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Accelerating and Converging

Stochastic Quantum Chemistry

Verena Andrea Neufeld

Abstract: In the last decade, stochastic versions of quantum chemistry methods such as

coupled cluster Monte Carlo (CCMC) or full configuration interaction quantum Monte

Carlo (FCIQMC) have made highly accurate energy calculations possible that are not

accessible to the corresponding deterministic methods (full configuration interaction

and coupled cluster) at the same accuracy. CCMC and FCIQMC parallelize well and

exploit the sparsity in the wavefunction which decreases memory costs and makes

calculations in larger systems tractable. With CCMC it is straightforward to set up

high order coupled cluster calculations, such as CCSDTQ5, which includes quintuple

excitations explicitly. In this thesis, the convergence of the energy accuracy with the

coupled cluster levels up to CCSDTQ5 was tested on the uniform electron gas, a model

solid system, for various degrees of electron correlation. This gave information on

what coupled cluster level is needed to reach sufficient accuracy when modelling a

solid system. Before large solid systems can be modelled, the CCMC and FCIQMC

algorithms need to be optimised. The efficiency in one of the crucial steps in these

algorithms, the spawn step, was improved, keeping computational and memory costs as

low as possible. Furthermore, the convergence of CCMC and FCIQMC was accelerated

by employing a quasi-Newton propagation. Using the model system information of what

coupled cluster level is needed and having made great progress towards accelerating

these methods, the computation of highly accurate energies in solid or large molecular

systems should be more feasible in the future.
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Chapter 1

Introduction

Where accurate and precise electron system energy estimates are needed, quantum

chemical computational methods are of vital importance. This thesis aims to get closer

to obtaining accurate energies in (realistically sized) solid systems using stochastic

versions of the quantum chemistry methods full configuration interaction (FCI) and

coupled cluster (CC). A model solid system, the uniform electron gas, was used to

investigate what accuracy coupled cluster gives in solid systems depending on the

degree of correlation. To tackle larger systems, the stochastic methods were accelerated

in their sampling and convergence.

Computational simulations can be viewed as one of the three ways to conduct

science, in addition to experiments and non-computational theoretical work[6]. While

experimental verification is crucial, simulations have several advantages. For example,

it might be cheaper and quicker to run multiple simulations with slightly different

parameters or under different conditions in materials design than it would be to

perform the relevant experiments. Simulations can also connect theory with experiment

for example by calculating the molecular motion with Newton’s laws of motion in a

molecular dynamics simulation to find structures[7] that can be experimentally verified.

Different computational methods are needed for various problems, balancing accuracy

with computational and memory costs[8]. At large length scales, continuum calculations

solving macroscopic equations, such as stress and strain relationships[9], might be the
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best choice. The most accurate ab initio simulation methods are from the field of

quantum chemistry, giving energies of multi-electron systems. This accuracy comes

with the price that they are limited to short length scales. It is one of the aims of

quantum chemistry to increase the length scales that can be tackled by such methods

before the calculation becomes infeasible due to computational and memory costs, and

less accurate methods have to be used. Increasing the range of quantum chemistry

methods can be achieved for example by making use of high-performance computing

resources, better approximations or stochastic methods.

Applications where accurate and precise energies are required include material

and molecular design with structure prediction, see e.g. Refs [10–13]. More accurate

methods can also serve as benchmarks for higher level methods, see e.g. Refs [14–16].

Since quantum chemistry approaches are ab initio methods, they can also help to gain

a greater scientific understanding of electron systems[17].

There are quantum chemistry methods of different levels of accuracy, scaling and

ability to make use of high performance computing resources. Density functional

theory (DFT)[18, 19] is a very successful method and has tackled systems of over 106

atoms[20]. However, DFT is not systematically improvable and its accuracy is very

dependent on the choice of exchange-correlation functional. Reliable energies can be

obtained with wavefunction approaches starting at Hartree–Fock (HF) theory, see e.g.

textbooks [21, 22], and then including correlation as in the Møller-Plesset[23], coupled

cluster[24–28] and configuration interaction theories, see e.g. textbooks [21, 29], for

example. These post-Hartree–Fock methods are systematically improvable with higher

accuracy coming at the cost of worse scaling with system size. Full configuration

interaction (FCI) gives the exact solution in the given basis set. Coupled cluster is size

extensive and reaches the FCI result in the limit of allowing all excitations. It has been

shown that CCSD(T)[30], coupled cluster singles doubles and perturbative triples, can

give chemical accuracy in many systems[27, 31]. The equation often solved by these

quantum chemistry methods is the Schrödinger equation in the Born–Oppenheimer
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approximation. This approach is followed in this thesis. Nuclear vibrations, relativistic

effects, etc, are thus ignored and all calculations are done at zero Kelvin.

Conventional wavefunction methods such as FCI are memory intensive and suffer

when limited in memory. The wavefunction representation can also be very sparse,

i.e. it contains a significant number of small or zero entries. Projector Monte Carlo

methods such as diffusion Monte Carlo[32] have been developed, giving exact energies

in the fixed-node approximation, where the nodes of the wavefunction are fixed a priori,

if the nodes of the wavefunction can be predicted a priori. Booth et al.[33] introduced

FCI quantum Monte Carlo, FCIQMC, a stochastic version of FCI which decreases

memory requirements by dealing with the more important states in the wavefunction

with a higher probability and therefore making use of the sparsity, while being unbiased

in its original form, since all states have a chance of being selected. FCIQMC is

also highly parallelisable[34]. With FCIQMC in the initiator approximation[35], the

uniform electron gas in a Hilbert space with a size of 10108 was tackled[36]. Such

a calculation would be impossible with FCI due to the memory cost. Note that

alternative stochastic configuration interaction versions exist[37, 38]. After this, a

stochastic version of coupled cluster, coupled cluster Monte Carlo (CCMC), has been

developed by Thom[39] which straightforwardly enables attempts at calculations with

high coupled cluster levels.

(Deterministic) coupled cluster has not only been applied to molecules but also to

solids, see e.g. Refs [40–43, 12] with coupled cluster levels up to CCSD(T). Making

use of coupled cluster’s size-extensive nature — compared to truncated configuration

interaction methods —[27] and the ability to give systematically improvable energies

can be invaluable to material design. Progress has been made with the type of orbitals

used, see e.g. Refs [40, 44, 45], and techniques to converge faster to the true energy

with the number of k points[46, 12]. The size of periodic solid that can be studied

and the level of coupled cluster are still limited. Ref. [47] gives an overview of the

coupled cluster in solids work in the literature. In this thesis, steps towards using

CCMC for solid systems are made. First, a model system, the uniform electron gas,
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was investigated with coupled cluster levels up to CCSDTQ5, which includes quintuple

excitations directly, using CCMC, exploiting its easy set-up of various coupled cluster

level calculations. For different levels of correlation, i.e. different electron densities, the

accuracies of those coupled cluster levels were studied, giving information about the

coupled cluster performance in “real” solids. FCIQMC has been applied to solids as

well[41, 5], likewise limited in the system size it can tackle. The CCMC and FCIQMC

algorithms were further developed here to make solid studies more feasible in the future.

These improvements optimised the importance sampling in the spawn step, i.e. the

excitation generator, and accelerated the convergence to the true energy with low extra

costs.

The thesis is structured as follows: the following two chapters mostly describe

existing quantum chemistry and stochastic quantum chemistry methods relevant to this

work. After that, the uniform electron study and the two algorithmic improvements

follow in three chapters. The last chapter concludes and offers a future outlook.



Chapter 2

Quantum Chemistry

This chapter gives an overview of conventional quantum chemical methods; Hartree–

Fock theory and post-Hartree–Fock methods including coupled cluster theory and

configuration interaction. More exhaustive and/or detailed introductions are given in

the literature[21, 48–50, 27]. At the end, the uniform electron gas is introduced which

will be the subject of several investigations in following chapters. The subsequent

chapter will then outline the stochastic versions of coupled cluster[39] and configuration

interaction[33], which are further developed and applied in this thesis.

2.1 Introduction

The aim of quantum chemistry is to find properties of systems consisting of interacting

electrons a priori. Here, we restrict ourselves to systems at zero temperature and focus

on ground state energies.

See textbooks, such as Refs [21, 49], for more details for this section. In quantum

chemistry, a single electron is completely described by a wavefunction χ, specifying the

electron’s distribution in the relevant space and its spin state. As a simple example

and for simplicity ignoring spin in this case, in one-dimensional real space with position

y, the probability of finding the electron between y = a and y = b, with a < b, is

given by
∫ b

a χ
∗(y)χ(y)dy, assuming χ is normalised, i.e.

∫
all space χ

∗(y)χ(y)dy = 1. The
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mean electron position in this example is ȳ =
∫

all space χ
∗(y)yχ(y)dy, which in Dirac

notation[51] can be written as ȳ = ⟨χ|ŷ|χ⟩ where ŷ is the position operator. χ and the

corresponding energy E of the electron can be found by solving the time-independent

Schrödinger equation[52]

Ĥ |χ⟩ = E |χ⟩ . (2.1)

This is an eigenvalue equation where Ĥ is the Hamiltonian operator giving energy E

when applied to χ. Later, Ĥ will be defined for quantum chemistry problems. In the

following studies, Ĥ does not act on the spin part of the wavefunction. Note that spin

does manifest itself in the Pauli exclusion principle[53], preventing two electrons from

sharing the same quantum numbers simultaneously. The single-electron wavefunction

can therefore be factorised into independent spatial and spin parts as

χ(y, σ) = φ(y)s(σ). (2.2)

For the convenience of a simpler notation, in multi-dimensional real space, the wave-

function is a function of x which now contains position r and spin σ, i.e. χ(x),

with

x = {r, σ} . (2.3)

The single electron wavefunctions χ(x), also called spinorbitals, can be combined

to give many-body wavefunctions of N electrons Ψ(x1,x2,x3,x4, ...,xN). The wave-

functions themselves are not “physical” quantities but their magnitudes squared, repre-

senting the electron probability distribution, are. The electrons are indistinguishable

particles and so

|Ψ(x1, ...,xi, ...,xj, ...,xN)|2 = |Ψ(x1, ...,xj, ...,xi, ...,xN)|2 (2.4)

where electron coordinates i and j have been swapped. For Ψ this means that the

swap can introduce a sign change for Fermions and the multi-electron wavefunction is
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Fig. 2.1 Pictorial representation of two Slater determinants with (spatial) orbitals
ordered by energy ϵ. On the left hand side: restricted Hartree–Fock determinant D000.
To the right hand side: doubly excited determinant with respect to D000. The blue
curved arrows show those “excitations”. Drawn using Inkscape, https://inkscape.org/
[Accessed: 11.12.2019].

antisymmetric, i.e.

Ψ(x1, ...,xi,xi+1, ...,xN) = −Ψ(x1, ...,xi+1,xi, ...,xN). (2.5)

Thus, a simple product of different χ to form Ψ is not a Fermionic wavefunction but

linear combinations with applicable signs of such products can be. The wavefunction

can be expressed as a Slater determinant or combinations thereof. A Slater determinant

Diii with N electrons is defined as

Diii = 1√
N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ1(x2) χ1(x3) . . . χ1(xN)

χ2(x1) χ2(x2) χ2(x3) . . . χ2(xN)

χ3(x1) χ3(x2) χ3(x3) . . . χ3(xN)

. . . . . . . . . . . . . . .

χN(x1) χN(x2) χN(x3) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.6)

A swap in a column or a row corresponding to a swap in electron coordinate or

spinorbitals will lead to a sign change which ensures that Ψ is antisymmetric and
1√
N

is a normalisation factor. Following Ref.[54], i is a list of occupied orbitals in

{χ1, χ2, χ2, ..., χN , ..., χM} where M > N and is therefore a unique index for the
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determinant. A pictorial representation of two possible determinants is shown by figure

2.1. It is assumed throughout this thesis that χ are orthonormal. In the next section,

the expression of the Hamiltonian will be discussed including a commonly employed

approximation, the Born–Oppenheimer approximation[55].

2.2 Hamiltonian and Born–Oppenheimer Approxi-

mation

The form of the wavefunction Ψ was covered in the previous section. The Hamiltonian

in the many-body Schrödinger equation is given by (see e.g. Ref. [21] who doesn’t

include Vext.)

H = −1
2
∑

i

∇2
i −

1
2
∑

I

1
MI

∇2
I+
∑

i

∑
j>i

1
|ri − rj|

−
∑

i

∑
J

ZJ

|ri − RJ |
+
∑

I

∑
J>I

ZIZJ

|RI − RJ |
+Vext.

(2.7)

where atomic units have been used, as in the rest of the thesis unless stated otherwise.

Capitalized index I corresponds to nuclei at position RI with nuclear charge ZI and

mass MI and index i to electrons at positions ri. Vext. is the external potential that

the nuclei and electrons are in.

Solving the Schrödinger equation with this Hamiltonian due to the number of

variables involved is highly expensive. The Born–Oppenheimer approximation[55] can

reduce the complexity drastically. Since the mass of an electron is less than 0.1% of the

mass of a nucleon[56], the electrons and nuclei can be approximately decoupled. From

the perspective of the electrons the nuclei are stationary and the nuclei feel the electrons

instantly adapting to their movement. Focussing on the electrons, the wavefunction

as introduced in the previous section is determined for a particular configuration of

nuclei, for example for a particular atomic separation in the case of the chromium

dimer in chapter 6. The simplified electronic Hamiltonian considers the nuclei to be

part of the background potential and so they only appear in the Coulomb interaction

between electrons and nuclei. It is given by (again, see Ref. [21] with a slightly different
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⟨D|Ĥ|D⟩ = ∑
i occ. in D ⟨i|ĥ|i⟩ + 1

2
∑

ij occ. in D,j ̸=i ⟨ij||ij⟩
⟨D|Ĥ|Da

i ⟩ = ⟨i|ĥ|a⟩ +∑
j occ. in D,j ̸=i ⟨ij||aj⟩

⟨D|Ĥ|Dab
ij ⟩ = ⟨ij||ab⟩

all other terms = 0

Table 2.1 Slater–Condon rules[57, 58, 21] for Hamiltonian elements ⟨Dmmm|Ĥ|Dnnn⟩ made
up of orthonormal spinorbitals χ[21], ignoring the constant term in Ĥ. The labels
for the orbitals that differ between Dmmm and Dnnn are shown, i.e. Dab

ij is the same as
determinant D except that spinorbitals i and j, i.e. χi and χj, have been replaced
by orbitals χa and χb, ordered such that i < j and a < b. ⟨ij||ab⟩ = ⟨ij|ab⟩ − ⟨ij|ba⟩,
where ⟨ij|ab⟩ = δσiσaδσjσb

∫ ∫
χ∗

i (r1)χ∗
j (r2)χa(r1)χb(r2)

|r1−r2| dr1dr2.

expression)

H = V ′
ext.︸ ︷︷ ︸

const. term, = Vnn + Vext.

−1
2
∑

i

∇2
i −

∑
i

∑
J

ZJ

|ri − RJ |︸ ︷︷ ︸
one-body term, =

∑
i

h(ri)

+
∑

i

∑
j>i

1
|ri − rj|︸ ︷︷ ︸

two body term

, (2.8)

where Vnn is the nuclear-nuclear repulsion and the two body term will form the Coulomb

and exchange integrals.

In subsequent sections, Hamiltonian matrix elements ⟨Dmmm|Ĥ|Dnnn⟩ will have to be

evaluated. Slater–Condon rules[57, 58, 21] exploit the orthogonality of the spinorbitals

χ and so drastically simplify these calculations. Table 2.1 gives the expressions as a

function of the number of differing orbitals between Dmmm and Dnnn.

2.3 Hartree–Fock Theory

In Hartree–Fock theory (see textbooks such as Refs [21, 22, 59] for this section),

the many-body wavefunction Ψ is expressed as a single Slater determinant D000. The

molecular orbitals χ that make up D000 are optimised variationally to minimise the

Hartree–Fock energy EHF = ⟨D000|Ĥ|D000⟩, which is an upper bound for the true ground

state energy in that basis set. First, choosing the appropriate atomic orbitals to start
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with is described below, followed by the self-consistent field algorithm for finding those

optimised molecular orbitals χ and additional information.

2.3.1 Basis Sets

Before a Hartree–Fock calculation is run, the basis set for the atomic orbitals and the

parameters in the Hamiltonian have to be chosen, e.g. the position and kind of nuclei in

a molecular simulation. In a uniform electron gas calculation, discussed later, the basis

set often consists of plane waves, see later. In non-periodic, molecular calculations, a

simple basis set is for example STO-3G[60] where three Gaussian functions mimic each

Slater function representing an atomic orbital. Basis sets can also include higher order

orbitals that have polarising capabilities for example. It might also for example be

necessary to represent two p orbitals with different basis functions since they differ in

that particular problem in a split valence basis set[50], such as in 6-31G[61]. Another

split valence set used here is Ahlrich’s SV basis set[62]. Dunning’s[63] series of cc-pVYZ

(Y = {D,T,Q,...}) basis set represents all valence functions with two (double - “D”),

three (triple - “T”), etc, sets of Gaussian functions. It also includes correlating functions

for virtual orbitals for post-Hartree–Fock calculations that give parts of the correlation

energy[64]. A molecular orbital χ is then a linear combination of these atomic orbitals

φ with the coefficients found using Hartree–Fock theory.

2.3.2 Fock operator and Self-Consistent Field Procedure

By using a Lagrangian minimisation where EHF = ⟨D000|Ĥ|D000⟩ is optimised with respect

to χ under the constraint that the spinorbitals χ are orthonormal, the following equation

with Fock operator F̂ can be written down. The Fock operator is a single particle

operator where electrons are affected by the other electrons in a mean-field manner.

Hartree–Fock is therefore a mean-field theory. Spin is not explicitly shown here as it is
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not directly affected. See reference [21] for details. The Fock operator is given by

F̂χi(r1) =
∑

j

ϵijχj(r1), (2.9)

where ϵij are the Fock values, i.e. elements of the Fock matrix, and

F̂ = V̂ ′
ext. + ĥ+ Ĵ − K̂ (2.10)

where ĥ is the one-body operator introduced previously and Coulomb operator Ĵ acts

on orbital χi(r1) as

Ĵχi(r1) =
∑

j

∫ χ∗
j(r2)χi(r1)χj(r2)

|r1 − r2|
dr2 (2.11)

and the exchange operator K̂ acts as

K̂χi(r1) =
∑

j

∫ χ∗
j(r2)χi(r2)χj(r1)

|r1 − r2|
dr2, (2.12)

When i = j, the effects of Ĵ and K̂ exactly cancel. In a canonical basis, the Fock

values are diagonal, i.e. zero unless i = j, and equation 2.9 is an eigenvalue equation.

F̂ depends on {χi} in Ĵ and K̂. Therefore, equation 2.9 has to be solved self

consistently. First, the form of {χi} (or the related charge density) is guessed, then

the Fock matrix with elements ⟨χj|F̂ |χi⟩ = ϵij is evaluated. This information can then

be used to update the set of spinorbitals {χi}. This cycle is repeated until convergence

is reached.

2.3.3 Interpretation and Beyond Hartree–Fock

When using canonical orbitals or orbitals where occupied and virtual orbitals were

localised independently, equation 2.9 implies that ⟨χi|F̂ |χa⟩ = 0 unless i = a which

is significant since therefore 0 = ⟨χi|F̂ |χa⟩ = ⟨D000|Ĥ|Da
i ⟩ where Da

i differs from D000 by

a single excitation. This is Brillouin’s theorem whose result also holds for i occupied
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and a virtual in the reference where occupied and virtual orbitals have been localised

independently, a result interesting for chapter 5 when approximating Hamiltonian

matrix elements for sampling weights. Having optimised the molecular orbitals χ, the

many-body wavefunction Ψ is expressed as a single Slater determinant. However, EHF

is only an upper bound to the true ground state energy E0. At the complete basis set

limit, the difference is defined as the correlation energy Ecorr. as

E0 = EHF + Ecorr.. (2.13)

Since EHF ≥ E0, Ecorr. ≤ 0. Throughout this thesis, Ecorr. is defined as above even

in finite basis sets. Post-Hartree–Fock methods determine or approximate Ecorr. and

therefore are more accurate than Hartree–Fock. The following two sections cover

the post-Hartree–Fock methods configuration interaction and coupled cluster where

stochastic versions were applied and further developed in this thesis.

2.4 Configuration Interaction

See textbooks, such as Refs [21, 29], for this section. To reach higher levels of

accuracy than Hartree–Fock theory, configuration interaction includes multiple Slater

determinants in the wavefunction Ψ. Starting with molecular orbitals optimised by

Hartree–Fock theory, Ψ is expressed as a linear combination of Slater determinants Diii

with coefficients ciii as

|Ψ⟩ =
∑

iii

ciii |Diii⟩ . (2.14)

In full configuration interaction, all possible Slater determinants conserving the number

of electrons are included. Full configuration interaction gives the exact energies given

the basis set. As is shown shortly, this space can be reduced by only including Slater

determinants of the same symmetry as the Hartree–Fock determinant. However, even

that space is often too large to run calculations on it. Unless the system is very

strongly correlated, the determinants closest to the reference in terms of excitations,
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i.e. Hartree–Fock, determinant contribute most to the ground state energy. Note that

only double excitations directly contribute to the projected energy. Full configuration

interaction can therefore be truncated by excitation level. For example, configuration

interaction singles and doubles, CISD, only includes the reference determinant and

determinants that differ from it by single or double excitations.

Having determined what Diii to include, the corresponding coefficients ciii are found

by Lagrangian optimisation where the Lagrangian L is

L = ⟨Ψ|Ĥ|Ψ⟩ − E(⟨Ψ|Ψ⟩ −N) (2.15)

with Lagrangian multiplier E and arbitrary normalisation constant N . Differentiating

this with respect to all the c∗
iii , equating to zero and rearranging gives

Hc = ESc, (2.16)

where H is the Hamiltonian matrix with elements ⟨Diii|Ĥ|Djjj⟩, overlap matrix S has

elements ⟨Diii|Djjj⟩ and is equal to the identity matrix here, c is the eigenvector here

containing the coefficients with eigenvalue E which is the energy of that state.

Provided the Hilbert space is small enough and the matrices can be stored in

memory, equation 2.16 can be diagonalised directly or, if only a few energies such as

the ground state energy are required, can be solved iteratively for those energies with

a Newton propagation for example, see e.g. Ref. [29]. Sampling it stochastically can

drastically reduce these memory requirements enabling calculations of larger systems.

Shepherd et al.[36] have determined the energy of a uniform electron gas system with

a Hilbert space of 10108 determinants using (initiator) full configuration interaction

Quantum Monte Carlo[33, 35], a Hilbert space size that is impossible to store with a

deterministic FCI calculation.

Configuration interaction is not size consistent if truncated. That means that for

example the CISD energy of two infinitely separated Li+ ions is not equal to twice
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the CISD energy of one Li+ ion. Coupled cluster, presented in the following section,

overcomes this shortcoming and is size consistent.

2.5 Coupled Cluster Theory

Coupled cluster theory[24–28] also constructs its wavefunction as a sum of the Hartree–

Fock determinant and multiple excitations thereof. However, unlike truncated configu-

ration interaction it is size consistent. The wavefunction ansatz is

|Ψ⟩ = N exp (T̂ ) |Ψref.⟩ , (2.17)

with normalisation N , a reference, starting wavefunction Ψref., which in this thesis is

set to D000, and

T̂ =
∑

iii

tiiiâiii (2.18)

where âiii with amplitude tiii is an excitation operator that creates determinant |Diii⟩ as

|Diii⟩ = âiii |D000⟩. There is a one-to-one mapping between âiii and |Diii⟩. As in configuration

interaction, the space can be restricted. For example, in CCSDT, coupled cluster

singles, doubles and triples, {âiii} is restricted to only contain âiii that create at most

triple excitations from the reference determinant.

The equations to solve are the rearranged Schrödinger equation, projected onto a

determinant |Diii⟩ which is in the allowed space, i.e. in CCSDT, |Diii⟩ only differs by at

most a triple excitation from |D000⟩. To be explicit, the equations solved for amplitudes

tiii are

⟨Diii|Ĥ − E|Ψ⟩ = ⟨Diii|(Ĥ − E) exp (T̂ )|D000⟩ = 0. (2.19)

In conventional coupled cluster, often the linked version of this equation is solved, i.e.

⟨Diii| exp (−T̂ )(Ĥ − Eδ000iii) exp (T̂ )|D000⟩ = 0, (2.20)
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since it reduces the number of terms until termination when expanded[65]. The energy

E can be found by projecting ⟨D000| onto the action of the Hamiltonian on the coupled

cluster wavefunction (see e.g. Ref. [28]), i.e.

E = ⟨D000|Ĥ exp (T̂ )|D000⟩
⟨D000| exp (T̂ )D000⟩

, (2.21)

where the denominator is 1 and could therefore be dropped. However, it is left in here

for illustration purposes since it is needed when calculating the projected energy in

Monte Carlo versions. Following Ref. [28] and again considering the linked expression,

vectorising and expanding the left hand side of equation 2.19 for D000 ̸= Diii around

excitor amplitudes t, setting it to zero and ignoring terms higher than linear in δt,

gives

δt = −db(t)
dt

−1

b(t) (2.22)

where biii = ⟨Diii| exp (−T̂ )(Ĥ) exp (T̂ )|D000⟩. In a Newton propagation, this update

equation is used to converge t to the ground state amplitudes t0. Since the first

derivative is costly to evaluate, it is approximated by sums of Fock values in quasi–

Newton propagations[28]. This will be used in chapter 6 where FCIQMC is accelerated

in a similar manner. The unlinked expression (equation 2.19) is the equation solved in

the original coupled cluster Monte Carlo formalism. A linked coupled cluster Monte

Carlo version exists[65] but does not form part of this thesis. Details of the linked

expression are therefore not further elaborated on here.

A popular form of coupled cluster theory is CCSD(T)[30], coupled cluster singles,

doubles and perturbative triples. It has been shown to be able to give “chemical

accuracy”, i.e. 1 kcal/mol[50, 27], for several systems with weak correlation. Note that

it is still less accurate than FCI which is exact in the given basis set. However, the

computational scaling is significant, O(m2l+2)[27], where l is the highest excitation

level allowed in T̂ , e.g l = 2 for CCSD, and m is the system size here, meaning occupied

or virtual orbitals. CCSD(T) has a scaling of O(m7)[27].
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2.6 Uniform Electron Gas

Finally, a technical introduction is given to the uniform electron gas (UEG)[66–69]

which will be the subject of investigations in several subsequent chapters.

The uniform electron gas is a model solid system where the positive charge of

the nuclei is smeared out to give a positive uniform background potential. There is

no additional external potential Vext. in the studies here. In the three dimensional

(3D) UEG here, the electrons are placed in a cubic box with sides of length L (real

space). The UEG studied here is spin non-polarised, leaving the electron number

density N
L3 as the only parameter. The density is usually varied via the Wigner–Seitz

radius rs which in 3D is the radius of a sphere containing one electron on average.

Density and rs are related via rs =
(

3L3

4πN

) 1
3 . Due to the uniform potential, the solutions

to the — non-interacting — Schrödinger equation are plane waves as in the basic

quantum mechanical particle-in-a-box problem. The spatial wavefunctions are therefore

approximated by

φk(r) ∝ exp (ik · r), (2.23)

where k is the wavevector, representing the momentum, and r the position in real

space. Here, calculations were done in a momentum, k, space basis. We use second

quantisation to write down the expression for the Hamiltonian. A short interlude

follows which describes the notation.

In second quantisation[70], a many-body wavefunction in k space with electrons at

k1 and k2 with spins σ1 and σ2 respectively can be written as

|ψ(k1, σ1,k2, σ2)⟩ = ĉ†
k2σ2 ĉ

†
k1σ1 |0⟩ , (2.24)

where creation operator ĉ†
kσ adds an electron with wavevector k and spin σ. |0⟩ is the

empty space of this system. Contrarily, annihilation operator ĉkσ removes an electron

with wavevector k and spin σ. To obey Pauli’s principle,

ĉ†
kiσi

ĉ†
kiσi

|0⟩ = 0. (2.25)
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The anti-commutation relation is followed, e.g.

{ĉkjσj
, ĉ†

kiσi
} = δkikj

δσiσj
. (2.26)

Using this notation, the Hamiltonian of the 3D UEG can be written as

Ĥ =
∑
kσ

(
k2

2 + VMad.

2

)
ĉ†

kσ ĉkσ + 1
2L3

∑
k1k2q

V (q)ĉ†
(k2+q)σ2

ĉ†
(k1−q)σ1

ĉk2σ2 ĉk1σ1 (2.27)

where V (q) = 0 if q = 0 and V (q) = 4π
q2 otherwise. VMad. is the Madelung constant.

Note that the Fock values, ⟨χi|F̂ |χi⟩, which will be used in chapter 6, are (switching

back away from second quantised notation)[68]

fi in 000 = ki

2 + VMad.

2N −
∑

j in 000, j ̸=i

⟨ij|ji⟩ (2.28)

for spinorbitals i in the reference and

fi not in 000 = ki

2 −
∑

j in 000, j ̸=i

⟨ij|ji⟩ (2.29)

for spinorbitals not in the reference determinant.





Chapter 3

Stochastic Quantum Chemistry

This chapter introduces quantum Monte Carlo[32, 71], full configuration interaction

quantum Monte Carlo (FCIQMC)[33] and coupled cluster Monte Carlo (CCMC)[39].

Most parts of the chapter describe developments of others with the aim to give a

background for later chapters. However, I have contributed to parts of the work in

section 3.4.2. Figure 3.2 and some similar text to section 3.4.2 has been published in

• J. S. Spencer, V. A. Neufeld, W. A. Vigor, R. S. T. Franklin, and A. J. W. Thom.

Large scale parallelization in stochastic coupled cluster, J. Chem. Phys. 149,

204103 (2018)[1].

(Reproduced (although slightly adapted) from [1], with the permission of AIP Publishing.

This article may be downloaded for personal use only. Any other use requires prior permission

of the authors and AIP Publishing. This article appeared in Ref. [1] and may be found at

https://doi.org/10.1063/1.5047420.)

The algorithms described in the paper have been implemented and most of the paper

has been written by other authors, though I have discussed and contributed to several

parts of the paper. I have mainly contributed to section IIIB where the bias in the

parallelisation has been investigated. Figure 3 in the paper can be found as figure 3.2

here. I have initiated this section in the paper, collaboratively designed the figure,

collected the data in the figure and created the figure.
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3.1 Quantum Monte Carlo

This section opens up with a description of Monte Carlo sampling and then shows

how it can be used to estimate the energy of electron systems with Variational Monte

Carlo (VMC) and Diffusion Monte Carlo (DMC)[32, 71], which are early and highly

successful quantum Monte Carlo methods.

3.1.1 Monte Carlo sampling

Monte Carlo sampling, see e.g. Refs [72, 32, 7, 71] for details, can be used to evaluate

integrals for example. It usually involves computer simulations with a random number

generator. This generator gives out pseudo-random numbers as random as possible

with a period as long as possible. In this thesis, a fast Mersenne Twister random

number generator[73] was used.

To understand Monte Carlo sampling better, instead of a random number generator,

one could imagine a darts game where a square with sides of length 2 dm is inscribed

in a square with sides of 4 dm, see figure 3.1a. See websites for examples of Monte

Carlo simulations as a darts game1. The ratio of these areas is

asmall square

alarge square
= (2 dm)2

(4 dm)2 = 1
4 . (3.1)

This is the probability that, given a dart has hit the large square, it is inside the small

square as well, provided darts are thrown uniformly at the square. As the number of

darts gets large,

Number of darts in small square
Number of darts in large square → asmall square

alarge square
= 1

4 , (3.2)

1See e.g. A simple Monte Carlo Methods: Compute Pi:
http://www.mathcs.emory.edu/˜cheung/Courses/170/Syllabus/07/compute-pi.html, Monte
Carlo Without the Math by Z. Scott: https://towardsdatascience.com/monte-carlo-without-the-math-
90630344ff7b, An Overview of Monte Carlo Methods by C. Pease: https://towardsdatascience.com/an-
overview-of-monte-carlo-methods-675384eb1694 [all accessed: 15.09.2019].
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Thus, assuming the normalising area (the area of the large square) is known, the

other area (the area of the small square) can be estimated using random, Monte Carlo

sampling. Monte Carlo evaluations of integrals scale more favourably with the number

of dimensions than other numerical integrations, e.g. quadrature techniques that scale

as O((number of grid points)number of dimensions)[74]. In a highly dimensional system,

Monte Carlo thus can be a good choice for integration.

If these areas were weighted, one could imagine a scenario as in figure 3.1b, where

sub-square regions of 1 dm2 are allocated weights. In most cases they are given a unit

weight except for one sub-square in the small square which carries 5 units weights.

This means that a dart which lands in that heavier weighted sub-square will get five

times the weight of a dart in other sub-square. The exact weighted area ratio is now

(a) Non-weighted
squares.

(b) Non-uniformly
weighted squares.

(c) Resized; uniformly
weighted squares.

Fig. 3.1 Monte Carlo sampling to calculate the ratio of the shaded blue (weighted)
area to total (weighted) area with uniformly thrown darts. (a) shows non-weighted
areas, (b) has weights, and (c) demonstrates importance sampling applied to (b) having
unified the weights but increased the probability to hit the shaded area accordingly.

3×1+1×5
15×1+1×5 = 8

20 = 2
5 . When estimated with darts and giving them weights depending

on their location, there are fluctuations in that estimate depending on how often the

highly weighted sub-square gets hit. If it gets hit more often than expected, the area



22 Stochastic Quantum Chemistry

estimate will be too high and vice versa. One could imagine an even more extreme case

with a weight of 1000 instead of 5 in that sub-square. To decrease these fluctuations, a

dart could be allowed to only “hit a part of that sub-square” and receive a fraction of

the weight. Concretely, as done in figure 3.1c, the sub-square with weight 5 is spread

out into five sub-squares of unit weight. The total area that originated from the old

sub-square is now five time as likely to be hit but that effect is balanced by a five times

lower weight. All darts carry the same weight again and fluctuations are decreased.

This process is called importance sampling (see section 10.4.3 in Ref. [71]) which

decreases the variance and increases the efficiency of Monte Carlo simulations. It is

the focus of chapter 5, where the importance sampling of CCMC and FCIQMC in the

spawn step was improved. More formally, instead of sampling the area under function

a(x) with uniform probability, i.e.

∫
a(x)dx, (3.3)

the easier function a(x)
b(x) could be sampled with normalised probability b(x), i.e.

∫
b(x)a(x)

b(x)dx. (3.4)

As b(x) → ka(x), where k is a constant, the variance of a(x)
b(x) tends to zero. In the

example in the previous paragraph, this meant that all darts, even though they were

sampled with a non-uniform probability distribution, contributed with one unit weight.

Thus, in FCIQMC and CCMC, when distribution a(x) was sampled with probability

b(x), a(x) has to be divided by b(x) to converge to the correct answer.

3.1.2 Variational Monte Carlo

One of the first quantum Monte Carlo methods was Variational Monte Carlo (VMC)

which uses the variational principle to evaluate an upper bound for the ground state
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energy, i.e. it is estimated by[71, 32]

E = ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

=
∑

t ⟨Ψ|ψ(t)⟩ ⟨ψ(t)|Ĥ|Ψ⟩∑
t′ ⟨Ψ|ψ(t′)⟩ ⟨ψ(t′)|Ψ⟩

=
∑

t

⟨Ψ|ψ(t)⟩∑
t′ ⟨Ψ|ψ(t′)⟩ ⟨ψ(t′)|Ψ⟩

⟨ψ(t)|Ĥ|Ψ⟩ ⟨ψ(t)|Ψ⟩
⟨ψ(t)|Ψ⟩

=
∑

t

| ⟨Ψ|ψ(t)⟩ |2∑
t′ | ⟨Ψ|ψ(t′)⟩ |2

⟨ψ(t)|Ĥ|Ψ⟩
⟨ψ(t)|Ψ⟩

=
∑

t

p(t)Eproj.(t),

(3.5)

summing over points t occurring with probability p(t) in the relevant space parameter-

ized by t. ψ(t) is the wavefunction at point t and Ψ is a combination of ψ(t). These

points are sampled with probability distribution p(t) and the projected energy at those

points, Eproj.(t), are combined to determine energy E. This sampling of points t might

be done with the Metropolis algorithm[32, 75].

3.1.3 Projector Monte Carlo – Diffusion Monte Carlo

The accuracy of VMC depends on the form of the wavefunction chosen to optimise.

Diffusion Monte Carlo (DMC) adds more flexibility to this, even though — in the fixed

node approximation — the locations of the nodes of the trial wavefunction fix the

nodes of the estimate of the ground state wavefunction, making them inflexible. DMC

projects out the ground state wavefunction Ψ0, it is a projector Monte Carlo method.

In such quantum projector Monte Carlo methods, the projection is done in imaginary

time τ , solving the imaginary time Schrödinger equation, see e.g. Ref. [32]. The

resulting energy by the action of the Hamiltonian was shifted by the ground state

energy E0,

− dΨ(τ)
dτ

= (Ĥ − E0)Ψ(τ). (3.6)

Since Ĥ is time-independent, the equation can be solved straightforwardly, with solution

Ψ(τ) = exp (−τ(Ĥ − E0))Ψ(τ = 0). (3.7)
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ĤΨ(τ → ∞) = E0Ψ(τ → ∞), i.e. Ψ(τ → ∞) = Ψ0, since the exponent is never

negative due to E0 being the lowest energy. Writing Ψ(τ = 0) = ∑
i diΨi with

eigenfunctions of the Hamiltonian Ψi and their coefficients di, one could imagine

considering the evolution of each Ψi individually, rewriting equation 3.7 as

Ψ(τ) =
∑

i

di exp (−τ(Ĥ − E0))Ψi −−−→
τ→∞

d0Ψ0. (3.8)

This shows that the projector P̂ = exp (−τ(Ĥ − E0)) projects the ground state wave-

function out of Ψ(τ = 0). Instead of using an exponential projector, a linear projector

can also be used, i.e. P̂ = 1 − δτ(Ĥ − E0) with time step δτ = τ
n
, where n is

large, consult e.g. Ref. [76], see full configuration interaction quantum Monte Carlo

(FCIQMC)[33] or coupled cluster Monte Carlo (CCMC)[39] section.

In DMC, equation 3.6 is seen as a diffusion equation (remember that the kinetic

term in ĤΨ(τ) is of the form −∇2Ψ(τ)). A solution to this equation is sampled by

delta functions, “walkers”, signed Monte Carlo particles. A projector helps to reach

the ground state wavefunction. The magnitude of the solution also decides whether

a walker “survives” to the next time step and if yes, whether an additional walker is

created. See Ref. [32] for more details. Unfortunately, this algorithm converges to the

bosonic ground state solution, having no nodes. One approach to combat this problem

and reach the fermionic ground state solution, is the fixed node approximation where

the positions of the nodes is fixed a priori. Walkers in the pockets between nodes have

the same sign and the sign changes across a node. The closer the guessed nodes are

to the true nodes in the ground state wavefunction, the better the energy estimate

[32]. Note that this is a real space method, whereas the following approaches work in

determinant space.
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3.2 Full Configuration Interaction Quantum Monte

Carlo

Full configuration interaction quantum Monte Carlo (FCIQMC)[33] solves full configu-

ration interaction (FCI) stochastically. Truncated CIQMC, e.g. stochastic CISD, is

also straightforwardly possible but not presented here.

3.2.1 The Basics of FCIQMC

FCIQMC, as FCI, expresses wavefunctions in Slater determinant space. While DMC

in the fixed node approximation is limited by the knowledge of the node locations,

FCIQMC does not need such a priori knowledge of the wavefunction. However, it is

restricted by the basis set used and it is assumed that the symmetry of the initial

wavefunction is compatible with the ground state wavefunction. The evolution to

the estimate for the ground state wavefunction is also done in imaginary time. The

signed “walkers”, or particles as they will be called in this thesis, then reside on

those determinants. The initial wavefunction guess is often a few particles on the

Hartree–Fock determinant, the “reference”. This corresponds to an initial wavefunction

Ψ(τ = 0) ∝ D000 with magnitude corresponding to the sum of the particle amplitudes.

The wavefunction is then propagated by the linear projector P̂ . Applying P̂ n times,

Ψ(τ = nδτ) = P̂ nΨ(τ = 0) = (1 − δτ(Ĥ − E0))nΨ(τ = 0) ∝ Ψ0 (3.9)

as n → ∞. As long as |1 − δτ(Emax. − E0)| < 1, the projection to Ψ0 is successful.

Emax. is the maximum eigenvalue of Ĥ. This ensures that every eigenvector except for

Ψ0 gets reduced by applying P̂ , while Ψ0 is unaffected. δτ therefore has to be set such

that δτ < 2
Emax.−E0

[76, 33]. As described in the previous chapter, the FCI wavefunction

is

|Ψ(τ)⟩ =
∑

iii

ciii(τ) |Diii⟩ , (3.10)
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where the dependence on the evolution with τ has been made explicit. Pre-multiplying

equation 3.9 by ⟨Diii| and only showing the effect of one time step, the evolution of the

coefficients ciii can be written as

ciii(τ + δτ) = ciii(τ) − δτ
∑

jjj

⟨Diii|Ĥ − E0|Djjj⟩ cjjj(τ). (3.11)

This is the equation sampled by FCIQMC to evolve its particle populations and to

converge to an estimate of the ground state wavefunction. E0 is (initially) unknown

and needs to be estimated. The following paragraph describes the sampling details of

basic non-initiator FCIQMC.

In the implementation used here, as in Booth et al.[33], FCIQMC does not sample

which particles to propagate, all particles are evolved at every time step. The Hartree–

Fock energy EHF is first subtracted of the diagonal elements of ⟨Diii|Ĥ|Djjj⟩, making

all diagonal elements non-negative[33]. The resulting FCIQMC energy estimate is

therefore the correlation energy of E0. After a particle on some coefficient ckkk has been

selected, the spawn and death steps follow, see below. Notice that this implies that only

occupied determinants, i.e. with non-zero ciii, are “active” and can lead to the creation

of new particles. FCIQMC can therefore drastically reduce memory requirements as

the other determinants do not have to be stored. Note that particles on the same

determinant evolve independently in the spawn and death steps.

• Spawn Step (off-diagonal): This step deals with the contributions from the off-

diagonal element,

⟨Diii|Ĥ − E0|Djjj⟩ cjjj = ⟨Diii|Ĥ|Djjj⟩ cjjj . The selected particle on ckkk takes the role of a

part of cjjj here. Starting from |Djjj⟩, another determinant |Diii⟩ with a non-zero

connection to |Djjj⟩, ⟨Diii|Ĥ|Djjj⟩, is chosen with probability pgen.. Then, a new

particle is created (“spawned”) on |Diii⟩, i.e. added to ciii after this Monte Carlo

cycle, with probability pspawn = δτ
|⟨Diii|Ĥ|Djjj⟩|

pgen.
, where the importance sampling

requires the division by pgen. to unbias the result. If pspawn > 1, ⌊pspawn⌋ particles

are spawned and another with probability pspawn − ⌊pspawn⌋. The sign of the
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particle(s) spawned is the opposite sign of ⟨Diii|Ĥ|Djjj⟩ cjjj. The reason why the

selected particle on ckkk took the role of a part of cjjj here and not of ciii, is to

reduce spawns with zero spawn probability (which — considering equation 3.11

— would be the case if the connected determinant had no particles on it, whereas

now an empty determinant can be made “active” by spawning a particle onto

it). Initially, pgen. was a combination of uniform probabilities in the selection of

orbitals that differ between the two determinants. Symmetry was considered as

well to reduce selections with ⟨Diii|Ĥ|Djjj⟩ = 0[33, 34], or |⟨Diii|Ĥ|Djjj⟩|
pgen.

was brought as

closely to a constant as possible[77, 78, 3] to increase efficiencies. Ref. [3] forms

the content of chapter 5.

• Death Step (diagonal): This step deals with the diagonal element,

⟨Diii|Ĥ − E0|Diii⟩ ciii. E0 is approximated by shift S described later. The probability

of removing or cloning the selected particle is pdeath = δτ | ⟨Diii|Ĥ − S|Diii⟩ |. If

⟨Diii|Ĥ − S|Diii⟩ > 0, the particle is removed, otherwise it is cloned on the same

determinant, after this Monte Carlo cycle.

After all particles have undergone the spawn and the death step, the Monte Carlo

cycle ends with the clean-up step, the annihilation step, which has been shown to help

overcome the sign problem and let the wavefunction converge to its final estimate[79];

• Annihilation Step: Here, the newly created particles are combined with the

existing particles and the particles to die are removed. If there are two particles

of opposite sign on the same determinant, they annihilate each other and so both

get deleted.

The initial shift S is often set to S = 0. After a certain stable target particle population

N has been reached (discussed later), S is varied at the end of every B Monte Carlo

cycles. Eventually, S will converge to E0, the correlation energy of the ground state

energy. Remember that EHF was subtracted off the diagonal before the calculation
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started. S is varied according to

S(τ) = S(τ −Bδτ) − γ

Bδτ
ln N(τ)
N(τ −Bδτ) . (3.12)

The closer S is to E0, the fewer particles get cloned or removed during the death step

and so the S stabilises and controls the particle population. At equilibrium, when data

for analysis is taken, the population stays approximately constant, only varying due to

stochastic noise. In addition to S, E0 can also be estimated by the projected energy

Eproj.,

Eproj. =
⟨D000|Ĥ|Ψ⟩average

⟨D000|Ψ⟩average
, (3.13)

where the Hartree–Fock energy had been subtracted of the diagonal of the Hamiltonian

so that Eproj. is also an estimate for the correlation energy. The averages are taken

over various time steps in equilibrium using reblocking analysis[80] to account for

autocorrelation, see section 3.5.2. In chapter 6, the notion of an instantaneous projected

energy is also used, which is a quantity ⟨D000|Ĥ|Ψ⟩
⟨D000|Ψ⟩ at a particular time step. Taking

its average as the energy estimate ignores the covariance between numerator and

denominator and is therefore to be treated as an approximation. However, Blunt et

al.[81], for example, commented that usually there is no evidence to suggest that the

instantaneous projected energy differs significantly from the projected energy. Ichibha

et al.[82] also introduced analysis methods that take the average of the instantaneous

projected energy. The default in this thesis is not to use the instantaneous projected

energy.

There has been significant further developments since the original paper[33]. The

next subsection introduces the initiator approximation[35] after which further improve-

ments to FCIQMC for the ground state energy are listed.
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3.2.2 Initiator FCIQMC

Shortly after the first FCIQMC paper[33], Cleland et al.[35] developed the initiator

approximation that is now extensively used in FCIQMC calculations as it enables

tackling calculations in (even) larger systems.

The initiator approximation restricts the spawning from “less important” determi-

nants and so decreases the space occupied by particles, focussing on the more significant

determinants. Remember that the more states, i.e. determinants, are occupied, the

higher the memory requirements are and the more particles there are in the system,

the higher the computational cost is. Concretely, in HANDE[5] the spawn step is

modified such that a spawn onto an unoccupied determinant is only successful if done

by a particle that occupies an initiator determinant or — under certain conditions —

if multiple spawn attempts are made to the same determinant (see HANDE code2). A

determinant is an initiator determinant if it is occupied by more than nthres. particles

at that time step. The user can set nthres., but the default used here was 3, see

documentation3.

Due to this restriction, a bias in the energy is introduced. This bias can be reduced

by increasing the number of particles or by decreasing nthres.. When running an initiator

calculation, a particular target population is chosen (no “shoulder” plot as discussed

later is used) and the energy determined. This is repeated for several target populations,

ideally until the energy has converged with respect to population. There are a few ways

to then estimate the converged energy, they all require a graph of particle population

against energy estimate. One technique, which is not used here, is to assume that as

long as the energy estimates at the highest populations agree within error bars (ideally

on a log scale to have sufficient distance), the energy estimate at the highest population

can be chosen as the final estimate, see Ref. [83] that also considered N0. Another

technique, used by Booth et al.[84, 54] and in chapter 6, is to fit a curve, such as an

exponential or a polynomial, to all the data points and the infinite limit is the energy
2See http://www.hande.org.uk/ and https://github.com/hande-qmc/hande.
3See https://hande.readthedocs.io/en/latest/ for details.
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estimate. Alternatively, another technique, used in chapter 4[2], is to fit a constant,

horizontal line through the last few points that agree with each other.

3.2.3 Further Advances in FCIQMC

Another development for ground state FCIQMC applied here is the use of floating

point weights on particles[85, 86]. Instead of holding an integer weight of 1 each, the

particles can be assigned a floating point weight. When spawning, a new particle

no longer created with probability pspawn with weight ±1 but instead created with

probability 1 with weight pspawn. However, to avoid creating particles on less significant

determinants with very small weights, if pspawn is below a threshold — the “spawn

cutoff” — an original spawn attempt is made, i.e. a particle of weight ±1 is created with

a probability pspawn. In HANDE[5], in the annihilation step, particles with absolute

weight less than 1 are rounded down to 0 or up to 1 stochastically with a probability

of its current weight. For a particle with weight less than 1, the decision whether it

participates in the spawn step is done stochastically as well.

A further improvement to the algorithm is semi-stochastic FCIQMC[85, 87] which

is usually activated after equilibrium has been reached to reduce sampling noise. The

evolution of particles on the more populated determinants is done deterministically,

while the remaining particles evolve stochastically as is the default. The size or type of

space of deterministic determinants is chosen by the user. This feature has not been

applied in any investigations described in this thesis.

Recently, a transcorrelated approach to FCIQMC which modifies the Hamiltonian to

decrease problems due to electron cusps has been developed[88]. Other advances include

a projector Monte Carlo technique which uses optimisation techniques employed by the

machine learning community, such as adding “momentum” to improve convergence[89],

or applying a perturbative correction to improve initiator convergence to the true

energy[90]. They do not form part of this work.
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Finally, as mentioned previously, work has been done in improving the spawn

step[77, 78, 3] and the propagator[81, 4]. I have contributed to this development and

so chapters 5 and 6 are dedicated to it.

3.3 Coupled Cluster Monte Carlo

Another method, related to FCIQMC, is coupled cluster Monte Carlo (CCMC)[39,

54], which uses the same propagator as FCIQMC and similar Monte Carlo steps

to stochastically evaluate the coupled cluster ground state energies. Any coupled

cluster level can be easily attempted by the user, e.g. CCSD or CCSDTQ5. However,

perturbative levels, e.g. CCSD(T), are not implemented yet. Some developments made

for FCIQMC also apply to CCMC and vice versa, such as floating point weights[85, 86],

increased the efficiency of the spawn step[77, 78, 3] (see chapter 5) or improved the

propagator[90, 4] (see chapter 6).

As outlined in the previous chapter, the estimate of the ground state Ψ0 is created

from the initial wavefunction as

|Ψ0⟩ = t000 exp
∑

iii ̸=000

tiii
t000
âiii

 |Ψinit.⟩ , (3.14)

with normalisation t000, the amplitude on the reference determinant. For simplicity,

this normalisation is ignored in the following algorithm outline. The fact that null

excitors are not included in T̂ is made explicit. Even though a multireference approach

exists[91], in this thesis, |Ψinit.⟩ = |D000⟩, i.e. Monte Carlo particles start on the reference

excitor â000 and their distribution then spreads. Monte Carlo particles are located on the

excitors âiii, not on determinants as with FCIQMC, with their sum on âiii representing

the corresponding amplitude tiii. The unlinked coupled cluster equations, see chapter 2,

⟨Diii|Ĥ − E|Ψ0⟩ = ⟨Diii|(Ĥ − E) exp (T̂ )|D000⟩ = 0, (3.15)
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are then solved iteratively for amplitudes tiii, similarly to FCIQMC, ignoring quadratic

or higher terms in tiii[54] and having assumed that the Hartree–Fock energy has already

been subtracted off the Hamiltonian matrix diagonal,

tiii(τ + δτ) = tiii(τ) − δτ ⟨Diii|Ĥ − E|Ψ(τ)⟩ , (3.16)

Again, E is estimated by shift S. Franklin et al.[65] have modified this update equation

to include the instantaneous projected energy Eproj.,inst., which accelerates convergence,

tiii(τ + δτ) = tiii(τ) − δτ(⟨Diii|Ĥ − Eproj.,inst.|Ψ(τ)⟩ − (Eproj.,inst. − S)tiii(τ)), (3.17)

where the last term scales all amplitudes equally and therefore should not bias the

wavefunction estimate. This is discussed again in chapter 6 for the quasi-Newton

acceleration.

Given that the selection step involves selecting a term in Ψ that is non-linear, it

is more involved than the selection step in FCIQMC, where simply every particle

was selected once in each Monte Carlo cycle. In CCMC, excitors and clusters, i.e.

combinations of them, are selected, not particles. In the spawn or death steps, the

probability to act is multiplied by the product of the amplitudes in the cluster. Clusters

of excitors with a size up to the coupled cluster level plus two, i.e. a size of four when

doing CCSD, can be selected. That is because the Hamiltonian matrix element

⟨Diii|Ĥ|Djjj⟩ = 0 if |Diii⟩ and |Djjj⟩ differ by more then two orbitals (see Slater–Condon

rules in the previous chapter). A simple selection for CCSD for example used in the

original CCMC algorithm[39] is to do as many selections as the sum of the amplitudes

of the excitors, Ntot.. Cluster sizes up to a size below the maximum are chosen with

probability psize = 1
21+size . Given that size 4 is the maximum size of a cluster, it is

also chosen with chance 1
16 — as size 3 is — so that psize is normalised[54]. Using

this decay in psize, smaller cluster sizes are favoured. Note that excitors are unique

in the excitation they create and that anti-commutation rules have to be followed

when collapsing the action of a cluster on the Hartree–Fock determinant[1]. Within
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the same cluster size, excitors are chosen with probability pexc proportional to their

amplitude[54]. A more advanced selection scheme is the full non-composite selection[1].

Clusters of size one are selected deterministically, while composite clusters, i.e. clusters

of size greater than 1, are sampled stochastically. This implies that when stochastically

selecting clusters, only composite clusters are selected. This reduces the minimum

number of particles required for a stable calculation[1]. A further improvement on

top of that is the even selection sampling[92]. As in the full non-composite algorithm,

single excitors are selected deterministically. Selecting the size of the cluster (size

greater than 1) and the kind of clusters is then done in a more involved weighted

manner to evenly balance the selection over all possible clusters.

After the cluster, e.g. âiiiâjjj, has been selected, it is collapsed to a single excitor âmmm,

such that âiiiâjjj |D000⟩ = ±âmmm |D000⟩ = ± |Dmmm⟩. The sign has to be carefully determined

using anti-commutation rules when combining the excitors. If |Dmmm⟩ is further than

coupled cluster level + 2 (e.g. 4 in the case of CCSD) excitations away from |D000⟩, the

excitor is disregarded and a new cluster has to be chosen. This is prevented in even

selection by choosing allowed clusters only[92]. The product of the particle amplitudes

on âiii and âjjj is A. The next steps are, similarly to FCIQMC,

• Spawn Step: From determinant |Dmmm⟩, another determinant |Dnnn⟩ is generated with

probability pgen.. If |Dnnn⟩ is outside of the coupled cluster level space, e.g. further

than a double excitation away from |D000⟩ in the case of CCSD, the spawn will

not happen. Otherwise, with a probability pspawn = δτ |A⟨Dnnn|Ĥ|Dmmm⟩|
Ntot.psizepexcpgen.

, a particle

is spawned onto excitor âmmm. If greater than 1 or if using floating point weights on

particles, this is modified similarly to FCIQMC. The sign of the particle created

is the opposite of the sign of A ⟨Dnnn|Ĥ|Dmmm⟩. When not using even selection, the

multispawn feature[1] reduces “blooms”, when multiple particles are spawned

simultaneously, which make the energy estimate harder to analyse. When A is

above a threshold multiple spawn attempts are made, which decreases pspawn

by increasing pgen.. The same “excitation generators” as in FCIQMC can be

employed to generate determinant |Dnnn⟩ from |Dmmm⟩.
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• Death Step: In the full non-composites algorithm, for single excitors pdeath =

δτ |tmmm(⟨Dmmm|Ĥ−Eproj.,inst.|Dmmm⟩−(S−Eproj.,inst.))|
Ntot.psizepexc

= δτ |tmmm⟨Dmmm|Ĥ−S|Dmmm⟩|
Ntot.psizepexc

and for composite

clusters pdeath = δτ |A⟨Dmmm|Ĥ−Eproj.,inst.|Dmmm⟩|
Ntot.psizepexc

. The particle created with probabil-

ity pdeath has the opposite sign of A ⟨Dmmm|Ĥ − Eproj.,inst.|Dmmm⟩. Note that a particle

cannot be killed, i.e. removed, as in FCIQMC but rather a particle of opposite

sign gets created. This is because, in a composite cluster, the collapsed excitor

âmmm might not have a particle on it that could be removed.

Again, after a Monte Carlo cycle, annihilation happens for particles of opposite sign on

the same excitor. The initiator approximation has also been developed for CCMC[54]

but has not been applied in this thesis so is not mentioned further here.

3.4 High Performance Computing – Parallelization

To enable calculations on large systems, it is crucial to be able to utilise high performance

computing resources and so the algorithms should scale well with the number of cores.

In this section, the FCIQMC parallelization[34] is briefly mentioned, followed by a

more extensive discussion on parallel CCMC[1].

3.4.1 FCIQMC Parallelization

Booth et al.[34] developed an FCIQMC MPI parallelization. FCIQMC parallelises well

and does not suffer from bias issues when having a high number of MPI processes

to system size ratio. Each determinant is assigned to a particular MPI process via a

hash function. As in the serial implementation, newly spawned particles are combined

with the existing particles in the annihilation step. They are sent to the corresponding

process using MPI communication. Particles created on previously empty determinants

are assigned to an MPI process. To balance the work load on the MPI processes,

the number of particles has to be considered[34, 5] and the communication can be

optimised to non-blocking communication[5]
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3.4.2 CCMC Parallelization

Spencer et al.[1] developed an MPI parallelization for CCMC. Due to the non-linearity

of the wavefunction ansatz, the CCMC MPI parallelization does not scale as favourably

as the FCIQMC equivalent and does suffer from energy bias issues if not applied sensibly.

Thus, shared memory parallelization with OpenMP is used within the same node where

possible as this does not create a bias in the energy estimate. In HANDE[5], the loop

over the selection of different excitors and their action in the following Monte Carlo

steps is OpenMP parallelized[1]. To cross nodes, MPI parallelization is employed[1].

As with determinants in FCIQMC, each excitor is assigned to an MPI process using a

hash function. A bias arises since not every cluster of excitors can be created during

the selection process, only those containing excitors on the same MPI process, as the

other excitors are “not visible” at that point to that process. To limit the bias and

to allow every cluster a chance of being formed at some point in the calculation, the

excitors can move from one MPI process to another every 2νmove iterations, for some

integer νmove. Again, at the annihilation step, spawned particles are moved to MPI

processes with the excitors they belong to and combined with the particles on that

process. Newly occupied excitors get assigned a process and it is decided whether

excitors move process or not then. The MPI parallelisation is shown to scale well.

It is important to get the ratio of system size to number of MPI processes right for

efficiency and perhaps more importantly for bias purposes, see below[1].

The CCMC MPI parallelization energy bias has been investigated for the effects of

various calculation settings[1]. A priori it can be expected that

• the greater the number of MPI processes the larger the bias since the proportion

of excitors visible to a particular process decreases,

• the larger νmove, the greater the bias since then the number of iterations taken

for a currently impossible cluster to be created increases,

• and the larger the time step δτ , the less fine grained the simulation is, allowing

fewer clusters to be selected in a unit of imaginary time.
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For a small system, the three dimensional spin non-polarised uniform electron gas

(UEG) with 66 spinorbitals and rs = {0.5, 5}a0, was investigated for the effect of these

three simulation parameters on the energy estimate, see figure 3.2, with CCSDT using

full non-composite selection[1]. The Hilbert space size is only 22969, so this system is

small. Figure 3.2 shows that, with the given settings of other parameters, the energy

bias is visible but containable. As expected, the bias increased with the number of MPI

processes, νmove, and δτ . Using hybrid parallelisation with OpenMP helps decreasing

the bias by decreasing the number of MPI processes, see figure 3.2b. Note that using

240 MPI processes on this small system does not represent a realistic simulation. Ref.

[1] investigates more realistic calculations as well. As long as there is a critical number

of excitors (at equilibrium) per MPI process, this bias is not significant within error

bars.

It was therefore concluded that while there is a bias in the energy, provided that not

too many MPI processes are used, it should be within the error bars of the stochastic

propagation and therefore not significant. OpenMP should be used as much as possible.

For calculations that are not small and need multiple nodes, Ref. [1] recommends to

not run on more than 1 MPI process per approximately 105 excitors occupied (at

equilibrium).

3.5 Calculations and Data Analysis

Having outlined the CCMC and FCIQMC algorithms in the preceding sections, the

details on how to conduct a calculation and how to analyse its output data are discussed

here.

3.5.1 Running a Calculation

Before a calculation can start, the basis set and system have to be specified. Unless

a model system, such as the UEG, is studied (where the integrals that are part of

the evaluation of ⟨Diii|Ĥ|Djjj⟩ are evaluated on-the-fly), these integrals have to be pre-
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Fig. 3.2 Investigation of the effect of time step, number of MPI processes and move
frequency on the CCMC parallelisation bias using the 3D spin non-polarised UEG at
rs = {0.5, 5}a0 with 66 spinorbitals at CCSDT level. Published in Ref. [1] (Figure 3).
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calculated and are written into a file and later read in by the program performing the

CCMC or FCIQMC calculation. In this thesis, this was performed with PySCF[93] or

Psi4[94, 95].

When setting up a calculation, the user has to specify various parameters such as

• time step δτ , which should be chosen as high as possible before too many blooms

occur and the calculation becomes unstable, which is particularly important for

initiator calculations, where the calculation may converge to an answer far away

from the true energy with too many blooms. Holmes et al.[77] have shown that

δτ affects the calculation efficiency. To avoid blooms above a certain threshold,

in FCIQMC, δτ |⟨Dnnn|Ĥ|Dmmm⟩|
pgen.

should be below a set limit4.

• initial population N0(τ = 0) on the reference. If set too high, the required

number of total particles, the “shoulder height” in an non-initiator calculation,

increases[54]. If too low, the calculation might not be stable enough to reach

equilibrium with the chosen time step.

• target population Ntarget where the shift variation starts. In a non-initiator cal-

culation, it should be above the “shoulder height” population, which is discussed

later in this section. Setting it too high is wasteful but an order of magnitude or

two above the “shoulder height” might be sensible if possible[96]. In an initiator

calculation, the calculation is run for multiple target populations and the value

at infinite population is estimated, extrapolating out the initiator error.

• shift damping γ. Ref. [97] has shown that γ
Bδτ

can affect the population control

bias. Charlie Scott has automated this for HANDE[5] where γ is set such that

the variation in the shift follows the variation in the instantaneous projected

energy[5].

• the number of Monte Carlo iterations B before the shift is updated again.
4See NECI code, https://github.com/ghb24/NECI_STABLE/. Discussions with Pablo López Ríos

are gratefully acknowledged.
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• the excitation generator to use. See chapter 5 for details and discussion.

It is also recommended that the user chooses to use floating point particle weights[85,

86].

In a non-initiator calculation, Ntarget has to be chosen such that the “shoulder

height”, or the “plateau”, is below it. The shoulder plot shows when convergence to the

ground state wavefunction has been achieved. An example plot is shown in figure 3.3.

A “shoulder” plot is a plot of the total particle population Ntot. against the ratio of the

102 103 104 105

Ntot.

101

102

N
to

t.
/N

0

Fig. 3.3 “Shoulder” plot of a CCSD CCMC calculation on the 3D spin non-polarised
UEG at rs = 2a0 with 1030 spinorbitals (515 plane waves). The data in the figure is
from Ref. [2] which forms part of chapter 4. The “shoulder height” is shown with a
vertical line, with width twice its error (which is small) and also indicated by an arrow.
They were determined as described in Ref. [54], where the mean of the ten points with
largest Ntot.

N0
and its standard error are taken to be the “shoulder height” and its error.

total population to the population on the reference N0. The explicit dependence on τ

is not shown. The dynamics are thoroughly explained by Ref.[54]. In the beginning,
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all particles are on the reference. Their distribution then spreads and both the total

and the reference particle number increases. The total number of particles grows at a

bigger rate until the “shoulder height” where the reference population number growth

rates starts exceeding that of the total particle number. At this point, approximate

convergence has been reached. At some point, after the shift variation has started, the

population oscillates around a constant value due to the population control. On the

“shoulder” plot, this is a “blob” where the curve seems to end.

In an initiator calculation, several calculations are run with different Ntarget to

extrapolate out the initiator bias. Figure 3.4 shows a sample initiator curve. As

104 105 106 107

Ntot.

−0.530

−0.528

−0.526

−0.524

−0.522

−0.520

E
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je
./

E
h

Fig. 3.4 Initiator convergence plot of a iFCIQMC calculation on the 3D spin non-
polarised UEG at rs = 1a0 with 1030 spinorbitals (515 plane waves). The data in
the figure is from the stuy in Ref. [2] which forms part of chapter 4. The estimated
initiator energy is shown with a horizontal line, with width twice its error. It was
estimated by fitting horizontal lines and choosing the best one as described in Ref. [2].

discussed previously, several techniques to determine the energy at infinite population

exist; choosing the energy of the calculation with the highest population as long as it
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agrees with (an)other calculation(s) with a significantly smaller number of particles,

fitting constant horizontal lines and selecting the optimal one as done in the next

chapter, or, as in Refs [84, 54] and in chapter 6, fitting a polynomial or exponential

function.

A single calculation is run for long enough to be able to estimate the energy and

its error. This analysis is discussed in the next section.

3.5.2 Analysing the Data

This section describes how to estimate the mean projected energy and shift and their

standard errors. This is complicated by the fact that the data is autocorrelated. Every

B Monte Carlo iterations, the instantaneous shift and instantaneous numerator and

denominator of the projected energy are printed out. Figure 3.5 shows the behaviour

of the shift and the instantaneous projected energy as the calculation progresses. The

shift is set to zero first and varied once a target population has been reached, whereas

the instantaneous projected energy starts converging immediately.

First, the approximate point of equilibrium is determined. This can be done simply

by eye. However, to avoid any bias of the analyser and to speed up analysis, this has

been automated. I have implemented a method in collaboration with other HANDE

developers to automate the equilibrium finding5. It involves taking the iteration at

which the error of the standard error estimate divided by the square root of the number

of data points left is smallest and then removing another approximate autocorrelation

length to ensure equilibrium has been reached. This is done for various printed

quantities and the most conservative estimate is then chosen. For figure 3.5, this was

between iterations 30000 and 40000 which might seem slightly conservative but the

data seems certainly converged there.

The equilibrated data can then be analysed to determine the energy mean and

its standard error. A common method to achieve this is the reblocking analysis[80].

It first treats all data points as independent data blocks and calculates the quantity
5Fruitful discussions with CDT cohort 1 also acknowledged.
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Fig. 3.5 Energy estimators shift, S, and inst. projected energy, Inst. Eproj., convergence
with number of iterations for a CCSD CCMC calculation on the 3D spin non-polarised
UEG at rs = 2a0 with 1030 spinorbitals (515 plane waves). The data in the figure is
from Ref. [2] which forms part of chapter 4. The calculation has been run for more
than the number of iterations shown. The iteration where the reblocking analysis[80]
started was 33580.

mean and its error. Then, neighbouring points are grouped in pairs, combined to one

data point and this is repeated. Then neighbouring combined pairs are grouped, and

so on. The standard error first increases and then plateaus during this procedure. One

of the standard errors at the plateau is then chosen as the true standard error. The

mean does not significantly change during this process except for tiny variations due

to having to exclude data points to match up the pairings. Other possible analysis

methods are described by Ref. [82].

As discussed by Umrigar et al.[98] for DMC and considered for FCIQMC by Vigor

et al.[97], population control due to the shift introduces a bias. They introduced

a reweighting, post-analysis method that indicates whether a bias is present. The

reweight plot allows assessment of whether the projected energy changes within error



3.5 Calculations and Data Analysis 43

bar for different levels of reweighting. If yes, a bias is present. More details are found

in Ref. [97]. Figures showing data were drawn with Matplotlib[127] in this thesis.





Chapter 4

Converging Coupled Cluster

Energies in the Uniform Electron

Gas

The first investigation was how coupled cluster performs in a model solid system, the

uniform electron gas, to gain information about what level of coupled cluster might be

necessary when modelling more realistic solid systems. This chapter (slightly modified

to fit into the format of this thesis and with updates since publication) has been

published in

• V. A. Neufeld and A. J. W. Thom. A study of the dense uniform electron gas

with high orders of coupled cluster, J. Chem. Phys. 147, 194105 (2017)[2].

(Reproduced (although slightly adapted) from [2], with the permission of AIP Publishing.

This article may be downloaded for personal use only. Any other use requires prior permission

of the authors and AIP Publishing. This article appeared in Ref. [2] and may be found at

https://doi.org/10.1063/1.5003794.)

Alex Thom came up with the very initial idea for this study. I conducted this

investigation which we both designed in various discussions. I have written the

paper/this chapter with edits from Alex Thom. The uniform electron gas capabilities
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had already been added to the HANDE code[99, 5] by others. The reviewers also

contributed with helpful comments.

4.1 Introduction

Various wavefunction methods have been applied to the three dimensional uniform

electron gas (3D UEG)[66, 67, 69], e.g. the random phase approximation (RPA)[100–

102] which yields a ground state energy that is equal to the energy output of a

version of ring diagram coupled cluster doubles (CCD)[103, 104]. MP2 has been

shown to diverge in the thermodynamic limit in the uniform electron gas whereas

it is unclear whether coupled cluster singles and doubles (CCSD) does[105, 106].

There exists accurate ground state energy data for the high density regime based

on the finite UEG with the FCIQMC[107, 36, 108] and DMC[109–117] methods.

Versions of coupled cluster have been applied to the UEG in the thermodynamic

limit, see e.g. [103, 118, 119]. CCSD and CCSDT have been applied to the finite 3D

UEG[107, 106, 120, 54, 121, 122]. Shepherd[122] has extrapolated finite CCSD/CCD

results in the 3D UEG to the thermodynamic limit and has compared them to Ceperley

and Alder’s DMC energies[109] (see figure 2c in Ref. [122]). Using these DMC energies

as a reference, the extrapolated CCSD correlation energy has an error of under 10%

at rs = 1.0 a0 which increases to about 20% at rs = 5.0 a0. Another recent study[54]

has performed initiator and non-initiator stochastic coupled cluster in the CCSD and

CCSDT levels on the dense 14 electron 3D UEG. The difference between CCSD and

CCSDT was found to be significant even in the low correlation regime at rs < 1.0

a0. rs is the radius of a sphere that on average contains one electron. Here, we apply

coupled cluster up to the CCSDTQ5 level which included quintuple excitations directly

to the 14 electron non-spin-polarized UEG in the range rs = 0.5 to 5.0 a0 which is

representative of some common simple solids (e.g. see Ref. [66]). We compare with

(initiator) FCIQMC[108] and MP2[107] results. Using coupled cluster levels from

CCSD to CCSDTQ5, we aim to answer the question what coupled cluster level is
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needed to accurately model simple finite solids with certain densities, represented by

the rs parameter, with coupled cluster.

For our stochastic calculations, we have made use of development versions of the

HANDE code1. We have used the cluster multispawn feature[1] and the full non-

composite cluster selection described in Ref. [1] using one MPI process divided up

into OpenMP threads when running CCMC to avoid any risk of distributed memory

parallel bias[1]. We have also run some FCIQMC calculations to compare our CCMC

results to and we used the conventional and initiator versions for FCIQMC[33, 35]

while only using non-initiator CCMC. The error bars of the data presented here were

estimated by reblocking analysis[80] using pyblock2 and the correlation energies are

obtained from the projected energy. Errors were combined in quadrature. We found

no significant population control bias using a reweighting scheme used in DMC[98] and

adapted to FCIQMC[97].

4.2 Extrapolation to Complete Basis Set Limit

Coupled cluster singles and doubles (CCSD) is the least expensive level of coupled

cluster. Owing to momentum and spin conservation, CCSD is equivalent to CCD in

the UEG. At first, we extrapolated CCSD calculations to the complete basis set (CBS)

limit for the 14 electron UEG. We then estimated the CBS limit of the other truncation

levels studied by extrapolating energy differences between truncation levels and adding

this to the CBS CCSD result. This is similar to the idea of focal point analysis as

described in e.g. Ref. [123].

Shepherd et al.[107] have shown that for MP2, the correlation energy for a finite

basis set with M spinorbitals goes as 1/M in the leading order for large M . They and

other studies[36, 108, 124, 125, 122, 54] have used this trend and shown that it also

holds reasonably well for CCSD and FCI(QMC). These studies have usually excluded

points with larger 1/M that were no longer in the region in which 1/M is a good fit.
1See Ref. [99, 5] and http://www.hande.org.uk/ for information and code.
2See https://github.com/jsspencer/pyblock for information and code.



48 Converging Coupled Cluster Energies in the Uniform Electron Gas

In this study, we have decided to modify this approach to allow higher orders of

1/M to be considered as well. This accounts for the fact that 1/M is merely a leading

order term and by adding higher orders we allow for correction terms to account for

the part of the energy not accounted for by 1/M . There are two aspects that need

to be considered when choosing the best fit curve: What polynomial are we fitting,

i.e. what is the highest order of 1/M to include, and how many points with high 1/M

should be excluded from the fit?

Starting with the lowest order polynomial to fit (1/M when fitting CCSD and a

constant when fitting coupled cluster differences), we first fit all the data points and

then start excluding points with lowest M . For each fit, we calculate χ2 over number

of degrees of freedom #d.o.f.. χ2 = ∑
i

(
f(xi)−yi

σi

)2
where yi is a data value, f(xi) is

its fitted value and σi is the standard deviation of yi[126]3. As soon as we reach a

local minimum in the χ2/#d.o.f. value, we stop removing points and note down the

value at 1/M = 0 given by the fit at the local minimum. If no local minimum can

be found before there are as few data points left as the number of fitting parameters,

then the search for a best fit for the first polynomial was unsuccessful. We then repeat

this procedure of consecutively removing data points with the next order polynomials,

initially starting with a full set of data points again. We fit linear, quadratic and cubic

polynomials and a constant as well if we are fitting to differences. Finally, we compare

the results of the fits at local minima in the number of points at 1/M = 0. If the

lowest order fit result agrees with the higher order ones within 2σ, we accept it as

the CBS result. If it does not agree with all the higher ones, we compare the second

lowest order fit result to its higher order fit results, etc. This process can continue up

comparing the CBS results from the highest two polynomials. If there is still no CBS

result at the end, then the extrapolation was not successful and a CBS value has to be

estimated (see results section for individual cases).

As an example, figure 4.1 shows the best fits with the lowest χ2/#d.o.f. for rs =

0.5 a0 CCSD and 14 electrons. The linear and the quadratic fit intercepts do not agree
3Discussions with Pablo López Ríos regarding this section and his idea of using χ2/#d.o.f. gratefully

acknowledged.
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Fig. 4.1 Extrapolating correlation energy against 1/M for rs = 0.5 a0 CCSD and 14
electrons with the best fit linear line (yellow, dashed with points, excluding three data
points) giving b0 = −0.58866(5) Eh, best quadratic fit (green, solid line, excluding two
data points) with b0 = −0.58850(6) Eh and best cubic fit (red, long dashes, excluding
one data point), giving b0 = −0.58848(7) Eh. The CBS limit is then taken to be
−0.58850(6) Eh from the quadratic fit, as the linear fit and the quadratic fit do not
agree within 2σ whereas the quadratic and cubic fits agree within 2σ. The CBS result
is shown with a light blue horizontal line that has a thickness of twice its error.

within 2σ. The quadratic and cubic fits agree which meant that we took the quadratic

fit intercept as the CBS result. We have used the curve_fit function in the SciPy 4

optimize module for curve fitting and Matplotlib[127] for plotting. The standard errors

of the correlation energy were treated as absolute and not relative weights.
4E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific tools for Python. See

https://www.scipy.org/ for more information.
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4.3 Results

Figure 4.2 shows how the differences in correlation energy between consecutive coupled

cluster levels vary with rs for different numbers of spinorbitals M . As a reference,

an accuracy of 0.01 eV/electron = 0.00037 Eh/electron is shown with dashed hori-

zontal lines. This is of a similar order of magnitude as chemical accuracy (ca. 0.04

eV/molecule[32]). To distinguish solid phases from each other, enthalpy differences of

about 0.1 eV/atom often need to be resolved and at room temperature an accuracy of

0.01 eV in the energy is desired (see Ref. [128] for details). We have therefore chosen

0.01 eV/electron as a guide for energies to be of sufficient accuracy.

The CCSD to CCSDTQ5 CBS values are summarized in table 4.1. Note that

while figure 4.2 quotes energies in energies per electron, table 4.1 shows energies for 14

electrons. First, the CCSD CBS value was found and then the CBS limit of differences

between consecutive coupled cluster levels were added on to find the CBS limit of the

other truncation levels. For rs up to 2.0 a0, earlier CCSD and CCSDT results[54] are

shown as well. MP2 results[107] and FCIQMC are given for comparison. For rs = 0.5,

1.0, 2.0 and 5.0 a0 FCIQMC values from Shepherd et al.[108] are given and additionally

for rs = 0.5 and 1.0 a0, new FCIQMC CBS results are presented for comparison. When

using the initiator approximation[35], the FCIQMC correlation energies values for a

certain number of spinorbitals M were estimated by fitting horizontal lines to energy

against number of Monte Carlo particles curves, consecutively removing data points

with the least number of particles. The energy at the global minimum in χ2/#d.o.f.

when fitting a horizontal line is taken as the energy result. The error in the average

number of particles was very small and therefore ignored. For the (i)FCIQMC results

with rs = 0.5 and 1.0 a0, the initiator approximation was used for M greater then 358

and 66 respectively. The initiator method was not used for CCMC calculations in this

study. See footnote for more details5.
5It has been noted that when a calculation was restarted, the projected en-

ergy from the last iteration before the restart was not stored correctly (see
https://hande.readthedocs.io/en/latest/release_notes/v1.2.html). The effects of this were
tested by comparing the mean of the first half of the data of one output file with the mean of



4.3 Results 51

0.5 1.0 2.0 3.0 5.0
rs/a0

−0.003

−0.002

−0.001

0.000

(∆
E

co
rr
./

el
ec

tr
on

s)
/E

h M = 66

M = 162

M = 358

M = 1030

(a) CCSD - CCSDT correlation energy difference

0.5 1.0 2.0 3.0 5.0
rs/a0

−0.0004

−0.0002

0.0000

0.0002

0.0004

(∆
E

co
rr
./

el
ec

tr
on

s)
/E

h M = 66

M = 162

M = 358

(b) CCSDT - CCSDTQ correlation energy difference

0.5 1.0 2.0 3.0 5.0
rs/a0

−0.0004

−0.0002

0.0000

0.0002

0.0004

(∆
E

co
rr
./

el
ec

tr
on

s)
/E

h M = 66

M = 162

(c) CCSDTQ - CCSDTQ5 correlation energy differ-
ence

Fig. 4.2 Coupled cluster energy per electron differences at spinorbitals M = 66, 162,
358, 1030. The dashed horizontal lines show an accuracy of 0.01 eV/electron.
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4.4 Discussion

Figure 4.2a shows that CCSD gives an accuracy worse than 0.01 eV/electron for rs

greater than 0.5 a0 as the difference between CCSD and CCSDT is greater than 0.01

eV/electron. Considering figure 4.2b, CCSDT seems to be sufficient up to rs = 2.0 a0.

As the differences in correlation energy increase in magnitude with M and the M =

162 energy for rs = 3.0 a0 is close to 0.01 eV/electron, one should be cautious about

using CCSDT for rs = 3.0 a0. Figure 4.2c shows that the difference between CCSDTQ

and CCSDTQ5 is not negligible for rs greater than 2.0 a0.

Of course, this analysis implicitly assumes that the energy is monotonically de-

creasing with coupled cluster level. If the difference to the next excitation level is

bigger than 0.01 eV/electron, we expect the difference to the true energy also to be

greater than 0.01 eV/electron. However, we found that in our case, the energy was

monotonically decreasing and the CCSDTQ5 result agrees very well with FCIQMC,

see table 4.1. This supports our approach of comparing the energy difference to the

next excitation level when assessing accuracies.

Figure 4.3 shows the difference in correlation energy found with CCSD, CCSDT

and CCSDTQ to the correlation energy found with CCSDTQ5 as a fraction of the

CCSDTQ5 correlation energy. Given that the CCSDTQ5 energy shown in table 4.1

is merely a lower bound for the true magnitude of the CCSDTQ5 energy, the errors

presented here are also lower bounds. The error in CCSD is at least 16% for rs = 5.0

a0 and for CCSDT it is still as big as about 2%. The error of CCSDTQ is small but

noticable for rs = 5.0 a0. This means that for a study of a solid with rs ≈ 4 a0 say,

e.g. sodium, CCSD may give a correlation energy that is off by over 12% and the error

with CCSDT is still over 1%. As the energy differences between coupled cluster levels

increase with rs, properties such as the lattice parameter or the bulk modulus will be

underestimated by low orders of coupled cluster.

the second half. It was found that the effect is not significant as for most of the data tested the
two means usually agreed with the energy stated (considering standard errors), see README in
https://doi.org/10.17863/CAM.14336 for more details.
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Fig. 4.3 Fractional difference of CCSD, CCSDT and CCSDTQ correlation energies to
the CCSDTQ5 correlation energy as a function of rs. Some coupled cluster correlation
energies were estimated as described in table 4.1.

As Shepherd et al.[107] already noted, for low rs, MP2 performs worse than CCSD

and vice versa for higher rs in the regime studied (see table 4.1). MP2 gives a less

accurate answer than CCSDT and higher truncation levels for all studied rs.

We present new extrapolated FCIQMC results for rs = 0.5 and 1.0 a0, which are

similar to but do not agree with Shepherd et al.’s[108] values. Similarly, our CCSD

and CCSDT values for rs = 0.5 and 1.0 a0 do not agree within 2σ with Spencer et

al.’s[54] values. Our CBS correlation energies are less negative. We can explain these

deviations by considering the shape of the extrapolation curves such as figure 4.1. Our

CCSD calculations went up to 18342/11150 spinorbitals for rs = 0.5/1.0 a0 and that

was our starting point to extrapolate higher truncations and FCIQMC from. Shepherd

et al.[108] and Spencer et al.[54] only considered M up to 4218 at most. If fewer data

points with low 1/M are present and a linear fit is employed (as Shepherd et al.[108]
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and Spencer et al.[54] did), the intercept with the y axis, the CBS energy estimate,

will be more negative than in the case where lower 1/M are present and higher fits

are allowed. Our FCIQMC values quoted in table 4.1 were found by extrapolating the

difference between the CCSDTQ/CCSDT and the FCIQMC values for rs = 0.5/1.0

a0 as CCSDTQ/CCSDT was the highest coupled cluster data set that contained the

highest M used in our FCIQMC study for rs = 0.5/1.0 a0 respectively. Had we instead

extrapolated FCIQMC directly, the results would have been −0.59497(4) Eh (instead of

−0.59467(9) Eh) with a linear fit for rs = 0.5. For this direct fit we included spinorbitals

up to M = 4218 and when we extrapolated differences, we used information from the

CCSD result with spinorbitals up to 18342. This shows that it is crucial to include

large numbers of virtual orbitals to converge to the correct answer. We believe that

the disagreement of the CCSD and CCSDT values for rs = 0.5 and 1.0 a0 with Spencer

et al.’s[54] values may also be due to initiator energies that are not converged fully. We

have not used the initiator approximation for coupled cluster data here.

After this study was published in 2017, Luo et al.[129] have compared new

(i)FCIQMC results (using a transcorrelated method) with the results here, shown in

parentheses under iFCIQMC-TC in table 4.1. They agree at least within 2σ with

our results. In collaboration with others we have used the results in this work when

benchmarking CCMC’s parallelisation behaviour[1] (see chapter 3) or showing that

density matrix quantum Monte Carlo[130–132] results tend to results presented here

as the temperature tends to zero Kelvin[5]. Also, Lee et al.[133] compared a version of

auxiliary-field quantum Monte Carlo[134, 135] results with finite coupled cluster results

shown here. Additionally, Blunt[90] has compared finite initiator results augmented by

a perturbative correction to the (i)FCIQMC results at 358 spinorbitals at rs = 0.5 a0

(agreement within 1σ) and rs = 1.0 a0 (agreement within 2σ) presented here.
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4.5 Summary and Conclusions

We have shown that CCSD and CCSDT are limited for modelling finite solids that

can be described by the 14 electron uniform electron gas with rs greater than 2.0 a0.

A comparison with CCSDTQ5 has shown that if an accuracy of 0.01 eV/electron is

desired, CCSDT is required beyond rs = 0.5 a0 and CCSDTQ is worth considering

beyond rs = 3.0 a0. At rs = 5.0 a0, CCSD only reproduces up to about 84% of the

correlation energy and CCSDT up to about 98%.

This study has demonstrated that there can be a need for coupled cluster orders

beyond CCSDT when modelling finite correlated solid-state systems. The next two

chapters show algorithmic improvements which can make these future studies more

feasible.



Chapter 5

Accelerating the Importance

Sampling in the Spawn Step

This is the first of the two main method development chapters. Here, the spawn step

was accelerated using an efficient excitation generator. This chapter (slightly modified

to fit into the format of this thesis) has been published in

• V. A. Neufeld and A. J. W. Thom. Exciting determinants in Quantum Monte

Carlo: Loading the dice with fast, low memory weights, J. Chem. Theor. Comput.

15, 1, 127-140 (2019)[3].

(Reproduced in part with permission from [3]. Copyright 2018 American Chemical Society.

ACS Articles on Request author-directed link: http://pubs.acs.org/articlesonrequest/AOR-

S8PS7M2bqqB3jTNrrjav and doi: https://doi.org/10.1021/acs.jctc.8b00844)

Alex Thom implemented the very first version of the presented excitation generator

which was heavily modified in this study. I conducted this investigation — including

modifying/further code implementations — which we both discussed/reviewed. I

have written the paper/this chapter with edits from Alex Thom. The reviewers also

contributed with helpful comments.
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5.1 Introduction

After studying the uniform electron gas, it became clear that CCSD might not be

sufficient to study solid systems unless they are weakly correlated. Periodic solids can

get expensive fast as adding a kkk point will add the number of orbitals per kkk point to

the list of orbitals M . Going from a 111 to a 222 kkk point grid, means 8 times more

orbitals to deal with. It is important to have an efficient algorithm that uses as little

memory as possible.

Here, we propose a change to the spawn step in the algorithm to use weighted

excitations, inspired by the heat bath algorithm proposed by Holmes et al.[77], and

Cauchy–Schwarz weights proposed by Smart et al.[78]. The method introduced here

has a lower computational scaling in CCMC than the heat bath excitation generators

and a significantly lower memory cost. The spawn part of the algorithm explores the

space of possible determinants/excitors. For a given determinant, it decides how the

determinants connected via the hamiltonian become involved in the wavefunction by

becoming occupied. As Holmes et al.[77] already noted, it is not efficient to give all

connected determinants/excitors an equal probability of being considered as some are

more important for the dynamics than others. They have shown that their heat bath

weighting when selecting states to spawn to can greatly improve the overall efficiency.

Remember that a Slater determinant |Dmmm⟩ is connected to another determinant

|Dnnn⟩ by their connecting Hamiltonian element ⟨Dnnn| Ĥ |Dmmm⟩ as part of the spawn step

and the algorithms to choose |Dnnn⟩ given |Dmmm⟩ are called excitation generators. The

probability of this generation is denoted p(nnn|mmm) = pgen after which a spawn occurs

with probability pspawn ∝ δτ |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

, with time step δτ .

For an efficient calculation, pspawn should have a reasonable value. If pspawn > 1,

multiple particles are spawned at the same time, known as a “bloom”, which is

undesirable as it leads to less controllable population dynamics. If, however, pspawn

is small, determinants are selected with no resulting spawn, and the algorithm is

inefficient. pspawn therefore ideally has a constant value, which can be altered by the

time step δτ . Hence, it is desirable to make pgen proportional to | ⟨Dnnn| Ĥ |Dmmm⟩ | rather
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than selecting determinants uniformly. Holmes et al.[77] have introduced a heat bath

sampling algorithm which weights the probability of choosing |Dnnn⟩ with approximately

| ⟨Dnnn| Ĥ |Dmmm⟩ |, but requires pre-computation of Hamiltonian elements leading to a

significant storage cost of O(M4) (which is of the same order as stored integrals if the

code does not calculate them on-the-fly) and computational cost of O(N) where M

and N are the size of the basis set and number of electrons respectively. Smart et

al.[78] have reported the use of the Cauchy–Schwarz-like inequalities to provide upper

bounds for | ⟨Dnnn| Ĥ |Dmmm⟩ | with weights calculated on-the-fly. This reduces the storage

cost while being linearly scaling in the number of orbitals.

Inspired by these ideas, excitation generators were investigated with weights gener-

ated on-the-fly using Cauchy–Schwarz and Power–Pitzer[136] inequalities to approx-

imate | ⟨Dnnn| Ĥ |Dmmm⟩ | whose computational cost scales linearly with the number of

spinorbitals in the basis, M . We then present a new excitation generator that uses

this Power–Pitzer inequality but is of low computational order, O(Nex.) in the case

of CCMC or O(N) when using FCIQMC, with memory cost O(M2) which is also

below the heat bath memory scaling. Nex. for a determinant or excitor is the number

of electrons excited with respect to the reference. For a truncated coupled cluster

theory Nex. does not scale with system size1. In a single-reference calculation, the

reference determinant carries the most weight in the wavefunction and the majority of

spawnings occur from determinants within a few electrons of excitation of this. We

therefore may pre-compute excitation weightings based on the reference determinant,

which shares the majority of electrons with nearby excited determinants, and then

map the excitation to apply to any excited determinant, |Dnnn⟩. By this method, similar

weights to the heat bath algorithm and weights inspired by a Power–Pitzer inequality

are employed and the spread in |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

is minimised at a reduced computational

and memory cost.

Rather than integer-valued, real-valued excip amplitudes[85, 86] have been used

and the full non-composite version of the CCMC algorithm[1] with truncated and even
1We note that in this suboptimal implementation here, this new excitation generator does not

scale as O(Nex.) with CCMC.
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selection[92] has been applied. We have varied the shift damping automatically to

reduce the variance of the projected energy2. We have also used MPI and OpenMP

parallelization[1]. The results here were checked for population control bias using

a reweighting scheme by Umrigar et al.[98] and Vigor et al.[97]. Data has been

reblocked[80] implemented in pyblock3 to estimate error bars. Our CCMC and FCIQMC

calculations were done with the HANDE code[99, 5] which is open source4. The integral

files needed were created with PySCF[93]. When applicable, localization has been

applied using a Boys[137] localization function in PySCF[93].

5.2 Excitation Generators

As mentioned above, in the spawn step, the excitation generator selects a determinant

|Dnnn⟩ connected to |Dmmm⟩ with probability pgen. The spawn probability is proportional

to δτ |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

. In this paper, we present a method that aims to use an optimal

pgen so that more important determinants are selected with a higher probability. An

introduction to excitation generators in FCIQMC is given by Booth et al.[33, 34].

The idea of excitation generation and dividing by the generation probability was also

discussed in e.g. Refs[77, 138–141] and a transition with uniform selection is also done

by the configuration state function projector Monte Carlo method of Ohtsuka et al.[38]

or by the Monte Carlo configuration interaction by Greer[37]. Kolodrubetz et al.[140]

used a weighted excitation generator that – among other distributions – used the

inverse momentum squared as a weight. Booth et al.[34] also considered weighting

the excitation generation by Hamiltonian matrix elements by enumerating a subset of

excitations with the magnitudes of these Hamiltonian elements. Due to the cost of

finding pgen., this idea was not pursued further. A version of the uniform excitation

generators described here, is explained in detail in Ref. [34].
2This feature has been implemented by Charles Scott.
3For code, see https://github.com/jsspencer/pyblock
4See http://www.hande.org.uk/ and https://github.com/hande-qmc/hande for information and

code
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The spawn probability is only non-zero if ⟨Dnnn| Ĥ |Dmmm⟩ is non-zero. The Hamil-

tonians, Ĥ, considered here only contain constant, one body, and two body terms.

⟨Dnnn| Ĥ |Dmmm⟩ can therefore only be non-zero if |Dnnn⟩ and |Dmmm⟩ differ by at most two

orbitals. To select a suitable |Dnnn⟩ for |Dmmm⟩ to spawn to, we can create a single or a

double excitation from |Dmmm⟩ to generate |Dnnn⟩ (nnn ̸= mmm). Any other excitation would lead

to a zero spawn probability. Except for the “original” heat bath excitation generator,

all excitation generators discussed here create a single or double excitation from |Dmmm⟩

to generate |Dnnn⟩ with probability psingle or 1 − psingle respectively. As suggested by

Holmes et al.[77], we aim to approximately select pspawn,single and pspawn,double by setting

psingle, such that the distribution of excitations is as best as possible. For a single

excitation where electron in spinorbital i is excited to spinorbital a,

pgen,single = psinglepmethodp(i)p(a|i). (5.1)

pmethod contains additional factors depending on the selection method of i and a.

In the case of a double excitation, ij → ab, as i and j ideally come from the same set

of orbitals (those occupied in the determinant) and so do a and b (those unoccupied in

the determinant), first ij and then ab are selected in all excitation generators discussed

here. That means that for example while the selection order between i and j can vary,

a will not be selected before either i and j. The possible orders are therefore ijab,

ijba, jiab and jiba. While the first selected occupied is called i and the second j, their

indistinguishability has to be taken into account when calculating pgen:

pgen,double =

(1 − psingle)pmethod(p(i)p(j|i)p(a|i, j)p(b|a, i, j)+

p(i)p(j|i)p(b|i, j)p(a|b, i, j)+

p(j)p(i|j)p(a|j, i)p(b|a, j, i)+

p(j)p(i|j)p(b|j, i)p(a|b, j, i)).

(5.2)
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In a rather basic implementation, the spinorbitals with electrons to excite i (and

j) and the spinorbitals to excite to a (and b) are selected with uniform probabilities.

The excitation generator that we call not renormalised excitation generator or simply

no. renorm. here, when doing a double excitation, first selects i and j as a pair with

uniform probability from the set of occupied orbitals. In that case,

pmethod(p(i)p(j|i) + p(j)p(i|j)) = 2
N(N − 1) , (5.3)

where the number of electron is N . If both i and j have the same spin, σ, then a

is uniformly chosen from the set of virtual orbitals of that spin, otherwise it can be

any virtual orbital. b is then selected uniformly from the set of orbitals (excluding a)

with required spin and symmetry. With this selection of b, it is possible that after the

selection of i, j, and a, there are no possible selections of b, or that in fact an occupied

orbitals has been selected as b. In such cases, it is a forbidden excitation generation.

In that case the spawn attempt will be unsuccessful (we set | ⟨Dmmm|H |Dnnn⟩ | = 0).

The choice of how to select which electrons to excite and to which spinorbitals

they are excited is is entirely arbitrary (assuming all valid excitations are possible),

as long as the probability with which this selection has been done is known and pgen

is then calculated accordingly. As an alternative to the not renormalised excitation

generator (no. renorm.), most forbidden excitations (which lead to unsuccessful

spawns) can be avoided by generating a different excitation and renormalising the

appropriate probabilities. This is called the renormalised excitation generator or in

short, renorm.. Again, see Booth et al.[33, 34] for an in-depth description of uniform

excitation generators.

In the following subsections, we describe the heat bath excitation generators and

the heat bath/uniform Power–Pitzer excitation generators which follow the ideas of

Alavi and others. Finally, the heat bath Power–Pitzer ref. excitation generator is

presented, which pre-computes some weights based on the reference determinant and

therefore has a very low computational cost not scaling with system size (O(Nex.) when
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using CCMC or scaling as O(N) for FCIQMC instead of O(M)). Its memory cost is

significantly less than heat bath excitation generators, being O(M2) instead of O(M4).

Further uniform excitation generators consider the relationship of the spin of ij in

more detail. In the case of a double excitation, Hamiltonian matrix elements tend to

be bigger if i and j do not have parallel spins. This is because following Slater-Condon

rules[57, 58], the Hamiltonian matrix element is reduced to a sum of two terms of

opposite sign in the case of parallel spins (⟨ij|ab⟩ − ⟨ij|ba⟩) and one term if the spins

are not parallel (⟨ij|ab⟩). It might therefore be advisable to select anti-parallel spin

electrons with a greater probability than parallel ij. Alavi, Booth and others[34]5 had

the idea of determining whether spins are antiparallel or parallel first when selecting i

and j. The no. renorm. spin and renorm. spin excitation generators are modifications

of no. renorm. and renorm. excitation generators, where instead of finding i and j as

a pair from the set of occupied orbitals, it is first decided whether they should have

parallel spins or not. With probability pparallel, ij are either selected as a pair from the

set of occupied α (probability Nα

N
) or from the set of occupied β orbitals (probability

1 − Nα

N
= Nβ

N
) where Nα and Nβ are the number of α and β electrons respectively. This

can lead to forbidden excitations followed by failed spawning attempts if there is only

one electron of one type of spin. Here, pparallel is set as the fraction of Hijab where i

and j have parallel spins.

Table 5.1 gives an overview over the weighted excitation generators presented here.

This table should be understood together with the following descriptions in the next

subsections.

5.2.1 Heat Bath Excitation Generators

The heat bath excitation generators aim to get the orbital selection weights as close

as possible to the Hamiltonian matrix element | ⟨Dnnn| Ĥ |Dmmm⟩ | with the aim of making

part of the spawn probability |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

as close as possible to a constant. In the case

5Personal Communication with Ali Alavi and Pablo López Ríos. This is also implemented in NECI
https://github.com/ghb24/NECI_STABLE.
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of a double excitation ij → ab, pgen can be rewritten as

pgen,double =

p(i) × p(j|i) × p(a|ij) × p(b|ija) =∑
jab Hijab∑
ijab Hijab

×
∑

ab Hijab∑
jab Hijab

×
∑

b Hijab∑
ab Hijab

× Hijab∑
b Hijab

,

(5.4)

where Hijab = | ⟨Dnnn| Ĥ |Dmmm⟩ | where |Dmmm⟩ and |Dnnn⟩ differ by the excitation ij → ab. In

the case of heat bath excitation generators,
∑

jab
Hijab∑

ijab
Hijab

with certain limits in the sums

is an approximation for p(i) and so on.

Here, we distinguish between three different heat bath excitation generators de-

scribed by/based on Holmes et al.[77]. The “original” heat bath excitation generator

as introduced and described in detail by Holmes et al.[77] (in short heat bath), the heat

bath excitation generator that decides first whether a single or a double excitation is

performed and which samples singles uniformly which is mentioned by Holmes et al.[77]

(heat bath uniform singles) and finally, the one that first decides whether to do a single

or double excitation and samples singles exactly according to their Hamiltonian matrix

element, heat bath exact singles6. For more information and an in-depth description,

see Ref. [77].

In all three heat bath excitation generators, all possible contractions of Hijab

appearing in equation 5.4 are pre-computed and stored. More specifically, Hi =∑
jab Hijab, Hij = ∑

ab Hijab, Hija = ∑
b Hijab and Hijab are pre-computed where i, j, a

and b can be any spinorbital in the calculation. In all sums i ̸= j ̸= a ̸= b. The alias

method[142–145, 77] is used and alias tables are pre-calculated for selecting a (given

ij) with weights Hija and one for selecting b (given ija) with weights Hijab (which is

of O(M4)). The look-up time with the alias method is of O(1). The alias tables for

selecting i and selecting i given j are computed on-the-fly using pre-computed weights

in O(N) time. The alias table for selecting i then only considers Hi from the set of
6Idea by Alavi and co–workers, this was suggested to us as an alternative by Pablo López Ríos

(personal communication).
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occupied orbitals for i and when selecting j given i, the alias table only considers Hij

with occupied j.

When using the heat bath excitation generator to find an excitation, first an alias

table is created on-the-fly for i as described above and then i is selected. We proceed

similarly for j. Using the pre-computed alias table with weights Hija, a is found. If

this orbital is occupied, we have a forbidden excitation and the spawn attempt was

unsuccessful. Only at this stage it is decided whether to attempt a single or a double

excitation. In the algorithm by Holmes et al.[77], a single excitation is attempted with

probability Hia

Hia+Hija
and a double excitation is attempted with probability Hija

Hia+Hija
if

Hia < Hija where Hia = | ⟨Dkkk| Ĥ |Dmmm⟩ | with |Dmmm⟩ and |Dkkk⟩ connected by the excitation

i → a. However, if Hia > Hija, both a double and a single excitation are attempted7.

In our implementation in HANDE[99, 5], that approach was modified to only allow

one excitation attempt per excitation generator call. If Hia ≥ Hija, instead of choosing

to attempt a single (i → a) and a double (ij → ab) excitation, a single or a double

excitation is attempted with probability 1
2 respectively. The rest follows Holmes et

al.[77]. Either a single excitation i → a is attempted now or b is selected from pre-

computed weights and a double excitation ij → ab (provided b is not occupied) is

attempted.

The heat bath excitation generator relies on single excitations being less significant.

It has the major drawback in that it potentially has a bias if there exists no j to be

selected after i and before a if i → a is valid. This is explained in more detail in Ref.

[77]. Our conservative but robust test for bias as implemented in HANDE, counts the

number of j for which ∑b Hijab is non zero for given ia. If this number is greater than

the number of virtual orbitals, then there will always be an occupied j to be selected

for allowed i → a and there is no bias.
7It is not clear from Holmes et al.[77] what happens if Hia = Hija



5.2 Excitation Generators 67

5.2.2 On-the-fly Power–Pitzer Excitation Generators

While bringing |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

closer to a constant as uniform excitation generators[77],

heat bath excitation generators suffer from a large memory cost (O(M4)). Alavi and

Smart et al.[78] had the idea of calculating approximate weights on-the-fly in O(M)

calculation time which has a lower memory cost. This is for example mentioned by

Blunt et al.[146], Holmes et al.[77], Holmes[147] and Schwarz[148]. Alavi and Smart et

al.[78] proposed calculating Cauchy–Schwarz-like upper bounds on the two body part

of the Hamiltonian on-the-fly when doing a double excitation. Here, we also describe an

excitation generator that uses an inequality derived by Power and Pitzer[136] instead. It

effectively differs from Cauchy–Schwarz excitation generators as described here by the

usage of exchange rather than Coulomb integrals. We note that the Cauchy–Schwarz

excitation generators mentioned here might/do not quite replicate excitation generators

of Alavi et al.8 which are yet to be fully published and so our description can only be

different, see alternative (differing) descriptions by Schwarz[148] or Holmes[147].

Given that i, j, a and b are different, the only non-zero part of the Hamiltonian

element ⟨Dmmm| Ĥ |Dnnn⟩ in a double excitation are the Coulomb integral ⟨ij|ab⟩ and the

exchange integral ⟨ij|ba⟩ according to Slater-Condon rules[57, 58]. Here, the notation

⟨ij|ab⟩ =
∫ ϕ∗

i (rrr1)ϕ∗
j(rrr2)ϕa(rrr1)ϕb(rrr2)drrr1drrr2

|rrr1 − rrr2|
, (5.5)

is used with one electron orbitals/spinorbitals ϕ that make up Slater determinants |Dx⟩.

en example of such a weight used by Alavi and others for ij → ab is a Cauchy–Schwarz

upper bound on ⟨ij|ab⟩ given by

√
| ⟨ia|ia⟩ | | ⟨jb|jb⟩ | ≥ | ⟨ij|ab⟩ |. (5.6)

The weights are such that a can be chosen (almost) independently of b and vice

versa which makes the algorithm linear scaling in the number of spinorbitals. A
8Personal communication with Ali Alavi and Pablo López Ríos.
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Power–Pitzer[136] inequality is

√
| ⟨ia|ai⟩ | | ⟨jb|bj⟩ | ≥ | ⟨ij|ab⟩ |. (5.7)

Exchange integrals are lower or equal in magnitude than Coulomb integrals (see e.g.

Ref. [149]) which means that exchange integrals are the tighter upper bound for

| ⟨ij|ab⟩ |. The two body term in the Hamiltonian is ⟨ij|ab⟩ − ⟨ij|ba⟩. When a and b

have opposite spin, the two body term reduces to ⟨ij|ab⟩ and its Power–Pitzer upper

bound is used as the weight. If a and b have the same spin, both orderings, ab and

ba will generate the same excitation, and this is included in pgen. This section gives a

detailed description of the algorithm.

i and j can be selected uniformly or with the heat bath weightings producing a

family of excitation generators. We denote by uniform Cauchy–Schwarz and uniform

Power–Pitzer excitation generators which select them uniformly, like the renorm.

excitation generator, and by heat bath Cauchy–Schwarz and heat bath Power–Pitzer

those which select them as the heat bath excitation generators do with pre-calculated

weights with memory cost of O(M2)9. The computational scaling is O(M) in both

cases.

The Power–Pitzer and Cauchy–Schwarz excitation generators first decide whether

to attempt a single or a double excitation according to psingle. For single excitations,

the renorm. excitation generator is employed. When attempting double excitations,

i and j are selected either uniformly or with heat bath weights out of the occupied

orbitals of |Dmmm⟩. Then, a is selected out of the set of virtual spinorbitals aσi,virt. with

the same spin as i. a is selected with the probability of

p(a|ij) = p(a|i) =

√
| ⟨ia|ai⟩ |∑

a=aσi,virt.

√
| ⟨ia|ai⟩ |

(5.8)

9The idea of selecting ij like the heat bath excitation generator was communicated by Pablo López
Ríos (personal communication).
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when using Power–Pitzer excitation generators or

p(a|ij) = p(a|i) =

√
| ⟨ia|ia⟩ |∑

a=aσi,virt.

√
| ⟨ia|ia⟩ |

(5.9)

when using Cauchy–Schwarz excitation generators. b, the second orbital to excite to, it

selected out of the set of spinorbitals b ̸=a,σj ,sym. of the same spin as j and the required

symmetry to conserve overall symmetry and not equal to a. The weights are given by

⟨jb|jb⟩ (Cauchy–Schwarz) or ⟨jb|bj⟩ (Power–Pitzer). If the total weight when finding

b is zero (i.e. there are no spinorbitals with the required spin and symmetry or only

the spinorbitals found as a has that spin and symmetry) or if the found b is already

occupied, the spawn attempt is unsuccessful. Again, orbitals a and b were selected

using their weights with the alias method.

The performance of the four excitation generators described in this subsection,

uniform Cauchy–Schwarz, heat bath Cauchy–Schwarz, uniform Power–Pitzer, and

heat bath Power–Pitzer, were then tested, using a chain of three water molecules in

the cc-pVDZ basis[63], whose molecular orbitals have been localized. The excitation

generators all come with a low memory cost, which is O(M) temporarily or O(M2)

and all scale as O(M) in computational time. The distribution of |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

, which

should ideally be constant, was compared for the four excitation generators. Figure 5.1

shows the histograms (excluding |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

= 0) with linear and logarithmic frequency

scales. The bottom graph shows the all excitation generators have similar looking tails

to both sides, the heat bath Power–Pitzer having the longest tail at big |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

.

However, the number of events in bins above the maximum |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

filled bin for the

uniform Power–Pitzer excitation generator — which has the lowest maximum — is

fewer than 100 events which is not significant relatively speaking so if not using initiator

approximations there should not be a noticeable effect. The top graph demonstrates

that the heat bath Power–Pitzer gives the sharpest peak and makes |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

closest

to a constant of the excitation generators. Only non-zero allowed events are shown in

figure 5.1. Table 5.2 shows what fraction that is of the total number of events (second
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|〈Dnnn|Ĥ|Dmmm〉|
pgen.

/
Eh

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
F

re
q
u

en
cy
/1

06
heat bath P.P.

uniform P.P.

heat bath C.S.

uniform C.S.

10−10 10−7 10−4 10−1 102 105

|〈Dnnn|Ĥ|Dmmm〉|
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Fig. 5.1 Comparison of the histograms of |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

for the Cauchy–Schwarz (C.S.) and
Power–Pitzer (P.P.) on-the-fly excitation generators. ij are either selected uniformly or
using heat bath. The bin middles on the |⟨Dnnn|Ĥ|Dmmm⟩|

pgen
axis are used for the data points. The

computational scaling of all excit. gens. here is O(M). CCSD was performed on three water
molecules in the cc-pVDZ basis using localized MOs. The values were logged for one MC
iteration. The size of the bins is logarithmic. Bottom graph took the log of the frequency
whereas the top graph did not. They both show the same data. All of them were restarted
from the same calculation and then equilibrated before taking data. |⟨Dnnn|Ĥ|Dmmm⟩|

pgen
= 0 data is

not shown which includes forbidden excitations. psingle was set to be the same when running
which was corrected in post-processing to make the mean of finite |⟨Dnnn|Ĥ|Dmmm⟩|

pgen
for single and

double excitations approximately coincide which did not change psingle values by more than
about 30%.
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Table 5.2 Fraction of allowed and fraction of non-zero allowed spawn events, both
with respect to total number of spawn events. The latter represents the spawn events
depicted in figure 5.1. heat bath Cauchy–Schwarz and uniform Cauchy–Schwarz and the
Power–Pitzer excitation generators have been combined to C.–S. and P.–P. respectively.
Individual data points have been rounded to the second decimal place. If a range is
given they rounded to either value in the range.

#allowed
#total events #allowed non−zero

#total events
C.–S. 0.80 0.69–0.72
P.–P. 0.68–0.69 0.68–0.69

column) and what fraction of events are allowed which includes the allowed but zero
|⟨Dnnn|Ĥ|Dmmm⟩|

pgen
events (first column). Both the Cauchy–Schwarz and the Power–Pitzer

excitation generators have a similar fraction of non-zero allowed events. The Power–

Pitzer excitation generators have more forbidden events but of those that are allowed,

more are non-zero. A big source for forbidden events is the selection of b which is

selected from the set of orbitals of required spin and symmetry which can be occupied.

An event is then forbidden if b selected is occupied. Our implementation could be

further improved by excluding occupied orbitals from that selection. In the results

section we will let heat bath Power–Pitzer represent all these four excitation generators

introduced in this subsection.

5.2.3 Pre-computed Power–Pitzer Excitation Generator

Even with their reduced memory requirements, the above excitation generators still

add a considerable cost to calculations, and we seek a way to reduce this further. We

now introduce an O(N) Power–Pitzer excitation generator, heat bath Power–Pitzer

ref. , where N is the number of electrons. This can even be modified to be O(Nex.)

where Nex. is the number of electrons excited with respect to the reference if excitations

instead of determinants were stored in our implementation. Within a routine coupled

cluster calculation, the maximum Nex. does not depend on system size. This excitation

generator combines advantages of heat bath Power–Pitzer where a bias check is not

required beforehand (but is with the “original” heat bath excitation generator) and
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which has a significantly lower memory cost with those of the lower computational

scaling of the heat bath excitation generators, further improving upon them. We make

use of the single-reference nature of coupled cluster where the reference determinant

|D000⟩ is more important than any other determinant by pre-computing some weights

based on the reference determinant. Pre-computed weights include heat bath and

Power–Pitzer weights, for selecting the orbitals to excite from and to in a double

excitation. Spinorbitals are first found by pretending the reference determinant is the

determinant we are exciting from and are then mapped between the current determinant

and the reference determinant when it is appropriate. The memory cost is O(M2)

while the computational cost when spawning is only the mapping of the reference

|D000⟩ to the actual determinant |Dmmm⟩ which is O(N). Since weights are based on one

determinant, it is not costly to pre-calculate weights for single excitations as well. This

is a considerable advantage over the on-the-fly Power–Pitzer and heat bath excitation

generators that either do single excitations uniformly, exactly (which is costly) or partly

based on double excitation weights.

In this algorithm, two frames of reference are considered. In the first frame, the

reference frame, which is denoted by a prime, excitations are from the reference

determinant, i.e. |Dmmm′⟩ = |D000⟩. In this frame, a double excitation would be i′j′ → a′b′.

In the second frame, the simulation frame, the actual frame the calculation is in,

excitations are from |Dmmm⟩ and that excitation is ij → ab. For selecting some orbitals,

the weights of the orbitals in the reference frame are used and its spinorbitals are

mapped to the simulation frame to find the actual excitation as explained in the next

paragraph.

In HANDE, there is a list of orbitals that are occupied in the reference, usually

approximately ordered by one electron energies, and there is an equivalent ordered list

with orbitals occupied in the current determinant |Dmmm⟩. The localized orbitals here

were ordered by approximate orbital energies, given by the expectation value of the

Fock operator. Every time |Dmmm⟩ is changed, two new (energy ordered) lists RD and

CD are created, one (RD) containing all orbitals that are occupied in the reference
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Fig. 5.2 Selecting i and j with heat bath Power–Pitzer ref. excitation generator for a
double excitation. First i′ is selected, occupied in the reference determinant |D000⟩ and
translated to i, occupied in the current determinant, |Dmmm⟩. i′ and i are shown with
dashed green circles. In this case, i′ = i. Then j′ is found and translated to j. As j′ is
not occupied in |Dmmm⟩, it is mapped to the next orbital of the same spin occupied in
|Dmmm⟩ but not in |D000⟩. j′ and j are shown with solid purple circles. Here j′ ̸= j. Drawn
using Inkscape, https://inkscape.org/ [Accessed: 11.12.2019].

but not in |Dmmm⟩ and another list (CD) of the same size with all orbitals occupied in

|Dmmm⟩ but not the reference determinant. Orbitals with the same positions in these two

lists are made to have the same spin by swapping orbitals in the list CD if necessary.

If necessary, orbitals are translated by a one-to-one mapping between these two lists. If

i′ is not only occupied in the reference but in |Dmmm⟩ as well, i′ = i. If not, the position i′

has in list RD is translated to the orbital with the same position in list CD. Figure 5.2

shows the translation of i and j in a double excitation in the two frames of reference

pictorially. Note that this is the only part of the excitation generator that is not O(1)

but O(N), mainly arising due to the creation of the two lists. The computational cost

is reduced to O(1) if a determinant is reused. Alternatively, if, as mentioned previously,

each excitor is not represented by a determinant but rather the lists RD or CD from

the beginning the scaling is reduced to O(Nex.) which is the cost of finding the correct

mapping from one list to the other.
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The following quantities for single excitations are pre-computed:

wi′,s =
∑

a

 1
njb

∑
j=jocc.ref.b=bvirt.ref.

⟨Db
j| Ĥ |Dab

i′j⟩

 , (5.10)

where i′ is an occupied orbital in the reference and the sum over a is over all orbitals with

allowed excitation i′ → a. njb is N(M−N). |Db
j⟩ differs from the reference determinant

by the single excitation j → b. We decided to not sum over single excitations from

the reference as in the case of self-consistent field reference determinants, Brillouin’s

theorem would mean that the weights would be (close to) zero. We assume Brillouin’s

theorem when evaluating the weights. Assuming the system is single referenced, we

might assume that a doubly excited determinant might be second most important

after the reference determinant. The sum is therefore over all possible double excited

determinants trying to connect to a determinant slightly closer to the reference via a

single excitation. For selecting a,

wa=aσ,sym.,i,s = 1
njb

∑
j=jocc.ref.,b=bvirt.ref.

⟨Db
j| Ĥ |Dab

ij ⟩ , (5.11)

is pre-computed where i is now an occupied orbital in the current determinant which

will have been selected before wa=aσ,sym.i,s is needed. Given that the current determinant

is not known at this stage, this is pre-computed for any orbital i. a is then selected

from the orbitals of allowed spin and symmetry for which i → a is valid. Alias tables

are then pre-computed for wi′,s and wa=aσ,sym.i,s.

When running the excitation generator, it is first decided whether a single or double

excitation is attempted with probability psingle or 1 − psingle respectively. If a single

excitation was chosen, i′ is first selected in the reference frame from the occupied

orbitals in the reference using the alias table constructed with weights wi′,s. i′ is then

mapped to the corresponding occupied orbital in the current determinant i in the

simulation frame.
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Once i is known, a is selected using the pre-computed alias table with wa=aσ,sym.i,s. Of

course, a could be occupied. If that is the case, the excitation attempt was unsuccessful.

Otherwise, i → a is found and the generation probability is

pgen,single =

psingle × wi′,s∑
i′=i′

occ.ref.
wi′,s

×
wa=aσ,sym.,i,s∑

a=aσ,sym.
wa=aσ,sym.,i,s

.
(5.12)

For double excitations, four weight tables are pre-computed. For the selection of

i and j, heat bath weights are pre-computed, assuming the reference determinant is

fully occupied. Two orbitals i′ and j′ occupied in the reference are found and then

mapped to the actual determinant that is occupied. For the virtual orbitals a and

b, alias tables based on Power–Pitzer weights are pre-calculated for all spinorbitals.

Before selecting a, the actual i is known and can be substituted into pre-computed

weights
√

| ⟨ia|ai⟩ | to find a. The memory cost is O(M2). No mapping is necessary

for a and b. Again, if a or b are occupied or b is equal to a or if there is not suitable

orbital for b, the spawn attempt was unsuccessful.

Again, orbitals i′j′ are part of the reference frame, where the reference determinant

is occupied, and ij are the equivalent spinorbitals in the actual frame, where the actual

determinant we are exciting from is occupied. i′j′ are first found in the reference

frame using heat bath weights and then they are mapped to the actual frame. ab are

found with Power–Pitzer weights in the actual frame. All weights are pre-computed.

This appendix describes the details of generating the double excitation. For i′, the

pre-computed weights are

wi′,d =
∑

j′=jocc.ref.,̸=i′ ,a̸={i′,j′},b ̸={i′,j′,a}

Hi′j′ab (5.13)

i′ is selected from the set of occupied orbitals in the reference with a sum over j′, the

set of occupied orbitals in the reference other than i′. a and b out of the set of all

orbitals (not just virtual) are summed over, provided they don’t equal i′, j′ or each
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other. For j′,

wj′i,d =
∑

a̸={i,j′},b ̸={i,j′,a}

Hij′ab (5.14)

is pre-calculated which is of memory scaling order O(NM). For both wi′,d and wj′i,d,

a minimum weight is set in case the total weight for selecting i′ or j′ respectively in

the reference frame is zero but selecting the equivalent i and j in the simulation frame

would be allowed.

To select a and b, Power–Pitzer weights are pre-calculated. For a,

wa,i,d =
√

| ⟨ia|ai⟩ | (5.15)

where wa,i,d is zero if i = a. ia are from the set of all spinorbitals and a is restricted to

the set of the same spin as i. The memory cost is simply O(M2). Similarly, for b

wb,j,sym.,d =
√

| ⟨jb|bj⟩ | (5.16)

where wb,j,d = 0 if b = j and b is from the set of all spinorbitals with the same spin as

j. wb,j,d are arranged in such a way that b’s of the required symmetry later can readily

be looked up. Alias tables for all these weights for single and double excitations are

pre-computed.

In the case of a double excitation, first i′, an occupied orbital in the reference frame,

is selected using wi′,d. i′ → i is mapped to an occupied orbital i in the simulation

frame if required. Then, j′ is found using the pre-computed alias table for wj′i,d and

map j′ → j if needed. i and j are ordered so that j has a higher or equal index in the

determinant list as i. Using i and wa,i,d, a is found using pre-computed alias tables

out of all spinorbitals with the same spin as i. If a is occupied, the spawn attempt

was unsuccessful. The symmetry that b should have is then determined and using

the pre-calculated alias tables for wb,j,sym.,d which give us a b of the correct symmetry

(and spin), b is found from the set of all spinorbitals with required spin and symmetry.
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Again, if b is occupied or equal to a or if there is not suitable orbital for b, the spawn

attempt was unsuccessful.

Overall, this is an excitation generator that is both weighted and can scale as

O(Nex.) in CCMC which does not scale with system size. In FCIQMC the scaling is

still low, O(N). The memory cost is also relatively small, O(M2).

5.3 Results and Discussion

To compare the effectiveness of the excitation generators discussed, water chains were

then studied in a cc-pVDZ basis set[63] whose MOs have been localized. Figure 5.3

shows a histogram of |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

for three waters with the four uniform excitation

generators, the heat bath Power–Pitzer excitation generator (which had the sharpest

peak out of the O(M)/on-the-fly excitation generators), the heat bath Power–Pitzer

ref. and the two heat bath excitation generators that do not suffer from bias. The

“original” heat bath excitation generator was rejected by our bias test as it was not clear

whether all allowed single excitations can be created. Considering a logarithmic scale

in |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

, the top graph in figure 5.3 clearly shows that the uniform excitation

generators produce a bigger spread in |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

than weighted excitation generators

(Power–Pitzer or heat bath).

The heat bath excitation generators produce the sharpest peak. The heat bath

uniform singles excitation generator, that samples single excitations uniformly, shares

the main peak with the heat bath exact singles excitation generator, that samples

single excitations exactly, but has a larger spread around that peak caused by the

uniform sampling of single excitations. The heat bath exact singles excitation generator

produces two sharp peaks, both containing data from single excitations which were

treated exactly here. The reason why this is not one sharp peak is that in an ideal case

pgen. =
∣∣∣∣∣ ⟨Dnnn| Ĥ |Dmmm⟩∑

n ⟨Dnnn| Ĥ |Dmmm⟩

∣∣∣∣∣ (5.17)
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Fig. 5.3 Comparison of the histograms of |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

for various excit. gens. The bin middles

on the |⟨Dnnn|Ĥ|Dmmm⟩|
pgen

axis are used for the data points. CCSD was performed on three water
molecules in the cc-pVDZ basis using localized MOs. The values were logged for one Monte
Carlo iteration. The size of the bins is logarithmic. Bottom graph took the log of the
frequency whereas the top graph did not. They both show the same data. The frequency
axis in the case is truncated in the top graph. Most of them were restarted from the same
calculation and then equilibrated before taking data. heat bath exact singles was restarted
from an equilibrated heat bath uniform singles but not equilibrated since it is very slow.
|⟨Dnnn|Ĥ|Dmmm⟩|

pgen
= 0 data is not shown which includes forbidden excitations. psingle was set to be

the same when running which was corrected in post-processing to make the mean of finite
|⟨Dnnn|Ĥ|Dmmm⟩|

pgen
for single and double excitations approximately coincide which did not change

psingle values by more than 30%.
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Table 5.3 Fraction of non-zero allowed spawn events, both with respect to total number
of spawn events. The latter represents the spawn events depicted in figure 5.3. The
renorm. and renorm. spin have been combined to renorm. and similarly for not.
renorm.. P.–P. means Power–Pitzer and heat b. is heat bath. Individual data points
have been rounded to the second decimal place. If a range is given they rounded to
either value in the range.

#allowed non−zero
#total events

heat b. P.–P. ref. 0.66–0.67
heat b. P.–P. 0.69
heat b. uniform singles 0.72
heat b. exact singles 0.72
renorm. 0.69–0.72
not. renorm. 0.54–0.57

which means that
| ⟨Dnnn| Ĥ |Dmmm⟩ |

pgen
≈ 1

|∑n ⟨Dnnn| Ĥ |Dmmm⟩ |
(5.18)

in the case of an ideal excitation generator. This quantity depends on |Dmmm⟩ and

can therefore not be a constant in general unless the selection step in the CCMC or

FCIQMC algorithm is adapted as well. Both heat bath excitation generators here

have a large memory scaling (O(M4)) and heat bath exact singles which produces the

sharpest peak in the histogram has a computational scaling of O(MN2) (FCIQMC and

in this implementation) or O(MNNex.) (ideal implementation CCMC) which makes

the heat bath exact singles excitation generator not practical.

The main peak that the two Power–Pitzer excitation generators produce is wider

than with the heat bath excitation generators but it is significantly more compact that

what the uniform excitation generators give. The heat bath Power–Pitzer ref. excitation

generator has a shorter tail on the low end but a slightly wider tail on the higher end.

It has fewer than 250 events in bins with bigger |⟨Dmmm|Ĥ|Dnnn⟩|
pgen

than the highest bin that

has an event with the heat bath uniform singles excitation generator. The heat bath

Power–Pitzer excitation generator has fewer than 90 events above the bin with highest
|⟨Dmmm|Ĥ|Dnnn⟩|

pgen
in the heat bath uniform singles case. The number of finite |⟨Dmmm|Ĥ|Dnnn⟩|

pgen
,

allowed events are shown in table 5.3. The weighted excitation generators have similar
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fractions of allowed non-zero events and the heat bath Power–Pitzer ref. excitation

generator has the lower computational scaling compared to heat bath Power–Pitzer

and the heat bath uniform singles excitation generator, at least in the case of CCMC.

It also does not have the prohibitively large memory scaling of the heat bath uniform

singles excitation generator.

Next, we move away from abstract performance considerations and consider how

the different excitation generators affect the the efficiency (as described by Holmes et

al.[77]), inefficiency[96], and the position of the shoulder[54] which are all measures of

the difficulty of the calculation. The efficiency η is defined as η = 1/(σ2
ET ), where σE

is the statistical error in the energy (here projected energy) and T is the computational

time taken to achieve error bar σE. In our case here, T was estimated by the CPU

time, that sums over OpenMP threads, as determined by the parent MPI process. It

is then multiplied by the number of MPI processes. It is therefore to be treated as

an approximation. T is the sum of individual times for blocks of iterations and only

times of iterations actually used by the reblocking analysis are summed up. We have

found T to be highly dependent on implementation so η must be considered carefully.

We also consider the (theoretical) algorithmic computational scaling in mind and the

inefficiency a as defined by Vigor et al.[96], a = σE

√
δτNit.⟨Ntot.⟩ where Nit. is the

number of iterations considered in the blocking analysis and ⟨Ntot.⟩ is the mean number

of Monte Carlo particles. When estimating the error in the efficiency and inefficiency,

we ignore the correlation in the numerator and denominator of the Eproj..

5.3.1 Coupled Cluster Monte Carlo

All coupled cluster calculations are non-initiator[35, 54]. Figure 5.4 shows the efficiency

and inefficiency for chains of two or three waters in the cc-pVDZ basis performing

CCSD/CCSDT with localized or canonical molecular orbitals. CCSDT was only run

on the weighted excitation generators. When localization has not been applied, i.e. our

canonical CCSD run, symmetry has been ignored as it also does not exist in the system

with localized orbitals. The systems to study where chosen not to be too large to get
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small enough error bars on efficiency and inefficiency. However, the basis set could not

be too small since the heat bath uniform singles and the heat bath Power–Pitzer ref.

excitation generators assume that the number of occupied orbitals is small relative to

the number of total orbitals, which reflects a realistic calculation. Note that while all

of the four types of calculations were run with the same number of MPI processes and

OpenMP threads for the different excitation generators, these numbers varied between

the types of calculations 10. The heat bath exact singles excitation generator is so slow

that it was not possible to take sufficient data with it to produce results.

We now discuss the trends shown in figure 5.4:

• System size: The overall trend is that the weighted excitation generators are more

efficient and less inefficient than the uniform ones. This becomes more noticeable

in the larger system. As expected, modelling three waters is less efficient and

more inefficient than two, the difference being more distinct with the uniform

excitation generators.

• Coupled cluster level: When raising the excitation level to CCSDT, which we did

for the weighted excitation generators, the inefficiency increases and the efficiency

decreases slightly compared to the CCSD calculation. This is to be expected as

the Hilbert space to cover increases. All three weighted excitation generators are

affected.

• Localization: Using orbitals that have not been localized does not seem to affect

the efficiency of the uniform excitation generators and heat bath uni. singles. The

heat bath Power–Pitzer (ref.) excitation generators show a decline in efficiency

and increase in inefficiency. In fact, they seem to drop to a similar efficiency

level as the uniform excitation generators, heat bath Power–Pitzer ref. still

being slightly more efficient. The inefficiency means of the heat bath Power–

Pitzer (ref.) excitation generators are lower than the ones from the uniform
10To be precise: The dimer calculations were done with 2, 1 and 8 MPI processes for the CCSD

localized, CCSD canonical and CCSDT localized calculation respectively. The trimer calculation has
been done with 4 MPI processes. The CCSD canonical calculation used 24 OpenMP threads for its
MPI process, all the others 12 OpenMP threads per MPI process.
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Fig. 5.4 Efficiency η (top) and inefficiency a (bottom) for chains of two or three water
molecules in a cc-pVDZ basis run with CCSD/CCSDT using localized/canonical (‘-c.’) MOs.
Error bars neglect the covariance between numerator and denominator errors in the projected
energy. The heat bath exact singles excit. gen. was too slow for data to be taken. The
different excit. gens. were run under the same conditions with the same time step etc. Only
the target population was varied between the calculations. The starting iteration for heat
bath P.P. was found such that three reblocks could be used in the trimer calculation. The
number of reblocks was raised for heat bath P.P. ref for the CCSDT calculation by taking
the result of the previous reblocking iteration for the proj. energy. The shift and the proj.
energy disagreed by more than 2σ in the canonical CCSD run with heat bath P.P. ref. and
(not.) renorm. spin and in the CCSDT run with heat bath P.P. ref. excit. gens.
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excitation generators, even though the error bars overlap. We expect localization

to primarily to affect the weighted excitation generators as, in a double excitation,

the weights in the heat bath uni. singles are calculated as a sum of Coulomb and —

if the spins are parallel — exchange integrals whereas the heat bath Power–Pitzer

(ref.) excitation generators only use exchange integral weights. Coulomb integrals

decay as the inverse of the distance but exchange integrals are more affected by

the localization. This explains why the heat bath Power–Pitzer (ref.) excitation

generator efficiencies are more strongly affected by localization.

The heat bath uniform singles excitation generator performs best out of the weighted

ones which is expected due to the same low computational scaling as heat bath Power–

Pitzer ref. which is more favourable than heat bath Power–Pitzer while using well

approximated weights for double excitations. heat bath Power–Pitzer ref. also seems

to have higher efficiencies than heat bath Power–Pitzer, likely due to the better

computational scaling and possibly the more accurate treatment of single excitations,

and this might yet be improved by a better heat bath Power–Pitzer ref. implementation

which scales as O(Nex.) rather than O(N) computationally.

Next, we consider shoulder heights with CCSDT on two water molecules with

localized orbitals. Shoulder heights indicate approximately the minimum number of

particles needed in the simulation. Figure 5.5 shows shoulder plots where the difference

in shoulder positions between the excitation generators is very clear. The weighted

excitation generators again perform best. Their shoulders are significantly lower than

those of uniform excitation generators, by a factor of just under 2. Of those studied,

the heat bath Power–Pitzer ref. excitation generator has the lowest shoulder.

With localized orbitals, the weighted excitation generators all perform better than

the uniform ones. The heat bath Power–Pitzer ref. excitation generator can scale

independently of system size computationally which puts it at a clear advantage over

the heat bath Power–Pitzer excitation generator. It also has a reduced memory scaling

when comparing it to the heat bath excitation generators which is significant at bigger

systems.
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Fig. 5.5 Shoulder plots for two localized waters in a cc-pVDZ basis with CCSDT with
various excitation generators. P.P. stands for Power–Pitzer, h.b. for heat bath and sp.
for spin. The different excitation generators were run under similar conditions with the
same time step etc. The weighted excitations generators started varying the shift after
a total population of 20 million whereas the uniform ones did not vary the shift. The
vertical lines represent the “shoulder height”, the position of the maximum plus/minus
of a standard deviation. To determine the shoulder position, the mean and standard
error of the mean of the 10 highest data points were taken[54].
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5.3.2 Full Configuration Interaction Quantum Monte Carlo

Next, we turn to FCIQMC. The water chain with two waters in cc-pVDZ basis with

localized MOs was considered with initiator FCIQMC. The (in–)efficiencies were

determined at one point in the initiator curve (total population against energy). All

calculations were started with the same parameters, which included the population

at which the shift started varying, and so the eventual equilibrated population of the

system is dependent upon the excitation generator. Blooms did happen. For uniform

excitation generators it was over 107 particles, for the weighted ones 5.6 × 106. Use

of a larger population may lead to a decrease in measured inefficiency[96], so the

results from the uniform excitation generators should be regarded as lower bounds

for inefficiency. Figure 5.6 shows the efficiency and inefficiency for that system with

the particle populations Ntot. explicitly indicated. The weighted excitation generators

perform comparably among themselves and all outperform the uniform ones. heat

bath Power–Pitzer ref. and heat bath uniform singles excitation generators both scale

linearly in the number of electrons when using FCIQMC. This study has been done on

a single point in the initiator curve and we did not investigate whether the behaviour of

the initiator curve changed which can affect number of particles needed for convergence.

Holmes et al.[77] describe ways to reduce the memory cost by considering spins (we just

store zeroes instead of considering the spin when selecting) or by not storing all the

weight to select b for example. We have used double precision for the weights. However,

even if our implementation is not optimal, it is clear that the heat bath excitation

generators hit a memory ceiling with big systems significantly earlier than the heat

bath Power–Pitzer ref. excitation generators. Also, as mentioned earlier, our heat bath

Power–Pitzer excitation generator implementation could be improved by making sure

b is only selected from virtual orbitals. However, even with a more ideal code, the

computational scaling of O(M) remains which becomes prohibitive in large systems.

This suggests that heat bath Power–Pitzer ref. is an efficient excitation generator

with a low shoulder that can be used in CCMC and FCIQMC as a weighted excitation

generator with low computational and memory cost.
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Fig. 5.6 Efficiency η (top) and inefficiency a (bottom) for a chain of two water molecules
in cc-pVDZ basis using localized MOs run with initiator FCIQMC with approximate MC
particle populations indicated. Error bars neglect the covariance between numerator
and denominator errors in the projected energy and are over-estimates. The heat bath
exact singles excitation generator was too slow for data to be taken. The different
excitation generators were run under the same conditions with the same time step etc.
The spawning arrays of the not. renorm. excitation generators ran out of memory so
the space to store the spawned walkers would need to be increased for those results.
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5.3.3 Practical Advice

As long as the memory allows it, it makes sense to make use of the heat bath (if no

bias is present) or heat bath uniform singles excitation generator for FCIQMC as they

have the same computational scaling as the heat bath Power–Pitzer ref. excitation

generator and a better scaling than the heat bath Power–Pitzer excitation generator.

The results in this paper suggest that they are also at least as efficient as the heat bath

Power–Pitzer ref. excitation generator. For CCMC with an implementation where the

heat bath Power–Pitzer ref. excitation generator has a scaling of O(Nex.), the heat bath

Power–Pitzer ref. excitation generator using localized orbitals is suitable.

As the system size becomes more substantial, the heat bath excitation generators

will fail due to memory requirements. In that case, the heat bath Power–Pitzer ref.

excitation generator should be considered, ideally with localized orbitals.

5.4 Conclusion

We have shown that especially when using localized orbitals the heat bath Power–Pitzer

ref. excitation generator combines the advantages of heat bath excitation generators,

which are relatively fast and use good weights but struggle with a significant memory

cost and a possible bias, and the excitation generators that approximate heat bath

weights by inequalities which are calculated on-the-fly reducing the memory scaling but

scaling prohibitively computationally in big systems. The heat bath Power–Pitzer ref.

excitation generator has at worst a low computational order and can be implemented

with computational cost independent of system size in coupled cluster with a low

memory cost.

This was the first main algorithmic development in this thesis. The next chapter

accelerates the convergence. Since periodic solid systems are large, the memory

intensive heat bath excitation generators are becoming infeasible quickly. The lighter

Power–Pitzer excitation generators are therefore more realistic approaches for the

spawn step there.





Chapter 6

Accelerating the Convergence with

quasi-Newton

This chapter presents the second algorithmic improvement of the FCIQMC/CCMC

algorithm done in my PhD, the acceleration of the convergence to the ground state

energy. It is to be published — and a version is on arxiv — (in a slightly different,

updated format) as

• V. A. Neufeld, and A. J. W. Thom. Accelerating stochastic quantum chemistry,

submitted[4].

(Reproduced in part with permission from Journal of Chemical Theory and Computation,

submitted for publication. Unpublished work copyright 2019 American Chemical Society.

This work has been further updated after submission of the thesis and the most recent version

is the one that will be published as a paper.)

Alex Thom designed the original quasi-Newton algorithm which I have expanded. I have

implemented the deterministic algorithm in Section 6.3. I have conducted and mainly

designed the studies in this paper. Alex Thom helped with useful discussions, providing

the integral (intdump) file for the chromium dimer, comments on the manuscript and

a very first version of the introduction and method section which I have rewritten with

great modifications. Reviewers also contributed with helpful comments.
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6.1 Introduction

After gaining knowledge of what coupled cluster level is needed to accurately determine

energies in solids and increasing the sampling efficiency with different excitation

generators, now the convergence to the ground state energy is optimised using a quasi-

Newton scheme commonly used in conventional deterministic coupled cluster[28] which

is a computationally inexpensive approximation to the Newton–Raphson method. The

hope in the future is to combine faster quasi-Newton convergence of the instantaneous

projected energywith a data analysis method such as in Ref. [82] which uses the

instantaneous projected energy and less data than reblocking analysis[80] to estimate

the energy. This can be of significant help for expensive solids calculations where

requiring less data and converging faster can make a great difference in terms of what

systems or number of k points are feasible.

The computational effort for FCIQMC and CCMC to reach equilibration can

be very significant and thus it can take a prohibitive amount of time before the

energy can be even roughly estimated. The Hessian required for a Newton–Raphson

propagation are approximated by using inexpensive Fock expectation value sums

by the quasi-Newton method. Since it has been developed and implemented[5] for

CCMC and FCIQMC, Blunt et al.[81] have also introduced an alternative Jacobi

pre-conditioned propagation[150] to approximate the Hessian. A comparison is made

to their method which is computationally more expensive than the approach presented

here. Note that other propagator improvements, which are not discussed here, exist,

including the use of Chebyshev expansion[151] and techniques used in the machine

learning community which have also been applied to Quantum Monte Carlo methods

to accelerate convergence[89, 152, 153]. Deustua et al.[154, 155] have used FCIQMC

and CCMC to estimate deterministic amplitudes/coefficients and managed to converge

to highly accurate energies quickly doing so, see for example the CAD-FCIQMC

method[155]. This approach is independent of the convergence acceleration shown here,

in fact they can be most likely employed simultaneously to improve convergence.
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First, we will describe the quasi-Newton propagation, followed by analysing its

convergence behaviour in both deterministic and stochastic propagations and comparing

it to the original, Jacobi, and full Newton propagations. Finally, the quasi-Newton

propagation is applied to the chromium dimer in the full Ahlrichs’ SV basis[62]

demonstrating its capabilities for accurate calculations of large quantum chemical

systems.

6.2 Quasi-Newton Method

The quasi-Newton propagation formalism is derived by treating FCIQMC as an op-

timisation problem. The derivation is similar to a derivation by Davidson[150]. The

conclusion also holds for CCMC.

Remember that in FCIQMC, the lowest eigenvalue of the Hamiltonian is found

along with an approximation of its eigenvector which is the ground state wavefunction,

Ψ0 = ∑
iii ciii |Diii⟩. The constraint is the normalisation of the wavefunction, ⟨Ψ|Ψ⟩ = N

for some constant N . As shown in chapter 2 for FCI, a Lagrangian L with Lagrange

multiplier E can therefore be written as

L = ⟨Ψ|Ĥ|Ψ⟩ − E(⟨Ψ|Ψ⟩ −N). (6.1)

Differentiating gives the gradient

giii = ∂L
∂c∗

iii

∝ ⟨Diii|Ĥ − E|Ψ⟩ . (6.2)

Setting g=0 gives the converged (F)CI equations ⟨Diii|Ĥ − E|Ψ⟩ = 0 for all iii. In the

original FCIQMC formalism[33], giii = ⟨Diii|Ĥ − E|Ψ⟩ is used to propagate from the

initial guess to the ground state wavefunction in imaginary time, τ , with an update

equation equivalent to steepest descent,

c(τ + δτ) = c(τ) − δτg(τ) (6.3)
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using time step δτ . The optimised wavefunction is Ψ0 with energy E.

Steepest gradient descent approaches the solution linearly and is therefore inefficient.

The quadratically convergent Newton–Raphson method propagates the coefficients

towards g=0 by

c(τ + δτ) = c(τ) − δτH̃−1
g(τ) (6.4)

where the time step δτ was retained for extra flexibility. The elements of the Hessian

H̃ are given by

H̃iiijjj = ∂giii

∂cjjj
∝ ⟨Diii|Ĥ − E|Djjj⟩ . (6.5)

Since inverting H̃ is highly expensive, approximations to H̃−1 are necessary. It may be

assumed that the off-diagonal elements in H̃ are not very significant compared to the

diagonal elements and so can be set to zero, leaving an easily invertible diagonal matrix,

provided no diagonal elements are zero. Davidson[156] has noted the connection of

pre-conditioning to the Newton–Raphson algorithm; while derived differently, this is

equivalent to the Jacobi pre-conditioned propagation used by Blunt et al.[81].

Here, the example of coupled cluster theory is followed[28] where Fock expectation

values for orbitals i, ⟨i|F̂ |i⟩, are used in an approximation to the diagonal Hamiltonian

elements and off-diagonal elements are ignored. The diagonal elements of H̃, ∝

⟨Djjj|Ĥ − EHF − Eproj.|Djjj⟩, are approximated by the sum of Fock expectation values of

occupied orbitals in Djjj minus the sum of Fock expectation values of occupied orbitals

in the reference,

⟨Djjj|Ĥ − E|Djjj⟩ ≈
∑

m in j

⟨m|F̂ |m⟩ −
∑

m′ in 0
⟨m′|F̂ |m′⟩ . (6.6)
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Note that the computational cost of Blunt’s Jacobi pre-conditioned propagation[81] is

at least O(Nel.)1 whereas the computational cost due to the quasi-Newton propagation

is O(1).

6.3 Deterministic Propagation

To test this approximation, the different propagation techniques were first deterministi-

cally tested on a small model system where the true eigenvalues and eigenvectors were

known, and stochastic noise, reaching the level of a sufficient number of particles and

other challenges in stochastic propagations, could be ignored so the focus was solely

on how many iterations were needed to converge.

The model system studied was the three-dimensional uniform electron gas (UEG)

with two electrons of opposite spin in 1850 spinorbitals which has a Hilbert space size

of 925. As mentioned in chapter 2, the Fock value for spinorbital m is given by[68]

⟨m|F̂ |m⟩ = 1
2 |k|2 −

∑
n in 0
m ̸=n

same spin

〈
nm

∣∣∣∣ 1
r12

∣∣∣∣mn〉(+1
2VMad.

)
(6.7)

where the last term in round brackets including the Madelung constant per electron

VMad. is added to spinorbitals m occupied in the reference only. VMad. ≈ −2.837297 ×

( 3
4πr3

s Nel.
)1/3 as determined by Schoof et al.[157, 158] with Wigner-Seitz radius rs. Using

the HANDE QMC code[5], an FCI calculation was performed and Hamiltonian matrix

elements were calculated. The initial guess for the wavefunction was a vector with 1 at

the D000 position and 0 otherwise. This corresponds to a standard FCIQMC calculation

with initially one Monte Carlo particle at the reference determinant. The shift S was

set to the projected energy at every iteration. The time step was set to the reciprocal

of the highest eigenvalue of A−1H̃ where in the original propagation A is the identity
1To approximate H̃, we need to evaluate ⟨Djjj |Ĥ − E|Djjj⟩ as part of the death step for any type of

propagation, so there is no extra cost in the death step. For the spawn step, ⟨Diii|Ĥ − E|Diii⟩ is needed.
Since Diii and Djjj differ by at most a double excitation, ⟨Djjj |Ĥ − E|Djjj⟩ can be used as a starting point
and the difference can be calculated. This is an O(Nel.) operation (Personal communication with Nick
Blunt).
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Fig. 6.1 (See published paper for update: slightly higher δτ can be used for
original propagation, does not change conclusions.) Deterministic propagation
of the 3D UEG with two electrons of opposite spins in 1850 spinorbitals with original,
full Newton, Jacobi pre-conditioned and quasi-Newton propagation for rs = 0.5a0 (a)
and rs = 20a0 (b). Jacobi δϵ auto. sets the first diagonal element of the approximated
Hessian to its second element whereas δϵ = 0 leaves the diagonal untouched. The
shift is set to the projected energy at each iteration and the time step (except for
the quasi-Newton run with δτ = 0.66) for each propagation is the reciprocal of the
highest eigenvalue of the propagation matrix A−1H̃. In case of full Newton and Jacobi
propagations, S = Smin. if |S| < |Smin.|. The full Newton curve with Smin. = −10−2

and the Jacobi one with δϵ = 0 cannot be distinguished at this scale.
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and in the other propagations it is the Hessian H̃ or an approximation thereof. This

was inspired by the fact that the highest allowed time step in FCIQMC is twice the

reciprocal of the highest eigenvalue of H̃[33, 76] although this might not apply to

all propagations exactly. The full Newton propagation used a Hessian with elements

⟨Diii|Ĥ − 0.99S|Djjj⟩ with a factor of 0.99 since its inverse would otherwise tend to be

singular as S → Ecorr.. In the first iteration, where the shift and projected energy

are zero, the first diagonal element is set to a small number such as 10−2, 10−3 or

10−7 (see figure ), in the case of the full Newton and Jacobi propagations. If auto.

mode is chosen when using the quasi-Newton propagation, the first diagonal element

of the approximated Hessian would be zero, so it is set to the second diagonal element.

When using the Jacobi propagation, E in the propagation is set to the shift S and

a threshold δϵ is applied or the first element set to the second (auto. δϵ). Figure

shows the propagation for rs = 0.5a0 and rs = 20a0. For quasi-Newton, two time steps

are shown; one found as described above (≈0.477), and the other being 0.66 which is

higher.

Clearly, in terms of convergence with respect to iterations, the original propagation

is outperformed by the others which perform similarly to each other. As demonstrated

by the full Newton propagation the initial guess for S = Smin. can obviously affect

convergence. The higher time step used for quasi-Newton performs slightly better

than the automatically found time step but it is still similar in behaviour. The more

correlated the UEG system gets, the higher rs, the smaller the range in Fock eigenvalues

so the more similar the original propagation is to the quasi-Newton propagation.

6.4 Stochastic Propagation

Next, the quasi-Newton propagation is compared with the original propagation in

FCIQMC. The quasi-Newton propagation can be straightforwardly implemented into

FCIQMC as the only changes are in the spawn and death steps. In the case of the

spawn step, the probability that a spawn is accepted is divided by ∆i where
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∆iii =


∆′

iii if ∆′
iii ≥ δϵ

∆v otherwise
(6.8)

with

∆′
iii =

∑
m in j

⟨m|F̂ |m⟩ −
∑

m′ in 0
⟨m′|F̂ |m′⟩ . (6.9)

δϵ is a threshold and ∆v an alternative value chosen which could be set to 1 (see later

part on the chromium dimer) or, as in this stochastic UEG study here, to δϵ. Similarly

to the deterministic investigation, δϵ can be chosen to be the difference between the

sum of Fock energies of the reference and first excited determinant to maximise the

time step possible. In the original death step, the death probability of a particle on

determinant |Diii⟩ is written as[33]

pdeath(|Diii⟩) ∝ δτ ⟨Diii|Ĥ − S|Diii⟩ . (6.10)

If a quasi-Newton modification were also performed to the death step, the resulting

death probability would be pdeath(|Diii⟩)
∆iii

. We consider the hypothetical case where the

estimate of the wavefunction is a multiple of the true wavefunction, but S is not equal

to the true energy the wavefunction would stay at the true solution as all determinants

are affected equally by the error in S in the death step. However, in the case of quasi-

Newton, due to the determinant dependence of ∆i, the estimate of the wavefunction

would move away from the true solution. A modified death step (inspired by the

coupled cluster Monte Carlo modification of Franklin et al. [65]) is

pdeath(|Diii⟩) ∝ δτ

(
⟨Diii|Ĥ − Eproj.|Diii⟩

∆iii

+ ρ(Eproj. − S)
)
, (6.11)

with the projected energy Eproj. and ρ as a constant population control factor to add

an extra degree of freedom. We have assumed that EHF has already been subtracted of

the Hamiltonian matrix diagonal. At the true solution, Eproj. takes the correct value so

the net effect of the first term in equation 6.11 when applied to the whole population
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is zero, and the latter term merely scales the whole population, so the wavefunction

remains at the true solution.

Using the spin non-polarised three dimensional (3D) UEG again, this time with 1850

spinorbitals, 14 electrons, and rs = 0.5a0, the stochastic propagations using FCIQMC

with quasi-Newton and the original propagation were compared. The instantaneous

projected energies were binned with respect to the cumulative number of particles,

Ntot., to reach those instantaneous projected energies and the mean in each bin for each

calculation run calculated. The same calculation was then run at least 20 times with

different random number generator seeds. The means of these independent bin means

are shown in figure 6.2 with their standard deviations and standard errors across the

different runs as error bars. Empty bins did not contribute to the mean or its errors.

The bin positions are the same for all calculations. Note that not all calculations

ran for the same number of iterations, some ended early. The cumulative number of

particles Ntot. is a measure of the cost of the calculation that is more implementation–

and platform–independent than the compute time for example, as an iteration in

the FCIQMC algorithm scales approximately linearly in the number of particles at

that time step2. A pre-calculated O(1) version of a uniform Power–Pitzer excitation

generator adapted to the UEG was used[3, 78]. Floating-point amplitudes[85, 86] were

employed with a spawn cutoff of 0.01. Figure 6.2 shows that the instantaneous projected

energy converges significantly faster when using the quasi-Newton propagation. The

time steps for the quasi-Newton propagation are 10–40 times greater than time steps

of the original propagations shown. δϵ ≈ 11.8Eh, the Fock value difference between

the ground and first excited determinant of the same symmetry. As expected, using

a lower initial population decreases the initial cost of converging to a certain energy

but increases the noise. Population control has not been applied here, we have just

focussed on convergence, not evaluating the final energy.
2Each particle does one spawn attempt here.
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Fig. 6.2 Convergence of the instantaneous projected energy as a function of cumulative
number of Monte Carlo particles Ntot. as cost measure for the 3D UEG with 1850
spinorbitals, 14 electrons, and rs = 0.5a0 in FCIQMC. The instantaneous projected
energy was binned with respect to the cumulative particle number and the bin means
calculated. Each calculations was done at least 20 times in independent runs and the
means of those bin means are shown with their standard deviations and standard errors
as outer and inner error bars respectively, placed at the number of cumulative particles
that is at the middle of the bin. Some runs ended early so not every data point was
determined by the same number of independent bins. The estimate for the true energy
is taken from Ref. 2. Twice its error is shown in the line spread but it is too small to
be visible. Ntot.(τ = 0) the initial population. ρ = 1.0, δϵ ≈ 11.8Eh, ∆v = δϵ and the
shift was not varied.
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6.5 Application to the Chromium Dimer

Finally, the quasi-Newton propagation was tested on an archetypical quantum chemistry

problem, the chromium dimer, at a bond length of 1.5Å. The basis set considered is

Ahlrichs’ SV[62] where first a CAS of 24 electrons correlated in 30 spatial orbitals was

applied and then the full system was studied with initiator FCIQMC. The Hartree–Fock

orbitals and their integrals were evaluated with the Psi4 code[94, 95]. The weighted

heat-bath excitation generator[77] (adapted[3]) has been used. Again, floating-point

amplitudes[85, 86] were employed with a spawn cutoff of 0.01. Booth et al.[34] have

previously applied FCIQMC to the chromium dimer with a CAS and DMRG results

exist for both smaller CAS[159–161] and full[161] system, also in Ahlrich’s SV basis[62]3.

For the smaller CAS system, figure 6.3 shows various initiator convergence curves,

displaying energy as a function of population size, for quasi-Newton and original

propagation. The quasi-Newton propagation was tested at δτ = 0.002, 0.008 and 0.02,

whereas the original was only stable or did not converge very slowly at δτ = 0.002 out

of these time steps (given the set initial population etc.). The range of the result by

Booth et al.[34] is shown. Reblocking analysis was used to estimate errors on quoted

energy values[80]. All initiator curves tend to this result and the threshold δϵ did not

seem to have a noticeable effect.
3Refs 160 and 34 state that they have used Ahlrich’s SV(P) or SVP basis set. In summary, given

that their results agree very well with ours, we conclude that we most likely used the same, SV
basis set, details given here. The basis we used (Ahlrich’s SV basis set) can be found at EMSL
Basis Set Exchange Library, https://bse.pnl.gov/bse/portal [accessed 22.05.2019], under “Ahlrichs
VDZ” and selecting “Cr” as the element. It has {63311/53/41} functions[62]. SV(P)/SVP then
contains a polarizing p function (coefficients 0.1206750 and 1.0000000) as well and that basis set
can be found under “Ahlrichs pVDZ”. The Hartree–Fock, CCSD and CCSD(T) energies in a CAS
of 24 electrons in 30 orbitals (freezing the lowest occupied orbitals) were compared using the Psi4
code. The Hartree–Fock was -2085.57297 Eh in the SV basis and -2085.60285 Eh in the SV(P)/SVP
basis. Our full active space SV CCSD(T) energy, -2086.39864 Eh, agrees with Olivares-Amaya et
al.[161]. In this section, the correlation energies of other studies were calculated by subtracting the
Hartree–Fock energy in a SV basis (no polarising p) off the total energy quoted in the various studies.
The difference in correlation energies between the SV and the SV(P)/SVP basis sets with respect
to the SV Hartree–Fock energy in this (24e, 30o) CAS was -0.03 and -0.05 for CCSD and CCSD(T)
respectively. This difference is an order of magnitude larger than energy differences to those studies
in this chromium investigation here. We therefore concluded that the basis set used was SV in Refs
160 and 34 as well.



100 Accelerating the Convergence with quasi-Newton

105 106 107 108 109

Ntot.

−0.848

−0.846

−0.844

−0.842

−0.840

−0.838

−0.836

−0.834

E
p
ro

j.
/
E

h

DMRG− 3 results

iFCIQMC− Booth et al.

Orig. δτ = 0.002

QN, δτ = 0.002, δε = 10−5

QN, δτ = 0.008, δε = 10−5

QN, δτ = 0.008, δε = 1

QN, δτ = 0.02, δε = 10−5

QN, δτ = 0.02, δε = 1

Fig. 6.3 Initiator curve of Cr2 in a (24 electrons, 30 orbitals) active space in SV basis[62]
at a bond length of 1.5Å. Three DMRG results[159–161] are shown with horizontal
lines. An initiator curve point from Booth et al.[34] is included. ∆v = 1, ρ = 1 here.
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Fig. 6.4 Convergence of instantaneous projected energy in the all-electron chromium
dimer in the SV basis[62] at a bond length of 1.5Å of quasi-Newton (QN) and original
propagation at a target population of 5×105 (population where shift starts varying)
and initial population of 100. The QN results were run with ρ = 0 up to iteration
5000 (δτ = 0.0015) and then set to ρ = 1, always using ∆v = 1 and δϵ = 10−5. The
instantaneous projected energy was binned with respect to the cumulative particle
number and the bin means calculated. Each calculations was done at least 100 times
in independent runs and the means of those bin means are shown with their standard
errors as error bars, placed at the number of cumulative particles that is at the middle
of the bin. Only calculations where the inst. Eproj. < 0.1 and > −3.8Eh always were
included. The horizontal lines (least negative Eproj. Orig. at δτ = 0.0007, then QN
and most negative Eproj. is Orig. at δτ = 0.0005) indicate the mean Eproj. and its error
found by taking the mean energy of all calculations of that type with at least 5×105

iterations. The left most vertical shows when ρ was changed in the QN calculation
and the others show when the shift was allowed to vary in the respective calculation.
The vertical lines do not show error bars.

Convergence of the full all-electron system with a Hilbert space size of 1022 was

then studied for a particular target population comparing quasi-Newton to original

propagation (figure 6.4). In figure 6.4, the convergence of original (at δτ = 0.0007) and

quasi-Newton propagation defined as the point of overlap with the expected value is



102 Accelerating the Convergence with quasi-Newton

comparable. However, the quasi-Newton propagation is slightly faster convergent, even

according to that definition, and the cost to get within ±0.005Eh, even if not stable, is

significantly less costly than with the original propagation.
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Fig. 6.5 Initiator curve of Cr2 in the fall-electron chromium dimer in the SV basis[62] at
a bond length of 1.5Å. A DMRG[161] result is shown, slightly below the extrapolated
estimate.

An initiator quasi-Newton study with populations up to just above 109 was done

and a function of the form a + bx−c was fitted to the data set, see figure 6.5. The

determined convergence value is -0.8717(3) Eh which agrees with DMRG[161], -0.871813

Eh. The maximum number of particles is of order 109, a factor of 1013 reduction from

the complete Hilbert space. As with the smaller CAS study, this shows that FCIQMC

with quasi-Newton propagation gives reliable energies.
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6.6 Conclusion and Further Work

We have shown that the quasi-Newton propagation introduced here (applicable to

both CCMC and FCIQMC) can accelerate the convergence of the (instantaneous)

projected energy compared to the original propagation. It scales more favourably (O(1)

instead of O(Nel.)) than the Jacobi propagation while having a comparable benefit. In

conjunction with an excitation generator that does not scale with system size, such

as the heat bath Power Pitzer ref. excitation generator[3] in the case of CCMC, not

adding extra scaling to the algorithm is important in large electronic systems. Using

the quasi-Newton propagation, we quoted the first (initiator) FCIQMC result on the

chromium dimer in the full SV basis set[62]. The next steps would be to combine this

with a data analysis method as in Ref. [82] that can give an energy estimate using less

data and the instantaneous projected energy as it was shown that the instantaneous

projected energy converges faster with quasi-Newton. The shift still takes time to

converge, which is an issue that needs to be tackled for population control, especially

should the shift be needed for data analysis.





Chapter 7

Concluding Remarks and Future

Outlook

This thesis has shown steps necessary on the way to calculate accurate energies in

periodic solid systems with CCMC and FCIQMC, after Booth et al.[41] have published

initial “realistic” solid results with FCIQMC, even though the sizes of the systems

studied were small. First, a model solid system – easier to handle than a “realistic”

solid – was studied at different degrees of electron correlation with CCMC and the

level of coupled cluster needed for accurate energies was determined[2], see chapter 4.

This information can help in future to approximately estimate what level is required

for a particular solid system. Both CCMC and FCIQMC are still limited severely in

the system size they can study by their computational cost and potentially memory

requirements. Solids where a small number of k points is not sufficient are not

feasible yet. Improving the excitation generators[77, 78, 3], see chapter 5, and the

convergence to the ground state energy[81, 4], see chapter 6, are steps towards reducing

the computational costs to make CCMC and FCIQMC possible in such systems so

that (systematically improvable) accurate energies are possible. Being able to use

high performance computing resources is important for this venture, see chapter 3.

Very recently, we published[5] some initial solids result of diamond using CCMC and
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Summary of solid study in latest HANDE QMC publication (Ref. [5]):
(Reproduced in part with permission from [5]. Copyright 2019 American Chemical Society.
ACS Articles on Request author-directed link: http://pubs.acs.org/articlesonrequest/AOR-
bhuCYVv5KiPXUyNFTwsd and doi: https://doi.org/10.1021/acs.jctc.8b01217)

WARNING: This study was very prelimi-
nary, results were not fully benchmarked,
etc, first and some settings in the calcula-
tions might not be ideal/fully understood
yet, so this should be understood as a demon-
stration rather than a scientific study! This
demonstration (see end of this interlude
for contributions) is the first publication
of CCMC applied to solids, demonstrating
HANDE QMC’s ability to tackle “realistic”
solids systems.
Using DFT orbitals (DZVP basis, GTH
pseudopotential[162–164]), CCMC up to
CCSDTQ level and FCIQMC were run up
to various k point levels. This was then
compared to CCSD results with PySCF[93]
using HF orbitals and previous literature
results by McClain et al[43], who also em-
ployed PySCF, see figure 7.1. Orbitals in
this study were density fitted[45].
Potential explanations given for the disagree-
ments between different CCSD results at k
points other than the Γ point were the vary-
ing treatments of the exchange integrals (to
be published) and orbitals (HF or DFT op-
timisation) whose effects are visible between
the CCMC and CCSD-PySCF result, as well
as the shifting of the mesh to include the
Γ point which was not done by McClain et
al.[43].
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Fig. 7.1 Convergence of the correlation energy —
defined as the difference of (finite) total energy and
HF energy to find a consistent measure when having
both DFT and HF orbitals — with the number of k
points for diamond at lattice constant 3.567Å in a
DZVP basis with a GTH pseudopotential[162–164]
(see below for contributions), the same basis set
and pseudopotential as in the study by McClain et
al.[43]. The CCMC and FCIQMC results use DFT
orbitals whereas CCSD-PySCF employed HF or-
bitals. The CCMC and FCIQMC results were then
corrected by adding the DFT energy and subtract-
ing the HF energy (beware of different exchange
treatments). The mesh for those calculations has
been shifted so that the Γ point is part of it. Only
a part of McClain et al.’s data is shown.

It is again stressed that this study was very approximate as mentioned in the beginning here
and it used a small number of k points and basis set.

Contributions: Results and figure mostly by Jiří Etrych, a summer research student in the group
in 2018 that I co-supervised. I contributed with discussions, supervision, much of the text in the
corresponding section in the paper (edited by the other authors) and ran the FCIQMC result, and
slightly modified the figure to fit in this thesis. Alex Thom had the original ideas for the study and
helped with discussions and further ideas. There were also comments from the other authors of
Ref. [5]. The code to enable solids calculations in HANDE QMC code was mainly written by Charlie
Scott and other HANDE developers contributed, including me. Interface to PySCF (to be published)
to dump required integrals mainly written by Alex Thom and Jiří Etrych.
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FCIQMC up to a 222 k points grid1, showing that calculations in (albeit small) solids

are now doable with CCMC as well. A quick summary of that study is given on

the previous page in the area separated by horizontal lines. Non-uniform excitation

generators were employed but the convergence was not accelerated yet at that time.

There are various other challenges with solids calculations, such as pre-computing

the one- and two-body integrals quickly for large systems, e.g. using codes such as

PySCF[93], and making sure that self-interaction is treated correctly in those integrals.

To go beyond small basis sets and number of k points with CCMC and FCIQMC,

further algorithmic improvements are necessary, too.

These improvements include further developments in the CCMC and FCIQMC

algorithms, such as transcorrelated FCIQMC/similarity-transformed FCIQMC[129,

165, 166] that can help overcome the electron cusp divergence. Combining (i)FCIQMC

with other quantum chemistry methods, e.g. using selected configuration interaction

approaches (e.g. Refs [167–169], see Ref.[170] for more) to determine the initiator

determinants[170], can also be a fruitful path. Of course, there can also be further

reformulations of stochastic coupled cluster or stochastic configuration interaction, e.g.

very recently Scott et al.[171] designed a stochastic coupled cluster algorithm that is

closer to deterministic diagrammatic coupled cluster than CCMC, decreasing memory

requirements.

Another path to success can be the type of computing resources. DMC has been

tested on field-programmable gate arrays (FPGAs) for example[172, 173]. Graphical

processing units (GPUs) have also been used with quantum chemistry methods, see

e.g. Refs [174, 175].

Further advanced statistical or machine learning methods can also extend the

reach of quantum chemistry, see e.g. work in Refs [176–183]. This includes kernel

fitting techniques, e.g. Ref.[176], and deep learning strategies, e.g. Refs [181, 183], for

example.
1See end of interlude on previous page for author contributions, results and study mainly by Jiří

Etrych, a summer research student in the group in 2018 that I co-supervised.
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Other ways to reach accurate energies besides further quantum Monte Carlo

methods[32] include the development of deterministic approaches, converging to the

ground state energy in the limit of including the whole space for example. This

could be selected configuration interaction methods, such as heat bath configuration

interaction[169], or (deterministic) coupled cluster. As mentioned in the introduction,

recently, coupled cluster has been used to study solid systems, e.g. in Refs [40–43, 12],

and various advancements have been made to speed up the calculations[40, 44, 46, 45,

12]. However, the size of periodic solid that can be tackled (with a sufficient high level

coupled cluster truncation level) is still limited, necessitating further development.

These are some directions that the quest of how to tackle solids with CCMC

or FCIQMC can take. As mentioned above, acceleration can be achieved by the

design and/or implementation of stochastic or machine learning advances as well as

modifications to quantum chemistry methods that can be applied to CCMC/FCIQMC

as well and by alternative hardware. Suitable solid systems for CCMC/FCIQMC

are correlated enough that CCSD/CCSD(T) is not sufficient, otherwise deterministic

approaches are more mature and faster for the problem at hand, unless the stochastic

nature of CCMC becomes necessary due to high memory costs. Overall, it can be

said that while quantum chemistry is expensive it is also indispensable when accurate

energies are required, which implies that it is important to develop quantum chemistry

further, increasing the number of problems that can be solved. The work in this thesis

contributes a step towards that goal.
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