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Abstract

Transcription factor (TF) binding has been studied extensively in relation to binding

site affinity and chromosome modifications; however, the relationship between genome

spatial organisation and transcription factor binding is not well studied. Using the re-

cently available high resolution Hi-C contact map of human GM12878 lymphoblastoid

cells [1], we investigated computationally the genome-wide spatial co-localization of

transcription factor binding sites, for both within the same type and between different

types.

First, we observed a strong positive correlation between site occupancy and homo-

typic TF co-localization based on Hi-C contacts, consistent with our predictions from

biophysical simulations of TF target search. This trend is more prominent in binding

sites with weak binding sequences and within enhancers, suggesting genome spatial

organisation plays an essential role in determining binding site occupancy, especially

for weak regulatory elements.

Furthermore, when investigating spatial co-localization between different TFs, we

discovered two distinct co-localization networks of TFs in lymphoblastoid cells, one

of which is enriched in lymphocyte specific pathways and distal enhancer binding.

These two TF networks have strong biases for either the A1 or A2 chromosome sub-

compartment, but nonetheless are still preserved within each, indicating a potential

causal link between cell-type-specific transcription factor binding and chromosome

subcompartment segregation. We called 40 pairs of significantly co-localized TFs

according to the genome wide Hi-C contact map, which are enriched in previously

reported, physical interactions, thus linking TF spatial network to co-functioning.

In addition to the above main project, I also worked on a side project to find compute-

efficient ways in scaling binding site strength across different TFs based on Position-

Weight-Matrices (PWM). While common bioinformatics tools produce scores that can

reflect the binding strength between a specific TF and the DNA, these scores are not

directly comparable between different TFs. We provided two approaches in estimating

a scaling parameter λ to the PWM score for different TFs. The first approach uses
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a PWM and background genomic sequence as input to estimate λ for a specific TF,

which we applied to show that λ distributions for different TF families correspond with

their DNA binding properties. Our second method can reliably convert λ between

different PWMs of the same TF, which allows us to directly compare PWMs that

were generated by different approaches.
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Chapter 1

Literature review

1.1 Genomic and bioinformatics approaches of eval-

uating transcription factor binding

1.1.1 Transcription factors are key regulators of gene expres-

sion

Eukaryotic genomes contain thousands of protein coding genes. Some are house

keeping genes, while the rest are precisely controlled and are only expressed in a

subset of tissues and cell lineages at certain time points or under specific stimuli

[2, 3, 4]. Deciphering differential gene expression in development and disease requires

identification and characterization of gene regulatory elements [5, 6, 7].

At the transcriptional level, differential gene expression has been shown to be achieved

through the combinatorial binding of different regulatory proteins to specific genome

regions, either near the transcription start sites or in distal genomic regions such as

distal enhancers [8, 9]. There are certain regulatory proteins that are common to

the transcription initiation machinery of most genes [10, 11], however, the majority
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of regulatory proteins contribute to gene expression regulation in a genomic context

specific manner [12, 13, 14]. Such proteins often recognize and bind to specific DNA

sequences [15, 16, 14, 17], and are known as sequence-specific transcription factors

(TFs). Each TF can be involved in gene regulation of many target genes, especially

in higher eukaryotes. Deciphering complicated TF regulatory networks in different

organisms has been extensively studied [13, 18, 14].

Various studies have tried to investigate the transcriptional response to differentiated

TF binding in different model organisms [8, 19, 20]. In budding yeast, Kim et al

used the PHO5 promoter to characterize the quantitative relationship between TF

binding and gene expression output [8]. Their model, which involved variable inter-

actions between TFs, nucleosomes and the gene promoter, successfully recovered the

observed changes in gene expression due to variations in TF binding site composition,

suggesting a deterministic role of TF binding in gene regulation.

In Drosophila melanogaster, Kaplan et al employed a thermodynamic model to de-

scribe the binding of 5 key TFs and further investigated their role in embryonic

anterior-posterior patterning [19]. They demonstrated that the inclusion of chromatin

accessibility landscape significantly improved their model prediction of TF binding.

In fact most TFs, except known pioneer factors, can only bind to corresponding

sites within open chromatin depleted of nucleosomes. These are often referred to as

DNase-I hypersensitivity hotspots (DHS) [21, 22].

He et al developed statistical thermodynamics-based models of gene expression to

study a number of mechanistic questions including the combined effect of multiple

regulatory proteins and the action of repressors [23, 24]. In terms of how multiple

activator sites contribute to expression, their model spoke in favour of synergistic

activation, where the total effect of multiple sites is larger than the sum of their in-

dividual effects. In synergistic activation, individual statistical weights of activator

sites are multiplied in the sense that all bound sites contribute to the energy term

associated with basal transcription machinery. They observed a better fit to expres-

sion data using synergistic activation rather than additive effects [23]. They further

introduced the concept of short range repression into thermodynamic models, where
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repressors do not directly interact with the basal transcriptional machinery, but in-

stead, act to switch chromatin from accessible to inaccessible when bound nearby,

thereby blocking the binding of activators within several hundred base pairs. Their

results clearly excluded the hypothesis of competitive binding being the main mecha-

nism of repression, but were consistent with the hypothesis of short range repression

for most Drosophila melanogaster TFs used in their simulations [23].

The binding of TFs to well-studied enhancer regions has also been shown to quanti-

tatively correlate with gene expression in Drosophila melanogaster. Another study by

Kim et al [25] tried to re-arrange some of the minimal stripe enhancers, namely MSE2

and MSE3, upstream of the gene promoter in the even-skipped locus by introducing

or removing small spacers. They observed that associated gene expression in the 2/3

inter-stripe regions was enhanced by more than 10 folds[25]. By adopting a simple

thermodynamic TF binding model, taking into account the activation and repression

effects of known TFs as well as cooperative binding between different TFs, the ob-

served changes in gene expression level can be reasonably well-explained. Kim et al

further demonstrated that using the fitted parameters from the above two enhancers,

their model was able to correctly predict other enhancer-driven gene expression lev-

els involving the same set of TFs at other genes. This suggests similar underlying

mechanisms exist for gene regulation across different target genes. It provided further

support for the fact that binding of TFs to their target sites constitutes a sufficient

set of regulatory input which determines gene expression output quantitatively, at

least for well-studied genomic loci. Admittedly, for the vast majority of genes with-

out sufficient annotation of cognate enhancers and well-characterized TF functions,

how TF binding relates to gene transcription remains largely unexplored.

1.1.2 Genome-wide mapping of TF binding sites

TFs play a central role in controlling gene expression together with nucleosome-

mediated mechanisms and DNA modifications [8, 19]. Therefore, mapping TF-DNA

interactions genome-wide is an essential task in understanding transcription regula-
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tion. Chromatin immunoprecipitation (ChIP) based methods [26, 27] and DNase-I

digital footprint are the two main tools currently in use to achieve this [28].

Chromatin immunoprecipitation (ChIP) is a technique that captures DNA fragments

to which a specific regulatory protein binds [29]. Previously, using microarray-based

techniques, DNA fragments collected from ChIP were hybridized to a microarray to

detect genome regions enriched in specific protein-DNA interactions, named ChIP-

chip [30, 27, 31]. Some arrays were designed to cover the entire genome, while others

were only focused on specific genome regions such as selected promoters or gene sets.

With the advent of next generation sequencing, chromatin immunoprecipitation fol-

lowed by sequencing (ChIP-Seq) became possible [32, 26, 33, 34]. ChIP-Seq offers

better resolution and greater coverage compared to ChIP-chip, because TF bound

fragments can be sequenced directly [35, 36, 34]. In ChIP-seq, the TF of interest is

first crosslinked to DNA using formaldehyde before the chromatin is sonicated into

small fragments. Using specific antibodies to the TFs, the cross-linked TF-DNA com-

plexes can be immunoprecipitated [35]. After reverse crosslinking and size selection

of fragments, the immunoprecipitated DNA is sequenced and mapped back to the

genome [37, 38]. Using certain peak calling algorithms, enriched genome regions can

be identified as ChIP-seq peaks [39, 40, 41].

ChIP-seq allows the mapping of TF binding to certain chromatin regions down to

several hundreds of base-pairs [34]. However, the exact position of binding cannot be

revealed simply through the annotated peaks. A specific binding motif identification

step is required to infer potential sequence motifs overlapping with ChIP-seq peaks

[33, 42].

Alternatively, DNase-I digital footprint (DNase-seq) is capable of identifying putative

binding sites (BSs) at single base-pair resolution [21, 43]. It makes use of the fact

that bound molecules can protect DNA from being cleaved by DNase-I, thus a BS

often appears to be a 5 - 20 bp region within two DNase-seq peaks. This is known

as a footprint [21]. DNase-I digital footprint provides the precise position of a TF

BS, however, there is no information about which type of molecule is bound directly.
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Further computational analysis is essential to correct the DNase-seq signal for exper-

imental artefacts such as DNase-I cleavage bias. Overlaying the identified significant

footprints with the predicted TF binding sequence motifs is also required to infer the

type of TF that is likely to bind [44, 45].

Both ChIP-seq and DNase-I digital footprint have their own caveats, some of which

can be reduced to improve the accuracy of BS identification [44]. For example, in

ChIP-seq, false-positive peaks can occur as a result of an artefact in the cross-linking

procedure [39]. Genome regions that are not directly bound by TFs but somehow

tethered together with real targets may also be sequenced. Subsequent TF motif

finding steps can help to identify high-confidence real targets from the enriched regions

[33]. Admittedly, there are other biases in ChIP-seq that are linked to peak-calling

algorithms; fragment selection in library preparation and amplification etc. Those

Bias can be removed or reduced using proper controls and peak callers [36, 34, 39].

1.1.3 Evaluating TF binding specificity: different approaches

TF binding sites specificity need to be determined from a reasonable size of exper-

imentally verified binding sites (BSs) collection. Two distinct classes of approaches

have been employed to generate those BS collections. For a subset of TFs, especially

the well-studied ones involved in model organisms development, sufficient number of

BSs could be obtained from annotated cis-regulatory elements. Functional roles of

those BSs had been checked carefully, so those BSs made up high-confidence sets of

annotated BS pool [46, 47].

Alternatively, for the rest of TFs, BS collection can be gained from high-throughput

procedures to select high affinity BSs in vitro [48, 49, 50]. These procedures can

generate collections of high affinity BSs, but also with sufficient sequence diversity.

For instance, SELEX started from a pool of random DNA sequences and used the

binding preference of a TF to select DNA fragments that were of higher binding

affinity. After several rounds of selection and subsequent sequencing, DNA sequences
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with strong binding preference could be highly enriched in the final product [51, 48].

Protein-binding micro-array (PBM) is another way to determine binding specificities

of individual TFs [50]. An epitope tagged TF was purified and then bound directly

to a double-stranded DNA microarray. With subsequent washes and labelling with

fluorophore-conjugated antibody, the final read-out of micro-array fluorescence signal

can be used to quantify TF binding specificity in a high-throughput way. In addition,

yeast one-hybrid (Y1H) assay is another choice for detecting TF-DNA physical inter-

actions [52]. By coupling Y1H system to a microuidics-based proteinDNA interaction

mapping assay, Y1H identified TF-DNA interactions can be further validated [53].

Different approaches have their own advantages and caveats, for example, PBM is

only able to identify short DNA binding motifs of 8-mers due to the design limita-

tions of their platform [50]. When quantifying the contribution from each nucleotide

or di-nucleotide to the total binding specificity, SELEX sometimes gave a worse per-

formance than PBM or Y1H, because the final product in SELEX reflects DNA

fragment enrichment after multiple rounds of selection, which might amplify noises

as well, rather than a direct representation of protein-DNA interaction strength [48].

1.1.4 Evaluating TF binding specificity:Position Weight Ma-

trices

Given a repertoire of experimentally derived binding sites for a TF, either via high

through-put in-vitro methods like SELEX and PBM, or experimentally validated

functional sites collections stored in PAZAR [54] and RedFly [55], there needs to be a

consistent and easily-adopted representation of DNA binding preference for this TF,

which is referred to as a motif. The simplest representation would be a consensus

sequence motif describing the most common bases, for example, AACNGT for a TF

named Prd, where N stands for any base. However, most TFs do not just bind to a

single DNA motif, but instead, can bind to a big repertoire of similar sequences with

different binding strength. Even the mostly conserved nucleotides within consensus

motifs could have alternatives in certain cases, albeit with declined binding affinity.
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Therefore, quantitative modelling of TF binding preferences that can reflect specific

degrees of flexibility at each position in the sequence motif is further required. Position

Weight Matrices (PWMs) are the most widely adopted approach in modelling TF

binding sequence preferences [56, 57, 58].

Proposed by Berg and von Hippel in 1987 based on statistical mechanics theory,

the PWM model can be viewed as a probabilistic representation of binding sites [56].

They showed that the logarithms of the base frequencies is proportional to the binding

energy contribution of the bases, which coincided with the idea of Relative Entropy

in estimating binding strength from a information theory perspective. This nicely

related the base-pair occurrence frequency in a set of known binding sequences to

the binding free energy contributions from each base pairs, though it was based on a

assumption that each position contributes independently and additively to the total

binding energy [59].

Specifically, given a collection of known binding sites and the genome composition of

the four bases (ATCG) in a specific organism, the Relative Entropy (also known as

Information Content) at each position i of the motif can be described as [56, 58]

Ii =
∑
b

gb,i log2

gb,i
fb

(1.1)

where i is the position within the motif, fb is the frequency of base b in the whole

genome and gb,i is the observed frequency of each base at position i.

Under the assumption of random background genome sequences and the additivity

assumption of binding energy contribution from each base pair, Berg et al has showed

that log2
gb,i
fb

is a maximum probability estimate for the binding energy contribution

of each base at each position, given the collection of known binding sites for TF [57].

The binding energy representation across all possible binding sites with a formula

similar to partition function was involved in their original derivation of this maximum

probability estimate. Therefore, the weight of log2
gb,i
fb

is assigned to base b at position

i, which gives the PWM score for each base at each position. In addition,
∑L

i Ii is
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the average binding energy of all validated binding sites (l represents sequence motif

length).

One limitation of the PWM approach is the assumption that each base pair con-

tribute to the total binding energy independently [56]. There are more complicated

models taking into account the di-nucleotide or tri-nucleotide arrangement and vari-

ous shape features of the binding motifs [60, 61, 62], but those models require more

prior information and sometimes compute-intensive calculations. It has been argued

that the di-nucleotide model is already sufficient to recover the in-vitro binding en-

ergy estimation made using protein-DNA interaction assay on a micro-fluid platform,

which out-performed the simple PWM estimation for 3 TFs within the Helix-loop-

helix family [63, 64]. However, due to the simplicity and the well-defined statistical

physical energy term associated with it, PWM is still the most widely used approach

to characterize TF binding specificity.

1.1.5 Sequential clustering of TF binding sites

TF binding sites are not randomly distributed in the genome, but rather prefer to

cluster together sequentially [65, 66, 67]. Many studies have looked into one dimen-

sional, sequential TF co-localization in the genome from different organisms, where

ChIP-seq profiles were available. Co-occurrence of multiple types of TF BSs has been

widely observed and used for predicting cis-regulatory elements and their potential

functions [12, 68].

In particular, clustering of binding sites for the same type of TF (homotypic clusters)

has been widely observed in both the Drosophila and human genome [69, 70, 65],

with great enrichment in gene promoters and enhancers. The sequential homotypic

clustering of BSs has several known advantages. First, it could arise from functional

requirements of sequences [65, 71], since it can provide functional redundancy and

regulatory robustness. Second, in terms of evolution, enhancers or promoters that

harbour multiple sites of the same TF, especially weak BSs, are favoured by evolu-

tionary sampling of the genotype-phenotype landscape [72]. He et al demonstrated
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that more ways exist in their simulated evolutionary process to establish a fit geno-

type with many weak BSs than with a few strong sites, thus explaining why the

occurrence of multiple weak BSs for the same TF within a single enhancer was widely

adopted by different organisms. These weak BS clusters are also associated with deep

evolutionary conservation as was revealed by the comparison between human, mouse

and rat orthologous promoters, suggesting their positive selection during evolution

[73]. In addition, from a perspective of TF binding and target search mechanisms, it

facilitates TFs molecules to search for their target BSs via facilitated diffusion [74].

This will be discussed in more detail in the following sections.

In addition to homotypic BS clustering, specific types of TF BSs were observed to

locate in proximity to each other within the genome much more frequently than

expected by chance [67]. Using certain motif clustering algorithms and ENCODE

ChIP-seq data sets, TF interaction networks based on overlapping ChIP-seq peaks

and sequential proximal BS pairs have been derived [66, 67]. Their results identified

many known TF-TF physical interactions, for example, the interaction between JUN,

JUND and FOS, FOSL2. It suggested that TF BS sequential co-localization is closely

linked to TF physical interactions, and was hypothesized to facilitate the co-binding

of interacting TFs to recruit transcription machinery involving RNA PolII together

[66]. Further, TFs known to function together in cis-regulatory modules have higher

chances to cluster together along the genome [12, 75]. One of the typical examples is

the even-skipped locus in the Drosophila melanogaster genome, where several different

types of TFs including Bicoid, Hunchback, Kruppel, Knirps and Giant co-localize

together to provide precise expression regulation in different embryonic body positions

(e.g. stripe 3, 5 and 7) [25, 46]. The same TF may function as either activator or

repressor in different genome context [25].

Therefore, the analysis of sequential TF co-localization has provided useful insights

into TF physical interactions and co-function in gene regulation. However individu-

algenome sequences do not give any information about BS spatial distribution. Given

that the eukaryotic genome is organised into well-defined structures, whether TF bind-

ing sites are or are not clustered in three dimensions has not yet been investigated.
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1.2 Transcription factor binding dynamics: mod-

elling and tracking

1.2.1 Facilitated diffusion mechanism of TF target site search

Although there are millions of potential TF binding sites in the genome, true binding

sites only constitute a minute fraction of the genome. In bacteria, certain types of TFs

have less than 100 molecules within a cell[76]. In eukaryotes TFs are more abundant,

estimated to be between a thousand to several hundred thousand molecules within

nuclei according to different studies [77, 19]. Given the size of the eukaryotic genome,

the chance of a TF protein incidentally meeting its target site is still extremely small.

Decades ago, it was believed that DNA binding proteins located their target binding

sites purely through diffusion driven mechanisms, where association rate follows the

classical Smoluchowski limit. However, Riggs et al first observed that the rate at

which the lac repressor identified its target site was much faster than one would

predict by the classical model, and thus proposed a different mechanism which could

account for this. [78].

Subsequently, with contributions from Winter and Berg, a comprehensive theoretical

framework describing the TF target search process observed in E.coli was established:

facilitated diffusion [79, 80]. In their model, TFs and other sequence-specific DNA

binding molecules combine three-dimensional diffusion and one-dimensional random

walk along the DNA to search for specific binding sites in the genome. Before the

final arrival to a target BS, TFs alternate between the 3D diffusion phase and the 1D

random walk phase, the rate of which depends on the dissociation constant from DNA

for a specific TF. One of the most important biophysical parameters involved in this

process is the so called the average sliding length; the typical length of DNA which a

TF explores during one episode of random walk along the DNA [80, 56]. The average

sliding length is intrinsic to TFs and needs to be determined via either Single Molecule

Tracking (SMT) or in-vitro assay of single-molecule diffusion on noncognate DNA

monitored by CCD camera [81]. Another study revealed that TFs tend to have higher
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association rates to longer pieces of synthesized DNA, compared to shorter ones, while

both types of synthesized DNA fragments all contain the same TF binding site in the

middle [82]. It is because facilitated diffusion enables TFs to be transferred to the

target site via sliding, even from positions far away from target BSs, thus the observed

rate of TF association for the entire fragment of DNA is positively correlated with

fragment length [83]. This work provided another piece of direct evidence supporting

the existence of facilitated diffusion [82].

Both theoretical calculations and in-vivo tracking of TF molecules demonstrated that

facilitated diffusion can speed up the TF target search process by 2 orders of magni-

tude less time than one would expect by simple unbiased protein diffusion in three-

dimensional space [56, 76]. The proportion of time a TF spends on 3D diffusion and

1D random walk along the DNA can vary substantially between different type of TFs.

This may be attributed to different structural properties within DNA binding domains

across different families of TFs, or alternatively as a consequence of measurement bias

across various studies [84, 85].

Analytical calculations based on several parameters could give an approximated or-

der of the mean search time for a protein to find its target [86]. Such parameters

include the 3D diffusion co-efficient of a specific type of TF in the nucleoplasm, the

space volume of a target search, the 1D diffusion co-efficient along the DNA and the

average sliding length along the DNA during each episode of 1D diffusion. Through

dimensional analysis, one can roughly estimate the mean time a TF spends on 3D

diffusion, DNA sliding, and also the mean number of 1D-3D search rounds. How-

ever, such analytical models often view DNA as either randomly coiled polymers or

self-avoiding polymers, which is unlikely to be the real conformation of DNA within

nuclei. These models also ignore inter-segmental transfers, in which the protein jumps

directly between two pieces of DNA far apart in the genome, but close in physical

proximity [87, 86].

Therefore, to better characterize the facilitated diffusion process with respect to BS

distributions, protein inter-segmental transfers (jumping) and the interplay between

TF and DNA chain conformation, several simulation models were developed to focus
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on different aspects of the target search in attempt to correlate simulation results with

experimental observations [88, 89]. Loverdo et al quantified the distribution of 3D

re-location distances and time intervals of protein jumping on an ideal DNA chain.

Zabet et al built a computational simulation frame work taking into account the real

BS landscape in the genome and enabled user-defined properties of TF concentration,

sliding length and specific and non-specific residence times etc [90]. Several studies

further incorporated crowding molecules and road blocks surrounding real BSs, which

better mimics the in-vivo case. Brackley et al found that macromolecular crowding

can influence mechanistic features such as the proportion of time a TF spends on the

3D search versus 1D sliding, but the total average search time turned out to be very

robust [91, 92].

Foffano et al has further investigated the facilitated diffusion process in the case

of confined DNA, which is a similar scenario to inside compact nuclei [93]. Their

results suggested that both confining geometry and chromatin elasticity contribute

to searching efficiency. Foffna et al demonstrated that facilitated diffusion is most

efficient when the confining volume is isotropic and chromatin fibre is flexible. This

suggests that proteins search faster for their binding sites inside euchromatin regions

where the chromosome is more flexible than in heterochromatin parts. Despite TF

binding affinity differing between active and inactive chromatin, the target search

favours open chromatin regions with more flexibility.

Another interesting observation is related to the effect of BS organisation on binding

dynamics and occupancy. At present, most of the work done in this area focusses on

BS sequential architecture. [94, 74]. In the context of facilitated diffusion, binding

site clusters, either homotypic or heterotypic, may give rise to effects that cannot be

reproduced by statistical thermodynamic models. For instance, Ezer et al simulated

several simple but representative scenarios of BS building blocks. They found that

two closely sited BSs for different TFs may function as barriers to each other. This

is because the presence of another BS reduces the association rate of TF to the

target site by blocking the TF 1D random walk from one direction [94]. In the case of

homotypic BS clusters, a dual effect occurs: on one hand, it holds the molecule longer

in the vicinity of the BSs by repeated sampling from the same sites during an episode
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of 1D sliding, however simultaneously it contributes to the barrier effect described

above. Thus a trade-off exists between BS spacing and affinity. Further, Sharon et

al demonstrated via massive parallel experiments that sequential homotypic clusters

influence both mean expression level and gene expression noise [95].

1.2.2 Towards consistent estimation of TF diffusion and bind-

ing kinetics parameters in live imaging

The modelling of facilitated diffusion of TF binding dynamics requires multiple crucial

biophysical parameters, most of which are specific to TFs and even cellular systems.

Thus, binding dynamic parameters obtained from live cells would be preferred over

those from in vitro measures [76]. Important parameters include: the 3D diffusion co-

efficient, the 1D diffusion co-efficient along the DNA, association and disassociation

rates to non-specific DNA fragments, TF specific and non-specific residence times,

bound proportion of molecules, inter-segmental transfer (jumping) probabilities and

so on. Several methods exist to derive binding kinetic parameters in living cells. Single

molecular tracking (SMT),fluorescence recovery after photo bleaching (FRAP) and

fluorescence correlation spectroscopy (FCS) are three main approaches [96, 76, 97].

FRAP uses a high intensity laser to quickly bleach fluorophores in selected regions,

thus generating dark spots without any fluorescence in microscopic images [97, 98].

With the Brownian motion of fresh fluorescing molecules in nearby regions, the dark

spot can return to fluorescence gradually, which can subsequently be characterized

using a standard form of the diffusion equation. By correctly fitting the fluorescence

intensity observed over time into the equation of diffusion-limited fluorescence recov-

ery, one can estimate the in-vivo diffusion co-efficient of a specific kind of molecule

in a certain type of cell. By further fitting two or three components, kinetic models

describing bound and freely diffusing states of TFs, residence time and the proportion

of DNA bound TFs can be derived according to [99].

FCS can also be used to measure the diffusion co-efficient and residence time of TFs

[96, 100]. FCS differs from FRAP in the sense that it utilizes the fluctuation of
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the fluorescence intensity occurring naturally from both random noise and biological

relevant effects rather than manual fluorophore bleaching. The information carried

in these slight fluctuations can be extracted to investigate TF binding and diffusing

properties. The core concept of FCS involves autocorrelation of time-dependent flu-

orescence intensity, which measures the self-similarity of the fluorescence signal over

time and can be modelled quantitatively in 3D diffusion of molecules. If both the

diffusion model and binding kinetic model are adopted appropriately, FCS and FRAP

can yield a similar estimation of the TF binding parameters of interest. [85].

Another widely adopted approaches single molecular tracking (SMT) [101, 102]. In-

stead of measuring fluorescence intensity in a certain area or volume, SMT directly

tracks single molecular trajectories [76]. By calculating the distances molecules jump

at different time-lags, a series of histograms of displacement at different time points

can be obtained. The histogram needs to be normalized to the total number of jumps

measured at the shorted time interval and corrected for the effect of photo-bleaching

[99]. The normalized histogram represents the probability of detecting displacement

of a certain length within a given time, which can then be used to further derive

diffusion or binding parameters of interest.

Through searching existing literature for the in-vivo diffusion co-efficient and esti-

mated TF residence time needed for our TF binding dynamic model, it was noticed

while the diffusion co-efficient estimations were relatively consistent with each other

(3D diffusion co-efficient in a range of 2− 10um2s−1), the TF residence time estima-

tions as well as bound fraction of molecules appeared to have dramatically different

results. For instance, Elf et al [76] suggested a residence time of non-specifically

bound Lac repressor on DNA based on SMT to be 0.3 to 5 ms (or 0.0003 to 0.005 s),

while Chen et al suggested a non-specific binding time of Sox2 to be 0.8 s, while spe-

cific binding of Sox2 around 12s, based on their fitting for a two state binding kinetics

model of SMT [84], which differed from Lac-I by more than 3 orders. In terms of

the proportion of TF molecules bound to DNA, different studies also proposed very

different predictions, ranging from 15% to 90% [101, 102, 76, 103]. Admittedly, there

could be substantial differences among different TFs and cell lines. However, given

the above variances, it is crucial to distinguish between real residence time differences
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among TFs and measurement errors coming from either instrumental limitations,

inappropriate normalization or model selection.

Mazza et al made direct evaluations and comparisons across different TF residence

time measurement techniques [99]. They found that the accuracy of identifying the

trajectory corresponding to truly bound molecules is crucial to SMT estimation of res-

idence time. Confounding factors came from two aspects: 1) freely diffusing molecules

can be judged as transiently bound if small movements occur below the threshold of

displacement 2) a bound molecule can be viewed as diffusing because of the precision

limit of localization. The first phenomenon if not controlled properly, may poten-

tially lead to amuch lower estimation of residence time by up to several orders of

difference. Whereas in the second case, over-estimation for residence time is likely

to occur [85, 99]. To resolve these problems and establish a reliable way of objective

selection of SMT tracks reflecting either bound or diffusing molecules, Mazza et al

suggested removing a fraction of short survival molecules within a certain number

of consecutive frames when analysing particle jumping trajectories corresponding to

DNA bound molecules. This was shown to effectively eliminate most contaminations

from freely diffusing molecules. Further using the corrected SMT fit to guide the

binding kinetic model selection for FRAP and FCS can greatly improve the consis-

tency between these three differentmeasurements. The resultant residence time for

p53 was shown to be around 2s to 6s and the bound fraction of molecules tend to be

within the range of 23% to 30% if using the model containing one boundand diffusion

state [103, 99].

Therefore, SMT is the most direct measure of TF binding kinetics among the above

three techniques, but great care is needed to distinguish bound and freely diffusing

molecule tracks [102]. FRAP and FCS are both sensitive to background normalization

methods including correction for photobleaching. Inappropriate binding kinetic model

fitting can be another confounding factor, especially in cases when different kinetic

models fit the data equally well. If so, SMT is recommended to guide the kinetic

model selection for FRAP and FCS [85]. With proper control over technical variance

and model fitting, these three approaches are able to reach a consensus on TF binding

and diffusing kinetics.
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1.3 Hi-C: an approach to study genome organisa-

tion

1.3.1 Introduction to chromosome confirmation capture tech-

niques

Chromosome conformation capture (3C) approach and its derived technologies have

been widely adopted to study chromatin interactions in different organisms.

In 3C-based approaches, long-range interactions between pairs of loci are interrogated

through spatial proximity based ligations. In the basic 3C approach, sample library

is analysed using locus-specific PCR [104]. Further development of 3C includes the

circularized chromosome confirmation capture (4C) [105], which gives genome-wide

interaction profiles for a single locus, and the multiplexed ligation-mediated amplifi-

cation (5C), which is able to interrogate millions of interactions in parallel between

two large sets of loci [106] . However, these techniques all need pre-selected genome

regions of interests as target loci and are not able to give the genome-wide information

of chromosome organisation properties in an unbiased way.

Hi-C, instead, takes advantage of high-throughput sequencing to deal with the DNA

proximity ligation samples, which generates a genome wide contact map of chromo-

somes. A unique step included in Hi-C is that the staggered DNA ends generated by

restriction digestion can be filled in with biotinylated nucleotides, which enables the

specific purification of ligation junctions [107, 108] . It gives an efficient way to probe

unbiased interactions across the entire genome.

Hi-C protocol has gone through several rounds of improvements. The initial version

of the protocol is the so-called ’diluted Hi-C’, which might introduce sever disruption

to the genome structure within the nucleus, because harsh conditions were applied

to permeate cell membranes including the nuclear membrane before the proximity

ligation step [107]. The improved protocol tried to preserve the nuclear structure as

much as possible after crosslinking and before the ligation step, which is named in
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situ Hi-C. In situ Hi-C aims to maintain the intact nuclear structure, so they checked

the state of nuclei under the microscope after each key steps before ligation to ensure

most of nuclei remain intact. I summarized briefly below the key steps in the pipeline

for Hi-C inside intact nuclei using the improved protocol from Rao et al, 2014 [1].

First, 1% to 2% freshly made formaldehyde are used to cross-link cells for 10 min

with mixing, then glycine solution was used to quench the reaction.

Next, to permeabilize the cell membrane and extract nuclei, ice cold lysis buffer con-

taining Igepal CA630 and protease inhibitors is used (pH=8.0). After washing steps,

nuclei pellets are resuspended in low concentration SDS (0.5%) and incubated at 62C

for 5-10 minutes before Trinton X-100 is used to quench SDS. This step permeabi-

lizes the nuclear membrane and partly removes chromatin-associated proteins in a

very mild condition and facilitates the following restriction digestion step. Restric-

tion digestion is performed using Mbol restriction enzyme (4-cutter) [1]. It creates a

5 overhanging end on each piece of DNA.

Then, the 5 overhangs are filled and also marked with biotinylated residues (biotin-

14-dATP), which gives blunt-end fragments. Proximity ligation is performed using

T4 DNA Ligase for 4 hours followed by de-cross-linking. The ligation products in the

final sample should be highly enriched in DNA fragments that were located proximal

to each other in the nucleus. Owing to the existence of the biotin marks in the

junction of ligation products, DNA fragments in spatial proximity can be selectively

purified using streptavidin beads [107].

After DNA shearing and size selection steps (300-500bp) using AMPure XP beads,

DNA fragments containing biotinylated ligation junctions are selected using Strepta-

vidin beads pull-down [1].

Using standard protocol for Hi-C library preparation with Illumina indexed adapter,

the sequencing library is subject to PCR amplification, purification and finally Illu-

mina sequencing. Sequencing reads are mapped back to the genome, checked through

quality controls and analysed further using various available software [1, 109, 110, 38].

28



There are several variants to the above Hi-C protocol. For instance, in situ Hi-C can

also be done without DNA cross-linking [1, 111]. In order to best preserve nuclear

structure, uncrosslinked nuclei can be embedded in agar plugs, and the global results

looked similar compared to the cross-linked ones, albeit with some differences in the

resulting local interaction frequency for certain regions. It may indicate certain bi-

ases with formaldehyde cross-linking or slightly disrupted nuclear structure in sample

preparation without cross-linking [1, 111].

One potential drawback of Hi-C due to the nature of the protocol is that it is only able

to identify two DNA fragments in close proximity at one time, but not three or more.

There could be certain amount of information loss due to this disadvantage, because

it can be the case that more than two pieces of DNA need to be brought together

in gene regulation at the same time in the same cell, i.e. promoter together with

multiple enhancers [112]. The inability to identifying multiple interactions at once

gives rise to ambiguity in interpreting Hi-C contact maps, especially when multiple

loops identified in Hi-C map are all attached to the same genome region. It could be

the case that those loops form simultaneously in all cells, or alternatively, each of them

only appear in a subset of cells. Beagrie et al proposed a very unique way to solve

this: instead of using proximity ligation, they measured chromatin co-localization

patterns through sequencing DNA from a large collection of thin nuclear sections

[113]. They named this technique genome architecture mapping (GAM) and used it

to infer both two-way and three-way chromatin contacts genome-wide. They found

enriched contacts between highly transcribed regions and super-enhancers in three-

way contacts, suggesting the existence of transcription factory like organisations.

1.3.2 Hi-C contact map normalization approaches

The raw reads in Hi-C contact map can be influenced by various factors. Some are

known systematic biases such as GC content, sequence mappability, cross-linking effi-

ciency, restriction site distribution and cutting efficiency differences between different

regions with distinct DNA accessibility and so on [114]. Some other biases could be
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random and thus difficulty to classify systematically. As a result, different genomic

regions tend to show different visibility in terms of associated Hi-C contacts. Those

confounding factors make it difficult to directly analyse the proximity ligation results

and identify genome positions with higher than expected probability to be together

[115].

Available Hi-C contact map normalization methods fall into two categories: one group

of methods explicitly consider potential biases from different levels and put them into

models explicitly one by one by calculating their effects additionally [110, 109]. For

instance Yaffe et al decomposed restriction fragment level biases into factors includ-

ing fragment length, GC content and sequence mappability [110]. However, those

methods are only able to effectively remove known influences in sample preparation

and sequencing. Due to the requirement for parameter estimation related to different

biases components, it often involves compute-intensive machine learning processes,

especially for large datasets with higher resolutions.

Another group of methods eliminate the need to decompose biases from biological

systems at different levels. Most of approaches within this class rely on the assump-

tion that all loci should have equal visibility in the processed contact maps after

normalization [116]. Lieberman et al and Rao et al [107, 1] used several matrix

balancing methods which further assume that the existing biases are scalar and mul-

tiplicative. The simplest way is Vanilla coverage normalization [107]. It calculates

the row and column-specific normalization terms respectively, simply by summing

the raw reads number in either a row or a column and taking the reciprocal. A more

advanced matrix balancing algorithm proposed by Knight and Ruiz (KR normaliza-

tion) [117] was adopted by Rao et al [1]. Matrix balancing aims to get a matrix with

all rows and columns summing to the same value. Their method is similar to the old

Sinkhorn-Knopp algorithm [118], in which VC normalization is repeatedly applied

until reaching convergence, but with a much faster convergence [117]. KR normal-

ization can produce a balanced matrix when the original matrix is not too sparse.

There might only be issues with the highest resolution, where discarding around 5%

of rows associated with too few reads is necessary.
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Maxim Imakaev et al [116] proposed another approach to iteratively correct biases

collectively for all factors, either known or unknown, which can potentially affect

visibility. Based on the assumption of factorizable biases, i.e. biases for contacts

detection between two loci can be viewed as the product of individual biases associated

with two loci. They have showed that the equation used in their iterative correction is

consistent with the maximum likelihood estimation of the relative contact probability,

if assuming the observed contact counts were drawn from a big class of underlying

probability distribution including Poisson distribution and exponential distribution.

Their approach aims to generate a uniform coverage profile with roles and columns

summing up to the same value in L1 norm, which is the same as matrix balancing

[116]. One special feature of their algorithm is that the iterative correction procedure

can be extended to include single-sided mappable reads when considering the coverage

profile, which are abundant in regions near centromeres.

Both the KR normalization [117] and the iterative correction methods mentioned

above [116] are data-driven and can adapt to slightly different experiment protocols

better as they do not have specific assumptions for the sources of biases. Further,

they are all relatively compute-efficient, so I chose to use methods from this class in

my Hi-C data analysis.

1.3.3 Chromosome organisation and TADs structures revealed

by Hi-C

Based on the genome-wide contact maps ranging from budding yeast to human,

chromosomes are partitioned into two distinct compartment, namely A and B com-

partments, which is enriched in active or inactive chromatin respectively [107, 119].

Active regions tend to associate with other active chromatin, while inactive parts

interact more frequently with inactive regions. At a megabase to a few hundreds kilo-

base scale, chromosomes form domains with elevated interaction frequency, which

are known as topologically associating domains (TADs). The interaction frequency

within TADs were shown to be roughly 2-fold higher than the contact frequency
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between adjacent TADs [120].

Though the identification of TADs can be influenced by the choice of algorithms and

also the resolution of contact maps, most of algorithms yields similar or at least, highly

correlated results [107, 121]. With higher resolution contact maps, for instance, the

ones described in Rao et al, 2014, sub-structures within TADs could also be detected.

They used the Arrowhead algorithm in calling those self-associating domains, most

of which were within 500kb (around 200-300kb length in average). Their domain

calling algorithm resulted in reporting hierarchical domains, which was a bit different

from the non-overlapping TADs generated in other studies [120]. Nevertheless, the

existence of the hierarchical structure in chromosome domain organisation has been

confirmed even using contact maps of much lower resolutions and in other cell lines as

well. One of the typical studies was done by Fraser et al [122]. They studied higher-

order interactions among multiple TADs in the process of neuronal differentiation and

observed a hierarchical tree structure which they named metaTADs. They showed

that the metaTAD were closely linked to epigenomic profiles and gene expression. The

rearrangements of the metaTADs tree during cell differentiation were also correlated

with gene expression changes during cell lineage specification [122].

Though the higher-order metaTAD structures vary in different cell types, the TADs

themselves are to a large extent consistent across different tissues [121]. Thus, several

studies viewed TADs as the invariant building blocks of chromosomes [119]. Nora et

al showed that during ES cell differentiation, genes within the same TAD have signif-

icantly higher correlation in terms of expression than gene pairs located in adjacent

TADs [123].

Relocating genes near TAD boundaries can result in alteration to gene expression pat-

terns. Lupianez et al used CRISPR/Cas system to rearrange the genomic position

of the limb enhancers and the wnt6 gene near a TAD boundary. They observed an

inappropriate upregulation of wnt6 in certain limb tissues in which the limb enhancers

appear to be active [124]. It suggested that the long range interaction between en-

hancers and target genes can have major impact on gene regulation. TAD structures

are vital to the maintenance of spatial and temporal gene expression patterns during

32



development [125, 124].

1.3.4 Possible mechanisms of TADs and the associated loops

formation

Central to the understanding of genome organisation, the underlying mechanisms

for TADs formation have been hypothesized and modelled quantitatively in different

studies [126, 112, 127]. Rao et al first observed clear loops associated with chromo-

some domain boundaries, in which a large proportion overlapped with CTCF motifs

[1]. Interestingly, CTCF sites preferentially have an inward orientation when flanking

a TAD [1, 128], which indicates an interesting relationship between TADs and the

CTCF motifs marking the boundaries.

The studies by Fudenberg et al and Sandborn et al [126, 112] proposed a hypothesis

of loop formation called loop-extrusion, which can well explain the observed pattern

of TADs boundary-associated loops. They hypothesized that some loop-extruding

factors, for instance cohesins, associate with the chromatin fibre first and then pro-

gressively generate larger loops until they encounter some obstacles including CTCF

near TADs boundaries. Sandborn et al further assumed that the interactions with

CTCF can effectively stabilize a moving cohesin complex and make it less likely to

dissociate from the chromosome. This can partly explain the enriched loops marking

TADs boundaries. Moreover, if the function of CTCF to stall cohesins depends on the

appropriate orientations of CTCF relative to cohesin, then the observation that only

CTCF sites with inward orientation serve as TAD boundaries can also be understood

[112]. Though there is still no direct evidence that cohesin complexes are able to make

orientation-specific loops, early studies confirmed that cohesin complexes can move

along the DNA after being loaded at certain positions [129] and Kim et al further

demonstrated that SMC-containing complexes do slide along the DNA in vitro [130].

However, whether CTCF is essential for loop generation is still illusive. Kubo et al

recently argued that upon acute loss of CTCF, chromatin domains and A/B com-

partment can be nearly preserved, though lamina associated domains were affected
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[131]. They observed that despite the reduction of interactions associated with loop

anchors, the majority of TADs boundaries still remain intact. It raised the possibility

that CTCF is not the only factor that marks TADs boundaries and the driving force

for TADs formation is independent of CTCF, which contradicted the loop extrusion

model by Sandborn et al [112].

Even though loop extrusion is one of the contributing factors to local chromosome

domain formation, it cannot explain the A/B compartment and further A1/A2 sub-

compartment segregation [107, 1]. Other studies proposed alternative explanations

for the formation of chromosome compartments and also provided insights into TAD

specification. Barbieri et al showed that TADs could arise from preferential interac-

tions between at least two types of loci [132], i.e. loci of the same type can interact

via certain kinds of bridging molecule dynamically, while different types of loci do

not have specific interactions. Each TAD could be represented as a chunk of genome

region associated with a single type of loci under this simple model. At the same

time, this simple model can lead to the segregation of compartment-like structures

genome wide: e.g. A and B compartments in response to two different types of inter-

acting loci. One observation favouring this mechanism is that TAD boundaries often

coincide with the alternation between chromosome compartment or subcompartment,

even though there is no loop-like structure marking the boundary of TADs (or saying

chromosome domains called by the Arrowhead algorithm) according to Rao et al [1].

Additionally, DNA supercoiling could also possibly give rise to genome segmenta-

tion and the supercoiling domain boundaries were shown to have significantly higher

chances to overlap with TADs boundaries [133]. Although supercoiling domains are

much smaller than the observed TADs (130kb in average compared to Mega-base-

scale TADs), it is possible that TADs are further comprise of smaller transcriptional

units locally. Gene transcription mediated by processing RNA polymerase is able to

generate over-wound DNA ahead of the transcription machinery and under-wound

behind instead [134]. Some chromosome remodellers have also been shown to pro-

duce hundreds of base pairs of under-wound DNA loops in vitro, including proteins

containing SNF2p-related ATPase [135]. The boundaries of supercoil domains could

be determined by either insulators like CTCF and cohesin, similar to the ones men-

34



tioned in the loop-extrusion model, or alternatively, low-density gene regions in which

supercoiled DNA dissipates gradually [134].

Fluorescence in situ hybridisation has showed that under-wound DNA supercoiling

decompacts chromosome domains rather the over-wound supercoiling [133]. This

effect relies on processing transcription machineries and it would be lost upon the

inhibition of transcription or in presence of DNA-nicking reagents. It is consistent

with the observation that active chromosome domains within A compartments are

less compacted than inactive regions or polycomb complex associated domains [136].

Supercoiling has also been shown to enhancer the interactions between gene promot-

ers and the corresponding enhancers via Brownian dynamics simulations [137]. For

DNA without bridging proteins connecting specific loci pairs, the effect of supercoil-

ing in helping DNA compaction and overcoming electrostatic repulsion only present

in low-ionic-strength buffers [138]. However, when assuming TFs or other mediator

proteins can bridge enhancers and cognate promoters, super-coiling can significantly

stabilize enhancer promoter interactions within the same super-coiling domain and

slightly decrease inter-domain interactions [137]. Supercoiling also facilitates the re-

binding of dissociated enhancerpromoter pairs, further helping to maintain specific

enhancer-promoter interactions according to biophysical simulations [139, 137]. Those

predictions for the role of DNA supercoiling in chromosome domain formations as well

as enhancer-promoter interactions remain to be tested in vivo on mammalian chro-

mosomes.

Although various mechanisms have been proposed to account for the observed TAD

organisation, mechanisms ranging from loop extrusion to supercoiling mostly con-

tribute to local chromosome folding, capable of generating and preserving TADs or

intra-TAD organisations within a mega-base scale [126, 112, 133, 137]. However, when

it comes to a larger scale more than 5 Mb extending to the whole chromosome, or

even to the arrangement of chromosome territories [140], very few models can give a

compelling explanation, except the ones proposed by Barbieri et al and Brackley et al,

which argued that the multi-type DNA bridging complexes could induce chromosome

domain and compartment segregation [132, 141]. Despite their intriguing simulation

35



results, evidence supporting the existence of different groups of DNA bridging com-

plexes corresponding to different chromosome compartments or subcompartments are

scant in higher eukaryotes. DNA bridging complexes in inactive chromatin could be

polycomb complexes and so on, which are distinct from the ones enriched in actively

transcribed regions like mediator proteins. However, similarly, whether there are any

subgroups of potential regulatory proteins that correspond to chromosome subcom-

partments within active chromatin is unknown. This motived us to investigate the

potential link between regulatory protein spatial grouping and chromosome subcom-

partment segregation, particularly within active chromatin which is associated with

enriched TF binding. We will further investigate if the spatial networks correspond

to tissue specificity, protein physical interactions and co-functions.
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Chapter 2

Transcription factor binding

dynamics and occupancy is

influenced by co-localization of

homotypic sites

2.1 Introduction

2.1.1 Discrepancy between the predicted and the experimentally-

derived TF binding landscapes

Transcription factor (TF) binding site (BS) occupancy is closely related to gene ex-

pression regulation [142]. Computational prediction of transcription factor binding

sites can help elucidate gene regulatory networks in eukaryotes [8]. Most TFs bind to

specific DNA sequences in the genome, but the potential BS candidates predicted by

DNA sequences, along with DNA accessibility information, often greatly outnumber

the in-vivo BSs identified by either ChIP-seq profiles or DNaseI digital footprints in
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different tissues [43, 142]. The possibility for putative BSs being bound (which we

here refer to as occupancy) have been shown to be influenced by DNA methylation

and histone marks [143, 144]. However, even taking epigenetic features into account,

it still cannot fully explain the discrepancy between computationally predicted and

real TF binding landscapes gained from ChIP-seq or DNase-I foot-printing across the

genome [145]. Current available bioinformatics tools to predict BS occupancy based

on DNA binding sequence motif information and epigenetic features often yield re-

sults contradicting the in-vivo binding profiles in certain genome regions. However

good correlation can be achieved from a subset of well-defined cis-regulatory modules

[146, 147, 148, 149].

Both the ChIP-seq and DNase-I digital footprint approaches have certain biases in

detecting TF binding regions due to technical limitations [34, 21]. However, it is likely

that other factors exist which may drive TF binding preferences. The discrepancy

between the predicted and actual TF binding landscape must be reconciled by other

influencing factors which play essential roles in determining BS occupancy. For in-

stance, some TFs are known to rely on the binding of other partner TFs [150, 84] e.g.

bZIP, bHLH and nuclear hormone receptor TF families. These are known as hereto-

dimers when binding to the DNA [151, 152]. Apart from direct dimer-formation,

increasing evidence exists from the exploration of TF binding mechanisms and dy-

namics, to suggest that BS organisation in the genome–both linearly along the genome

and further spatial arrangement may also influence TF binding dynamics and occu-

pancy [153, 92].

2.1.2 Binding dynamics simulations predicted accelerated tar-

get search associated with homotypic BS clusters

Although there is no direct evidence from in-vivo assay to date showing the effect

of spatial organisation of BSs on the binding of TFs, few studies exist using bio-

physical simulations such as Brownian dynamics of facilitated diffusion, to predict

the possible impact for DNA conformation during the TF target search [93, 154, 86].
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A typical example is the study from Brackley [141], which modelled bacterial DNA

as a semi-flexible polymer with homotypic BSs evenly distributed along the polymer

chain. Instead of treating DNA as a self-avoiding random polymer [93, 89], they gave

the polymer chain specific topological conformations, for instance, a string of rosettes,

each comprising multiple loops with loop points anchored together [141]. They in-

vestigated a range of TF-DNA interaction energies, demonstrating that when the TF

binding affinity is above a certain threshold, a string of rosettes conformation signifi-

cantly improved TF target search efficiency by facilitating direct TF inter-segmental

transfers in the presence of homotypic clusters. In addition, in terms of BS sequential

arrangement, without the effect of DNA looping, they investigated different patterns

of homotypic BS distribution along the polymer chain e.g. random distribution ver-

sus funnel-like landscape, where a single high affinity BS is surrounded by multiple

low affinity, non-specific BSs. They observed a severe slow down in the target search

when the distribution of low affinity BSs was randomly distributed, as low affinity

sites construct traps for TF diffusion. However, in a funnel-like landscape with traps

around the high affinity BS, the search process becomes an order faster compared to

the situation without traps. This is because low-affinity traps around the high-affinity

target sites helps to decrease the chance in which TFs diffuse away from the vicinity

of high-affinity sites, even in the case when binding affinity of those traps is very low

[141]. Other work revealing similar mechanisms include the early studies from Leonid

Mirny and Johanna Weindl et al [155, 153].

Their study on funnel-like binding landscapes provided insight into the effect of 1D

sequential homotypic BS clustering on TF target search efficiency. Their simulation

of DNA conformation in a string of rosettes incorporating multiple homotypic BSs

inspired us to further explore the possible influences of genome architecture on TF

binding dynamics and to seek evidence and support from in vivo measures in eukary-

otic systems. However, as Brownian dynamic simulations are quite computationally

intensive, it is not suitable for large scale simulations with user-defined scenarios

[86, 141, 91]. The number of diffusing molecules also needs to be limited to a small

number, due to non-linear increase of memory demands in relation to the number of

tracked particles. Due to the above reasons Browning dynamic simulations are not
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the first choice in our study to investigate BS clustering.

Furthermore, the polymer models often put more emphasis on the TF target search

process, measuring the mean search time, as their strength is in characterising the

dynamic process and estimating physical parameters related to different search phases

e.g. fast diffusing versus sliding. Polymer models also require precise knowledge of

various parameters relating to chromosome stiffness (Kuhn length), protein-DNA in-

teracting energy and elasticity of chromosomal polymer chains etc [93, 89]. These

parameters are difficult to measure in eukaryotic nuclei and can vary greatly across

different genomic regions according to chromosome accessibility and epigenetic marks.

The estimation of target search time using FRAP, FCS or SMT is also not available

for every TF, given the limited availability of fluorescent tagged proteins [99, 96, 98].

Instead, the information that is widely-available in biological systems would be TF

occupancy from ChIP-seq data [29, 26]. Therefore, in conjunction with the available

BS occupancy profiles, we aimed to develop a robust approach to modelling TF bind-

ing dynamics being more occupancy-based rather than target-search-time-focused.

We wanted to find some computational-efficient simulation methods to quantify the

impact of homotypic BS organisation on TF binding dynamics, enabling the combi-

nation of 1D sequential BS distribution with 3D BS architectures in a user-defined

way. In addition, since the presence of chromosome loops have been shown to be

dynamic and may only appear in a subset of cells [112], we wished to explore BSs in

spatial proximity in a more general context, not limited to the scenario of loops.

2.1.3 Research aim

Previously, our research group has built a computational simulation framework, named

FastGRiP. FastGRiP is capable of performing stochastic simulations that model TF

binding and unbinding events with user-defined binding sites, sequential arrangements

and other parameters thus characterizing the facilitated diffusion of a specific TF

[94]. It is an computational efficient simulation tool in comparison to other software

[156, 86, 89], as it focuses on modelling occupied and unoccupied state transitions
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for an array of BSs, rather than tracking the movement of individual molecules. It

makes use of the Gillespie algorithm incorporating TF association, disassociation and

translocation to adjacent BSs following certain probabilities according to the facili-

tated diffusion mechanism [93]. FastGRiP is capable of dealing with multiple kinds

of BS sequential arrangements, either for two adjacent BSs forming a switch or a

barrier, or homotypic BS clusters. Howwver,the spatial arrangement of BSs is not

taken into account [94]. Therefore, using FastGRiP we made further extensions to

include BS 3D arrangements in order to model the TF spatial target search process

in a computational efficient way. This piece of work was done in collaboration with

Daphne Ezer, in which I modelled TF 3D diffusion and jumping probabilities in Mat-

lab whilst Daphne further incorporated the 3D search results into her previous Java

codes of FastGRiP and to enable this 3D extension.

In addition to biophysical simulations of TF binding dynamics, we sought to seek

evidence and support from in vivo assays e.g. ChIP-seq TF binding profiles. Despite

the mechanic advantages provided by spatial homotypic TF clustering [76, 154], little

attention has been paid to study this phenomenon using genomic approaches. Malin

et al observed significantly higher TF BS occupancy derived from DNase-I digital

footprinting in a set of bioinformatically inferred regulatory archipelago enhancers

[157]. This was hypothesized to be a consequence of spatial homotypic clustering

of BSs made possible by the spatial grouping of correlated enhancers. However,

there is no direct evidence that those bioinformatically inferred enhancer clusters do

appear to be in spatial proximity and no information about TF type can be obtained

from DNase-I digital footprinting profiles. Their studies focused on special types of

enhancers, but there has not been a direct investigation so far of the quantitative

relationship between the level of homotypic BS co-localization and BS occupancy on

a genome wide scale. It is also not clear if similar rules hold for genomic regions with

different epigenetic features and for different kinds of TFs.

Chromosome confirmation capture techniques including Hi-C, paved the way for us to

systematically investigate the influence of spatial homotypic clustering of binding sites

(BSs) on TF binding efficiency [119, 158, 120]. DNA proximity information obtained

from genome-wide contact maps can be used to quantify the level of homotypic BS

41



co-localization.

Admittedly, there would be other alternatives to Hi-C contact maps, for instance,

capture Hi-C contact data. However, capture Hi-C data only utilises a small subset

of pre-defined genome loci, such as promoters or certain enhancers, as viewpoints to

interrogate their interactions with all other genome regions [159, 160]. Their contact

profiles were difficult to normalise and to remove various confounding factors that

influence contact read distributions. Matrix balancing or other iterative normalization

procedures based on the genome-wide contacts were not applicable to capture Hi-C

[107, 116]. In addition, due to the scarcity of reads in distal regions, reliable peak

calling was hard to achieve. Although there are several available software programs

trying to solve this [159, 161], their peak calling algorithms are mostly based on certain

distribution assumptions such as Gamma distribution, which might be violated in

reality due to the complexity of the biological system.

Thus, we chose to use the genome-wide intra-chromosomal Hi-C contact map of

GM12878 cells, with the improved protocol that well-preserved intact nuclei struc-

tures [1]. It reached the resolution of 5kb in the final binned contact reads profiles,

achieved by super-deep sequencing. Based on the Hi-C contact map, we defined

a metric of quantitative representation for the homotypic BSs co-localization level

around each genomic loci. We found a strong linear correlation between BS occu-

pancy and BSs homotypic co-localization, consistent with biophysical simulations of

transcription factor binding site searching. This trend is more pronounced for BSs

with weak binding motifs and with the enhancer state.
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2.2 Methods

2.2.1 Biophysical model of TF 3D diffusion and jumping to

BSs in spatial proximity

Our lab has previously developed a semi-analytical model, which was named fast-

GRiP, to simulate TF target search process based on the facilitated diffusion mech-

anism [94]. It made use of a continuous time Markov chain, in which every state

represented a specific bound or unbound configuration of an BS array. State tran-

sition rates were defined according to the probability of single event of TF binding,

unbinding to DNA or relocation to their adjacent BSs within a sequential BS cluster.

The fast computation of BS occupancy configuration was achieved by mathematical

approximations of TF sliding and non-specific residence time calculation associated

with target regions which we called ’sliding windows’ around each sequence-specific

BS [94]. The sliding window we defined is based on the observation that a given type

of TF can perform 1D random walk on non-specific binding regions. TFs can explore

an average length of s base pairs before disassociating from the DNA [76], where s is

specific to different TFs and is related to protein structural properties within DNA

binding domain. Thus, by approximation, if the target BS is located within s bp of

the landing point of a TF molecule, the TF is then likely to reach this target via 1D

sliding [156, 94].

FastGRiP enabled the incorporation of user-defined genomic binding affinity land-

scape into binding dynamic simulations, which is an useful feature absent in most of

other simulation tools [94, 89]. However, the spatial arrangements of BSs were not

taken into consideration initially in FastGRiP. In the original simulation, we assumed

that unbound TFs are equally likely to bind to any other BSs, regardless of their

spatial position. However, in fact, a recently dissociated TF is more likely to bind to

a spatial nearby site than a far away site by 3D diffusion. The spatial arrangement

of BSs cannot be simply reflected by Chemical Master Equations used in the initial

simulations, but further requires quantifications of re-binding probabilities to BSs

43



located within different distances. We refer to the above event of TF disassociating

and re-binding to a spatial nearby sites as TF jumping, similar to [93, 154].

The physics of jumping to spatial proximal BSs can be captured by a simple diffusion

model assuming that 1) there is an absorbing sphere of radius r around each target BS

and 2) TFs can be viewed as point particles diffusing freely with an effective diffusion

coefficient Deff , which is adjusted for DNA crowding.

The equation that describes the probability of a point molecule distance r away to

reach the absorbing sphere at time t has been previously derived [162] [163]. It is equal

to the probability flux into the absorbing sphere given the standard diffusion with

the corrected diffusion co-efficient and assuming a transient point source of diffusion

particles. Note in the online paper of Paramanathan et al, 2014, there was a typo

in one of their equations describing TF absorbing probabilities on Page 8, equation

7 (the power of t in the denominator should be 3/2 instead of 1/2). The corrected

equation is written below. I have informed the author to correct this typo in their

on-line paper, while the master equation used to derive this formula originally in [162]

was correct.

In the following equation, s is the radius of the absorbing sphere, and Deff is the

effective diffusion coefficient.

φ(r, t) =
s(r − s)

2r
√
πDeff t3

exp(−(r − s)2

4Deff t
) (2.1)

In analogy to the sliding window defined in FastGRiP [94], we adjust the diameter

of the absorbing sphere s to 30nm for absorbing TFs from outside of the target,

in which the target can either be a single BS or a BS sequential homotypic cluster

located within 1000 bp (within the Kuhn length of eukaryotic DNA) [86]. In the case

of internal jumps within sequential homotypic clusters, the absorbing sphere is set

to be 2nm (the approximated size of a TF BS), representing directly reaching the

binding site from 3D diffusion [164]. It is because fastGRiP has already incorporated

the sliding of TFs between neighbouring binding sites, and we must be careful not
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to double-count this effect. We calculate the diffusion coefficient Deff using the

following equation, as previously described [76]. We note the in vitro TF 3D diffusion

co-efficient cannot be simply applied, because the nucleus is a crowded environment

with various kinds of macro-molecule including DNA, histones and other crowding

agents, which drastically slow down the diffusion of TFs compared to the invitro case.

Deff = (1− a)D + a
D1

3
(2.2)

where Deff is the effective diffusion coefficient, a is the proportion of time the TF

spends sliding on the DNA non-specifically in TF target search, D is the 3-dimensional

diffusion coefficient measured in vitro without macro-molecules crowding, and D1 is

the 1D diffusion coefficient of the TF on DNA. Therefore, the effective diffusion co-

efficient is the observed equivalent diffusion co-efficient taking into account both TF

free diffusion in 3D and the time delay caused by DNA crowding. In the following

analysis, we choose D to be 3µm2/s and D1 to be 0.046µm2/s, as estimated by single

molecule tracking (SMT) of LacI in live E.coli [76]. In eukaryotic nuclei, D and

D1 for several TFs have been shown to be in the same order as Lac-I, though in

certain cases, the precise estimation of D and D1 appeared to lack consistency across

different studies for the same TF in eukaryotes [101, 102, 103]. The estimations of

the fraction of time for TF non-specific association to DNA vary from 20% to 90%

across different TFs and in different studies using either SMT, FRAP or FCS, which

could reflect real differences across different families of TFs, or alternatively, biases

due to inappropriate experimental design using either SMT or FRAP, as discussed in

Chapter 1 Section 1.2.2. a equals 90% is only used as an illustrative example in our

simulation, taking into account the data usage consistency with diffusion co-efficients

from [154, 76]. The value of a, as well as D and D1, can all be adjusted easily in

our updated FastGRiP simulation tool according to fit into different scenarios based

on TF choices. The functions to obtain the biophysical simulation results of TF

diffusion and jumping probabilities were written in Matlab and were deposited in

github: https://github.com/ezer/DiffusionMarkovModelJumping under my name.

In the original simulation, we assumed that any unbound TF is equally likely to bind
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to any other binding site, so when a TF dissociates from a binding site it enters a

pool of TFs. In the updated version, a recently dissociated TF is more likely to bind

to a nearby site than a far away site, as shown by the probability density functions

depicted in Figure 2.1B. Figure 2.1B illustrates that after 0.1 seconds, the probability

density functions for TFs jumping between DNA strands that are 100nm, 200nm, and

2000nm apart nearly converge. After 10 seconds, the probability of the TF binding

to a DNA strand 100nm, 200nm, or 2000nm away becomes less than 1% for all cases,

so we replace a TF that is still free floating after 10 seconds into the TF pool in our

simulation.

The other parameters we used were identical to those described by Ezer et al, 2014.

We set τ0 = 3.3, cn = 100, and the distance between binding sites in a cluster to 5

bp, unless otherwise stated.

2.2.2 Incorporation of TF jumping into Gillespie algorithm

based simulations

In our updated fastGRiP, we incorporate the jumping probability from one strand

to another by combining pre-computed diffusion probability look-up table with the

Gillespie algorithm.

The Gillespie algorithm is able to compute a random time when the next event takes

place and select the event that is most likely to happen next, given a set of known

events. The thing to note is that the Gillespie algorithm has a core assumption that

the probability of a reaction event is time-independent and must follow an exponential

distribution, which was the case for TF association, disassociation and 1D trans-

location that was characterized in FastGRiP before. However, the re-absorbing or

jumping probability of a TF from one DNA strand to another is time dependent, as

described by the probability density function in 2.1. Selecting the time of the next

reaction requires sampling a value from the averaged probability density function

of the reaction times for all of the possible reactions. The exponential distribution,

involved in the Gillespie algorithm, is the simplest one to deal with in this case,
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because of its mathematical beauty that ensures the additivity of reaction rates.

However, other more complicated distributions, especially the one encountered here,

would require time consuming steps tackling numerical integrations and averaging

custom functions to generate the integrated probability distribution for all possible

events, and then sampling values from the above complicated distribution to select

the next possible reaction event and its associated time. If this needs to be done for

individual TF jumping associated event, it would require very long compute time and

thus, drastically slow down our simulation.

Instead, we modified fastGRiP as follows to allow diffusion between DNA strands to

be incorporated without substantially slowing the simulation. In the earlier version

of fastGRiP, once a TF dissociated, it entered a pool where the TF is equally likely

to bind to any location along the DNA, which ignored the spatial arrangement of

TF BSs. Now, when a TF dissociates, it enters another pool of diffusible TFs. It

samples the time of its next expected jump from a 100,000 element pre-computed

lookup table generated in Matlab by me. All of the possible TF jumps are then read

in and stored in a PriorityQueue in Java, which was coded by Daphne Ezer. When

the Gillespie algorithm reaches the step to select the time of the next TF association,

dissociation or intra-cluster translocation reaction, it first checks the pool of diffusible

TFs to see if any TF jumping events have happened in the meantime, and updates

the state of the system accordingly. Sometimes, a TF jump event can no longer

occur, because that DNA binding site is already occupied by the time the new TF

diffused to it. In these cases, we recomputed a new location for the TF to diffuse

to and add it to the PriorityQueue again. If the time of a TF jump event is longer

than 10 seconds, we do not store this TF in the pool of diffusible TFs, because

it has nearly equal likelihood of diffusing to any binding site, as was illustrated in

Figure 2.1 , and we place the TF in the original TF pool. This strategy allows

us to model TF jump events with complicated, non-exponential probability density

function in a compute-efficient way. The code for this modification is available at

https://github.com/ezer/DiffusionMarkovModelJumping, where my Matlab code and

D. Ezer’s Java code was put together.
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2.2.3 TF Binding sites Annotation

Given the biophysical simulations in respect to the influence of spatial homotypic BS

co-localization on BS occupancy, we further explored this in real biological systems,

where the degree of BS spatial proximity is represented by Hi-C contacts and BS

occupancy is derived from ChIP-seq peaks. We choose human GM12878 lymphoblas-

toid cells as a model cell line, due to the availability of the highest resolution Hi-C

contact map down to 5kb [1] and also sufficient number of TFs with ChIP-seq profiles

in ENCODE[67].

ChIP-seq NarrowPeak profiles for TFs of GM12878 were obtained from ENCODE [67].

Position Weight Matrices (PWM) for TF motifs were collected from HOCCOMOCO

[165], SwissRegulon [166] and JASPER [167] where available. To ensure the quality of

sequence motif used for putative binding site (BS) identification, we only used PWMs

that are derived from more than 30 validated binding sites and have a minimum

motif length of 8 base-pairs. TFs without a suitable PWM motif were excluded from

further analysis. After the above filtering, we recovered total of 40 TFs which both

have ChIP-seq profiles and well-defined sequence motifs in GM12878 cell line.

Putative TF binding sites were defined as PWM motif matches of a certain tran-

scription factor via FIMO motif scanning [168] in DNase Hypersensitivity Hotspots

(DHS) with p-value threshold equals to 10−4 (default setting) [9, 168]. Chromosome

X was excluded from our analysis because of its specialised chromosome organisation

[169, 170]. Each individual ChIP-seq peak from ENCODE profiles was mapped to

the best scoring sequence motif which overlaps with it. Occupancy is then defined by

the ratio of the number of ChIP-seq identified BSs and the number of total putative

binding sites in specific groups of genome regions.

To account for potential influences from histone marks and chromosome sub-compartment

on TF binding, we further grouped DHS regions and ChIP-seq identified BSs ac-

cording to 1) chromosome sub-compartment annotation reported by Rao et al [1],

2) whether associated with H3K27Ac, H3K27Me3, H3K4Me1, H3K4Me3, H3K9Me3

and H3K9Ac, 3) ENCODE consensus chromatin states [171] 4) in addition, for DHS
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regions located in gene promoter regions, we further classified them into strong pro-

moters (highly active promoters) or weak promoters according to whether H3K36Me3

is present or not downstream of the gene body [172, 173]. For histone marks, we used

ENCODE BroadPeak profiles from the Broad Institute for H3K27Me3, H3K9Me3 and

H3K36Me3 marks due to the dispersing nature of the histone marks themselves, while

NarrowPeak profiles were used in all other cases. Confounding genomic regions with

both H3K27Ac and H3K27Me3 or both H3K9Ac and H3K9Me3 were removed from

further analysis. In addition, methylated genome regions [174, 67] were excluded from

our analysis to avoid potential influence of DNA methylation on TF binding patterns.

The above filtering resulted in recovering 76% of DHS regions subject to subsequent

analysis.

2.2.4 Quantification of Spatial clustering of TF binding sites

within the same type

We use the normalized intra-chromosome Hi-C contact frequency as an indicator of

the strength of co-localization between any paired loci in each chromosome. We

aim to establish a metric for each genomic locus that can represent how likely this

locus interacts with any potential BSs of a certain TF in distal genomic regions, in

parallel to the spatial clustering of BSs simulated in our above model. Ideally, real

3D distances are the most relevant measure, but it is currently something difficult to

derive in a high-throughput way via microscopy. Hi-C contact frequency can also be

related to 3D distance somehow, but the conversion itself depends on the choice of

chromosome structure model and can give highly variable results depending on the

fractal dimension within a certain chromosome region, which has been shown to vary

substantially according to histone marks and gene activities [136].

To quantify the degree of spatial clustering of homotypic BSs around individual

genome loci, we adopted the following formula (equation 2.3:

HCSi =
∑
j

log
obsi,j
expi,j

(2.3)
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where the HCSi is the abbreviation for the Homotypic Clustering Score we defined for

a specific genomic locus i; obsi,j refers to the observed Hi-C contact score between each

genome loci i and each binding site j of a specific kind of TF; the expi,j is the expected

average score accounting for the effect of genome distance, which is the empirical

average of contact scores between a certain genome distance in each chromosome.

We adopted the Hi-C contact score via the KR normalization method, the same as

used in [1]. For each genomic locus of interest, we summed up the logarithm of the

ratio for the observed versus expected scores across all ChIP-seq identified binding

sites j of a specific kind of TF in the same chromosome, which measures how likely

a genome locus is in contact with certain types of TF binding sites. Genome loci

with the total associated raw reads less than one third of the median reads of each

chromosome were deemed to be associated with insufficient reads and were removed

from subsequent analysis. Diagonal elements of the Hi-C contact map were excluded

as well as the adjacent 25kb regions left and right to avoid potential high levels of

noise in Hi-C reads. Thus, the HCS defined above were mainly focused on the spatial

co-localization of genome distal BSs, while the effect of local sequential clustering of

BSs was not taken into account. (In the case of hESC contact map, given the basic

resolution if 40kb, we only excluded the diagonal elements as well as the immediate

neighbouring bins left and right. )

Notice that the average number of Hi-C reads between loci dropped quickly as genome

distance increases– for distal loci, read number can be very low in the current reso-

lution of 5kb (see figure 2.3 for an example and also [1]), which might lead to high

noise in the above calculation. Therefore, we increased the bin size to be 25kb when

two loci are more than 100kb apart by merging adjacent bins, and further to 55kb

for loci more than 1Mb apart. (Similarly, in hECS contact map of 40kb resolution,

we increased the bin size to be 120kb and 200kb for loci further than 400kb and 1MB

apart.) To avoid potential high noise in calculating the observed versus the expected

ratio of contact pairs associated with low reads number, any contact pairs containing

less than 20 raw reads were discarded.

HCSs for BSs of each TF were rank normalized, i.e. each score were replaced by its

fractional rank, and further put into decile groups (10 groups) or grouped into high
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(top 0.33), mid (0.33-0.67) or low (bottom 0.33) levels based on the requirement for

each analysis.

2.2.5 ChIP-seq NarrowPeak SignalValue comparison between

paired binding sites

To account for potential variations of TF binding site occupancy caused by genomic

DNA sequence motif differences, we made BS pairs with exactly the same DNA se-

quence motif, histone marks including H3K27Ac, H3K27Me3, H3K4Me1, H3K4Me3,

H3K9Me3 and H3K9Ac and further made sure that both of the BSs were located

within DNaseI hypersensitivity regions without any types of DNA methylation [67].

When evaluating the effect of BSs homotyic clustering, chromosome subcompartment

of BS pairs were also kept the same, while in the study of the influence of A1/A2

subcompartment, the level of homotypic VBS clustering were kept the same. In order

to make a reliable comparison of ChIP-seq SignalValues, we only used ChIP-seq Nar-

rowPeaks that map to one unique DNA binding sequence from FIMO motif scanning

[168].

ChIP-seq SignaValues of each TF were rank normalized with the highest value as-

signed the score of 1 and the lowest of 0. We performed Wilcoxon signed-rank test to

the list of paired BSs for each TF to test if different categories of BSs show significant

differences in ChIP-seq SignalValues. We first calculated the differences between the

normalized SignalValues for each pair of BSs, then as a control, the two BSs in each

pair were randomly shuffled to obtain the expected distribution of the SignalValue

differences between pairs of BS. If there are more than one BS that can make match

to a specific BS, all possible combinations were retained in our analysis.
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2.3 results

2.3.1 Simple scenarios of TF binding dynamics simulations

in two binding site clusters of spatial proximity

In our TF binding dynamics simulations with updated FastGRiP, we compare three

scenarios 1) First, we look at a pair of homotypic clusters that are on two different

DNA strands, as shown in Figure 2.1AII, and we vary the distance between two DNA

strands 2) Then, in the same scenario, we adjust the distance between TF binding

sites within the homotypic cluster (Figure2.1AIII). 3) We vary the number of TF

binding sites within each BS sequential homotypic cluster located on the same strand

(Figure2.1AIV).

In each case, we are interested in determining how these binding site organizations

influence TF occupancy, which we define here as the average probability that each

TF binding site is bound. For instance, TF occupancy of 0.05 means that on average

each TF binding site is bound 5% of the total time. We note that the exact amount

of binding time depends on the average residence time of sequence-specific BSs that

is used as input to the simulation. The parameters we use here are the same as Ezer

2014 [94], but it could potentially vary according to different TF of interest.

In the first scenario with two binding site clusters on different strands located at differ-

ent distances from each other, we see that the closer these two strands are in 3D, the

higher average occupancy they have. It suggests that TF jumping between different

strands significantly increases the average TF occupancy of the region (Figure2.1C).
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Figure 2.1: Biophysical simulations of the effect of homotypic BS co-localization. We
evaluate the effect of spatial homotypic BS clustering on TF binding dynamics and
occupancy using updated fastGRiP simulations. Subfigure AI demonstrates how fast-
GRiP’s sliding window concept is extended to an absorbing sphere when considering
3D diffusion. AII-AIV show the simulated scenarios of BS sequential and spatial
arrangements. The shape of the probability density function φ from equation 2 is
shown in B. The results from the simulated scenarios AII-AIV are depicted in C-E.
They show the probability density plots of TF occupancy, which is the probability
for each TF binding site being bound. Note that the TF occupancy, as defined by
fastGRiP, includes not only the time at which a binding site itself is occupied, but
also the time when the TF is within the average sliding length of the binding site
(here we choose to use 90 bp [76]).

Next, we vary the distance between binding sites within sequential homotypic clusters.
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In contrast to the substantial variation of BS occupancy in relation to the distance

between DNA strands, in this case, 1D distance between BSs only slightly influences

overall TF occupancy, at least given the parameters that we simulated (Figure2.1D).

This result is a reflection that there are two opposite effects influencing TF binding

site occupancy. On the one hand, there is increased translocation of TFs between two

binding sites in a cluster when the distance between binding sites decrease. On the

other hand, the absorbing spheres around each BS may intersect more if the two sites

are very close together in a sequential homotypic cluster. Hence, when considering

TF jumps from outside of the cluster (other DNA strands), the overall chance for a

TF to reach each binding site is reduced. This is comparable to playing a game of

darts with two dartboards that are partially overlapping. In this case, the chance of

scoring is higher when there is less overlap between them. Therefore, the distance

between BSs in sequential homotypic clusters might not have very much influence on

TF occupancy.

Finally, we consider homotypic clusters with four binding sites. As shown in Subfigure

E, Homotypic clusters with more BSs are more greatly influenced in the presence of

TF 3D jumps between strands. There is a 58% improvement in TF occupancy when

DNA strands are 100nm apart in the quadruple TF binding sites homotypic cluster

case as opposed to a 42% improvement in the double TF binding site cluster case.

2.3.2 3D organizations of homotypic binding sites

Afterwards, we considered four more complicated 3D organizations of homotypic bind-

ing sites that would more closely resemble the case in vivo. We simulated a tetra-

hedron and a cube of homotypic clusters (Figure2.2A and C, respectively). In both

cases, there is either a single binding site or a pair of binding sites in a homotypic

cluster in each corner of the shape. In the scenarios of homotypic clusters, the tetra-

hedron has 4 corners and 8 total binding sites and the cube case has 8 corners and

16 total binding sites.

We evaluated the impact of the presence of sequential homotypic clusters first. When
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comparing the mean occupancy when DNA strands are 100nm apart in a tetrahe-

dron organization, the cluster case (Figure2.2B) shows an increase of occupancy of

39% compared to the single site case (Figure2.2A). However, this percent increase in

occupancy due to the presence of sequential homotypic clusters drops to 21% in the

case of a cube organisation (Figure2.2C and D). It suggests that when inter-DNA

strand jumping plays a more significant role, as is the case for the cube organisation,

sequential homotypic clusters may have less impact on occupancy.

TF binding occupancy increases substantially when the DNA strands are close to-

gether, especially when the BSs are organized into more complicated configurations,

due to the strong effect of inter-DNA strand jumping. When homotypic clusters are

found in the corner of a tetrahedron (Figure2.2B), there is a 60% or 170% increase in

TF occupancy when the DNA strands are 200nm or 100nm apart, respectively, com-

pared to the extreme case in which the DNA strands are 10000nm apart, where there

is negligible inter-stand jumping. In the cube case (Figure2.2D), there is a 118% or

277% improvement in TF occupancy when the the edge length of the cube is 200nm

or 100nm. In summary, the spatial co-localization of multiple BSs of the same type

of TF represents a potential strategy for increasing local TF occupancy.
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Figure 2.2: Occupancy gain associated with complex binding site arrangements. We
simulate two more complex arrangements of homotypic clusters: a tetrahedron with
one binding site in each corner(A), a pair of binding sites in a homotypic cluster in
each corner(B), a cube with a single binding site(C) and double binding sites(D) in
each corner.
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2.3.3 TF binding site occupancy has strong linear correlation

with spatial homotypic BS clustering

In our simulation of TF binding dynamics, the substantial increase in BS occupancy

accompanied by homotypic BS spatial co-localization inspired us to further explore

this in vivo with the available chromosome organisation data.

In Hi-C contact maps, the chromosome proximity ligation frequency can be viewed as

an indicator of how likely two pieces of DNA can be spatially adjacent to each other.

Given that the probability of observing a cis Hi-C contact has a strong dependence on

the sequence separation between interacting sites, we used a measure of Hi-C contact

enrichment above the background expectation (see Methods), as a way to quantify

the strength of interaction between any paired loci.

With the availability of the high-resolution (5kb) intrachromosome Hi-C contact map

in GM12878 cell line [1], we defined a quantitative measure for homotypic BSs co-

localization levels around each genome locus, which we refer to as homotypic cluster-

ing score (HCS), as illustrated in Figure2.3 and described by Equation 2.3.

Most sequence specific TFs can only recognize and bind to cognate DNA motifs

within open chromatin, except very few pioneer factors which may also bind to closed

chromatin [143]. Overall 96% of ChIP-seq peaks used in our analysis in human lym-

phoblastoid (GM12878) overlapped with DNase-I hypersensitivity hotspots (DHS).

Therefore, we defined putative BSs by FIMO sequence motif scan ([168] within DHS,

as described in Methods.
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NRF1

YY1

Putative BSs

Chr9:132.35Mb-132.65Mb

Figure 2.3: Graphical overview of quantifying the spatial co-localization of TFs, both
within the same type and between different types, using Hi-C contact data. A section of
the Hi-C contact map at 5 kb resolution (upper triangle) showing normalized contact
counts of human lymphoblastoid GM12878 [1]. The darker colour corresponds to
higher contact score. Binding sites of two TFs (YY1 and NRF1) identified by ChIP-
seq are shown in the genome track below. Interactions between binding site pairs
within the same type of TF are shown as either blue (YY1) or yellow (NRF1) circles,
whereas interactions between two different TFs are shown with dual colours. Putative
sites, identified by sequence motif scan, in DNase-I hypersensitivity regions for YY1
(blue) and NRF1 (yellow) are depicted in the bottom track.
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Figure 2.4: Correlation between BS occupancy and the co-localization of BSs of its
own type as is revealed by Homotypic Clustering Score (Pearson’s R=0.98 and 0.91,
respectively). The Homotypic Clustering Score (HCS) were derived from the Hi-C
contact map for either the promoter or the enhancer state. BSs were grouped into 10
equal-sized bins (decile groups) according to HCS. (Error bars represent the standard
deviation of calculated BS occupancy in each decile group using re-sampled BSs data
by leaving 1/3 of BSs at each time and repeating 1000 times.

Combining the Hi-C contact map with the predicted genome-wide putative TF bind-

ing sites, we grouped the putative BSs for each TF into 10 groups of equal size(decile

groups) according to rank normalized HCSs. By defining occupancy as the propor-

tion of putative BSs occupied by ChIP-seq peaks, we observe a substantial gain of

BS occupancy in relation to HCS in genome regions with either the enhancer or the

promoter states (ENCODE consensus chromatin state [67]). However, the magnitude

of occupancy increase is much larger in the enhancer state compared to that in the
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promoter state (Figure 2.4).

The above results demonstrate that among all TFs the amount of homotypic co-

localisation is associated with TF occupancy, but it is unclear whether this rule holds

for individual TFs. Thus, we grouped putative BSs for each TF according to their

HCS into low (bottom 0.33 of HCS), mid and high (top 0.33 of HCS) groups. Triple

grouping was done because of the limited number of ChIP-seq identified BSs for some

TFs. For TFs with sufficient ChIP-seq data–at least 300 called ChIP-seq peaks in

total– 24 out of 34 TFs (71%) showed a significant increase in BS occupancy in the

high HCS group compared to the low (G-test with William correction, p < 0.05, 22

of which have p < 0.01, Figure 2.5a), in contrast, only 1 TF (USF2) had significantly

decreased occupancy in the high HCS group.

Next analysis was conducted for BSs that fell into certain chromatin states i.e.

promoter or enhancer; TFs with less than 300 ChIP-seq peaks within each chromatin

state group were not included in subsequent analysis. For the promoter state, 15 out

of 32 TFs had a significant occupancy boost in the high HCS group (G-test with

William correction, p < 0.05), whereas 3 TFs (USF2, NFYB and ELF1) showed

an occupancy decrease instead (Figure 2.5c). For the enhancer state, we observed

a significant occupancy boost in 17 out of 25 TFs (G-test with William correction,

p < 0.05), while no TF displayed the reversed trend (Figure 2.5b), which indicates a

more pronounced positive relationship between spatial homotypic BS co-localization

level and BS occupancy in the enhancer state compared to the promoter state.
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Figure 2.5: The fraction of BS occupancy increase in the high HCS group compared
to the low group for each TF. Shown are the bar plots with respect to all BSs for each
TF (a), BSs of the enhancer state (b) and the promoter state (c). Stars above the
bar plots denote the level of significance (single star: 0.01 < p < 0.05; double stars:
0.001 < p < 0.01 and triple stars: p < 0.001).
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For instance, ELF1 had a significant occupancy boost in the high HCS group within

the enhancer state (p = 3.2 · 10−9), but an occupancy decrease in the promoter

state (p = 2.2 · 10−3). It suggests a more sophisticated binding dynamic may be

involved in shaping its binding within the promoter state, which cannot be captured

by simple diffusion driven binding dynamics. In addition, NFY and USF family

TFs have been shown previously to have special DNA binding properties i.e. they

can bind to motifs without ”positive” histone marks or even containing H3K27me3

marks [175]. Furthermore, NFY co-associates with FOS and is stereo-positioned with

growth-controlling transcription factors, which may also contribute to its binding

occupancy complexity [175].

We wondered whether there are other factors that may contribute to the differences

in the level of occupancy boost, such as the binding motif strength. Therefore, we

classified putative BSs based on BS sequence motif strength, which is related to DNA

binding affinity, into weak putative BSs (10−4 > p value reported by FIMO motif

scan> 10−5) and strong putative BSs (p < 10−5). Interestingly, in the enhancer

state, weak putative BSs showed 72% of occupancy boost when comparing the ones

in the top 10% versus the bottom 10% in terms of HCS, while strong ones only have

23% of occupancy increase (Figure2.6a,b). For the promoter state, the occupancy

of weak putative BSs showed good correlation with their HCS (Pearson’s R=0.93,

p = 9 · 10−4), though there is only 18% difference between the top 10% versus the

bottom 10% in terms of HCS; in contrast, the occupancy of strong putative BSs

showed no significant correlation with HCS (p=0.54).
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Figure 2.6: Relationship between BS occupancy and homotypic co-localization of
BSs. BSs were further classified according to DNA binding sequence motif strength
into weak (a) or strong BSs (b) based on their sequence motif strength.
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The divisions into enhancer and promoter chromatin states were a reflection of en-

riched histone mark patterning; however, it was unclear whether a particular histone

mark per se was responsible for the differences observed between these two chromatin

states. In addition, there might be subgroups of chromatin states that may have

different effects on spatially-lined occupancy boosts, which could be missed by our

previous analysis. For instance, since H3K36Me3 was reported to be a sign of highly

transcribed genes [172], it can be used in conjunction with other histone marks to rep-

resent the promoter strength. Therefore, for putative BSs in the promoter state within

2000bp upstream of TSS, we grouped those associated with H3K4Me3, H3K27Ac and

also H3K36Me3 in 2000bp up- or down-stream of their TSS into a category named

strong promoters (highly active promoters), in contrast, those only associated with

H3K4Me3 and H3K27Ac but without H3K36Me3 are called weak promoters. In-

terestingly, there is a strong correlation between BS occupancy and HCS (Pearson’

R=0.96) (Figure 2.7a) in weak promoters, but the correlation becomes weaker in

strong promoters (R=0.74) (Figure2.7a), though the overall binding occupancy re-

mains at similar levels. There is no significant difference in the ratio between strong

and weak BS number in the above two groups, suggesting that the differences be-

tween the two groups are not a consequence of differences in BS strength. These

results indicate that spatial homotypic BSs co-localization plays a more essential role

in boosting BS occupancy in weak promoters than strong promoters– BS occupancy in

strong promoters might be strongly affected by other factors, beyond the diffusion re-

lated biophysical mechanisms, and not require such a strong TF support network. In

addition, in the enhancer state, we grouped putative BSs based on whether they were

found in active- or inactive-enhancers, according to whether H3K27Ac or H3K27Me3

marks were presented. Note that all of these regions also contained H3K4Me1, a

typical mark presented in enhancers. We observed a good correlation between TF

occupancy and the HCS groups in both active and inactive enhancers (R=0.97 for

active enhancer and R=0.94 for inactive enhancer, Figure 2.7b), though the over-

all occupancy of active enhancer was more than 2 fold higher than that of inactive

enhancer.
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Figure 2.7: Linear correlation between BS occupancy and homotypic BS co-
localization in weak promoters without H3k36me36 or strong promoters (highly active
promoters) with H3k36me3 (a); active enhancers with H3k27ac or inactive enhancers
with H3k27me3 (b). Note H3k4me3 and H3k27ac was required to be present in all
promoter regions, while H3k4me1 was required in all enhancer regions.
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2.3.4 Homotypic BS co-localization lead to ChIP-seq Signal-

Value gain

The DNA sequence of TF binding motifs can have a strong impact on BS affinity

and binding occupancy. In previous sections, we defined a putative BS as having a

motif-score above a threshold within DHS, but we did not differentiate these BSs by

their sequence composition in the subsequent analysis. To account for the influence of

binding site affinity differences induced by BS sequence variations, we paired each BS

within a region with high levels of spatial co-localisation (high HSC group) with a BS

that had exactly the same DNA sequence but that was found in a DNA region with low

levels of spatial clustering (low HSC group). In addition, we made sure to assign pairs

of BS that had exactly the same histone marks, chromatin states, and chromsome

sub-compartments. Using rank normalized ChIP-seq SignalValue (a measure for read

enrichment in peak regions adopted by ENCODE uniform peak callers) [67] as the

measure for peak signal strength, we observed a significant SignalValue increase in

the high HCS group (Wilcoxon signed rank test, p = 1.3 · 10−8). There were 16 TFs

with at least 300 paired BSs– 10 out of the 16 TFs showed significant SignalValue

increase in the high HCS group (Wilcoxon signed rank test, p < 0.05), while only

one of them showed decreased SignalValues (USF2). The SignalValue comparison

between the paired BSs of high versus low HCS groups of a TF named NFIC is

depicted in Figure 2.8a as an example, while the enrichment plot of the observed

versus expected SignalValue differences is shown in Figure 2.8b and also in Figure

2.9 for other TFs with sufficient ChIP-seq peaks. The above comparison of ChIP-seq

SignalValue between paired BSs of exactly the same sequence motif and chromosome

environment provides additional support to the idea that homotypic BS clustering can

significantly boost TF binding. The results show good consistency with BS occupancy

analysis described before.
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Figure 2.8: a: The histogram of the observed and the expected distribution of normal-
ized ChIP-seq SignalValue differences between the paired BSs of high versus low HCS
groups of a TF named NFIC as an example (Wilcoxon signed rank test, p = 9.1·10−5).
b: The enrichment plot of ChIP-seq SignalValue increase associated with high HCS
for NFIC.
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(a)

(b)

Figure 2.9: For each TF, the enrichment plots of ChIP-seq SignalValue increase
associated with high HCS. a: TFs with significant SignalValue increase associated
with high HCS; b: TFs without significant SignalValue increase or even with decreased
SignalValue within the high HCS group (USF2).
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2.4 Discussion

We investigated sequence-specific transcription factor DNA binding dynamics and

occupancy in relation to spatial BS homotypic clustering using a combination of com-

putational simulations and in-vivo binding profile analysis. Both of the approaches

confirm the fact that spatial arrangement of TF BSs have strong influences on TF

binding occupancy, and this holds for most of TFs we studies so far and for BSs

within either the promoter or the enhancer state, albeit to different degrees. We note

that the linear correlation we observed between BS occupancy and the HCS groups

does not necessarily mean a linear response of occupancy to homotypic clustering,

but rather a hint that homotypic Hi-C contact enrichment can be used to inform on

TF binding efficiency. There are so many factors that collectively contribute to TF

binding. Even in the simplest case only with respect to physical diffusion and binding

kinetics, the non-linear component in binding dynamics is involved.

Our results suggest that genome organisation has a strong impact on the function of

weak regulatory elements in terms of TF binding. Particularly, BSs in the enhancer

state and in weak promoters witness stronger correlations and larger magnitude of

occupancy increase when they are found in spatial proximity. Moreover, BSs with

weak putative DNA binding sequences also showed much larger magnitude of occu-

pancy increase in relation to homotypic BS clustering compared to those with strong

sequence motifs, and this holds for either the promoter or the enhancer state.

Weak regulatory elements play an important role in modulating gene expression across

cell types [5, 176]. There were several studies revealed that enhancer specificity de-

pends on binding motifs having reduced binding affinities, especially for cell-type

specific gene expression [177, 178]. Hentsch et al showed that the conversion of weak

binding sites to strong canonical binding sites of several lymphocyte specific TFs in-

cluding NfkB and AP-1 results in the induction of certain T-cell specific enhancers in

non-T cells, thus disrupting gene expression patterns in other cell types [179]. The

way by which cell-type dependent binding of weak BSs can be achieved is not well

understood. Tissue-specific signal response and endogenous TF concentration has
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Conserved Fraction of BSs

Figure 2.10: The fraction of conserved ChIP-seq peaks associated with either weak
or strong BSs between GM12878 and hESC. Shown are TFs with ChIP-seq profiles
available in both cell lines

been suggested to be potential factors that give rise to the fine-tuning of TF binding,

especially for weak BSs [177]. There were other contradicting studies suggested that

weak BSs in the genome may not be functional in terms of determining transcription

output [180]. However, these weak BSs, especially the ones within enhancers and

promoters, are often under strong purifying selections across different species [73],

indicating that weak BSs may be of biological importance actually.

Based on the available ChIP-seq profiles for common TFs in GM12878 and h1-ES

cells, weak BSs are much less conserved than strong BSs between these two cell lines

(Figure2.10, Wilcoxon signed rank test, p=3.2E-5). As is mentioned above, there

could be various reasons that lead to the less conserved binding associated with weak

BSs across tissues [177]. Our analysis proposed another possible mechanism that

spatial BS organisation may help weak BSs to convey tissue specific TF binding.
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Chromosome organisation, especially inter-TADs interactions, has been shown to vary

drastically between different cell types [122]. These chromosome structural variation

can potentially give rise to variations in BS spatial arrangements. As TF binding

occupancy in weak BSs are more sensitive to BS co-localization than strong BSs ac-

cording to our results, chromosome architectural changes may serve to better fine-tune

weak BSs occupancy in different tissues and throughout the time-line of embryonic

development.

Most of TFs respond positively to spatial homotypic BS clustering, as is revealed by

either BS occupancy or ChIP-seq SignalValues. However, there is one very unique

TF, USF2, associated with both decreased occupancy and ChIP-seq SignalValue in

genome regions with high level of homotypic BS clustering, opposing the trend of

most other TFs. USF2 is a c-Fos interacting protein with a bHLH-zip domain that

recognizes the CACGTG DNA motif (class I E-box). We noticed there was another

TF in our analysis, USF1, which shares a very similar DNA binding domain structure

with USF2 and both of them are in the same TF family [181], however, USF1 followed

the trend of homotypic BS clustering induced occupancy gain well (Figure2.5). The

structural difference between USF1 and USF2 comes from their transcriptional acti-

vation domains. While USF1 only contained an extended activation domain, USF2

contained both an activation domain and a negative regulatory region in N-terminal

[182], which was absent in USF1. This negative regulatory domain, consisting of

around 200 amino acids, functions as a dominant-negative regulator of class I E-box

enhancer activity, which makes USF2 special, though the mechanism of its repression

function has not been studied in relation to histone occupancy or protein-protein in-

teractions to date. We hypothesize the presence of this domain might also contribute

to its uniqueness in binding dynamics associated with high level of BS clustering.

We have provided the updated FastGRiP simulation tool to characterize TF bind-

ing dynamics and occupancy in presence of spatial homotypic BS clusters. We have

showed that inter-strand jumping of TFs significantly boost overall BS occupancy,

which is sensitive to the distances between DNA strands containing homotypic BSs.

In our simulation, without the knowledge of specific sub-diffusive properties associated

with molecules within different chromosome regions, we made the general assumption
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that the diffusion behaviour of TFs can be captured by simple diffusion with adjusted

diffusion co-efficient taking into account DNA crowding. However, in vivo diffusive

properties of molecules are much more complicated and not fully studied for different

TFs under different macromolecule crowding conditions. Anomalous diffusion with

variable diffusion co-efficient depending on molecular concentration, pressure or other

factors, in contrast to simple diffusion with a constant diffusion co-efficient, may be

present in biological systems. For example, there are studies confirming the occur-

rence of anomalous diffusion in fractal organisation of crowding polymers, which can

be characterized by fractal kinetics [183]. The key feature associated with fractal

kinetics is that the diffusion co-efficient is time dependent according to t−a, where

a is the fractal exponent of the reaction related to the fractal architecture of the

chromatin. They showed that the fractal kinetic model could reproduce the subdiffu-

sive behaviour of fluorescence molecules observed in heterochromatin, which cannot

fit into the reaction diffusion model assuming random organisation of obstacles in

diffusion paths, especially in a short length scale of below 100nm. In contrast, in

euchromatin and when it comes to larger scales of heterochromatin (above microme-

ter scale), the reaction diffusion model is already sufficient to explain the experiment

observations [184]. Our diffusion model is mainly used for describing the TF diffusion

behaviour in euchromatin, which is enriched in TF BSs. If it needs to be generalized

to heterochromatin, the fractal kinetics should be taken into consideration.

In our TF binding dynamics simulation with updated FastGRiP, we have considered

the effects of both sequential and spatial BS homotypic clusters. However,the effect

of sequential clustering on BS occupancy is difficult to investigate precisely using

the available ChIP-seq data, because each ChIP-seq peak could cover more than a

few hundred base-pairs, while the sequential homotypic BS clustering occurs mostly

within that scale. If you are interested in sequential homotypic BS clustering, please

referred to the following established work concerning the role of sequential homotypic

BS clusters [70, 72].

Admittedly, the determining factors to the in vivo binding landscape are far more

complicated than the simple scenario of homotypic BS clustering we studied here. For

instance, also from a perspective of spatial organisation of BSs, multiple types of TFs
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could possibly co-localize together and that may influence the binding of each TF due

to either TF collaborativity or the interplay between TFs and histones. Therefore, we

wish to broaden our scope to investigate the spatial co-localization between different

TFs and how that contribute to TF binding with respect to individual TFs in our

next chapter.
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Chapter 3

Trancription factor spatial

co-localization networks in

lymphoblastoid cells

3.1 Introduction

We have focused on the spatial clustering of BSs within the same type of TF in the last

chapter, because homotypic BS clustering is easy to investigate and the mechanical

advantages it provides can be well-explained by simple biophysical models. However,

in vivo transcription regulation is achieved by complicated co-binding and co-function

of a great variety of TFs, especially in higher eukaryotes [5][185]. Furthermore, the

genome organisation has been shown to be closely linked to transcription regulation

[122]. Enhancers and promoters tend to form loop like structures to facilitate gene

transcription, as was observed in the mammalian alpha-globin loci and between Hox

gene clusters [186, 187]. In those scenarios, looping of DNA is unlikely to be achieved

by a single regulatory protein, but rather via regulatory protein complexes, which

may involve a great diversity of molecules. Therefore, to gain a better understanding

of transcription regulation in higher eukaryotes requires linking genome architecture
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and multiple types of regulatory protein binding together.

Deciphering interaction and co-function across different types of regulatory proteins

is not an easy task. Most studies probing physical interactions of proteins fall into

the following two categories: (1)in vivo methods including protein pull-down and

tandem affinity purification followed by Mass Spectrometry [188, 189]and (2) in vitro

approaches including yeast two hybrid [190], peptide array [191] and GST fusion pro-

tein pull-down [192]. However, those strategies only focused on global protein-protein

interactions, without the context of the chromosome. Moreover, the interaction part-

ners detected using those methods required strong and stable physical interactions

between the bait protein and their partners, while transient and dynamic interactions

between proteins were missed. There are some approaches trying to explore TF bind-

ing in the context of local chromosome organisation, for instance, ChIA-PET [193],

which involves the combination of immuno-precipitation of DNA binding proteins

and capturing of chromosome contacts associated with TF binding regions. However,

this technique has been shown to suffer from severals technical draw backs [194] and

only a single TF was involved at each stage, such that it was not possible to probe

interaction and co-localization between multiple TFs. Furthermore, in ChIA-PET,

only a small subset of genome regions associated with a certain TF binding could be

investigated at each stage, which made genome wide analysis not applicable.

There are very few studies directly probing the TF co-localization pattern spatially,

despite the existence of extensive researche focusing on one dimensional sequential TF

co-localization in the genome [68, 73]. Live imaging of two interacting proteins, c-Fos

and c-Jun, has revealed their molecular enrichment and dual binding map within the

nucleus [100, 96]. Using fluorescent cross-correlation spectroscopy, Pernu et al found

a strong correlation between TF diffusional mobility and the interaction between

these two TFs. Dimerization of the TFs significantly slowed down their motion and

enriched the co-localization level of these two TFs in the nucleus. Their results

suggested that TF spatial co-localisation could be strongly influenced by TF-TF

physical interaction, and studying TF spatial co-localization patterns can improve

our understanding of TF interaction and co-function in gene regulation. However,

due to limited number of channels and the availability of fluorescent tagged protein,
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identifying TF co-localization patterns using direct imaging is still limited to a small

number of TFs at one time. The extent to which TF interaction networks are also

spatial networks, involving co-localization of TF BSs, is not yet known for most TFs.

TF binding global patterns from a spatial point of view was difficult to investigate

quantitatively until very recently, with the advent of genome wide chromosome con-

formation capture techniques, including Hi-C [194, 1]. The chromosome contact maps

produced DNA proximity information, which can be used to probe genomic interac-

tions such as chromosome loops and promoters-enhancer interactions [107]. The con-

tact maps revealed that chromosomes are segmented into topologically associating

domains (TADs), within which physical contacts occur more frequently [107]. At the

megabase scale, the contact map suggests the spatial segregation of open and closed

chromatin, namely, A and B chromosome compartment [107]. Recently with the

availability of higher resolution Hi-C maps (down to a kilo-base scale), the two com-

partments could be further partitioned based on their distinct patterns of long-range

contacts. For instance, the inter-chromosome contact map of human GM12878 cells

was subdivided into at least six different subcompartments [1], two of which were

enriched in actively transcribed genes– namely the A1 and A2 subcompartments.

Even though these two subcompartments were clearly distinct in the contact map,

they were similarly enriched in active histone marks and open chromatin, though A2

was slightly more enriched in H3K9Me3, leaving the question of what makes these

two subcompartments unique. Given the very similar epigenetic properties between

A1 and A2 chromosome subcompartments and similar gene transcriptional activity,

we wish to explore further if their spatial segregation is associated with differenti-

ated TF binding or co-localization preferences, as TFs can contribute to chromosome

organisation in addition to CTCF and cohesin complexes [1, 112].

The non-randomness of chromosome organisation has been hypothesised to be in-

fluenced by the combinatorial binding of different kinds of protein complexes using

polymer dynamics simulations [132, 195]. Using a simple polymer model, named

strings and binders switch model, Barbieri et al showed that a chromosome domain-

like structure can be established through attachment of diffusible factors to their

specific binding sites in the genome. In the simplest scenario, only two different kinds
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of protein complexes, each with multiple DNA binding facets and well-segregated

DNA binding regions, were sufficient to drive the segmentation of chromosomes into

A/B compartment-like structures. The simple polymer model also identify several

scaling properties of chromatin folding observed in vivo, including the fractal state of

chromatin [132]. It also showed that the folding properties of chromatin can change

in response to changes in binding site distribution, protein concentration, or binding

affinity. However, those are only predictions from various kinds of models. To date,

very few studies have provided direct evidence in vivo to support those hypotheses

and elucidate the cause/effect between regulatory protein binding and chromosome

compartment/subcompartment formation[132].

Furthermore, as we showed in the last chapter, there is a strong positive correlation

between binding site occupancy and the level of homotypic BS spatial co-localization.

Thus we want to further ask if heterotypic BS co-localization can similarly influence

BS occupancy. Even though the mechanism cannot be simply explained by the facil-

itated diffusion properties of TF binding similar to homotypic BS clustering, compli-

cated protein-protein interactions are prevalent among DNA binding molecules. Se-

quential co-localization of BSs of physically interacting TFs has already been shown

to promote TF binding to DNA and the formation of stable protein complexes [196].

For instance, Sox2 and Oct4 dimerization is crucial for the binding of Oct4 to its

target sites [84]. There was a substantial decrease in the mean Oct4 target search

time and an enhancement of the long-lived DNA bound fraction of Oct4 molecules

when Sox2 was present in the cell [84]. Though there is no direct evidence to date

of binding enhancement due to spatial co-localization of BSs, mechanically, BSs of

interacting partner TFs found in spatial proximity could be favoured by the TF target

BS search, if assuming transient protein interactions act as transient traps for dif-

fusing TF molecules. This motivated us to further examine the relationship between

TF binding occupancy and BS spatial co-localization, particularly between different

types of TFs.

Therefore, we wish to explore spatial co-localization between different TFs at a

genome-wide scale, using computational analysis combining chromosome architecture

information gained from Hi-C and TF binding profiles from ChIP-seq.
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3.2 Methods

3.2.1 Heterotypic co-localization score between TF pairs

Similar to the HCS of a specific TF, the Hi-C heterotypic co-localization score between

two TFs, namely A and B, is defined for each binding site i of TF A as:

heteroCSi,AB =
∑
j∈B

log
Obsi,j
Expi,j

(i ∈ A) (3.1)

where heteroCSi,AB stands for the heterotypic co-localization score between the two

TFs for each site i of TF A, considering all possible interactions with TF B sites

on the same chromosome. Note that this score has direction i.e. heteroCSi,AB is

calculated for each site of TF A, while heteroCSi,BA is for each site of B.

In order to compare the observed heteroCSi,AB score distribution of TF A to the

expected, as control, we generated randomized TF A sites by permuting BSs of all

available TFs for each chromosome 1000 times, while keeping TF B sites fixed. Note

the number of BSs for each TF on each chromosome was kept the same in the above

permutation. It gave us the expected heteroCSi,AB score distribution. Similar pro-

cedure can be used with respect to heteroCSi,BA. In addition, 25kb adjacent region

(corresponding to 5 Hi-C map bins) left and right to the locus of interest was removed

to avoid potentially high noise near the diagonal of the Hi-C contact map.

Since chromosome sub-compartments [1] may have potential influence on TF binding,

instead of randomly shuffling all BSs on the same chromosome, we also constructed the

control set in the way that BSs were randomly shuffled within each sub-compartment

for each chromosome, which preserves the BS composition in each subcompartment.

TFs with very low number of ChIP-seq identified BSs (less than 300) in either A1 or

A2 subcompartment were not included in our subsequent analysis.

We used Kullback-Leibler divergence to represent the extent to which the observed

distribution differs from the expected, in other words, the spatial co-localization re-
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lationships between TFs. The Kullback-Leibler distances (KL distance) between the

observed co-localization score distribution and the expected distribution were calcu-

lated as follows, which is denoted by co-localization enrichment score (CES)

CES = (sign) ·
∑
k

Pobs,k log
Pobs,k
Pexp,k

(3.2)

where CES represents the KL distance (with a sign) between the observed and the

expected distribution of heteroCS3.1. The sign of the formula depends on the right

(+) or left (-) shift of the observed mean co-localization scores from the control set.

We performed average-linkage hierarchical clustering of TFs based on TF co-localization

scores defined above by using a distance measure below:

e−(CES(AB)+CES(BA))/2 (3.3)

We adopted the R package DynamicTreeCut [197] and used the setting of Dynamic-

Tree mode to define clusters of TFs based on the dendrogram from the above hierar-

chical clustering.

By comparison, the average linkage hierarchical clustering as well as the Wards clus-

tering methods [198] based on the squared-Euclidean distance between every pair of

rows in the CES-score matrix were also performed. We noticed that the distance

measure either from equation 3.3 or just simple squared-Euclidean distance gave sim-

ilar results in most of cases, but equation 3.3 out-performs squared Euclidean distance

when it comes to analysing the co-localization within A2 subcompartment, possibly

because the information regarding to co-localization enrichment is used in a more

direct way in the former approach.

3.2.2 Calling significantly co-localized TF pairs

Furthermore, we called significant co-localization of TF pairs based on the distribution

of co-localization scores. For co-localized TF pairs, there would be an enrichment of
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BSs with high spatial proximity, which are indicated by the high co-localization score

groups in the right tail of the heteroCS distribution. For each TF pair, we calculated

empirical p-values for the observed frequency of BSs compared to the randomly shuf-

fled BS control sets (1000 times of permutation) in high co-localization score groups

(the top 20%, 10% and 5% in the score distribution were examined). We called

significantly co-localized TF pairs by using FDR threshold of 0.05 [199] and requir-

ing significant enrichment of BSs within top score groups in both pairing directions

(heteroCSi,AB and heteroCSi,BA). In comparison, we also called co-localization pairs

within either A1 or A2 subcompartments similarly using heterotypic co-localization

scores and randomly permuted control sets within each subcompartment.

3.2.3 TF BS conservation between two cell lines

To compared BSs between h1-ESC and GM12878, ChIP-seq peaks in h1-ESC were

matched to corresponding GM12878 ChIP-seq peaks, defined as the h1-ESC ChIP-

seq peak that overlapped with the center of the GM12878 ChIP-seq peak, such that

the center-to-center distance of ChIP-seq peaks in the two cell lines was less than

300bp. The fraction of mapped ChIP-seq peaks in ESC was used as the indication of

BS conservation level.

3.2.4 Calculation of integrated heterotypic co-localization score

for a group of TF

Due to the presence of TF spatial co-localization groups, different TFs within the same

group may have additive effects on creating a molecule crowd-sourcing environment.

In order to investigate the behaviour of TFs within a specific co-localization group as

a whole, we defined the integrated heterotypic co-localization score at position i for
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TF A(SumHeteroCSi,AG) in respect to group G composing k different TFs:

SumHeteroCSi,AG =
k∑

B∈G

heteroCSi,AB (3.4)

where heteroCSi,AB is the heterotypic co-localization score between TF A and B for

each site i.

3.3 Results

3.3.1 TFs were partitioned into two spatial co-localization

networks in GM12878

Many TFs are known to have interactions or collaboration with other TFs to regulate

gene activities [200, 201], but whether this can be seen from TF spatial proximity is

unclear. Therefore, we make use of the high-resolution chromosome contact map to in-

vestigate the spatial co-localization properties between heterotypic pairs of TFs based

on ChIP-seq identified binding sites. We defined a measure of spatial co-localization

between two TFs (hetero-CS), based on the Hi-C contact map, in a manner similar

to homotypic clustering score (Equation2.3); however, the observed-versus-expected

score ratio was defined between BSs of two different TFs as is shown in Equation3.1

and depicted in Figure2.3). By expressing the heterotypic co-localization score distri-

bution for different pairs of available TFs as a single enrichment value, representing

whether pairs have more or less co-localisation than expected (see Equation3.1 and

Equation3.2), we are able to investigate different clustering behavior across all possi-

ble TF pairs.
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Figure 3.1: TF co-localization enrichment map in human GM12878 cells. Colours
indicate the enrichment score of spatial co-localization between two TFs based on the
Kullback-Leibler distances (KL distances) between the observed and the expected
heterotypic co-localization score distribution for each TF pair, where red or blue
color represents higher or lower than expected respectively. Hierarchical clustering
was used to generate the layout of the colour map.
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Figure 3.2: The dendrogram of the TF co-localization hierachical clustering in Figure
3.1.

The grid of spatial co-localization enrichment scores (CES) for the available human

lymphoblastoid TFs is plotted via hierarchical clustering in Figure3.1 with the den-

drogram in Figure3.2. There are two distinct groups of TFs that show higher than ex-

pected intra-group co-localisation and less-than-expected inter-group co-localisation,

namely TF co-localization network 1 and 2 (TFCN1 and TFCN2), while there are

some other pairs of TFs (e.g YY1 and PAX5) for which the random expectation fits

well. (See Table3.3 for the full list of TFs in TFCN1 and TFCN2). Note that in our

definition of spatial co-localization, the effect of sequential clustering of BSs was not
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taken into account, as 25kb adjacent regions left and right were removed to avoid

high noise in Hi-C contacts near diagonal element, similar to[109]; instead, we only

defined co-localization of TF BSs made possible by distal chromosome contacts.

Other hierarchical clustering metrics were also adopted (Wards and average linkage

hierarchical clustering using squared euclidean distance) and similar results are shown

in Figure 3.4 and Figure 3.5.
Sheet1

Page 1

Scope of analysis Genome-wide Genome-wide Within A1 Within A1 Within A2 Within A2

TF networks TFCN1 TFCN2 TFCN1 TFCN2 TFCN1 TFCN2

TF names ELK1_f1 JUND_f1 ELK1_f1 JUND_f1 ELK1_f1 NFKB1_f1

MAX_f1 NFKB1_f1 MAX_f1 NFKB1_f1 NFYA_f1 STAT3_si

NRF1_f1 STAT3_si NRF1_f1 STAT3_si NRF1_f1 NFIC_f2

SP1 NFIC_f2 SP1 NFIC_f2 SP1 ATF2_f1

E2F4_do ATF2_f1 E2F4_do ATF2_f1 E2F4_do CEBPB_f1

ATF3_f1 BATF_si EGR1_f2 BATF_si ELF1_f1 MEF2A_f1

EGR1_f2 CEBPB_f1 ETS1_si CEBPB_f1 ETS1_si MEF2C_f1

ELF1_f1 MEF2A_f1 GABPA_f1 MEF2A_f1 GABPA_f1 IKZF1

ETS1_si MEF2C_f1 ZNF143 MEF2C_f1 ZNF143 NFATC1

GABPA_f1 IKZF1 MAZ_f1 IKZF1 STAT5

ZNF143 NFATC1 NFATC1

MAZ_f1 POU2 POU2

STAT5 STAT5

TBP_f1

Figure 3.3: The list of TFs within TFCN1 and TFCN2 respectively defined using
DynamicTreeCut[197] from TF co-localization analysis genome-wide or within either
A1/A2 subcompartment.
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Figure 3.4: TF co-localization enrichment map (Wards).

Figure 3.5: TF co-localization enrichment map (average linkage, squared euclidean
distance between rows obtained from the enrichment matrix).

Gene Ontology (GO) term analysis [202, 203] revealed that the TFs in TFCN2 were

enriched in lymphocyte activation (p = 8.5 · 10−3), intracellular signal transduction
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(p = 4.0 · 10−3), specifically, JAK-STAT cascade (p = 4.8 · 10−2) and cellular defense

response (p = 4.6·10−2), whereas TFs of TFCN1 showed no enriched cell-type specific

pathways other than general transcription activation.

Since TFCN2 seems to be more cell-type specific compared to TFCN1 according

to GO term analysis, we wish to see if BS associated histone marks are also more

conserved in TFCN1 compared to TFCN2. We chose four types of histone marks,

namely, H3k4me1, H3k4me3, H3k27ac and H3k27me3, as well as DNase-I hypersen-

sitivity (DHS) profiles, and compared those BS associated epigenetic profiles between

GM12878 and h1-ESC. The proportion of BSs for each TF with consistent histone

marks and DHS in the two cell lines is depicted in Figure3.6, colour coded by TF

co-localization networks or ungrouped. Much higher levels of consistency for these

two marks in TFCN1 was observed compared to those in TFCN2 (Wilcoxon rank

sum test, p = 9 · 10−8), while the ungrouped ones lie in between. Further, from the

available ChIP-seq profiles for common TFs between the above two cell lines, TF BSs

in TFCN2 are less shared between cell lines than those in TFCN1 (See Figure2.10).

Taken together the GO term analysis and the above results, TFs and their target

genome regions in TFCN2, are more cell-type specific, while TF binding regions in

TFCN1 are more conserved across cell-types.
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Figure 3.6: The consistency of histone marks and DNase-I hypersensitivity between
GM12878 and h1-ESC. Each point represents the proportion of BSs for each TF
that shows consistent H3k4me1, H3k4me3, H3k27ac, H3k27me3 or DHS between
GM12878 and h1-ESC. TFs are colour coded according to the previously defined TF
co-localization network TFCN1, TFCN2 or ungrouped.
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3.3.2 TF spatial co-localization is closely related to TF-TF

physical interaction

Based on the co-localization score distribution for each pair of TFs, we identified spe-

cific pairs of TFs with particularly significant co-localization. Such TF pairs would be

good candidates for potential direct TF-TF interaction, or at least, the implication

for co-functioning in transcription regulation. As is shown in Figure3.7, if two TFs

are co-localized, we would expect a higher proportion of BSs to fall into the high

co-localization score groups than expected. By comparing the observed versus the

expected heterotypic co-localization score distributions for each TF pair, we obtained

40 pairs of significantly co-localized TFs out of the total 780 pairs of possible combina-

tions when examining co-localization scores genome-wide (Table3.8). Similarly, when

examining co-localization scores within either A1 or A2 chromosome subcompart-

ment, 53 or 32 pairs of TFs were called respectively (See Table 3.10, 3.11 and 3.12).

The called pairs genome-wide or within each subcompartment show good consistency

with each other, in which 23 pairs are shared among all 3 analyses (Figure3.13).

More than 94% of the co-localized TF pairs we called appear to be within the two TF

co-localization networks. Interestingly, these TF co-localization pairs we identified

have a significant overlap with previously reported TF-TF physical interaction pairs.

There are at least 10 pairs of known physically interacting TFs [204, 205, 206, 207]

that also appear in our list (Table3.14). Given more than half of TFs lack available

data for direct TF-TF interactions, the overlaps between the co-localization pairs we

called and the known interaction pairs are much higher than expected by chance.
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Figure 3.7: TF pair co-localization score distribution compared to the random, expected
distribution for a significantly co-localized TF pair, GABPA and SP1, as an example.
Shaded region of blue depicts the 95% confidential interval of the expected distribution
for the co-localization scores between these two TFs, whereas the red dotted line shows
the observed score distribution in each co-localization score bin. X-axis corresponds
to the heterotypic co-localization score between these two TFs for each score bin.

The phenomenon of homotypic binding site clustering also stands out in TF co-

localization pair calling. Even though our pair calling threshold is stringent, there are

15 out of 40 TFs whose BSs are significantly co-localized with their own type of BSs

(37.5%), which is a more than 6-fold enrichment over the average proportion of the

called pairs between TFs (around 5%). Even when comparing with the probability

of calling significant pairs within each TF co-localization network, there is still an

enrichment of over threefold. This re-enforces the fact that the co-localization of

homotypic BSs is a wide-spread phenomenon that contributes significantly to TF

spatial binding patterns.
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TF1 TF2 z score (top 20%) z score (10%) z score (5%)

ELK1_f1 EGR1_f2 6.41 5.15 4.01

ELK1_f1 ETS1_si 8.37 7.83 5.67

ELK1_f1 GABPA_f1 9.65 9.5 7.48

MAX_f1 SP1_f1 8.11 6.8 4.31

MAX_f1 MAZ_f1 8.83 7.39 5.84

NFKB1_f1 STAT3_si 7.74 7.88 5.56

NFKB1_f1 NFIC_f2 8.19 6.89 5.54

NFKB1_f1 CEBPB_f1 8.83 7.29 4.08

STAT3_si NFKB1_f1 6.88 6.09 4.53

STAT3_si NFIC_f2 9.61 7.68 5.86

STAT3_si ATF2_f1 9.85 7.28 6.81

STAT3_si CEBPB_f1 10.4 8.49 6.94

STAT3_si MEF2A_f1 8.29 6.08 4.56

STAT3_si IKZF1 6.21 6.85 5.73

STAT3_si NFATC1 6.67 6.38 5.05

NFIC_f2 NFKB1_f1 6.48 5.75 4.22

NFIC_f2 STAT3_si 8.54 7.63 6.07

NFIC_f2 ATF2_f1 7.62 6.87 4.64

NFIC_f2 CEBPB_f1 11.4 9.77 6.59

NFIC_f2 MEF2A_f1 4.01 5.11 4.98

NFIC_f2 NFATC1 6.46 6.28 5.32

E2F4_do SP1_f1 10.7 8.34 6.87

E2F4_do ETS1_si 8.1 7.69 5.15

E2F4_do GABPA_f1 8.4 6.69 5.79

ATF2_f1 STAT3_si 10.8 9.99 7.84

ATF2_f1 NFIC_f2 10.6 8.74 6.74

ATF2_f1 CEBPB_f1 13 10.3 7.6

ATF2_f1 MEF2A_f1 6.94 6.45 5.16

ATF2_f1 MEF2C_f1 7.2 5.99 3.82

ATF2_f1 IKZF1 6.66 6.3 4.82

CEBPB_f1 NFKB1_f1 6.76 6.25 5.14

CEBPB_f1 STAT3_si 11.3 8.78 9.64

CEBPB_f1 NFIC_f2 10.9 9.83 6.88

CEBPB_f1 ATF2_f1 10 8.02 7.17

CEBPB_f1 MEF2A_f1 10.7 8.94 6.81

CEBPB_f1 MEF2C_f1 8.64 7.1 5.44

CEBPB_f1 IKZF1 5.82 5.09 4.54

CEBPB_f1 NFATC1 6.95 5.21 6.35

EGR1_f2 ELK1_f1 6.98 4.92 4.51

EGR1_f2 SP1_f1 10.9 8.9 6.38

ELF1_f1 ETS1_si 7.94 5.51 4.47

ELF1_f1 GABPA_f1 6.03 4.36 3.97

ELF1_f1 SP1_f1 9.98 8.56 6.51

ETS1_si ELK1_f1 6.88 5.96 6.39

ETS1_si SP1_f1 8.49 6.76 6.15

ETS1_si E2F4_do 7.1 5.82 5.79

ETS1_si ELF1_f1 6.15 4.4 4.54

ETS1_si GABPA_f1 8.39 7.7 7.27

GABPA_f1 ELK1_f1 10.9 9.19 7.55

GABPA_f1 SP1_f1 12.2 10.5 7.09

GABPA_f1 E2F4_do 7 6.34 4.69

GABPA_f1 ELF1_f1 8.67 7.01 5.04

Figure 3.8: TF spatial co-localization pairs identified genome wide that are signifi-
cantly enriched in high heterotypic clustering score groups. The columns of z-scores
show the deviation of the observed frequency of BSs falling into top score groups
(20%,10% and 5%, respectively) from the expected distribution.
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TF1 TF2 z score (top 20%) z score (10%) z score (5%)

GABPA_f1 ETS1_si 9.45 8.82 8.05

MEF2A_f1 STAT3_si 11 11.3 7.6

MEF2A_f1 NFIC_f2 11 9.14 7.81

MEF2A_f1 ATF2_f1 9.71 9.43 6.88

MEF2A_f1 CEBPB_f1 12.4 11.8 10.4

MEF2A_f1 MEF2C_f1 10.5 9.68 9.31

MEF2A_f1 NFATC1 7.29 6.86 5.89

MEF2C_f1 ATF2_f1 9.92 8.6 6.32

MEF2C_f1 CEBPB_f1 11 9.69 7.86

MEF2C_f1 MEF2A_f1 11.9 10.6 8.58

MEF2C_f1 NFATC1 7.98 6.25 5.63

IKZF1 STAT3_si 7.52 6.46 5.19

IKZF1 ATF2_f1 6.45 5.35 4.95

IKZF1 CEBPB_f1 7.79 8.23 7.34

NFATC1 STAT3_si 10.5 9.89 5.73

NFATC1 NFIC_f2 8.76 9.12 6.38

NFATC1 CEBPB_f1 10.2 10.4 8.79

NFATC1 MEF2A_f1 7.13 6.74 6.12

NFATC1 MEF2C_f1 7.23 6.89 5.83

SP1_f1 MAX_f1 6.54 5.15 4.8

SP1_f1 E2F4_do 6.58 5.47 5.02

SP1_f1 EGR1_f2 9.31 5.52 4.05

SP1_f1 ELF1_f1 8.38 5.74 3.84

SP1_f1 ETS1_si 7.53 6.61 4.44

SP1_f1 GABPA_f1 8.42 5.99 5.64

SP1_f1 MAZ_f1 12.5 10.5 8.07

MAZ_f1 MAX_f1 7.27 5.83 6.26

MAZ_f1 SP1_f1 11.4 9.09 6.84

Figure 3.9: TF co-localization pairs identified genome wide: continued.
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TF1 name TF2 name z score (top 20%) z score (top 10%)
ELK1_f1 EGR1_f2 3.83 3.38
ELK1_f1 ETS1_si 5.2 4.07
ELK1_f1 GABPA_f1 7.98 6.65
ELK1_f1 SP1_f1 5.76 5.25
ELK1_f1 MAZ_f1 3.09 4.46
NFKB1_f1 STAT3_si 6.35 5.81
NFKB1_f1 NFIC_f2 7.29 5.45
NFKB1_f1 CEBPB_f1 6.95 3.24
NRF1_f1 GABPA_f1 8.53 5.03
STAT3_si NFKB1_f1 5.15 5.6
STAT3_si NFIC_f2 7.46 6.7
STAT3_si ATF2_f1 7.23 5.23
STAT3_si CEBPB_f1 5.9 4.53
STAT3_si MEF2A_f1 9.41 6.28
STAT3_si MEF2C_f1 6.1 3.49
STAT3_si IKZF1 3.82 3.99
STAT3_si NFATC1 5.7 4.46
NFIC_f2 NFKB1_f1 7.72 5.95
NFIC_f2 STAT3_si 7.2 5.63
NFIC_f2 ATF2_f1 8.38 5.07
NFIC_f2 CEBPB_f1 8.85 5.96
NFIC_f2 MEF2A_f1 5.44 6.17
NFIC_f2 MEF2C_f1 3.82 3.45
NFIC_f2 NFATC1 4.03 3.9
JUND_f1 NFATC1 7.51 4.71
JUND_f1 BATF_si 5.93 3.25
JUND_f1 MEF2A_f1 9.73 9.26
JUND_f1 MEF2C_f1 7.43 6.7
E2F4_do EGR1_f2 4.32 3.35
E2F4_do ELF1_f1 3.76 4.31
E2F4_do ETS1_si 6.24 5.68
E2F4_do GABPA_f1 7.14 6.54
E2F4_do SP1_f1 7.09 6.62
ATF2_f1 STAT3_si 7.45 8.58
ATF2_f1 NFIC_f2 6.9 5.83
ATF2_f1 CEBPB_f1 7.78 5.82
ATF2_f1 MEF2A_f1 4.97 5.77
ATF2_f1 IKZF1 3.06 2.98
ATF2_f1 NFATC1 7.58 5.34
BATF_si JUND_f1 6.84 3.33
BATF_si CEBPB_f1 8.46 5.67
CEBPB_f1 NFKB1_f1 9.08 7.07
CEBPB_f1 STAT3_si 8.02 7.05
CEBPB_f1 NFIC_f2 10.9 9.61
CEBPB_f1 ATF2_f1 9.36 8.56
CEBPB_f1 BATF_si 7.57 7.71
CEBPB_f1 MEF2A_f1 9.9 8.07
CEBPB_f1 MEF2C_f1 6.78 5.65
CEBPB_f1 IKZF1 3.67 2.76
CEBPB_f1 NFATC1 6.18 3.41
EGR1_f2 ELK1_f1 2.82 2.92
EGR1_f2 E2F4_do 3.42 2.8

Figure 3.10: TF spatial co-localization pairs identified within A1 subcompartment.
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TF1 name TF2 name z score (top 20%) z score (top 10%)
EGR1_f2 SP1_f1 4.56 2.81
ELF1_f1 E2F4_do 2.64 3
ETS1_si ELK1_f1 4.67 4.14
ETS1_si E2F4_do 5.92 5.02
ETS1_si GABPA_f1 4.95 6.06
ETS1_si SP1_f1 7.07 6.09
GABPA_f1 ELK1_f1 6.06 5.87
GABPA_f1 NRF1_f1 6.15 4.22
GABPA_f1 E2F4_do 4.47 4.54
GABPA_f1 ETS1_si 5.56 5.94
GABPA_f1 ZNF143 3.42 3.09
GABPA_f1 SP1_f1 7.43 6.1
GABPA_f1 MAZ_f1 6.21 5.41
MEF2A_f1 STAT3_si 7.62 9.36
MEF2A_f1 NFIC_f2 7.58 6.72
MEF2A_f1 JUND_f1 4.94 3.81
MEF2A_f1 ATF2_f1 7.3 5.99
MEF2A_f1 CEBPB_f1 7.22 5.27
MEF2A_f1 MEF2C_f1 6.65 4.73
MEF2A_f1 IKZF1 5.02 5.4
MEF2A_f1 NFATC1 3.99 4.37
MEF2C_f1 STAT3_si 7.16 5.73
MEF2C_f1 NFIC_f2 7.25 7.34
MEF2C_f1 JUND_f1 4.36 3.65
MEF2C_f1 CEBPB_f1 7.16 5.57
MEF2C_f1 MEF2A_f1 9.05 6.99
MEF2C_f1 IKZF1 3.14 4.64
MEF2C_f1 NFATC1 4.98 4.31
IKZF1 STAT3_si 6.89 6.25
IKZF1 ATF2_f1 6.24 6.32
IKZF1 CEBPB_f1 6.38 8.32
IKZF1 MEF2A_f1 7.72 6.95
IKZF1 MEF2C_f1 7.28 7.35
IKZF1 NFATC1 5.77 7.94
NFATC1 STAT3_si 7.9 9.54
NFATC1 NFIC_f2 8.99 9.41
NFATC1 JUND_f1 3.96 4.02
NFATC1 ATF2_f1 9.68 8
NFATC1 CEBPB_f1 7.01 5.51
NFATC1 MEF2A_f1 6.39 7.24
NFATC1 MEF2C_f1 7.03 6.51
NFATC1 IKZF1 4.01 4.7
NFATC1 POU2 4.31 4.09
POU2 NFATC1 6.8 7.42
ZNF143 GABPA_f1 5.67 4.48
SP1_f1 ELK1_f1 3 2.89
SP1_f1 E2F4_do 4.29 3.45
SP1_f1 EGR1_f2 4.27 2.71
SP1_f1 ETS1_si 5.01 3.36
SP1_f1 GABPA_f1 3.63 3.74
SP1_f1 MAZ_f1 8.89 6
MAZ_f1 ELK1_f1 2.89 2.73

Figure 3.11: TF co-localization pairs identified within A1: continued.
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TF1 name TF2 name Z-score (top 20%) z-score (top 10%)
ELK1_f1 GABPA_f1 4.85 4.16
NFKB1_f1 STAT3_si 4.39 4.61
NFKB1_f1 NFIC_f2 5.62 3.45
NFKB1_f1 CEBPB_f1 7.19 5.14
NFYA_f1 E2F4_do 5.03 5.45
NRF1_f1 GABPA_f1 6.3 6.48
STAT3_si NFKB1_f1 5.34 4.69
STAT3_si NFIC_f2 6.21 4.2
STAT3_si JUND_f1 4.73 3.56
STAT3_si ATF2_f1 4.57 3.81
STAT3_si CEBPB_f1 7.55 5.44
STAT3_si IKZF1 4.8 5.21
STAT3_si NFATC1 3.48 3.55
NFIC_f2 NFKB1_f1 3.35 3.24
NFIC_f2 STAT3_si 7.18 5.62
NFIC_f2 ATF2_f1 4.09 3.17
NFIC_f2 CEBPB_f1 8.94 6.11
NFIC_f2 NFATC1 3.47 3.87
JUND_f1 STAT3_si 3.46 3.01
JUND_f1 ATF2_f1 2.99 3.17
JUND_f1 BATF_si 4.17 2.84
JUND_f1 MEF2A_f1 5.11 4.51
JUND_f1 MEF2C_f1 8.49 4.28
E2F4_do NFYA_f1 4.55 5.15
ATF2_f1 STAT3_si 7.25 5.04
ATF2_f1 NFIC_f2 4.31 4.1
ATF2_f1 JUND_f1 5.4 3.2
ATF2_f1 CEBPB_f1 7.16 5.91
ATF2_f1 MEF2A_f1 4.72 3.46
ATF2_f1 MEF2C_f1 8.36 4.71
ATF2_f1 IKZF1 5.66 5.3
ATF2_f1 NFATC1 3.35 3
BATF_si JUND_f1 3.59 2.81
CEBPB_f1 NFKB1_f1 4.01 2.98
CEBPB_f1 STAT3_si 5.98 4.79
CEBPB_f1 NFIC_f2 7.55 7.46
CEBPB_f1 ATF2_f1 7.55 4.09
CEBPB_f1 MEF2A_f1 5.52 4.19
CEBPB_f1 MEF2C_f1 5.47 2.89
CEBPB_f1 IKZF1 4.8 3.88
CEBPB_f1 NFATC1 3.47 3.02
ETS1_si GABPA_f1 4.7 4.03
GABPA_f1 ELK1_f1 6.23 5.53
GABPA_f1 NRF1_f1 8.44 6.69
GABPA_f1 ETS1_si 5.43 4.22
GABPA_f1 ZNF143 4.1 4.28
MEF2A_f1 JUND_f1 5.66 3.96
MEF2A_f1 ATF2_f1 5.41 2.93
MEF2A_f1 CEBPB_f1 6.58 8.16
MEF2A_f1 MEF2C_f1 8.48 8.08
MEF2C_f1 JUND_f1 3.14 2.97
MEF2C_f1 ATF2_f1 5.63 3.7

Figure 3.12: TF spatial co-localization pairs identified within A2 subcompartment.
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Figure 3.13: The overlap between called significant TF co-localization pairs obtained
from genome-wide analysis and within A1 and A2 subcompartments. There are 23
pairs of TFs appearing in all three sets of results.
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Molecule A Molecule B Interaction detection method Interaction AC in EBI-IntAct database

MEF2A MEF2C tandem affinity purification EBI-11322070

ATF2 NFATC1 tandem affinity purification EBI-10711208

CEBPB BATF peptide array EBI-10890773

CEBPB ATF2 peptide array EBI-10890828

NFkB1 STAT3 two hybrid EBI-3940875

GABPA SP1 pull down EBI-7786331

JUND ATF2 peptide array EBI-10891948

JUND BATF peptide array EBI-10891973

JUND NFATC1 tandem affinity purification EBI-11319967

JUND MEF2A tandem affinity purification EBI-11319891

Figure 3.14: Previously identified TF physical interaction pairs that also appear to
be significantly spatial co-localized according to Hi-C contact map.

95



3.3.3 TFCN1 and TFCN2 have markedly different binding

preference in A1 and A2 chromosome subcompartments

To further investigate the two distinct TF co-localisation networks, we explored their

relationship with chromosome compartmentalization as inferred by Hidden Markov

Model in Rao et al, 2014 [1]. Due to naturally low (and hence insufficient here) ChIP-

seq data for the B compartment, we focused our attention on the A compartment,

which is enriched in actively transcribed genes. As was revealed by Rao et al, 2014, the

A compartment identified using lower resolution maps can be further partitioned into

two different subcompartments, A1 and A2, based on the inter-chromosome contact

map.

First, we compared BS occupancy (as was defined by the proportion of putative BS

occupied by ChIP-seq peaks in DHS, as in Section 2.3.3) for each TF respectively

between A1 and A2 subcompartments. We found TFs within TFCN1 tend to show

significantly higher occupancy in A1, while TFs from TFCN2 have higher occupancy

in A2 (See Figure 3.15). Particularly, in TFCN2, JunD had more than a twofold

increase in occupancy within A2 compared to A1 and IKZF1 also has over one-fold

increase. Other TFs that show more than a 70% occupancy increase in A2 compared

to A1 including STAT3, BATF and NFIC, key factors in immune responses and NfkB

signalling pathway, are all within TFCN2. In contrast, TFs with higher occupancy

in A1 are mostly non-cell type specific TFs within TFCN1. In addition, we note that

four out of five TFs belonging to ETS family grouped into TFCN1 (GABPA, ELK1,

ETS1 and ELF1) are associated with higher occupancy in A1 compared to A2 (except

EGR1).

To further confirm the observed binding occupancy differences in different subcom-

partments, we performed ChIP-seq SignalValue comparisons between paired BSs sim-

ilar to those that we did for homotypic BSs analysis, but here the BSs only differ in

their A1/A2 subcompartment identity, while chromatin state, different types of his-

tone marks and the homotypic clustering score level (low, mid or high, as previously

defined) are all required to be the same. TFs showing significant differences in ChIP-
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Figure 3.15: BS occupancy for individual TFs in relation to chromosome subcom-
partment. Colours indicate the −log10(p) (G-test with William correction) of BS
occupancy differences (bottom row) and ChIP-seq SignalValue differences(top row)
between A1 and A2 chromosome subcompartment for individual TFs.

seq SignalValue within each TF co-localization network is depicted in Figure3.15.

TFs with significantly higher SignalValues in either subcompartment are consistent

with previous binding occupancy analysis (Figure3.15).

3.3.4 TFCN1 and TFCN2 exist independent of TF occu-

pancy differences within A1/A2 subcompartments

Since there were clear differences in TF binding between the A1 and A2 subcompart-

ments, we explored further whether this was sufficient to account for the presence of

two distinct TF spatial networks. The co-localisation of these groups of TFs may not

be a consequence of direct TF-to-TF association, but instead it could be an indirect

effect; the TFs in each network may tend to co-occur due to their subcompartment

preference. To determine whether the TFs in each group continued to co-localise

within each subcompartment, we further analysed the co-localization score distribu-

tion for each TF within each subcompartment independently. We used control sets for

co-localization scores generated by randomly shuffling ChIP-seq identified BSs within

each subcompartment for each chromosome separately, instead of shuffling all BSs.

Surprisingly, the two co-localization networks reoccurred almost in the same manner

in both of the analysis done independently in the A1 and A2 subcompartment (Figure

3.16 and Figure 3.17). The same cluster-defining metric was performed as before and
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Figure 3.16: TF co-localization enrichment map within A1 subcompartment given
distance measure using Equation3.3 and average linkage hierarchycal clustering.

not a single TF swapped clusters in either the A1 or A2 subcompartment analysis,

as compared to the original analysis in Figure 3.1 and Table 3.3. Though, a few

additional TFs in the A2 subcompartment did not fall into either cluster, probably

due to relatively small sample size of BSs in A2. This suggests that TFCN1 and 2

is not a simple reflection of TF binding occupancy differences between the A1/A2

subcompartments; instead, its presence is robust both in a genome-wide scale and

within each subcompartment.

Other hierarchical clustering metrics give similar results within A1, but some of them

perform poorly within A2 (for instance, the average linkage hierarchical clustering

with euclidean distance, see Figure 3.21) compared to other methods (Wards, Fig-

ure3.20 or using the distance measure from Equation3.3, Figure3.17).
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Figure 3.17: TF co-localization enrichment map within A2 subcompartment given
distance measure using Equation3.3.

Figure 3.18: TF co-localization enrichment map within A1 subcompartment (Wards
approach).
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Figure 3.19: TF co-localization enrichment map within A2 subcompartment (Wards
approach).

Figure 3.20: TF co-localization enrichment map within A2 subcompartment (Average
linkage with squared euclidean distance).
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Figure 3.21: TF co-localization enrichment map within A2 subcompartment (Average
linkage with squared euclidean distance, poorly performed).

3.3.5 BSs in TFCN2 are less centred around TSS or CTCF

To gain more functional insights into these two TF co-localization networks, we in-

vestigated the distribution patterns of their ChIP-seq identified BSs relative to tran-

scription start sites (TSS), CTCF binding sites and chromosome domain boundaries

defined using the Arrowhead Algorithm from Rao et al, 2014 [1] (Figure 3.22). BS

distribution of TFs in TFCN1 are more centred around TSS, whereas those in TFCN2

tend to distribute more widely across the genome, see Figure 3.22 (a), p = 2.1 · 10−7,

Wilcoxon rank-sum test on Median Absolute Deviation of BS distance (with +/- sign

to indicate up- or down-stream of TSS); the ungrouped TFs have distribution pat-

terns in between. Similarly, BSs of TFs from TFCN1 are also more centred around

CTCF binding sites compared to those in TFCN2 (Figure 3.22(b), p = 4.1 · 10−7). In

contrast, no significant differences were detected in respect to SMC3 (a component of

the cohesin complex) binding sites. Furthermore, we checked the separation of BSs

to chromatin domain boundaries, where similar trends were observed comparing the

two TF co-localization networks (Figure 3.22(c)(p = 1.4 · 10−6).
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(a) (b) (c)

Figure 3.22: The distribution of TF BSs in respect to transcription start site (TSS),
CTCF binding sites and chromosome domain boundary (shown are genomic distances
in kb).

3.3.6 Revisit the relationship between homotypic BS co-localization

and BS occupancy with regards to TFCN1 and TFCN2

respectively

Homotypic BS co-localization has been shown to increase TF binding site occupancy

in either the enhancer or promoter state, for BSs with both strong and weak DNA

binding motifs, though the effect is more prominent in enhancers and weak promoters,

for weak BSs rather than strong ones. In light of the TF co-localization networks

identified in GM12878 cells, we want to revisit the question related to the role of

BS spatial co-localization in determining TF binding occupancy, both homotypic and

between different types of TFs.

We first re-examined the homotypic case, by grouping TFs according to TF co-

localization networks, to see if the previously observed trends hold for different

TFCNs. We found strong correlations between BS occupancy and homotypic BS

co-localization similarly within both TF co-localization networks, confirming the fact

that the impact of homotypic BS co-localization on BS occupancy preserves regard-

less of TF co-localization network (Figure 3.23(a,b)). Interestingly, we noticed that in
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TFCN1, BS occupancy is much higher in the promoter state in comparison to the en-

hancer state, while in TFCN2, the opposite trend is observed. It is consistent with the

finding that BSs of TFCN2 are less centred around TSS, which is mainly associated

with the promoter state, compared to those in TFCN1. In addition, the trend that

weak promoter without H3k36Me3 get better correlation compared to strong, highly

active promoter also holds within each TF co-localization network (Figure 3.23(c,d)).

3.3.7 Intra-TFCN heterotypic BS co-localization significantly

enhances TF binding, while the role of inter-TFCN BS

co-localization varies between enhancer and promoter

regions

BSs of TFs within the same TF co-localization network tend to have higher than

expected levels of spatial co-localization, similar to the spatial clustering of BSs within

the same type of TF. Thus, we hope to see if the co-localization of BSs within the

same TFCN may also influence BS occupancy as well. Assuming the effects of TFs

within a specific TFCN are simply addictive, we defined an integrated measure of

spatial heterotypic co-localization for a group of TFs collectively, around each genome

loci i containing putative BSs according to Equation 3.4. Here only the interactions

between different TFs within the same co-localization network have been taken into

account, while the homotypic co-localization was not involved, in order to remove

the known effects of homotypic BS clustering. As shown in Figure3.24 (a) and (b),

for both TF co-localization networks, BSs associated with the enhancer state showed

a strong positive correlation with intra-TFCN heterotypic co-localization (adjusted

Pearson’s R2 of 0.71 and 0.77 for TFCN1 and 2 respectively). However, for BSs

falling into regions of the promoter state, the effect of intra-TFCN heterotypic co-

localization seems to be more pronounced in TFCN2 compared to TFCN1 in terms of

both correlation co-efficient and the magnitude of BS occupancy increase (adjusted

R2 of 0.75 and 59% of increase for TFCN2; while adjusted R2 of 0.30 and less than

5% of increase for TFCN1).
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Figure 3.23: The relationship between BS occupancy and homotypic BS co-
localization within either TFCN1 (a) or TFCN2 (b). Adjusted Pearson’s R2 of 0.87
and 0.84 for the enhancer and the promoter state within TFCN1; adjusted R2 of 0.93
and 0.91 for the enhancer and the promoter state within TFCN2. For the comparison
between strong and weak promoter within TFCN1 (c) or TFCN2 (d), weak promoter
consistently shows better correlation between between BS occupancy and homotypic
BS co-localization (adjusted Pearson’s R2 of 0.85 and 0.93 for TFCN1 and 2 respec-
tively), compared to the strong ones (adjusted R2 of 0.15 and 0.63 for TFCN1 and
2).
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Figure 3.24: TF BS occupancy in realtion to integrated heterotypic co-localization
within the same TFCN (a:TFCN1 and b:TFCN2) or between the two TFCNs(c and
d). Figure c shows the occupancy of TFCN1 in relation to the co-localization level
with regards to TFCN2 sites, while d describes the relationship the other way around
(occupancy of TFCN2 regarding co-localization with TFCN1 sites).

The effect of intra-TFCN heterotypic co-localization is in line with homotypic clus-

tering, which enhances TF binding in either the enhancer or the promoter state.

We wish to further explore if this is also true when considering BS co-localization

levels between different TFCNs, namely, the degree to which BSs from TFCN1 is co-

localized with putative BSs within TFCN2 and vice versa. Surprisingly, for TFCN2,
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in both the promoter and the enhancer states, occupancy drops significantly when as-

sociated with high level of TFCN1 BS co-localization (adjusted R2 of 0.69 (38%) and

0.87 (33%) of decrease for the promoter state and the enhancer state, respectively,

Figure 3.24(d)). In contrast, when examining BS occupancy of TFCN1 in relation

to TFCN2 BS co-localization, BSs in the promoter and the enhancer state show the

opposite trend. In the promoter state, decreased occupancy is observed (R2 of 0.63,

Figure 3.24(c)), while in the enhancer state, correlation becomes positive instead (ad-

justed R2 of 0.66 ). We will discuss more about this unexpected diverged trend in

the discussion section of this chapter.

The above analysis integrated all TF BSs within a certain co-localization network to-

gether to derive BS occupancy, however, it is unclear if similar trend can be observed

for individual TFs. Therefore, we next focused our attention on each TF within either

TFCN1 or TFCN2 and compared BS occupancy between BSs associated with high

and low level (the top 1/3 and the bottom 1/3) of intra and inter-TFCN heterotypic

co-localization. The results are shown in Figure 3.25, where the effect of homotypic BS

co-localization is also included for comparison. 67% of TFs within TFCN1 (indicated

by yellow bars) and 91% TFs within TFCN2 (indicated by blue bars) show a sig-

nificant occupancy increase in response to high levels of intra-TFCN co-localization

(p < 0.01, Chi-square test with Yates’ correction). The magnitude of occupancy

increase is comparable or sometimes even slightly higher than the occupancy gain

due to homotypic co-localization for TFs within TFCN2, while within TFCN1, the

magnitude of increase is mostly lower than the effect of homotypic co-localization.

When further grouping BSs according to their associated chromosome states (Figure

3.26), in the enhancer state, similar conclusion as described above could be reached;

whereas in the promoter state, no significant occupancy gain is observed for most of

TFs within TFCN1, but nearly all TFs within TFCN2 display significant occupancy

increase in response to high level of intra-TFCN BS heterotypic co-localization.
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Figure 3.25: The influence of homotypic and heterotypic BS spatial clustering on
TF binding. For each TF, the percent changes in BS occupancy associated with
high level of homotypic or heterotypic BS co-localization when compared to the low
are depicted; (a) for TFs within TFCN1 while (b) for TFCN2. The presence of
the star above each bar indicates statistical significance (Chi-square test with Yates’
correction, p < 0.01).
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Figure 3.26: The influence of homotypic and heterotypic BS co-localization on TF
binding similar to 3.25. Here, BSs are further grouped according to either the pro-
moter (a: TFs within TFCN1 and c: TFs within TFCN2) or the enhancer state (b:
TFs within TFCN1 and d: TFs within TFCN2).

When investigating the effect of inter-TFCN heterotypic co-localization, unexpect-

edly, for either the enhancer or the promoter state, most of TFs within TFCN2 witness

significant occupancy decrease associated with high level of spatial co-localization to

TFCN1 (Figure 3.26(c and d)). It confirms the finding in Figure 3.24, and further

demonstrating that this is a shared property among most of TFs within a specific

co-localization network. Interestingly, for TFCN1, TFs mostly have occupancy in-

crease in response to co-localization with TFCN2 in the enhancer state, while show

decreased occupancy in the promoter state instead (Figure 3.26(a and b)), consis-

tent with what was shown in Figure 3.24. We note that within each co-localization
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network, the magnitude of occupancy change may vary between different TFs. For

instance, MAX, EGR and SP1 in TFCN1 show significant high level (more than

40%) of occupancy increase in the enhancer state in response to co-localization with

TFCN2 BSs, and they are exactly the ones with negligible level of occupancy decrease

or even slight increase (SP1) in the promoter state. In contrast, GABPA is the one

with the highest level of occupancy decrease in the promoter state and it still shows

slight decrease of occupancy even in the enhancer state, which is an exception.

3.3.8 TF binding sites co-localization in human embryonic

stem cells

Human lymphoblastoid cell line GM12878 has been used as a model cell line in all

the above analysis, with regard to TF co-localization network and occupancy. To

investigate if TFs co-localize similarly in different cell types, and to show the applica-

bility of our computational approach to Hi-C maps gained from different sources, we

studied another cell line − human h1 embryo stem cell (h1-ESC), which has sufficient

number of ENCODE ChIP-seq profiles for different TFs [67], though the contact map

was with a much lower resolution of 40kb. Similar to TF co-localization analysis

performed in GM12878 described above, we investigated TF co-localization pattern

in h1-ESC for 38 TFs with available and sufficient ChIP-seq profiles using the Hi-C

contact map reported by Dixon et al, 2012 [120]. Given there are only 3 TFs in

TFCN2 with presence in h1-ESC with available ChIP-seq data, it is not possible to

draw an analogue of TF co-localization networks in ESC to the previously defined

ones in GM12878. We also note that due to the lack of deeply sequenced Hi-C library

and less optimized Hi-C protocol compared to the one presented in Rao et al, 2014

[1], the TF co-localization analysis results described below might suffer from certain

drawbacks due to the quality of the contact map (see discussion section for details).

In h1-ESC, a small group of TFs seem to have distinct co-localization patterns com-

pared to the rest (Figure 3.27), which comprises several key pluripotency factors.

For instance, we observed the spatial co-localization between pluripotency factors
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(a)

(b)

Figure 3.27: TF co-localization enrichment map in human ES cells. Colours show the
enrichment (red) or depletion (blue) of spatial co-localization between pairs of TFs.
Average linkage hierarchical clustering based on the distance measure of Equation 3.3
is shown in (a), while the results of Ward clustering based on euclidean distance is
depicted in (b). Note that the value of four pixels shown here corresponding to the
co-localization between E2H2 and Suz12 (E2H2-SUZ12, SUZ12-E2H2, E2H2-E2H2,
SUZ12-SUZ12) are extremly high compared to others. Thus, to make the color map
have a balanced color scale (just for the sake of visualization), those 4 pairs have been
divided by 6, though they are still the maximum score even after minimizing by 6
folds.

110



POU5F1 and NANOG together with MAFK based on either of the clustering metrics

shown in Figure 3.27. It is consistent with the report that NANOG and POU5F1

interact with each other and also other components of multiple repression complexes

[208, 209] to regulate self-renewal and modulate ES cell fate. MAFK is a b-ZIP protein

from MAF family that is extensively involved in the cell pluripotency network as well

as cell differentiation processes [210]. Other TFs co-localising with these pluripo-

tency factors are: CTBP2, EZH2, SUZ12 and CEBPB. EZH2 and SUZ12 are key

components of polycomb repressive complex 2 (PRC2), while CTBP2 is a transcrip-

tional co-repressor and chromosome remodeler [211]. CTBP2 helps to recruit histone

modification enzymes, particularly for gene repression [211, 212]. Their associated

histone remodelers involve: histone deacetylase 1 (HDAC1), HDAC2 and G9a, which

can remove the activating mark H3K9Ac and add methyl groups to lysine 9 instead.

CTBP2 also interacts with lysine specific demethylase 1 (LSD1), which removes the

activating mark H3K4me on gene promoters and enhancers [213]. Therefore, the

co-localization between CTBP2 and PRC2 components observed here is consistent

with their repressive functions in gene regulation. The above spatial co-localization

pattern is also in line with the genomic co-binding of several pluripotency factors to

inactive chromatin with polycomb marks in stem cells. For instance, POU5F1 and

NANOG have been shown to bind to bivalent promoters with both polycomb marks

and H3K4Me3 in ES cells [214].

Another interesting thing to note is that in our co-localization color map, the two

PRC2 components EZH2 and SUZ12 show extremely strong co-localization between

themselves. Their co-localization scores are more than 6 fold higher than the maxi-

mum score between any other pairs. The very strong spatial co-localization of Poly-

comb complex components coincides with recent reports from either promoter-capture

Hi-C [187] or fluorescence microscopy images [215].

To further validate our co-localization analysis, we compared the higher than ex-

pected co-localization partners of POU5f1, a crucial TF in stem cell self-renewal

and differentiation, to its physically interacting partners identified via Mass Spec-

trometry [201, 216]. From Figure 3.27, there are 12 TFs with consistently higher

than expected co-localization scores for POU5F1. Interestingly, 6 of them coincide
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with the results gained from Mass Spectrometry analysis, namely, CTBP2, ZNF143,

HDAC2, CHD1, ATF2 and NANOG, while only 1 TF (SP1) identified by [201] ap-

pear to have lower than expected co-localization score. This again suggests that TF

spatial co-localization is closely linked to functional TF-TF interaction, not only in

lymphoblastoid cells, but also in ESC. Therefore, the TF co-localization patterns

we observed can provide insights for identifying further TF interacting partners, or

at least, TF pairs with high level of spatial co-localization are more likely to show

physically interaction than others.

3.4 Discussion

We presented for the first time a Hi-C map based analysis to probed the spatial TF

binding site co-localization in human GM12878 lymphoblastoid cells. We found two

distinct TF spatial co-localization networks, one of which is enriched in lymphocyte

specific TFs. Our analysis provide robust confirmation of TF co-localization networks

across different scales, both genome-wide and within each chromosome subcompart-

ment.

Our TF co-localization analysis also provides functional insights into TF interaction

and co-function in gene regulation. Using population Hi-C contact map, we identified

40 pairs of significantly co-localized TFs according to the genome wide chromosome

contact map in GM12878, which were enriched in previously reported, physically

interacting TF pairs. In h1-ESC, even given the limited resolution and data quality

of the Hi-C contact map, the co-localized TFs identified from our study showed

very good consistency with the available Mass Spectrometry analysis of partner TFs

[201, 216].

TF BSs in TFCN1 are more centred around TSS, CTCF and chromosome domain

boundaries, while BSs in TFCN2 have much wider distributions. This suggests that

TFs in TFCN2 could be more likely to be involved in gene regulation via distal en-

hancers, while those in TFCN1 are more likely to bind directly to gene promoters.
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This hypothesis has been validated later by the comparison of BS occupancy between

the enhancer and the promoter states. TFs in TFCN2 show higher occupancy in

the enhancer state; in contrast, TFCN1 has higher occupancy in the promoter state.

Considering that TFCN2 are more enriched in cell-type specific functions, these re-

sults are consistent with the observation that distal enhancer-promoter interaction

plays a critical role in tissue-specific gene regulation [144, 176]. It could be possi-

ble that those tissue specific TFs may establish their function through other looping

mechanisms rather than via CTCF, while constitutive TF binding (TFCN1) mostly

co-occur with CTCF mediated looping, thereby centring around chromosome domain

boundaries as well, which are enriched in CTCF binding sites [107].

3.4.1 Cell-type specific TF co-localization network and its

relationship with chromosome subcompartments

Our results revealed a close relationship between transcription factor co-localization

networks and chromosome A1/A2 subcompartment organisation in GM12878 in terms

of TF binding site occupancy. Nonetheless, each TF co-localization network was still

robustly preserved within each subcompartment. We observed a substantial bias in

TF occupancy for TFCN1 and TFCN2 towards A1 and A2 chromosome subcompart-

ment, suggesting the potential regulatory network differences between A1 and A2.

It partly answers the question why given similar epigenetic marks and chromosome

accessibility, A1 and A2 show drastically different chromosome contact patterns. This

can possibly be a consequence of TF binding and gene regulatory network differences,

where A2 is more enriched in TFCN2, which in turn is associated with tissue specific

transcription regulation. Note another interesting point that A2 subcompartment

harbours more long genes than A1 [1]. Long genes are more likely to associate with

cell-type specific gene regulation [217].

A/B compartment segmentation has been observed across different tissues, organ-

isms and different cells [218, 219, 140], however, chromosome subcompartments could

possibly only exist in a subset of cell types, especially considering the enrichment
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Conserved Fraction

Figure 3.28: The fraction of conserved ChIP-seq peaks between GM12878 and hESC
for each TF within A1/A2 chromosome subcompartments. Shown are TFs with
ChIP-seq profiles available in both cell lines.

of TFCN2 in A2, which is associated with lymphocyte specific TF binding. An-

other point worth mentioning is that when investigating BSs conservation between

GM12878 and h1-ESC for each TF, BSs in A2 subcompartment showed less conserva-

tion compared to those in A1 for nearly all TFs in common, as shown in Figure 3.28.

Therefore, it would be interesting to investigate further if A2 subcompartment is a

cell-type, or at least a cell lineage-specific subcompartment when more Hi-C contact

map become available for other blood cell lines or cell lines of related lineages.

In Figure 3.28, we also noticed that the 3 TFs (JUND, CEBPB and ATF2) that

belong to TFCN2 and also have available ChIP-seq in ESC all show a low fraction of

common ChIP-seq peaks in GM12878 and ESC cells, whereas the TFs in TFCN1 tend

to show more consistency across these two cell types. Taking together, it suggested

that TFCN2 may have cell lineage-specific roles which may be facilitated by the co-
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localisation in A2 subcompartments, consistent with the observation that TFCN2

were enriched in lymphocyte specific pathways.

3.4.2 TF binding in relation to heterotypic BS co-localization

in two co-localization networks

The complicated relationship between inter-TFCN heterotypic co-localization and BS

occupancy is an interesting observation, though there is no straight forward expla-

nation to this. It is far beyond the scope that can be explained by the simple TF

target search mechanism with facilitated diffusion. Since TFCN1 and TFCN2 behave

differently, the effect of heterotypic BS co-localization cannot be captured by a single

common principle. For the promoter state, BS occupancy drops in response to high

level of spatial co-localization with another TFCN. It can be viewed as a reflection

of spatial segregation between TFCN1 and TFCN2 in terms of BS occupancy. This

rule also holds with regards to the enhancer state in TFCN2, which shows decreased

occupancy in relation to TFCN1 co-localization level; but the trend is reversed for

the enhancer state in TFCN1, where higher BS occupancy is observed for higher level

of co-localization regarding to TFCN2. Taking into consideration that TFCN2 has

higher occupancy in the enhancer state and is a cell-type specific co-localization net-

work, these observations emphasizes the biological function for the binding of TFs

within TFCN2 to enhancers. It might be interesting to investigate further if certain

TFs within TFCN2 can help to open up genome regions or bring in active epige-

netic marks that enhances the binding of TFs , especially in enhancers, from both

co-localization networks.

Interestingly, there are some special TFs within TFCN2 that can function as pio-

neer factors which help to maintain the baseline chromatin accessibility, for instance,

JUND, a component of AP1 transcription factor complex [150], and CEBPβ [220].

AP1 transcription factor complex has been shown to prime chromatin and select re-

gions in the genome for the binding of other TFs, for instance, nuclear receptors

including glucocorticoid receptor (GR). The recruitment of GR is dependent on AP1
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binding and ablating AP1 binding significantly attenuates chromatin accessibility

[150]. Another example is CEBPβ, which is also involved in steroid response. Dis-

ruption of CEBPβ binding led to attenuation of pre-programmed chromatin acces-

sibility and thus attenuated the binding of other associated TFs [220]. Their results

further suggested that selective targeting of certain TFs is mediated by cell-specific

priming proteins, including TFs in the CEBP family and possibly other chromatin re-

modellers. This evidence together may help us understand why in the enhancer state,

BS occupancy in both co-localization networks all positively correlate with spatial

co-localization to TFCN2, which includes AP1 components and CEBPβ. Priming

proteins that can establish the pre-programmed chromatin accessibility may be more

important for the function of enhancers rather than promoters, as chromatin accessi-

bility in enhancers is known to show a lot more variation across cell-types compared

to promoters [221].

3.4.3 The influence of Hi-C protocol and sequencing depth

on Hi-C contact map quality and data analysis

The TF spatial co-localization analysis was done on two different cell lines: human

GM12878 lymphoblastoid cells and h1-ESC. However, during the data analysis pro-

cess, I found several problems associated with the Hi-C contact map in h1-ES cells

that can potentially affect our down-stream data analysis and make the results less

convincing. The Hi-C contact map of GM12878 was generated using the optimized

protocol for spatial proximity ligations within intact nuclei, which best preserved the

chromosome organisation in live cells. However, the one for h1-ESC used the old

protocol, which ruptured the nuclei before restriction, marking of DNA ends and lig-

ation. Even though with cross-linked chromosome, disturbance of nuclear structure

might also result in a tremendous loss of certain chromosome association patterns,

especially long-range contacts, as can be seen from the failure to detect loops near

TADs boundaries [120], which is apparent with the improved protocol [1]. This fur-

ther indicated that only formaldehyde cross-linking itself may not capture all types

of chromosome proximity information equally efficiently, proximity ligation within
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intact nuclei is a crucial step in improving contact map quality. Interestingly, later

on, other studies were even able to use proximity ligation without any cross-linking

in intact nuclei to capture sufficient Hi-C contact reads [111], though more efforts

were required to preserve the native chromosome organisation as much as possible,

for example, with embedded nuclei in agar plugs before restriction and ligation.

The map for GM12878 with kilo-base resolution also used super deep sequencing for

the Hi-C library, which put maximum efforts in capturing proximity contacts; while

in ESC, the lack of sequencing depth may result in loss of contact information.

The above disadvantages associated with h1-ESC Hi-C data had the following un-

favourable influences on our data analysis: 1) the lack of sequencing depth and the

Hi-C protocol defects made it difficult to detect sufficient long-range contacts, e.g.

contacts between genome regions with sequence separation longer than 1Mb. Al-

though I have tried to expand the window size up to 300kb for contact read counting

between distal genome regions, total reads counts were still below 20 on average,

which is insufficient for our analysis. If so, TF co-localization contributed by distal

chromosome looping could be largely underestimated. 2) In our initial quality control

step, we need to remove bins of genomic loci associated with insufficient mappable

reads (here we chose 1/3 of the genome-wide median as a threshold) to avoid suspi-

cious score amplification in the normalization of Hi-C contacts. In GM12878 cells,

this step only removed around 8% of genomic regions, while in h1-ESC, it resulted

in the loss of 31.5% of genomic regions. Even using a much relaxed threshold of 1/5

of the genome-wide median, 25% of sequences still needed to be discarded, giving a

large fraction of the genome with very few mappable contact reads.

Therefore, in order to perform convincing TF co-localization analysis based on pop-

ulation Hi-C contact map, we suggest 1) it is necessary to use the optimized protocol

for cell lysis, restriction digestion, biotin marking of DNA ends and proximity ligation

within intact nuclei, even though with cross-linked product; 2) deeply sequenced Hi-C

libraries are preferred when the library has been determined to be of high quality.

The sequencing depth that results in the contact map resolution of 40kb may be

insufficient for high-confidence TF co-localization analysis using our procedure.
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Chapter 4

Proper scaling of Position Weight

Matrices to enable TF binding

strength comparison across

different TFs

4.1 introduction

TF binding preferences to DNA have been studied extensively in vitro, in vivo and

using computational methods. In vitro methods such as protein binding microar-

ray(PBM) [50], high-throughput SELEX measurements [49] and DNase I-seq [21]

have provided fundamental insight into the specificity of TF binding. I have reviewed

the approaches to determine TF binding specificity and the bioinformatic representa-

tion of TF binding motifs using Position Weight Matrices (PWM) in section 1.1.3 and

1.1.4. We use motif in this chapter in reference to the PWM motif for a specific TF.

Berg et al. [57] first showed that the score obtained by the PWM model is propor-

tional to the binding energy between this TF and the DNA. In most cases the actual

binding energy between the protein and DNA is not known, and the proportionality is

118



scaled with a factor commonly termed λ. Berg et al. originally introduced λ to relate

the population of base-pair choices to binding free energy [56], as an analogy to the

inverse temperature factor in statistical physics to describe the energy distribution

and also to serve as a factor to tune the number of potential binding sites in order to

satisfy the constraints on overall energy distribution.

There are some experimental techniques available to infer TF binding strength to

different DNA sequences. For instance, the PBM approach [50] allows the estimation

of the relative binding strength of a protein to “naked” DNA in vitro, but the data

availability is restricted to a limited number of TFs due to high cost of the technology.

In addition, PBMs are not suitable for TFs with longer motifs, as their accuracy will

decrease with the increasing length of the DNA probe [50]. Therefore, in most of cases,

computational approaches are preferred when estimating BS strength, especially the

ones based on PWM method. [25, 81].

However, to date, there is no available software or easily implemented algorithms to

computationally determine TF binding energy to specific DNA sequences, especially

when it comes to binding site strength comparison between different types of TFs at

large scale. This is problematic when scanning the genome with a library of PWMs,

as scoring functions treat each PWM independently, and the absolute score associated

with a “good match” to the PWM of one transcription factor might be associated

with a mismatch for another factor. A more sophisticated application of binding

site strength estimation is, for example, modelling the relationship between enhancer

occupancy and gene expression [25, 222], when the affinity of TFs to specific BSs are

important parameters in binding kinetic models.

In the majority of bioinformatic studies, the scaling factor λ is unknown and PWM

scores are used at face value as measure of affinity. For example, in our own work

[94] we used the PWM score without scaling to compare binding site strength across

different TFs in E. coli, which might lead to a bias due to the absolute differences

between the highest and lowest PWM scores across all TFs of interest. One approach

is to scale the PWM score by a p-value for each specific score threshold [223]. This

method provides a good way to define putative binding sites by choosing a proper
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statistical threshold, but it is difficult to correlate these p-values with binding energy

estimation, as is required e.g. for quantitative studies of enhancer activity [25, 222].

Other work has tried to assess the range of λ on the basis of fitting calculated affinity

landscapes to ChIP-seq profiles [224, 225]. However, ChIP data is intrinsically noisy

and the height of a ChIP peak is not an reliable representation of the real binding

affinity, undermining the stability and accuracy of λ obtained from these methods. In

Roider et.al [224], the estimated λ for the same TF in different conditions diverged

greatly in nearly one third of TFs they studied. Furthermore, there is a wide band of

possible λ values that nearly equally optimize the correlation. Aforementioned fitting

methods are further reliant on chromatin accessibility data acquired under the same

experimental conditions, which is often not available for specific conditions and TFs.

We propose a simple approximation to estimate the scaling parameter λ based on

existing PWM matrices, the average maximum mismatch energy tolerance estimated

by high-throughput binding energy measurements [63] and the distribution of PWM

scores of a certain TF across the genome of a specific organism. This method is

independent of genome-wide binding profiles and accessibility data. Furthermore, in

the cases where there are potentially inconsistent PWMs for a particular TF (e.g.

derived on the basis of individual binding sites vs. derived from high-throughput

efforts), we provide a method to convert the known λ for one PWM matrix of the

same TF into another suitable value for a new PWM matrix. This method is based

on a computational model of the facilitated diffusion of TFs on the DNA that our

group established earlier [156]. We calculate sequence-specific residence times of TFs

at the DNA, which is correlated with affinity. We can therefore derive λ for different

PWMs of the same TF on the basis of the consistency of simulated residence time.

These two strategies (a) calculating λ to scale PWM scores based on the mismatch

energy theory using a simple equation and (b) converting the scaling parameter λ

between different PWMs of the same TF on the basis of simulated residence time of

facilitated diffusion provide simple but useful estimations of binding energy across

different TFs using properly scaled PWM scores.
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4.2 Methods

4.2.1 PWM matrices for TFs for yeast, fly and vertebrates

Position frequency matrices (PFM) used to construct PWM matrices were down-

loaded from the JASPAR database (JASPAR-CORE-2014 non-redundant PFM) [167].

Additional sources of PFM such as those contained in the BioConductor package PW-

MEnrich.Dmelanogaster.background [226] were used as a source of different matrices

for the same TFs. PFMs constructed with less than 30 reference sequences of val-

idated binding sites were removed, as we deemed those insufficient descriptions of

binding preference. Given that typical TF binding sites span at least six base pairs,

we removed any motifs less than 6 base pairs in length.

A bioinformatics approach was used to derive PWM scores [227] as follows:

Sj =
L∑
k=1

log2

vj,k
fj+k

(4.1)

where j is the DNA position for the PWM score calculation, L is the length of the

motif and k represents kth nucleotide in the PWM motif. In addition, if there is

a specific nucleotide in position (j + k) on the DNA, fj+k is the frequency of this

nucleotide in the whole genome of a specific organism. Nucleotide frequency used for

this study in each organism were as follows: D. melanogaster : 0.28 for A and T, 0.22

for G and C; S. cerevisiae: 0.31 for A and T, 0.19 for C and G; vertebrate including

human and mouse: 0.29 for A and T, 0.21 for C and G. Please note that the choice

of background frequencies can be critical, and that adjustments to local extrema may

be necessary. We used a pseudo-count µ to adjust the frequency of nucleotides and

obtain vj,k to avoid zero frequency as follows [60]

vj,k =
nj,k + fj+k · µ∑

x nx,k + µ
(4.2)

where µ is chosen to be 1 [60] and we also show that the choice of the pseudo-count µ
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does not have significant influence on our results (Figure 4.12); nx,k is the frequency

of certain nucleotide x in a specific position k of the motif.

4.2.2 Simple equation to calculate λ

λ is the scaling factor that allows for direct comparison of different PWMs in terms

of binding energy to DNA. The binding energy of a TF to the DNA at a specific

position can be expressed as:

Ej = E0 · e−Sj/λ (4.3)

where E is the binding energy, Sj is the PWM score and E0 is a scaling parameter.

This is useful in a variety of contexts, such as comparing the binding strength of

different TFs. In addition, the expected amount of time that the TF is bound to a

particular sequence can be estimated as:

τj = τ0(λ) · e−Sj/λ (4.4)

where Sj is the PWM score at position j in the genome, τ0 is the average residence

time calculated as in [156]. This equation is widely used in simulations of TF binding

kinetics [228].

Given the utility of the λ for estimating binding strength and occupancy time, it is

very important to have a simple strategy for estimating it. We derive our equation

based on the following core assumptions: 1. The top 0.1% of the highest scoring

matches of the PWM to intergenic regions are considered to be possible TF binding

sites, as suggested by [229]. Their genome-wide study of different eukaryotic TFs

revealed an average of 1 binding site in every 1-5 thousand base pairs of intergenic

sequence. This top 0.1% score threshold has also been similarly adopted in other

studies [81]. In addition, if varying the top PWM score thresholds in Equation 6

from top 0.01% to top 1·10−4 and 1·10−5, the rank of calculated λ still shows good

correlation in each group of organism (Figure 4.11). 2. The maximum mismatch en-
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ergy between the consensus binding motif and specific DNA sequences is proportional

to the information content of the PWM matrix of the TF. Note that the mismatch

energy we refer to in the text is derived from information theory, with the unit of

bits, which can also be described as “mismatch bits. The information content (If)

of the PWM matrix is defined below,

If =
L∑
k=1

∑
i∈A,T,C,G

ni,k∑
x nx,k

log2

vi,k
fi

(4.5)

where k is the kth nucleotide in the PWM motif,
ni,k∑
x nx,k

is the frequency of nucleotide

i in position k, fi is the background nucleotide frequency.

Based on the mismatch energy theory for estimating TF binding strength [57], the

mismatch energy at a particular binding site j of TF species i in the genome can be

expressed as:

Emismatch,i,j = ∆Si,j/λi = (Smax,i − Si,j)/λi

where Si,j stands for the PWM score at position j, Smax,i is for the maximum PWM

score of TF species si and λ, i is the scaling parameter we want to estimate.

The lower boundary of potential binding sites is approximated by the top 0.1% of

PWM scores following the same reason as mentioned above and corresponds to the

maximum mismatch energy tolerance level as follows

EmaxMismatch,i =
Smax,i − Stop0.1%,i

λi

where EmaxMismatch,i stands for maximum mismatch energy tolerance for TF species

i, thus, λi can be calculated using:

λi =
Smax,i − Stop0.1%,i
EmaxMismatch,i

(4.6)

Because different transcription factors have different DNA binding domains, the max-

imum mismatch energy range can vary from one TF to another. Since there is only
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data available for 4 individual TFs using microfluidic platform-based binding energy

measurements [63], we estimated the maximum mismatch energy for other TFs by

using the available data as the average rate and assuming that the mismatch energy

tolerance is proportional to the information content of the PWM matrix as follows:

EmaxMismatch,i =< EmaxMismatch > ×
Ifi

< If >
(4.7)

where Ifi represents the information content of a specific PWM matrix, < If >

stands for the average information content corresponding to the average maximum

mismatch energy measured by [63], which is 13.2 bits.

We chose an average mismatch energy tolerance of 6 bits based on the study by [63].

They showed by mechanical trapping of molecular interactions a significant decline in

binding energy by at most 2 to 3 nucleotide mismatches, and each mismatch nucleotide

contributes 2 bits in mismatch energy. Even if more mutations are introduced, the

binding energy does not drop further since it has already reached the background

non-specific binding energy level.

This experiment was applied only to TFs belonging to the bHLH family. In the ab-

sence of more comprehensive data, we must assume that all TFs share this value;

although if more general TF in vitro binding energy measurement results become

available, we suggest adjusting the specific top score threshold and corresponding av-

erage mismatch energy bits accordingly. Another report featuring TFs from different

families including: p53, Max, Glucocorticoid Receptor [230] also provides additional

support for 6 bits as average mismatch energy tolerance level since TFs from different

families in their study have similar binding kinetics.

In order to control for PWM motif length, in the analysis of λ value comparison

across different species and TF families, each λ value was transformed into a Z-score.

Specifically, PWM motifs were grouped by motif length, with each group having more

than 50 PWM motifs (The groups were: 7-8bp, 9-10bp, 11-12bp, 13-15bp, >= 16 bp),

and the λ values were normalized by the mean and standard deviation within each of

these groups (Figure 4.8 lists the mean and standard deviation value for each group,
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Figure 4.9 depicts the distribution of λ at different motif length with color coded

points that represent different species).

4.2.3 Estimating λ of a new PWM matrix for the same TF

based on the residence time landscape of the facilitated

diffusion model

Sometimes there may be more than one PWM available for a specific TF. For instance,

different TF motif databases (such as JASPAR [167], SwissRegulon [166], FlyFactor-

Survey [231], and HOCOMOCO [165]) may have different versions of PWM motifs

for the same TF. In order to directly compare the TF binding energy when using two

alternative versions of a PWM, it is important to have a way of scaling the results by

λ. λ can be adjusted using the formalism introduced in the previous sections. As a

compute-efficient alternative, we developed a more optimal strategy for estimating λ,

which does not require the assumption that the PWM information content influences

the energy mismatch tolerance. Instead, we base our strategy on the estimation of the

sequence specific residence time of a particular TF, which is a biological meaningful

quantity and can be correlated with in vitro sequence-dependent sliding measurement

of TFs [81]. For the same TF, the sequence-specific residence time distribution cal-

culated by Equation 4 should be as consistent as possible, even when using slightly

different PWMs, if an appropriate λ is chosen for scaling. Based on this, given a

known λ for one PWM, we are able to find another suitable λ for the new PWM.

Note that the stronger the PWM score, the more likely it is that the sequence is bound

by a TF and that the TF’s residence time is a biologically meaningful quantity, but

there is a much greater number of weak and medium strength binding sites than strong

sites in the genome. Therefore, if we scored each potential binding site equally, the

background of weak and medium-strength binding sites would have a greater affect

on the estimated λ than the strong binding sites. Therefore we compare residence

times across different quantiles on a logarithmic binding strength scale, so that the

strongest binding sites have the most influence on our λ estimates. Specifically, in the
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following analysis, we take the −log10 of the cumulative distribution of PWM scores

and select all binding sites with values greater than 3.0 (recall that this corresponds

to the 0.1% percent of binding sites, which were chosen as the lower boundary of

weak binding sites). We divide these top-scoring binding sites into bins every 0.1

log-quantile and calculate the average residence time for each of these bins.

Our strategy identifies the λ that would produce the most similar residence times for

each of these log-quantiles. Assuming that for the first PWM, we already have an

estimate of λ by either binding profile fitting or other methods, we can use Equa-

tion 4.4 to calculate the residence time for each binding strength log-quantile, as

described above. In the following analysis of this paper, since there are very few

well-characterized λ values from profile fitting, for proof-of-principle, we borrow the

values obtained from Equation 6 as pre-calculated λ. Note that τ0 is calculated via

the strategy described in [156] from all intergenetic regions in the genome, which has

a different value for each unique PWM.

Now for the second PWM, we can vary λ between the potential values of 0.1 and

3, which was shown to be a possible λ range [224], and calculate the corresponding

residence times at each log-quantile level. We can now compare the reference residence

times from the first PWM with the residence times for the second PWM across each

binding site strength level, and for each value of λ. The λ that minimizes the mean

square error between two sets of calculated residence times is chosen as the suitable

λ value for the second PWM matrix. Since outliers can have a big influence on the

mean square error, we calculated the sum of the absolute differences for the natural

logarithm of residence times between the two PWM matrices for these quartile bins

(Equation 8) to make a comparison with the method that uses mean square error.∑
q
| ln τq,λ − ln τq,ref | (4.8)

where q represents each quantile in the quantile series, τq,λ is the residence time in

a specific quantile of a particular λ, τq,ref is the residence time in the same quantile

of the known λ of the reference PWM matrix. The λ derived by these two methods

show good consistency with adjusted R2 of 0.9644 (p=6.3 · 10−9). Thus, there should
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not be significant bias using either of these two methods.

The R scripts for both converting λ between two PWM matrices and estimating λ

using Equation 6 are provided in the following link:

https : //github.com/XyMa/PWM scale.

4.3 Results

4.3.1 Estimating scaling parameter λ for binding site affin-

ity across different species and TF families based on

Equation 6

The λ parameter is the important link between PWM score, the estimated binding

energy and simulated TF residence time. Estimating TF binding site affinity by

comparing PWM scores at face value can lead to large biases, especially when it

comes to the comparisons between multiple types of TFs. Several properties of the

PWM matrix itself can influence PWM scores. For example, the information content

of PWM matrices can be positively correlated to the maximum possible PWM score

(Figure 4.1 with an R2 value of 0.597). Thus, the absolute value of PWM scores

cannot be compared directly across different TFs as an indicator of binding site

strength. Therefore, proper scaling of PWM score is needed in order to compare

binding site affinity across different types of TFs. Based on the methods proposed by

Berg et al. [57], the TF binding energy for a specific binding site can be computed

by Equation 4.3 using the estimated λ.

λ calculated by this method are all within the range suggested by [224], which are

listed in Table 4.1 for different organisms. The values for vertebrate species refer to all

available vertebrate TFs obtained from the non-redundant PFM JASPAR database.

The upper and the lower bound of λ across all organisms are all in the range of

0.25 to 2.83. This indicates that all eukaryotic TFs, no matter which organisms
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Figure 4.1: The relationship between maximum PWM score and information content
of PWM matrices. Individual dots represents each PWM matrix generated from the
non-redundant PFM JASPAR-CORE database [167] after the filtering procedures
specified in the Methods section. There is a strong positive correlation between the
information content of the PWM and the maximum possible PWM score that could
be generated by that PWM, with an adjusted R2 value of 0.597. .

they belong to, all share energetically similar DNA binding mechanisms, because λ

can be interpreted as a metric for the chemical property of stickiness between the

TF molecule and DNA. To demonstrate the biological application of λ, Figure 4.2

shows an example of the D. melanogaster Even-skipped stripe 1 enhancer with the

comparison between PWM score and the affinity estimation using λ scaling. The

usefulness of λ estimates becomes apparent when comparing the first two binding

sites indicated by blue arrows in this locus; the second binding site has a higher PWM

score, but its binding strength is lower than the first one once the λ scaling factor

is taken into account. Similar situations also appear in the overlapping binding site

of Bicoid and Kruppel indicated by the third arrow. Thus, only comparing the raw

value of PWM score [94] may lead to false interpretations of binding site importance.

Although there is no specific experimental evidence for the relative importance of

binding sites for this specific enhancer, this example serves to demonstrate how a

different interpretation of the contribution of individual binding sites can lead to
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Figure 4.2: A comparison between PWM score and binding site strength in the D.
melanogaster even-skipped stripe 1 enhancer. The even-skipped stripe 1 enhancer on
chromosome 2R is dense with binding sites. We compare the raw PWM scores (circles)
and the λ-scaled binding strength (height of the bars) for each of these binding sites,
colour-coded by the type of TF. Based on raw PWM scores, one might assume that
the Caudal site indicated by the first blue arrow would have a lower binding strength
than the Kruppel site indicated by the second blue arrow; however, once the binding
strength is scaled by λ using Equation 4.5, it becomes evident that the opposite is
the more likely scenario. The third arrow points to a location where a Kruppel and
a Bicoid binding site overlap. Here, the λ adjusted binding strength estimates would
suggest that Bicoid binding site is stronger, while a raw PWM score would suggest
the opposite. These results illustrate how using raw PWM scores may result in biased
interpretation of the relative binding strength of TFs.

alternative testable hypotheses.

Next, we calculated λ for each TF in S. cerevisiae, D. melanogaster and available

vertebrate TFs in JASPAR [167]. Figure 4.3A to 4.3C show the overall λ distribution

in each group of organisms. After controlling for motif length, there is a significant

difference between vertebrate and S. cerevisiae motifs (Welch t-test p-value=0.008)
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Table 4.1: Maximum, minimum and the average values of λ in 3 groups of organisms.

S. cerevisiae D. melanogaster Vertebrates
maximum 2.83 2.72 2.82
minimum 0.26 0.35 0.25

mean 1.25 1.40 1.73

(Figure 2D) and between D. melanogaster and vertebrate motifs (p-value=0.043) ,

but no significant difference is detected between S. cerevisiae and D. melanogaster.

Furthermore, we grouped λ values, normalized by PWM motif length, according

to different TF families in JASPAR [167] (Figure 4.4). The distribution of raw λ

values across different TF-families are depicted in Figure 4.5. The basic leucine-

zipper family and helix-loop-helix family are two families with the highest average

z-score of λ, compared with other groups with Welch t-test p-values equal to 8.9 ·10−4

and 3.7 · 10−5 respectively. TF families that belong to the same superfamily show

similar λ distribution. For example, β-β-α zinc-finger family and zinc-finger nuclear

receptor both belong to the zinc-figure TF super family, and there is no significant

difference is detected between these two (Welch t-test p value=0.35), while both of

them are significantly lower than the aforementioned two families (p-value= 0.012

and 5.0 · 10−5). In addition, homeobox and forkhead TF families, both of which

belong to the helix-turn-helix(HTH) TF super family, show no difference in λ z-

score distribution (p value=0.27), but appear to have lower average λ compared with

leucine-zipper, helix-loop-helix family and zinc-finger super family (Welch t-test p-

value equals to 5.2 · 10−6, 1.6 · 10−7 and 2.2 · 10−4, respectively).

Since λ is the denominator to the PWM score differences between one binding site

and the consensus sequence in Equation 4.3, a larger λ indicates lower mismatch

energy when ∆Sj is the same. Thus, with the same possible mismatch energy range,

if λ is larger, the PWM score can have a greater range from the consensus sequence

to the potentially weakest binding site, which indicates the binding motif for the TF

family has higher flexibility as suggested by [232]. This is consistent with the finding

that the TFs in the zinc-finger super-family including the nuclear receptor and β-β-α

zinc-finger families are less constrained to a particular motif than HTH super family.

Additionally, cross species comparison of λ indicates that from yeast to vertebrate,
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Figure 4.3: λ distributions across difference organisms. The histograms depict the
λ values estimated from Equation 4.6 for the JASPAR non-redundant core motifs in
S. cerevisiae (A), D. melanogaster (B) and available vertebrates (C) [167]. Figure
D depicts the comparison between z-score distribution of λ for vertebrate and yeast
TFs after controlling for motif length.

more flexible TF motifs are used, which is consistent with the result from [233] that

organisms which appeared more recently in evolution tend to use more TFs with

motifs of higher flexibility.

4.3.2 Comparison of λ values estimated with Equation 4.6 to

λ values derived from fitting ChIP-seq data

We compared our estimated λ values with those estimated from ChIP-seq experiments

by Zabet et al [225] (See Table 4.2). Equation 6 provides a close approximation of

all five values estimated in this paper (adjusted R2=0.64, p-value=0.061). We also

compare our results with the λ values reported by Roider et.al 2007 [224] for 11 yeast

TF motifs from TRANSFAC [234] (See Table 4.2). For each of the 11 TFs, Roider and

colleagues fit λ values to ChIP-seq data from cells grown in different growth mediums,

leading to a range of potential λ values for each TF. However, for each specific cell

growth condition, only the most optimal value of λ was selected for each TF, even in

circumstances in which there is a plateau in the parameter space with many possible

λ values fitting the data nearly equivalently. The λ value ranges from their study and
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Figure 4.4: λ z-score distribution comparison across major TF families. BBA-ZF
represents the λ distribution for β-β-α zinc-finger family; NR is zinc-finger nuclear
receptor family; L-zipper stands for the basic leucine-zipper family; HLH is helix-
loop-helix family; Homeo is homeobox family; FK is fork-head family and HMG is
high mobility group family. For each group, λ was calculated by Equation 6 and
z-score is obtained by normalizing λ in each PWM motif length group.

the estimated results from Equation4.6 using default parameters are listed in table

4.2. For 8 out of 11 motifs (6 out of 8 TFs), our results are within their estimated

range or very close (absolute differences within 0.25), however, another 3 motifs for

2 TFs show poor correlation. It is possible that in some specific cases the assumed

default parameters in Equation4.6 could deviate from the real binding properties of

these TFs, which can potentially lead to bias in the estimation of λ. Alternatively,

these λ values may lie within the parameter plateau region, and might be a suitable

fit for the experimental data.
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Figure 4.5: Estimated λ distribution across major TF families. BBA-ZF represents
the λ distribution for β-β-α zinc-finger family; NR is zinc-finger nuclear receptor
family; L-zipper stands for the basic leucine-zipper family; HLH is helix-loop-helix
family; Homeo is homeobox family; FK is fork-head family and HMG is high mobility
group family. For each group, λ was calculated by Equation 4.6.

4.3.3 Converting λ between different PWM matrices of the

same TF

In many cases there are two PWMs available for the same TF, and one of these

PWMs might already have a reliable estimate of λ, from any number of experimental

or computational approaches [225]. In such circumstances, we provide a strategy to

estimate the unknown λ associated with the alternative PWM matrix. It would be

possible to calculate the unknown λ from Equation 6, but this does not incorporate

the additional data available (i.e. the known λ). Our alternative strategy not only

incorporates this data, but also loosens the assumption in Equation 4.6 that the

maximum mismatch energy for DNA binding is proportional to information content.

The procedure to compute a suitable λ is based on the concept of sequence-specific res-

idence time (Equation 4.4), as illustrated in Figure 4.6. Initially, a well-characterized

λ is computed or measured for the first PWM of a particular TF, and then we use this

value to derive a λ that is appropriate for the second PWM of the same TF. As part
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TF name Estimated   from ƛ
Zabet et.al, 2014

Estimated  from ƛ
Equation 6

Gt 1 1.17

Kr 2 1.93

Bcd 1.5 1.44

Hb 1 0.70

Cad 1.5 1.06

Motif logo

  

PFM name from 
TRANSFAC

Estimated  range from ƛ
Roider et.al, 2007

Estimated  ƛ
from Equation 6

GAL4_01 0.25-1.45 1.17

GAL4_C 0.25-1.30 1.10

GCN4_01 0.50-0.60 0.52

GCN4_C 0.50 0.64

HSF_04 0.80-0.90 1.05

HAP1_B 0.75 1.00

MCM1_02 1.45-1.70 1.32

MIG_1 0.90 1.10

ABF1_01 0.60-0.65 1.37

ABF1_C 0.45-0.50 1.01

RAP1_C 0.15-0.60 1.22

Motif Logo

Table 4.2: Comparison of λ values estimated with Equation 6 to λ values derived
from fitting ChIP-seq data of Zabet et al. 2014 and Roider et al. 2007.

of the calculation of the λ for the second PWM, Figure 4.6C shows a heatmap of the

estimated residence times for a TF named lame duck (lmd) in a particular binding

strength quantile, at different values of λ (ranging from 0.1 to 3.0 as suggested by

both [224] and the range of estimated λ using Equation 6 across different organisms).

Both PWMs for the TF come from FlyFactorSurvey database [231],but they are de-

rived from different reports with motif logos shown in Figure 4.6B. Blank regions in

the heatmap indicate the choice of λ would generate a residence time outside the

range of pre-calculated possible residence times using the first PWM and the existing

λ value, implying that these λ values for the second PWM are unsuitable. As shown

in the heatmap, blank regions often appear in very low values of λ, while if λ is too

large, the possible residence time range from weak to strong binding sites is often
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restricted, which means high affinity sites cannot be effectively distinguished from

low affinity sites. λ values with residence times all within the reference range can be

further selected, as specified in Methods. Figure 4.6D-F compares the residence time

values between two different PWMs, at different values of λ for the second PWM. We

see that the λ in Figure 4.6D and 4.6F would not allow for consistent residence times

between the two PWMs, but Figure 4E does provide consistent results. Therefore,

the λ adopted in Figure 4.6E is picked up as the suitable value for the second PWM

matrix. More examples of residence time heatmaps for converting λ between different

PWMs are shown in Figure 4.13.

In order to evaluate the consistency of λ estimation between the above method and

using Equation 4.6, we use the examples of 20 D.melanogaster TFs with more than

1 version of PWMs available from different experiments. These PWMs are obtained

from the BioConductor R package PWMEnrich.Dmelanogaster.background [226] and

their labels are listed in Figure 4.7. Since there are only few λ available from binding

profile fitting, just for the purpose of illustration, the reference values of λ were pre-

calculated from Equation 4.6 instead. New λ values for PWMs obtained from other

experiments are computed using both methods and they show good consistency with

each other with adjusted R2 equals to 0.88 (Figure 4.14). Converting λ between these

two PWMs in the opposite direction also show similar results (data not shown). It

indicates that both methods provide consistent estimates of λ, even though they have

different core assumptions.

4.4 Discussion

Estimating TF binding site strength based on PWM is essential to the modelling of

TF-DNA interactions, however a proper scaling parameter is needed when using the

PWM score to derive estimations of TF binding energy. Here, we provide two different

methods for estimating the scaling parameter λ based on different situations. A simple

estimation requiring the minimum information can be achieved via using Equation

4.6. It only needs a PWM matrix and the genomic sequences of a certain organism
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Figure 4.6: Conversion of λ between two PWM matrices for the lmd transcription
factor. The flow chart shows the procedure to obtain an optimised λ, given two
different PWMs and one known and one unknown λ (A). Subfigure B illustrates
the two alternate PWMs for lmd which are available in the FLYFACTORSURVEY
database [231]. Equation 6 suggests that PWM1 has a λ of 1.6, and we are trying to
find a λ for PWM2. Subfigure C is a heatmap of the residence time distribution of
PWM2 for different values of λ and different binding site strength level. Each column
of the heatmap represents a specific λ value and each row represents a specific binding
site strength level measured by the −log10 of the corresponding top quantiles from low
affinity to high affinity sites. Blank regions in the heatmap indicates λ values which
lead to residence time out of the reference scale that is an indication of unsuitable
λ values. D, E and F show the correlation of residence time between PWM1 and
PWM2 using specific λ values of 0.8, 1.4 and 2.0, respectively. The curve in subfigure
E has the lowest mean square error, and so we assign PWM2 to have a λ = 1.4.

as inputs, which is easy to implement compared to other complicated methods using

fitting to ChIP-seq profiles [224, 225]. The second method converts a λ specific

to one PWM into λ for a different PWM of the same TF. This metric follows the
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Sheet1

Page 1

PWM1 PWM2

CG11085_Cell_FBgn0030408 CG11085_SOLEXA_FBgn0030408

Dfd_Cell_FBgn0000439 Dfd_SOLEXA_FBgn0000439

nub nub_SOLEXA_5_FBgn0085424

Unc4_Cell_FBgn0024184 Unc4_SOLEXA_FBgn0024184

Eve_Cell_FBgn0000606 Eve_SOLEXA_FBgn0000606

hb hb_SOLEXA_5_FBgn0001180

AbdB_Cell_FBgn0000015 AbdB_SOLEXA_FBgn0000015

Bap_Cell_FBgn0004862 Bap_SOLEXA_FBgn0004862

BH2_Cell_FBgn0004854 BH2_SOLEXA_FBgn0004854

gl_SANGER_5_FBgn0004618 gl_SOLEXA_5_FBgn0004618

her_SANGER_10_FBgn0001185 her_SOLEXA_10_FBgn0001185

Hgtx_Cell_FBgn0040318 Hgtx_SOLEXA_FBgn0040318

ken_SANGER_10_FBgn0011236 ken_SOLEXA_5_FBgn0011236

klu_SANGER_10_FBgn0013469 klu_SOLEXA_5_FBgn0013469

lmd_SANGER_5_FBgn0039039 lmd_SOLEXA_5_FBgn0039039

Lag1_Cell_FBgn0040918 Lag1_SOLEXA_FBgn0040918

Lbl_Cell_FBgn0008651 Lbl_SOLEXA_FBgn0008651

Six4_Cell_FBgn0027364 Six4_SOLEXA_FBgn0027364

ab_SANGER_10_FBgn0259750 ab_SOLEXA_5_FBgn0259750

en_FlyReg_FBgn0000577 en_SOLEXA_2_FBgn0000577

Figure 4.7: The list of labels of PWMs used in evaluating the consistency between
the two λ estimation methods. Those PWMs were downloaded using PWMEn-
rich.Dmelanogaster.background package in R.

Sheet1

Page 1

motif_length_bin lambda_mean_in_each_length_bin standard_deviation_of_lambda_in_each_length_bin

7-8 1.0402 0.4960802

9-10 1.394569 0.5560687

11-12 1.873732 0.4381651

13-15 2.01405 0.2984683

>=16 2.032448 0.2435366

Figure 4.8: The mean and standard deviation of λ in each group of certain motif
length.

logic of sequence-specific residence time from the facilitated diffusion model of TF

target search [156]. This method is particularly useful when converting a previously

estimated λ into the new one for a more up-to-date or otherwise alternative PWM

matrix.

These two methods are consistent with one another (Figure 4.10) and also with previ-
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Figure 4.9: Estimated λ distribution in relation to PWM motif length. Each color
coded point represents a specific λ value of a TF estimated by Equation 6 for S.
cerevisiae (green), D. melanogaster (red), and vertebrate (blue).There is a positive
correlation between estimated λ value and TF motif length with adjusted R2 equals
0.33.

ously established methods. For instance, Equation 4.6 can provide very similar results

compared with the estimated λ from ChIP-seq data fitting [224, 225]. Although our

estimates of λ are mostly consistent with those estimated by Zabet [225] and Roider

[224], it is not possible to compare our λ estimates to experimentally derived values at

scale currently, simply because this type of data is unavailable for most of TFs. Hav-

ing more experimentally derived estimates would enable us to adjust currently fixed

parameters in our equation for different TF families, such as the top-scoring threshold,

which was assumed to be a constant in our current equation, but could vary across

different TF families. The consistent value range of λ in different organisms calcu-

lated by this method provides additional support for the applicability of this simple

equation. Furthermore, the estimated distribution of λ values for different TF families
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Figure 4.10: Comparison of λ values calculated by using different pseudo-count values
in PWM matrices. Subfigure A shows the comparison between the λ values obtained
by using PWM matrices with pseudocounts of 1 and 3 (the adjusted R2 is 0.973),
while subfigure B compares pseudocounts of 1 and 0.3 (the adjusted R2 is 0.978).
Each dot represents a TF from 100 randomly chosen vertebrate TFs in JASPAR
database [167].

make sense in the light of motif choice for each TF families [235]. For example, TFs

in the zinc-finger TF super-family including nuclear receptor zinc-finger and β-β-α

zinc-finger families have more flexible binding motifs, which are able to suit a wider

range of possible binding sites compared to the helix-turn-helix super-family, which

own a more restricted motif consensus sequence [236]. In contrast, some TF families

belong to the same super-family and also share similar binding domain properties can

have strong similarity in λ distribution, e.g. homeobox family and forkhead family

(they both belong to the helix-turn-helix super-family). The two TF families that

show the highest average z-score of λ values (namely, basic leucine-zipper and helix-

loop-helix families) tend to form homodimers and heterodimers, though some TFs in

other TF families also tend to dimerise e.g. some members in homeobox family. If

PWM motifs for either monomers or dimers are available, the corresponding λ scores

can be roughly estimated following the same procedure using Equation 6, or we can

further use the second method mentioned before to convert λ values between different

PWM matrices by the keeping residence time consistent. However, our method only
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Figure 4.11: Correlation of λ rank obtained by using different top score threshold in
Equation 4.6. We compare the λ rank for different TFs in each group of organisms
(A, B for S. cerevisiae, C and D for D. melanogaster, E and F for vertebrate PWM
motifs) for by adopting different top score threshold of top 0.01% or 0.001% instead
of the default value of 0.1% in Equation 6. The adjusted R2 for the λ rank correlation
between 0.1% and 0.01% thresholds for S. cerevisiae, D. melanogaster, and vertebrate
motifs are 0.94, 0.89 and 0.80, respectively, with p-values all less than 10−8. As for
the λ rank correlation between 0.1% and 0.001% thresholds, the adjusted R2 are 0.87,
0.92 and 0.74, respectively (p-values all less than 10−6).

considers TF-DNA interaction, ignoring the effects of TF-TF interactions that could

stabilize TF binding.

There are some points that should be noted when using equation 4.6: first, it cannot
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Figure 4.12: Comparison of unique k-mer number passing 0.1% top PWM score
threshold in genomic background versus that in random sequences. For each TF PWM
motif, we calculated the logarithm of the number of unique k-mers that passes the
threshold in both genomic background and random sequences that have the same
GC content and they show good correlation with adjusted R2 equals 0.98, p-value
< 10−16.

be applied to very short TF motifs that are less than 6 base pairs in length. Since

this method depends on calculating the difference between the top 0.1% of PWM

scores and the maximum score, if the motif is only 5 base pairs in length, the number

of possible choices for sequence combination of 5 base pairs is only 1024, then the

top 0.1% of PWM scores is the top score. However, most eukaryotic motifs are

more than 6 base pairs long. Eukaryotic TFs on average cover 15 bp of DNA with

a core motif length of 8-15 bp [25]. Thus, this limitation should not be a problem

in the majority of cases. However, if a higher threshold e.g. top 1·10−5 is applied

with certain adjustment for average mismatch bits in the denominator, it requires

the PWM motif to be at least 10bp long, which will limit the applicability of this

method. That is why we use top 0.1% as our default threshold choice.

Though we set the default cut-off threshold as the top 0.1% PWM score, but varying

this threshold up to the top 0.001% does not significantly influence the rank of λ

(Figure 4.11). Note in Equation 4.6, the average mismatch energy bit score in the
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Figure 4.13: Heatmaps for λ conversion between different PWMs. These are ad-
ditional examples of heatmaps of sequence-specific residence time that are used
for λ conversion between different PWM matrices of the same TF. Alterna-
tive versions of PWM matrices are from BioConductor R package of PWMEn-
rich.Dmelanogaster.background [226]. Each column of the heatmaps represents a
specific λ value and each row represents a specific binding site strength level.

Figure 4.14: Consistency of λ estimation between two methods. This figure shows the
correlation between λ values obtained from Equation 6 and from λ conversion using
the heatmap of sequence-specific residence time. The adjusted R2 is 0.88, p-value
= 5.9 · 10−5.
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denominator is the one corresponding to the certain top score threshold, which means

if a new top score threshold is adopted, the average mismatch energy bit score should

be updated accordingly, but given very limited binding energy measurement data, it

is difficult to select specific values for each corresponding binding site strength level.

Thus, we simply compared the rank correlation of λ, which is not affected by the

linear scaling factor of average mismatch energy bits. Although we estimate λ by top

scoring genomic sequences, it does not substantially affect this analysis if this is done

on random sequences with the same GC content, since given the size of the genome,

local binding site patterns will not have much influence on the general distribution

of binding site strength. Figure 4.12 shows the number of unique k-mers passing the

0.1% top score threshold in genomic sequences correlates well with that in random

sequences of the same GC content.

Another core assumption in the first method is that the mismatch energy tolerance

range measured in bits is proportional to the information content of a specific PWM.

We reason that if the information content is a good indication of how specific a

TF is, the energy drop measured in bits between strong and weak binding sites

(Smax,i − Stop0.1%,i)/λi should have some relationship with the binding specificity of

a particular TF. The more specific a TF is, the more significant the energy drop

can be. Given the scarce biophysical data for the binding energy range in relation

to binding specificity, we simple assume this relationship to be linear. This enables

us to deal with the bias from the differences in information content of most PWMs;

however, it might not be true for PWMs with extremely high information content.

For instance, a yeast transcription factor named IXR1 has an information content of

47 bits according to the PFM from JASPAR [167], which is substantially larger than

the average information content of 13.2 bits we used in our analysis. The binding en-

ergy of IXR1 is probably overestimated in the above case, which may lead to a lower

λ, but these cases are very rare and only 7 PWMs in our analysis (less than 1.5%)

are associated with information content greater than 20. Further, we note that the

experiment by Maerkl et al., 2007 [63] was applied only to TFs belonging to a specific

TF family–the bHLH family. In the absence of any alternative data, we assume that

this value is scaled by the information content of the PWM. If more in-vitro binding
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energy measurements should become available in the future, we suggest to adjust the

specific top score threshold and their corresponding average mismatch energy bits

accordingly to different TF families if possible.

There are two limitations of this method, which may lead to some biases between

different organisms and different TF families. One limitation is related to the calcu-

lation of mismatch energy tolerance in different groups of TF families. We apply a

single cut-off threshold of top 0.1% PWM score for weak binding sites suggested by

[229], but it could be possible for different TF families, different thresholds should

be used due to their structural variations in DNA binding domains. However, it is

difficult to choose specific thresholds for each TF family based on the availability

of data currently. Further, from the definition of information content of the PWM

matrix, it sums up information content gain from each nucleotide [228], which implies

longer motifs including more flanking base-pairs may have slightly higher information

content compared to the shorter ones just with core motifs, which is an artefact of

computation. However, there is no satisfactory way to deal with this. One possible

solution could be using the information content per nucleotide instead of the total

information content, but this may be problematic as the information content con-

tributed by flanking sequences constitutes only a tiny fraction compared to the core

motifs. Therefore, if we divide total information content by the length of the motif,

the dilution of information content could lead to even larger biases. Hence, in our

analysis of comparing λ value distribution across different organisms and TF families,

we choose to use a strategy that controls for motif length by normalizing it to the

mean in each motif length bin. Another potential solution is trying to define a core

motif from one PWM matrix, but this requires having sufficient knowledge about the

TF motif of interest. Additionally, λ will not be a reliable measure of biochemical

stickiness of the TF to the DNA if the PWM itself is not an accurate representa-

tion of TF binding. A PWM assumes that each nucleotide position independently

contributes to TF binding affinity, which may not be the case [185, 237]. For exam-

ple, a study by Storm et. al 2007 [64] used both a single nucleotide model and a

di-nucleotide model to fit the binding energy measurements in [63]. Although in their

study, they reached the conclusion that the di-nucleotide model provides a better fit
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to the experimental data, the single nucleotide model could also perform well when

non-specific binding energy was taken into account. In addition, the composition of

the position frequency matrix of the PWM may contain biases due to the difficulties

of attaining an unbiased validated binding site set.

Also, it should be pointed out that residence time in this paper refers to an estimate

based on the biophysical model proposed in [81, 156]. However, other papers report

inconsistent scales of residence time according to different experimental approaches.

For example, the residence time estimations obtained by Competition-ChIP methods

[6] do not share the same order of magnitude compared to the residence times mea-

sured by FRAP or single molecular tracking [230, 85, 84], which can probably be an

artifact of experimental methods or alternatively, the range of residence time truly

varies greatly across different TFs [28]. Because the experimentally determined values

are not comparable to each other, we simply adopt bioinformatics-based approaches

to compute residence time. Since our method converts λ between different PWM

matrices of the same TF under the concept of residence time, it avoids fitting incon-

sistent experimental observations and potential variations in DNA-binding kinetics

for different TFs.

Although in many cases PWMs are not optimal representations of binding motifs,

they have become widely adopted to identify potential TF binding sites. However,

it is important to remember that the face value of a PWM score is not directly

correlated to the binding energy, but rather depends on the scaling parameter of λ.

Previously, researchers either assumed that λ adopts similar values across all PWMs

or estimated it through compute-intensive binding profile fitting procedures [224, 225].

There are several alternative ways of identifying potential sites based on PWM score

that estimate how likely these individual binding sites can occur in the genome as

a representation for binding site strength [223]. Other studies combine more local

information e.g. DNA sequence conservation and epigenetic marks with PWMs to

identify potential binding sites and this has been shown to obtain higher confidence

and better performance in mammalian genomes [238]. These methods are useful in

defining potential binding sites, but their results could be difficult to interpret in

terms of TF binding energy which is essential in modelling TF binding dynamics and
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enhancer activities [25]. Here we provide two simple strategies for estimating λ, which

will let us more clearly link PWM scores with the energetics of TF binding.
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Chapter 5

Conclusion, discussions and future

directions

5.1 Conclusion

Transcription factor (TF) binding has shown to be influenced by DNA binding se-

quence motifs and epigenetic modifications; however, the relationship between genome

spatial organisation and TF binding is not very well studied. Using the high reso-

lution Hi-C contact map of human GM12878 cell line of 5kb [1], we systematically

investigated the genome-wide spatial co-localization of TF binding sites, both within

the same type and between different types of TFs.

We discovered two distinct co-localization groups of transcription factors. The first is

formed from the interactions between more general, constitutive TFs and is enriched

within the A1 chromosome sub-compartment. The second, formed from the inter-

actions between cell-type specific TFs, is enriched within the A2 sub-compartment

and is associated with significantly fewer conserved histone marks, when comparing

lympoblastoid and stem cell data. We called 40 pairs of significantly co-localized

TFs according to the genome wide chromosome contact map, which were enriched
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in previously reported, physically interacting TF pairs, thus validating our approach

and linking transcription factor spatial distribution with function.

We also investigated TF binding site occupancy at a genome-wide scale in relation

to the effect of spatial co-localisation of homotypic and heterotypic binding sites on

TF binding dynamics and occupancy. The positive relationship between homotypic

binding site co-localization and TF binding is confirmed by both BS occupancy anal-

ysis and ChIP-seq SignalValue comparison between carefully matched BSs. Particu-

larly, in the case of homotypic BS clustering, enhancers and weak promoters witness

stronger correlations and a larger magnitude of BS occupancy increase when they

are found in spatial promixity. Moreover, BSs with weak DNA binding sequences

show better correlation compared to those with strong binding sequences. Mean-

while, we built a computational simulation model (updated-FastGRiP) based on the

facilitated diffusion mechanism to illustrate that homotypic BS clustering induced an

occupancy boost. We observed a substantial occupancy gain when multiple BSs are

close together in 3D, which is very sensitive to the distances between homotypic BSs

located on different DNA strands and can also be strongly influenced by the number

of homotypic BSs involved.

The relationship between binding site occupancy and heterotypic binding sites co-

localization is complicated by the presence of the two TF co-localization networks and

further, different chromatin states. It is clear that intra-TFCN BSs co-localization has

similar effects as homotypic BS co-localization, which serves to enhance TF binding.

However, co-localization of TFs associated with another network mostly has the op-

posing effect, indicating spatial networks segregation, with the exception that within

the enhancer state, TFCN1 corresponds positively to TFCN2 BSs co-localization.

Different TFs also exhibit different trends to certain degrees. The above complex

landscape cannot be simply explained by biophysical models of TF diffusion and

DNA association dynamics, but instead, points towards complicated TF-TF, TF-

DNA interactions. To gain further insight, research into specific TFs are required,

possibly using a combination of high-throughput in vitro protein-DNA binding assays

[239, 51](on longer fragments of DNA instead of currently used short fragments) and

in vivo knock-down of potential key pioneer TFs.
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Meanwhile, I have also developed approaches to computationally estimate TF-DNA

binding strength and enabled horizontal binding strength comparison across multiple

TFs, which is a more basic research topic associated with TF-DNA interactions, but

hard to solve efficiently using currently available software. Scoring DNA sequences

against Position Weight Matrices (PWMs) is a widely adopted method to identify

putative transcription factor BSs. While common bioinformatics tools produce scores

that can reflect the binding strength between a specific transcription factor and the

DNA, these scores are not directly comparable between different TFs. I developed

two different ways to find the scaling parameter λ that allow us to infer binding energy

from a simple PWM score. The first approach uses a PWM and background genomic

sequence as input to estimate λ for a specific TF, which we applied to show that λ

distributions for different TF families correspond with their DNA binding properties.

The second method is able to reliably convert λ between different PWMs of the

same TF, so that we can directly compare PWMs that were generated by different

approaches or from different data bases. These two approaches provide consistent

and computationally efficient ways to scale PWM scores and estimate TF binding

sites strength.

5.2 Discussions and future directions: Hypothesis

for chromosome domain and subcompartment

formations

Local chromosome folding into TADs can be reasonably well explained by various self-

interaction models, including loop extrusion [112]. However, the global arrangement

of chromosomes at a larger scale, i.e. from Mb inter-TADs contacts to chromosome

territories and interfaces, are beyond the range that can be recapitulated directly

by specific, small-scale interaction mechanisms only involving structural proteins like

CTCF and cohesin. Recent study from Kubo et al observed that upon acute loss of

CTCF, chromatin organization is almost preserved in mESC, except for Lamin associ-
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ated domains [131]. Also, the existence of chromosome subcompartments such as A1

and A2 cannot be explained simply by the segregation of open and closed chromatin.

Instead, TFs and other chromosome remodelling proteins can potentially provide

a much larger pool for dynamic interactions, i.e. bring distal regulatory elements

and promoters together [186][110], to generate more diverse chromosome contacts

patterns. The insight of our TF binding profile analysis coincides with ideas of chro-

mosome folding mechanisms provided by biophysical simulations taking into account

distinct groups of chromosome bridging proteins. Given DNA bridging molecules are

multivalent, studies have shown that bridging induced attraction can result in the

segregation of chromosome domains and compartment-like structures [141]. Though

no assumption of interactions between individual bridging proteins were specified,

this study assumed the existence of different groups of protein complexes that can

form stable bridges between distal chromosome segments, which can possibly involve

physical interactions between TFs, chromosome re-modellers and mediator proteins

in a cell-type specific manner.

We further showed that significant TF spatial co-localization pairs derived from Hi-C

contact maps are enriched in known physical interactions between TFs. We hypoth-

esize that physically interacting TFs might help to bring distal regulatory elements

together, so that the co-regulated genes utilizing similar sets of physically interacting

TFs co-localize together in nucleus, similar to the concept of transcription factories

[186, 110]. In contrast to CTCF or cohesin, TF mediated chromosome contacts could

be more cell type specific, as the abundance of different TFs vary greatly in different

tissues. This might give rise to the distinct patterns of inter-TAD contacts across

different cell types [122]. In addition, the spatially co-localized TFs we identified can

also be viewed as potential candidate for TF-TF interaction, or at least, co-regulators

for gene expression in specific cell types.

There is a long standing discussion about if it is the genome organisation that deter-

mines TF binding and histone marks, or if the binding of TF proteins that shapes

genome organisation and histone marks. Benveniste et al demonstrated a good level

of prediction of epigenetic marks from TF-binding profiles, which supported the view

that binding of TF proteins to DNA determines the epigenetic state of chromosomes.
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Our finding of robust TF co-localization network genome wide and also within each

chromosome compartment or subcompartment suggests the existence of a TF spa-

tial regulatory network across multiple scales, which might help to determine the

genome structure. Furthermore, in GM12878, the opposite trend in TF occupancy

differences between A1 and A2 chromosome subcompartment associated with TFCN1

and TFCN2 indicates a potential link between TF binding and chromosome subcom-

partment segregation. Even though our analysis does not provide a direct causal

relationship between TF binding and the origin of chromosome compartment and

subcompartment, it points towards the complex protein-protein, protein-DNA inter-

action shaping the genome organisation collaboratively.
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