

∂Ṽ (πL)
∂b

= 0, (37)

∂Ṽ (πH)
∂b

> 0. (38)

It follows from (36) and (37) that there exists bDL, expressed as a function of other
parameters, such that Ṽ (πD) ≥ Ṽ (πL) if and only if b ≤ bDL. Similarly, from (36) and
(38) it follows that there exists bDH , expressed as a function of other parameters, such
that Ṽ (πD) ≥ Ṽ (πH) if and only if b ≤ bDH , and from (37) and (38) it follows that there
exists bLH , expressed as a function of other parameters, such that Ṽ (πL) ≥ Ṽ (πH) if
and only if b ≤ bLH .

Following a similar argument as in (a), the only possible relations are bLH < bDH <

bDL, bLH = bDH = bDL, and bDL < bDH < bLH .
The above implies that Ṽ (πD) ≥ max{Ṽ (πL), Ṽ (πH)} holds if and only if b ≥

min{bDL, bDH}; Ṽ (πL) > Ṽ (πD) and Ṽ (πL) ≥ Ṽ (πH) hold if and only if b > bDL and
b ≤ bLH ; and Ṽ (πH) > max{Ṽ (πD), Ṽ (πL)} holds if and only if b > max{bDH , bLH}.

Proof of Corollary 1

The proof follows from the main text.

Proof of Proposition 6

Let Ũt0 ,̂t (a0(s) | s) denote the expected payoff to a t0-type agent from a sequence of
actions of agents in which the 0-th agent is of type t̂ and the signal s is passed on,
given that the signal realisation is s. Let Ũt0 ,̂t (a0(Ø) | s) denote the expected payoff
to a t0-type agent from a sequence of actions of agents in which the 0-th agent is
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of type t̂ and the signal s is not passed on, given that the signal realisation is s. If
Ũt0 ,̂t (a0(s) | s) ≥ Ũt0 ,̂t (a0(Ø) | s) for t̂ = t0, then a sequentially rational strategy must
have µt0(s) = s; otherwise it must have µt0(s) = Ø.

It is straightforward to show that ŨH,H (a0(1) | 1) > ŨH,H (a0(Ø) | 1), which implies
that a sequentially rational strategy must have µH(1) = 1.

Let us consider µL(1) given that µH(1) = 1. We derive ŨL,L (a0(1) | 1) by solving
the simultaneous equations:

ŨL,L (a0(1) | 1) = (1− r)
(
−b2

)
+ rδŨL,L (a0(1) | 1) +

+ (1− r) δŨL,H (a0(1) | 1) , (39)

ŨL,H (a0(1) | 1) = r
(
−b2

)
+ rδŨL,H (a0(1) | 1) +

+ (1− r) δŨL,L (a0(1) | 1) . (40)

We obtain

ŨL,L (a0(1) | 1) =
(

(1− r)
(
−b2

)
+ (1− r) δ

1− rδ r
(
−b2

)) 1− rδ
(1− rδ)2 − (1− r)2δ2 . (41)

Similarly, we derive ŨL,L (a0 (Ø) | 1) by solving the simultaneous equations:

ŨL,L (a0(Ø) | 1) = r
(
− (β(1)− p)2

)
+ (1− r)

(
− (β(1)− p− b)2

)
+

+rδŨL,L (a0(Ø) | 1) + (1− r) δŨL,H (a0(Ø) | 1) , (42)

ŨL,H (a0(Ø) | 1) = r
(
− (β(1)− p− b)2

)
+ (1− r)

(
− (β(1)− p)2

)
+

+rδŨL,H (a0(Ø) | 1) + (1− r) δŨL,L (a0(Ø) | 1) . (43)

We obtain

ŨL,L (a0(Ø) | 1) = [r
(
− (β(1)− p)2

)
+ (1− r)

(
− (β(1)− p− b)2

)
+

+(1− r) δ
1− rδ

(
r
(
− (β(1)− p− b)2

)
+ (1− r)

(
− (β(1)− p)2

))
]×

× 1− rδ
(1− rδ)2 − (1− r)2δ2 . (44)
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Then, ŨL,L (a0(1) | 1) ≥ ŨL,L (a0(Ø) | 1) if and only if

β(1) ≥ p+ 2b 1− r
1 + δ − 2rδ . (45)

We repeat analogous steps to derive the equilibrium communication strategy for
s = 0. It is straightforward to show that ŨL,L (a0(0) | 0) > ŨL,L (a0(Ø) | 0), which
implies that a sequentially rational strategy must have µL(0) = 0. Then, we consider
µH(0) given that µL(0) = 0, and show that ŨH,H (a0(0) | 0) ≥ ŨH,H (a0(Ø) | 0) if and
only if

β(0) ≤ p− 2b 1− r
1 + δ − 2rδ . (46)

Proof of Proposition 7

The proof follows from the main text. To see that ∂πDUT
∂r

> 0 and ∂πD

∂b
< 0, note that

the term 2b 1−r
1+δ−2δr is decreasing in r and increasing in b. In terms of b, one can show

that ∂2πD

∂r∂b
≥ 0 if and only if b ≤ p(1+δ−2δr)

2(1−r) for 0 ≤ r < 1 and b > 0 for r = 1, and
∂2πDUT
∂r∂b

< 0 otherwise. In terms of r, one can show that ∂2πD

∂r∂b
≥ 0 if and only if 0 ≤ r ≤ 1

for b ≤ 1
2p (1 + δ) and 2b−p(1+δ)

2(b−δp) ≤ r ≤ 1 for b > 1
2p (1 + δ), and ∂2πDUT

∂r∂b
< 0 otherwise.

Proof of Proposition 8

(i) An H-type agent takes action above ā if and only if βH(1) + b ≥ ā, where βH(1) =
β(1) + e. We substitute p

p+(1−p)π(1|0) for β(1) to obtain that βH(1) + b ≥ ā is equivalent
to π (1 | 0) ≤ πH , where

πH = p

1− p
1− (ā− b− e)
ā− b− e

. (47)

The derivative with respect to e is ∂πH

∂e
> 0.

(ii) An L-type agent takes action above ā if and only if βL(1) ≥ ā, where βL(1) =
β(1)− e. We substitute p

p+(1−p)π(1|0) for β(1) to obtain that βL(1) ≥ ā is equivalent to
π(1 | 0) ≤ πL, where

πL = p

1− p
1− (ā+ e)
ā+ e

. (48)
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The derivative with respect to e is ∂πL

∂e
< 0.

(iii) We derive

ŨL (a0(1) | {1, H}) =
(
− (βH(1) + b− βL(1))2

)
×

× 1− rδ
(1− rδ)2 − (1− r)2δ2 , (49)

ŨL (a0(Ø) | {1, H}) =
(
− (βL(1)− p− b)2 − (1− r)δ

1− rδ (βL(1)− p)2
)
×

× 1− rδ
(1− rδ)2 − (1− r)2δ2 . (50)

Then, ŨL (a0(1) | {1, H}) ≥ ŨL (a0(Ø) | {1, H}) if and only if

(βL(1)− p− b)2 + (1− r)δ
1− rδ (βL(1)− p)2 − (βH(1) + b− βL(1))2 ≥ 0, (51)

which—given that βL(1) = β(1)− e and βH(1) = β(1) + e—can be rearranged to

(β(1)− e− p− b)2 + (1− r)δ
1− rδ (β(1)− e− p)2 − b2 ≥ 0, (52)

which holds if and only if

β(1) ≥ p+ 2b 1− δr
1 + δ − 2δr + e. (53)

We substitute p
p+(1−p)π(1|0) for β(1) to obtain that (53) is equivalent to π (1 | 0) ≤ πD,

where

πD = p

1− p
1−

(
p+ 2b 1−δr

1+δ−2δr + e
)

p+ 2b 1−δr
1+δ−2δr + e

. (54)

The derivative with respect to e is ∂πD

∂e
< 0.
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(iv) Using the notation from Proof of Proposition 6, we derive

ŨL,L (a0(1) | 1) =
(

1− r + (1− r) δ
1− rδ r

)(
− (βH(1) + b− βL(1))2

)
×

× 1− rδ
(1− rδ)2 − (1− r)2δ2 , (55)

ŨL,L (a0(Ø) | 1) = [r
(
− (βL(1)− p)2

)
+ (1− r)

(
− (βL(1)− p− b)2

)
+

+(1− r) δ
1− rδ

(
r
(
− (βL(1)− p− b)2

)
+ (1− r)

(
− (βL(1)− p)2

))
]×

× 1− rδ
(1− rδ)2 − (1− r)2δ2 . (56)

Then, ŨL,L (a0(1) | 1) ≥ ŨL,L (a0(Ø) | 1) if and only if

(1− r)
(
(βL(1)− p− b)2 − (βH(1) + b− βL(1))2

)
+

+ (r + δ − 2δr) (βL(1)− p)2 ≥ 0 (57)

which—given that βL(1) = β(1)− e and βH(1) = β(1) + e—can be rearranged to

(1− r)
(
(β(1)− e− p− b)2 − b2

)
+ (r + δ − 2δr) (β(1)− e− p)2 ≥ 0, (58)

which holds if and only if

β(1) ≥ p+ 2b 1− r
1 + δ − 2δr + e. (59)

We substitute p
p+(1−p)π(1|0) for β(1) to obtain that (59) is equivalent to π (1 | 0) ≤ πDUT,

where

πDUT = p

1− p
1−

(
p+ 2b 1−r

1+δ−2δr + e
)

p+ 2b 1−r
1+δ−2δr + e

. (60)

The derivative with respect to e is ∂πDUT
∂e

< 0.
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