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Abstract. We begin with the idea that lines of reasoning are continuous mental pro-

cesses and develop a notion of continuity in proof. This requires abstracting the notion of

a proof as a set of sentences ordered by provability. We can then distinguish between dis-

crete steps of a proof and possibly continuous stages, defining indexing functions to pick

these out. Proof stages can be associated with the application of continuously variable

rules, connecting continuity in lines of reasoning with continuously variable reasons. Some

examples of continuous proofs are provided. We conclude by presenting some fundamental

facts about continuous proofs, analogous to continuous structural rules and composition.

We take this to be a development on its own, as well as lending support to non-finitistic

constructionism.
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1. Introduction

There are two strong reasons to see reasoning by proof as discrete, discontin-
uous. The first arises in connection with the a priori foundations of math-
ematics in Brouwer: reasoning is discrete because the fundamental mental
acts involved in mathematical intuition are. The second emerges a posteri-
ori from computation: that the fundamental events involved in computation
are discrete. Indeed, these two strong justifications are mutually supporting,
since computation is heavily reliant on intuitionist principles. We begin with
two counter-arguments that reasoning can be continuous, one a priori and
the other a posteriori.

L. E. J. Brouwer, the founder of the philosophy of constructivism and
intuitionism, considered himself a “neo-intuitionist”. According to Brouwer
(1912), intuitionism originated in Kant, for whom both time and space (Eu-
clidean geometry) were a priori categories of experience. The development
of non-Euclidean geometry was the first blow to this original intuitionism,
but not a fatal one. According to Brouwer, intuitionism “recovered by aban-
doning Kant’s apriority of space and adhering the more resolutely to the
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apriority of time” (Brouwer 1912, 85). Given time as an a priori, the fun-
damental acts of mathematical intuition turn out to be (discrete) temporal
divisions of “life moments”, from “oneness” into “twoness” [ibid]. Signifi-
cantly, Brouwer and countless later neo-intuitionists take this to imply a
restrictive theory of mathematics and symbolic logic, recognizing only the
existence of denumerable sets—perhaps with indefinitely refined approxi-
mations of continuity. Reasoning and proof are likewise restricted to the
denumerable.

Contrary to the intuitionist perspective on the countability of construc-
tions [2], we can begin with the intuition that mental activity is a continuous
process, reflexively examinable at any time. That, although mental processes
have finite duration, this does not prevent them from being a continuum. We
submit that Brouwer’s variety of finitistic “intuitionism” is neither “new”
nor particularly “Kantian”.

This form of non-finitistic intuitionism already pre-exists in Kant, in con-
nection with “psychological grounds of explanation for what goes on in our
minds” (Kant 1790, X). For the later Kant, all of the laws for explaining
what goes on in our minds are empirical but one: “namely the law of the
continuity of all changes (since time. . . is the formal condition of inner intu-
ition)” ([ibid], see [7]). Even confining ourselves to the exposition of Kant,
there is a deep tension in holding resolutely to both the apriority of time
and the denumerability of mental constructions, since reasoning and proving
are changes. If indeed we hold the aprioricity of time as the basis of mental
constructions, then the (mature) Kantian perspective would require their
continuity.

Outside neo-Kantianism, the idea that nature as a whole exhibits conti-
nuity in change is a common foundational principle. This takes form, in both
Leibniz and (more contentiously) Darwin, in the maxim: natura non facit
saltum, “Nature does not make a leap” (see [1], 6). Applying this natural-
istic maxim to reasoning would then imply a fortiori that minds, as parts
of nature, do not make leaps—animi non facit saltum. Even admitting a
weaker principle, that perhaps only some aspects of Nature involve contin-
uous processes, this opens the possibility of an a posteriori justification for
continuity of the specific processes involved in reasoning and computation.

The binary switching operations characteristic of digital computers are
thought to support the idea that continuity is impossible in computation—
except as indefinite approximation. Nonetheless, these are not the only sorts
of computers and, it must be admitted, evidentially underdetermine the im-
possibility claim. This sort of justification is forgetful of the long history of
analogue computing and neglectful of contemporary sophisticated attempts
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to embed computation in continuous processes. The field of evolutionary
electronics, for instance, holds promise of exploiting analogue relationships
of charge distribution across computer hardware, even when those machines
do not differ in constitution from ordinary circuits (see [10]). Various aspects
of computation have also been reconstructed within biological systems (see
[5,8]), where both the comparative parallelism and continuity of processes is
exploited to solve logical problems, e.g., the satisfiability of Boolean formu-
lae. Moreover, returning to the case of mental processes, Leng and Ludwig [6]
discuss the neurophysiological role of “analogue signals (i.e. signals that vary
continuously in time and which elicit concentration-dependent responses)”
as cases of analogue computation.

There is, at least, some conceptual and empirical merit to the idea that
precise thought can involve a continuous move along, not a chain, but a
genuine line of reasoning. We here develop a notion of continuity in proofs,
lines of reasoning with finite length but uncountably many stages. We do
not intend to further defend the idea that mental processes are continuous;
one of us believes the greatest barriers to this are conceptual, the other
empirical. Our claim is conditional. If mental processes are continuous, the
correct account of proof will be one admitting continuity.

Our presentation of this idea proceeds in three main parts. Section 2
describes the notion of a continuous proof, first as a matter of being able
to define an indexing function to pick out stages of reasoning from a con-
tinuum, and second via the definition of a continuum of rules for inferring
intermediate stages. Section 3 presents examples of continuous proofs, and
Section 4 presents some continuous versions of structural facts about proofs.

2. The Notion of a Continuous Proof

2.1. Abstraction of the Notion of Proof

A proof P that α follows from Γ , can be considered as an ordered set of sets
of sentences.1

P = {Γ . . . {α}} (1)

1The following conventions are used throughout the text. Uppercase Roman letters from
the end of the alphabet (X, Y ) denote sets; H is reserved for a homotopy and [R] for an
arbitrary rule; Lowercase Roman from the beginning of the alphabet (a, b, . . . , i, j, k) denote
elements of sets, unless otherwise specified or reserved for function symbols (f, g, h, s);
Uppercase Greek (Γ, Δ, Σ . . .) are used for arbitrary sets of sentences, while lowercase
(α, β, γ, φ) denote arbitrary sentences.
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With the following properties,2

1. min(P ) = Γ

2. max(P ) = {α}
3. pi ≤ pj ⇐⇒ pi � pj

Equivalently, if L is the language of P , we can index a proof using an
ordered3 set I and indexing function f : I → 2L such that

1. f(inf(I)) = Γ

2. f(sup(I)) = {α}
3. i ≤ j ⇐⇒ f(i) � f(j)

Ordinarily the set of indices for a finite length proof would also be finite—i.e.,
an infinite set of indices would map to an infinitely long proof. Nonetheless,
we need not equate the cardinality of the indices for a proof with its length—
the unit interval has an infinite cardinality but finite length. We use this
abstraction below to present the notion of continuous yet finitely long proofs.

2.2. Distinguishing Proof Steps from Stages

Reasoning is ordinarily thought to consist of a series of steps, numbered nat-
urally. The aim here is to give meaning to the notion of stages of reasoning
indexed by the reals.

Ordinarily, if a proof has length n, �(P ) = n, then it has n steps, and each
m < n corresponds to some such step—the assumptions having index 0. We
could likewise set the length of a proof to 1, �̄(P ) = 1, then extract stages
as fractions of the former step index over proof length: then for each m < n,
m/n is a proof stage corresponding to a discrete step. But what corresponds
to stages that fall between steps, or irrational stages that cannot be a ratio
of any finite step index to proof length? We can give meaning to these stages,
and thus to continuity of proof, using the above abstraction of the notion of
proof.

A proof has steps if, for some finite n, there is an indexing function
f : [0 . . . n] → 2L, such that,

∀i,j i ≤ j ⇐⇒ f(i) � f(j) (2)

2Note that f(i) � f(j) carries the usual meaning that (∀α∈f(j))(∃Δ⊂f(i))Δ � α.
3A linear order is presumed throughout the following. Though more complex orders

(such as partially ordered or pre-ordered) may be used to index proofs, we set these aside
for ease of presentation.
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That is, there is a function from the integer length of a proof to the power
of its language that is monotonic.4 Likewise, a proof has stages if there is
an indexing function f : [0, 1] → 2L that is monotonic.

For example, assuming that P is a single-step proof that α follows from Γ ,
i.e. �(P ) = 1, there will be no step corresponding to stage 1/2—an indexing
function with a single step will not be defined for 1/2. But, if P has stages,
then there will be a stage {α1/2} such that,

1. f(1/2) = {α1/2}
2. Γ � α1/2 & α1/2 � α

Moreover, if we consider the stage given by f(π/6), since 1/2 < π/6 < 1, we
conclude that f(1/2) � f(π/6), and that f(π/6) � α.

Abstractly at least, there is nothing wrong with considering stages in
proofs that do not correspond to steps of a known proof, nor with considering
stages that could not correspond to steps in any finite proof. Since stages
are particular sets of sentences, it is natural to wonder about the stage
corresponding to a real number, beyond the facts about its order in a proof.
We should be able to say which sentences are in f(r), for any r ∈ [0, 1].
Particular examples will be given below (Section 3) after considering the
use of continuous and discrete rules.

2.3. Continuizing Discrete Rules

We can now consider introducing explicit reference to the rules by which a
proof proceeds. One way of interpreting a proof is as a single step, where
the intermittent steps show that a rule is valid. So let us consider only single
step proofs that deploy a rule.

We know well enough what it means to iteratively apply a rule, the aim
here will be to develop what it means to partially or continuously apply a
rule. Let us say that [R]n indicates the n-fold application of the rule [R],
then the aim is to define the fractional- and real-fold application of a rule:
e.g. [R]m/n and [R]r. Just as there are rules that may be applied iteratively5

there are rules that can be applied fractionally or a real number of times.
In general, we can think of a rule that can be written as a sequent, where

4‘Monotonic’ here means “monotonically increasing with respect to provability” and
should not be confused with the structural notion of a “monotonic” logic, i.e. one with
“weakening on the left” (see Section 4.1).

5Such as the Rule of Necessitation: � α =⇒ � �α [RN], which may be applied n-fold
to yeild � α =⇒ � �n . . . �1α [RN ]n.
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f picks out some set of sentences at i and proceeds to pick out the result of
applying a rule [R] at i + 1, i.e., at the next step of a proof,

f(i)
f(i + 1)

[R]1 (3)

The aim in this section is just to characterize what it would mean to further
generalize this form of presentation for a rule to the case where proofs have
stages instead of steps, and rules may proceed by any increment r, i.e. rules
of the following form (see examples in § 3 structural rules in § 4.1).

f(i)
f(i + n)

[R]n (4)

Consider that P is a proof that α follows from Γ by the rule [R]n (to
be written “Γ � α [R]n”;). If [R]n is the n-fold application of a rule [R],
then we can state some facts relating different steps of this application, and
generalize on these.

If 0 < m < n, then P can be separated into two proofs, one of length m,
the other of length n − m,

Γ � α [R]n ⇐⇒ (∃Δ) Γ � Δ [R]m & Δ � α [R]n−m (5)

Likewise, if n = m ∗ k, then one can consider6 the rule as the k-fold product
application of the rule [R]m,

Γ � α [R]n ⇐⇒ Γ � α [[R]m]k (6)

As with the length of a proof, we can set the n-fold application of a rule to
n=1, and extract stages as fractional applications of the rule.7 For an n-fold
rule [R′]n, we can consider the rule [R]1, and re-state the above facts about
separation and products in fractional terms, where m ∈ R and m < n,

Γ � α [R]1 ⇐⇒ (∃Δ) Γ � Δ [R]
m
n & Δ � α [R]1− m

n (7)

Γ � α [R]1 ⇐⇒ Γ � α [[R]
m
n ]

n
m (8)

As in the case of a proof possessing stages, a rule [R] is continuous iff, there
is a triplet 〈[R]i, [R]1−i,Δi〉 for all i ∈ [0, 1], such that,

Γ � α[R] ⇐⇒ Γ � Δi [R]i & Δi � α [R]1−i (9)

For familiarity, we have presented continuous rules by, in effect, interpolating
the consequences of applying an ordinary rule up to the point of continuity.

6For example, Γ � α [R]6 ⇐⇒ Γ � Δ [R]3 & Δ � α [R]3

7Note that [R]0 should always be mere reiteration, regardless of what [R]1 is.
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On the other hand, we can think of providing a rule that is defined infinites-
imally and extending this up to applications over an interval. In Section 3
we provide concrete examples of such rules.

2.4. Connecting Stages to Continuous Rules

We can consider proofs as having real-valued stages and we can consider
rules with real-fold applications. To connect these two parallel notions, we
can consider the rth stage of a proof P ⊂ 2L, that α follows from Γ by the
rule [R], as the set containing the sentence proved by the rth-fold application
of [R], i.e. if P has stages given by f : [0, 1] → 2L, then

f(r) = Δr ⇐⇒ Γ � Δr [R]r (10)

We can thus connect the abstract notion of a continuous line of reasoning,
proof, with the variable application of a rule. If we are able to reflect on
a line of reasoning at any point, then there is an extent to which we can
follow a rule to conclude at exactly that stage; if we can follow a rule to
any extent, then there is a stage in a line of reasoning corresponding to the
result of that rule.

Like intuitionism and construction, we can consider the provision of a
continuous proof as a standard indicating that the methods, rules, of proof
more closely match the mental activities involved. If mental processes are
continuous processes, proofs ought to be given with continuously variable
rules or functions for extracting real-valued stages.

2.5. Topological Requirements for Continuous Indexing Functions

We here define proofs as continuous when the set used to index them is
as large as the continuum [0,1]. To refer to individual proofs it is often
sufficient to refer to their indexing function, a function f : [0, 1] → 2L that
picks out a subset of some particular language L for each index i ∈ [0, 1].
This should not, however, be taken to license identifying a proof with its
indexing function. A proof is a mental event, a series of propositions related
in a certain way, not a manner of picking out such sequences.

At this point, it is natural to wonder about the continuity of the indexing
function itself, since an indexing function may have [0,1] as domain with-
out itself being a continuous function. Note that, on the other hand, the
continuity of indexing functions does not by itself imply the continuity of a
proof ; an indexing function may be continuous while the proof is not. In-
deed, any indexing function with steps, i.e. from a space of discrete indices,
is automatically continuous but no function with steps indexes a continuous
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proof. That said, we can extend an indexing function for a continuous proof
up to a continuous indexing function in an intuitive way. We briefly digress
on this point before returning to the construction of continuous proofs.

For a function f : X → Y itself to be continuous requires that f−1 maps
open sets in Y to opens in X, which makes sense only given some topology
on each. While the natural topology on the interval [0, 1] is clear, defining
“continuous indexing functions” for proofs also requires the imposition of
a particular topology on 2L. There may of course be a variety of more or
less interesting ways to impose, define, such a topology that depend on
features internal to the language L, but it is sufficient for our purposes to
consider a topology that can be imposed given only a choice of provability
relation �. This is because we can impose a topology sufficient to define
open sets by treating (2L,�) as an order, supposing only that ‘�’ and ‘�=’ are
defined on L.

It is clear how an indexing function f : [0, 1] → 2L should be defined on
an interval (i, j) ⊂ [0, 1],

f((i, j)) = {f(k)|i < k < j} (11)

And likewise how its inverse should be defined on open intervals (a, b) for
a, b ∈ 2L,

f−1((a, b)) = (f−1(a), f−1(b)) (12)

The definition of an open interval around some “point” f(k) of 2L is
less obvious, though also fairly intuitive once we come to treat � as an
order on subsets of L. One way to produce a topology sufficient to define
continuous indexing functions is to consider (2L,�) as a preordered set and
impose the Alexandrov topology on it. This is the topology wherein the
open sets are just the upper sets with respect to (2L,�), where u is upper
in (2L,�) iff for x ∈ u, x � y =⇒ y ∈ u. Intuitively, upper sets are those
that contain everything provable from any of their members. Constraining
ourselves to the image of f , we can define the open sets as all sets g such that
g = u∩ Im(f) and u is open in the Alexandrov topology. This constraint to
the image of f is necessary to ensure that the potentially unbounded upper
sets in the Alexandrov topology on (2L,�) are bounded in the resulting
topology, e.g., if f is an indexing function for a proof that Γ � α, f(1) = {α},
so constraining to the image of f will force opens to terminate in {α}. Call
this the provability topology on 2L.

What remains is just to defined an indexing function as continuous iff
f−1((a, b)) is open in the natural topology on [0, 1] whenever (a, b) is open
in the provability topology on the domain of f . Definition of the conditions
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under which the subsets of some particular class of languages can be the
codomain of continuous indexing functions are beyond the scope of this
article; we simply note here that this richer notion of continuous proof can
arise whenever the preorder (2L,�) is equipped with any provability topology
sufficient to define open intervals.

3. Examples of Continuous Proofs

3.1. Continuous Proof of an Inequality

Consider the simple fact that x ≥ 1 � x ≥ 0. A continuous mental con-
struction of this fact might proceed by taking a real line with x at 1, then
sliding leftwards until 0, knowing that x is greater than anything encoun-
tered. Consider the following rule [R]m

x = n =⇒ x ≥ n − n ∗ m : m ≥ 0,

For which the stage-function is,

f(m) = {x ≥ n − n ∗ m}
Since, taking n = 1,

f(0) = {x ≥ 1 − 1 ∗ 0} = {x ≥ 1} (13)

f(1) = {x ≥ 1 − 1 ∗ 1} = {x ≥ 0} (14)

Finally, notice that limm→0[R]m remains valid, defining [R] infinitesimally.

3.2. Continuous Proof of a Conjunct

Consider the rule of conjunction elimination [∧E] which says that from any
conjunction one can infer either conjunct, i.e., that φ ∧ ψ � φ [∧E]. In a
fuzzy-logic context, where truth-values are allowed to vary continuously, the
truth of either conjunct can likewise be specified continuously. A continuous
mental construction of a conjunction elimination might thus proceed by
asserting the truth-value (v) of the conjunction of φ and ψ, then shifting
gradually to specify only the value of φ. Consider the rule [∧E]m,

v(φ) = 1 and v(ψ) = 1 =⇒ v(φ) = 1 and v(ψ) ≥ 1 − m

And the stage-function, as above,

f(m) = {v(φ) = 1 and v(ψ) ≥ 1 − m}
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3.3. Continuous Proof of Homotopy

In our view, the proof of that two morphisms are homotopic is a prime
example of continuity in proof. Consider a proof that two functions f and g,
with the same domain X and codomain Y , are homotopic, i.e., that f ∼= g.
This proof must begin by asserting one function as an object, then showing
that it can be continuously deformed into the other, e.g. that f can be
continuously deformed into g. This is done by defining a homotopy, which
is a continuous function H : X × [0, 1] −→ Y such that H(x, 0) = f(x) and
H(x, 1) = g(x) for x ∈ X.

This is intuitive enough when we see that t ∈ [0, 1] can be interpreted as
the “time elapsed during a deformation of f to g”. If no time has elapsed
f should retain its form and if the deformation is complete we should have
arrived at g. Likewise, we can interpret H as a stage-function for the mental
construction that deforms f into g to prove they are homotopic:8 for each
i ∈ [0, 1], H continuously defines the object arrived at by that stage in a
continuous proof that f ∼= g.

This is clear if we look at an alternative definition of homotopy. For f, g
as above, we can consider an indexed family of functions ht∈[0,1] such that
h0 = f , h1 = g and the map from t → ht is continuous. Now consider a
language L containing at least function symbols for the functions Y X from
X to Y and existential quantification. A continuous proof that f ∼= g is
indexed by a function s : [0, 1] → 2L, such that,

s(i) = {(∃ht
)ht : X → Y : 0 ≤ t ≤ i} (15)

Equivalently, assuming H as defined above, s(i) = {(∃hi
) hi(x) = H(x, i)}

indexes a proof that f ∼= g.

4. Fundamental Facts About Continuous Proofs

To conclude, we show that familiar notions of structural rules (Axiom, Weak-
ening and Cut) can be defined in continuous terms, and offer some useful
notions for the construction of continuous proofs (Ties, Binds and Slurs).

8Moreover, this is a particularly interesting reinterpretation when considering proofs
as morphisms in syntactic categories, since then the homotopy of two continuous proofs
would itself be a continuous proof of their equivalence.
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4.1. Continuous Structure

The structural rule called Axiom is essentially just the assertion that a
constant function for any Γ is a proof indexing function.

Γ � Γ
[Axiom] (16)

(∃f) f(i) = Γ : i ∈ [0, 1] [c-Axiom] (17)

Any constant function is continuous, and it is immediate that the above f
satisfies the conditions for being a stage function.

Further,Weakening on the left and right are essentially just claims about
the existence of indexing functions satisfying certain criteria about the union
and intersection of their stages. The definitions below are simplified assum-
ing that any stage-function can be scaled according to any continuous real-
valued function, i.e. so that if f and g agree on any k, m, they can be scaled
to agree precisely at i. For any i < j ∈ [0, 1],

Γ � Δ

Γ,Σ � Δ
[Left-Weakening] (18)

Γ � Δ

Γ � Δ,Σ
[Right-Weakening] (19)

f(i) = Γ f(j) = Δ

(∃g) g(i) = Γ ∪ Σ g(j) = Δ
[c-Left-Weakening] (20)

f(i) = Γ f(j) = Δ

(∃g) g(i) = Γ g(j) = Δ ∩ Σ
[c-Right-Weakening] (21)

Lastly, Cut is essentially a claim about the constructibility of an indexing
function out of a pair of others, given some information about subsets of the
codomains of the latter. This is a special case of what we will term a Tie,
characterized in the next section. In the following definitions Δ is the formula
that is “Cut” out of the proof.

Γ � Δ Σ,Δ � Θ

Γ,Σ � Θ
[Cut] (22)

f(i) = Γ f(j) = Δ g(i) = Σ ∪ Δ g(j) = Θ

(∃h) h(i) = Γ ∪ Σ h(j) = Θ
[c-Cut] (23)

4.2. Constructing and Combining Proofs: Ties, Binds and Slurs

4.2.1. Ties Restall [9] refers to the rule Cut as the “sequent calculus ana-
logue of composing proofs”. Intuitively, that is right, but it is clear why
composition as usually understood cannot be applied to the indexing func-
tions for proofs. Considering two such functions f and g, their composition
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g ◦f will never be defined, since dom(g) = [0, 1] while cod(f) = 2L. One can
nonetheless Tie proofs together wherever they share stages, i.e., when, for
proofs indexed by f and g, there is some i, j such that f(i) = g(j).

It will help to first define the restriction and scaling of an indexing func-
tion. If there is a continuous proof indexed by f that Γ � Δ, then there
is a pair of proofs for every r ∈ [0, 1], one that Γ � f(r) and another that
f(r) � Δ. We can think of these, respectively, as “restricting f to r from
above” f |r and “restricting f to r from below” f |r, defined for i ∈ [0, 1] as
follows.

f |r(i) = f(r · i) (24)

f |r(i) = f(r + i(1 − r)) (25)

Now consider a case where f(1) = g(0), i.e., where the conclusion of the
proof that f indexes are the premises of the proof indexed by g. Clearly we
can tie f and g together end-to-end, less obvious is that we can scale them
so that any r ∈ [0, 1] is their mid-stage. This can be defined for i ∈ [0, 1] as
follows.

r
︷ ︸︸ ︷

f g(i) =

⎧

⎪
⎨

⎪
⎩

f(i/r) : i < r

g

(

i − r

1 − r

)

: i ≥ r
(26)

Putting these two notions together, we can see that if f(i) = g(j), this
determines two new proofs depending on how we perform the tie: there will
be one that proceeds as f until i then carries on with g, and likewise one
beggining with g and proceeding with f after j. That is, f(i) = g(j) implies

the existence of proofs with indexing functions
︷ ︸︸ ︷

f |i g|j and
︷ ︸︸ ︷

g|j f |i. e.g.,
for x ∈ [0, 1],

r
︷ ︸︸ ︷

f |i g|j(x) =

⎧

⎪
⎨

⎪
⎩

f |i(x/r) = f(r · x/r) = f(x) : x < r

g|j
(

x − r

1 − r

)

= g

(

r + (1 − r)
x − r

1 − r

)

= g(x) : x ≥ r

(27)

Together these notions allow us to structure and combine existing continuous
proofs in a manner that generalizes the discrete (limiting) case.

4.2.2. Binds It is trivial to show that for any discrete indexing-function
of a two-step proof there is a function that is everywhere defined on [0, 1]
with an equivalent sequent form, i.e. that agrees with it on {0,1}. Consider
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a function f such that f(0) = Γ and f(1) = α, we define a “bind of f” to
be f ,

f(i) =

{

Γ : i ≤ 1
2

Γ ∪ {α} : 1
2 < i ≤ 1

(28)

E.g., the bind of f is a function f which outputs Γ up to and including 1
2 ,

then outputs Γ ∪ {α}. The term ‘bind’ comes from music theory, where a
bind between two notes indicates that the first is played continuously up to
and including when the second note begins. It is possible on any instrument,
importantly, even on instruments with discrete note intervals, such as the
piano. When a proof f contains more than two steps, one can always bind
any two consecutive steps and tie them to produce a continuous proof f .
Note that with the provability topology defined in Section 2.5, binds are not
only continuous proofs but have a continuous indexing function.

4.2.3. Slurs Given a discontinuous proof f , we term the (equivalence class
of) monotonic continuous proofs that are sequent-equivalent to it a ‘slur’,
and write f̃ . This term also comes from music theory, where it indicates
that a note continuously transitions into another note—such as by sliding
the bow or ones fingers along a stringed instrument—and is only possible
on instruments without discrete note intervals. Analogously, one can slur an
indexing function only if 2L ∼= ℵ1 or greater .

The method of slurring a proof has essentially been covered. First consider
the equivalence classes [2L] of elements Δ ∈ 2L where,

[Δ] = {Σ | Δ ⇐⇒ Σ} (29)

For a discrete proof indexing function f that Γ � α, the slurs of f are given
by a function [f̃ ] : [0, 1] → [2L], if it exists, satisfying three conditions.

– Continuity : [f̃ ] is a continuous map from [0, 1] to [2L]

– Monotonicity : (∀i,j) i ≤ j ⇐⇒ [f̃ ](i) � [f̃ ](j)

– Sequent Equivalence: [f̃ ](0) = [f(0)] and [f̃ ](1) = [f(1)]

Again, if the proof has more than two steps, one can slur each two con-
secutive steps then tie them together. Since we must allow that [f̃ ](i) ∼= κ
for any cardinaily κ, we deploy the axiom of choice to provide a specific
(witnessing) slur. That is, a choice function c such that c([Γ ]) = Γ and
c([α]) = α gives rise to a specific slur f̃ , satisfying the above constraints.

c ◦ [f̃ ] = f̃ : [0, 1] → 2L (30)
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Notice that it is not necessary that the slur of a proof be in the same
language, i.e., we allow that cod([f̃ ]) �= cod(f). We here present as example
the case of slurring a sequent by moving from crisp to fuzzy-sets. Consider
that, if Γ � α and Δ = Γ ∪{α}, then trivially Γ � Δ. Intuitively, in any case
where we would say that a set proves its subsets, i.e., Σ ⊂ Γ =⇒ Γ � Σ,
we should also say that it proves its fuzzy-subsets, on grounds of generality.
Now consider a set Δα=i which is just like Δ, except that the sentence α
has a degree of membership χ of i.

χΔα=i(β) =

{

1 : β ∈ Δ \ {α}
i : β = α

(31)

This leads to the fuzzification rule for sequents, below. We might indeed
think of this as a variety of weakening,9 since at i = 0 it reduces to Axiom
and at i ≥ 0 it makes a (potentially non-trivial) claim about the provability
of α from Γ .

Γ � Δ

Γ � Δα=i
: α ∈ Δ, i ∈ [0, 1] (32)

Finally, granted an indexing function for Γ � α, where Δ = Γ ∪ {α}, a slur
of f can be defined using fuzzy subsets,

f̃(i) = Δα=i (33)

Notice that Δα=i is one member of [Δα=i], and that while Δα=1 and Δα=0

are crisp sets, Δα=i : 0 < i < 1 are fuzzy sets, i.e., cod(f̃) �= cod(f).

5. Conclusion

There are conceptual and empirical motivations for considering proofs with
a continuity of stages. We have shown how this can be formalized using
two equivalent means, stage-functions or continuized rules, to pick out real-
valued proof indices. We have provided examples spanning disciplines where
proofs play a major role, from arithmetic to (fuzzy) logic and homotopy
theory. Finally, we have shown that a continuous approach to proofs is suf-
ficient to formalize many familiar structural rules from proof-theory proper,
and that moreover it can be used describe the conditions under which proofs
can be combined in various prima facie interesting ways.

We take this to be a sufficiently broad coverage to motivate further re-
search into particular uses of continuous proofs. Moreover, as a contribution

9Notice that it has an intuitive left and right form.
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in its own right, this motivates a different sort of constructionism: continuous
constructions of finite length.
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