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Abstract

Design of Deep Neural Networks Formulated as
Optimisation Problems

Sushen Zhang

The design of deep neural networks (DNNs) involves the explicit definition
of network architecture as well as the training of the network weights. Each

process can be formulated into an optimisation algorithm and can be
investigated with regard to optimisation performance. The training of the

network weights is defined as a minimisation of the objective function with
regard to network parameters. The architecture search is an optimisation of

the objective function with regard to the presence/absence of layers or
neurons. I draw similarity between the two scenarios, and propose

frameworks that define either the training or the architectural optimisation of
DNNs, or a combination of both. The contribution of the thesis is six-fold, in
which I propose: 1) a quasi-Newton training algorithm based on Truncated
Newton and Gradient Flow methods, 2) a lifting scheme to allow network

sparsification, 3) a lifting framework to automatically evolve neural
architectures, 4) a multi-scale hierarchical search framework involving

sensitivity analysis suitable for the training of neural networks, 5) a heuristic
search algorithm for architectural optimisation of a dynamic model, and 6) a

dynamic cascade learning model solved in the context of de novo drug



viii

design. In each contribution, I define the optimisation problem and solve the
optimisation problem under different frameworks. The ultimate aim of this
research is to facilitate the democratisation of AI, enabling people with less
domain expertise to participate in the design of a deep neural network under

a guided framework.
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σ Activation function

σγ Powerball function

τ Constant

θ Attenuation/amplification factor

ξsh Number of shared layers

ξts Number of task-specific layers
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ζ Intermediate variable in BFGS

Superscripts

⋆ Optimal point

Subscripts

i Neuron index

j Neuron index from previous layer

l Layer index

n Arbitrary Index

Acronyms / Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

AutoML Automated Machine Learning

BFGS Broyden, Fletcher, Goldfarb and Shanno method

BO Bayesian optimisation

CG Conjugate Gradient

CNN Convolutional neural network

DNN Deep Neural Network

GAN Generative adversarial network

GF Gradient Flow

GP Gaussian process

GPU Graphics computing unit

GRU Gated recurrent unit

HFGF Hessian-free Gradient Flow

iLQR Iterative linear-quadratic regulator
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LST M Long-short term memory
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NCG Nonlinear Conjugate Gradient

NLP Nonlinear Programming

PCA Principle component analysis

QED Quantitative estimation of drug-likeness
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RNN Recurrent neural network

SAS Synthetic accesibility score

SGD Stochastic gradient descent

SISO Single-input single-output

SMILES Simplified molecular input line entry system

SSE Standard Sum of Errors

T N Truncated Newton

tol Total tolerance of SSE
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Chapter 1

Introduction

Since the publication of Rina Dechter’s article on the concept of "Deep Learning" in 1986
[1], deep learning has revolutionised the field of pattern recognition and machine learning.
The process entails the "credit assignment in adaptive systems with long chains of potentially
causal links between actions and consequences" [2]. The practical implementation of deep
learning consists of computational models that are composed of "multiple processing layers to
learn representations of data with multiple levels of abstraction" [3]. There are different types
of processing layers, and one of the earliest development is the feedforward neural network,
where the processing layers inherit the structure of a multi-layered perceptron (MLP), with
each layer consisting of linear transformations and non-linear activation functions. Following
from this prototype, a myriad of neural architectures have been developed to deal with
different tasks such as computer vision [4] [5] [6] or natural language processing [7] [8] [9].

Within the domain of deep learning is the Deep Neural Network (DNN), one of the
most successful Deep Learning algorithms, which entails a learning process. The learning
process is achieved through the arrangement of layers of neurons to simulate a particular
transformation from input to output by updating parameters.

The general idea behind deep learning and deep neural networks is a learning process, and
the learning process is achieved through the process of training. The learning process entails
a learning algorithm A aiming to find a function f that minimises expected loss function
L (x; f ) over i.i.d samples x from a natural distribution Fx. The learning algorithm A is a
function that maps a data set X (train) (a finite set of samples from Fx) to a function f [10].
In essence, the learning process can be formulated as the optimisation of the loss function
with regard to parameters that define the mapping function of f , and this process is termed
"the training process". The high number of parameters and the non-linearity introduced into
the neural network by activation functions render the loss function a highly complicated
one, with many local minima and a difficult-to-describe shape. Therefore, the optimisation
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problem is usually hard to formulate and requires careful calculation of a large number of
network parameters through the process of backpropagation. This is the problem of training
of the DNN, and it can be formulated as an optimisation problem.

In the training process, there are parameters that relate to the optimisation process, instead
of the network itself. These parameters are termed "hyperparameters", with examples such
as learning rate, number of epochs, etc. The search for hyperparameters can similarly be for-
mulated as an optimisation problem. The process involves choosing the right hyperparameter
λh, that achieves a minimal value of the objective function. It is often considered an outer
optimisation problem as opposed to inner optimisation of network parameter values.

While hyperparameters only entail information regarding the training of the neural
network, a third class of optimisation problems defined in the context of DNN design is
the neural architectural search (NAS). Conventional architectural design relies heavily on
manual work and human expertise. On the other hand, automated search for architectures is a
computationally heavy process involving a comprehensive exploration in a large search space
consisting of combinations of architectural parameters, requiring thousands of GPU hours
[11]. The ultimate goal in such research areas focuses on how to reduce the computational
complexity and how to automate the process. An important consequence of the process is
the democratisation of AI techniques, enabling access to AI practices by a layman or by a
cross-disciplinary researcher. Current efforts along this line include Google’s autoML and
Yelp’s Metric Optimisation Engine (MOE). However, the commercialised product either lacks
transparency or is limited in scope [11]. To find an effective architectural search algorithm is
an ongoing research effort, and is of interest to this thesis and to the research community at
large.

1.1 Formulation of a Neural Network

The earliest and simplest form of DNN is the feedforward neural network, or a multilayer
perceptron (MLP). Its goal is to perform a mapping from a set of inputs x to a category
y, defined by the mapping y=f(x; θ ), learning the parameter θ along the way to generate
predictions for a new set of incoming x. A DNN consists of many layers of calculation units,
termed neurons. In each neuron, values output from the previous layer undergo a linear
combination with the weights and biases, then they undergo a non-linear transformation,
often termed activation. The process is described as:

z = wT x+b (1.1)
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h = σ(z) (1.2)

where w is the weighting of the network, b is the bias, z is the result of the linear combination,
σ(·) is the activation function, and h is the result of activation and the input to the next layer
of neurons. Common activation functions include ReLU, leaky ReLU, tanh, and sigmoid
functions.

By stacking layers of neurons, the DNN performs the basic chained calculation, in the
form of f (x) = fn · · · f3( f2( f1(x)) [12]. As there are linear and non-linear components in
each transformation, the overall result is a complicated composite function that, with proper
tuning of the parameters and appropriate choice of the activation function, can represent any
complicated transformations from an input to an output. Thus, neural networks are often
viewed as "Universal Function Approximators".

1.2 Training and Hyperparameters Tuning

In supervised learning, the complete design of a DNN will involve three datasets, each
entailing one step in the definition of the network. First, the training dataset is used in a
supervised process to find the optimal weights and biases in the network. In particular, one
optimises the weights and biases such that the output of the network matches the targeted
output defined by the labels in the training dataset. Second, parameters other than the weights
and biases are optimised using the performance on the validation set, in a process called
"hyperparameters optimisation". Third, the ability of the network to generalise to other
dataset is tested on the testing dataset.

The training process is essential as it evaluates the parameters (weights) of the network
that directly determine the performance of a regression or a classification task. To find the
optimal parameter values, an unconstrained minimisation of the objective function with
respect to network parameters is performed. The optimisation algorithm adopted as well as
the initial point determines the value of the local minimum the optimiser reaches and thus
the performance of the neural network.

To formulate the training process as an optimisation problem:

w⋆ = argmin
w∈W

L (x;w(X (train))) (1.3)

where w represents network parameters (weights), and X (train) is the training dataset.
The performance of a neural network depends both on the parametric model and hyperpa-

rameters. Hyperparameters tuning is the second step of formalising an appropriate model for
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a specific dataset. Traditional machine learning methods select values of hyperparameters
arbitrarily, based on human expertise. However, this tuning process is unsystematic and
inaccurate [10]. Moreover, tuning of hyperparameters cannot be exhaustive when dataset
is large [10] [13]. Therefore, many other methods, including random search [10], grid
search [10], Bayesian optimisation [14] [15], reinforcement learning [16] and evolutionary
algorithms [13] [17], have been adopted to perform hyperparameters tuning with a clearly
defined search space and a well-defined search strategy.

The hyperparameters tuning problem can be defined as an optimisation process. The
process is defined as follows:

λ
(∗)
h = argmin

λh∈Λ

Ex∼Fx [L (x;Mλh
(X (val)))] (1.4)

where λh is the hyperparameter, M is the model defined by the hyperparaemters λh on the
validation dataset Xval , L is the loss function and Fx is the natural distribution of the data.

1.3 Architectural Search Optimisation

Neural Architecture Search (NAS) is the process of automating architecture engineering. With
a defined search scheme, the parameters defining the architecture of the neural network are
optimised. Current techniques in optimising neural architecture involve random search [18]
[19] [20], grid search [10] [19] [21] , Bayesian optimisation [11] [22], reinforcement learning
[19] [23] [24] [25], evolutionary algorithm [26] [27] [28] and gradient-based methods [29]
[30] [31]. With regard to the search methodology, there are two separate schools of thoughts:
one focuses on training a network larger than necessary and then reducing the network size
through the process of pruning [32]; the other seeks to optimise the architecture by starting
from some minimal initial structure and adding neurons or layers to the network through the
process of dynamic construction [33] [34] [35].

In most problems, the search for optimal architecture is separately defined from the
training process. However, cutting-edge research often focuses on one-shot models that trains
the network and the architectures jointly. This method has an edge in terms of training speed,
reducing days of GPU time to hours.

It is possible to define the architectural search problem as an optimisation process. The
NAS is defined as:

Λ : D×A → M (1.5)
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where Λ is a search process that maps the data D using the architecture A to model M. The
objective function for NAS is defined as:

Λ(x,ρ) = argmin
mρ,θ∈Mρ

L (mρ,θ ,X (train))+R(θ) (1.6)

where ρ represents architectural parameters and R is a regularisation term. The goal is then
to find the optimal architectural parameter ρ⋆:

ρ
⋆ = argmin

ρ∈A
O(Λ(ρ,X (train)),X (val)) (1.7)

where X (val) is the validation dataset, and ρ is the architectural parameter.

1.4 Research Aims and Objectives

This research focuses on the design of deep neural networks by reviewing important optimi-
sation processes involved in building a functional network from scratch: the training and the
architectural search. In both processes, the search to the optimal solution is formulated as an
optimisation problem.

The first part of the research involves developing an intuition around the training of deep
neural networks, formulated as the optimisation of the objective loss function with regard to
the weights and biases in the network. Conventional practices in the industry often adopts
first-order stochastic optimisers for this process. This research proposes a quasi-Newton
method that is capable of performing the same task with generally comparable performance
to the current optimisers. In defined conditions, it is shown that the optimiser outperforms
the current second-order optimisers in computational speed. I also briefly discuss the tuning
of hyperparameters, which is often viewed as an inherent part of the training process, and
also an important optimisation process involved in the design of deep neural networks. I
motivate this research because an improved optimisation method on the training process will
greatly increase the efficiency of neural network tuning and will facilitate the design of deep
neural networks.

A second method on the training of DNNs is also proposed based on sensitivity values
of neurons. The training method adopts a multi-scale hierarchical search to select the most
sensitive layer to optimise in a binary search tree. I motivate this research also to increase the
training speed of very large networks. When only selective layers are optimised, the method
has the potential to become faster compared to traditional end-to-end backpropagation method
and has great potential for parallelisation.
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Transitioning from the proposal of training algorithms, the thesis also develops algo-
rithms for architectural search. After reviewing key techniques adopted in architectural
search, including random and grid search, Bayesian optimisation, reinforcement learning,
evolutionary algorithms and gradient-based methods, the thesis then proceeds to develop an
autonomous self-evolving network adopting the lifting scheme. This includes a sparsification
scheme that focuses on pruning a larger than necessary network and an evolution scheme
based on network sensitivities that can interactively increase or decrease the network size.
I motivate this research because an automated method for the evolution of the network is
an important step in the design of neural networks. It allows an efficient search to optimal
architecture without heavy computations required, and with minimal input from users, it
allows a simple-to-use method to adapt neural architectures.

The research then proposes an architectural search method for small-scaled datesets and
large-scaled datasets respectively, adopting dynamic models that alter the architecture as
training proceeds. The discussion on small-scaled datasets involves a heuristic search scheme
that optimises the architecture of a neural network adapted for multi-task learning. The
optimisation is tested on industrial datasets in the chemical engineering industry. The large-
scaled datasets adopt deep cascade learning to optimise a generative model. The optimisation
process is tested on the problem of de novo chemical design.

Overall, the design of deep neural networks falls into the “training-architectural search”
paradigm, both can be formulated as optimisation problems. I would like to advance research
in the design of DNNs because of the wide applications of DNNs in different research fields,
including speech recognition [36] [37] [38] [39], autonomous driving [40] [41], natural
language processing [7] [8] [42], computer vision [43] [44] [45] [46], image recognition [5]
[47] [48], drug design [49] [50] and personalised medicine [51] [52] [53]. Moreover, the
current research in deep neural networks relies heavily on domain expertise in order to design
a neural network that is best suited to the task. This elevates the entry barrier to research on
artificial intelligence and makes it difficult for a layman to participate in research of deep
learning [54]. I am motivated by this thesis to facilitate the democratisation of AI, a process
empowering people to participate in AI research [54]. With automated ways of training and
architecture optimisation, it is thus possible to enable more understanding into the elements
of deep neural networks such as architecture and weights, and therefore also encourage more
adoption of DNNs in different research areas with less reliance on domain expertise.
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1.5 Thesis Overview

This thesis consists of 9 chapters. Chapter 2 demonstrates cutting-edge research that for-
mulates the techniques used in the design of deep neural networks. Different approaches to
optimisation involved in training and architectural search have been discussed.

Chapter 3 focuses on how the training process is solved as an optimisation problem and
proposes a novel optimisation method for the training of deep neural networks.

Chapter 4 proposes a method to evolve a neural network through sparsification with the
network formulated under the lifting scheme.

Chapter 5 develops a method to evolve the neural network dynamically based on sensitiv-
ity values with the convergence criterion that the objective falls into a dead-band range.

Chapter 6 returns to the problem of network training and discusses a multi-scale hier-
archical search method to act as an alternative tuning method, by searching for the most
sensitive layer through a binary search tree.

Chapter 7 discusses a novel architectural search method involving dynamic architecture
construction and proposes a heuristic optimisation scheme that optimises the architecture
when adapted to multi-task learning.

Chapter 8 proposes a dynamic architectural search optimisation method for deeper models
and applied the search method to a generative model of variational autoencoders.

Chapter 9 evaluates the proposed methods in the thesis and discusses the potential for
integration into a framework. Moreover, popular topics in the machine learning literature are
discussed in relation to methods proposed in this thesis and future works are investigated.





Chapter 2

Literature Review

Research on the design of deep neural networks (DNNs) involves the important processes
of training and architectural search. Earlier research defines an arbitrary architecture and
finds the network parameters (weights) through the training process. More recent research
questions the optimality of an arbitrarily defined architecture and proposes various schemes
that search for the most effective architecture through a dynamic process. This is done
by introducing flexibility to the architecture and by defining the neural architectures to be
able to interact with the search scheme. Both processes are crucial to the development and
implementation of a DNN. This thesis aims to define key optimisation problems involved in
the design of DNNs, namely the processes of training and architectural search. Following
the "training-architectural search" paradigm, I conduct literature review of each process in
sequence.

This chapter is organised as follows:

• Section 2.1 reviews key optimisation algorithms used in the training of DNNs including
first-order, second-order and quasi-Newton methods.

• Section 2.2 reviews the optimisation algorithms used in the architectural search of
DNNs.

• Section 2.3 concludes by discussing the frameworks commonly used in the autoML
pipeline.

2.1 Training of a Neural Network

The training of a neural network can be formulated as an optimisation problem. It is defined
as the optimisation of the loss function - a large-scale, nonlinear and non-convex function -
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formed by the complicated topology of the neural network [12] [55]. The most widely used
loss functions include the mean squared error (MSE) loss [56] [57] [58], the cross-entropy
loss [59] [60] [61], the hinge loss [62] [63] [64], the Kullback-Leibler loss [65] [66] and the
Huber loss [67] [68]. Depending on whether the output to the neural network is discrete (a
classification task) [69] [70] or continuous (a regression task) [71] [72], different objective
functions are used.

In this thesis, the MSE loss is used for regression tasks. It is defined as

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (2.1)

where n is the sample size, Yi is the true label, and Ŷi is the predicted output from the model
[73].

2.1.1 Classification of Optimisation Problems, Solutions and Algorithms

Optimisation problems can be classified into discrete optimisation and continuous optimisa-
tion. The former involves the variables taking specific values such as integers, binary values
or permutations of an ordered set [74]. Typical algorithms include integer programming [75]
[76] and mixed integer programming [77] [78]. On the other hand, the optimisation of neural
networks is a continuous optimisation problem as the values of weights are uncountably
infinite [79]. This simplifies the optimisation process as the smoothness of the functions
allows the use of objective functions, derivatives and constraint information to find the
solution [74].

Another classification of optimisation problems is constrained versus non-constrained
optimisation [74]. Constrained optimisation sets a group of boundary conditions that may or
may not lead to a feasible set. The solution is bounded to the feasible set and optimisation is
performed in the bounded area [80] [81]. Unconstrained optimisation is unbounded. The
objective function can be minimised with no restrictions at all on the values of its variables
[82] [83]. The optimisation of DNNs is in itself an unconstrained optimisation problem,
where no limits are imposed on the values of weights [84] [85]. In specific problems, the
objective function can be defined to be bounded to certain regions [86] [87]. For example, in
the problem of de novo chemical design, the output of the neural network can be bounded to
certain regions that produce the valid molecular formulas [88]. In these cases, the optimisation
becomes a constrained process and different optimisation techniques are applied.

A key characteristic of the solution to an optimisation problem is whether it belongs to a
global or local optimum [89]. A point x⋆ is a global minimizer if f (x⋆)≤ f (x) for all x, where
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x ranges over all of Rn [74]. A point x⋆ is a local minimizer if there is a neighborhood N of
x⋆ such that f (x⋆)≤ f (x) for all x ∈ N [74]. In the optimisation of DNNs, the ideal is always
to find the global optimum since I could minimise the loss function to the greatest extent
[90]. However, there is usually no guarantee of global optimality even with cutting-edge
algorithms given the highly complicated nonconvex nature of the objective function of DNNs
[91] [92]. Meanwhile, the research community often accepts local optima as the solution
since they usually produce empirically satisfactory results in tasks such as image analysis
[93] or speech recognition [94] [95]. To prove that an algorithm optimises a point to a global
minimum has been an on-going research topic [96] [97] [98].

There are salient features of optimisation algorithms that separate them into classes. The
first distinction I can draw to classify optimisation algorithms is the difference between
stochastic methods and deterministic methods [74]. Stochastic optimisation methods entail
within them some degree of uncertainty and possess some inherent randomness [99] [100].
The same set of parameter values and initial conditions will lead to different outputs [99].
On the other hand, in deterministic models, the output of the model is fully determined by
the parameter values and the initial conditions [101] [102].

The second distinction to draw is the difference between first-order, quasi-Newton
and second-order methods [74]. First-order methods are based on first-order derivatives
information only, thus only the Jacobian matrix is used [103] [104]. Second-order methods
also make use of second-order derivatives information and a Hessian matrix is often employed
[105] [106]. In between the two classes of methods are the quasi-Newton methods where the
Hessain matrix is approximated by first-order information [107] [108]. From Taylor theorem,

f (xk + pk) = f (xk)+ pT
k ∇ fk +

1
2

pT
k ∇

2 f (xk)pk (2.2)

xk+1 = xk +κ pk (2.3)

where p is the search direction and κ is the step-length. Differentiating with respect to p and
equating to 0 gives

∇ f (pk) = ∇ fk +∇
2 f (xk)pk = 0 (2.4)

Defining ∇2 f (xk) = Bk and rearranging,

pk =−B−1
k ∇ fk (2.5)

If I let Bk = I, I arrive at the first-order method of steepest descent. If I let Bk = ∇2 f (xk), I
arrive at the second-order Newton method. If Bk is the approximated Hessian, I arrive at the
quasi-Newton method.
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2.1.2 An Outline of Stochastic First-order Methods

A number of first-order stochastic methods are present in literature. Here I present some of
the common methods adopted in the machine learning literature to optimise a deep neural
network.

Gradient Descent Methods

Gradient Descent [109] [110] [111] is the earliest and most basic form of optimisation for
deep neural networks. Most important state-of-the-art Deep Learning Libraries contain
implementations of gradient descent algorithm (e.g. Caffe, Keras, Tensorflow, Pytorch). The
gradient descent method entails some lack of transparency and is often viewed as a black-box
optimiser [112].

Gradient descent optimises the objective function L with respect to parameters w. The
search direction is defined to be a constant multiple of the negative gradient [109]. The
multiple, η , is termed the learning rate and determines the step size towards the minimum. It
is a first-order method because it only makes use of the gradient information.

There are three basic variants of gradient descent (GD): batch GD [113] [114], stochastic
GD [115] [116], and mini-batch GD [117] [118]. Batch gradient descent computes the
gradient using the information provided by the entire training dataset:

w = w−η ·∇wL (w) (2.6)

Batch GD (BGD) cannot perform online calculation and sometimes cannot fit in the local
memory when the data size is large [114]. Moreover, the amount of calculation required in
each update is high [114]. The advantage is that it is guaranteed to converge to local minima
in non-convex cases [112].

Stochastic gradient descent (SGD) performs a parameter update for each training example.

w = w−η ·∇wL (w;x(i),y(i)) (2.7)

The advantage of SGD compared to BGD is that it reduces the amount of redundant calcula-
tions of derivatives [119]. While in BGD, the gradients of the whole batch is calculated after
each updates, only one gradient is calculated in SGD. This feature makes SGD highly suitable
for online learning [120]. The disadvantage is that SGD tends to zig-zag in its descent and
around the optimal point [121]. The optimal point is usually not exactly calculated if the
learning rate is high [112].
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A compromise is made in the algorithm of mini-batch gradient descent (mini-batch SGD),
where a small number of samples are used to update the parameters in each round:

w = w−η ·∇wL (w;x(i:i+n),y(i:i+n)) (2.8)

Mini-batch SGD combines the advantages of BGD and SGD. On one hand, it reduces the
amount of calculations per update round. On the other hand, it enables stable convergence
[122]. Therefore, this is the most commonly used form of gradient descent in practice [122].

Adaptive Gradient Methods

In some variants of GD algorithms, the learning rate is adaptive in nature, i.e. it is not
constant and adjusts to the value of the parameters. Commercially used adaptive gradient
methods include Adagrad [123] [124], Adadelta [125] and Adam [126].

One of the earliest algorithm adopting an adaptive learning rate is Adagrad [123]. The
key equation governing the formulation of Adagrad is:

wt+1,i = wt,i −
η√

Zt,ii + εsmall
·gt,i (2.9)

Zt,ii is a diagonal matrix where the ith diagonal element is the sum of the squares of the
gradients with respect to wi up to step t. εsmall is an infinitesimal number to prevent division
by zero, and g is the gradient from the previous step. To vectorise:

wt+1 = wt −
η√

Zt + εsmall
⊙gt (2.10)

Another popular GD variant is Adadelta. While Adagrad makes use of sum of the squares
of all previous gradients, Adadelta defines a recursive decaying average of previous gradients:

E[g2]t = γE[g2]t−1 +(1− γ)g2
t (2.11)

where E[g2]t is calculated from the previous iterations and the current gradient, and γ is the
controlling coefficient of the decay. The update rule is:

wt+1 = wt −
η√

E[g2]t + εsmall
⊙gt (2.12)
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Momentum Methods

The SGD with momentum method is often used when different dimensions of the network
have different scales, leading to a search direction that zig-zags towards the local minima.
Momentum accelerates downward movement and dampens oscillations [112]. A general
expression of the SGD with momentum is expressed as:

vt = γvt−1 +η∇wL (w) (2.13)

w = w− vt (2.14)

where vt is the momentum term expressed as a decaying sum of gradients.
A highly popular optimisation method is the Adaptive Moment Estimation (Adam)

optimiser [126]. Similar to Adadelta, the previous gradient values are stored to determine the
learning rate. The first moment mt and the second moment vt is calculated:

mt = β1mt−1 +(1−β1)gt (2.15)

vt = β2vt−1 +(1−β2)g2
t (2.16)

To find the bias-corrected first and second moment estimates:

m̂t =
mt

1−β t
1

(2.17)

v̂t =
vt

1−β t
2

(2.18)

The update rule is thus:
wt+1 = wt −

η√
v̂t + εsmall

m̂t (2.19)

2.1.3 An Outline of Deterministic Newton Methods

Second order methods are important due to its higher potential to distributed training in
developing neural networks [127]. Moreover, second-order methods make use of curvature
information hence can arrive at the minimum point in fewer iterations. Stochastic second-
order methods have the advantage of both escaping from local minima and obtaining a
faster search process, and can benefit from larger mini-batches [128]. Second-order methods
typically have less hyperparameters to tune compared to common variants of SGD [127].
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Most second-order method are based on Newton method. The search direction in the
Newton method can be formulated as:

pk =−H−1
k ∇ fk (2.20)

2.1.4 Quasi-Newton Methods

Quasi-Newton methods approximate the Hessian information based only on first-order
derivatives [107]. Gradient estimates are required to have low variance such that the estimated
results have low variance [127]. Thus, there is a trade-off between epoch number and mini-
batch size [127], allowing mini-batches to be evaluated in parallel.

The most commonly used quasi-Newton method is the L-BFGS method [129]. It is the
limited-memory version of the BFGS algorithm that approximates the inverse Hessian. The
advantage is that it is empirically robust to large-scale problems. However, the algorithm is
derived in the convex context and hence can become ineffective in large-scale non-convex
problems such as optimisation of deep neural networks [74].

BFGS Method

The BFGS method is named after the inventors Broyden, Fletcher, Goldfarb, and Shanno
[74]. To derive the search direction, the algorithm is first defined from the quadratic model:

mk(p) = fk +∇ f T
k p+

1
2

pT Bk p (2.21)

The minimiser pk is thus defined as:

∇mk(p) = ∇ fk +Bk p = 0 (2.22)

pk =−B−1
k ∇ fk (2.23)

where pk is the search direction. I define values of next iteration with step length κ .

xk+1 = xk +κk pk (2.24)

The calculation of Bk is an intensive step. Thus, instead of computing Bk in every iteration, it
can be updated with the curvature information in the most recent step

mk+1(p) = fk+1 +∇ f T
k+1 p+

1
2

pT Bk+1 p (2.25)
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To derive the update rule, the gradient of mk+1 should match the gradient of the objective
function f at xk and xk+1. The initial point is

∇mk+1(0) = ∇ fk+1 (2.26)

The previous point is

∇mk+1(−κk pk) = ∇ fk+1 −κkBk+1 pk = ∇ fk (2.27)

Rearranging,
Bk+1κk pk = ∇ fk+1 −∇ fk (2.28)

Define the vectors
sk = xk+1 − xk = κk pk (2.29)

yk = ∇ fk+1 −∇ fk (2.30)

Then,
Bk+1sk = yk (2.31)

Imposing the condition that among all symmetric matrices satisfying Equation 2.31, Bk+1 is
closest to Bk

min
B

||B−Bk||

s.t. B = BT , Bsk = yk

(2.32)

The solution to the above minimisation problem is the Davidon–Fletcher–Powell (DFP)
update rule

Bk+1 = (I −ζkyksT
k )Bk(I −ζkskyT

k )+ζkykyT
k (2.33)

where ζk =
1

yT
k sk

. Define Hk = B−1
k , the DFP update rule is calculated to be

Hk+1 = Hk −
HkykyT

k Hk

yT
k Hkyk

+
sksT

k
yT

k sk
(2.34)

The BFGS rule is derived from the minimisation problem

min
H

||H −Hk||

s.t. H = HT , Hyk = sk

(2.35)
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The solution, similar to Equation 2.33, is defined to be

Hk+1 = (I −ζkskyT
k )Hk(I −ζkyksT

k )+ζksksT
k (2.36)

which is the BFGS update rule.

L-BFGS Method

The Limited Memory BFGS (L-BFGS) is useful in problems with a large dimension becasue
instead of saving a n× n matrix of approximated Hessian, it saves only a few vectors to
represent the approximation. If I define Sk = I −ζkyksT

k , then from Equation 2.36,

Hk+1 = ST
k HkSk +ζkskskT (2.37)

Since Sk and ζk are defined purely from {sk,yk}, it is possible to store a fixed number of pairs
of {sk,yk}, instead of the whole approximated Hessian matrix. The update rule is then

Hk =(ST
k−1 · · ·ST

k−m)H
0
k (Sk−m · · ·Sk−1)

+ζk−m(ST
k−1 · · ·ST

k−m+1sk−msT
k−m(Sk−m+1 · · ·Sk−1)

+ζk−m+1(ST
k−1 · · ·ST

k−m+1sk−m+1sT
k−m+1(Sk−m+2 · · ·Sk−1)

+ · · ·
+ζk−1sk−1sT

k−1

(2.38)

2.1.5 Discussion

One distinct feature of first-order methods is simplicity [130]. Given the increasing computing
power of the current computing systems, the first-order methods are advantageous in their
robustness and in overcoming saddle points [131] [132]. On the other hand, second-order
methods are less well researched. This is due to the increased computational complexity
brought about by the introduction of the Hessian matrix. However, quasi-Newton methods
approximate the Hessian to reduce computational complexity [133]. Moreover, in theory the
quasi-Newton methods take less search steps to reach the optima compared with first-order
methods [133]. Thus, research into quasi-Newton methods have great potential to be applied
to the optimisation of large-scalee deep neural networks.

In the field of optimisation, there is the "no free lunch" theorem [134]. That is, no
single optimiser is better than all other optimisers for all optimisation problems. Thus, it is
important to explore the advantages and limitations of each model and apply each optimiser
with care to different optimisation conditions.
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Another important and integral step to the optimisation of model parameters is hyper-
parameter optimisation [135] [136]. I briefly discuss hyperparamter optimisation in this
section because it should be viewed as an indivisible process to the training of the network.
Traditional hyperparameter optimisation is performed through manual work but with the
advances in computer cluster and GPU technology, more systematic search methods have
been developed [137] [138]. While optimisation of model parameters is a continuous black-
box optimisation that often uses first- or second-order derivative information, hyperparamter
optimisation can be discrete and entails a few parameters that are optimised combinatorically.
Common search methods include random search [10], grid search [10], Bayesian optimisa-
tion [14] [15], reinforcement learning [16] and evolutionary algorithms [13] [17]. The choice
of hyperparamters plays an essential role in determining the performance of a neural network
[139]. It is equally important compared to model parameters in defining the end result of a
neural network.

2.2 Architectural Search Optimisation

A simplistic scheme involved in the design of a DNN follows the "training - hyperparameters
tuning" process. After training and optimising the hyperparameters of a neural network,
however, it is important to query the fundamental question of how effective the network is.
Sources of ineffectiveness often arise in the manual component of the network design where
the number of layers or the number of neurons are arbitrarily defined. Therefore, further the
analysis of optimising hyperparameters, it is important to delve into the area of architectural
search.

There is a fuzzy distinction between hyperparameters optimisation and architectural
search optimisation [28]. The former focuses more on parameters related to training of
the neural network, such as learning rate, momentum, number of epochs, etc. The latter
calculates parameters that define the topology of the neural network, usually preserving
values of connectivity, number of layers, number of neurons, etc. The similarity between
hyperparameter optimisation and architectural search is that both aim to find a set of metapa-
rameters usually based on the validation set accuracy, i.e. both share the validation dataset
in defining their values [28]. Moreover, both can be formulated as an optimisation problem
with overlapping techniques commonly adopted to achieve an optimum, such as Bayesian
optimisation [11] [14] and Evolutionary algorithms [13] [27]. The difference is that archi-
tectural search focuses more on building an archetype that defines the wholeness of the
network whereas hyperparameters optimisation focuses more on training parameters. Some
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Figure 2.1 Comparison between grid and random search of nine trials for optimising a two-
dimensional space function. Random search explores more values in the hyperparameters
and is more likely to find the optimal combination than grid search

techniques such as gradient-based methods can only be applicable in architectural search
optimisation [31].

The research on architectural search has mostly been focused on defining the search
space, the search strategy and the performance estimation strategy [11]. The search space,
if properly defined based on contextual knowledge, can greatly reduce the complexity of a
search process, but it may introduce unnecessary biases by limiting the search space. The
search strategy encapsulates how to find a suitable architecture in the search space and is the
most critical step in the definition of a search methodology. The performance estimation
strategy, on the other hand, serves as a metric to evaluate the effectiveness of search strategies.
Traditional performance estimation is based singly on the validation accuracy but developing
other methods is an on-going research process [140]. The performance estimation strategy
can also interact with the search strategy in a feedback loop where searches are directed to
improve the results of performance estimation [11]. This thesis focuses on the search strategy
and a review of different search strategies commonly found in literature is provided in the
following sections.

2.2.1 Random Search and Grid Search

In the early years, the most widely used methods in searching for an optimal architecture
are random search and grid search [19]. Grid search [18] [20] divides the search space into
regular intervals (the grid), and assigns the values of the architectural parameters based on
values on the grid. Random search [10], on the other hand, selects values of architectural
parameters at random from the search space. In both cases, the best performing set of values
are stored as parameter values.
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Grid search has the advantage that it is simple to implement in parallel and has the
capability to find better parameters than manual search [19]. The disadvantage is that the
search points are uniformly placed without emphasis on more important parameters and on
more important areas in the search space [19]. This is illustrated in Figure 2.1, where only
three values of important parameters are searched for in the grid search, and more values
are explored in random search. In [10], it is demonstrated that not all parameters are equally
important to search for and grid search explores too much in the unimportant areas. In [21],
it has been suggested that a coarse grid search can be performed followed by a random search
near the region where grid search has generated a good result. In [141], a contracting-grid
search algorithm is proposed where there is a maximum likelihood value for each point in the
gird. Grids are successively halved based on the value until convergence to a local minimum.

In both grid search and random search, the effectiveness of results is generally increased
with longer search time, with a higher likelihood to find the optimal parameters with more
trials. However, there is no guarantee that optimality is found with increasing number of
iterations. Thus, there is the trade-off between computational time and optimality [16]. A
potential solution is shown in [16] where better performing half of parameters are sought for
by successively removing the worse half.

2.2.2 Bayesian Optimisation

The key improvement by adopting the method of Bayesian Optimisation (BO) in architectural
search is the successive search for the optimal set of architectural parameters [22] [142]. It
is less popular in architectural search compared to hyperparameters tuning because most
BO packages are based on Gaussian Processes (GP) and mainly deal with low-dimensional
continuous problems [11]. A typical architectural search adopting Bayesian optimisation is
performed in [22].

2.2.3 Reinforcement Learning

Reinforcement learning methods have been adopted in neural architectural search since the
architectural search process can be formulated as the architectural design agent searching
for reward (the validation accuracy) [25]. However, such methods often suffer from high
computational complexity and time [19].

The central idea in adopting reinforcement learning to architectural design is the con-
version of structural connectivity to a variable-length string [25]. A popular practice is to
make use of a recurrent network (RNN) as the controller to generate the string, and train the
string with respect to validation accuracy. In the case of [25], the controller is designed to be
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Figure 2.2 A framework for evolutionary algorithms

autoregressive and the key challenge is to optimise a non-differentiable metric of validation
accuracy. MetaQNN [143] then makes use of a meta-modelling algorithm using Q-learning
with an ε-greedy exploration strategy and experience replay. It takes 10 days and 10 GPUs
to search for architectures on different dataset including CIFAR-10, CIFAR-100, SVHN and
MNIST. Afterwards, many research developed cell-based search that greatly reduced the
amount of time spent, including NASNet [144], BlockQNN [24] and ENAS [23]. ENAS
creates a great reduction in GPU time to 10 hours using 1 GPU. It treats each trained network
as a sub-graph of the search space so each child network is not trained from scratch.

2.2.4 Evolutionary Algorithms

Evolutionary algorithm (EA) is a generic population-based meta-heuristic optimisation
algorithm [19] with high robustness and wide applicability. Compared to reinforcement
learning, evolutionary algorithms operate on much larger search spaces. It has been actively
researched for three decades, initially used to evolve weights of the neural network [26].
It is a "population-based global optimizer for black-box functions" [28]. The process of
optimisation is outlined as follows (also outlined in Figure 2.2):

1. Initialise the first generation of population

2. Select parents from the population for reproduction

3. Recombine and mutate operations to create new individuals

4. Evaluate the fitness of new individuals

5. Select the survivors of the population

An example is the NueroEvolution of Augmenting Topologies (NEAT) algorithm [27]. It
is defined as the artificial evolution of neural networks using genetic algorithms. From this
algorithm, many modified versions have been developed, including CoDeepNEAT [145] and
LEAF [13].
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2.2.5 Gradient-based Methods

Unlike other methods that search for the architecture through a black-box optimisation
problem over discrete domain, gradient-based methods often seek to convert discrete rep-
resentations into continuous ones, and optimise the continuous variables together with the
network weights [19]. This prevents the need to evaluate a large number of architectures
defined by combinations of discrete network parameters [19]. For example, a typical rein-
forcement learning method requires 2000 GPU days [23] and a typical evolution method
requires 3150 GPU days [146]. With a conversion of parameters from discreteness to con-
tinuity, I can perform even simple gradient descent in the continuous search space with
respect to its validation performance, therefore reducing the reliance on computing power
and increasing the search efficiency.

Much of the research on architectural optimisation starts by defining a Super Network
that contains a set of layers or blocks of cells connected together in a Direct Acyclic
Graph (DAG). This technique has been named differently in different papers such as Deep
Sequential Neural Networks [29], Neural Fabrics [31] or PathNet [30]. Architectural search
is performed by optimising connectivity between layers of blocks, and the connectivity is
usually symbolised by a continuously valued scalar. Optimising the architecture involves
calculating the connectivity value, removing connections when the connectivity value is low
or choosing the type of connecting operation with the highest value.

Another important element in performing architectural search is on the definition of
the loss function. The simplest form of architectural search optimises structure based on
validation set accuracy. However, it is possible to redefine the loss function such that other
considerations can be included quantitatively in the loss function [147]. The flexibility in
defining the loss function has accentuated one of the advantages of performing architectural
search through gradient-based methods. Composite objectives can only be easily executed
through a gradient-based optimisation method as long as it is differentiable, whereas in other
search methods, redefining the objective function may revamp the whole definition of the
optimisation problem.

2.2.6 Discussion

In architecture search, there is the intuition that more complicated architectures generate
better performance. The intuition is corroborated in the top-performing CNNs in the computer
vision community as exemplified by [47], where the performance of AlexNet was improved
by making the network deeper. This has been contradicted in [5] [55], that increasing the
depth of the network decreased performance, confirmed by experiments in [4]. Moreover,
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deeper networks are more difficult to train and more prone to overfitting [148]. Therefore,
the hypothesis for an architecture-generating algorithm should not focus on expanding the
depth but rather on lower validation loss and higher test accuracy.

The design of the architecture is data-sensitive, relying heavily on human expertise to
allocate specific designs to different datasets [10] [135]. Structural parameters are difficult
to optimise because it is currently unclear how different architectural parameters interact to
generate model performance [13]. In addition, there is no mathematical formula to calculate
the appropriate architectural parameters. The choice of architectural parameters is often by
trial and error, dependent on the experience of the designer [17]. In areas where there is a
lack of expert knowledge, architectural parameters are optimised through random search
or grid search, a time-consuming and error-prone process due to the sheer size of available
parameter choices [19]. Recent searches of architectural parameters have been formulated as
an optimisation problem, producing results exceeding human design [13] [19].

Current Challenges

There are currently three main problems [149] faced by frameworks that conduct architec-
tural search: 1) inadequate baseline for performance gain, 2) high complexity of methods
adopted with unclear indication of what achieves competitive empirical results, and 3) lack
of reproducibility both in reproducing the same results and generalising to other problems
while maintaining the same level of performance. Thus, current frameworks are often ad-hoc
in nature with a huge variety of methods adopted to perform neural architectural search.

In current research, it is frequently observed that different research makes use of different
baselines to determine improvements of their proposed search strategy. For example, in [23]
and [150], the performance of the proposed frameworks are compared to random search with
a limited computational budget, giving themselves an unfair advantage to an exaggerated
performance gain. Therefore, it is essential to define and adopt an appropriate baseline for
performance evaluation. The authors of [149] proposed using random search with early-
stopping as a baseline due to its simplicity while being state-of-the-art random search method
outperforming leading adaptive search strategies. This baseline is often identified as the
benchmark for the evaluation of frameworks for architectural search.

Moreover, the model adopted is usually complex such that the search process is more or
less akin to a black-box optimisation process [151]. In many search processes, there is an
interplay between training routines, architecture transformations and modelling assumptions,
and thus it is unclear what plays a critical role in improving the performance of the architec-
tural optimisation. It is essential to perform ablation studies [149] in order to guide future
research into the area.



24 Literature Review

The third biggest challenge is the lack of reproducibility of current research. It is difficult
to 1) reproduce exact results from the models used in literature [152], and 2) the model
seldom generalises or stays robust to new datasets [151]. This can be due to the complexity
of the model used which takes a high computational cost hence most research report the best
performing results based on few runs [19]. Moreover, it can be due to the highly empirical
nature of research in this field where search processes are processed and validated by results,
instead of by rigorous mathematical proof [152]. The stochastic nature of most optimisation
problems, the setting of random seed, the uncertainty involved in hyperparameter tuning all
add complexity to the reproducibility, making the current research results difficult to build
upon [151].

2.2.7 Architectural Search Methodology

In previous sections I have evaluated different techniques used in the process of architectural
search. However, there exists a methodology where the search is not based on a particular
technique but more on how to modify a network after the full training scheme. More
specifically, the pruning process is often adopted where linkages between neurons are
cut-off from the network such that parts of the network completely dissociate from the
original network [32]. This process is expected to reduce the degree of freedom of the
network, preventing over-fitting and improving generalisation, and in consequence generating
a network of minimal size [153].

A most critical rule in obtaining a good generalisable neural network is that one should
use the "smallest system that fits the data" [32]. To ensure an effective neural network with
good generalisation is produced, the process of pruning is often adopted. Pruning involves
training a network that is larger than necessary and then removing parts of it to generate
comparable or better results. It is a difficult task because a system too small is faster and
cheaper to build but may not be able to handle the given data, while a system too large may
slow down performance and become over-sensitive to hyperparameters [32]. Moreover, to
determine the part of a network to prune requires careful calculations and sound mathematical
underpinnings.

Opposite to pruning is the process of dynamic architecture construction. This method-
ology starts from a minimal architecture and continuously expands the architecture until a
satisfactory objective value is obtained [154] [155] [156]. I will discuss the method more in
details in Chapter 7 and Chapter 8.
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Figure 2.3 An overview of AutoML pipeline covering data preparation, feature engineering,
model generation and model evaluation.

2.3 Frameworks on Deep Neural Networks

In this chapter, I have reviewed literature that completes the whole pipeline of developing
a deep neural network. The pipeline consists of training, hyperparameter tuning and ar-
chitectural search, with each process defined as an optimisation problem on its own. It is
possible to amalgamate the three processes by defining a single optimisation framework
that performs architectural search in the higher level of the framework while performing
training in the lower level framework, as exemplified in the research of [150]. There has
been a number of literature that proposes frameworks for the whole end-to-end easy-to-use
pipeline, often termed Automated Machine Learning (AutoML) [19]. However, AutoML
covers the complete process from data preparation, feature engineering, model generation
to model evaluation. Depending on the framework, the pipeline may also include definition
of constraints, performance evaluation, result analysis, and visualisation [157]. I have put
a special focus on model generation and evaluation. Figure 2.3 has illustrated the whole
process of AutoML.

AutoML is an important topic in current research because it facilitates the transformation
of machine learning from a strictly R&D technology to common enterprise practices, acceler-
ating the democratisation of AI in the process [158]. Democratisation enables businesses and
individuals to access and implement AI algorithms with a minimal requirement of expertise,
thus promoting the technology in multiple areas of applications while increasing productivity
in industrial applications, reducing computational overhead in different research disciplines,
unravelling hidden information from data, and allowing customisation of AI models [158].
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The current AutoML technology allows the automation of feature engineering and
hyperparameter optimisation, the most time-consuming steps in the machine learning pipeline
[159]. Freedom is allowed in the constrcution of a machine learning model. Popular
AutoML framework in industrial and enterprise practices include Auto_ml, auto-sklearn,
TPOT, H2O [159] and Auto-WEKA [160]. A commercialised version is Yelp’s Metric
Optimisation Engine which is used when objective function is a black box and the derivatives
are unavailable.

Auto_ml 1 is one of the popular frameworks widely used in production systems. It
contains algorithms for data pre-processing (such as categorical encoding, date processing,
numeric scaling) and feature reduction (such as using PCA). For its algorithm implemen-
tations, the algorithm utilizes highly optimized libraries such as ScikitLearn, XGBoost,
TensorFlow, Keras, and LightGBM [159]. Hyperparameter optimisation is implemented
through an evolutionary grid search.

Auto-sklearn 2 is another popular framework that wraps around sklearn for its function-
ality, thus sklearn estimators are used for modelling processes [159]. The hyperparameter
optimisation is performed with Bayesian search techniques. An advantage of the framework
is its easy integration with the existing sklearn package. It leverages recent advantages in
Bayesian optimization, meta-learning and ensemble construction [161] and introduces these
advances to machine learning packages.

TPOT (Tree-based Pipeline Optimisation Tool) 3 makes it easy to optimise hyperparame-
ters. Its hyperparameter optimisation is performed with genetic programming [159]. Unlike
auto-sklearn, it defines its own classifier and regressor functions.

H2O [162] is a package for machine learning like the sklearn but contains an automated
module. The module automates machine learning with its own internal algorithms. Thus,
configuration is limited to algorithm choice, stopping time, and degree of k-fold validation
[159]. It also performs an exhaustive search over its feature engineering methods and model
hyperparameters to optimize its pipelines. Therefore, it has the key drawback of massive use
of computational resources [159].

Auto-WEKA [163] is another optimisation framework that performs hyperparamter
optimisation through Bayesian optimisation. The framework is based on a machine learning
software package WEKA and builds an automated version in auto-WEKA, containing
functionalities of feature selection, ensemble methods, and meta-methods [163].

1https://github.com/ClimbsRocks/auto_ml
2https://github.com/automl/auto-sklearn
3https://github.com/EpistasisLab/tpot
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However, these current frameworks extensively make use of traditional machine learning
algorithms such as random forest to perform classification and regression tasks. Less utilised
is the cutting-edge research into neural architecture search.

The problem of neural architectural search comes into the picture as an important subfield
of AutoML. Given the vision that architectural search can be fully automated, the architecture
of DNNs can be included in the AutoML framework with benefits in better performance and
wider acceptability. Packages that currently contain neural architectural search components
are Google’s AutoML and AutoKeras.

Google’s AutoML 4 is a commercialised cloud development suite that performs automatic
neural architecture search based on cutting-edge computer vision technology. However, it is
expensive to use and is not open-source.

AutoKeras, on the other hand, is an open-source package that makes use of a variant of
ENAS (mentioned in Section 2.2.3) to perform automatic architectural search. It is easy to
implement for the community using Keras, and as it is open-source, one can modify the code
to implement customised parameters.

There is currently no single algorithm that outperforms all the others. Several pieces of
research have attempted to generate a benchmark for the evaluation of the AutoML packages
[160] [159]. The benchmarks make use of metrics such as F1 score, MSE or AUC (area
under the curve) to make a comparison. In [159], the authors also undertake analysis on data-
dependent performance. However, the benchmarks developed in these research overly focus
on the final results instead of other aspects such as ease of use, accessibility, interpretability,
flexibility to system constraints and reproducibility.

Our research comes into the picture of the AutoML pipeline because the objective is
to allow automated search of neural architectures and network parameters. I believe our
research will contribute to the methodology of training and neural architecture search and
will become an integral part of the AutoML framework.

4https://cloud.google.com/automl





Chapter 3

Hessian-free Gradient Flow Method

3.1 Introduction

The development and implementation of a Deep Neural Network (DNN) entails two important
aspects: training and architectural search. Both aspects can be defined as optimisation
problems and are critical in determining the performance of a DNN. In this chapter, I focus
on the optimisation methods used in the training process of DNNs. The training process is
formulated as a minimisation of the loss function over a complicated, non-convex function
shape defined by the network topology.

I propose a novel optimisation method for the training of DNNs, termed Hessian-free
Gradient Flow (HFGF). The algorithm entails the design characteristics of the Truncated
Newton, Conjugate Gradient and Gradient Flow method. It employs a finite difference ap-
proximation scheme to make the algorithm Hessian-free and makes use of Armijo conditions
to determine the descent condition. The method is first tested on standard testing functions
with a high optimisation model dimensionality. Performance on the testing functions has
demonstrated the potential of the algorithm to be applied to large-scale optimisation problems.
The algorithm is then tested on classification and regression tasks using real-world datasets.
Comparable performance to conventional optimisers has been obtained in both cases.

This chapter is organised as follows:

• Section 3.2 formulates the training process as an optimisation problem

• Section 3.3 defines the convergence criteria and the conditions for sufficient descent

• Section 3.4 outlines second-order and quasi-Newton methods

• Section 3.5 proposes the novel algorithm of HFGF
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• Section 3.6 introduces the standard testing functions commonly used to test the effec-
tiveness of optimisation algorithms

• Section 3.7 tests the algorithm on standard testing functions and hypothetical DNNs.
Then it applies the algorithm to real-world datasets of MNIST and OILDROPLET
dataset

• Section 3.8 performs further analysis of the proposed algorithm

• Section 3.9 then concludes the chapter

3.2 Formulation of an Optimisation Problem

The training of deep neural networks can be formulated as an optimisation problem. The key
difference between training and traditional optimisation is that training is usually indirect
[12]. That is, I would like to optimise performance measure P of the test set but could only
reduce the cost function J(w) of the training set. The cost function is properly defined as:

J(w) = E(x,y)∼p̂data
L( f (x;w),y) (3.1)

where E is the expectation, L is the per-example loss function, f (x;w) is the predicted output
when the input is x and the output is y. p̂data is the empirical distribution of the input-output
pair. More typically, I prefer to train the following cost function:

J∗(w) = E(x,y)∼pdata
L( f (x;w),y) (3.2)

where pdata is the data-generating distribution instead of the empirical distribution from
the training dataset. Thus, the training process is defined as an unconstrained optimisation
process:

minJ∗(w) (3.3)

At the end of the chapter, hyperparameters tuning is also performed to maximise the
performance of the DNNs. I define the hyperparameters tuning process as an optimisation
scheme. The optimisation scheme adopted is the sequential heuristic scheme.

3.3 Convergence Criteria and Sufficient Descent

Two assumptions must be made in order to converge to a local minimum of the loss function
from any starting point with arbitrary learning rate: 1) the error function is a real-valued
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function defined and continuous everywhere in Rn, bounded below in Rn, and 2) for any
two points w and v ∈ Rn, the gradient g(x) of the loss function satisfies the Lipschitz
condition ||g(w)−g(v)|| ≤ L||w− v||, where L > 0 denotes the Lipschitz constant. Under
these assumptions, there is an upper bound on the degree of the nonlinearity of the error
function and the first derivatives are continuous [164]. If these assumptions are fulfilled, there
is the guaranteed convergence to a minimum with the learning rate appropriately defined by
the Wolfe conditions [164].

The Armijo condition is a condition for the sufficient descent of an inexact line search
method [74]

f (xk +α pk)≤ f (xk)+ c1α∇ f T
k pk (3.4)

where c1 ∈ (0,1) is some small constant. A value of α that satisfies the above equation
generates a sufficient descent.

The second condition is the curvature condition which states

∇ f (xk +αk pk)
T pk ≥ c2∇ f T

k pk (3.5)

where c2 ∈ (c1,1) is some constant. The Armijo and the curvature conditions are collectively
called the Wolfe conditions [74]. In the context of neural network optimisation, the x’s refer
to the weights of the network.

In our proposed algorithm, the Armijo condition is adopted as a condition to determine
whether a sufficient descent is achieved by a new search direction. It is also used to judge
whether the step-size used is sufficiently large. When the Armijo condition is satisfied, the
step-size increases, allowing a more aggressive search. When the condition is not satisfied,
the step-size decreases.

3.4 An Outline of Second-order and Quasi-Newton Opti-
misation Methods

In Chapter 2, I have discussed the key classifications of neural network training algorithms.
Under such classification, the current widely-adopted optimisers are usually first-order and
heuristic in nature. However, several pieces of current research target at quasi-Newton
deterministic methods to perform optimisation. These methods are not yet directly applied
to machine learning problems, but are used in non-linear control problems. However, they
demonstrate promises in becoming the state-of-art optimisation algorithms for deep neural
networks. The shooting algorithm[165][166], for example, has been applied in control
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problems and is second-order in nature. This second-order nature that requires the storage
of the Hessian matrix has been modified by different methods of Hessian approximation,
generating quasi-Newton algorithms. The iterative Linear-Quadratic Regulator (iLQR)
method is one of the many ways to approximate a Hessian matrix. Alternatively, Gauss-
Newton Hessian approximation has been used in [166] to improve the solution to the nonlinear
optimal control problem. Although these algorithms are effective solvers in the optimal
control problems, they require much more modifications to be applied to large-scale datasets
with a complicated objective function to optimise.

Within the machine learning community, the most popular quasi-Newton method is the
L-BFGS method. More specifically, L-BFGS is a great improvement from its predecessor
BFGS by using limited amount of computer memory. Unlike BGFS that stores a dense n×n
matrix to approximate the inverse of Hessian, L-BFGS stores a few vectors that implicitly
approximate the inverse of Hessian matrix. It retains a limited amount of past gradient and
hence is effective in memory storage. This characteristic makes it useful in being applied
to large datasets [167]. However, L-BFGS has its own limitations. Although it is highly
advantageous in its search speed, it works well with only simple variable bounds and may
sometimes misbehave in deep structures [168]. Recent research seeks to combine L-BFGS
with stochastic methods to achieve a linear convergence rate [169] [170]. It has been applied
with some success in multiple convex and non-convex problems with different step sizes.
However, it is has only been experimented on case studies without full mathematical proof.

Although there have been several pieces of research work that investigate second-order
methods, these are not the mainstream research direction and the proposed methods often
have problems with regard to memory storage and computing power. However, with the
developments in computer memory and computing power, it is expected that such limitations
will be less of a problem in the near future [171].

A few quasi-Newton deterministic methods are widely used in optimisation. I introduce
three of those which also form the basis of our proposed optimiser: the Conjugate Gradient
Method, the Truncated Newton Method and the Brown and Bartholomew-Biggs’ Method.

3.4.1 Conjugate Gradient Method

The Conjugate Gradient (CG) method has the advantage of using only first-order derivatives
but overcomes the limitation of slow convergence rate as opposed to the Gradient Descent
method [172]. Like L-BFGS, it does not require the storage of the full Hessian matrix. The
method makes use of the gradient at the current iteration, finds its conjugate direction, and
searches along this direction for the minimum point. Depending on the problem, it can
approach the solution more uniformly with a faster convergence rate compared to Stochastic
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Gradient Descent. The solution to a linear equation Ax = b is shown below:

αk =
rT

k rk

dT
k Adk

(3.6)

xk+1 = xk +αkdk (3.7)

rk+1 = rk +αkAdk (3.8)

βk+1 =
rT

k+1rk+1

rT
k rk

(3.9)

dk+1 =−rk+1 +βk+1dk (3.10)

where dk is the conjugate search direction, α and β are coefficients and rk is a residual of
rk = b−Axk. The method has been extended to the training of neural networks and has
been improved: Fletcher-Reeves’ method based on CG modifies the calculation of αk and rk

[173], whereas Polak-Ribiere’s method modifies the βk [174]. The CG method is simple and
memory-effective, therefore it has been adopted by the machine learning community. The
method also guarantees convergence within n iterations for a problem of dimension n [175].

3.4.2 Truncated Newton Method

Another popular optimisation method is the Truncated Newton (TN) Method. The method
consists of an outer loop and an inner loop. The outer loop solves the optimisation problem
and the inner loop computes the update at each iteration by estimating the solution to
Newton’s Equation. The inner loop is truncated before a Newton solution is reached and
often adopts the CG method to solve for the search direction. The method has been shown
to be suitable for solving large-scale unconstrained optimisation problems [176], which
dictates its applicability to solve ANN problems. It has been adopted by the machine learning
community to train neural networks [177].

3.4.3 Brown and Bartholomew-Biggs’ Method

The Gradient Flow method calculates the solution of an unconstrained optimisation problem
by solving the ODE:

dx(t)
dt

=−∇x f (x) (3.11)

In 1989, Brown and Bartholomew-Biggs proposed an improvement to the Gradient Flow
algorithm that forms the basis of our proposed algorithm ([178]). It is built upon the Gradient
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Descent method and the Newton’s method. The search direction is calculated as follows:[
Hk +

1
hk

I
]
· pk =−gk (3.12)

where Hk is the Hessian matrix, hk is the step-size, I is the identity matrix, gk is the gradient
and pk is the update of xk+1 = xk + pk. It can be observed from the equation that as the step
size increases to infinity, the method tends to the second-order Newton’s method, and as
the step size decreases to zero, the method becomes Gradient Descent method. Constant
adjustment of the step sizes occur throughout the process of optimisation and one of the
strategy, which is adopted as the default in our proposed algorithm, is to double the step size
when a reduction in objective function is achieved and half the step size when a reduction is
not achieved.

3.5 A Novel Quasi-Newton Method

This section proposes a novel quasi-Newton method, Hessian-free Gradient Flow (HFGF),
for the optimisation of deep neural networks. The method adopts approximated second-order
information based on finite difference and is developed from the Gradient Flow method and
Truncated Newton method. The descent condition makes use of the Amijo condition. The
performance of the algorithm is first tested on standard testing functions and then applied to
neural network settings.

3.5.1 Algorithm Development

I propose a method that adopts approximated second-order information to perform an
optimisation task. To derive the optimisation method, I first write the general update rule as
follows:

xk+1 = xk +∆t ·∆xk. (3.13)

The gradient descent method uses the negative gradient vector as search direction:

xk+1 = xk −∆t ·∇ f (xk). (3.14)

The limit ∆t → 0 gives the smooth trajectory of the gradient flow method:

dx
dt

=−∇ f (xk). (3.15)
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Linearizing the right-hand side, I obtain:

dx
dt

≈−[∇ f (xk)+∇
2 f (xk) · (xk+1 − xk)]. (3.16)

Rewriting the gradient vector and the Hessian matrix as gk and Hk, and applying a linearly
implicit Euler scheme gives:

xk+1 − xk =−∆t · [gk +Hk · (xk+1 − xk)]. (3.17)

The step length ∆tk is replaced with the step-size hk and Equation 3.17 is rearranged:[
Hk +

1
hk

· I
]
(xk+1 − xk) =−gk. (3.18)

The search direction is equal to ∆xk which takes the form pk, similar to Newton’s equation.
To give Brown and Bartholomew-Bigg’s equation [178] and the iteration update for xk+1:[

Hk +
1
hk

· I
]

pk =−gk,

xk+1 = xk + pk.

(3.19)

This equation can be rewritten in the form of a linear equation, where the Hessian matrix and
the product of step-size and identity matrix have been grouped together into a new matrix,
Qk:

Qk = Hk +
1
hk

· I,

Qk · pk =−gk.

(3.20)

To solve for this equation, I follow a schema that is similar to the truncated Newton method,
where the outer loop solves for the optimisation problem and the inner loop solves for the
search direction pk [179]. Instead of solving for Ax = b as in Section 3.4.1, I iteratively solve
for Qp =−g using the Conjugate Gradient algorithm. The inner loop does not solve for the
exact solution. Instead, the number of iterations is truncated, i.e. I stop after a finite number
of iterations. This reduces the computational complexity of each iteration, generating an
algorithm that converges faster to the optimum.

The combination of the truncated Newton and gradient flow methods creates a large-
scale solution method for unconstrained optimisation problem with improved properties.
These properties include better navigation of non-convex regions through the substitution



36 Hessian-free Gradient Flow Method

of Newton’s equation with the gradient flow equation. The manipulation of step-size (hk)
within the gradient flow method also supports a faster and more accurate convergence than
Newton’s method. This should result in better convergence qualities for the truncated Newton
method when combined with gradient flow.

Another important improvement of the algorithm is that it is Hessian-free. The product
of the Hessian matrix and the conjugate direction vector product is approximated using
finite difference such that the algorithm only evaluates first-order derivatives. The scheme
is outlined below in the vector finite difference equation (Equation 3.18), where ε is a
user-defined small number to approximate an infinitesimal value.

Qk pi =

[
∇ f (xk + ε pi)−∇ f (xk)

ε

]
+

1
hk

I pi. (3.21)

3.5.2 Convergence Criteria

The convergence criterion for the outer loop is the infinity norm of the gradient vector resulted
from each iteration:

∥gk∥∞ = max(|g1|, ..., |gn|) (3.22)

∥gk∥∞ < tol (3.23)

where tol is a user-defined tolerance parameter that is adapted depending on the problem to
solve. Typical values of tolerance are between 10−5 −10−9.

If this is satisfied, the step size is increased. If not and the maximum CG iterations is
reached, the step size is decreased. The total number of CG iterations, theoretically the
dimension of the input n, is set as a hyperparameter in the HFGF method. This is because
empirical investigation has demonstrated that in large-scale problems, optimality can be
reached without arriving at n iterations. The default number of iterations is set at 15 since
convergence is usually achieved by this number.

3.5.3 Algorithm Definition

The proposed HFGF algorithm is outlined in Algorithm 1. The value of h0 is initialised to
any value between 0 and 1, and p0 is the zero vector commonly used in truncated Netwon
methods. From the pseudocode, it is observable that the inner loop is effectively a CG
iteration and the values of Qk pk and Qkdi are solved by finite differences.
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Algorithm 1 HFGF Algorithm

Initialise: x0, p0 =
−→
0 and h0 = 10−3

while ∥gk∥> tol do
Qk pk =

g(xk+ε pk)−g(xk)
ε

+ 1
hk

I · pk
Initialise: r0 = Qk pk +gk, d0 =−r0 and pi = pk
for i = 0,1,2, ..., imax do

Qkdi =
g(xk+εdi)−g(xk)

ε
+ 1

hk
I ·di

αi =
rT
i ri

dT
i Qkdi

pi+1 = pi +αidi
ri+1 = ri +αiQkdi

βi+1 =
rT

i+1ri+1

rT
i ri

di+1 =−ri+1 +βi+1di
xtry = xk + pi+1
if f (xtry)< f (xk) then

if f (xtry)< f (xk)+µ(gT
k pk) [Armijo First Order Conditions (of descent)] then

xk+1 = xtry and pk+1 = pi+1
hk+1 = 2hk
break [Minor iteration]

else if i = imax then
xk+1 = xtry and pk+1 = pi+1
hk+1 =

1
2hk

break [Minor iteration]
end if

else if i = imax then
hk+1 =

1
2hk and xtry not accepted

break [Minor iteration]
end if

end for
end while
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3.5.4 Convergence Analysis

Although the algorithm has been developed in theory, it is important to state its convergence
property. This section provides the proof of convergence.

Training ANNs and DNNs can be viewed as the equivalent to minimizing a large-scale
optimisation problem of the form:

min f (x), (3.24)

where x∈Rn is a real valued n-dimensional vector of system variables that are to be optimised
to minimize the scalar function f (x) : Rn → R. I will adopt the inexact Newton Method to
derive the proof of convergence.

In this paper, I assume that f has an optimal value f (x∗) at x∗. I will use the following
assumption about the objective function for the rest of this article.

Assumption 1 Assume that f is L-smooth, that is, f is differentiable and the gradient is
L-Lipschitz continuous, i.e., ∀x,y ∈ Rn, ∥∇ f (x)−∇ f (y)∥ ≤ L∥x− y∥.

Theorem 1 Consider HFGF algorithm (equation [3.18]). Under the convex assumption
(Assumption 1), when 0 < hk ≤ 1

L , I have

∥xk − x∗∥2 ≤ τ
k∥x0 − x∗∥2, (3.25)

where τ is a constant satisfy that 1− 1
L ≤ τ < 1. Furthermore,

∥ f (x(t))− f (x∗)∥ ≤ L
2

τ
k∥x0 − x∗∥2,

holds.

Proof 1 Using a finite difference scheme to approximate Hessian vector-product, there exists
ε > 0, such that:

Hk pk =
∇ f (xk + ε pk)−∇ f (xk)

ε
+

1
hk

I pk. (3.26)

Then I get the iterate, as following:

−∇ f (xk) =
∇ f (xk + ε pk)−∇ f (xk)

ε
+

1
hk

I pk,

xk+1 = xk + pk.

(3.27)
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Let x̃k+1 := xk + ε pk and pk = xk+1 − xk, then rewrite Equation 3.27 as:

xk+1 = xk −hk∇ f (xk)−
hk

ε

(
∇ f (x̃k+1)−∇ f (xk)

)
,

x̃k+1 = xk + ε(xk+1 − xk).
(3.28)

By substituting the second equation in Equation 3.28 into the first equation, the following
implicit iterative form can be obtained:

xk+1 = xk −hk∇ f (xk)−
hk

ε

(
∇ f (xk + ε(xk+1 − xk))−∇ f (xk)

)
. (3.29)

According to the hypothesis, function f is second-order differentiable, and Hessian matrix
∇2 f is positive definite. The first-order Taylor expansion of ∇ f (xk + ε(xk+1 − xk)) in the
above equation at xk can be obtained as follows:

xk+1 = xk −hk∇ f (xk)−
hk

ε

(
∇ f (xk)+∇

2 f (zk) · ε(xk+1 − xk)−∇ f (xk)

)
, (3.30)

where zk ∈ (xk,xk + ε(xk+1 − xk)), i.e., there exists some δ ∈ (0,1) such that zk = xk + ε ·
δ (xk+1 − xk). Rewrite Equation 3.30 as follows:

xk+1 +hk∇
2 f (zk)(xk+1 − xk) = xk −hk∇ f (xk), (3.31)

then:

∥∥xk+1 − x∗+hk∇
2 f (zk)(xk+1 − xk)

∥∥2
=
∥∥xk − x∗−hk∇ f (xk)

∥∥2
. (3.32)

For the left side of Equation 3.32:∥∥xk+1 − x∗+hk∇
2 f (zk)(xk+1 − xk)

∥∥2

= ∥xk+1 − x∗∥2 +h2
k
∥∥∇

2 f (zk)
∥∥2∥xk+1 − xk∥2 +2hk

〈
xk+1 − x∗,∇2 f (zk)(xk+1 − xk)

〉
≥ ∥xk+1 − x∗∥2 +h2

k
∥∥∇

2 f (zk)
∥∥2∥xk+1 − xk∥2

+2hk∥xk+1 − x∗∥ ·
∥∥∇

2 f (zk)
∥∥ · ∥xk+1 − xk∥. (3.33)

Then:

∥∥xk+1 − x∗+hk∇
2 f (zk)(xk+1 − xk)

∥∥2 ≥ ∥xk+1 − x∗∥2. (3.34)
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For the right side of Equation 3.32:∥∥xk − x∗−hk∇ f (xk)
∥∥2

= ∥xk − x∗∥2 +h2
k
∥∥∇ f (xk)

∥∥2 −2hk
〈
xk − x∗,∇ f (xk)

〉
≤ ∥xk − x∗∥2 −hk

(
2
L
−hk

) ∥∥∇ f (xk)
∥∥2
, (3.35)

where I have used the following inequality:

1
L
∥∇ f (x)−∇ f (y)∥2 ≤ ⟨x− y,∇ f (x)−∇ f (y)

〉
,

for all x,y ∈ Rn, and ∇ f (x∗) = 0.
According to Equation 3.32, the following inequality can be obtained from Equation 3.33

and Equation 3.35:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 −hk

(
2
L
−hk

) ∥∥∇ f (xk)
∥∥2

≤ ∥xk − x∗∥2 −hk

(
2
L
−hk

)
·L∥xk − x∗∥2

≤
(
1−hk(2−hkL)

)
∥xk − x∗∥2. (3.36)

Thus when 0 ≤ hk ≤
1
L

, there exist some 1− 1
L ≤ τ < 1, such that

∥xk+1 − x∗∥2 ≤ τ∥xk − x∗∥2 ≤ τ
k∥x0 − x∗∥2.

Furthermore, I arrive at the simplest analysis: f (xk)− f (x∗)≤ L
2∥xk−x∗∥2 ≤ L

2 τk∥x0−x∗∥2.

3.6 Test of Optimisation Algorithms

Optimisation algorithms developed in theory should be tested for speed, accuracy, and
scalability in practice. The convention is to first test the performance of the optimisation
algorithms on a set of functions that are specifically designed to undertake this task. These
functions are called standard testing functions.

Standard testing functions have designed topological complexity that mimics the highly
non-convex nature of the topology of an ANN/DNN objective function, and are often treated
as benchmarks for evaluating the performance of optimisation algorithms. Therefore, the
HFGF method is first experimented with the standard functions described in literature
concerning optimisation. The testing functions are obtained from [180]. Table 3.1 divides the
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testing functions used in this research based on their characteristics. For the purpose of this
report, the focus will be on multi-dimensional functions, as the form of the neural networks
are rarely two-dimensional. This is especially the case for deep neural networks, where the
dimensions are orders of millions in industrial applications.

Table 3.1 Standard testing function types and details

Test Functions Types of Function Types of Mimima Reference

1. Rosenbrock,
2. Chung Reynolds,
3. De Jong

Unimodal, convex,
multidimensional

Global
Jamil & Yang [181],

Molga & Smutnicki [180]

4. Rastrigin,
5. Ackley

Multimodal,
multidimensional

Many local
& Global

Jamil & Yang [181],
Molga & Smutnicki [180]

6. Booth
Unimodal, convex,
two-dimensional

Global Jamil & Yang [181]

7. Dropwave,
8. Shubert

Multimodal,
two-dimensional

Many local
& Global

Molga & Smutnicki [180]

In this thesis, I make use of a few standard testing functions to test the performance of
our proposed algorithm. For the purpose of completeness, I briefly describe these algorithms
below.

3.6.1 Rosenbrock Function

In [180]’s paper, higher order Rosenbrock functions are treated as unimodal functions. In the
2-dimensional case, the global minimum (1,1) is inside a long, narrow, parabolic shaped flat
valley. The graph of the function is shown in Figure 3.1.

The function has also been extended to higher orders and have been shown to have more
than one minimum by [182]. The multi-dimensional form of the Rosenbrock function is
shown in Equation 3.37:

f (x) =
N−1

∑
i=1

[100(xi+1 − x2
i )

2 +(1− xi)
2] (3.37)

where x = [x1, ...,xN ] ∈ RN . The minimum of this function is located at xi = 1, for i ∈
[1, ...,N].
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Figure 3.1 The shape of a 2-dimensional (a) Rosenbrock function with a global minimum at
(1,1), and (b) Chung Reynolds function with a global minimum at (0,0)

3.6.2 Chung Reynolds Function

The mathematical expression of a Chung Reynolds function is shown in Equation 3.38. It
has a minimum value of 0 occurring at xi = 0. A graph of the Chung Reynolds function is
shown in Figure 3.1.

f (x) = (
N

∑
i=1

x2
i )

2 (3.38)

3.6.3 De Jong Function

The mathematical definition of one of the simplest test function, De Jong function, is shown
in Equation 3.39, with a global minimum at xi = 0 with a function value of 0. Its graph is
shown in Figure 3.2.

f (x) =
N

∑
i=1

x2
i (3.39)

3.6.4 Rastrigin Function

The Rastrigin function is a non-convex function with a large search space and a large number
of local minima. The two-dimensional form is shown in Figure 3.3. The mathematical
expression is shown in Equation 3.40.

f (x) = 10N +
N

∑
i=1

[x2
i −10cos(2πxi)] (3.40)
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Figure 3.2 The shape of a 2-dimensional De Jong function with global minimum at (0,0)

Figure 3.3 A graph of the two-dimensional form of the (a) Rastrigin function with a global
minimum at (0, 0) and (b) Ackley function with a global minimum at (0,0)

The range of xi is [-5.12,5.12]. The function has a global minimum at xi = 0 with a minimum
function value of 0.

3.6.5 Ackley Function

The Ackley function is one of the most difficult-to-optimise function with many local minima.
The two-dimensional form is shown in Figure 3.3. It has a nearly flat outer region full of
local minima with a hole in the center. The mathematical form is shown in Equation 3.41.

f (x) =−20exp

(
−0.2

√
1
N

N

∑
i=1

x2
i

)
− exp

(
1
d

N

∑
i=1

cos(2πxi)

)
+20+ exp(1) (3.41)

The function has a global minimum at xi = 0 with a function value of 0. The search domain
is xi ∈ [−32.768,32.768] .
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Figure 3.4 The shape of 2-dimensional Booth function with global minimum at (1,3)

3.6.6 Booth Function

The mathematical form is demonstrated in Equation 3.42 and the graphical form is shown in
Figure 3.4.

f (x) = (x1 +2x2 −7)2 +(2x1 + x2 −5)2 (3.42)

The function has a global minimum at x1 = 1, x2 = 3 with a function value of 0.

3.6.7 Dropwave Function

The mathematical form is demonstrated in Equation 3.43 and the graphical form is shown in
Figure 3.5.

f (x) =−
1+ cos

(
12
√

x2
1 + x2

2

)
1
2

(
x2

1 + x2
2
)
+2

(3.43)

The function has a global minimum at x1 = 0, x2 = 0 with a function value of -1. The search
domain is xi ∈ [−5.12,5.12] .

3.6.8 Shubert Function

The mathematical form is demonstrated in Equation 3.44 and the graphical form is shown in
Figure 3.5.

f (x) =

(
5

∑
i=1

icos((i+1)x1 + i)

)(
5

∑
i=1

icos((i+1)x2 + i)

)
(3.44)

The function has many global minima such as (−0.8121,−0.8121) with a minimum function
value of −186.7309. The search domain is xi ∈ [−5.12,5.12].
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Figure 3.5 A graph of the two-dimensional form of the (a) Dropwave function with a global
minimum at (0, 0) and (b) Shubert function with many global minima

3.7 Analysis of the HFGF Algorithm

This section undertakes the analysis of the cost and performance of the HFGF algorithm.
To test the performance, I introduce several testing functions that is highly complex and
non-convex in nature. These functions are introduced to simulate the highly complicated
shape of the objective function of neural networks. Unless specifically mentioned, the results
are generated using a 2.3 GHz Intel Core i5 processor with a memory of 8 GB 2133 MHz
LPDDR3.

The HFGF algorithm has been coded using Python. In cases where standard optimisers
are used, the optimisers are coded in C. It is understood that the speed of C outperforms that
of Python. However, I observe the speed advantages of HFGF even in Python. For future
work, coding HFGF in Cython can be an optioin to speed up the optimiser performance.

3.7.1 Performance on Standard Testing Functions

I test the performance of the optimisation algorithm on standard testing functions. The
functions range from the simplest case of a 2-dimensional unimodal convex function to the
more complex case of a multidimensional, multimodal function. The latter is the focus since
I expect the objective function of a neural network to be multimodal and multidimensional.

Two-Dimensional Test Functions

The test on 2-dimensional functions serves as a testament to the convergence behaviour
of the optimisers. By applying the optimiser on two-dimensional functions I observe that
the proposed HFGF method outperforms other traditional optimisers including Truncated
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Newton, Newton Conjugate Gradient, and L-BFGS. The results are summarised in Table 3.2.
These results are generated from 10 independent runs in each equation.

Table 3.2 Results of performing different classic second-order optimisation algorithms on
2-D Test Functions. The algorithms include Truncated Newton method (TN), Nonlinear
Conjugate Gradient (NCG), L-BFGS method and the proposed HFGF method. f (x) f inal is
the final function value obtained after optimisation. niter is the total number of iterations in
the major loop. n f ev is the number of function evaluations. ngev is the number of gradient
evaluations. Convergence[%] is the rate of success in optimising each function.

Function Optimisation Method f (x) f inal niter n f ev ngev Convergence[%]

Dropwave

TN −2.92×10−1 4 17 8 100
NCG −2.08×10−1 3 41 9 67

L-BFGS −3.23×10−1 3 28 6 67
HFGF −1.00×100 2 32 34 100

Shubert

TN 5.80×10−17 4 13 7 100
NCG 2.13×10−2 3 39 8 50

L-BFGS 3.33×10−15 5 25 9 50
HFGF 2.20×10−11 8 24 32 100

Booth

TN 2.34×10−1 7 21 15 100
NCG 1.04×10−16 2 20 5 100

L-BFGS 1.23×10−12 5 20 10 100
HFGF 1.18×10−11 15 45 60 100

The two-dimensional test functions have been used to test the basic convergence ability
of the proposed method. The CPU time required for each method is negligible for all 2-D
test cases. The Dropwave and Shubert function require the optimisers to navigate through a
highly non-convex region to find the global minima. At the global minima, the Dropwave
and Shubert functions have values of f (x∗) =−1 and f (x∗) = 0 respectively. From the Table
3.2, it is clear that the proposed method performed the best as it was the only method that
converged to the global minima with a high success rate.

Multidimensional Test Functions

I perform analysis on the multidimensional testing functions, both unimodal and multimodal.
High dimensions of 100,000 and 1,000,000 are selected to simulate the high dimension of
data I input to a deep neural network. The results are displayed in Table 3.3–3.4. At this scale,
the other optimisers calculated using SciPy are not able to converge in many cases as shown
in the next section, except when initialisation of x values are very close to the global optimum.
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CPU times extend to many hours and in some cases require days to achieve convergence.
Therefore, the values are not reported. The HFGF method is able to handle problems ranging
from 50,000 to 200,000 dimensions with less than 5 minutes of CPU times in most cases.
This clearly illustrates the strength of HFGF algorithm in large-scale applications compared
to NCG, L-BFGS, and TN methods. The final objective function values for the Ackley
function are comparably high due to the highly complicated and non-linear shape of the
function, but the convergence criteria set for HFGF have been reached when convergence is
claimed.

Table 3.3 HFGF results for 100,000-dimensional test functions.

Function f (x) f inal niter n f ev ngev CPUtime(s) Convergence[%]

Rosenbrock 1.40×10−9 409 105 514 743.47 100
Dejong 6.03×10−6 75 25 100 38.16 100
Chung Reynolds 2.49×10−2 58 19 77 50.77 100
Rastrigin 1.16×106 22 7 29 25.84 100
Ackley 2.272×101 22 72 80 72.07 100

Table 3.4 HFGF results for 1,000,000-dimensional test functions.

Function f (x) f inal niter n f ev ngev CPUtime(s) Convergence[%]

Rosenbrock 2.86×10−9 399 110 509 6112.24 100
Dejong 6.03×10−5 75 25 100 418.40 100
Chung Reynolds 2.98×10−1 69 23 92 543.41 100
Rastrigin 1.16×107 32 11 43 368.37 100
Ackley 6.560×100 27 74 81 702.19 100

Comparison with Other Function Optimisers

I have performed a comparison between different quasi-Newton algorithms. The results are
tabulated in Table 3.5 for the dimension of 10,000 and in Table 3.6 for the dimension of
100,000. The optimisers of Truncated Newton, Newton Conjugate Gradient and L-BFGS
are coded in SciPy [183] and HFGF is coded using the package Casadi [184]. I have
only included comparisons for Dejong, Chung Reynolds and Rastrigin functions for the
dimensionality of 100,000 because the optimisers other than HFGF fail to converge within a
time frame of 100,000 seconds. The operating system used to run the code is Ubuntu 18.04.1
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Table 3.5 HFGF results for 10,000-dimensional test functions in comparison to other opti-
misers of TN, NCG and L-BFGS.

Function Method f (x) f inal niter n f ev ngev CPU Time Success

Rosenbrock

TN 7.54×103 433 9219 - 59932.24 No
NCG 3.99×100 183 2.83×106 283 2215.28 Yes

L-BFGS 6.49×104 1 2.00×104 - 13.122 No
HFGF 2.31×10−8 62 308 278 17.811 Yes

Dejong

TN 1.01×10−7 4 18 - 118.22 Yes
NCG 2.90×10−6 1 5.00×104 5 30.64 Yes

L-BFGS 8.14×102 1 4.00×104 - 25.24 No
HFGF 1.69×10−5 14 28 42 0.84 Yes

Chung Reynolds

TN 2.02×10−6 3 15 - 101.49 Yes
NCG 6.87×105 1 1.60×105 16 101.49 No

L-BFGS 4.10×106 1 3.00×104 - 18.62 No
HFGF 3.62×10−3 14 28 42 1.13 Yes

Rastrigin

TN 5.97×10−6 4 17 - 121.04 Yes
NCG 6.42×10−4 1 8.00×104 8 53.79 Yes

L-BFGS 2.29×10−4 1 8.00×104 - 55.22 Yes
HFGF 4.15×10−6 16 66 43 2.29 Yes

Ackley

TN 6.02×10−9 4 53 - 7387.56 Yes
NCG 4.25×100 0 1.00×104 1 128.38 No

L-BFGS 4.25×100 0 1.000×104 - 127.40 No
HFGF 2.27×10−2 22 72 80 3.98 Yes

LTS and the CPU used is Intel Core i7-8700K with a memory of 3.70GHz. A few points I
have noted from the data:

• The time of convergence for HFGF is much faster compared to other quasi-Newton
method.

• HFGF converges successfully in all cases.

• Optimisers other than HFGF succeed and fail in different cases, well demonstrating
the "No Free Lunch" Theorem.

• The optimiser L-BFGS fails in most cases, indicating its lack of robustness.
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Table 3.6 HFGF results for 100,000-dimensional test functions in comparison to other
optimisers of TN, NCG and L-BFGS. Only HFGF results are included for Rosenbrock and
Ackley functions because the other optimisers fail to converge within 100,000 seconds of
CPU time.

Function Method f (x) f inal niter n f ev ngev CPU Time Success

Rosenbrock HFGF 1.40×10−9 409 105 514 743.47 Yes

Dejong

TN 3.35×10−12 13 83 - 53195.35 Yes
NCG 9.33×10−3 1 6.00×105 6 9379.80 Yes

L-BFGS 1.88×104 1 4.00×105 - 2678.09 No
HFGF 6.03×10−4 75 25 100 38.16 Yes

Chung Reynolds

TN 1.95×10−4 12 101 - 66195.31 Yes
NCG 2.72×107 1 1.70×106 17 11539.14 No

L-BFGS 3.53×108 1 4.00×105 - 2688.95 No
HFGF 2.49×10−2 58 19 77 50.77 Yes

Rastrigin

TN 1.90×10−3 5 28 - 24269.53 Yes
NCG 1.98×10−4 1 1.10×106 11 9795.51 Yes

L-BFGS 3.96×101 1 1.00×106 - 8185.25 No
HFGF 1.16×106 22 7 29 25.84 Yes

Ackley HFGF 2.27×101 22 72 80 72.07 Yes

3.7.2 Time and Memory Analysis

Time Analysis

The HFGF method involves both function evaluations and gradient evaluations. I perform
CPU time analysis to identify the most time-consuming steps in the optimiser. Table 3.7
tabulates the CPU time spent on each type of evaluation based on 10 different initial points.
The optimiser is run to solve for the optima of a 100-dimensional Rosenbrock function.
The average CPU time for one step of function evaluation is 3.97×10−5 seconds and the
average CPU time for one step of gradient evaluation is 4.16× 10−4 seconds. In Table
3.7, f represents the final function value, t is the total time spent; nev is the total number
of evaluations; n f ev is the number of function evaluations; ngev is the number of gradient
evaluations; t f ev is the total time spent on function evaluations; tgev is the total time spent on
gradient evaluations; and tother is the total time spent on the rest of the evaluations.

From Table 3.7, it is evident that the most CPU time is spent on gradient evaluations.
This has demonstrated the importance of selecting an automatic differentiation package that
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Table 3.7 CPU time spent on different optimiser steps

Run f t
nev t f ev tgev tother

n f ev ngev Time % Time % Time %

1 2.35×10−5 0.0274 56 42 0.00200 7.30 0.0169 61.68 0.0085 31.02
2 2.58×10−5 0.0341 56 42 0.00284 8.33 0.0209 61.29 0.0104 30.38
3 7.44×10−5 0.0270 60 45 0.00201 7.44 0.0164 60.74 0.0086 31.81
4 5.41×10−5 0.0333 60 45 0.00245 7.36 0.0209 62.76 0.0100 29.88
5 4.23×10−5 0.0283 59 44 0.00203 7.17 0.0177 62.54 0.0086 30.28
6 3.75×10−5 0.0317 67 50 0.00251 7.92 0.0196 61.83 0.0096 30.25
7 1.32×10−5 0.0277 59 44 0.00237 8.56 0.0168 60.56 0.0085 30.79
8 7.72×10−5 0.0322 64 48 0.00248 7.70 0.0196 60.87 0.0101 31.43
9 4.18×10−5 0.0262 56 42 0.00208 7.94 0.0155 59.16 0.0086 32.90

10 5.41×10−5 0.0365 59 44 0.00289 7.92 0.0213 58.36 0.0123 33.73

Ave* 4.44×10−5 0.0304 60 45 0.00237 7.77 0.0186 60.99 0.0095 31.25

*Average of the time spent on function and gradient evaluations

has a shorter time-frame to evaluate derivatives. Moreover, the optimisation of the algorithm
can center on the reduction of the number of gradient evaluations.

Memory Analysis

The proposed method requires the storage of 16 vectors of length n (the vectors xk, g(xk),
and 14 working vectors). This is similar to the requirement of L-BFGS method, a popular
quasi-Newton method, which has a memory storage of 14n, based on the scheme that has
7 vectors of past information storage. In either case, I do not need to store second-order
derivatives information. There is also no storage of matrices; only storage of vectors suffices.

3.7.3 Performance on Deep Neural Networks

To justify the performance of the algorithm on Deep Neural Networks, I define a hypothetical
neural network and implement the optimiser on this network. In this case, a deep neural
network is arbitrarily defined to have three hidden layers with 10, 50 and 10 neurons
respectively. The structure of the neural network is shown in Figure 3.6. There are 1,000
input data points with values randomly generated. 500 are labelled 1 and the other 500
labelled 0. I compare the performance of the designed HFGF optimiser to those commonly
used in industrial settings, including L-BFGS, SGD and Adam. The HFGF optimiser is coded
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Figure 3.6 The structure of the deep neural network

Figure 3.7 Comparison of the performance of different optimisers (a) running 50 epochs to
observe the rate of convergence and (b) running 500 epochs to observe the final convergence
value

in Python by inheriting from the "Optimiser" class published by Pytorch, with a backend
written in C. The resulting of running 50 and 500 epochs are shown in Figure 3.7.

From Figure 3.7, it can be observed that when there are 50 epochs, L-BFGS is the best
performing optimiser, followed by the HFGF method. However, the L-BFGS method does
not reach the convergence criterion defined by its own and does not produce an optimal
value. HFGF, although initially slower than SGD and Adam, later catches up with the other
optimisers, generating a lower value of loss function. In this case, none of the optimisers
have reached convergence within 50 epochs. When extended to 500 epochs, L-BFGS starts
to overflow hence is not included in the Figure 3.7. This corroborates with the general
perception in the machine learning community that L-BFGS is weaker for optimisation of
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larger neural networks. Among the other three optimisers, Adam is the best performing
algorithm, generating the lowest value of the loss function, although the value zig-zags
slightly. HFGF produces a rather smooth curve and generates the second lowest loss value,
outperforming the industrial convention of SGD optimiser. The SGD optimiser gives a
zig-zag output, converging to a value higher than that of HFGF. It is noteworthy that in this
case, hyperparameters of each optimiser have been tuned to improve behaviour with Adam
having a learning rate of 0.01 and the SGD a learning rate of 0.5. This may explain the
zig-zag behaviour produced by SGD, as the learning rate is set too high. However, when
the learning rate is low, it will take over 800 epochs for the optimiser to converge. The slow
rate of convergence is adjusted by increasing learning rate such that a comparison with other
optimisers can be visualised.

From the plot of losses against the number of epochs, it can be seen that the key advantage
of our proposed algorithm is that it is a quasi-Newton method, hence it is fast in converging
to its final value compared to first-order method such as Adam and SGD. For example, in
Figure 3.7, although its final convergence value is not the lowest, it is the first among all three
optimisers to reach its final value. It is safe to claim that there is a trade-off of convergence
speed and objective value in this case. HFGF is a better choice when convergence speed is
important.

Moreover, as a quasi-Newton method, HFGF is more robust towards larger dataset and
more complicated architectures compared to the state-of-art quasi-Newton method L-BFGS.
When L-BFGS generates overflows for deep neural networks, our HFGF method is still
functioning well.

A distinct feature of the optimiser is that it initially converges slowly, generating a plateau
in the graph, and then decreases rapidly in a few epochs to a very low value of convergence.
This is because during the initial search, the step size is small and doubles slowly. Once the
value of the step size is increased to a large value, the search for optimality proceeds rapidly.
Then the values of the objective do not decrease further and the step is rapidly decreased,
generating smaller decreases in the value of the objective function.

3.7.4 Applications to Real-world Datasets

The analysis above provides a theoretical understanding of the algorithmic performance.
In this section, the optimiser is applied to several test cases to determine its real-world
performance. The derived algorithm is applied to large-scale optimisation of DNNs to test its
speed, robustness and accuracy. In particular, DNNs are optimised to claim the efficacy of
the optimiser to large-scale problems.
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Datasets

In order to test the performance of our proposed optimiser, I perform one classification
test and one regression task on the proposed optimiser adopting real-life dataset. First, I
perform classification on the MNIST dataset. The MNIST dataset has a training set of 60,000
examples and a test set of 10,000 examples, consisting of hand-written digits representing
the numbers 0-9. It is a commonly used database in the machine learning community to test
pattern recognition capability of a designed network with minimal efforts on pre-processing
and formatting the images. I adopt the state-of-the-art Convolutional Neural Network (CNN)
architecture - LeNet5 [185] - to analyse the MNIST database. The network consists of two
convolutional layers separated by maxpooling layers, followed by three fully-connected
layers. Here I adopt mini-batches to perform optimisation. The activation function used is
ReLU.

Second, I perform a regression task on a research dataset, termed OILDROPLET dataset.
Details of the dataset can be found in Appendix. The dataset contains observations generated
from dropping an oil droplet to a surface of water. The input features of the dataset include
composition of the droplet, environment temperature, oil viscosity, oil surface tension and oil
density. The output features are generated by observing the movement and merging of the
oil droplet on the water surface, including average movement speed, maximum speed of a
single droplet, average number of droplets in the last second, average number of droplets
throughout the experiment. I construct an optimised neural network consisting of three
hidden layers with 50, 20 and 20 neurons respectively. Between each layer I apply the
ReLU activation function. Since the key is to compare performance of the optimiser, the
architectural parameters are held constant.

CNN on MNIST Data

The network is run on several optimisers and the comparison of the performance is shown in
Table 3.8. I have selected SGD, Adam and L-BFGS as the target of comparison. SGD and
Adam are selected because these are the first-order stochastic methods. SGD is the most basic
form and Adam is the best-performing counterpart. L-BFGS is adopted because it is a quasi-
Newton method. It acts as a benchmark to the current quasi-Newton methods and is known
to be very fast. Before comparison, I optimise the performance of the optimisers through
hyperparameters tuning. The learning rate for SGD is set at 0.01, the optimal hyperparameter
obtained after tuning. The learning rate for Adam is 0.001. The hyperparameter values
for HFGF are the set of default values I determined to be optimal in this analysis. The
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performance of the three optimisers are compared based on accuracy of prediction on the test
set.

Table 3.8 Comparison between the performance of different optimisers on the classification
task of MNIST data

Optimiser Accuracy Final training loss Time of convergence (s)

SGD 92.5% 0.0801 55.98
Adam 91.6% 0.2448 65.13
L-BFGS 90.9% 0.3565 2225.21
HFGF 96.4% 0.0643 142.11

From Table 3.8, it can be seen that our proposed method obtained comparable result
in terms of accuracy of classification. While the conventional quasi-Newton method of L-
BFGS sometimes breaks down with a high time of convergence, our proposed quasi-Netwon
method is robust to the problem. Although the final loss achieved is higher than the first-order
methods, the classification accuracy is comparable to the other two optimisers. Moreover,
although the time of convergence is longer than stochastic first-order methods, it is lower than
the benchmark of L-BFGS. For problems that rely on speed of computation, an improvement
from 92.5% to 96.4% in accuracy at the expense of computation time is not desired. This can
be viewed as a limitation of the algorithm. In cases where accuracy is the key, the results
show promises in improving performance. Moreover, compared to other quasi-Newton
methods such as L-BFGS, the speed becomes an edge as there is significant improvement in
terms of computation time.

DNN on OILDROPLET

I apply the same set of optimisers, SGD, Adam, L-BFGS and the proposed optimisation
algorithm, on the OILDROPLET dataset. The result of application is shown in Table 3.9. The
learning rate used in SGD is 0.01, and in Adam is 0.05. In HFGF method, I have mostly used
the default settings or settings of a similar scale. The settings used include the following: the
increase in the value of h after each step is 8×, the decrease is 0.125×. The hyperparameters
defined to have infinitesimal values are all close to zero. The value of ε is 10−7 and of
tolerance is 10−5. The value of µ is 10−4 and of initial h is 10−3. The maximum number of
inner iterations is originally 15 but is now tuned to 2. This tuning has greatly increased the
processing speed of the algorithm. To evaluate the effectiveness of optimisation, I use the
mean squared error (MSE) loss on the test dataset as the metric for performance. Since there
are four output feature, I tabulate an MSE for each dataset.
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Table 3.9 Comparison between the performance of different optimisers on the classification
task of OILDROPLET data. SAve represents the average speed of droplets. DFinalAve rep-
resents the average number of droplets in the last second. SMax represents the maximum
average single droplet speed. DAve represents the average number of droplets.

Optimiser Training loss
Test error

Time of convergence (s)
SAve DFinalAve SMax DAve

SGD 0.389 0.3782 0.3785 0.4616 0.3365 162.89
Adam 0.224 0.1960 0.2297 0.2589 0.2104 160.76
L-BFGS 0.188 0.1583 0.1938 0.2223 0.1789 4249.79
HFGF 0.290 0.2800 0.2707 0.3478 0.2577 535.89

On the OILDROPLET dataset, the HFGF method achieved better result than SGD in
terms of final loss and regression error. It is under-performing compared to Adam in terms
of final loss, test error and speed. However, it is faster than the quasi-Newton method of L-
BFGS. Considering that L-BFGS sometimes fails for complicated problems, our optimiser is
able to perform more complicated tasks and is more robust to datasets of high dimensionality.

3.8 Further Analysis of HFGF

The HFGF optimiser has been successfully adopted to optimise neural networks. However, I
would like to perform further analysis on the optimiser to explore its properties. The main
problems I would like to explore include:

• How to speed up the initial descent

• What is the effect of changing approximation of Hessian to only make use of function
information

• What is the effect of making the search direction adaptive

• How does hyperparameter optimisation affect the optimiser performance

I will discuss each point in detail in the following sections.

3.8.1 Powerball Function

The performance on the hypothetical neural network has demonstrated that one distinct
characteristic of the optimiser is its initial slow descent as demonstrated in the graph of loss
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against iterations. There is a small plateau before a rapid descent. Therefore, this section
seeks to speed up initial descent by adopting current research in optimisation.

To demonstrate the transformations introduced by Powerball function, I first take a look at
the Newton’s update rule. The Newton’s method optimises a function based on the following
search direction:

x(k+1) = x(k)−H−1
k ∇ f (x(k)) (3.45)

where k = 0,1, ..., H−1
k is the Hessian matrix and ∇ f (x(k)) is the gradient of function f at

x(k).
In [186], the Powerball function was proposed, which applies a nonlinear element-wise

transformation to the gradient by:

x(k+1) = x(k)−H−1
k σγ∇ f (x(k)), f or k = 0,1, ... (3.46)

where σγ(z) = sign(z)|z|γ for γ ∈ [0,1). Sign(z) returns the sign of of z if z ̸= 0, or 0 if z = 0.
This transformation is believed to speed up initial descent which solves the problem existing
in the current optimisation method. Details of proof can be found in [186].

To analyse the effects of adopting the Powerball function, I have added it to the optimiser’s
update rule. I then perform the optimisation of the neural network on MNIST data. By
plotting the training loss against the iterations, I can observe the acceleration of descent
brought about by Powerball function, as demonstrated in Figure 3.8.

3.8.2 Hessian Approximation

From Section 3.7.2, I have seen that the most time-consuming step in the optimisation
algorithm is the gradient evaluations. To optimise the performance of the algorithm, I replace
the gradient evaluations with function evaluations. The original approximation of the Hessian
matrix is defined by the first-order derivatives:

Qk pk =
g(xk + ε pk)−g(xk)

ε
+

1
hk

I pk (3.47)

where g is the first-order derivative and H is the Hessain matrix. However, I replace the
approximation of the Hessian matrix with function evaluations, i.e. replace first-order
derivatives with values of the objective function:

g(xk) =
f (xk + ε pk)− f (xk)

ε
(3.48)
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Figure 3.8 Training loss against iterations with application of Powerball function at γ = 0.8
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g(xk + ε pk) =
f (xk +2ε pk)− f (xk + ε pk)

ε
(3.49)

Substituting Equation 3.48 and 3.49 into Equation 3.47, I obtain an equation that is based
purely on function evaluations:

Qk pk =
f (xk +2ε pk)−2 f (xk + ε pk)+ f (xk)

ε2 +
1
hk

I pk (3.50)

I use Equation 3.50 in the optimisation algorithm, and evaluate the performance keeping all
other parameters equal to the original derivative-based evaluation. The results and comparison
with the original HFGF algorithm are tabulated in Table 3.10.

Table 3.10 Approximation of Hessian with function evaluations

Evaluation Loss Accuracy Time Number of Iterations
Gradient 0.472971 93.431% 644.78 120
Function NaN 10.920% 7323.74 120

From Table 3.10, I observe that the approximation using function evaluations does not
generate good approximation results for the application of HFGF. The optimiser diverges,
generating a loss value of NaN, with a much longer CPU time to optimise to the local
minimum. One possible reason for the divergence is the introduction of extra uncertainty
brought about by the second-order approximation. The optimisation algorithm requires high
accuracy and a more rigorously calculated gradient value to allow effective DNN training.

3.8.3 Adaptive Step Sizes

The optimiser takes adaptive step sizes where the value of step size h is doubled when a
significant descent defined by the Amijo condition is made and halved when a descent is
not made. In certain cases, I can implement a more aggressive search by increasing and
decreasing the value of h by a proportionally larger amount.

Table 3.11 tabulates the performance of each value of h and the effect of such a change
is observed. It is noteworthy that the product of the increase and decrease in step size is
always equal to 1. The values tabulated (except time) are calculated from the last epoch of
optimisation. The time refers to the total time of optimisation and is calculated by running
the code on a processor that is the 2.3GHz Quad-Core Intel Core i5 with a memory setting of
8GB 2133MHz LPDDR3.
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Table 3.11 The effect of adaptive step sizes on the performance of optimisation.

Step Size
Loss Accuracy Time Number of Iterations

(Increase) (Decrease)
1 1 0.032402 99.730% 387.28 120
2 0.5 0.472971 93.431% 644.78 120
4 0.25 2.429082 8.172% 607.19 1
8 0.125 4.863550 10.067% 488.62 1
16 0.0625 2.324766 97.336% 837.05 1

From the results, it can be observed that the best performing changes in step sizes
is not to change the step size (increase=1, decrease=1). The second best performing is
to double when the descent condition is met and to halve when the condition is not met.
Other types of increases or decreases are too aggressive and they result in high loss and
low validation accuracy. The average number of iterations in the last epoch is 1 for those
divergent optimisation processes. The loss increases with the step size changes getting more
and more aggressive. Thus, a potential improvement of the HFGF algorithm is to remove the
adaptive step sizes and keep a constant step size, at a value of h = 10−3 in this case.

3.8.4 Hyperparameter Optimisation

One distinct feature of our designed HFGF optimiser is that it has a comparatively high
number of hyperparameters. In the design of the optimiser, a number of variables have been
intentionally set as the hyperparameters to give more freedom to the training of the neural
network. Tuning hyperparameters has been an active research field and there are many cases
where hyperparameters are tuned through grid search or random search in order to achieve
better optimisation results [187] [188]. In this case, I have micro-tuned the hyperparameters
of the HFGF method and several observations have been obtained:

• The HFGF optimiser performs better on the designed CNN when ε is set at 10−7.
Performance deteriorates rapidly when ε is 10−6. This is empirically perceived to be
the lack of an accurate approximation of the Hessian matrix.

• The parameter that doubles and halves the step size can be changed to higher and lower
rates for different networks and this greatly affects the rate of convergence. These two
parameters should be the focus of any hyperparameters tuning.

• The value of µ has been performing well at a value of 10−4.
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• The value of tolerance is currently set to be 10−9. This is empirically determined from
values of the loss function. When the dimension is larger than those experimented in
this project, it is expected that the tolerance should be decreased accordingly. Moreover,
it is widely accepted that the neural network is often very robust to different levels
of optimisation accuracy, which explains the popularity of SGD optimiser. Thus, the
tolerance is set as a tunable hyperparameter, increased when in pursuit of accuracy and
decreased in pursuit of speed.

• Initial values of step size h has minimal effect on the whole optimiser as it is quickly
doubled or halved throughout the optimisation process. However, an appropriate h does
generate faster convergence. The current default value in use is empirically designed
to be 10−3.

• Further analysis of the hyperparameters can change the number of inner iterations in
the HFGF optimiser. Previous investigations on testing functions have indicated that
the optimal number of inner iterations is 15. However, when the architecture of the
network changes, the optimal number of iterations also changes. A number of inner
iterations too large can slow down the optimising process, leading to slower rate of
convergence.

3.9 Summary

I have demonstrated the derivation of a novel quasi-Newton optimisation method with a proof
of convergence. The method is named Hessian-free Gradient Flow (HFGF) algorithm and
has been designed for the optimisation of DNNs. I first tested the HFGF method on standard
testing functions and then compared it with the other common optimisation algorithms to
test for its convergence. Then I performed time analysis to identify the most time-consuming
steps in the proposed algorithm. I also briefly discussed the storage requirement. The
HFGF method was then applied to case studies where open-source databases and real-world
industrial databases were used to test the effectiveness of the optimisation algorithm.

The aim of the algorithm is not to beat cutting-edge first-order stochastic algorithms as
the quasi-Newton method itself carries with it a computational cost. However, our algorithm
has demonstrated comparable performance in tasks of classification and regression with
regard to popular first-order algorithms. It is also more robust than L-BFGS algorithm if I set
L-BFGS as a benchmark for quasi-Newton algorithms.

In summary, although the method is not the fastest optimisation algorithm compared
to L-BFGS algorithms in simple cases, and not the simplest compared to SGD or Adam,
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it introduces a trade-off between speed and robustness. Moreover, the method has demon-
strated advantages in classification accuracy in large datasets compared to most first-order
algorithms.

Currently ongoing future research is focused on improving the speed of the new method,
particularly by reducing the number of gradient evaluations and a more optimised algorithmic
implementation architecture. To prevent convergence to saddle points and local minima, I
can also introduce stochastic components to the optimiser. According to the principle of "no
free lunch", each optimisation method has its own advantage in certain contexts. I believe
our new algorithm may be more suited for the fitting of DNNs, compared to other standard
optimisation methods.





Chapter 4

Autonomous Sparsification - Part I

4.1 Introduction

Historically, the field of Artificial Intelligence is full of ideas inspired from biomedical
research. For example, the structure of Artificial Neural Networks (ANNs) itself is inspired
from how neurons are organised in the brain and how they fire electronic signals [189]. To
advance the process of neural architectural search, I similarly attempt to gain inspirations
from biomedical research. I am motivated to develop "true intelligence" that simulates the
functionality and evolution of the brain. In particular, I focus on the concept of "neurogenesis",
which states that the neurons in the adult brain are capable of duplicating and differentiating
continuously with regard to the environment [190]. I hope to integrate such functionalities
in the neural architectural search, by allowing the architecture of the network to constantly
evolve until an optimal architecture is obtained. This optimised architecture is minimal in
nature and can convey all relevant information particular to the data inputs.

More specifically, I formulate the self-evolution of a neural network mathematically,
enabling a systematic simulation of the brain construction and destruction process. During the
process, neurons take on new knowledge and correct the previously learnt output. A neuron
that has a high importance in the network is duplicated and a neuron with less importance is
deleted.

An optimisation scheme for ANNs is proposed. The scheme aims to achieve the following
targets, which are previously very hard if not impossible to contemplate systematically:

• Rapid and organic evaluation of the ANN architecture in a completely free and deter-
ministic way, emulating neuronal/brain real tissue growth and learning.
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• The very simple steps proposed are a kind of "survival of the fittest" scheme that allows
the neurons in an ANN to produce offspring when they are "fit" and kill offspring that
are deemed "unfit".

While conceptually simple and clear-cut, the proposal of a framework to evolve neural
architecture contains several challenges. First, it is difficult to formulate the ANN into a
dynamic system where particular neurons can be easily added or removed from the whole
structure. While current literature adopts the dropout method in a deep network to improve
performance [191] [192] , this dropout is usually random, with a defined dropout rate. To
continuously evolve a network by dropping or adding a specific neuron is less well researched.
Moreover, it is difficult to innovate on the formulation of the ANN to allow such a process to
be conducted easily. In this chapter, I propose the "lifting" scheme to allow such an evolution
process to become easy and fully automated.

Second, there is a lack of a standardised measure to guide how to modify the network.
Recent research in the "multiple shooting" method that develops a "lifting" scheme [193]
allows the formulation of an ANN network into an equality-bounded optimisation problem.
Under this formulation, each neuron, or a unit of calculation, is formulated into an equality
constraint. It is then possible to extract sensitivities of individual equalities with regard to
the overall objective function. This sensitivity value can act as a guide that indicates the
importance of a node or a layer. Thus, I effectively have measures to guide the evolution of
the network by formulating the solution to an ANN into an optimisation problem under the
lifting scheme.

There are several functionalities I am able to achieve through the lifting scheme. In
particular, I achieve L1-regularisation by redefining the optimisation problem with added
inequality constraints to allow autonomous sparsification of the network. This method
can be fully automated and be guided by the Lagrangian sensitivities. I term the process
"Autonomous Sparsification".

In this chapter, I introduce the lifting scheme and develops the process of autonomous
sparsification. The chapter consists of the following sections:

• Section 4.2 provides the background on the lifting scheme.

• Section 4.3 illustrates the concept of lifting with a simple example.

• Section 4.4 formulates the solution to an ANN into an optimisation problem adopting
the lifting scheme.

• Section 4.5 introduces how to make use of Lagrangian multipliers to perform sparsifi-
cation. It also describes the optimisation scheme and the relevant subroutines.
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• Section 4.6 describes in detail the implementation process of the autonomous sparsifi-
cation scheme.

• Section 4.7 applies the lifting scheme first to a single point optimisation, and then
expands to inputs with higher dimensions and with multiple input data points.

• Section 4.8 introduces a nonlinear chemical process and applies the lifting technique
to produce an ANN that solves this problem adopting simulated data. Key results of
the sparsification process are presented.

• Section 4.9 then describes the sparsification process and the gradual growth scheme
applied to feedback ANNs and ANNs in their most general form.

• Section 4.10 then summarises the chapter.

4.2 Literature Review

The lifting scheme is adopted by [193] to solve nonlinear programming problems (NLPs)
that employs intermediate variables for the objective and constraint functions. The method
involves transforming an NLP by adding new constraints into an equivalent problem. The arti-
cle discusses the application to a Newton-type method with no additional computational cost
or programming burden. Empirical results demonstrate faster local quadratic convergence
adopting the lifting scheme.

The lifting scheme works by "introducing intermediate variables as additional degrees
of freedom and corresponding constraints to ensure equivalence to the original problem"
[193]. It then solves this augmented equivalent system to achieve optimality, while bringing
in benefits in terms of convergence and solution if properly formulated. Although the lifting
scheme seems more expensive due to the involvement of intermediate variables, it can be
redefined with "structure-exploiting linear algebra" [193] to overcome the complexity.

The lifting scheme has several advantages. First, by transferring a nonlinear root finding
problem into a higher-dimensional space, the lifting scheme offers advantages in terms
of convergence rates and region of attraction [194]. Second, the lifting scheme provides
benefit to classical problems of optimal control in Ordinary Differential Equations [195] and
Differential Algebraic Equations [196], where the intermediate variables are system states
at different time points. Third, it is demonstrated that a properly designed lifting scheme
achieves superior local convergence speed in a Newton type problem [193].
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The disadvantage of the lifting scheme is often its computational and programming
burden due to the addition of intermediate variables. However, with commercially available
optimisers, I expect the burden to be overcome and large-scale application is possible.

4.3 Concept of Lifting

Lifting is defined as a functional mapping of a mathematical problem to higher dimensions.
The lifting scheme has the following properties:

• Property 1: Solution of the lifted problem is in some way easier than the original.

• Property 2: Once solved in the lifted space, it is easy to transform the solution to the
original space.

• Property 3: The original and the lifted models yield the same solution.

• Property 4: In the case of Nonlinear Programming (NLP), the lifted and the unlifted
models share exactly the same set of local minimisers (hence also the global ones).

This can be demonstrated in the following example of a constrained nonlinear optimisa-
tion problem solved using lifting.

Suppose I have the optimisation problem with the following objective function:

min
x1,x2

sin[exp(
x1

x2
)]+(x1 + x2) · (lnx1 + lnx2) (4.1a)

subject to x2
1 + x2

2 ≤ 1 (4.1b)

0 ≤ x1 ≤ 1 (4.1c)

0 ≤ x2 ≤ 1 (4.1d)

Lifting on NLP uses the concept of a function evaluation tree to aid the mapping trans-
formation from the original NLP model. For the optimisation problem in this example, the
objective function tree is shown as a Directed Acyclic Graph (DAG) (Figure 4.1). The tree
demonstrates the intermediate steps in computing f (x) from values of x1 and x2.

The constraints are separately described in the constraint function tree (Figure 4.2), where
pow denotes the following operation:

pow(x,α) = xα (4.2)



4.3 Concept of Lifting 67

Figure 4.1 Directed Acyclic Graph showing the objective function tree for the example
optimisation problem

Figure 4.2 Directed Acyclic Graph showing the constraint objective function tree for the
example optimisation problem
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Thus, the optimisation problem can be adopted in the lifting scheme as follows:

min
x

v1 (4.3a)

subject to v1 = v2 + v3 (4.3b)

v2 = sin(v4) (4.3c)

v3 = v5 × v6 (4.3d)

v4 = exp(v7) (4.3e)

v5 = x1 + x2 (4.3f)

v6 = v8 + v9 (4.3g)

v7 = x1/x2 (4.3h)

v8 = ln(x1) (4.3i)

v9 = ln(x2) (4.3j)

v10 = v11 + v12 (4.3k)

v11 = x2
1 (4.3l)

v12 = x2
2 (4.3m)

0 ≤ x1 ≤ 1 (4.3n)

0 ≤ x2 ≤ 1 (4.3o)

v10 ≤ 1 (4.3p)

With this lifting reformulation, the original problem of dimension x ∈R2 can be reformu-
lated into dimension of z∈R14, where z∈ x∪v and z is defined to be z= (x1,x2,v1,v2...v12)

T .
In this way,I effectively lifted the optimisation problem into higher dimensional space and
the optimisation problem is easier to solve.

In the case of constrained optimisation to be delivered to a solver, the bounds of x’s can
be propagated to become the bounds of v’s. Interval arithmetic can be used to calculate
the bounds for the lifted variables vi for i = 0,1,2, ...12. Here I conclude the example
demonstrating the lifting scheme.

There are specific advantages of adopting the lifting scheme to the problem of ANN
fitting. For one, ANNs are already defined as a DAG which can be easily formulated into the
lifting scheme. Further advantages will be discussed in the following section.
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Figure 4.3 A simplified version of ANN with one hidden layer of 3 neurons used for the
formulation using the lifting scheme

4.4 Formulation of ANN Fitting Problems

The fitting of an ANN can be formulated into a constrained optimisation problem involving
the lifting scheme. In Section 4.3, I have explained how an optimisation problem can be
formulated into a Directed Acyclic Graph (DAG). In the case of ANN (and DNN), the
network has already been formulated as a DAG. Therefore, a natural extension would be to
formulate the fitting problem into an optimisation problem involving lifting.

A simplified version of the formulation of ANN fitting involving 2 inputs and 2 outputs
is shown in Figure 4.3. Suppose I have a pair of inputs xk →{x1,k, x2,k}. The first layer of
transformation can be represented in the following equations:

v[k]1,1 =W1,1,1 × x[k]1 +W1,1,2 × x[k]2 +W1,1,0 (4.4)

v[k]1,2 =W1,2,1 × x[k]1 +W1,2,2 × x[k]2 +W1,2,0 (4.5)

v[k]1,3 =W1,3,1 × x[k]1 +W1,3,2 × x[k]2 +W1,3,0 (4.6)
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where vl,i is the result of linear transformation in layer l node i, and Wl,i, j represents the
weight in layer l node i from input node j in the previous layer. Wl,i,0 represents the bias
term in the linear transformation.

The linear transformation is followed by activation functions that generate the node
values in the hidden layer.

h[k]1,1 = σ(v[k]1,1) (4.7)

h[k]1,2 = σ(v[k]1,2) (4.8)

h[k]1,3 = σ(v[k]1,3) (4.9)

The activated values undergo a further linear transformation to generate the outputs.

f [k]1 = w2,1,1 ×h[k]1,1 +w2,1,2 ×h[k]1,2 +w2,1,3 ×h[k]1,3 +w2,1,0 (4.10)

f [k]2 = w2,2,1 ×h[k]1,1 +w2,2,2 ×h[k]1,2 +w2,2,3 ×h[k]1,3 +w2,2,0 (4.11)

Overall, there are 8 equations governing the simple neural network with input x[k] and output
f [k].

The values of v and h are separate sets to W , as values of v and h change with each datum
point while W remains the same for any input datum point.

Values of W s are chosen to optimally minimise a LSQR objective function:

minW,h,v

Ndata

∑
k=1

[
out puts=2

∑
i=1

[ f [k]i − f̂ [k]i ]2

]
(4.12)

In this simplified version, the problem of neural network fitting has been effectively
expressed as a DAG with 8 equations. I term this unconstrained minimisation problem
expressed under the lifting scheme as ANN-NLP-1.

The formulation of the ANN fitting problem into a constrained optimisation problem is
characterised by the following properties:

• Lifted model will be much larger

• The constraints will contain bilinearities

• The lifted model will contain solitary, single-variable functions giving each neuron’s
outputs

• The model will be relatively sparse in constraints
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The optimisation problem transformed by the lifted scheme can be easily solved by
Interior Points method using the commercially available package of IPOPT. IPOPT can
effectively solve NLPs with more than 106 variables and constraints. As the formulation
involves intermediate variables that will make the optimisation problem large, the capability
of IPOPT to solve high-dimensional problems makes it very handy to use. Moreover, the
Lagrangian sensitivity values are required, which IPOPT can solve with simple calculations.
Literature has also demonstrated the efficiency of IPOPT compared to other optimisers [197]
[198], making it a very sensible choice. Therefore, I solve the fitting of ANNs effectively
by using the NLP solver of IPOPT. The unconstrained optimisation algorithm proposed in
Chapter 3 is not applicable in this case as this chapter is dealing with constrained optimisation
problems.

A key challenge to the formulation of ANNs adopting the lifting scheme is that the
complexity of the optimisation process scales with the number of data points. I expect that
the number of iterations and the CPU time taken will increase with increasing data points,
leading to problems if the speed is too low. To find out how it scales, I perform several
optimisation processes with different number of data points and I record the number of
iterations and CPU time taken. The processor used to run this code is the 2.3GHz Quad-Core
Intel Core i5 with a memory setting of 8GB 2133MHz LPDDR3. The results are tabulated in
Table 4.1.

Table 4.1 The number of iterations and the CPU time taken to optimise the network with
different number of data points

Number of Data Points Number of Iterations CPU Time (s)

500 115 201.02
600 86 10.80
700 82 12.46
800 539 106.87
900 5284 2256.46

From Table 4.1, I can see that there is no definite pattern between the number of data
points and how fast the optimisation process is. I try to increase the number of data points
until the CPU Time is over 1 hour. I can observe that the maximum number of data points the
system is capable of processing under this CPU time limit is 900, adopting an architecture
of [4,5,5,5,3,2], where each number represents the number of neurons in successive layers.
It should be noted that the time and structure reflect the idiosyncrasy of the data and the
idiosyncrasy comes into the picture as well.
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Another feature to evaluate is how the optimisation time changes with the number of
neurons in the network. I expand the network depth but not the network width until the CPU
time is over 1 hour. I observe that the maximum number of neurons the system is capable of
processing under this CPU time limit is 150, with 500 data points, as tabulated in Table 4.2.

Table 4.2 The number of iterations and the CPU time taken to optimise the network with
different number of neurons

Number of Neurons Number of Iterations CPU Time (s)

50 72 87.484
60 71 142.648
80 147 655.480

110 61 499.441
150 102 1550.635

From practical implementations, I observe that the NLP solver IPOPT is capable of
overcoming local minima to achieve a lower optimal point overall. This is demonstrated by
the increase in the value of the objective function during the optimisation process followed
by a decrease to a lower value.

I also observe from practical implementation that the optimisation processes take very
long to run. Thus, in future implementations, it will make the system better to improve the
speed of solving NLPs when time is limited.

While I have demonstrated that the ANN fitting can be reformulated into optimisation
problems effectively under the lifting scheme, the scheme can also be applied to the problem
of ANN design through the process of "ANN Sparsification", which is shown below.

4.5 Sparsification of ANNs in Theory

In Section 2.2.7, I have introduced the concept of pruning to obtain a minimal neural network
that is almost as effective as the original one. In the mathematical formulation, I name the term
"Sparsification", defined equivalently as the pruning process, to remove the neurons that are
less important in generating the outputs. In this section, I describe the lifting transformation
and its adoption in neural network design. I introduce the pruning process used in the
machine learning for a fixed number of layers and neurons, and the Lagrangian multiplier
analysis to evaluate node performance in the ANN and its impact on the quality of fitting (a
systematic method for sparsification). I further discuss the performance of sparsification on
entire layers of the neural network without losing effectiveness of calculating the outputs.
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4.5.1 Mathematical Formulation of Connection Sparsification

This section introduces the method used in network sparsification, which formulates the
sparsification problem into a constrained optimisation problem.

To enable sparsification, it is required that I optimise two separate objectives: 1) min-
imising the prediction error, and 2) sparsifying the network connections. This gives us a
bi-objective optimisation problem which generates Pareto optimalities. That is, the minimisa-
tion of LSQR value and the minimisation of network density does not dominate over one
another. The aim of the bi-objective optimisation is to obtain one of the Pareto optimalities.

In traditional machine learning research, L1- or L2-regularisation is often adopted. From
the L1-regularised problem, as an example, it is common to constrain the objective function
as such:

min
w

(1−λ )LSQR(w)+λ ||w||1 (4.13)

λ represents the penalty coefficient. In this way, the bi-objective problem is defined to
become an optimisation with penalty. This is effectively:

min
w

LSQR(w)+
λ

(1−λ )
||w||1 (4.14)

where ||w||1 is effectively ∑
Nl−1
l=1 ∑

Ni
i=0 ∑

N j
j=1 |wl,i, j|. Nl is the total number of layers including

input layer and output layer. Ni is the number of neurons in layer l. N j is the number
of neurons in the previous layer. Therefore, to perform L1-regularisation is effectively to
constrain the sum of weights to a particular percentage of this sum. Thus, I obtain the
following formulation.

From the fitted ANN, I compute:

W =
Nl−1

∑
l=1

Ni

∑
i=0

N j

∑
j=1

|wl,i, j| (4.15)

Suppose I name the unconstrained model developed in Section 4.4 as ANN-NLP-1, and
the new model with sparsification as ANN-NLP-2. The constrained optimisation problem of
sparsifying a neural network is formulated as the following:
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Model ANN-NLP-2:

ANN −NLP−1 (4.16a)

subject to − εl,i, j ≤ wl,i, j ≤+εl,i, j (4.16b)

εl,i, j ≥ 0 (4.16c)

.
Nl−1

∑
l=1

Ni

∑
i=0

N j

∑
j=1

εl,i, j ≤ ω (4.16d)

where l = 1,2, ...,Nl − 1, i = 0,1, ...,Ni and j = 1,2, ..,N j. ω ≥ 0 is a user-input constant
parameter such that 0 ≤ ω ≤ W which through the above constraint, controls the sum of
the absolute values of weightings at the optimal solution. If I set ω = W and resolve the
optimisation problem above, I would obtain the result of ANN-NLP-1, where the following
equality holds:

w(∗,2)
l,i, j = w(∗,1)

l,i, j (4.17)

where w(∗,1)
l,i, j represents the optimal solution to the ANN-NLP-1 model, and w(∗,2)

l,i, j represents
the optimal solution to the ANN-NLP-2 model.

The purpose of formulating the ANN fitting problem into constrained optimisation
problem is that I would obtain novel, original and extremely useful new information through
the Lagrangian multiplier values of ANN-NLP-2.

In the practical implementation of ANN-NLP-2 model, the initial runs define a slightly
tighter constraint on the sum of weightings compared to W , where ω = W − δw. δw is
defined to be δw ≥ 0 and δw <<W .

The value of δw follows a finite difference heuristic rule-of-thumb:

δw = 100×
√

εmachine ×max(1, |W |) (4.18)

where εmachine is the machine precision, for example, 10−6.
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4.5.2 Definition of Lagrangian Multipliers

This subsection introduces the concept of Lagrangian multiplier. I define an optimisation
problem as:

min
x∈Rn

φ(x) (4.19a)

subject to hi(x) = 0 (4.19b)

g j(x)≤ 0 (4.19c)

where i = 1, ...,Nh and j = 1, ...,Ng.
The Lagrangian multiplier at a local optimum point x⋆ (KKT point) satisfies the following:

∂φ(x⋆)
∂ (hi)

=−λ
[h]
i (4.20)

The partial derivatives represent the "sensitivity" of the objective function value (at a
KKT point x⋆) subject to a perturbation.

Similarly for inequalities, the same holds but with sign restrictions:

∂φ(x⋆)
∂ (g j)

=−ν
[g]
j (4.21)

4.5.3 Adoption of Lagrangian Multipliers

I have defined the constraint:

Nl−1

∑
l=1

Ni

∑
i=0

N j

∑
j=1

εl,i, j ≡
Nl−1

∑
l=1

Ni

∑
i=0

N j

∑
j=1

|wl,i, j| ≤ ω (4.22)

This constraint is relaxed for W in the first optimal solution of ANN-NLP-2. In the following
runs, I may start reducing this value by a factor 0 < γ < 1 such that ω = W · γ . As γ

decreases, I enforce a smaller sum of absolute values of the weighting coefficients. Norm-1
type constraints are then similar to the imposition of Norm-0 (or penalty coefficient if added
directly to the LSQR objective function as a penalty term) with the appropriate limit upper
bound: ||w||0 = count of elements of vector w such that wl,i, j ̸= 0 (||w||1 is typically used in
"Machine Learning" to sparsify models.)

I evaluate new networks with tighter ω to reduce number of the nonzero weight coef-
ficients at new optimal solution of ANN-NLP-2. This generates a sequence of W > w1 >
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w2 > ... > wM > 0 to be solved in the constraints. With tighter constraints I can check which
coefficients go to zero exactly by enforcing εl,i, j ≥ 0 on its bound. As εl,i, j → 0, wl,i, j will
also become zero. I may choose any sparsified and automatically obtained architecture by
removing the arc joining neuron (l −1, j) to (l, i) iff w∗2

l,i, j = 0 for some ω: 0 < ω <W .

4.5.4 Adding / Removing Nodes

This section presents an automated method to add / remove neurons in an ANN network by
calculating the impact of the presence of a node to the overall fitting (LSQR minimum).

In the added constraints of ANN-NLP-1, I have:

h[k]l,i −σ(v[k]l,i ) = 0 (4.23)

where l = 1,2, ...,Nl , i = 1,2, ...,Ni, k = 1,2, ...,Nk. Nk is the number of data points used in
fitting the ANN. Each of these constraints gives the output of node i in layer l for measurement
k, and has associated Lagrangian multiplier λ

[h],k
l,i .

To evaluate the impact the node (l, i) at experimental point (k) has overall on the objective
function, I can observe that through Equation 4.23, this is equivalent to perturbing the RHS
of Equation 4.23, i.e. perturb the value of h[k](∗,2)l,i at the optimal solution of ANN-NLP-2 for
a given value of ω: 0 < ω <W . This effectively measures the impact of the node through
the Lagrangian multiplier λ

[h],k,(∗,2)
l,i for experiment (k). Since Equation 4.23 is an equality

constraint, there is no sign restrictions on the value of λ . Thus, to measure the impact, the
absolute value of λ is used.

To measure the overall impact of the presence of an entire node in the ANN structure, I
calculate the total impact of all nodes to the objective function value:

λw =
Nk

∑
k=1

Nl−1

∑
l=1

Ni

∑
i=1

|λ [h],k,(∗,2)
l,i | (4.24)

The overall impact of each node is normalised, sorted and compared. The normalisation
process is shown below:

λ̂
(∗,2)
l,i =

∑
Nk
k=1 |λ

[h],k,(∗,2)
l,i |

λw
(4.25)

where l = 1,2, ...Nl and i = 1,2, ...,Ni.
The value of λ̂

(∗,2)
l,i dictates the importance of each node in the network. To prune the

network, the nodes with a lower importance are dropped since they contribute insignificantly
to the overall objective function at the current optimum of the ANN-NLP-2 model.
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The removal is performed by forcefully setting the node value to zero:

wl,i, j = 0 (4.26)

In practical implementation, this is effectively achieved by setting the upper and lower bound
of the variable Wl,i, j to 0. The network with dropped nodes are re-optimised and the above
process of node removal is performed until a satisfactory result is obtained.

4.5.5 Removal of Entire Layer

The entire layer can be removed based on Lagrangian sensitivity analysis. I follow the
enlisted consecutive steps to arrive at an automatic and systematic way of removing layers.

• Step 1: Calculate the normalised node contribution using the solution of ANN-NLP-2

• Step 2: Calculate λ̂l,i for node (i) in layer (l)

• Step 3: To calculate the overall normalised contribution of a complete layer to the
currently optimal objective function value, calculate the following layer-related indices:
λ̂l = ∑

Ni
i=1 λ̂l,i for l = 1,2, ...,Nl

• Step 4: The layers with the calculated index may be sorted and compared

Following from the previous steps, I modify the neural network according to the following
methods:

• Option 1: Increase by a given percentage the number of nodes in the "top sensitivity
value" λ̂l in layer l, as investing nodes in them has the greatest impact

• Option 2: Decrease by a given percentage the number of nodes in "low sensitivity
value" λ̂l in layer l, as these nodes have lower impact.

• Option 3: Remove an entire layer if its λ̂l value is comparatively very low (for example,
an order of magnitude smaller than the next one higher value for λ̂l for some layer l)

• Option 4: Add an entire layer if its λ̂l value is comparatively very high

4.5.6 Optimisation Schemes

The process of adding/removing a node or a layer can be pursued through the steps as
outlined. However, there are several options associated with the optimisation schemes as
well.
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Figure 4.4 Flow diagram denoting one iteration of the scheme to improve ANN structures

• Option 1: Insert/remove the layer/node and re-optimise the whole structure

• Option 2: Insert/remove the layer/node while keeping other weight values unchanged

• Option 3: Insert/remove the layer/node and re-optimise only the weights that are
affected by the change in structure

In this chapter, I adopt the first option of the optimisation scheme since I believe changing
the architecture of the network may result in a different local minimum, which requires
re-optimising. However, in cases where the computational time or complexity is limited, I
can adopt the second or the third option.

4.6 Methodology

4.6.1 Initialisation

The experimentation started with a simple initial ANN to tune, and then the structure is
analysed and modified. There is no predefined structure requirement of the ANNs, including
cycles and connections between the input and output nodes.

A flow diagram of one step of the ANN design process is shown below in Figure 4.4. It
involves having a simplistic ANN0 predicting with a high error and then designing a second
ANN1 using the output of ANN0.

Because I am embedding "surgically" nodes within a fixed given structure where they
are needed the most, in a way producing minimal changes, and because I am simplifying
the structure by not carrying over "useless" outdated nodes within the evolving structure in
the successive iterations of our algorithm, this is equivalent to "apoptosis" of cells that are
becoming isolated and barely used.
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4.6.2 Simulation

Using a simple fitted ANN for example as our architecture generation algorithm will produce,
consider a fitted ANN:

Figure 4.5 Simple fitted ANN as an example

To compute y1(x1,x2), y2(x1,x2), I have to solve the following coupled nonlinear system
of equations.

v1 = wx1,1 × x1 +wx2,1 × x2 (4.27)

v2 = wx1,2 × x1 +wx2,2 × x2 (4.28)

v3 = wx1,3 × x1 +wx2,3 × x2 (4.29)

z1 = σ(v1) (4.30)

z2 = σ(v2) (4.31)

z3 = σ(v3) (4.32)

y1 = w1,y1 × z1 +w2,y1 × z2 +w3,y1 × z3 (4.33)

y2 = w1,y2 × z1 +w2,y2 × z2 +w3,y2 × z3 (4.34)

There are 8 nonlinear coupled equations to solve. The unknowns are {z1,z2,z3,v1,v2,v3}, and
the inputs are {x1,x2}. The parameters are known and fixed: {wx1,1,wx2,1,wx1,2,wx2,2,wx1,3,

wx2,3,w1,y1,w2,y1 ,w3,y1,w1,y2,w2,y2,w3,y2}.
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The simple ANN as proposed requires the use of Newton’s method to give the predicted
output. This is practical and feasible with modern Numerical Linear Algebra Algorithms and
Newton method for large-scale implementations.

The above formulation serves as an example of how the process of simulation is mathe-
matically modeled. I later also extend from this small network to networks of a much larger
scale.

4.6.3 Evaluation of Sensitivities

In the lifting scheme, I have the IPOPT solver to solve both for the values and the Lagrangian
multipliers of all variables involved in the definition of the NLP formulation. The Lagrangian
multipliers always exist for nodes with either free inlet/outlet weights or fixed ones. Therefore,
our Lagrangian sensitivity measure is valid for all nodes and can be used reliably both to add
new neurons or to prune the least contributing ones.

4.6.4 Retraining with New Data

When new data are fed into the ANN, a completely novel and unique scheme is adopted,
which is unprecedented in the open literature. Start by generating an initial architecture
and then removing nodes or connections gradually as it evolves to fit new data and learning
conditions. This assumes that even the previous dataset used in training the given ANN may
not be even necessary (e.g. after a long time, the old dataset may even be unavailable to
include and retrain).

Alternatively, given an ANN fitted to a given dataset of a given process, I can change the
architecture in an "evolutionary" way as an entirely novel methodology on ANNs and DNNs.

4.6.5 Nonlinear Approximation

This section serves to perform sigmoid function approximation to enable tunable precision
and smoothness in an algebraically easier form for numerical solvers. The approximation
method is not a must-to-use but it makes the calculations simpler. Thus, it is recommended
to use this form under the lifting scheme. In practice, the approximation is adopted in the
nonlinear constraints of the model.

Consider the following approximation of the absolute value function:

|x| ≃ ψ(x;α)
∆
=
√

x2 +α2 (4.35)
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Figure 4.6 Approximation of the absolute value function with α = 0.5

Figure 4.7 Approximation of the sigmoid function with α = 0.5

where α ≥ 0 is a suitably chosen small positive value effecting the smoothing transformation-
approximation. The effects of the approximation is demonstrated in Figure 4.6, where a
small value of α = 0.5 is used.

The implementation of this function approximation in numerical solvers and programming
languages works because the function of square root only returns the positive values as the
only root of it.

If I differentiate with respect to x once to obtain:

∂ψ(x;α)

∂x
=

1
2

2x√
x2 +α2

=
x√

x2 +α2
(4.36)

The equation has the following properties:

• As x = 0 ⇒ ∂ψ

∂x (0;α) = 0;

• As x = ∞ ⇒ ∂ψ

∂x (0;α) = +1−;

• As x =−∞ ⇒ ∂ψ

∂x (0;α) =−1+.
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Thus, I can directly use this function in ANN / DNN implementations ranging in output
from -1 to +1:

σ1(x;α)
∆
=

x√
x2 +α2

(4.37)

If I wish to scale the output between 0 and +1 then I can define:

σ2(x;α)
∆
=

σ1(x;α)+1
2

(4.38)

This gives:

σ2(x;α)
∆
=

1
2
[

x√
x2 +α2

+1] (4.39)

In the ANN/DNN methodology proposed, I have input-output constraints (equality
constraints) of the form z = σ(v). If I use σ1(x;α) in our formulation, these constraints
become:

z =
v√

v2 +α2
(4.40)

As this form is fairly nonlinear and requires the use of the square root function within the
NLP, as well as a division I multiply through and square the result, I obtain the following:

z2(v2 +α
2) = v2 (4.41)

One has to be careful with this transformation though: its Lagrangian multiplier may
have a different value than the constraint: z = v√

v2+α2 The last form is the true input-output
form for the sensitivity analysis based methodology.

4.7 Computational Results

4.7.1 NLP Formulation of a Simple ANN

In Section 4.4, I have reformulated a simple 2-layered neural network with 2 inputs, 2
outputs, and 3 hidden neurons, adopting a lifting scheme. IPOPT is adopted to solve the
lifted formulation and generated accurate results for a single datum point. The model is
denominated as ANN-NLP-1. The model contains 25 variables with lower and upper bounds,
8 equality constraints, 34 non-zeros in equality constraint Jacobian, and 11 non-zeros in
Lagrangian Hessian.

Although the model is deterministic for convex problems, since the training of ANN is a
non-convex optimisation process, the model does not guarantee running to the same optima.
The nature of the IPOPT solver also dictates that the initial points will lead to very different



4.7 Computational Results 83

optimisation results. Thus, the value of starting point is important in the performance of
the model. Table 4.3 enlisted the weights generated from the optimisation scheme under
different starting points. The training data points used have inputs of 0.1 and 0.5, and target
outputs of 1 and 2.

Table 4.3 Weights obtained from the lifting scheme with different starting points. Connection
0 represents the bias term.

Layer Neuron Connection Value(Init=0.25) Value(Init=0) Value(Init=-0.25)

1

1 1 2.20×10−5 0 -0.000211
1 2 0.000110 0 -0.00106
1 0 0.000221 0 -0.00211
2 1 2.201×10−5 0 -0.000211
2 2 0.000110 0 -0.00106
2 0 0.000221 0 -0.000211
3 1 2.201×10−5 0 -0.00211
3 2 0,000110 0 -0.00106
3 0 0.000221 0 -0.00211

2

1 1 0.259 0 -0.250
1 2 0.250 0 -0.250
1 3 0.250 0 0.250
1 0 0.250 1 -0.500
2 1 0.500 0 -0.500
2 2 0.500 0 -0.500
2 3 0.500 0 -0.500
2 0 0.500 1 0.500

With an initial value of -0.25, the weights are generated through 25 iterations with 27
objective function evaluations, 27 equality constraint evaluations, 26 gradient evaluations,
and 25 Hessian evaluations. The total CPU time used is 0.011 seconds with 0.001 seconds
used for NLP function evaluations. Similar results are obtained for initial value of 0.25. With
an initial value of 0.25, the weights are generated through 14 iterations with 19 objective
function evaluations, 19 equality constraint evaluations, 15 gradient evaluations, and 14
Hessian evaluations. The total CPU time used is 0.007 seconds with 0.000 seconds (trivial)
used for NLP function evaluations.

The most complicated case to run is the case when the initial values are zeros. With an
initial value of 0, the weights are generated through 125 iterations with 126 objective function
evaluations, 126 equality constraint evaluations, 126 gradient evaluations, and 125 Hessian
evaluations. The total CPU time used is 0.066 seconds with 0.003 seconds (trivial) used for
NLP function evaluations. Although the change in CPU time is not significant, it employs
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more calculations for the coefficients to deviate from zero through a more complicated fitting
scheme.

An important feature of the results shows that the model produced is almost symmetric.
This is a feature of the current lifted model. In the model initialised to 0.25, for example, the
2 neurons in the first layer have the same weights. The 3 neurons in the second layer have
almost the same weights. This is also observed in models initialised with values of -0.25.

In the case when initial weight values are set to zero, I obtain a highly sparse model. The
model effectively negates all input and makes use of a constant node to output the targeted
output. This leads to a trivial model. It corroborates with the popular belief that the initial
weights of ANNs cannot be zero [199] [200]. On the other hand, this may motivate future
research into what the existing connections mean when the initial weights are zero.

To corroborate with the results generated from our formulation, I run the simple 2-layered
neural network on Keras adopting Stochastic Gradient Descent (SGD) as the optimiser. The
weights generated from the optimisation scheme are listed in Table 4.4. Since SGD employs
a random search process, the weights obtained for each run are different. I present the weight
values of 3 consecutive runs adopting the SGD optimiser. From Table 4.4, it is observed that
the weight values vary significantly from different runs, generating different coefficients at
each neuron. This indicate that the search ends at local optima thus generating different and
incomparable coefficients.

I introduce Lagrangian multiplier as an indication of the sensitivity of each node to
the outputs. In this case, the values found are enlisted in Table 4.5. I have obtained the
Lagrangian multiplier for weights generated from different starting points (with initial values
in the range {0.25, 0, -0.25}). From these values, I observe symmetry in all three models due
to the symmetry observed in the weight coefficients. In particular, the model initialised with
0s exhibits no sensitivity to the inputs, which leads to a trivial model (as corroborated with
the weights values). The only non-symmetric sensitivity values are close to the output where
the values aligns with the targeted output.

4.7.2 Connection Sparsification through Lagrangian Multipliers

Following the procedure in Section 4.5.1, I have introduced the extra constraints adopting a
small value of ε to constrain the weights values. This implements the process of sparsification
to the network. The values of weightings produced are more sparse than previously calculated.
This section builds up on the model ANN-NLP-1 run in the previous section and formulates
the optimisation problem in ANN-NLP-2.

The program takes an iterative process to train the network. First, an ANN-NLP-1 model
is implemented to obtain some initial estimation of the weight values. In this case, the
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Table 4.4 The weight values obtained from fitting a neural network using Gradient Descent.

Layer Neuron Connection Lifted Value SGD Value 1 SGD Value 2 SGD Value 3

1

1 1 0.00171 -0.517 0.555 0.166
1 2 0.00859 -0.00239 0.140 -0.400
1 0 0.01717 -0.0214 0.00237 -0.00311
2 1 0.00172 0.547 -0.709 -0.0785
2 2 0.00859 -0.749 -0.172 0.752
2 0 0.00172 0.0313 -0.00136 0.00399
3 1 0.00859 1.072 -0.957 0.998
3 2 0.01717 -0.108 1.000 0.872
3 0 0.00172 -0.030 0.00288 -0.00253

2

1 1 0.25014 -0.345 0.365 -0.531
1 2 0.25014 0.183 -0.914 0.443
1 3 0.25014 -0.412 1.0150 0.552
1 0 0.25014 0.348 0.0113 0.0114
2 1 0.25038 0.620 0.833 -0.335
2 2 0.50032 0.855 0.744 0.628
2 3 0.50032 0.527 0.0979 -0.903
2 0 0.50064 0.110 0.00662 0.0187

weights are initialised to 0.5 and the corresponding weights are calculated from the lifting
scheme. Following that, I introduce ANN-NLP-2 which imposes the additional constraints
that the value of weights should be between −ε and ε where the sum of ε’s should be smaller
than ω .

Accordingly, I calculate the value of W with Equation 4.15 and ω with Equation 4.18.
I obtain W = 3.0848 and ω = 2.7763. A more sparse result is produced with this initial
constraints.

Following from the ANN-NLP-2 model with ω =W , I implement a second version of
the ANN-NLP-2 model with ω = γ ×W , and a third version of the ANN-NLP-2 model
with (ω = γ2 ×W ). This is to iteratively reduce the values the weights thus achieving
sparsification of the ANN model. I arbitrarily set the value of γ to be 0.7 but any value in the
range 0 < γ < 1 works.

The weights obtained are enlisted in Table 4.6 for a comparison of weights obtained
through the four models. It can be observed that the values are increasingly sparsified by
lowering the values of ω by a rate γ .

The first model requires 77 iterations to run with a total CPU time of 0.041 seconds. The
second model requires 13 iterations as the weight values are initialised to be those obtained
in ANN-NLP-1 model. The total CPU time is 0.006 seconds. The third model takes 173
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Table 4.5 The Lagrangian multiplier values for each constraint of the lifted problem

Neuron Sensitivity(Init=0.25) Sensitivity(Init=0) Sensitivity(Init=-0.25)

v1,1 1.467×10−12 0 −3.843×10−12

v1,2 1.467×10−12 0 −3.843×10−12

v1,3 1.467×10−12 0 −3.843×10−12

h1,1 −2.008×10−9 0 7.273×10−10

h1,2 −2.008×10−9 0 7.273×10−10

h1,3 −2.008×10−9 0 7.273×10−10

f1 1.338×10−9 4.263×10−5 4.848×10−10

f2 3.345×10−9 2 1.212×10−9

iterations to run and the total CPU time is 0.116 seconds. The fourth model takes 81 iterations
and the total CPU time is 0.048 seconds. Overall, there is no significant trends in terms of
iterations and total CPU time as the model depends more on the initial values rather than on
the complexity of the model.

4.7.3 Node and Layer Removal

I further enlist the values of Lagrangian multipliers in Table 4.7 for each sparsified model.
Based on the value of Lagrangian multipliers, I can perform node removal according to

the procedure described in Section 4.5.4. The value of λ is used to represent the sensitivity
at each node location. To demonstrate with an example, in the simple network I have with
the ANN-NLP-2(ω =W ) model,I calculate the following values:

λw = |λ1,1|+ |λ1,2|+ |λ1,3|= 4.151×10−8 (4.42)

λ1,1 =
|λ1,1|

λw
= 0.330 (4.43)

λ1,2 =
|λ1,2|

λw
= 0.335 (4.44)

λ1,3 =
|λ1,3|

λw
= 0.335 (4.45)

As λ dictates the importance of a particular node in the whole neural network, the results
demonstrate that the least important node is h1,1, with a lowest λ value. Therefore, when
node removal happens, this node will be preferentially removed. To remove the node, the
weight associated with that node is manually set to zero. For implementation, this is achieved
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Table 4.6 The weight values obtained from fitting ANN-NLP-1 and ANN-NLP-2 models

Layer Neuron Connection ANN-NLP-1
ANN-NLP-2 ANN-NLP-2 ANN-NLP-2

(ω =W ) (ω = γ ×W ) (ω = γ2 ×W )

1

1 1 0.00202 -0.00125 0.00161 -0.00108
1 2 0.0101 -0.00627 0.00830 -0.00547
1 0 0.0202 -0.0125 0.0160 -0.0114
2 1 0.00202 -0.00181 -0.000529 0.00108
2 2 0.0101 -0.00903 -0.00503 0.00547
2 0 0.0202 -0.0181 -0.0131 0.0114
3 1 0.00202 0.00170 0.00161 0.00108
3 2 0.0101 0.00851 0.00805 0.00547
3 0 0.0202 0.0170 0.0161 0.0114

2

1 1 0.250 -0.525 0.237 -0.249
1 2 0.250 -0.158 -0.285 0.249
1 3 0.250 0.159 0.246 0.249
1 0 0.250 0.159 0.233 0.256
2 1 0.500 -0.465 0.506 -0.496
2 2 0.500 -0.519 -0.488 0.496
2 3 0.500 0.511 0.503 0.496
2 0 0.500 0.508 0.505 0.516

Table 4.7 The Lagrangian multiplier values for each constraint of the ANN-NLP-1 and
ANN-NLP-2 models

Neuron
Sensitivity Sensitivity Sensitivity Sensitivity

(ANN-NLP-1) (ω =W ) (ω = γ ×W ) (ω = γ2 ×W )

v1,1 1.055×10−10 −9.990×10−10 4.152×10−9 −2.316×10−8

v1,2 1.055×10−10 −1.158×10−9 −3.735×10−9 2.316×10−8

v1,3 1.055×10−10 1.147×10−9 4.149×10−9 2.316×10−8

h1,1 −2.011×10−9 1.369×10−8 −3.398×10−8 6.695×10−8

h1,2 −2.011×10−9 1.391×10−8 3.337×10−8 −6.695×10−8

h1,3 −2.011×10−9 −1.391×10−8 −3.382×10−8 −6.695×10−8

f1 1.339×10−9 1.377×10−8 3.811×10−8 8.714×10−8

f2 3.349×10−9 2.073×10−8 4.772×10−8 9.134×10−8
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by setting the upper and lower bounds of the systematic variable representing the weights
related to h1,1 to 0s.

In this case, since I am experimenting with a simple network with a highly symmetrical
structure, the differences in the Lagrangian multipliers is minimal for a given layer. Therefore,
the effect of removal is not significant. However, I obtain the weight values when the node
h1,2 is removed, tabulated in Table 4.8.

Another example is the ANN-NLP-2 (ω = γ ×W ) model. I calculate the following
values:

λw = |λ1,1|+ |λ1,2|+ |λ1,3|= 1.012×10−7 (4.46)

λ1,1 =
|λ1,1|

λw
= 0.336 (4.47)

λ1,2 =
|λ1,2|

λw
= 0.330 (4.48)

λ1,3 =
|λ1,3|

λw
= 0.334 (4.49)

The node to remove is h1,2 which has the lowest Lagrangian multiplier. Therefore, I
manually remove the node by setting related weights to zero. The resulting weights are
enlisted in Table 4.8.

From Table 4.8, I can observe that the weight values increase when one of the nodes is
removed. This is because less nodes are present to achieve the output prediction hence a
larger value is required.

In either case, as this is a simple model, the prediction error (mean squared error) is zero.
Therefore, there is no better model in terms of performance. Performance will be evaluated
once I scale up the model. Moreover, since this is a model with 1 hidden layer, I do not
perform layer removal. It is imperative to construct models of a larger size in order to further
examine the effectiveness of the model.

4.7.4 NLP Formulation of a Multi-input Network

To further improve the performance of the network, it is required to incorporate additional
data points to the system. This requires the reformulation of the NLP problem, achieved
through the addition of constraints. This is illustrated in the following example.

Suppose I have two input data points to the neural network system, each has a dimension
of 2. Similarly, I assume that there is one hidden layer of 3 neurons and an output layer of
dimension 2. As both data points share the same weights, I separately define a set of variables
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Table 4.8 Comparison of weights before and after node removal. L represents the layer
number, N represents the neuron number, and C represents the connection number

L N C
ANN-NLP-2 ANN-NLP-2 ANN-NLP-2 ANN-NLP-2

(ω =W ) (ω =W ) (ω = γ ×W ) (ω = γ ×W )
(before removal) (after removal) (before removal) (after removal)

1

1 1 -0.00125 0 0.00161 0.00172
1 2 -0.00627 0 0.00830 0.00863
1 0 -0.0125 0 0.0160 0.0173
2 1 -0.00181 -0.00201 -0.000529 0
2 2 -0.00903 -0.0101 -0.00503 0
2 0 -0.0181 -0.0202 -0.0131 0
3 1 0.00170 0.00149 0.00161 0.00137
3 2 0.00851 0.00745 0.00805 0.0685
3 0 0.0170 0.0149 0.0161 0.0138

2

1 1 -0.525 0 0.237 0.333
1 2 -0.158 -0.335 -0.285 0
1 3 0.159 0.333 0.246 0.333
1 0 0.159 0.334 0.233 0.334
2 1 -0.465 0 0.506 0.0667
2 2 -0.519 -0.667 -0.488 0
2 3 0.511 0.666 0.503 0.666
2 0 0.508 0.668 0.505 0.669
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and a set of constraints to represent the multi-input system. The input variables include x[0]1 ,
x[0]2 , x[1]1 , and x[1]2 . The original constraints are added as such:

v[0]1,1 =W1,1,1 × x[0]1 +W1,1,2 × x[0]2 +W1,1,0 (4.50)

v[0]1,2 =W1,2,1 × x[0]1 +W1,2,2 × x[0]2 +W1,2,0 (4.51)

v[0]1,3 =W1,3,1 × x[0]1 +W1,3,2 × x[0]2 +W1,3,0 (4.52)

The newly introduced constraints represent the second datum point, sharing the same weight
variables W’s from the previous set of constraints.

v[1]1,1 =W1,1,1 × x[1]1 +W1,1,2 × x[1]2 +W1,1,0 (4.53)

v[1]1,2 =W1,2,1 × x[1]1 +W1,2,2 × x[1]2 +W1,2,0 (4.54)

v[1]1,3 =W1,3,1 × x[1]1 +W1,2,3 × x[1]2 +W1,3,0 (4.55)

I observe that the input constraints double in size with the addition of one datum point.
Similarly, the intermediate constraints also double in number. The original constraints are:

h[0]1,1 = σ(v[0]1,1) (4.56)

h[0]1,2 = σ(v[0]1,2) (4.57)

h[0]1,3 = σ(v[0]1,3) (4.58)

The newly added constraints include:

h[1]1,1 = σ(v[1]1,1) (4.59)

h[1]1,2 = σ(v[1]1,2) (4.60)

h[1]1,3 = σ(v[1]1,3) (4.61)

Similarly, the constraints relating to the output doubles in size.

f [0]1 = w2,1,1 ×h[0]1,1 +w2,1,2 ×h[0]1,2 +w2,1,3 ×h[0]1,3 +w2,1,0 (4.62)

f [0]2 = w2,2,1 ×h[0]1,1 +w2,2,2 ×h[0]1,2 +w2,2,3 ×h[0]1,3 +w2,2,0 (4.63)

f [1]1 = w2,1,1 ×h[1]1,1 +w2,1,2 ×h[1]1,2 +w2,1,3 ×h[1]1,3 +w2,1,0 (4.64)
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f [1]2 = w2,2,1 ×h[1]1,1 +w1,2,2 ×h[1]1,2 +w2,2,3 ×h[1]1,3 +w2,2,0 (4.65)

The additional output points are reflected in the definition of the objective function.

min
w,v,h

out puts=2

∑
i=1

[ f [0]i − f̂ [0]i ]2 +
out puts=2

∑
i=1

[ f [1]i − f̂ [1]i ]2 (4.66)

With these newly defined variables, constraints and the objective function, it is possible
to perform the calculation within a multi-input system.

I implement a system with 50 input datum points with the same neural architecture
as before but without sparsification. This serves to demonstrate the effectiveness of the
multi-input system. The resulting weights are tabulated in Table 4.9. I observe from the table
that the weights obtained are different for single input (overfitting) and multi-input systems.
The former has heavier weights towards the end layer whereas the latter has heavier weights
in the second last layer.

Table 4.9 Comparison of the weights for a single-input system and a multi-input system with
equivalent data points

Layer Neuron Connection Single-input
Multiple-input

(#data points = 50)

1

1 1 0.00171 0.00163
1 2 0.00859 0.00813
1 0 0.01717 0.01625
2 1 0.00172 0.00163
2 2 0.00859 0.00813
2 0 0.00172 0.01625
3 1 0.00859 0.00163
3 2 0.01717 0.00813
3 0 0.00172 0.01625

2

1 1 0.25014 0.35023
1 2 0.25014 0.35023
1 3 0.25014 0.35021
1 0 0.25014 0.35056
2 1 0.25038 −1.838×10−17

2 2 0.50032 −7.799×10−17

2 3 0.50032 −5.913×10−17

2 0 0.50064 −3.869×10−17
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4.7.5 NLP Formulation of a Larger Network

To systematically formulate a larger network requires structure and a higher level of ab-
straction in the definition of the available variables. It is required that the model network
should be in a position to run an entire data set comprised of multidimensional vector points.
The network will contain a full definition of status vector instances of the entire I/O state
of the ANN. The network should have the flexibility to evaluate ever growing networks
for a realistically sized dataset of multiple inputs and multiple outputs per data point. This
allows the observation of the "en masse" behaviour of the neurons and how to manipulate the
architectures with the new measures based on Lagrangian multipliers.

To allow this formulation, I have applied the algorithm described in Algorithm 2.
An important method to ensure that the coded algorithm is performing correctly is to

check the number of equality constraints and the number of variables. To achieve this
purpose, I have implemented a three layered network with 4, 10, 2 neurons in each layer and
implemented it using the lifting framework. Suppose I have 10 input data points. Based on
the network structure, the inputs have a dimension of 4 and the outputs have a dimension of
2.

To count the number of equality constraints:

• In Layer 1, the input layer, there are no equality constraints formed.

• In Layer 2, there are 20 equality constraints formed by each node in the layer. 10 from
the linear transformation and 10 from the nonlinear transformation.

• In Layer 3, there are 2 equality constraints formed by each node in the layer. There are
no nonlinear transformations in this layer as this is the output layer.

• Overall, the model contains 22 equality constraints for each datum point. For 10 data
points, there should be 220 equality constraints in total.

To count the number of variables:

• The weights of the network is shared with all data points. Therefore, I only count the
number of weights once. In Layer 1, there are 4 input weights and 1 bias value. Thus,
there are 5 weights related to each of the 10 neurons in Layer 2. From Layer 1 to Layer
2, there are 5×10 = 50 weight values. From Layer 2 to Layer 3, there are similarly
11×2 = 22 weights. The total number of weights is 72.

• The other variables are not shared between data points. There are 10 hidden nodes
with 1 additional bias, which gives 22 variables considering variables defined for linear
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Algorithm 2 Formulation of ANN with Lifting Scheme
1: Initialize:
2: List(structure_o f _network)
3: n → #Layers
4: X → Input,
5: y → Out put,
6: N → #DataPoints,
7: Xdim → Dimension_o f _Inputs,
8: ydim → Dimension_o f _Out puts,
9: and α → 0

10:
11: for <l in range(n)> do
12: for <i in range(#Neurons_in_Layer(l))> do
13: for <j in range(#Neurons_in_Layer(l-1))> do
14: De f ine Wl,i, j
15: end for
16: end for
17: end for
18:
19: for <k in range(N)> do
20: for <i in range(#Neurons_in_Layer(l))> do
21: De f ine fi,k
22: end for
23: end for
24:
25: for <k in range(N)> do
26: for <i in range(#Input_Neurons+1)> do
27: if <i==0> then
28: De f ine Xi,k → 1
29: else
30: De f ine Xi,k
31: end if
32: end for
33: end for
34:
35: for <k in range(N)> do
36: for <i in range(#Output_Neurons)> do
37: De f ine Ytrue,i,k
38: end for
39: end for
40:
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41: for <k in range(N)> do
42: for <l in range(n)> do
43: for <i in range(#Neurons_in_Layer(l))> do
44: if <i==0> then
45: De f ine X = hl,i,k → 1
46: De f ine X = vl,i,k → 1
47: else
48: De f ine hl,i,k
49: De f ine vl,i,k
50: end if
51: end for
52: end for
53: end for
54:
55: Ob jective Function = Sum( fi,k −Ytrue,i,k)
56:
57: for <k in range(N)> do
58: for <l in range(n)> do
59: for <i in range(#Neurons_in_Layer(l))> do
60: for <j in range(#Neurons_in_Layer(l-1))> do
61: if <l==1> then
62: Constraint = Suml,i, j,k(Wl,i, j ×Xi,k)− vl,i,k
63: else if <l==n-1> then
64: Constraint = Suml,i, j,k(Wl,i, j ×hl,i,k)− fi,k
65: else
66: Constraint = Suml,i, j,k(Wl,i, j ×hl,i,k)− vl,i,k
67: end if
68: end for
69: end for
70: end for
71: end for
72:
73: for <l in range(n)> do
74: for <i in range(#Neurons_in_Layer(l))> do
75: Constraint = hl,i − vl,i/Sqrt(v2

l,i +α2)
76: end for
77: end for
78:
79: xlist = List(Variables)
80: glist = List(Constraints)
81: Input upper and lower bounds
82: Use IPOPT to optimise xlist and glist
83: Obtain variable values, Lagrangian sensitivities and objective value from optimiser
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and nonlinear transformations. There are two output variables. Thus, in total, there
are 24 non-weight variables for each datum point. Overall, there are 240 non-weight
variables.

• In total, this three-layered network gives a total number of variables of 312.

Therefore, to confirm that the model is set up correctly, I deploy this three-layered model
and check the number of variables and constraints accordingly. Once the model is set up, it
has the flexibility to fit any fixed structured neural network with any number of data points.
The next step is to apply the model to a simulated chemical problem in order to test its
effectiveness. This is discussed in the following section.

4.8 Application to a Nonlinear Process Case Study

In previous sections, I have applied the lifting scheme to the optimisation of an arbitrarily
defined problem where a 2 dimensional input is trained to give a 2 dimensional output,
generating a simplified model to investigate. As the model is simplistic, I produced exact
fittings to the targeted output. Moreover, the process is highly linear, giving low significance
of the hidden nodes. Therefore, it is imperative to implement the lifting scheme to a highly
nonlinear process such that the effectiveness of the scheme is tested. I use simulated data
from a nonlinear chemical process as an example.

4.8.1 Simulated Dataset

To simulate the nonlinear process, I adopt the framework of an Arrhenius problem. The
problem is formulated as follows. Suppose I have a system with inflow A and product B:

A
K(T )

 B (4.67)

I perform steady state material balance as follows:

−FA ·CA0 +FA ·CA =−K(T ) ·CA ·V (4.68)

−FA ·0+FA ·CB = K(T ) ·CA ·V (4.69)

where FA is the inflow rate. CA0 is the initial concentration of substance A, CA is the final
steady state concentration of A. CB is the steady state concentration of B. V is the volume of
the reactor. The material balances state that the changes in the amount of material is equal to
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Figure 4.8 The formulation of the Arrhenius problem into a nonlinear transformation with 4
inputs and 2 outputs

those generated / consumed in the reaction. Combining Equation 4.68 and Equation 4.69
gives:

CB =CA0 −CA (4.70)

K(T ) is the kinetic constant at temperature T , given by:

K(T ) = K0 · exp(
−Ea

RT
) (4.71)

Rearrange the material balance equation gives:

FA ·CA0 =CA(FA +K(T ) ·V ) (4.72)

Further rearrangement gives:

CA =
FA ·CA0

FA +K(T ) ·V
(4.73)

The productivity of B is formulated as:

PB = FA ·CB (4.74)

With this setting of the problem, I have formulated a simulated system with inputs T ,
CA0, FA and V . The outputs include CB and PB. The nonlinear process is encapsulated in the
Arrhenius equation (Equation 4.71) and the material balance (Equation 4.73). This is further
demonstrated in Figure 4.8.

As the Arrhenius system is formulated into a system of inputs and outputs undergone a
nonlinear transformation, I can effectively model it as an ANN. To enable the approximation
of the nonlinear process, I create a dataset that is generated from the system of nonlinear
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Table 4.10 The range of variables used in the simulated Arrhenius dataset

Variable Lower Bound Upper Bound Step

CA0 0.05 1 0.05
V 5 50 5
T 500 2000 100
FA 10 100 10

Table 4.11 The arbitrary constant values adopted in the simulated Arrhenius dataset

Variable Value

R 8.314JK−1mol−1

K0 2×109s−1

Ea 127kJmol−1

equations. The dataset is further used to construct the ANN model adopting the lifting
scheme.

To generate the dataset, I create data points in a grid search as tabulated in Table 4.10.
The range enclosed by lower and upper bounds are divided by the value of steps to obtain
the grid search values. In total, I produce 43200 data points. With this number of points and
given the complexity of the problem defined, it is expected that a much larger neural network
is required to solve this highly nonlinear process.

As this is a simulated environment, I first settle on the values tabulated in Table 4.11. The
values are arbitrarily chosen to simulate an Arrhenius problem. I generate the data according
to these values and construct a network adopting the lifting scheme.

4.8.2 Network Sparsification

In this section, I present a set of methodology to sparsify a trained neural network by
removing connections, nodes or layers that are undesirable. The sparsification is guided
by the Lagrangian multiplier values (sensitivity) of each connection to the output. The
connection, node or layer is removed by setting the boundary values of the connections
involved to zero. I adopt the simulated nonlinear dataset presented in Section 4.8 to test for
the efficacy of the method of sparsification.
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4.8.3 Initialisation

I start from some arbitrarily sized network, which serves as the starting point. The architecture
is modified in later iterations.

The initial architecture exhibiting certain degrees of freedom should be limited by the
number of data points input into the neural network. In a network defined in Section 4.7.5
as an example, where there are 4, 10, 2 nodes in each layer in a three-layered model, the
degrees of freedom is calculated as follows:

• In Layer 1, there are 4 input nodes and a bias. That gives 5 degrees of freedom inputting
to each node in Layer 2. This gives 5×10 degrees of freedom.

• In Layer 2, there are 10 nodes and a bias. This gives 11 degrees of freedom inputting
to each node in Layer 3. This gives 11×2 degrees of freedom.

• Overall, in this three-layered model, the total degrees of freedom is 50+ 22 = 72.
Therefore, the minimum number of data points should be higher than 72.

For the Arrhenius simulated problem as above, I start with an architecture of [4, 5, 5,
2]. That is, the input has dimension of 4, followed by 5 hidden nodes in the second layer,
followed by 5 hidden nodes in the third layer, and lastly outputs of dimension 2. The input
and output dimensions are pre-fixed by the dataset but the number of hidden layers and
hidden neurons are editable. The degrees of freedom in this architecture is 67, thus requiring
a minimum of 67 data points. I will calculate the Lagrangian multipliers to further make
modifications to the model structure. The current architecture serves as a starting point.

4.8.4 Node Removal

The second step is to experiment with the node removal process as outlined in Section 4.5.4.
I first run the unconstrained optimisation adopting the lifting scheme, and calculate the values
of all Lagrangian multipliers λ

[k]
l, j with regard to the constraints that define the nonlinear

transformations in the network h[k]l,i −σ(v[k]l,i ). Since there are multiple data points, there will
be an equal multiple of the number of constraints related to the nonlinear transformations. I
sum up the Lagrangian multipliers for the same neuron across different data points as the
value λl,i =

1
k ∑k[λ

[k]
l,i ].

The percentage of each multiplier with regard to the sum of the absolute value of
Lagrangian multipliers of all neurons (λw = ∑k ∑l ∑i[|λ

[k]
l,i |]) are also calculated. By running

the initialised model, I obtain the values of Lagrangian multipliers and percentages of the
sum as enlisted in Table 4.12. The values seem equal when rounded up to 4 significant figures
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Table 4.12 The values and percentages of Lagrangian multipliers adopting a structure of
[4,5,5,2]

Variable
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

h1,1 1.761×10−11 0.8452
h1,2 1.761×10−11 0.8452
h1,3 1.761×10−11 0.8452
h1,4 1.761×10−11 0.8452
h1,5 1.334×10−10 6.404
h2,1 1.675×10−10 8.039
h2,2 1.675×10−10 8.039
h2,3 1.675×10−10 8.039
h2,4 1.675×10−10 8.039
h2,5 1.209×10−9 58.06

but they are not equal when higher precision is recorded. The objective function for this run
has a value of 4.988×10−16, which is a very low value potentially due to over-fitting the
network. To prevent over-fitting, I have performed node removal as a follow-up.

From the results, I observe that most nodes have a low value of percentage Lagrangian
sensitivities. 4 out of 5 nodes in the first layer has a value smaller than 1. In the second layer,
only the last neuron has high significance. The other 4 nodes are equally less important.

Although I can argue that the first layer can be removed completely due to lower sen-
sitivities, I stay conservative by keeping 3 nodes in the first layer and keeping 3 nodes in
the second layer to observe the changes in Lagrangian multiplier. Again, I tabulate the raw
values and the percentages of the Lagrangian multiplier in Table 4.13. In this run, the value
of the objective function is 1.711×10−5. The objective has gone down as I have introduced
node removal to cut down on the number of parameters in making a prediction.

From the updated values of Lagrangian multiplier, I observe that 2 nodes in the first layer
are significant and the third neuron having a very low sensitivity can be removed. Similarly
in the second layer, the values are more balanced but I can remove the first neuron due to its
low sensitivity. It is advised not to cut the number of nuerons in the second layer too low
to prevent the introduction of bottleneck in the network. The bottleneck will undesirably
compress the dimension introducing larger errors. Therefore, as a next step, I keep 2 nodes in
the first hidden layer and 2 nodes in the second hidden layer, adopting a structure of [4,2,2,2].
I tabulate the values of Lagrangian multipliers in Table 4.14.

From the values, I can observe that the first layer contains two significant neurons, sharing
an almost equally high percentage in terms of sensitivity. The neurons in the second layer are
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Table 4.13 The values and percentages of Lagrangian multipliers adopting a structure of
[4,3,3,2]

Variable
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

h1,1 4.717×10−9 37.52
h1,2 3.994×10−9 31.77
h1,3 2.837×10−14 0.0002257
h2,1 8.016×10−10 6.377
h2,2 1.936×10−9 15.40
h2,3 1.123×10−9 8.923

Table 4.14 The values and percentages of Lagrangian multipliers adopting a structure of
[4,2,2,2]

Variable
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

h1,1 3.646×10−9 38.11
h1,2 4.068×10−9 42.52
h2,1 8.769×10−10 9.164
h2,2 9.771×10−10 10.21
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Table 4.15 The values and percentages of Lagrangian multipliers adopting a structure of
[4,2,2,2,2]

Layer Number
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

Layer1 2.228×10−23 1.984×10−9

Layer2 5.146×10−16 0.04581
Layer3 1.123×10−12 99.95

less significant but the sensitivity values are acceptably high. Therefore, I have performed
node removal by adopting Lagrangian multiplier values. The finalised architecture has a
structure of [4,2,2,2] with 22 degrees of freedom, much less compared to the initial network
with 72 degrees of freedom.

More importantly, the value of the objective function of the network after neuron removal
is even smaller, with a value of 8.320×10−18. This demonstrates that the former models may
have been over-parameterised and the network after node removal gives better performance.

4.8.5 Layer Removal

I also experiment with the theories developed in Section 4.5.5, where I decide whether an
entire layer shall be removed from the architecture. Suppose I start with a network having
layers more than necessary, i.e. I start with an architecture of [4,2,2,2,2], having three hidden
layers. The number of neurons adopted are carried over from the previous section. To find
whether a layer should be removed, I calculate the sum of the absolute values of Lagrangian
multipliers for each layer, and delete a layer when the sum is small compared to other layers.
By searching in the space of the defined structure, I obtain the results as tabulated in Table
4.15.

The objective function achieved has a value of 1.509×10−18, a very low and satisfactory
result. From the results, it is obvious that layer 1 and layer 2 can be removed. Therefore, I
train a network with 1 hidden layer and 2 neurons and observe that the value of objective
function has increased to 9.242×10−11, which although has increased in value, still preserves
acceptable sensitivity.

4.8.6 Connection Sparsification

I further develop the empirical implementation of the theories described in Section 4.5.1,
where certain connections within the network are removed to generate a more compact model.
This is different from node removal as only certain connections are removed but not the
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whole node. Therefore, it entails the network with more flexibility as certain nodes may be
connected to some but not all nodes.

The process of connection sparsification is achieved by enforcing an upper (ε) and lower
bound (−ε) on the individual network weights. Moreover, the sum of ε’s are controlled by
an upper limit of the value of ω . The value of ω successively decreases by a factor of γ ,
enforcing tighter bounds as the process iterates. With the additional constraints, some of
the weights are pushed closer to 0. I then define a threshold to decide which connection
to remove as weight values smaller than the threshold are forced to 0’s. This is achieved
by manually setting the upper and lower bound of that weight value to 0’s, thus effectively
removing the connection associated with that particular weight.

Suppose I start from a model with an initial structure of [4,2,2,2,2]. I calculate the
Lagrangian multiplier for each connection. This is tabulated in Table 4.16. The objective
value of this network is 1.059×10−18.

Assume that I would like to remove around 45% of the connections (13 connections).
Therefore, a suitable threshold in terms of percentages of Lagrangian multipliers is 10−6. To
surgically remove the connections, I set the upper and lower bound of the variable values
corresponding to the connections to be 0. The results are tabulated in Table 4.17.

In this way, I have successfully removed connections in the network. Although the
method is similar to the removal of nodes and layers, it allows a surgical removal at a much
lower level, allowing more choices in sparsification.

I also observe from Table 4.17 that the Lagrangian values have equilibrated in the process
of connection removal, with more connections having similar Lagrangian multiplier values.
The objective value of the sparsified network is 3.952×10−16. Although slightly higher than
the unsparsified network, both values are close to zero and the sparsified network contains
less parameters to calculate.

4.9 Advanced Formulation of ANNs

The purpose of this section is to demonstrate how an ANN, in its most general form, can be
explicitly formulated as an NLP to achieve its fitting process. Lagrangian multipliers are
used to identify the most important and the least important nodes in a given fitted ANN using
LSQR. The section also introduces auxiliary techniques to sparsify a densely connected ANN
defined through a bi-objective optimisation problem. The proposed optimisation scheme
is able to dictate any level of complexity of an ANN so as to enhance performance and
predictive ability. In this section, I use a simple initial structure to preliminarily fit an
ANN, and use its information to add strategically new nodes and connections selectively.
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Table 4.16 The values and percentages of Lagrangian multipliers adopting a structure of
[4,2,2,2,2] for connection sparsification

Layer Neuron Connection
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

1

1 1 1.290×10−22 1.348×10−5

1 2 5.948×10−25 6.212×10−8

1 3 −7.867×10−23 8.217×10−6

1 4 −5.397×10−25 5.637×10−8

1 0 2.327×10−40 2.430×10−23

2 1 4.872×10−16 50.885
2 2 4.629×10−17 4.834
2 3 −1.288×10−24 1.346×10−7

2 4 −6.248×10−27 6.526×10−10

2 0 1.030×10−16 10.756

2

1 1 −7.078×10−22 7.393×10−5

1 2 −1.049×10−18 0.110
1 0 7.866×10−25 8.237×10−8

2 1 8.299×10−41 8.668×10−24

2 2 1.061×10−22 1.108×10−5

2 0 −1.008×10−20 0.00105

3

1 1 −1.735×10−23 1.813×10−6

1 2 2.403×10−25 2.510×10−8

1 0 3.423×10−25 3.358×10−8

2 1 1.995×10−16 20.834
2 2 5.070×10−17 5.295
2 0 6.903×10−17 7.210

4

1 1 −2.093×10−28 2.187×10−11

1 2 1.815×10−25 1.895×10−8

1 0 −1.059×10−24 1.106×10−7

2 1 −7.030×10−23 0.0734
2 2 −9.919×10−21 0.00104
2 0 −4.745×10−22 4.956×10−5

The Lagrangian Multiplier Node Significance criterion (sensitivities) will be used to add /
delete nodes and connections. Practically, I am treating the ANN by an unstructured general
information flow graph.
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Table 4.17 The values and percentages of Lagrangian multipliers adopting a structure of
[4,2,2,2,2] for further connection sparsification

Layer Neuron Connection
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

1

1 1 −6.839×10−15 8.433×10−6

1 2 0 0
1 3 −1.023×10−13 0.000126
1 4 0 0
1 0 0 0
2 1 5.394×10−8 66.512
2 2 −1.233×10−11 0.0152
2 3 0 0
2 4 0 0
2 0 0 0

2

1 1 8.182×10−12 0.0101
1 2 6.764×10−12 0.00834
1 0 0 0
2 1 0 0
2 2 −6.839×10−15 8.433×10−6

2 0 4.836×10−11 0.0596

3

1 1 −1.023×10−13 0.000126
1 2 0 0
1 0 0 0
2 1 2.697×10−8 33.257
2 2 −1.233×10−11 0.0152
2 0 −3.581×10−11 0.0442

4

1 1 0 0
1 2 0 0
1 0 0 0
2 1 6.764×10−12 0.00834
2 2 4.836×10−11 0.0596
2 0 8.182×10−12 0.0101

4.9.1 Feedback ANNs Example

SISO Example

An example of ANN is shown in Figure 4.9. The task is to build an ANN functional
representation, y = y(x) for a single-input, single-output (SISO) system given a usual dataset
of measurements: D= {(xi,yi)|i= 1,2, ...,ND}. The system as presented has "novel" features:
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Figure 4.9 The structure of a simple ANN in the SISO Example

• The input nodes can feed into every interior ANN node

• The output nodes can similarly combine the output of every interior neuron (including
a direct contribution by the input nodes)

• Feeding a node into itself is not considered

To formulate the NLP model, I note that this is a standard I/O network flow problem,
with nonlinear "generation" terms of the "flow" (the information flow). The NLP for this
example is the balance of the Input/Output flow along arcs into each node.

Node 1:
Input: v[k]1 = wx,1 · x[k]+w2,1 ·h

[k]
2

Output: h[k]1 = σ(v[k]1 )

where σ is the activation function such as the Sigmoid function.
Node 2:
Input: v[k]2 = wx,2 · x[k]+w1,2 ·h

[k]
1

Output: z[k]2 = σ(v[k]2 )

Node y:
ŷ[k] = wx,y · x[k]+w1,y ·h

[k]
1 +w2,y ·h

[k]
2

Clearly, a fully connected two-way network, although feasible to model as above, will
contain a very dense connectivity with O(N2) weights wi, j to fit, where N is the number of
nodes (neurons).

Circular Feedback Network Example

I then construct another example architecture as shown in Figure 4.10, where each node is
connected with neighbours of distance up to 2. The input is at node 1 and the output is at
node 6. This can also be easily formulated under the lifting scheme as follows:

Node 1: Input: v[k]1 = wx,1 · x[k]+w2,1 ·h
[k]
2 +w3,1 ·h

[k]
3 +w5,1 ·h

[k]
5 +w6,1 ·h

[k]
6
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Figure 4.10 An example of the initial ANN structure

Output: h[k]1 = σ(v[k]1 )

Node 2:
Input: v[k]2 = w1,2 ·h

[k]
1 +w3,2 ·h

[k]
3 +w4,2 ·h

[k]
4 +w6,2 ·h

[k]
6

Output: z[k]2 = σ(v[k]2 )

Node 3:
Input: v[k]3 = w1,3 ·h

[k]
1 +w2,3 ·h

[k]
2 +w4,3 ·h

[k]
4 +w5,3 ·h

[k]
5

Output: z([k])3 = σ(v[k]3 )

Node 4:
Input: v[k]4 = w2,4 ·h

[k]
2 +w3,4 ·h

[k]
3 +w5,4 ·h

[k]
5 +w6,4 ·h

[k]
6

Output: z[k]4 = σ(v[k]4 )

Node 5:
Input: v[k]5 = w1,5 ·h

[k]
1 +w3,5 ·h

[k]
3 +w4,5 ·h

[k]
4 +w6,5 ·h

[k]
6

Output: z[k]5 = σ(v[k]5 )

Node 6:
Input: v[k]2 = w1,6 ·h

[k]
1 +w2,6 ·h

[k]
2 +w4,6 ·h

[k]
4 +w5,6 ·h

[k]
5

Output: z[k]6 = σ(v[k]6 )

Output: ŷ[k] = z[k]6

4.9.2 ANN Gradual Evolution Scheme

I propose a gradual evolution scheme where the ANN changes its size adopting the sensitivity
measure as the criterion. The ANN here is defined as its most general form, where the
traditional layered structure is no longer adopted. Start with a simple structure, noting:

• There is no "official" designation or use of the concept of layers as is traditionally done
/necessary with the old restricted approaches.
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• There is similarly no input or output "layer" distinction

• It is possible for the input variables to feed into fewer nodes than their number, and the
same for the output variables

An example is illustrated in Figure 4.10 where an initial ordered ANN structure is
defined. Essentially, each neuron connects to its neighbourhood with a distance of below
2, as illustrated in Figure 4.11. This repeats for all neurons and closes them in a circular
interlinked but very sparsely connected graph. I propose the following procedures to optimise

Figure 4.11 Illustration of the connectivity of the neuron k with its neighbourhood

an ANN:

• Step 1: Rank all neurons/connections, after LSQR fitting using the sensitivity measures
for them based on Lagrangian multipliers.

• Step 2: Dropping nodes: nodes/connections that are found to be of very low impact
sensitivity index can be removed completely.

• Step 3: The highest ranking in sensitivity nodes are selected (e.g. 5%)

• Step 4: Ensure that the subset of the most important in rank nodes are now parallel
with full connections between each on of them (unless already connected)

• Step 5: Initialise the new link weights and use for the other connectivity the optimal
fitting values for the weights from the previous LSQR.

• Step 6: Introduce alternative new connectivity and new node. Clone the nodes/connections
with top ranking by duplicating a node/connection near the original node, sharing the
same nodes to connect to but use general feedback for the connections introduced.

• Step 7: Refitting policies: (A) Fix the old connections to their weights from before
and only optimise the new model connections. (B) Following Step (A) one could
re-optimise and sparsify everything in the given connectivity from (A).
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Overall, the scheme can rapidly build up ANNs and in more than one way to produce optimal
architectures as "self-evolving" general graphs. The key idea is that after deletion of weak
nodes and addition of strong nodes, I may choose to fit the previous architecture and weights
(as constants in the next new LSQR problem for the new, revised architecture) and not
wasting time refitting old weights.

It is assumed that the loss of predictive ability will more than be compensated and
corrected by the new "strong nodes" introduced and fitted.

4.9.3 Results and Analysis

SISO example

I construct the architecture in the SISO Example. This can be simply formulated under
the lifting scheme by changing the equality constraints. The initial weights obtained are
tabulated in Table 4.18. The initial objective value is 3.610×10−19.

Table 4.18 The values and percentages of Lagrangian multipliers adopting a structure in the
SISO Example before connection sparsification

Weights
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

Wx,1 8.651×10−12 1.384
W2,1 −1.195×10−10 19.112
Wx,2 8.658×10−12 1.385
W1,2 −1.199×10−10 19.178
Wx,y 2.403×10−10 38.445
W1,y 8.651×10−12 1.384
W2,y −1.195×10−10 19.112

I observe that, since this is a simple network, all the weights are quite important. To
further sparsify the network, I remove weights where the percentage values of Lagrangian
multiplier are less than 10. However, to keep the connection complete, I retain the connection
between x and node 1 to allow a full network. The complete network resulted is demonstrated
in Figure 4.12.

The Lagrangian values after sparsification are demonstrated in Table 4.19. The value of
the objective function after sparsification is 5.982×10−17. Although slightly higher due to
the removal of nodes, the objective is acceptably low.

Then I seek to grow the network by adding nodes that have the highest sensitivity. From
Table 4.19, it can be observed that W1,2 and Wx,y have the highest sensitivity, hence I duplicate
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Figure 4.12 The feedback network sparsified from the structure in the SISO Example

Table 4.19 The values and percentages of Lagrangian multipliers adopting a structure in the
SISO Example after connection sparsification

Weights
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

Wx,1 −7.057×10−31 1.174×10−20

W2,1 7.064×10−34 1.175×10−23

Wx,2 0 0
W1,2 −2.918×10−9 48.541
Wx,y 3.094×10−9 51.459
W1,y 0 0
W2,y 4.125×10−34 6.860×10−24

the connections. This gives us the architecture in Figure 4.13. The objective value obtained is
1.847×10−17. There is a slight improvement from the architecture before network growth.

The Lagrangian values after network growth are tabulated in Table 4.20. It can be
observed that the addition of weights greatly changes the percentage sensitivities of different
nodes.

Overall, I have demonstrated how the gradual growth scheme works. It can be observed
that the sparsification scheme is capable of removing connections of low sensitivity and
adding connections of high sensitivity, while generating very low objective values.

Figure 4.13 The feedback network grown from the sparsified structure in the SISO Example
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Table 4.20 The values and percentages of Lagrangian multipliers adopting a structure in the
SISO Example after further connection sparsification

Weights
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

Wx,1 2.243×10−29 5.903×10−19

W2,1 −2.242×10−33 5.902×10−22

Wx,2 0 0
W1,2 −1.210×10−9 31.859
Wx,y 1.378×10−9 36.282
W1,y 0 0
W2,y −2.243×10−32 5.904×10−22

W ′
1,2 1.210×10−15 3.186×10−5

W ′
x,y −1.210×10−9 31.859

Figure 4.14 Sparsified circular feedback network

Circular Feedback Network

I return to the example of circular feedback network. The initial Lagrangian multiplier values
are tabulated in Table 4.21. The value of the objective obtained is 3.20. I aim to drop 50% of
the connections (13 connections). The threshold I set is 1% in terms of percentage value of
Lagrangian multiplier.

The Lagrangian multipliers of the sparsified circular feedback network is presented
in Table 4.22. The new architecture is demonstrated in Figure 4.14. The new objective
function value is 3.174, albeit that 50% of the connections are removed. This demonstrates
an improvement in terms of the performance of the network after sparsification.

To apply the gradual growth scheme, I aim to duplicate 1 node. The node with the highest
value of Lagrangian multiplier by summing up all connection Lagrangian values is node
1. The Lagrangian multipliers after node growth is demonstrated in Table 4.23. The new
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Table 4.21 The values and percentages of Lagrangian multipliers adopting a structure of
Circular Feedback Network before connection sparsification

Weights
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

Wx,1 3.362×10−19 9.787
W2,1 −1.630×10−20 0.474
W3,1 −3.477×10−19 10.121
W5,1 1.569×10−20 0.457
W6,1 6.397×10−20 1.862
W1,2 −4.294×10−20 1.245
W3,2 −3.477×10−19 10.121
W4,2 1.630×10−20 0.474
W6,2 3.477×10−19 10.121
W1,3 −1.569×10−20 0.457
W2,3 −5.141×10−23 0.001
W4,3 3.157×10−20 0.919
W5,3 −3.240×10−19 9.430
W2,4 1.616×10−20 0.470
W3,4 3.479×10−19 10.126
W5,4 −1.527×10−20 0.445
W6,4 3.092×10−20 0.900
W1,5 3.480×10−19 10.126
W3,5 −1.616×10−20 0.470
W4,5 −3.479×10−19 10.126
W6,5 −1.527×10−20 0.445
W1,6 5.510×10−23 0.002
W2,6 −3.131×10−20 0.911
W4,6 −3.445×10−19 10.028
W5,6 −1.630×10−20 0.474

objective value is 3.172, with a slight improvement. The updated network architecture is
demonstrated in Figure 4.15.

In this section, I have performed sparsification and implemented the gradual growth
scheme on two example architectures: SISO example and circular feedback network. Al-
though only two example networks are presented, this section demonstrates the unlimited
possibility of implementing the lifting scheme on a variety of feedback networks or other
ANNs in their most general form. This testifies the flexibility of ANNs to be formulated
under the lifting scheme and the effectiveness of the sparsification and gradual growth process
to optimise the architecture of ANNs.
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Table 4.22 The values and percentages of Lagrangian multipliers adopting a structure of
Circular Feedback Network after connection sparsification

Weights
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

Wx,1 −3.020×10−6 13.867
W2,1 0 0
W3,1 −1.228×10−9 0.006
W5,1 0 0
W6,1 5.865×10−7 2.693
W1,2 −7.328×108 0.336
W3,2 2.531×10−8 0.116
W4,2 0 0
W6,2 1.421×10−9 0.007
W1,3 0 0
W2,3 0 0
W4,3 0 0
W5,3 −1.296×10−11 5.950×10−5

W2,4 0 0
W3,4 −3.616×10−15 1.660×10−8

W5,4 3.616×10−18 1.660×10−11

W6,4 0 0
W1,5 −1.868×10−8 0.086
W3,5 0 0
W4,5 −9.536×10−10 0.004
W6,5 0 0
W1,6 0 0
W2,6 0 0
W4,6 −1.805×10−5 82.885
W5,6 0 0

4.10 Summary

This chapter proposed an NLP-based idea for the fitting of ANN / DNN adopting the lifting
scheme. To summarise, the method entails the following advantages:

• The method has been demonstrated to show better speed than other methods.

• The constraints comprising the ANN / DNN model are only satisfied at the solution of
NLP.
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Table 4.23 The values and percentages of Lagrangian multipliers adopting a structure of
Circular Feedback Network after further connection sparsification

Weights
Lagrangian Multiplier Lagrangian Multiplier

(Raw Value) (Percentage %)

Wx,1 −3.512×10−11 5.342
W2,1 0 0
W3,1 7.947×10−12 1.209
W5,1 0 0
W6,1 −7.724×10−12 1.175
W1,2 1.142×10−11 1.737
W3,2 1.225×10−10 18.639
W4,2 0 0
W6,2 −6.966×10−11 10.595
W1,3 0 0
W2,3 0 0
W4,3 0 0
W5,3 4.189×10−11 6.372
W2,4 0 0
W3,4 3.294×10−12 0.501
W5,4 −1.160×10−14 0.002
W6,4 0 0
W1,5 1.860×10−10 28.292
W3,5 0 0
W4,5 −1.042×10−10 15.852
W6,5 0 0
W1,6 0 0
W2,6 0 0
W4,6 6.201×10−11 9.431
W5,6 0 0
W ′

2,1 0 0
W ′

3,1 8.194×10−15 0.001
W ′

5,1 0 0
W ′

6,1 5.601×10−12 0.852

• Lifting trivialises the non-linearity of all constraints so even symbolic differentiation
would be just as efficient for gradient evaluation.

• Interior point methods can deal easily with NLP’s of O(106) variables and constraints

The second part of the chapter proposed a fitting scheme that can be used to obtain the
optimal architecture of ANNs. It achieves the following targets:
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Figure 4.15 The architecture of the circular feedback network after connection sparsification
and node growth

• Rapid, novel evolution of the ANN architecture in a completely free and deterministic
way, emulating neuronal real tissue growth including pruning and learning.

• The very simple steps proposed are a kind of "survival of the fittest scheme" and
producing "offspring" (the cloned strong important nodes identified) to improve the
network.

• The end result will be the self-evolution of ANN architectures consisting of successive
neuron / connection addition and removal .

In summary, this chapter proposed a novel, unique and quantifiable methodology to rigor-
ously analyse and modify ANN architectures and connectivity. The method is novel and
unprecedented in open literature. It has been demonstrated that the method is capable of
sparsifying both feedforward neural networks and ANN in its most general form.

For future research, it can be expected that the final ANN exhibits a "Small World
Network" structure, as in the arrangement of neurons in the real tissues of living organisms.
Therefore, it is possible to explore the relationship between a standard "Small World Network"
and our optimised ANN architecture.



Chapter 5

Autonomous Learning ANN - Part II

5.1 Introduction

In Chapter 4, I have briefly conducted a preliminary analysis of the process of neural archi-
tecture search based on sensitivity values. The analysis involves the removal of a connection,
node or layer by setting the boundary values of the equivalent optimisation problem to zero.
The process simulates L1-regularisation and is developed to achieve sparsification to arrive at
a smallest-possible network. Although this preliminary exploration is effective, this chapter
further develops on this idea by allowing both addition and removal of connections, nodes
and layers, built as subroutines. This allows a dynamic interaction between the architecture
of a network and the value of the objective function. The modification is no longer through
the setting of the boundary values. The connections, nodes and layers are added from
zero or removed completely instead. With these subroutines, I build the foundation of an
automatically-evolving system where the architecture of the system can evolve freely with
an understanding of the sensitivity values.

The chapter is organised as follows:

• Section 5.2 describes 6 processes to alter the architecture of the ANN acting as
subroutines, including the addition/removal of connections, nodes or layers. I also
describe the process of calculating the sensitivity values and discuss the optimisation
options.

• Section 5.3 provides a method to find the neuron sensitivities through automatic
differentiation.

• Section 5.4 describes the use of finite difference method to evaluate network sensitivi-
ties.
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• Section 5.5 describes the algorithm to perform autonomous architecture evolution
and uses 2 case studies to demonstrate the effectiveness of the algorithm. It further
compares the architecture to backpropagation ANN.

• Section 5.6 then concludes the chapter and discusses future work.

5.2 Subroutines for the Auto-optimisation of Network Struc-
ture

In this section, I describe 6 subroutines available for the development of an autonomous
structure-evolving network, including connection addition/removal, node addition/removal
and layer addition/removal. The ideas behind the construction of these subroutines and the
pseudocode are presented. These subroutines build up the foundation of an autonomous
system where a systematic evolution of the network structure is possible.

5.2.1 Connection Removal

In Section 4.8.6, I have removed connections between nodes by setting the upper and lower
bound to zeros. In this way, although the connections are effectively removed, the variables
relating to the definition of the neurons are still present. In this section, I describe a method
that removes a specific connection in the neural network with the corresponding variables
completely removed from the system. This effectively clears out variables to achieve a
smaller storage with dynamic memory allocation.

To effectively control the addition and removal of connections, I employ an internal index
system where each connection is assigned to an index with value of either 0 or 1. When the
value is 1, the connection is still present. When the value is 0, the connection has effectively
been removed. The internal indexing system facilitates the management of connections and
aids the process of determining whether a node is still present when certain connections
to the node has been removed. This is different to the traditional method of architecture
optimisation where a node is either dropped out or kept. In our case, I can only remove
certain connections but not the whole node. The internal indexing helps to control when a
connection can be removed or added.

For connection removal, I follow the sequence of ideas defined below:

• Step 1: Check if this is the last in-coming or out-going connection in the node. If yes,
I remove the node by removing node-related variables and all variables related to the
out-going and in-coming connections.
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• Step 2: If this is not the last in-coming or out-going connection, I only remove
the connection itself and parts of the constraint equations that contain the removed
connection.

The internal indexing system is useful when checking whether the removed connection is
the last in-coming or out-going connection. This is achieved by summing up the indexes of
the connections related to the neuron of interest and checking if the sum equals to 1.

Even if the node of interest still contains several out-going connections, if there is no
in-coming connections, the node will still be removed. This is because a node without in-
coming connections is not going to have a value in the network. Similarly, a node containing
no out-going connections will not participate in the production of results hence the node can
be removed completely despite there are multiple in-coming connections.

I define the process of removal in more detail in the pseudocode in Algorithm 3.

Algorithm 3 Removal of a Connection
procedure CONNECTION_REMOVAL(Layer, Node, Connection, Internal_index, Net-
work_Structure)

for <all data points> do
if <Last In-coming/ Out-going Connection> then

Internal_index[connection]=0
Remove all connections of the node
Remove all parts of the constraints containing the node variables
Remove all variables (W ’s, h’s, and v’s) concerning the node

else
Internal_index[connection]=0
Remove all parts of the constraints containing the node variables
Remove the connection variable (W ’s)

end if
end for

end procedure

5.2.2 Connection Addition

In the previous section, I have dealt with the removal of a connection. This section focuses on
the addition of a particular connection. Addition is more complicated compared to removal,
as removal only requires removing the corresponding connection variables, thus manually
removing a particular connection associated with that node. For addition of a connection,
however, I follow the following logic: suppose I would like to add connection Wl,i, j where l
is the layer number, i is the node the connection is connected to (the in-coming node), and j
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is the node where the out-going connection is starting from (the out-going node). This is the
same definition as in Section 4.4.

• If the in-coming node v[k]l,i already exists, this means that the connection is added on to
the original connection with other neurons.

• Next, I check whether the connection and weights associated with the connection
already exist.

• If the weight is non-empty, that means there was a connection originally but was
removed in the connection removal step, through the imposition of a constraint on the
upper and lower bounds. To add this connection, I simply relax that constraint and set
the upper and the lower bounds to nonzero values.

• If the weight does not exist, that means there has been a node present in the in-coming
layer but this in-coming node is not connected to the out-going node. Therefore, I
define the weights associated with the connection and add the product of the weights
and the out-going node into the calculation of the constraints of the in-coming node.

• If the in-coming node does not exist before making the connection, I need to define
h[k]l,i and v[k]l,i as the new variables associated with the node. I also define the value of

Wl,i, j once for all. I also add in new constraints that define the values of v[k]l,i and h[k]l,i .

• It is noteworthy that the whole connection construction process is repeated for the
number of data points. Except the values of W s which are the same for different
data points, the other values (v and h) are idiosyncratic to the data point and thus are
separately defined for each data point.

• It is also noteworthy that the structure of the network is changed during the pro-
cess, hence the variables concerning the network architecture are also changed in the
connection addition process.

The pseudocode of the connection addition process is demonstrated in Algorithm 4.

5.2.3 Node Removal

Different to Section 4.8.4, the node removal described in this section completely removes
a node and its corresponding constraints and variables. The internal indexing system is
important in this case, as it controls which connection has already been removed and which
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Algorithm 4 Addition of a Connection
procedure CONNECTION_ADDITION(Layer, Node, Connection, Internal_index, Net-
work_Structure)
Internal_index[connection]=1

for <all data points> do
if <Node exists> then

if <Weights already exists> then
Relax upper and lower bounds.

else
Add connection (W ’s) and relevant constraints

end if
else

Add a new node in Network Structure
Add corresponding variables (W ’s, v’s, h’s)
Add corresponding constraints

end if
end for

end procedure

connection is still present. To completely remove the node, I remove all in-coming and
out-going connections corresponding to the node.

I following the logic below to perform node removal:

• Step 1: The validity of the node number to be removed is checked. This excludes
nodes that are non-existent in the network or the bias term. Moreover, nodes in input
and output layers cannot be removed.

• Step 2: Update the internal indexing system with regard to the removal of a node.

• Step 3: Delete the in-coming and out-going constraints corresponding to the node. The
constraints are deleted before the variables are. Before deleting, the existence of the
node is double-checked.

• Step 4: Delete the variables corresponding to the node (W ’s, v’s and h’s).

• Step 5: Remove the node from the network structure.

One limitation of the code is that it does not completely remove the last neuron in a layer.
The removal of the last neuron can be performed in the code to remove a layer, which is
described in Section 5.2.5. The removal of the last neuron is effectively the same as removing
a entire layer by definition.

The pseudocode for node removal is presented in Algorithm 5.
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Algorithm 5 Removal of a Node
procedure NODE_REMOVAL(Layer, Node, Internal_index, Network_Structure)

Check validity of the node number
Internal_index[all connections related to the node]=0
for <all data points> do

Remove all out-going constraints from the node.
Remove all in-coming constraints from the node
Remove corresponding variables (W ’s, v’s, h’s)

end for
Remove the node in Network Structure

end procedure

5.2.4 Node Addition

Having defined the process of connection addition, node addition is much simpler. If I would
like to add a node hl,i, where l is the layer number and i is the node number, I simply add
all connections that are linked with the node, both in-coming and out-going connections. I
follow the following steps in constructing the network:

• Step 1: Check if the layer and node number is valid. I raise exception in cases where
the layer/node number is out of range, the node is existent or the node is added to the
input/output layer.

• Step 2: I update the internal indexing system to add a position in the index to represent
the node.

• Step 3: Create variables concerning the node addition process (create W ’s, v’s and h’s).

• Step 4: Create constraints relating to the in-coming nodes. The internal indexing
system is checked for any neuron already removed from the network. If a neuron is
absent, the constraints will not contain terms related to that node variable.

• Step 5: Create constraints relating to the out-going nodes. Similarly, the internal
indexing system is checked for any absent node not to be contained in the constraint
equations.

• Step 6: Update the variable representing the network structure.

One limitation of the function to perform node addition is that it cannot add on to a
completely new layer with one neuron, i.e. it can only add on to existing layers. If the target
is to add a neuron to a new layer, I can use the add layer function instead which will be
described in Section 5.2.6.
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The pseudocode for node addition is presented in Algorithm 6.

Algorithm 6 Addition of a Node
procedure NODE_ADDITION(Layer, Node, Internal_index, Network_Structure)

Check validity of the node position
Internal_index[all connections related to the node]=1
Create corresponding variables (W ’s, v’s, h’s)
for <all data points> do

Add all out-going constraints from the node.
Add all in-coming constraints from the node.

end for
Add a new node in Network Structure

end procedure

5.2.5 Layer Removal

The layer removal is a complicated process. When a layer is removed, I re-establish the
connections between layer l+1 and layer l−1 with full connection between the all the active
nodes in the two layers. Suppose I would like to remove layer l. I outline the layer removal
process as below:

• Step 1: Check validity of the layer to be removed. Only hidden layers can be removed.

• Step 2: Disconnect in-going and out-coming connections in layer l by deleting the
relevant variables (W ’s, v’s, h’s) and constraints

• Step 3: Decrease the internal index of all layers beyond layer l (l −1, l −2, · · · ) by 1.

• Step 4: Connect the original l +1 layer to layer l −1 by redefining relevant variables
and constraints.

The pseudocode for removing a layer is demonstrated in Algorithm 7

5.2.6 Layer Addition

To add a layer is a very convoluted process. Suppose I would like to add a layer after layer
l. There are several key features of the layer addition subroutine. First, since the layer l is
added, the original layer l becomes l + 1 and all layers beyond increase their index by 1.
Second, the connections between layer l −1 and original l are all broken, which replace the
original sparsified connections to fully connected version with the new layer l. Thus, I always
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Algorithm 7 Removal of a Layer
procedure LAYER_REMOVAL(Layer, Internal_index, Network_Structure)

Check validity of the layer position
Remove all connections between layer l and layers l +1 and l −1
Internal_index[all connections beyond layer l]-=1
Re-establish the Internal_index to represent modified connection between layer l +1

and l −1
Create corresponding variables (W ’s, v’s, h’s)
for <all data points> do

Add all out-going constraints for the layer l −1 and all in-coming constraints for
layer l +1.

end for
Remove a layer in Network Structure

end procedure

obtain the fully connected layers between l −1 to l, and l to l +1. Third, it is noteworthy
that I only add onto the hidden layers, since I cannot add onto the input and output layers.

To summarise the process of layer addition:

• Step 1: Check validity of the layer and the number of neurons to add.

• Step 2: Remove all connections from layer l −1 to l.

• Step 3: Increase the index of all layers beyond the layer of interest (l +1, l +2, · · · ) by
1.

• Step 4: Add nodes in layer l with the total number of nodes equal the target value.

• Step 5: Connect the in-coming and out-going connections to the added layer.

The algorithm outline is described in Algorithm 8.

5.2.7 Normalisation of Sensitivity Values

After applying the subroutines and obtaining the sensitivity values, I would like to normalise
the sensitivity values into a range of -1 to 1 for each layer. In this way, I can create
a comparison of the significance of each node and decide which node to remove. The
methodology for normalisation is outlined below.

Given λi for i = 1,2,3, · · · ,m. Let:

λ = max
i
{λi} (5.1)
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Algorithm 8 Addition of a Layer
function LAYER_ADDITION(Layer, Target_Number_of_Node, Internal_index, Net-
work_Structure)

Check validity of the layer position
Remove all connections between layer l and layer l −1
Internal_index[all connections beyond layer l]+=1
Re-establish the Internal_index to represent full and modified connection between

layer l −1 to l and l to l +1
Create corresponding variables (W ’s, v’s, h’s)
for <all data points> do

Add all out-going constraints from the layer l.
Add all in-coming constraints to the layer l.

end for
Add a new layer in Network Structure

end function

λ = min
i
{λi} (5.2)

I use as a reference value (-1 or +1) the largest of λ and λ in magnitude.

∆λ = max{|λ |, |λ |} (5.3)

Default to range:
−∆λ ≤ λ ≤+∆λ (5.4)

and normalise all λi by:

λ̂i =
1

∆λ
·λi (5.5)

for i = 1,2,3, · · · ,m. This creates a normalised range by default, such that:

−1 ≤ λ̂i ≤+1 (5.6)

I use λ̂i for comparison and ranking neurons in terms of importance, where:

λi =

[
∑

ND
j=1 λi, j

ND

]
(5.7)

where ND is the total number of data points. This is effectively finding an average of the
sensitivity values on each node across different data points.



124 Autonomous Learning ANN - Part II

5.2.8 Optimisation Options

I have discussed in detail 6 network modification algorithms, including the addition / removal
of connections, nodes and layers respectively. Each process entails modification of the
network hence an optimisation scheme is required to generate results from the modified
network. I have choices of the following optimisation schemes. With regard to node removal:

1. Re-optimise the whole ANN

2. Re-optimise all ANN weights of the remaining nodes

3. Re-optimise only all the weights of the nodes it used to be connected (i.e. the node
removed)

4. Re-optimise only the in-coming / out-going nodes

With regard to node addition:

1. Re-optimise the whole ANN

2. Keep all other weights Wl,i, j fixed and fit only the weights of the new nodes

3. Re-optimise the new nodes and all I/O weights of attached old nodes.

With regard to layer addition:

1. Re-optimise the whole ANN

2. Optimise only the new weights added in this layer

3. Optimise the complete set of weights of the new layer and also the neighbouring layers
to the inserted layer

With regard to layer removal:

1. Re-optimise the whole ANN

2. Re-optimise inter-connectivity between layer weights where the missing layer used to
be

3. Re-optimise the new inter-connectivity but also the outside layers from the two layers
newly linked due to the removal of layer l

With the optimisation schemes above, I could experiment with different schemes and
compare the performance of the generated ANN through metrics such as the value of the
LSQR objective function.
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5.3 Neuron Sensitivity through Automatic Differentiation

In previous sections, I have demonstrated how the modifications of a network can be per-
formed with subroutines to alter the architecture based on sensitivity values. However, it
has not been defined when to add/remove neurons and layers. Therefore, I provide the
following analysis on the neural architecture with an amplification/attenuation parameter to
control the evolution of architecture. The method makes use of an attenuation/amplification
factor for each neuron and also collectively for a layer. The sensitivities with regard to the
attenuation/amplification factor is used as a guidance to whether a node or a layer should be
removed.

5.3.1 Background

The idea of attenuation/amplification factor is inspired from [201]. In this research, the atten-
uation/amplification factor is adopted to the sensitivity analysis of the predictive modification
of biochemical pathways to optimise the selection of reaction steps.

I adopt a similar set of analysis in the ANN network where the sensitivity is calcu-
lated from the partial differentials of the objective function with regard to the attenua-
tion/amplification factor I introduced into the ANN to determine the existence of a node or
layer. The mathematical details are described in the following section.

5.3.2 Mathematical Formulation

I define the ANN as the following process:

zl,i,k = f (yl,i,k) (5.8)

where z is the output from a neuron, y is the input to the neuron, l = 1, · · · ,Nl is the layer
index, i = 1, · · · ,Ni is the neuron index within layer l, and k = 1, · · · ,Nk is the data point
index.

I introduce an attenuation/amplification factor into the formulation of the ANN such that
it pre-multiplies the output value of a particular neuron. The factor can effectively serve to
represent the neuron’s sensitivity in the optimisation process.

zl,i,k = θl,i · f (yl,i,k) (5.9)
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where

θl,i =

1, neuron exists

0, neuron does not exists

The artificial parameters θl,i are attenuation/amplification parameters.
I find sensitivities of the optimal objective function value with respect to the parameters:

∂ (LSQR⋆)

∂θ
(neuron)
l,i

and ∂ (LSQR⋆)

∂θ
(layer)
l

.

Consider an optimisation problem involving a set of parameters θ ∈ RNθ . Nθ ≥ 1 is the
total number of parameters. I define the optimisation problem:

φ = minx∈X f (x;θ)

s.t. h(x;θ) = 0

other constraints, equalities and/or inequalities, that nonetheless do not depend on θ , will be
ignored.

Consider the Lagrangian function:

L (x,λ ;θ) = f (x;θ)+λ
T h(x;θ) (5.10)

I know that for (x⋆,λ ⋆) I get:

L (x⋆,λ ⋆;θ) = f (x⋆;θ)+0 (5.11)

The total derivative/gradient of the objective function with respect to θ at the optimal
point (x⋆(θ),λ ⋆(θ)) for a given value for the vector of parameters θ :

D f
Dθ

∣∣∣∣
[x⋆(θ),λ ⋆(θ),θ ]

=
DL

Dθ

∣∣∣∣
[x⋆(θ),λ ⋆(θ),θ ]

=
∂ f
∂x

∂x
∂θ

+λ
T (

∂h
∂x

∂x
∂θ

+
∂h
∂θ

)

=
∂ f
∂x

∂x
∂θ

Consider next the specific form of our ANN neuron fitting constraints:

hl,i,k = zl,i,k −θl,i · f (y) (5.12)

where zl,i,k is the set of neurons outputs for each data point in our dataset, y is the set of
variables in other equality constraints of the general form g(y,z) = 0. The variables z are the
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Figure 5.1 The architecture of ANN used for example formulation.

ones I am interested in modifying with the artificially introduced attenuation/amplification
parameters θ . The other equations more specifically relate to the impact of the node (l, i) at
data point (k):

yl,i,k =
Ni−1

∑
j=1

zl, j,k ·Wl, j,i

where l = 2, · · · ,Nl , i, j = 1, · · · ,Ni, and k = 1, · · · ,Nk.

Example Formulation

The generic form of these relations is not very easy to construct algebraically. I first proceed
by an example to get the required partial derivatives in the Jacobian matrices involved. Figure
5.1 represents an example network architecture.

There are 12 weights and bias terms for the hidden layer (l = 1) and output layer (l = 2).
The input layer is (l = 0). The equations involved include:

h1 = z1,1,k −θ1,1 · f (y1,1,k) = 0 (5.13)

h2 = y1,1,k − (W1,1,0 +W1,1,1 · x1,k +W1,2,1 · x2,k) = 0 (5.14)

h3 = z1,2,k −θ1,2 · f (y1,2,k) = 0 (5.15)

h4 = y1,2,k − (W1,2,0 +W1,2,1 · x1,k +W1,2,2 · x2,k) = 0 (5.16)

h5 = v1,k − (W2,1,0 +W2,1,1 · z2,1,k +W2,1,2 · z2,2,k) = 0 (5.17)

h6 = v2,k − (W2,2,0 +W2,2,1 · z2,1,k +W2,2,2 · z2,2,k) = 0 (5.18)

The θs are added only before the outputs of a neuron to control the existence/absence of a
neuron. There are 6 equations in total with state variables z1,1,k, z1,2,k, y1,1,k, y1,2,k. v1,k and
v2,k. Thus, the 6 equations determine the 6 state variables.
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I want the Jacobian of these 6 equations with respect to the 6 state variables (∂h
∂a ), where

a can refer to zl, j,i or yl, j,k.
∂h1

∂ z1,1,k
=+1 (5.19)

∂h1

∂y1,1,k
=− ∂ f

∂y1,1,k
·θ1,1 (5.20)

∂h2

∂y1,1,k
=+1 (5.21)

∂h3

∂ z1,2,k
=+1 (5.22)

∂h3

∂y1,2,k
=− ∂ f

∂y1,2,k
·θ1,2 (5.23)

∂h4

∂y1,2,k
=+1 (5.24)

All other Jacobian entries are zero. Because I start with an ANN where obviously all
nodes/neurons are fully in existence, then clearly that is why I must have θ2,1 = θ2,2 =+1.

I also need the Jacobian with respect to the artificially introduced factors θl,i, where
l = {1}, i = {1,2}. I obtain the following equations:

∂h1

∂θ1,1
=− f (y1,1,k) (5.25)

∂h3

∂θ1,2
=− f (y1,2,k) (5.26)

All other entries of this Jacobian are zero.
Objective function is:

LSQR =
1
2

Nk

∑
k=1

[
(v1,k − vtarget,1,k)

2 +(v2,k − vtarget,2,k)
2] (5.27)

where vtarget,1,k and vtarget,2,k are constant output level data.
Gradient with respect to v:

∂ (LSQR)
∂v1,k

= (v1,k − vtarget,1,k) (5.28)

∂ (LSQR)
∂v2,k

= (v2,k − vtarget,2,k) (5.29)
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Table 5.1 The Jacobian values of equality constraints with regard to node variables.

∂h
∂a z1,1,k z1,2,k y1,1,k y1,2,k

h1 +1 0 - ∂ f
∂y1,1,k

·θ1,1 0
h2 0 0 +1 0
h3 0 +1 0 - ∂ f

∂y1,2,k
·θ1,2

h4 0 0 0 +1
h5 −W2,1,1 −W2,1,2 0 0
h6 −W2,2,1 −W2,2,2 0 0

Table 5.2 The Jacobian values of equality constraints with regard to attenuation/amplification
variables.

∂h
∂θ

θ1,1,k θ1,2,k
h1,k − f (y1,1,k) 0
h2,k 0 0
h3,k 0 − f (y1,2,k)
h4,k 0 0
h5,k 0 0
h6,k 0 0

The objective does not contain by construction the θ , nor any other part of the model,
except form the neuron firing/output equality constraints. The various Jacobians and total
sensitivity of the objective formula are given in Table 5.1 and 5.2.

Thus, the total sensitivity gradient is given by:

D(LSQR)
Dθ

=
∂ (LSQR)

∂a
∂a
∂θ

(5.30)

I already have values of ∂ (LSQR)
∂a . For ∂a

∂θ
, I have the sensitivity equation of ANN with respect

to θ :
∂h
∂a

∂a
∂θ

+
∂h
∂θ

= 0 (5.31)

since h(a,θ) = 0.
Since given: (a) all the weights Wl, j,i, (b) θl,i ≡ 1, and (c) all (vtarget,1,k,vtarget,2,k)

T , I can
determine uniquely yl,i, j and zl,i, j. Therefore, ∂h

∂a is invertible (factorizable and very sparse).
I can solve ∂h

∂a to get ∂a
∂θ

. Then I can calculate D(LSQR)
Dθ

, which I can use as a "gradient" to
guide addition or removal of nodes and/or entire layers.

There are many sensitivities and they are by construction dense matrices (the " ∂a
∂θ

").
Since I care about the total sensitivity over all dataset points, I can find more efficient ways
to compute them, for example, to calculate them independently for all data points and then
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sum them up.
D(LSQR)

Dθ

∣∣∣∣
[k]

=
∂ (LSQR)

∂a

∣∣∣∣
[k]
· ∂a

∂θ

∣∣∣∣
[k]

(5.32)

∂a
∂θ

∣∣∣∣
[k]

=−(
∂h
∂a

∣∣∣∣
[k]
)(−1) · ∂h

∂θ
(5.33)

Thus, the total sensitivity of LSQR with respect to θ should be:

D(LSQR)
Dθ

∣∣∣∣
total

=
Nk

∑
k=1

D(LSQR)
Dθ

∣∣∣∣
[k]

(5.34)

where k = 1, · · · ,Nk. The back-substitution and matrix factorisation can be done separately
and in parallel for all data points. Thus, the calculation of the LSQR total sensitivity/gradient
with respect to θ is a fully scalable and parallelisable task. This sensitivity analysis demon-
strates the potential of the formulation of ANN with the lifting scheme to be used for
large-scale development.

Generalisation of the Example Formulation

I perform layer by layer calculation of output sensitivity of an ANN to its neurons’ attenua-
tion/amplification artificial parameters. For k = 1, · · · ,Nk data points, the output of layer l
given input form layer l −1 is:

zl,i,k = θl,i · f (yl,i,k) (5.35)

where:

yl,i,k =

NN(l−1)

∑
j=1

Wl,i, j · z(l−1), j,k +Wl,i,0 (5.36)

for l = 1,2, · · · ,Nl , i = 1,2, · · · ,Ni, and j = 1,2, · · · ,N j. Nl is the total number of layers. Ni

is the number of neurons in layer l and N j is the number of neurons in layer l −1. Wl,i,0 is
the bias term.

I wish to compute the following sensitivity:[
∂ zi,k

∂θl,i

]
(5.37)

For layer (l), assume that from the previous layer computation, I have available:

∂ z(l−1),i,k

∂θl′,i′,k
(5.38)
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for l′≤ (l−1), i.e. l′= 1,2, · · · ,(l−1), j = 1,2, · · · ,N j, j′= 1,2, · · · ,N′
j, and k= 1,2, · · · ,Nk.

Therefore, for layer (l) from Equations 5.35 and Equation 5.36:

∂ zl,i,k

∂θl′,i′
=

∂ f
∂yl,i,k

·
∂yl,i,k

∂θl′,i′
·θl,i + f (yl,i,k) ·C (5.39)

where

C =

1, i f f l’=l, i’=i

0, otherwise

and
∂yl,i,k

∂θl′,i′
=

NN(l=1)

∑
j=1

Wl,i, j ·
∂ z(l−1),i,k

∂θl′,i′
(5.40)

where NN(l=1) is the number of neurons in the input layer. This is clearly a nice and

transparent iterative scheme. I can encode it into an algorithm. Initialise a
[

∂ zl,i,k
∂θl′,i′

]
matrix

storage, initialised to zeros. To see how the initial iteration works, I start the computation for
layer l = 1.

Set l = 1:
∂ z1,i,k

∂θl′,i′
=

∂ f
∂y1,i,k

·
∂y1,i,k

∂θl′,i′
·θ1,i + f (y1,i,k) ·C (5.41)

where θ1,i = 1 and ∂y1,i,k
∂θl′,i′

= 0 since there is no prior layer dependent on neuron’s outputs.
Therefore, for layer l = 1 I get:

∂ z1,i,k

∂θl′,i′
= 0 (5.42)

for all l′ = 1,2, · · · ,(Nl) and i′ = 1,2, · · · ,N′
i , where l′ ̸= l and i′ ̸= i.

For l′ = l and i′ = i,
∂ z1,i,k

∂θ1,i
= f (y1,i,k) (5.43)

Then, for l > 1, Equations 5.39 and 5.40 can be used routinely as derived.
For example, for the second layer which is assumed to be a non-terminating layer, I set

l = 2:
∂ z2,i,k

∂θl′,i′
=

∂ f
∂y2,i,k

·
∂y2,i,k

∂θl′,i′
·θ2,i + f (y2,i,k) ·C (5.44)

where ∂ f
∂y2,i,k

is calculated from the derivatives of the activation function, ∂y2,i,k
∂θl′,i′

is defined in

Equation 5.40, θ2,i = 1 and f (y2,i,k) is the output of the neuron.
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If the activation function used is the Sigmoid function, which has the form:

σ(x) =
1

1+ e−x (5.45)

The derivative of the Sigmoid function is:

σ
′(x) = σ(x)(1−σ(x)) (5.46)

Since f is the transformation from the input to a neuron to the output of a neuron, it
is effectively the activation function. f (yl,i,k) is the output of a neuron. Thus, I have

∂ f
∂y2,i,k

= f (y2,i,k)(1− f (y2,i,k)).
Therefore,

∂ z2,i,k

∂θl′,i′
= f (y2,i,k)(1− f (y2,i,k)) ·

NN(l=1)

∑
j=1

W2,i, j ·
∂ z1,i,k

∂θl′,i′
·θ2,i + f (y2,i,k) ·C (5.47)

where ∂ z1,i,k
∂θl′,i′

is calculated in Equation 5.42 for l′ ̸= l, i′ ̸= i and in Equation 5.39 for l′ = l, i′ = i.
These are in the previous loop for l = 1. Another special case I need to look at is the last
layer (output layer). In this layer, I do not have the activation function.

For l′ = l, i′ = i, I have the following relationship:

∂vl,k

∂θl,i
= 0 (5.48)

since the output neurons are always present and are not controlled by the attenuation/amplification
factor θ .

For l′ ̸= l, i′ ̸= i, I have the following:

∂vi,k

∂θl′,i′
=

∂vi,k

∂ z(l−1),i
·

∂ z(l−1),i

∂θl′,i′
=Wl, j,i ·

∂ z(l−1),i

∂θl′,i′

where
∂ z(l−1),i
∂θl′,i′

is calculated from the previous iteration. Thus, I arrive at having calculated the

following for the output layer of the ANN: ∂vi,k
∂θl,i

, for all l = 1,2, · · · ,Nl . This is the first-order
sensitivities of ANN output with respect to neuron existence.

Looking at our objective function:

LSQR =
Nk

∑
k=1

NNl=Nl

∑
i=1

(vi,k − vtarget,i,k)
2 (5.49)
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where NNl=Nl is the number of neurons in the last layer.
To get a single neuron gradient contribution or sensitivity, I obtain:

∂ (LSQR)
∂θl′,i′

=
∂

∂θl′,i′

 Nk

∑
k=1

NNl=Nl

∑
i=1

(vi,k − vtarget,i,k)
2

 (5.50)

This yields:

sl′,i′ =
∂ (LSQR)

∂θl′,i′
=

Nk

∑
k=1

NNl=Nl

∑
i=1

∂ zl,i,k

∂θl′,i′
(5.51)

for l′ = 1,2, · · · ,Nl and i′ = 1,2, · · · ,N′
i . I term sl′,i′ the LSQR sensitivity with respect to

θl′,i′ .
For the entire gradient contribution of an entire layer as a collection of neurons, I get:

sl′ =
N′

i

∑
i′=1

sl′,i′ (5.52)

This concludes the special sensitivity analysis for efficient computation of ANN sensitivi-
ties with respect to the existence of single neuron and entire neuron layers.

Example Iteration

Suppose I have a neural network with architecture of [4,5,3,2,2] neurons in each layer,
where the first number represents the neuron number in the input layer and the last number
represents the neuron number in the output layer. I arrive at Table 5.3 and Table 5.4.
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There is a more sophisticated manner in which I can implement this iterative scheme. If
I carefully observe the tables, I can see that the iterative process can be simplified into the
following steps:

• Initialisation: Generate a matrix to store differential values as represented in Table 5.3
and Table 5.4 (number of rows equal to the total number of neurons in the network
and number of columns equal to the total number of neurons times the number of data
points). I divide the matrix into sub-matrices of differential values for each layer.

• Step 1: Define the initialisation of the differential values for the first layer (∂ z1,i,k
∂θl′,i′

). This
is effectively setting the diagonal of the sub-matrix representing the first layer to be the
output of the neuron ( f (y1,i,k)) while keeping other positions to be 0’s.

• Step 2: To arrive at the values for the second layer (∂ z2,i,k
∂θl′,i′

), I perform a scaled matrix
multiplication between the weights related to the second layer (matrix of W2,i, j’s) and
the initialised matrix. The scaled value is defined to be f (y2,i,k)(1− f (y2,i,k)) ·θ2,i.

• Step 3: In the previous step, I have updated the values for θl′,i′ ̸= θl,i. To update for
θl′,i′ = θl,i, I only need to change the diagonal (in part of the matrix relating to θl,i) to
f (y2,i,k) while keeping the non-diagonal values to 0’s. This finishes the update of the
second layer.

• Step 4: For non-terminating layers (hidden layers), I repeat Step 2 and Step 3 except
that I replace the initialised sub-matrix of first layer to be the sub-matrix of the layer
previous to the layer under current iteration. For example, for layer 3, I take the
sub-matrix of layer 2 (∂ z2,i,k

∂θl′,i′
) to be the component for matrix multiplication.

• Step 5: For the terminating layer (output layer), this is effectively a matrix multiplica-
tion between the weights matrix for that layer and the sub-matrix of differential values
for the previous layer.

The sensitivity of each neuron with regard to the objective function is thus obtained
through the sub-matrix of the last layer. The final sensitivity for each neuron is the sum of
sensitivity values across the output dimension and across different data points.

This scheme allows the calculation of sensitivities of all neurons to be achieved through a
simple iterative matrix multiplication process. This can be easily implemented systematically
in code or even in an Excel spreadsheet.

Adopting the dataset described in Section 4.8.1, with the neural architecture of [4,5,3,2,2]
as demonstrated in Table 5.3 and Table 5.4, I arrive at the calculated sensitivities for 1,000
data points as tabulated in Table 5.5 and Table 5.6.
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Table 5.7 The CPU time for the sensitivity calculation of a neural network with architecture
[4,5,3,2,2] using 1,000 data points.

Steps Optimisation Iterations 1 Iterations 2 Iterations 3 Iterations 4 Total
CPU Time(s) 1.233 0.000709 0.0192 0.00787 0.000728 1.262

From Table 5.5 and Table 5.6, I identify the neuron with the lowest sensitivity to be the
neurons in the first layer with equal sensitivity. Therefore, in terms of neuron removal, I
could remove any neuron in the first layer. In terms of layer removal, I add up the sensitivities
of neurons in each layer and the results demonstrate that I should remove the first layer. If I
would like to add a neuron, I should consider neurons in the last hidden layer which has the
highest sensitivity. If I would like to add a layer, the last hidden layer is the most sensitive
and hence shall be duplicated.

5.3.3 CPU Time and Memory

The complete process of automatic differentiation consists of two steps: 1) NLP optimisation
to obtain the weights and the neuron outputs, and 2) iterations to calculate the sensitivities.
For a structure of [4,5,3,2,2], the CPU times required for calculation of sensitivities of 1,000
data points are tabulated in 5.7.

The processor used to run this code is the 2.3GHz Quad-Core Intel Core i5 with a memory
setting of 8GB 2133MHz LPDDR3. It can be observed that most of the time is spent on the
optimisation process (97.7% of CPU time). This is the uncontrollable process as I am using a
standard optimiser. The calculation of the sensitivities are fast, taking 0.0290s in total (2.30%
of CPU time). Thus, this is quite an effective method as long as the optimiser reaches a good
optimum in a small amount of time.

The disadvantage is that the algorithm requires the storage of a matrix of size (NN,NN×
Nk) where NN is the total number of neurons and Nk is the total number of data points.

5.4 Neuron Sensitivity through Finite Differences

In the previous section, I have performed the calculation of sensitivities of all neurons in the
network through automatic differentiation, with the aim to identify the least (most) sensitive
neuron or layer in order to remove (add). The method of automatic differentiation is able
to produce the most rigorously calculated sensitivity values for all neurons. An alternative
method to gauge the sensitivity of neurons is through finite difference method. This method
is less rigorous and cannot produce a sensitivity value. However, it is easy in terms of



5.4 Neuron Sensitivity through Finite Differences 139

implementation into more sophisticated forms. Moreover, it can serve as a validation of the
results obtained from automatic differentiation.

5.4.1 Mathematical Formulation

I adopt central difference in this case to generate more accurate results. Thus, the finite
difference is defined to be:

f ′(x) = lim
ε→0

f (x+ 1
2ε)− f (x− 1

2ε)

ε
(5.53)

I start from an example formulation and then extend to generalised cases. Suppose I have
a network with the architecture [2,2,2]. The formulation adopting the lifting scheme has
been described in Section 4.4, which is listed here fore reference. In order to calculate
the sensitivity of each neuron, I first solve the optimisation problem with the following
constraints.

z1,1,k − f (y1,1,k) = 0 (5.54)

y1,1,k − (W1,1,0 +W1,1,1 · x1,k +W1,2,1 · x2,k) = 0 (5.55)

z1,2,k − f (y1,2,k) = 0 (5.56)

y1,2,k − (W1,2,0 +W1,2,1 · x1,k +W1,2,2 · x2,k) = 0 (5.57)

v1,k − (W2,1,0 +W2,1,1 · z2,1,k +W2,1,2 · z2,2,k) = 0 (5.58)

v2,k − (W2,2,0 +W2,2,1 · z2,1,k +W2,2,2 · z2,2,k) = 0 (5.59)

After solving the optimisation problem, I will obtain preliminary optimised weight
matrices. For Layer 1: [

W1,1,0 W1,1,1 W1,1,2

W1,2,0 W1,2,1 W1,2,2

]
For Layer 2: [

W2,1,0 W2,1,1 W2,1,2

]
I construct matrices of the attenuation/amplification factor for each layer to be of the same
size as the weight matrices. For Layer 1:[

θ1,1,0 θ1,1,1 θ1,1,2

θ1,2,0 θ1,2,1 θ1,2,2

]
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For Layer 2: [
θ2,1,0 θ2,1,1 θ2,1,2

]
The values of the attenuation/amplification factors θ ’s controls the impact of weights on

the objective function. To find the sensitivity of θ ’s with regard to the objective function,
the values of θ ’s are individually perturbed (±1

2ε) and the changes in the objective function
is observed. The perturbation resulting in the largest change in the objective function is the
most sensitive neuron and vice versa. To implement the process, initially I start with all
θ = 1+ 1

2ε where ε is a small user-defined value and calculate the value of the objective
function. I then change the value of θ ’s to 1− 1

2ε . I then multiply the θ ’s element-wise with
the weights in each layer to gain a new objective value. This is effectively a element-wise
matrix optimisation.

To find the sensitivity for blocks of layers, I perturb all the θ ’s connected with the block
of the layers at the same time and evaluate the value of the objective function. In this way, I
can identify the sensitivities of any number of layers in combination through finite difference.
This is easier compared with automatic differentiation where complicated differentials need
to be derived in order to find the sensitivities of blocks of layers.

I now generalise the formulation. For k = 1, · · · ,Nk data points, the output of layer l
given input form layer l −1 is:

zl,i,k = f (yl,i,k) (5.60)

where:

yl,i,k =

NN(l−1)

∑
j=1

Wl,i, j · z(l−1), j,k +Wl,i,0 (5.61)

for l = 1,2, · · · ,Nl , i = 1,2, · · · ,NNl , and j = 1,2, · · · ,NN(l−1), where NNl is the number of
neurons in layer l and NN(l−1) is the number of neurons in layer l −1. Wl,i,0 is the bias term.
I obtain the weights through the optimisation process of Equation 5.35 and 5.36 and then
define the matrices of θ ’s for each layer of weights. For layer l:

θl,1,0 · θl,1,NN(L−1)
...

...
θl,NNl ,0 · θl,NNl ,NN(L−1)


where θ = 0 or 1. ∂ (LSQR)

∂θl′,i′
is found by perturbing θ ’s based on Equation 5.53.
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5.4.2 Example Formulation

I similarly adopt the architecture of [4,5,3,2,2] to calculate the sensitivities of each neuron
for 1,000 data points. The perturbation ε is set to be 1×10−6. The approximated values of
the sensitivities through finite difference method are tabulated in Table 5.8.

From Table 5.8, I find the neuron with the highest sensitivity is neuron (1,1) and the
neuron with the lowest sensitivity is neuron (1,3). Therefore, I seek to duplicate neuron (1,1)
or remove neuron (1,3) in the automatic search process. The layer with the highest sensitivity
is layer 1 and the layer with the lowest sensitivity is layer 3. Therefore, I could duplicate
layer 1 or remove layer 3.

I also tabulate the number of iterations and the CPU time for each optimisation process.
Similarly, the processor used to run this code is the 2.3GHz Quad-Core Intel Core i5 with a
memory setting of 8GB 2133MHz LPDDR3. From the results, I observe that the average
CPU time for a single iteration is 2.327s and for the calculation of one sensitivity value is
0.0895s.

If I take the backward or the forward difference instead of the central difference, the
total CPU time spent is less since the calculation of θ = 1 is more easily calculated. The
approximated values of the sensitivities through backward finite difference method are
tabulated in Table 5.9.
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5.4.3 Validation with Automatic Differentiation

The results from finite difference is less rigorously derived and calculated than the results
from automatic differentiation. However, both methods serve to produce the same evaluation
of sensitivities of individual neurons with respect to the objective. The two methods can
serve to validate each other.

In both cases, it is identified that the last layer has the highest sensitivity values, followed
by layer 2, then by layer 1. Both results corroborate with each other in terms of neuron
importance. The difference is that in layer 2 and last layer, the raw values of the sensitivities
calculated are different. For example, sensitivities of layer 2 calculated from automatic
differentiation are of the scale 10−3 whereas in finite difference, it is calculated to be of
the scale 10−5 −10−4. This can be attributed to the finite difference method, being a less
rigorous method, can introduce errors based on the shape of the objective function. I have
to assume that the deviation from the original point is minimal such that I can arrive at an
accurate estimator of the gradient. It is as effective when used to perform ranking of neurons
as the automatic differentiation method.

I further compare the advantages of the two methods. The key advantage of automatic
differentiation is:

• It does not rely on assumptions and the calculated results are rigorously proved.

• Not counting the optimisation step, it is faster than finite difference method for a small
network.

• All θ values are set to 1 or 0 hence are easier to optimise or calculate.

The key advantage of finite difference method is:

• It does not require a run of optimisation in order to generate the sensitivity values.

• It is easy to formulate, i.e. no complicated mathematical derivations are required to
find the sensitivity values.

• It is possible, without further derivations, that sensitivity values of a whole layer can
be calculated.

• The sensitivity values do not need to be limited to one neuron or one layer. Any block
of layers or sub-layers can be evaluated for sensitivity with respect to the objective
function.

Overall, the two methods have their own advantages. However, if I would like to go into
more advanced applications, the finite difference method is easier to implement and is more
flexible to be adopted in different scenarios.
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5.5 Autonomous Learning

This section designs an autonomous learning ANN that restructures its topology by automati-
cally evolving its architecture. The autonomous learning system should be minimal in terms
of user-input such that only a few values are adopted in arriving at the best architecture. In
Section 5.5.4, I have performed two processes of evolving the architecture manually. This
section seeks to automate this process.

I identify several aims and objectives to the automation task.

• The algorithm should operate with a bare minimum of user-defined input/control
parameters and instructions

• The algorithm should be able to run in automatic mode, adapting to a continuously
available, real-time input-output data stream from the process to be modeled with the
ANN

• The aim is to have an online, real-time ANN model adaptation algorithm.

• The algorithm should "contact" its user only if significant, unrecoverable failures are
encountered during real-time run-time.

The overall aim is to produce the smallest size ANN possible to fit a given dataset, and then
on to be able to adapt its size and topology in an autonomous, optimal manner.

5.5.1 User-Input Variables

I enlist the user-input variables to the autonomous system. The number of user-input variables
is minimal.

• Define an upper bound on the LSQR error desired: εLSQR (e.g. 10−3, 10−6, etc.)

• Define for ANN:
(1) the maximum number of layers: NLmax (e.g. 100, 500,etc.)
(2) the maximum number of neurons per layer: NNmax (e.g. 100, 200, etc.)

Note that the minimum number of layers is 1 and the minimum number of neurons per
layer is also set to 1.
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5.5.2 Initial ANN Structure

I have the following options for initialisation of ANN structure.

• Option A: A user-defined arbitrary structure

• Option B: A user-defined structure, from previous run/fitting the same underlying
system or process; i.e. having the same inputs and outputs

• Option C: A user-defined "sufficiently large" initial ANN which is to be systematically
reduced to satisfy user tolerances

• Option D: A user-defined "minimal size" initial ANN which will be systematically
added to or removed from in terms of individual neurons and entire layers as required.

In all cases the network is to be basically adjusted in terms of architecture dynamically
(iteratively) so as to find an ANN configuration that has the minimal number of neurons and
layers to satisfy user tolerances for a given process dataset.

5.5.3 Algorithm Description

The "autonomous ANN restructuring algorithm" should be tightly focused at first to the
clearly defined single aim ("objective function") of the ANN restructuring design algorithm.

The discrete nature of adding or removing a node or an entire layer from an ANN with
a given structure, results in a non-differentiable optimisation problem when trying to find
the minimal-structure new ANN that satisfies user-specified least-squares fitting tolerances.
When modeled as a mathematical programming problem, the above stated ANN-structure
optimisation problem would result in a non-convex Mixed-Integer Nonlinear Programming
(MINLP) Problem. Although MINLP is more intuitive, the highly non-convex complicated
shape of the ANN objective function makes it computationally impossible to solve the
problem of architectural search with MINLP.

Our approach cannot be viewed that it can match exactly any real-valued tolerances,
not only because of its mildly heuristic nature, but also crucially because of the underlying
problem nature, as per the previous analysis.

Therefore, I propose a dead-band, or buffer region, where the algorithm would terminate
once in this buffer zone of, say, the LSQR error value:

• εLSQR,target ∈ (0,1)

• User specifies a dead-band width around which I terminate: δLSQR,target
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Figure 5.2 Illustration of the concept of dead-band.

I obtain the following properties:

• 0 < εLSQR,target < 1

• 0 < δLSQR,target < εLSQR,target

The dead-band serves to fully guarantee the termination of the optimisation process and
convergence to user criteria. Figure 5.2 demonstrates the concept of the dead-band in the
optimisation process.

The dead-band, or buffer zone of no-action, comes from the very difficult-to-avoid
oscillation and "humming" (rapid on-off behaviour) of the online controllers in Control
Engineering technology, and from a very old-established practical implementation idea.

5.5.4 Experimentation with Autonomous Learning

I have applied a series of architectural modifications to an user-defined initial network with
5,000 input data points. The aim is to confirm the functionality of the subroutines created
including node addition/removal and layer addition/removal. The process of architectural
modification is currently "supervised" and is performed manually. This step lays the founda-
tion for further automation of the architectural search process. The dataset used is still the
nonlinear process I described in Section 4.8.1.

I describe two experiment with the construction of the network corresponding to the same
dataset : (1) add nodes and layers from a minimally possible network (Case Study I), and (2)
remove nodes and layers from a larger than necessary network (Case Study II).

Case Study I

Suppose I start from a minimally possible network with 2 hidden layers of 3 and 2 neurons
each. Figure 5.3a demonstrates the sensitivities of the corresponding neurons. The neuron
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sensitivities are plotted on a negative log-scale and the raw numbers of the sensitivities are
smaller than 1. Hence, on the negative log-scale, the higher the value of the bar chart, the
lower the sensitivity. Therefore, I duplicate neurons with high sensitivity (low bar value) and
remove neurons with low sensitivity (high bar value). The series of optimisation performance
and changes in sensitivity values are presented in Figure 5.3.

(a) First optimisation (b) Second optimisation

(c) Third optimisation (d) Fourth optimisation

(e) Fifth optimisation (f) Sixth optimisation

Figure 5.3 The sensitivities (negative log-scale) of the network neurons in a series of optimi-
sation processes. The line plot below demonstrates the changes in the value of the objective
function (log-scale).
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From Figure 5.3a, I can observe that there are three layers in total, two hidden layers and
one output layer. The hidden layers consist of 3 and 2 neurons each and the output layer
consists of 2 neurons. The positions where the values of sensitivities are zero indicate the
absence of neurons at those positions (e.g. layer 3 node 3 is empty). I also observe that nodes
in the first layer have higher sensitivities compared to other nodes. Since this is a minimally
possible architecture, I seek to add another layer and observe the effect on the objective
function.

Figure 5.3b demonstrates the effects of adding a third layer with 3 neurons on the
sensitivities. It can be observed that the first hidden layer has the lowest sensitivities and the
second hidden layer has higher sensitivities, followed by the third hidden layer with highest
sensitivities among all hidden layers. Therefore, as a next step, I add the 4th node in the third
hidden layer. It can also be observed that the value of the objective function has increased.
While this means that network with two hidden layers is more optimal than network with
three hidden layers, the former might be a local optimum. Adding one more layer may help
to overcome the local optimality.

Figure 5.3c and 5.3d demonstrate the effects of further adding nodes on the layer with
the highest sensitivities. It can be observed that during the process of adding the 4th and 5th

neurons to the third hidden layer, the value of the objective function has not been significantly
reduced. I further perform modifications to the network in order to achieve lower objective
values.

I then add a 4th neuron to the second hidden layer. I observe that the value of the
objective function is significantly reduced, to a point lower than the first objective value.
Moreover, I observe that the sensitivity values have been greatly equilibrated over the process,
i.e. the sensitivity values are becoming similar. Therefore, the algorithm has equalised
the importance of each neuron in arriving at an architecture with almost equally important
neurons.

After this node addition step, the termination criterion is triggered. Therefore, the
algorithm finishes at this step. In this way, I have finished the optimisation process of starting
from a minimal network expanding to a larger network with equilibrated neuron importance.
The final objective value arrived is 3.119×10−17. I have enlisted the evolution of objective
values in Table 5.10.

Case Study II

In the second case study, I present the optimisation process of a network with initialisation of
a larger than necessary network. In this case, I start with an architecture of [4, 10, 10, 10,
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Table 5.10 The objective values obtained through successive optimisations in Case Study I.

Optimisation Steps Objective Value

First Optimisation 6.695×10−16

Second Optimisation 0.331
Third Optimisation 0.257
Fourth Optimisation 0.154
Fifth Optimisation 0.0869
Sixth Optimisation 3.119×10−17

10, 2]. Only node removal and layer removal are involved in this case. The variations in
sensitivity values are tabulated in Figure 5.4.

From Figure 5.4, it can be observed that the first and second layer, having the lowest raw
sensitivity values (highest negative logarithmic values) are removed gradually, initially with
10 neurons each layer and later are evolved to have 4 and 3 neurons each. Observing the
changes in objective value, it can be demonstrated that several ups and downs are present,
indicating the possibility of reaching local minima and then overcoming the local minima to
arrive at a lower value. Overall, the process is effective in reducing the number of parameters
and shrinking the size of the neural network while achieving a comparable and lower objective
value. The evolution of objective values are tabultaed in Table 5.11.

Table 5.11 The objective values obtained through successive optimisations in Case Study II.

Optimisation Steps Objective Value

Iteration 1 8.890×10−3

Iteration 3 9.004×10−3

Iteration 6 9.000×10−3

Iteration 9 8.684×10−3

Iteration 12 8.673×10−3

It is also observable that although with the same dataset, the two case studies reach
differrent optimised architectures. This is because the nature of the DNN is complex such
that different architectures with different weights can reach similar objective values within
the deadband. The definition of the deadband and how the architecture is initially defined
both affect the final architecture reached. Therefore, it is possible to discuss these effects in
future work.
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(a) Optimisation at Iteration 1 (b) Optimisation at Iteration 3

(c) Optimisation at Iteration 6 (d) Optimisation at Iteration 9

(e) Optimisation at Iteration 12

Figure 5.4 Sensitivity and objective plot of the optimisation process starting from a larger
than necessary network.

5.5.5 Comparison with Backpropagation ANN

I employ the following process in generating an NLP formulation and compare it with the
traditional backpropagation ANN values:

1. Solve unconstrained ANN with LSQR objective through backpropagation algorithm
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2. Store the value of LSQR objective from the previous step

3. Use solution to initialise NLP formulation

4. Solve NLP formulation

5. Obtain objective value and compare it with the results from Step 2

Case Study I

I define the unconstrained ANN to have the architecture [4, 3, 2, 2] as the initial structure
solved through backpropagation algorithm. I train through backpropagation on MSE loss
with 50 epochs using the Stochastic Gradient Descent (SGD) solver. The objective value
obtained from backpropagation is 0.5573. Solving using the NLP formulation, the objective
value obtained is 3.119×10−17. I observe that the objective value of both algorithms are
close to zero but that obtained from NLP solution is much lower.

I also compare the loss with final architecture of the self-evolving algorithm, i.e. the
architecture of [4, 3, 4, 3, 4, 2]. The final objective value obtained is 0.5461, which is also
higher compared to the NLP formulation.

Case Study II

I define the unconstrained ANN to have the architecture of [4, 10, 10, 10, 10, 10, 2]. I train
through backpropagation on MSE loss with 50 epochs using SGD solver. The objective
obtained from backpropagation is 0.4316. In comparison, using the NLP solver gives an
objective of 8.673× 10−3. I observe that both objectives are close to zero but the NLP
solution gives a much lower objective value.

I also compare the loss with the final architecture of the self-evolving algorithm, i.e. the
architecture of [4, 4, 3, 10, 10, 10, 2]. The objective value obtained is 0.4236. This is also
higher than the objective value obtained from NLP formulation.

Overall, due to the deterministic nature and the core of the NLP formulation as an
optimiser, the proposed algorithm is able to arrive at a solution much lower compared to
traditional backpropagation algorithm.

5.6 Summary

In this chapter, I have implemented the subroutines to add/remove a connection, a node or
a layer in the feedforward Artificial Neural Network (ANN) adopting the lifting scheme.
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Sensitivity values with regard to the attenuation/amplification factors were calculated from
either the automatic differentiation method or the finite difference method to represent neuron
importance. An autonomous architecture evolving algorithm was introduced where the target
objective value is described by a dead-band and if the objective value falls within the band,
optimisation stops. Then I presented two case studies to demonstrate how the algorithm
evolved the network from a minimal or larger than necessary initial architecture. I then
compared the performance with traditional ANNs. Overall, I believe the method is novel and
effective in autonomously evolving the architecture of ANNs.

I describe the longer-term aims of the optimisation scheme as possible future work related
to the optimisation of ANNs.

• Given an ANN tuned for some purpose, e.g. to fit a given dataset:

(1) Keep the same hidden, prior ANN structure and weights

(2) Find an appropriate way to add extra layers and nodes so as to fit quickly
the new dataset, while preserving the "knowledge" (fitting model) of the prior, initial
ANN structure and weights. The goal is to preserve the ability to fit the same process
Input/Output data up to that point, and to expand to include a new dataset with either
minimal ANN modification, or no modification at all.

(3) A way also has to be found to include the initial, prior ANN architecture
(structure) and weights, while a new ANN of comparable size emerges automatically
with this future algorithm evolution.

(4) All these assume a close relationship between dataset 1 for the original ANN,
and the new set, dataset 2, which will be used along with the old initial ANN, to emerge
the new ANN that fits both dataset 1 and dataset 2.

• Evolution of non-layer based, but arbitrarily connected ANN network. For example,
instead of fitting a standard feedforward neural network, I can design autonomous learn-
ing algorithms for feedback neural networks, or other more complicated connection
schemes of an ANN in its most general form.

Overall, the proposed framework to self-evolve a neural network builds a good foundation
to be further applied to more variants of ANN structure and has great potential to be further
developed for different optimisation purposes.



Chapter 6

Hierarchical Multi-scale Parametric
Optimisation of ANNs - Part III

6.1 Introduction

In Chapter 5, I developed an autonomous architecture evolving process where the neurons
are added and removed based on sensitivity values of each neuron. In particular, two methods
of evaluating sensitivities were presented: automatic differentiation and the finite difference
method. The former is more rigorously developed but more computationally expensive. The
latter is easy to implement and highly flexible, but requires more parameter settings to obtain
sensible results. This chapter further shows that with the sensitivity values obtained, it is
possible to propose the formulation of a more advanced network training process.

The sensitivity is an important measure when performing analysis on a neural network.
This is because it is indicative of component importance for a neuron, a layer, or a block
of layers. In particular, sensitivity dictates how much a perturbation in the value of the
component will cause a change in the value of the output or the objective function. Neural
sensitivity analysis has been widely adopted in the analysis of deep neural networks (DNNs)
with the aim to demystify the "black-box" nature and add further metrics to identify how
the network reacts to changes in the explanatory variables. Early stages of research focuses
exclusively on how the output or the objective value changes with a perturbation in the input
[202] [203]. While this is an important step in understanding how a network responds to
different datasets, the analysis is limited by only focusing on the sensitivity of the explanatory
variables [202]. Moreover, research on neural sensitivity analysis often focuses on the relative
values of the weights or inputs, manipulated to become a sensitivity measure [202] [203]
[204]. Different to these traditional definitions, our research demonstrates a new definition
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of the sensitivity measure, by the adoption of an attenuation/amplification factor into the
network, to allow the evaluation of sensitivities throughout the network.

Furthermore, I present a novel neural sensitivity analysis on the neural network which
extends to all components in the network. The analysis can achieve the selective tuning of the
network. In this case, I propose a novel framework for the training of the DNNs, where the
sensitivity values guide a hierarchical multi-scale search down the binary tree representing
layer importance. An efficient algorithm to search for the most sensitive layer to tune (in the
case of training) is developed. The framework is simple to implement and efficient to run. It
has key advantage in optimising large DNNs with a high number of layers to optimise due
to its search efficiency of O(logn). The method, relying on sensitivity values, is effective
in producing optimised neural networks, and is a novel formulation of the optimisation
processes used in the application of DNNs.

This chapter is organised as follows:

• Section 6.2 introduces the background of this research.

• Section 6.3 formulates the hierarchical multi-scale search algorithm.

• Section 6.4 demonstrates how the hierarchical multi-scale search method can be applied
to the tuning of ANNs.

• Section 6.5 makes use of second-order information to redefine the hierarchical search
process.

• Section 6.6 compares the performance of the adoption of first-order and second-order
information.

• Section 6.7 applies the algorithm to large-scale problems and discusses the performance
of large-scale applications.

• Section 6.8 then discusses relevant research areas.

• Section 6.9 concludes the chapter.

6.2 Background

Early stages of research in neural sensitivity analysis focus either on the values of the weights
of the network [203] [204] [205], or on the sensitivity of the input values [202] [206] [207].
The aim is to observe the influence of the input on the output or the objective function, i.e.,
the explanatory capacity of the network [207].
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There are several key measures that have been used in the context of neural sensitivity
analysis, as demonstrated in Table 6.1. While a variety of measures have been proposed,
the sensitivities are often based exclusively on the values of the weights. A more practical
method is to provide perturbations in the inputs and observe the effects on the outputs [208]
[209] [210].

A sensitivity analysis on the weights has been demonstrated to be ineffective in mea-
suring the network’s functionality [202]. Sensitivity analysis on the input values is more
widely adopted in image recognition [211] and engineering research [202], but is limited in
application for cases with discrete inputs [202].

There are in general two ways to perturb the input for sensitivity analysis: 1) to restrict
one input value while perturbing the rest of the variables and finding the changes in the
objective/output [208]; and 2) to perturb one input value while keeping everything else
unchanged [210].

Table 6.1 Sensitivity measures adopted in literature.

Sensitivity Measure Equation Reference
Numerical sensitivity measure ∂yk

∂xi
= f ′(netk)∑

l
j=1 v jk f ′(net j)wi j [202]

Weight product WPik =
xi
yk

∑
L
j=1 wi jv jk [203]

Q factor Qik =
∑

L
j=1(

wi j
∑r=1 wr j

v jk)

∑
N
i=1(∑

L
j=1(

wi j
∑

N
r=1 wr j

v jk))
[204]

* Notations are described in Nomenclature

There are several measures of perturbation: 1) to implement a grid search where the
inputs are perturbed to be their minimum, 1st quartile, median, 3rd quartile and maximum
values [209] [212]; 2) to add an input neuron and evaluate the disturbance observed in the
objective function [207] [213] [214]; and 3) to remove an input neuron and observe the
change in objective function [209] [207] [214].

More recent work in image processing demystifies the convolutional neural network
(CNN) by perturbing a pixel or a small region in an image and observing its effect on the
objective [215]. Other studies seek to find partial derivatives of the image classification
results with regard to individual pixels and visualise it in a graph, as a measure of input
sensitivity [216] [217].

The advantages of the perturbation method is that it is simple to implement and com-
municates a clear message on how each variable interacts to give the objective value. The
advantages of a partial derivatives method is that it represents a more rigorously developed
calculative process that can be easily interpreted.
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However, while these methods all merit in their own design, the sensitivity analysis
is exclusively focused on the input importance. For importance of individual neurons,
sensitivity analysis is less used and less well-researched. I present the representation of
neuron importance in the next section.

Later work has developed methods to identify the importance of neurons through Neu-
ral Interpretation Diagrams (NIDs) [210] [218] [219] [220], which represent the relative
magnitude of each connection weight by line thickness. The positive weights are viewed as
"excitator signals" while the negative weights are viewed as "inhibitor signals". The diagram
assumes that by tracking the path with thicker lines (higher positive weight values), it is
possible to find input variables and neurons that are more important. However, the diagram
will be difficult to visualise when the amount of connections is large, i.e., with a large number
of neurons.

Other studies focus on visualising the importance of neurons through a relevance score
[221] [222] [223], calculated from Layer-wise Relevance Propagation [224]. This method is
developed because images used as inputs contain a large number of pixels in each entry, thus
making it impossible to disturb single pixels for sensitivity.

While these methods focus exclusively on visualisation of neural importance, the method
used is either simplistic (by constructing graphs based on raw weight values) or highly
complicated (by defining an equation of the relevance score). I propose a method of moderate
complexity that allows the neural importance to be evaluated for tuning or for architecture
evolution.

6.3 Mathematical Formulation

In this section, I consider the topological modification and design of ANNs in an automated
way. The important idea in hierarchical multistage optimisation of underlying systems relies
on the identification of structural blocks in the system that are either to be entirely excluded
or to be included (or duplicated) in an automated manner using the novel concept of structural
sensitivities. These are facilitated by the appropriate inclusion of an artificial continuous
parameter "θ" : θ ∈ {0,1} which is relaxed as 0 ≤ θ ≤ 1. θ = 1 indicates the inclusion of the
structural equations/model block of the model while θ = 0 indicates removal/absence of the
block in question. It is important to note that in order to take full advantage of the capability
of structural sensitivities, I can evaluate not only just individual neurons one-at-a-time, but
also entire layers at once, or even entire larger subsets of layers of the ANN’s analysed.



6.3 Mathematical Formulation 157

6.3.1 User-defined Parameters for Tuning of ANNs

I define the parameters required to initialise the ANN tuning process using the proposed
method:

• Architecture: the number of neurons in each layer and the total number of layers of a
network

• ε: a user-defined infinitesimal value to define the scale of perturbation in finite differ-
ence method

• Learning rate: an empirical parameter used to define the scale of backpropagation

• Maximum number of iterations: the maximum number of times to search for the most
sensitive layer to optimise

• Number of epochs: the number of rounds of optimisation for a particular layer

• Tolerance: a small user-defined value to stop searching for another layer to optimise
when the value is greater than the maximum gradient of the LSQR against the network
weights

6.3.2 Multi-scale Hierarchical Analysis of ANNs

The key idea behind multi-scale hierarchical analysis of mathematical models of any type
of system is to start from the highest level of abstraction, i.e. the entire system as an
Input/Output (I/O) system. Then from this highest view-point of the system, as encapsulated
by the equations comprising our model, I effectively employ a set bisection approach to
proceed each time downwards in terms of the scale of detail considered at the nodes of an
ever-expanding binary search tree.

This continues with bisection to refine the level of details considered to be optimised
during the major iterations of our design algorithm.

Refinement of binary search-tree sub-levels (nodes) continues until user-defined criteria
are met or the final level mathematical detailed description is reached during the refinement
iterations of our binary search (bisection) algorithm.

Example ANN

Let us consider an example ANN with the following set of layers, with an Input layer, an
Output layer, and 7 hidden layers: ANN Layer Set = {Input, 1, 2, 3, 4, 5, 6, 7, Output}.
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Figure 6.1 The binary tree partitioning the ANN with sensitivity parameter θs.

The structural optimisation of the ANN topology (architecture) is going to be based
on evaluating the novel structural sensitivity measures. Furthermore, to facilitate a multi-
scale efficient maneuver of identifying rapidly large parts of an ANN that require structural
optimisation, it is necessary to introduce an arbitrary and yet a very natural way of viewing
the hierarchically partitioning/decomposing decisions within the ANN automated design
optimisation algorithm. Binary tree partitioning of ANN and artificial θ -parameters for
structural sensitivity calculation is demonstrated in Figure 6.1.

Thus, following the structural sensitivities calculating scheme, in 3 finite difference steps
I can identify the most sensitive/important layer in the ANN from the set of the 7 hidden
layers.

The associated artificial parameters θi with the model of the previous binary tree is given
in Figure 6.2.

Generally speaking, an upper bound on the number of steps required to identify the most
contributing layer in the ANN, requires at the most [log2(NL)] steps where NL is the number
of hidden layers in the network.

Similarly then, if each layer has a fixed number of neurons, then to identify the most
sensitive neuron in the previously identified hidden layer, I will require at the most [log2(NN)]
finite difference steps, where NN refers to the number of neurons in a particular layer.

Overall, the effort to identify a single artificial neuron is thus given by:

E f f ort ∝ [log2(NL)]+ [log2(NN)] (6.1)
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Figure 6.2 The parameters partition associated with the binary tree partitioning of the ANN.

Clearly, the multi-scale hierarchical analysis of the ANN system requires a logarithmic
number of steps to reach any level of "scale" of encapsulation based on a binary, set bisection
analysis tree.

It is noted that I do not need for very large-scale ANNs to consider descending to the
level of individual neurons or even layers. For large ANNs, I can add or remove in fact entire
blocks of neurons within a layer as well as entire blocks of hidden layers at a time according
to the structural sensitivity values at any level of analysis using the binary tree set partitioning
with each level of the binary tree signifying a different block size for removal or addition
locally in the topology/architecture of the ANN that is being designed and structurally
optimised with the proposed scheme.

With this scheme, the entire process can be fully automated in a real-time implementation
of what is in essence a true highly efficient novel ANN design algorithm.

6.4 Network Tuning

One important implementation of this scheme is to tune the weights of the network. I adopt
the sensitivity scheme to identify the most sensitive neuron or blocks of neurons that have the
greatest impact on the objective value. During tuning, I keep the the value of other weights
constant and re-optimise the network by only changing the values of the neurons that have
been identified to be "most sensitive". This then enters into an iterative process where the
new sensitivities are found and the network is re-turned. I repeat this iterative process until a
satisfactory objective value is found.



160 Hierarchical Multi-scale Parametric Optimisation of ANNs - Part III

I start from randomised weights and identify the most sensitive layers. Each time, I
only optimise the most sensitive layers. The optimisation used can be anything ranging
from backpropagation to derivatives-free algorithms (e.g. Genetic Algorithm). Here I
use backpropagation as an example. The parameters are updated using an update rule
corresponding to the optimisation scheme. For the simplest Stochastic Gradient Descent, the
update rule is:

W ′ =W −α × d(LSQR)
dW

(6.2)

where W ’s are the weights, α is the learning rate, and LSQR is the objective function.
The number of iterations used in each optimisation step can be arbitrarily small as

empirical implementation has demonstrated that even a small number of iterations can bring
good optimisation results by iteratively focusing only on the most sensitive layers. This is
demonstrated in Section 6.4.2.

To find the most sensitive layer of neurons to optimise, I implement a binary tree search
method. Starting from the first level of division, where the whole network is divided into
two parts, I focus on the part of the network that has a higher sensitivity. Then inside that
part, I further divide the block of layers into two blocks. I keep dividing until the smallest
unit is one layer and sensitivities are calculated along the division process. To identify the
most sensitive layer, I conduct a search down the binary tree until reaching the smallest unit,
always choosing the higher sensitivity value along the path. In this way, the most sensitive
layer can be found efficiently with O(log2N). For each iteration, I only optimise that layer
using backpropagation. After optimisation, I perform another binary tree search until the
convergence criterion is fulfilled.

Initial implementation demonstrates that the selection of layers is often trapped in a loop,
where the neuron having the highest sensitivity is always the same and is optimised repeatedly.
To overcome this hurdle, I implement a random factor in the selection of the neuron to
optimise, similar to the ε-greedy algorithm in reinforcement learning [225]. In fact, this
implementation of the random factor is a trade-off between "exploration" and "exploitation"
as I allow the neuron with lower sensitivities to have the chance to be optimised.

Another issue that is solved by introducing the random factor is when the left branch
and the right branch have roughly the same sensitivity. This makes the selection process
difficult. This is also frequently observed and requires a level of randomness to select the
layer to optimise.

When I have practically equal sensitivities at a branching point, then I clearly have the
same impact indicated for left and right branches, respectively. This means that to choose to
branch left or right, I have to somehow take into account the fact that the weight indicated by
a branching point structural sensitivity should reflect the "probability" of that branch to be
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chosen. Our algorithm overall is deterministic, and will remain so with a judicious choice of
a randomization step to break the problem of having to choose effectively numerically equal
branching at points.

The algorithm is developed as such: suppose I call "S_left" and "S_right" the respective
absolute values of the structural sensitivities at a branching point during the level exploration
phase. These sensitivities are used to arrive at the next layer whose tuning weights are to be
optimised together, while holding all other weights of all other layers constant, i.e.:

S_le f t = AbsoluteValue(s_le f t) (6.3)

S_right = AbsoluteValue(s_right) (6.4)

where s_le f t and s_right are the sensitivity values on the left and right branch at the branching
point. Using the absolute values of the structural sensitivities at a branching binary search
tree exploration step, choose the left or right branch based on a randomised algorithm which
is applied irrespective of the values of the structural sensitivities. I follow the steps:

1. Generate a random real number (the random factor) between 0 and 1: r=RandomReal([0,1))

2. Calculate the probability for left and right branch:

branch le f t probability = S_le f t/(S_le f t +S_right) (6.5)

branch right probability = 1−branch le f t probability (6.6)

3. Make use of the random factor. If branch-left probability is greater than the random
factor, branch left. If not, branch right.

The random factor is used throughout the binary search process and when used for
sufficiently long time, it will be able to break "ties" among the branching points in a binary
search tree.

The pseudo-code is presented in Algorithm 9.

6.4.1 Convergence Criterion

The convergence criterion adopted in this algorithm is based on the partial derivative of the
objective function with regard to the weights. For every 50 rounds of iteration, I check the
value of the derivative of objective function with regard to the weights. If the norm of the
value is smaller than a user-defined tolerance (usually 10−5 to 10−6), I stop the iteration. To
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Algorithm 9 Network Tuning Adopting Hierarchical Multi-scale Parametric Optimisation
1: Read training and testing I/O data points.
2: Initialise architecture of neural network.
3: Initialise sensitivity (θ ) matrices and weight (W ) matrices for each layer
4: Initialise a user-defined infinitesimal value ε used for perturbation
5:
6: procedure REFRESH_THETA(Network Structure)
7: Define θ matrices based on the Network Structure. Set θ matrices values to be 1.
8: return θ matrices
9: end procedure

10:
11: procedure PERTURB_THETA(Network Structure, Perturbation, Leftmost Layer To

Perturb, Number Layers To Perturb, Perturbation Side)
12: Refresh_Theta (Network Structure)
13: Choose perturbation side
14: Layers to perturb are found by:
15: if <Perturbation side on the left> then
16: Left bound to perturb = Leftmost Layer To Perturb
17: Right bound to perturb = Leftmost Layer To Perturb + 1

2Number Layers To
Perturb

18: else
19: Right bound to perturb = Leftmost Layer To Perturb + 1

2Number Layers To
Perturb + 1

20: Right bound to perturb = Leftmost Layer To Perturb + Number Layers To Perturb
21: end if
22: for <layers in the left bound to right bound> do
23: Set θ matrices values to be 1−Perturbation
24: end for
25: return θ matrices
26: end procedure
27:
28: procedure WEIGHT_TIMES_THETA(Network Structure, Theta Matrices, Weight Matri-

ces)
29: Calculate the element-wise product of θ and W matrices.
30: Assign the values to New Weight Matrices
31: return New Weight Matrices
32: end procedure
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33: procedure CALCULATE_SENSITIVITIES(Theta Matrices, Weight Matrices, Network
Structure, Leftmost Layer To Calculate, Number Of Layers To Calculate)

34: Initialise Weight Matrices
35: Forward propagate the weights in Weight Matrices
36: Calculate the objective function value, denoted as Original Loss
37:
38: Initialise θ with Refresh_Theta (Network Structure)
39: Perturb_Theta(Network Structure, ε , Leftmost Layer To Calculate, Number Of

Layers To Calculate, Left Side)
40: New Weight Matrices = Weight_Times_Theta (Network Structure,Theta Matrices,

Weight Matrices)
41: Forward propagate the weights in New Weight Matrices
42: Calculate the objective function value, denoted as Left Side Loss
43: Left Sensitivity = (Left Side Loss - Original Loss) / ε

44:
45: Initialise θ with Refresh_Theta(Network Structure)
46: Perturb_Theta (Network Structure, ε , Leftmost Layer To Calculate, Number Of

Layers To Calculate, Right Side)
47: New Weight Matrices = Weight_Times_Theta (Network Structure, Theta Matrices,

Weight Matrices)
48: Forward propagate the weights in New Weight Matrices
49: Calculate the objective function value, denoted as Right Side Loss
50: Right Sensitivity = (Right Side Loss - Original Loss) / ε

51:
52: return Left Sensitivity, Right Sensitivity
53: end procedure
54:
55: procedure TRAIN_MODEL(X Train, Y Train, Maximum Number of Epochs, Left

Bound, Right Bound, Iteration Number)
56: if <Iteration Number == 1> then
57: Initialise parameters randomly
58: else
59: Populate previously populated parameters
60: end if
61: for <Increasing Epochs> do
62: Forward propagate X Train values in the network
63: Calculate the objective value
64: Backpropagate to find the gradients of parameters and update Parameters
65: for <layers in Left Bound to Right Bound> do
66: Alter layer parameters by the update rule
67: end for
68: end for
69: return Parameters, Cost
70: end procedure
71:
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72: procedure CALCULATE_PARTIAL_DERIVATIVE(Gradients, Norm=1)
73: if <Norm == 1> then
74: Value = Sum of absolute values of Gradients
75: else if <Norm == 0> then
76: Value = Maximum value in Gradients
77: end if
78: return Value
79: end procedure
80:
81: procedure FIND_LEFT_RIGHT_BOUND(Sensitivity)
82: Align Sensitivity into Levels
83: for <each Level> do
84: Obtain Left Sensitivity and Right Sensitivity
85: Calculate Left Probability and Right Probability
86: Generate a Random Number between 0 and 1
87: if <Left Probability >= Random Number> then
88: Choose left side
89: else
90: Choose right side
91: end if
92: Identify Leftmost Layer of interest, and Number of Layers Branch (left and right)
93: if <Last Level> then
94: Left Bound = Leftmost Layer
95: Right Bound = Leftmost Layer + 1
96: else
97: Left Bound = Leftmost Layer of interest
98: Right Bound = Leftmost Layer + Number of Layers in Branch
99: end if
100: end for
101: return Left Bound, Right Bound
102: end procedure
103:
104: Initialise: Parameters, Backpropagation Derivative, Left Bound, Right Bound, Left

Bound List, Right Bound List
105: Input: X Train, Y Train, Network Architecture, Tolerance, Maximum Number of

Epochs, Maximum Number of Iterations
106: Count: Iteration Number
107: while <Backpropagation Derivative > Tolerance> do
108: Left Bound = last element in Left Bound List
109: Right Bound = last element in Right Bound List
110: Parameters, Cost = Train_Model (X Train, Y Train, Maximum Number of Epochs,

Left Bound, Right Bound, Iteration Number)
111: Left Bound, Right Bound = Find_Left_Right_Bound (Sensitivity)
112: if <Iteration Number % 50 == 0> then
113: Backpropagate to obtain gradients of LSQR with respect to weights
114: Backpropagation Derivative = Calculate_Partial_Derivative (Gradients)
115: end if
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116: if <Iteration Number > Maximum Number of Iterations> then
117: Break
118: end if
119: Append Left Bound to Left Bound List
120: Append Right Bound to Right Bound List
121: end while
122: Output: Cost, Left Bound List, Right Bound List, Parameters

Table 6.2 The hyperparameters used in the example formulation to tune the network.

Hyperparameter Value

Architecture [4,5,5,5,5,5,5,5,5,2]
ε 0.001

Learning rate 0.01
Number of Epochs in each Iteration 1000

Total Number of Iterations 100
Tolerance 10−5

formulate mathematically, suppose I adopt the L1-norm, I end the iteration when:∣∣∣∣∣∣∣∣∂LSQR
∂W

∣∣∣∣∣∣∣∣
1
< tolerance (6.7)

I also limit the total number of iterations in case the algorithm cannot converge to the
tolerance. This acts as a break from the loop when the total number of iterations is too large.

6.4.2 Example Tuning

In this section, I run an example of the tuning of the deep neural network. As I only focus on
the tuning functionality, no changing of architecture is involved and the architecture adopted
is arbitrary. In this case, I experiment with an architecture of [4,5,5,5,5,5,5,5,5,2]. The
optimisation is performed with the hyperparameters tabulated in Table 6.2. The total number
of data points used is 10,000, obtained through randomly sampling from the kinetics dataset.

I obtain the series of optimisation results from this architecture as demonstrated in Figure
6.3. Figure 6.3 demonstrates the change in sensitivity values over the process of optimising
the network one layer at a time. The 3D bar chart on the top of each figure represents how the
sensitivity values change for each division along the architecture. Thus, I see 2 values in the
first level of division, 4 in the second level of division, etc.. This is because the total number
of layers are divided by 2 each time. The line plot on the bottom represents the variations in
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the value of the objective function. The figures represent the optimised results at iteration 1,
20, 40, 60, 80 and 100 respectively.

From Figure 6.3, I can see that the sensitivities are quickly equilibrated with a minimal
number of iterations. In the first iteration, the sensitivity value is quite high for division
on the right-hand-sides. I can only observe three bars because the values for these three
bars are so high that it suppresses the display of sensitivity values for the other bars. This
demonstrates how different the sensitivity values are at initiation.

At iteration 20, I can see that the sensitivity values have been equilibrated, i.e. the values
are very similar (although in raw numbers they are different). The values of the objective has
been decreasing and there are three plateaus in the objective value. The plateaus corresponds
to local minima and this result demonstrates that the algorithm is capable of overcoming the
local minima. Another local minimum that takes a long time to be overcome is displayed in
Figure 6.3d, where a large plateau is observed, which is overcome in Figure 6.3e.

At iteration 100, I observe that the objective value keeps decreasing while the sensitivity
values are roughly of the same value. This demonstrates that all neurons are playing an
important part in the optimisation process and the objective value is decreasing with further
optimisations.

With the introduction of the random factor, the layers that are optimised rotate among
available layers instead of looping around a few. I plot the distribution of the layers being
optimised during the 100 iterations in Figure 6.4. I observe that there is a reasonable
distribution of layers being optimised and the optimisation is no longer stuck in a loop only
optimising a single layer with the highest sensitivity.

6.4.3 Comparison with End-to-end Backpropagation Algorithm

The conventional method to optimise a network is through backpropagation. Thus, I would
like to compare the performance of the proposed algorithm with the end-to-end backprop-
agation method. I set the end-to-end backpropagation algorithm also running in iterations
with the same set of hyperparameters. Each time, the end-to-end backpropagation algorithm
optimises all layers instead of one selected layer, as in the case of the proposed algorithm. I
run the end-to-end backpropagation algorithm for 1,000 number of epochs in each iteration.
The number of epochs is arbitrarily set large to ensure optimisation to the optimal point. By
having the same settings for either algorithm, this allows comparison between the end-to-end
method and the multi-scale hierarchical optimisation method.

The same convergence criterion is applied to the end-to-end optimisation using back-
propagation. In backpropagation, the derivatives of the objective function with regard to
the weights are calculated at every epoch. Therefore, the check is performed every round
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(a) First optimisation (b) Second optimisation

(c) Third optimisation (d) Fourth optimisation

(e) Fifth optimisation (f) Sixth optimisation

Figure 6.3 The process of optimisation in the example formulation with neural architecture
[4,5,5,5,5,5,5,5,5,2] using 10,000 data points. The 6 figures represents the optimisation
results at iteration 1, 20, 40, 60, 80 and 100 respectively.
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Figure 6.4 The distribution of layers selected in the optimisation process.

Table 6.3 The hyperparemters used in the comparison of performance between end-to-end
backpropagation method and the multi-scale hierarchical search method.

Hyperparameters Values

Architecture [4,5,5,5,5,5,5,5,3,2]
ε 0001

Number of data points 10000
Learning rate 0.0001

Number of epochs in each iteration 1000
Upper limit on number of iterations 200

Tolerance 0.001

instead of for every 50 rounds. I adopt the same convergence criterion for the multi-scale
hierarchical search algorithm and for the backpropagation algorithm as a comparison.

Hyperparameters. I list the hyperparameters used in the comparison of the two method
in Table 6.3. The hyperparameters are selected arbitrarily with a random search for optimality.

Objective. The objective value obtained from end-to-end optimisation is 0.992952. The
objective value obtained from multi-scale hierarchical method is 0.992834. The values of
the objectives are comparable, with the multi-scale hierarchical search method reaching a
slightly lower objective value.

I also plot the value of the objective function against iterations. This is demonstrated in
Figure 6.5.
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(a) Multi-scale Hierarchical Search

(b) End-to-end Backpropagation

Figure 6.5 The comparison between the optimisation performance of the end-to-end back-
propagation method and the multi-scale hierarchical search method.
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Figure 6.6 The distribution of weights obtained from end-to-end backpropagation and multi-
scale hierarchical optimisation.

Optimisation Time. The CPU time taken for the end-to-end optimisation is 111.587
seconds. In comparison, the CPU time taken for the multi-scale hierarchical optimisation
method is 2773.410 seconds. Although optimising to a smaller objective value, the multi-
scale hierarchical search method is taking longer.

Weight Values. I check the values of the weights to observe whether the two algorithms
arrive at the same local minimum. The distribution of the weights are plotted in Figure 6.6
and it is observed that the weights are distributed in a similar way. This indicates that there is
a high possibility that the two optimisation methods optimise to the same local minimum,
which is further corroborated with the fact that the values of the objective functions are very
similar.
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6.5 Second-order Information

6.5.1 Mathematical Formulation

I consider the local second order Taylor expansion of function f (x,y):

f (x+∆x,y+∆y) = f (x,y)+
∂ f
∂x

(∆x)+
∂ f
∂y

(∆y)+
1
2

∂ 2 f
∂x2 (∆x)2 +

1
2

∂ 2 f
∂y2 (∆y)2

+
∂ 2 f

∂x∂y
(∆x) · (∆y)+Higher Order Terms (H.O.T )

(6.8)

If second order information is recorded then at least at the bottom layer of the binary
decomposition tree I could modify 2 variables simultaneously if required in simulation and/or
optimisation tasks.

Now I have calculated that at every branching point the structural sensitivity model is
quadratic, e.g. by computing first and second order finite differences to obtain for left and
right ("1" or "2" respectively):

f (θ1 +∆θ1,θ2 +∆θ2) = f (θ1,θ2)+
∂ f
∂θ1

(∆θ1)+
∂ f
∂θ2

(∆θ2)+
1
2

∂ 2 f
∂θ 2

1
(∆θ1)

2 +
1
2

∂ 2 f
∂θ 2

2
(∆θ2)

2

+
∂ 2 f

∂θ1∂θ2
(∆θ1) · (∆θ2)+Higher Order Terms (H.O.T )

(6.9)
I have demonstrated that the second order, quadratic sensitivity model can be computed.

Then I demonstrate how to exploit the second order information in the binary tree-based
decomposition search for which branch to follow, assuming that I follow only a single
branch and only in the last level of decomposition, to only change one variable at a time by
consistency.

Given a quadratic model in δ1 , ∆θ1,δ2 , ∆θ2:

f (θ1 +δ1,θ2 +δ2) = a+bδ1 + cδ2 +dδ1δ2 + eδ
2
1 + f δ

2
2 (6.10)

and a trust region: −ε1 ≤ δ1 ≤+ε1

−ε2 ≤ δ2 ≤+ε2

I can optimise the above quadratic model (even considering only sufficiently small
quantized discrete-size steps: δ1 = ±ε1, δ2 = ±ε2) and assign targets to change the next
sublevel values by δ ⋆

1 , δ ⋆
2 : θ new

1 = θ old
1 +δ ⋆

1 , θ new
2 = θ old

2 +δ ⋆
2 .



172 Hierarchical Multi-scale Parametric Optimisation of ANNs - Part III

Whether the optimal steps δ ⋆
1 , δ ⋆

2 are quantised, or continuously valued within the trust
region, they require cascading down the model’s evaluation tree.

Coming to a point where there’s a multiply linked leaf, then deciding on a simple updating
criterion will become very challenging due to this coupling.

An alternative way explored is to use the quadratic model to extract further information
in computing left-and-right selection probabilities in the non-deterministic, randomised
left-or-right selector at the binary tree branching points.

Given:
q(δ1,δ2) = a+bδ1 + cδ2 +dδ1δ2 + eδ

2
1 + f δ

2
2 (6.11)

I obtain as a local approximation model for the two gradient elements:

∂q
∂δ1

= b+dδ2 +2eδ1 (6.12)

∂q
∂δ2

= c+dδ1 +2 f δ2 (6.13)

Both expressions are independent of the trust region parameters.
To modify the selector (non-deterministic randomised element) as a first and simple way,

I can base the selection on the average value of the above gradient elements within the trust
region of interest.

So: [
∂q
∂δ1

]
=

1
4ε1ε2

∫
θ1+ε1

θ1−ε1

∫
θ2+ε2

θ2−ε2

(b+dδ2 +2eδ1)dδ2dδ1 (6.14)

where 1
4ε1ε2

comes from
∫

A
∫

1 · dδ2dδ1 and A = {θ1 − ε1 ≤ δ1 ≤ θ1 + ε1,θ2 − ε2 ≤ δ2 ≤
θ2 + ε2}. [

∂q
∂δ1

]
=

1
4ε1ε2

∫
θ1+ε1

θ1−ε1

[bδ2 +
1
2

dδ
2
2 +2eδ1δ2]

θ2+ε2
θ2−ε2

dδ1

=
1

4ε1ε2

∫
θ1+ε1

θ1−ε1

[b(θ2 + ε2)+
1
2

d(θ2 + ε2)
2 +2eδ1(θ2 + ε2)

−b(θ2 − ε2)−
1
2

d(θ2 − ε2)
2 −2eδ1(θ2 − ε2)]dδ1

(6.15)
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[
∂q
∂δ1

]
=

1
4ε1ε2

∫
θ1+ε1

θ1−ε1

(2bε2 +2dθ2ε2 +4eδ1ε2)dδ1

=
1

4ε1ε2
[(2bε2 +2dθ2ε2)δ1 +2eε2δ

2
1 ]

θ1+ε1
θ1−ε1

=
1

4ε1ε2
[(2bε2 +2dθ2ε2) ·2ε1 +2eε2 ·4θ1ε1]

=
1

4ε1ε2
[4bε1ε2 +4dθ2ε1ε2 +8eθ1ε1ε2]

= b+dθ2 +2eθ1

(6.16)

Thus, the end result is: [
∂q
∂δ1

]
= b+dθ2 +2eθ1 (6.17)

From q(δ1,δ2) = a+bδ1+cδ2+dδ1δ2+dδ 2
1 + f δ 2

2 , by comparison with Equation 6.17,
I obtain symmetrically: [

∂q
∂δ2

]
= b+dθ1 +2 f θ2 (6.18)

Both Equation 6.17 and Equation 6.18 are independent of the trust region parameters.
The perturbation of θ ’s are such that:

θ1 = θ2 , 1+ τ (6.19)

where τ is an infinitesimal value.
From Equation 6.17 and Equation 6.18 I get:[

∂q
∂δ1

]
= b+d +2e (6.20)

[
∂q
∂δ2

]
= b+d +2 f (6.21)

which are independent of the trust region parameters.
These are then to be used instead of the point-wise gradient elements for θ1 and θ2 in

order to select which branch to follow, left or right.
The randomised selector step is then defined by:

rx = RandomReal([0,1]) (6.22)

and

rg =
|[ ∂q

∂δ1
]|

|[ ∂q
∂δ1

]|+ |[ ∂q
∂δ2

]|
(6.23)



174 Hierarchical Multi-scale Parametric Optimisation of ANNs - Part III

If rx ≤ rg, I select the left branch (θ1). If rx ≥ rg, I select the right branch (θ2).
The previous results on the average value of the gradients using a quadratic model require

the calculation of the second and first order derivatives by finite difference.
I can compute the first order derivatives by:

∂ f (θ1,θ2)

∂θ1
≈ f (θ1 +h1,θ2)− f (θ1,θ2)

h1
+O(h1) (6.24)

or:
∂ f (θ1,θ2)

∂θ1
≈ f (θ1 +h1,θ2)− f (θ1 −h1,θ2)

2h1
+O(h2

1) (6.25)

and the second order derivative:

∂ 2 f
∂θ 2

1
≈

∂ f (θ1+h)
∂θ1

− f (θ1−h)
∂θ1

2h

≈
f (θ1+h,θ2)− f (θ1,θ2)

h − f (θ1,θ2)− f (θ1−h1,θ2)
h

2h

=
1

2h2 [ f (θ1 +h,θ2)−2 f (θ1,θ2)+ f (θ1 −h1,θ2)]

(6.26)

In the same way, I get symmetrically the values of ∂ f
∂θ2

and ∂ 2 f
∂θ 2

2
.

The second-order mixed derivatives are:

∂ 2 f
∂θ1∂θ2

≈
∂ f (θ1,θ2+h2)

∂θ1
− f (θ1,θ2−h2)

∂θ1

2h2

≈
f (θ1+h1,θ2+h2)− f (θ1−h1,θ2+h2)

2h1
− f (θ1+h1,θ2−h2)− f (θ1−h11,θ2−h2)

2h1

2h2

(6.27)

In summary,

∂ 2 f (θ1,θ2)

∂θ1∂θ2
≈ 1

4h1h2
[ f (θ1 +h1,θ2 +h2)− f (θ1 −h1,θ2 +h2)

− f (θ1 +h1,θ2 −h2)+ f (θ1 −h1,θ2 −h2)]

(6.28)

For finite difference calculations use the heuristic:

∆x = 100×
√

MachinePrecision×max{|x|,1.0} (6.29)
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6.5.2 Results and Analysis

I perform an example run of the optimisation adopting the second-order information as
described above to select left or right at the branching point. I similarly adopt the architecture
of [4,5,5,5,5,5,5,5,5,2] as an example to investigate the effect of incorporating second-order
information. The number of data points used is 10,000. The same set of hyperparameters are
adopted as enlisted in Table 6.2.

Figure 6.7 demonstrates the sensitivity values and the objective function values over the
course of optimisation, at iteration 1, 10, 20, 30, 40 and 50. The optimisation reaches the
tolerance value at exactly 50 iterations.

From Figure 6.7, it can be observed that the objective value decreases over time with
convergence to a low value within around 20 iterations. Moreover, I observe the quick
equilibration of sensitivity values with this tuning scheme. Within 10 iterations, the value
of sensitivities become almost equal across layers, and the equilibrium stays over further
iterations.

I also plot the distribution of layers selected in the optimisation process in Figure 6.8. It
can be observed that the first and last layer are more frequently updated but with the random
factor, other layers have a possibility of being selected.

Compared to the optimisation using first-order information, the new optimisation scheme
observes the same effect of equilibration and fast convergence but the values of the sensitivi-
ties are higher due to the introduction of ε2 on the denominator. The other difference is that
it converges faster within 50 rounds of iterations, indicating a more direct search direction
brought about by the second-order information.

6.5.3 Comparison with End-to-end Training

Hyperparameters. The hyperparameters adopted in both end-to-end training and multi-
scale hierarchical training are enlisted in Table 6.2. It is the same set of hyperparameters that
are used in the case of optimisation using first-order information.

Objective. The objective value obtained form end-to-end optimisation is 0.99283426.
The objective value obtained from multi-scale hierarchical search method is 0.99283424.
The values of the objectives are comparable, with the multi-scale hierarchical optimisation
arriving at a lower objective value.

Optimisation Time. The CPU time taken for the end-to-end optimisation is 358.165
seconds. In comparison, the CPU time taken for the multi-scale hierarchical optimisation
method is 762.714 seconds. If I compare the number of iterations, the end-to-end optimisation
takes 99 iterations to reach the convergence criterion whereas the multi-scale hierarchical
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(a) First optimisation (b) Second optimisation

(c) Third optimisation (d) Fourth optimisation

(e) Fifth optimisation (f) Sixth optimisation

Figure 6.7 The process of optimisation in the example formulation adopting second-order
information with neural architecture [4,5,5,5,5,5,5,5,5,2] using 10,000 data points. The 6
figures represent the optimisation results at iteration 1, 10, 20, 30, 40 and 50 respectively.



6.6 Comparison between First-order Search and Second-order Search 177

Figure 6.8 The distribution of layers selected in the optimisation process adopting second-
order information.

optimisation takes 50 iterations. The plot of the optimisation process is demonstrated in
Figure 6.9. Separate graphs are drawn since the number of iterations are different and are not
directly comparable. One iteration in end-to-end backpropagation optimisation corresponds
to one update of the weights across all layers whereas one iteration in multi-scale hierarchical
search corresponds to one update of a single layer obtained from the binary tree search.

Weight Values. Similarly, I check the weight values to observe whether the two algo-
rithms arrive at the same local minimum. The distribution of the weights are presented in
Figure 6.10. From Figure 6.10, it can be observed that the weights are roughly similar and
the two algorithm are highly likely to optimise to the same local minium, corroborated by
the similarity in the values of the objective function obtained.

6.6 Comparison between First-order Search and Second-
order Search

I compare the performance of the binary tree search adopting first-order information against
the second-order information. In the analysis above, I adopt the same set of hyperparamters
to evaluate the search criterion using first- and second-order information. Thus, the perfor-
mances are directly comparable. Overall, the optimisation adopting second-order information
is faster, with a total CPU time of 762.714 seconds and a total number of iterations of 50.
This draws comparison to the optimisation adopting first-order information, with a total CPU
time of 2773.410 seconds and a total number of iterations of 200.
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(a) Multi-scale Hierarchical Search

(b) End-to-end Backpropagation

Figure 6.9 The comparison between the optimisation performance of the end-to-end back-
propagation method and the multi-scale hierarchical search method.
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Figure 6.10 The distribution of the weights obtained from end-to-end backpropagation and
multi-scale hierarchical search algorithm with second-order information.

In the analysis above, the number of epochs in each iteration is fixed to be 1,000, which
means that the number of epochs to optimise each layer is 1,000. To further compare how
the incorporation of second-order information improves the search of optimality by reducing
the operation time, I insert a convergence criterion in each iteration of optimisation. The
convergence criterion for each iteration is defined as follows:∣∣∣∣∣∣∣∣∂LSQR

∂Wlayer

∣∣∣∣∣∣∣∣
in f

< tolerance (6.30)

where Wlayer refer to the weights in the layer being optimised. The tolerance is a user-defined
input value which can be equal to the convergence criterion of the whole optimisation
problem. By comparing the infinity norm of the weights in the layer tuned to a tolerance
value, I stop further optimisation of the layer if the tolerance is subceeded. Thus, the number
of epochs in each iteration will be less than 1,000.

In comparison, the convergence criterion for the whole optimisation problem is:∣∣∣∣∣∣∣∣ ∂LSQR
∂Wnetwork

∣∣∣∣∣∣∣∣
in f

< tolerance (6.31)
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Table 6.4 The comparison between binary tree search based on first-order and second-order
information, against backpropagation. The average values are obtained for each iteration.
The total values are obtained for all iterations.

Order Average CPU Time Average Epochs Total CPU Time Total Iterations

First 5.746 405.7 350.4 51
Second 3.013 203.4 310.9 101

Backpropagation 3.022 200 297.3 99

where Wnetwork refer to the all the weights in the network. Practical implementation shows
that a better tolerance for each iteration is 10−4 and for the overall optimisation problem is
10−3.

To demonstrate how the incorporation of second-order information improves the speed
of optimisation, I record the average value of the number of epochs, the CPU time and the
infinity norm of the gradient values in each iteration. The comparison of first-order sensitivity
selection and second-order sensitivity selection is shown in Table 6.4.

After adding a convergence criterion in each iteration, I observe that the adoption of
second-order sensitivity as the selection benchmark takes less operation time than first-order
sensitivity. The average CPU time and the average number of epochs in each iteration is
smaller when second-order information is adopted. Although the total number of iterations is
higher for second-order information, this is compensated with less search time within each
iteration.

Comparing with backpropagation, the second-order process takes comparable and even
less CPU time per iteration. The total CPU time is also similar with backpropagation.
Backpropagation is the fastest algorithm overall with the second least total number of
iterations. Although overall, backpropagation outperforms both first and second order
processes in CPU time, the first-order multi-scale hierarchical search takes less iterations and
the second-order search is faster per iteration.

I also plot the convergence of
∣∣∣∣∣∣ ∂LSQR

∂Wnetwork

∣∣∣∣∣∣
in f

across iterations, which is demonstrated in

Figure 6.11a. It can be observed that both optimisations converge almost roughly at the same
time (around 50 iterations). The only reason that the second-order process takes longer is
due to the fact that the tolerance has not been reached in exact numerical values.

In Figure 6.11b, I draw the scatter plot of the number of epochs in each iteration against
the number of iterations. It can be observed that the values are almost separated into two
categories, either reaching the maximum number of epochs allowed in each iteration (1,000),
or using only one epoch to reach the tolerance, with the exception of only two points. One
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Table 6.5 The comparison between binary tree search based on first-order and second-order
information, against backpropagation, for a network with 20 layers. The average values are
obtained for each iteration. The total values are obtained for all iterations.

Order Average CPU Time Average Epochs Total CPU Time Total Iterations

First 18.681 397.26 1022.4 50
Second 18.402 397.26 1153.5 50

Backpropagation 9.376 200 912.7 97

explanation is that either the tolerance is difficult to reach or the layer is already optimised so
I have a polarised distribution of number of epochs.

Comparing with Figure 6.11c, the distribution of CPU time is similar to Figure 6.11b,
indicating that the CPU time is closely related to the number of epochs in each iteration, with
fluctuations due to the speed of performing different calculations.

Overall, the second-order information performs better than first-order in terms of total
performance as well as performance per iteration. It also has the potential to converge in
fewer iterations than first-order processes with a different definition of tolerance.

6.7 Application to Large-scale Problems

The advantage of the multi-scale hierarchical method is not obvious when the network scale
is small, as demonstrated in Section 6.4.3. Therefore, I implement a much larger network
and observe its effects.

I first implement the algorithm to a network with 20 hidden layers of 5 neurons each. The
performance of implementing first-order process, second-order process and backpropagation
is demonstrated in Table 6.5. From the results, it can be observed that the backpropagation
is still the fastest algorithm in terms of total CPU time and CPU time per iteration. The
second-order method is slightly faster than first-order in terms of average CPU time per
iteration. The number of iterations is the same for first- and second-order method in this case,
both are higher than the backpropagation method. This demonstrates the effectiveness of the
sensitivity-based selection method in optimising the network to a required tolerance.

Figure 6.12 demonstrates the performance of the first-order method against the second-
order method. From Figure 6.12a, I observe that the rate of convergence is roughly similar for
first-order and second-order method. Compared to the smaller network, I similarly observe
that the training time and epochs is separated into two categories, either costing the maximum
epochs to optimise a particular layer, or immediately reaching convergence criterion with
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(a) Gradient Across Iterations

(b) Epochs Across Iterations

(c) CPU Time Across Iterations

Figure 6.11 Comparison of the convergence rate of optimisation using first-order information
vs second-order information.
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Table 6.6 The comparison between binary tree search based on first-order and second-order
information, against backpropagation, for a network with 50 layers. The average values are
obtained for each iteration. The total values are obtained for all iterations.

Order Average CPU Time Average Epochs Total CPU Time Total Iterations

First 24.519 208.83 3271.9 100
Second 48.912 416.67 3746.6 50

Backpropagation 25.206 200 2529.4 100

1 epoch. This is demonstrated in the polarisation of data points in Figure 6.12b and Figure
6.12c.

I then increase the number of layers to 50. The results are demonstrated in Table 6.6 and
Figure 6.13.

From Table 6.6, I observe that the first-order method is the fastest in terms of average
CPU time, followed by the backpropagation method. However, the second-order method
has a key advantage with the lower number of iterations. Observing Figure 6.13, I find that
the second-order method initially converges more slowly than the first-order method, later
reaching similar speed of convergence after several iterations. As the speed of convergence
differs from that of a 20-layer model, it can be inferred that there is no fixed dominance of
the first-order over the second-order method and vice versa. I similarly conclude that there
is a polarisation in terms of data points, indicating either immediate convergence or very
slow convergence of a particular layer. I postulate that the slow convergence occurs on layers
that contribute significant changes to the overall model performance, indicating the unequal
importance of different layers inside the model.

6.8 Discussion

6.8.1 Structural Sensitivity Equilibration

An important aspect of the new multi-scale hierarchical optimisation algorithm is that it is
capable of equilibriating the structural sensitivities and converges to at least a local minimiser.
Secondly, by the randomised left-or-right non-deterministic selector criterion at the binary
multi-scale partitioning tree, and its statistically designed element on favouring the side with
the largest locally determined absolute structural sensitivity (derivative) value, the iterations
are naturally expected to achieve a path that not only progresses to a local minimum, but also
exhibits equilibration of left and right structural sensitivity values at the branching points of
the binary partitioning tree.
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(a) Infinity Norm of Gradient Across Iterations

(b) Epochs Across Iterations

(c) CPU Time Across Iterations

Figure 6.12 Comparison of the convergence rate of optimisation using first-order information
vs second-order information in a network with 20 layers.
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(a) Infinity Norm of Gradient Across Iterations

(b) Epochs Across Iterations

(c) CPU Time Across Iterations

Figure 6.13 Comparison of the convergence rate of optimisation using first-order information
vs second-order information in a network with 50 layers.
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This poses an interesting first question (a) as to the meaning and potential physical
interpretation, further form their mathematical definition, with regards to implications for the
underlying mathematical model, and hence (b) physical interpretations of the physical system
being modeled within the novel multi-scale hierarchical modeling and solution computation
framework proposed.

6.8.2 Online Application

Compartments of the arbitrary partitioning generates equilibrated values in terms of im-
portance/impact on the overall defined performance index criterion of the entire system
being modeled, or even controlled online in real-time by the novel optimization framework
introduced here. This is a very interesting property which allows further novel considerations:
if a system is thus structural sensitivity-wise equilibrated, any small deviation will be easily
detectable at the top-level of the binary tree and easily identifiable at the finest structure of
the embedded model and underlying physical system in log2 steps of the total number of the
finest structure components of the system.

6.8.3 Degree of Coupling Implications with Second-order Sensitivities

In view of Section 6.5, there is now a new metric of analysing, evaluating, designing and
eventually controlling fully, very large-to-enormous scale systems, both in the mathematical
and in the more abstract sense. Effectively, a huge-impact topic highlighted at the end of
Section 6.5 can be enhanced by:

1. First-order structural sensitivities revealed a "linear behaviour" approximation of our
system from a hierarchical multi-scale point of view.

2. The second-order structural sensitivities measure quantitatively the degree of local
non-linearity of our system considering its interacting parts form the top level of
abstraction, all the way down to its finer/finest modeling scale.

3. The mixed second-order sensitivities reveal the degree of coupling of the underlying
level sub-compartments of our model, as I descend down the multi-scale hierarchical
structure/framework levels.

Such a numerically quantitative system metric will:

1. Allow the exploration of new, self-adaptive local information, simulation and system
optimisation algorithms within the currently proposed framework
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2. Allow a self-adaptive parallelisation of nested computations such that loosely inter-
acting (or loosely connected) components can be mathematically reliably assigned to
different parallel processors, thus paving the way both for new parallel algorithms with
existing hardware, as well as the design of new dedicated computational architectures
that can be exploited more fully by the novel proposed computational modeling and
solution framework.

6.8.4 Training and Testing

It is noteworthy that performance results in this chapter are mostly based on the training
process. The testing results are not included since the focus is on how fast the model
converges and whether the same results are arrived compared to end-to-end models. As
future work, it is possible to add generalisation as a performance evaluation process and
demonstrate that there is no overfitting from our proposed multiscale hierarchical search
model.

6.9 Summary

In this chapter, a novel multi-scale hierarchical search algorithm is developed to achieve
the tuning of artificial neural networks (ANNs). The algorithm takes a leveled approach
where within each level, the network is divided into left and right side, and the sensitivity
of each side is evaluated through first-order or second-order finite difference method. The
algorithm then successively selects one side to further divide until only one layer is left,
obtaining overall a binary tree search. The selected layer is optimised in one iteration until a
convergence criterion for one iteration is reached. Then the selection process repeats until
an overall tolerance is reached, and until the tolerance is reached, the tuning of the network
terminates.

A key feature of the algorithm is the introduction of a randomisation process in the binary
selector where a sensitivity-based probability value is calculated and used as the probability
to select left or right. The introduction of the random factor improves performance as it
ensures less repetition in the optimisation process of a single layer, thus achieving more
efficient optimisation.

The key novelty of the algorithm is the binary search process implemented to only
optimise one layer at a time. In theory, it is applicable to a large network where only a subsets
of layers of key importance are optimised. If the requirement on tolerance is not high, the
method can be in theory faster than the optimisation of all layers.
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Overall, a novel hierarchical multi-scale search method is proposed for the tuning of deep
neural networks. The introduction of selective tuning allows fast convergence of DNNs and
quick equilibration of sensitivity values. As sensitivity values of the attenuation/amplification
factor also corresponds to neuron importance, ongoing research efforts can focus on how to
manipulate this method to be applied to the structural evolution of DNNs.



Chapter 7

Dynamic Neural Architecture
Construction

7.1 Introduction

In Section 2.2.7, I have reviewed literature that searched for the architecture of a neural
network through the process of pruning, i.e. removing some branches in the network while
achieving comparable or even better performance. It is in the mainstream literature that such
a method is used for the construction of a neural network with reduced parameters storage.
However, another school of literature worked counter-wise to design a neural network that is
built constructively by extending from a small network. Therefore, I developed the intuition
that a neural network can be reversely produced from some basic structure, and I term the
process "Dynamic Neural Architecture Construction".

There are some weaknesses of pruning a network in comparison to constructing a dynamic
one. In pruning, training time has been spent on optimising a network larger than necessary,
generating wasteful computations [226]. Moreover, the optimal architecture found is often
stuck in one of the intermediately sized solutions, and the smallest network is not found
[227].

The dynamic construction of a neural network often involves a series of optimisation
processes, as each time the architecture is transformed, an optimisation with regard to the
output error is performed. Within literature, the objective function of the optimisation
process in a dynamic architecture often includes common metrics such as training or testing
losses. However, different architectures entail different optimisation processes and different
variations of the objective functions.
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There are several advantages of a dynamic architecture. First, it allows lifelong learning
where the responses from a network evolve with new feed of input data [228]. Traditional
neural networks adapt to changing inputs by varying the parameters of the network, but
the overall architecture stays unchanged. With a dynamic structure, it is possible to alter
architectural hyperparameters in order to respond to a learning question. Second, while some
have the intuition that dynamic networks trained with local adaptation methods may not work
so well as a complete neural network trained end-to-end on the whole training dataset, this
can be a countered by empirical evidence [229]. Both methods are found equally effective as
the advantage of eliminating unnecessary parameters outweighs the disadvantage of local
incremental learning [229].

The controversy surrounding the dynamic methods is that it can be quite time-consuming
to find an architecture and the process requires a lot of computation. This is accentuated in
a large and deep network such as the ResNet [230] where there are 152 layers in total and
the addition layer by layer can be a slow process. Each time the architectural parameters are
altered, an optimisation algorithm is run to ensure that the structure is optimal. However, this
process is capable of producing a minimally structured network, therefore reducing the needs
of performing unnecessary computations in the testing and application stages. Moreover, the
problems in many industrial settings have a small dataset with a less complicated nonlinear
relationship to model, which allows a dynamic method to be economical to use compared to
problems in computer vision [231], natural language processing [232], speech recognition
[233], etc.

This chapter discusses the application and modification of one dynamic algorithm, DAN2,
with a focus on the chemical engineering datasets. The architecture incrementally adds layers
to the initial structure but with a fixed number of neurons in each layer. The architecture has
been demonstrated to perform well in predicting non-linear processes [234] and time-series
[235]. Moreover, it has an edge in the prediction of dimensionally small datasets, typical of
what most chemical engineering datasets are. The original model is created for single-output
predictions only. I introduce the model to a few chemical datasets and adapt the model to
multi-task learning to allow multi-variate output. Different structures of multi-task models
are proposed and the performance is compared. I also instigate a heuristic search scheme to
find the optimal architecture of the multi-task learning network. The proposed architecture
search method is well-suited to the multi-task learning network and allows the introduction
of multi-task learning processes to DAN2 network.

I motivate a search of the optimal architecture of the multi-task version of the DAN2
network since industrial datasets from the chemical process industries usually contain multi-
ple highly-correlated outputs relating to the same operating conditions [236] [237]. Since
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the correlation between the outputs are high, there is huge potential in applying multi-task
learning in chemical engineering. A design method that identifies the optimal architecture of
this multi-task learning network is thus beneficial to the research community.

Moreover, the adoption of DAN2 serves as a novel alternative to the current ANNs or
mathematical models commonly used in the industries to simulate processes. Mathematical
models require heavy computations such as in the case of fluid dynamics. DAN2 and ANNs
are data-based models that make predictions with less complicated modeling techniques. In
comparison with ANNs, DAN2 tends to have less parameters and is more suited to time
series modeling.

There are two optimisation processes involved in optimising DAN2 network: 1) the
optimisation of the total number of layers with respect to the test set performance evaluated
by metrics such as Mean Squared Error, and 2) the optimisation of the value of coefficient µ

with respect to the function approximated by one layer of the network. A more comprehensive
discussion can be found in Section 7.6. I focus on the first optimisation process as this is the
neural architecture search step. By optimising the total number of layers for each task and for
layers shared by each task, I can successfully construct a multi-task learning DAN2 network.

This chapter is outlined as follows:

• Section 7.2 describes past and current literature adopting a dynamic architectural
search method to construct neural networks.

• Section 7.3 describes the model of DAN2 and the optimisation processes involved. It
also performs a primitive analysis of the architecture.

• Section 7.4 outlines the methodology involved in data processing and model construc-
tion.

• Section 7.5 gives an overview of the multi-task learning and the advantages of applying
DAN2 to multi-task learning problems.

• Section 7.6 defines key mathematical concepts in optimisations of multi-task learning
problems.

• Section 7.5 introduces the optimisation of a multi-head structure. Both the methods of
grid search and the heuristic search are proposed and compared.

• Section 7.8 introduces the serial structure adopting similar optimisation schemes. The
performance is compared.

• Section 7.9 discusses alternative optimisation methods and their pros and cons. In
addition, possible future works are investigated.
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• Section 7.10 then concludes the chapter.

7.2 Review on Dynamic Architectures in Literature

The idea of dynamically extending the network is inspired from the classic Adaptive Reso-
nance Theory (ART) [238] and Grow and Learn (GAL) Theory for networks [154]. Similarly
closely related is the concept of "Lifelong Learning", where the network is allowed to evolve
incrementally with new inputs such that the response function changes over time [228], and
this process often involves dynamically changing the architecture. This concept is sometimes
also termed "Continual learning", which refers to the ability of the system to learn from a
continuous stream of input information without catastrophic forgetting [239]. "Incremental
Learning", which refers to effective model adaptation with a continuous feed of streaming
data, is often frequent in research of dynamic architectures.

7.2.1 Primitive Dynamic Methods

The primitive dynamic architecture construction consists of three mainstream methods. They
are mainly related to evolving the basic structure of an ANN and are some of the earliest
work to address the dynamic architectural construction problem:

• Adding neurons to a fixed architecture [35] [227] [240] [241]

• Adding layers to a fixed architecture [155]

• Altering connections between neurons [33]

Research in the first category has been focusing on finding the minimal topology of a
neural network by adding neurons one by one. One of the earliest work in this area is [227],
recognising the trade-off between a large overfitting network and a small inaccurate model.
It introduces a Dynamic Node Creation (DNC) method that adds a node to the hidden layer
and perform backpropagation to the network until the flattening of the average squared error
curve has been detected.

In [240], the authors propose the Growing Neural Gas model, a popular method well-
referenced in many literature. However, it adds neurons to the network only at fixed,
pre-defined intervals.

In [241], two neural networks are generated and neurons are added to the hidden layers
of each network. It works under the knowledge that as the network grows and starts to
overfit, the hidden layers will diverge. Thus, when divergence happens, the two networks are
amalgamated with each other.
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A method to add neurons to the position that generates the maximum reduction in error
is proposed in [35]. Since it only creates links when absolutely necessary, the method often
produces a sparse and non-uniform network.

The design of a framework that can be used to grow neural networks based on the most
primitive changes such as adding neurons or adding skip connections is proposed in [33].
This is summarised below:

• Reduce the error by expanding the capabilities of the network: (a) Change the number
of neurons in a certain layer (b) Add sideway growth

• Optimise the network for a particular class of problem: (a) Add asymmetry (b) Add
sideway connections (c) Skip layers

• If the fitness of network is not increasing, attempt strategies completely changing the
performance: (a) Add new layer (b) Add feedback loops

• Improve the efficiency of the network: (a) Add bias (b) Prune connections

7.2.2 Modern Dynamic Methods

The Grow When Required (GWR) network [34] is also a popular model. While most
growing networks add new neurons to support the node that has produced the highest error
or to support topological structure, this method adds a new node when the input cannot
be sufficiently modeled by the network. Moreover, previous methods add a neuron after a
number of iterations to identify the necessity of neuron addition, and optimise a few times
until next neuron is added, this method adds a neuron whenever the input distribution is
changing. The network has been used in protein folding classification [242].

An alternative terminology is neural network self-organisation, where the network evolves
to fit to non-stationary inputs by adopting a dynamic architecture. More recent literature
that focuses on neural network self-organisation dynamically allocate or remove neurons in
response to sensory experience with applications in human-robot interaction (HRI) [228]
[239]. In [228], a self-organising recurrent model is constructed to process human actions in
video sequences, and it has achieved state-of-the-art performance. In [239], a self-organising
convolutional neural network is proposed to recognise body and emotional expressions. In
both cases, the models are robust to non-stationary input with the self-evolving nature of the
network. The authors in [243] apply self-organising neural networks to novelty detection,
the process that robots recognise unexpected data in their sensory field, with applications
in surveillance, reconnaissance, self-monitoring, etc. The model used is based on Grow
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When Required Neural Network (GWRNN). In [244], a novel model is produced to analyse
stationary and non-stationary noisy streaming data.

The popularity of self-organising neural networks in applications of robotics is that the
input is usually a continuous stream with non-stationary distribution. Chemical processes,
similar to robotics, contain streaming data of temperature, pressure, composition, etc. There-
fore, it is natural to find applications of a self-organising network, or a dynamic architecture
neural network, in the field of chemical engineering.

The following sections review in detail one of the dynamic architectural construction
methods, the Dynamic Architecture for Artificial Neural Networks (DAN2) method. The
method adds to the input layer incrementally layer by layer and defines the non-linear
activation through trigonometric functions. It defines a novel architecture compared to
traditional ANNs. It also serves as a typical example of methods often adopted in dynamic
architecture construction.

7.3 Dynamic Architecture for Artificial Neural Networks
(DAN2)

A dynamic feedforward architecture, DAN2, is proposed in [234], which is characteristic of
common dynamic models where the number of layers increase incrementally and a better
definition of each layer is encapsulated in its design [234]. The objective of the network is to
model nonlinear processes or time series data. The model achieves this objective by learning
and accumulating knowledge at each layer, propagating and adjusting this knowledge forward
to the next layer, repeating until the desired network performance criteria are reached [234].

The advantage of DAN2 architecture is three-fold: 1) the model trains on the entire in-
sample dataset collectively, allowing more effective capture of data patterns; 2) the model has
high scalability, allowing the addition of layers by continuously and dynamically updating
only five parameters; 3) the model removes the “black-box” notion that has been associated
with neural network models by using a closed form set of equations that are obtained at the
end of each step of the training process. With such advantages, it is imperative that I can
expand the potential areas of applications through modifications of the network, such as
making it multi-task.

In the DAN2 model, the input layer is defined by external data with normalisation. The
hidden layers are sequentially and dynamically generated until the stopping criteria are met.
The novelty of the algorithm is that there is a fixed number of hidden neurons in each hidden
layer. The architecture is shown in Figure 7.1.
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Figure 7.1 DAN2 network architecture

In each layer there are four hidden nodes. The constant (C) node adds a constant to
the corresponding node. The "current accumulated knowledge element (CAKE, labelled
as F)" node is a linear transformation from all nodes in previous layers. There rest nodes
are "current residual nonlinear element (CURNOLE, labelled as G and H)" nodes, which
perform a nonlinear transformation from the weighted average of previous CURNOLE nodes.
ak,bk,ck,dk and µk are the weights of each nodes inputting to the next layer.

The training process involves the addition of the network layer by layer. In the first layer,
the CAKE node is calculated as a linear combination of input variables and the constant
(C) node. The weights of the linear combination are obtained through linear regression. If
accuracy criteria are met at this step, the process to be modeled is effectively linear. If not,
the subsequent CAKE nodes take input from previous CAKE, CURNOLE and C nodes.

The nonlinear transformation brought about by CURNOLE nodes adopts a vector project
method. A reference vector is defined and the input vectors are projected onto this vector.
The angles, αi, between each input samples and the reference vector are recorded. The
trigonometric function Cosine(µkαi +θk) captures the nonlinear transformation equivalent
to a rotation of µk and a shift of θk. Cosine(µkαi +θk) is equivalent to AConsine(µkαi)+

BSine(µkαi). Therefore, two CURNOLE nodes are set up giving a nonlinear transformation
of Sine and Cosine each.

The overall relationship is outlined as:

Fk(Xi) = ak +bkFk−1(Xi)+ ckGk(Xi)+dkHk(Xi) (7.1)

where Xi represents the n independent input records, Fk(Xi) represents the output value at layer
k, Gk(Xi) = Cosine(µkαi), and Hk(Xi) = −Sine(µkαi) represent the transferred nonlinear
components, and ak, bk, ck, dk and µk are parameter values at iteration k. The objective is
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to minimize the total error, SSEk = ∑i[Fk(Xi)− F̂(Xi)]
2, where F̂(Xi) is the observed output

value. Substituting Fk(Xi), I have:

SSEk = ∑
i
[ak +bkFk−1(Xi)+ ckCos(µkαi)+dkSin(µkαi)− F̂(Xi)]

2 (7.2)

I optimise this equation with respect to parameters ak, bk, ck, dk and µk. The process of
layer addition and parameters optimisation alternates until a satisfying stopping condition
evaluated by SSE is obtained.

7.3.1 Applications of DAN2 in Literature

The dynamic architecture neural network (DAN2) is proposed as a novel alternative structure
to traditional feedforward backpropagation (FFBP) algorithm [234]. Research has demon-
strated that the network is effective in predicting nonlinear processes [245] and in predicting
time-series data [246]. From then on, mainstream research has been focusing on the predic-
tion of time-series based on this model [156] [247]. A variety of cross-disciplinary problems
have been treated based on this model, including automated text classification [248], movie
revenue prediction [249], twitter sentiment analysis [250], urban water demand forecasting
[251], medium term electrical load forecasting [252], stock market index and stock price
prediction [253] [254].

Meanwhile, it has been demonstrated that the model is effective in performing classifica-
tion tasks [255] [256]. In [255], the author developed a hierarchical model in which the model
is compared to traditional machine learning algorithms such as linear discriminant analysis,
quadratic discriminant analysis, k-nearest neighbor algorithms, support vector machines, and
traditional artificial neural networks. The ability of the network to perform classification is
corroborated in [256] where the model is used to classify Camellia (Theaceae) species based
on leaf characteristics.

While most literature focuses on the application of the algorithm to different context,
an important revision of the algorithm is performed in [246] where modification to the
algorithm is performed with regard to time series forecasting. The modification reformulates
the network as an additive model and proposes a novel method to optimise the network where
the network parameter µ is fixed to a few selections and linear regression is performed with
regard to the additive model. Applications to datasets have demonstrated positive results.
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7.3.2 The Optimisation Problem

The original algorithm entails two optimisation processes [154]. The first process is the
determination of the number of layers with regard to training and validation accuracy. There
are two criteria of accuracy proposed for this model:

ε1 = (SSEk −SSEk+1)/SSEk ≤ ε
⋆
1 (7.3)

ε2 = |MSET −MSEv|/MSET ≤ ε
⋆
2 (7.4)

The first criterion, as enlisted in Equation 7.3, defines the training loss. When the
fractional changes in sum of squares error (SSE) with an addition of a layer is smaller than a
benchmark (ε⋆1 ), the training stops and the network layers are fixed. The second criterion, as
enlisted in Equation 7.4, defines the testing loss. When the MSE of training dataset converges
to MSE of validation dataset and the difference is smaller than a benchmark (ε⋆2 ), the training
process is stopped.

The second training problem aims to find the value of µ . This is achieved by optimising
SSE relative to the µ based on Equation 7.2. To optimise SSE with respect to µ , I can adopt
first-order methods such as the bisection method to find the minimum SSE. The derivation of
the derivative values can be found in [234] and is formulated in Equation 7.5.

δ (SSEk)/δ µk =∑
i
[(F̂(Xi)−ak −bkFk−1(Xi))× (ck ×α1 × sin(µk ×αi)

−dk ×α1 × cos(µk ×αi))

+(d2
k − c2

k)×α1 × sin(2×µk ×αi)/2

+ ck ×dk ×α1 × cos(2×µk ×αi)] = 0

(7.5)

7.3.3 Analysis on Dynamic Architectural Methods

One distinct advantage of the DAN2 architecture is that it only has one free parameter to
optimise: the number of hidden layers. This draws comparison to the traditional neural
network where the number of hidden layers and the number of hidden neurons in each layer
are all parameters to optimise. This results in a number of literature reviewing on optimising
these numbers, such as grid search, Bayesian Optimisation, etc. Therefore, DAN2 surpasses
these architectures by having a simpler optimisation regime. However, it also limits the
flexibility of this network in comparison to other dynamic models such as cascade learning,
rendering it a bit rigid to variations in the data. If I draw comparison to traditional neural
network, on the other hand, the model is flexible due to its dynamic nature, adapting to the
datasets by changing the total number of layers.
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Another advantage is that the model encompasses layer-wise training. Layer-wise training
enables applications such as larger models under memory constraints, model prototyping,
joint model compression and training, parallelised training, and more stable training for
challenging scenarios [257]. Moreover, layer-wise training has been shown to be able to deal
with large dataset such as ImageNet [257], contrary to common beliefs.

One characteristic of the DAN2 network is that it freezes its parameters in each layer
as more layers are added. There are three advantages associated with this characteristic:
(1) it reduces computational complexity hence requires less computational time; (2) there
is no need to store gradient information hence the memory storage is low, unlike in neural
networks optimised through gradient based methods; and (3) it circumvents the vanishing
gradient problem.

The vanishing gradient problem manifests itself in traditional neural networks when the
automatic differentiation dictated by the chain rule generates very small numbers in the initial
layers of the network, making the updates of parameters in the initial layers very slow. The
DAN2 solves this problem by training from bottom-to-top, i.e. starting from the input layers,
and freezes the coefficients for each layer along the process. Therefore, one can expect
better-parsed parameters for the initial layers.

7.4 Methodology

In the previous section, I have reviewed the algorithm of DAN2 and discussed its charac-
teristics. In this section, the methodology behind the application of the DAN2 network is
described. I apply algorithmic modifications to achieve multi-task learning and implement
the architectural search.

7.4.1 Dataset

There are two datasets to which I have applied our algorithm. Both datasets are used for
regression tasks. I developed a first dataset to simulate a dynamic process of pressure
swing adsorption (PSA). The PSA dataset contains 6 set of continuous input features and
3 continuous output values, i.e. the recovery rate, the purity and the energy consumption.
Details of the data collection process and the data pre-processing can be found in Appendix.
This dataset is used because (1) it contains highly correlated outputs obtained under the same
operating conditions which are suitable for multi-task learning, and (2) the process is highly
non-linear in nature and thus requires a good non-linear approximator such as DAN2 to
model.
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To ensure that the dataset is applicable to multi-task learning, I calculate the correlation
matrix of the output values consisting of recovery rate, purity and energy consumption. The
correlation matrix is shown in Table 7.1. From the matrix, I see correlations between the
three values, indicating the applicability of multi-task learning.

Table 7.1 Correlation matrix for the output values of recovery rate, purity and energy
consumption in the PSA dataset

Recovery Rate Purity Energy Consumption

Recovery Rate 1 -0.672 0.652
Purity -0.672 1 -0.499
Energy Consumption 0.652 -0.499 1

The second dataset used is the OILDROPLET dataset. The dataset contains 24,422
experimental entries, and within each entry, there are 7 input variables and the 4 output
variables (i.e. average movement speed, maximum speed of a single droplet, average number
of droplets in the last second, average number of droplets throughout the experiment). Details
of the dataset can be found in Appendix. I make use of this dataset because it also involves
an implicitly non-linear process under which DAN2 can be a suitable model.

Similarly, I calculate the correlation matrix of the output values to ensure a multi-task
learning architecture is suitable. Table 7.2 tabulates the correlation matrix, demonstrating
a strong correlation between output values of droplet sizes and between outputs of droplet
speeds.

Table 7.2 Correlation matrix for the output values of the OILDROPLET dataset. SAve
represents the average speed of droplets. DFinalAve represents the average number of droplets
in the last second. SMax represents the maximum average single droplet speed. DAve represents
the average number of droplets.

SAve DFinalAve SMax DAve

SAve 1 0.157 0.871 0.0513
DFinalAve 0.157 1 0.295 0.864
SMax 0.871 0.295 1 0.244
DAve 0.0513 0.864 0.244 1
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7.4.2 Data Pre-processing

I pre-process the input data through normalisation and standardisation. Empirical comparison
of the two pre-processing methods demonstrate that normalisation tends to generate more
accurate results. Therefore, I have adopted normalisation in our experimentation. Moreover,
I split the data into training (49%), validation (21%) and testing (30%) dataset. I have put
a larger weighting on validation set because I would like to have more data to determine
the architectural parameter of the the network. Cross-validation is not performed under the
scope of this research but as future work, cross-validation can be performed to ensure the
generalisation of the proposed algorithm.

7.4.3 Multi-task Learning

The dynamic model is then modified for multi-task learning. Two architectures are proposed
adopting a multi-head structure and a serial structure. In each proposed architecture, I
propose two different methods to learn the architecture of the network: (a) the grid search
and (b) an iterative heuristic search scheme. In the method of (a), the dynamic architecture is
constructed with the free parameters representing the total number of shared or task-specific
layers. The optimal architecture is found by altering the values of the free parameters. In
the method of (b), the dynamic architecture is constructed such that each addition of layers,
either shared or task-specific, is written into a subroutine. To search for the optimal number
of layers requires the iterative running of the subroutines until convergence to a tolerance.

In either method, the predicting power of the architectures are evaluated and compared
to traditional ANNs. Different datasets have been adopted to evaluate effectiveness of the
developed network.

7.4.4 Evaluation

To evaluate the effectiveness of each model, I introduce the evaluative metrics of the Sum of
Squared Error (SSE) (Equation 7.6) and the Mean Squared Error (MSE) (Equation 7.7). The
metrics are further classified into errors of the training, testing and validation datasets.

SSE =
n

∑
i=1

(ŷi − yi)
2 (7.6)

MSE =
∑

n
i=1(ŷi − yi)

2

n
(7.7)
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Figure 7.2 Structure of multi-task learning with (a) hard parameter sharing and (b) soft
parameter sharing

7.5 Applications to Multi-task Learning

A novel architectural search algorithm is proposed where I inherit the gist of dynamical
extension of networks of the DAN2 network. I introduce multi-task learning to this network
and experiment with the results. The PSA dataset and the OILDROPLET dataset are adopted
to train and validate the multi-task learning network.

In the PSA dataset, I define the three tasks to be performed in parallel as predicting
recovery rate, purity and energy consumption respectively. I believe our data is a good fit for
multi-tasking because there is strong correlation between the tasks - all three predictions are
obtained under the same operating condition. Therefore, there is shared hidden representation
between the different tasks.

Similarly in the OILDROPLET dataset, the tasks are defined to be the prediction of
average speed of droplets, average number of droplets in the last second, maximum average
single droplet speed and average number of droplets throughout recording. The multi-task
learning model is a suitable model also becuase there is correlation between the tasks, and
thus in the networks, layers can be shared between the tasks.

Multi-task learning has wide applications in many fields including drug discovery [258]
[259], computer vision [260] [261], speech recognition [262] [263] and natural language
processing [264] [265]. Techniques involving multi-task learning can be separated into hard
parameter sharing and soft parameter sharing. In hard parameter sharing, the shared layers
for different tasks have equal weights while a few output layers are designed for each specific
task. The structure is demonstrated in Figure 7.2(a). In soft parameter sharing, separate
networks are developed for each task but the weights are regularised to be close to each other.
The structure of soft parameter sharing is demonstrated in Figure 7.2(b).

Our model adopts the hard parameter sharing scheme where the same weights are shared
and fixed for different tasks. The advantage of a hard parameter sharing is that it greatly
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reduces over-fitting, allowing the network to generalise better between tasks [122]. Soft
parameter sharing is not adopted since it in essence trains separate networks for different
tasks, taking up more computation and memory to develop and store.

There are several advantages of multi-task learning [122]. The first is implicit data
augmentation, where sample size is increased with data from different tasks and the model
trained will better represent the hidden distribution of a more general representation. The
second is attention focusing, where the model puts more emphasis on important features with
relevance confirmed by auxiliary tasks. The third is eavesdropping, where a difficult to learn
task can be learned effectively through auxiliary tasks. The fourth is representation bias, as
the model is biased to learn similar problems since it generalises well within our defined
problems. The last is regularisation, as sharing parameters prevents over-fitting to a specific
task.

A technical issue of applying multi-task learning is whether to freeze the weights with
the addition of a new layer or to retrain the whole network. While the former introduces
less re-computation, the latter finds the more optimal solution. This is because holding other
weights constant only allows search along the affine subspace of the weight space [227].
However, the design of the DAN2 network is such that weights are frozen in each iteration,
as the addition of each layer is a deterministic step with no free parameter. Therefore, it
is reasonable to freeze the weights without the need to retrain the whole network, saving
computations as an added benefit.

The advantage of the DAN2 network to be applied to multi-task learning is that it freezes
the parameters in each layer after training is performed and adds in new layers without
affecting the parameters of the previous layers. This greatly simplifies the calculation of
the shared layers. Our dataset is suitable for multi-task learning since the output values
are generated based on the same operating conditions as inputs. Therefore, I expect strong
correlation between different outputs and a shared representation is suitable for the data at
hand.

7.6 Mathematical Formulation

The multi-task learning problem can be formulated as a multi-objective optimisation problem
[266]. Here I summarise key concepts discussed in [266].

Suppose the input space is represented as X and the output space {Y t}t∈[T ]. The dataset
is a set of i.i.d. data points represented as {xi,y1

i , · · · ,yT
i }i∈[N] where xi is a particular input

that is related to outputs yi of tasks 1 to T , and N is the total number of data points. The
learning problem for a particular task is defined as f t(x;θ sh,θ t) : X → Y t , where θ sh are
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the shared parameters and θ t are task-specific parameters. The task-specific loss function is
defined as L t(·, ·) : Y t ×Y t → R+.

In most empirical cases, the overall loss function is defined as a weighted average of
losses, where the weights ct can be static or dynamically computed. L̂ t(θ sh,θ t) is the
empirical loss of a particular task t, which is defined in Equation 7.9.

min
θ sh,θ 1,··· ,θ T

T

∑
t=1

ctL̂ t(θ sh,θ t) (7.8)

L̂ t(θ sh,θ t) =
1
N ∑

i
L ( f t(xi;θ

sh,θ t),yt
i) (7.9)

To formulate the problem as a multi-objective optimisation problem, I define loss L:

min
θ sh,θ 1,··· ,θ T

L(θ sh,θ 1, · · · ,θ T ) = min
θ sh,θ 1,··· ,θ T

(L̂ 1(θ sh,θ 1), · · · ,L̂ T (θ sh,θ T ))T (7.10)

The goal of multi-objective optimisation is to achieve Pareto optimality.
Definition (Pareto optimality)

(a) A solution θ dominates a solution θ̄ if L̂ t(θ sh,θ t)≤ L̂ t(θ̄ sh, θ̄ t) for all tasks t and
L(θ sh,θ 1, · · · ,θ T ) ̸= L(θ̄ sh, θ̄ 1, · · · , θ̄ T )

(b) A solution θ ⋆ is called Pareto optimal if there exists no solution θ that dominates θ ⋆.

In the context of DAN2, the loss function is defined as MSE of the testing dataset. The
shared parameter θ sh, is the free hyperparameter of the total number of shared layers.
The task-specific parameter θ t is the free hyperparameter of the total number of task-
specific layers. To find Pareto optimality, a grid search of the shared and task-specific
parameters are performed where condition (a) holds. The best performing parameters derived
from the grid search are assumed to be non-dominant by other parameter values, fulfilling
condition (b). The multi-objective optimisation problem is thus simplified to optimising
two hyperparameters regarding the architecture, while minimising the vector-formed loss
function L(θ sh,θ 1, · · · ,θ T ).

7.7 Optimisation of Multi-head Architecture

I propose a multi-task learning network where the first few hidden layers are kept the same
for different learning tasks. I adopt the hard parameter sharing scheme and due to the fixation
of most parameters of the model, the only free hyperparameter is the number of layers. A
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Figure 7.3 A multi-head architecture adopted with different number of task-specific layers
for each task.

hyperparameter ξsh is introduced to represent the number of shared hidden layers. After ξsh

layers, the rest of the network layers are trained separately for different learning tasks. The
structure of the proposed model is demonstrated in Figure 7.3.

In the first ξsh layers, the network is trained with regard to the whole dataset. I convert
the three dimensions of the output into single one-dimensional output through concate-
nation. During training of the shared layers, the data are randomly sampled from these
one-dimensional output. During the training of the task-specific layers, only task-specific
outputs are sampled to train the layers.

7.7.1 Grid Search

It is important to determine the architectural parameters of the network. The first method to
find the architectural parameters, i.e. the value of ξsh and the total number of layers, n, is
through a grid search. n−ξsh represents the number of task-specific layers. The searched
architectural parameters range from 3 to 8 for both shared and task-specific layers. I have
enlisted the results of grid search adopting 3-8 layers in Table 7.3.

From Tables 7.3, it can be observed that the training error is close to zero in all cases
searched. This demonstrates that the model is good at fitting training data with the possibility
of overfitting. Therefore, Table 7.4 tabulates the validation error from a grid search. This
serves to check the presence of overfitting.

From the results, it is evident that although no significant signs of overfitting is observed,
the values start to diverge when the total number is becoming higher. For example, at
(ξ = 8,n−ξ = 8) for Energy Consumption, the values of validation error becomes higher,
indicating possible overfitting starting from that point. To testify the presence of overfitting, I
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Table 7.3 Training MSE of the grid search for multi-task DAN2 network: tasks of predicting
recovery rate, purity and energy consumption. n−ξsh represents the number of task-specific
layers and ξsh represents the number of shared layers.

Task Number of Layers
ξsh

3 5 8

Recovery rate n−ξsh

3 5.213×10−8 3.992×10−8 4.791×10−8

5 5.013×10−8 5.358×10−8 4.700×10−8

8 4.764×10−8 5.034×10−8 5.011×10−8

Purity n−ξsh

3 1.088×10−7 1.623×10−7 1.589×10−7
5 1.447×10−7 9.919×10−8 1.223×10−7

8 1.380×10−7 1.272×10−7 9.909×10−8

Energy Consumption n−ξsh

3 4.495×10−7 4.375×10−7 4.616×10−7

5 4.413×10−7 4.350×10−7 2.396×10−6

8 4.711×10−7 4.332×10−7 4.381×10−7

have performed several runs on the point at (ξ = 8,n−ξ = 8) for Energy Consumption values,
and large values (>1.0) are obtained in most cases, indicating the presence of overfitting.

Similarly, I apply the multi-task DAN2 network to the dataset of OILDROPLET. The
results are tabulated in Table 7.5 and Table 7.6.

The results demonstrate that the multi-head DAN2 network is able to arrive at low training
MSEs since all training MSEs are in the range 10−3 −10−2. However, the validation losses
demonstrate that the algorithm is unstable, sometimes generating high values of validation
losses. The situation varies with different selections of the random reference vector. The
instability can be attributed to the different definition of the random reference vector in the
fitting and the predicting process. With a different random vector, the values of the angle α

as input to the trigonometric function are different. On the other hand, the parameters are
optimised using the random reference vector in the fitting process, thus generating unstable
prediction performance.

The challenge of using grid search is that a high number of points are needed to be
searched for in order to arrive at the optimal architecture. For example, in the case of the
PSA dataset, if I set the choices of the number of task-specific layers to be only 3, 5, 8, but I
allow the possibility of having different number of task-specific layers, I need to optimise the
network for "3×3×3×3" times to observe over-fitting or under-fitting. This requires in
total a search of 81 points in space. Moreover, if the number of layers to search for is high, i.e.
the number is over 100, the grid search will be computationally tedious and expensive. There
is also no proof that the search is exhaustive. Therefore, the second method, the heuristic
search scheme, is proposed to manage this problem.
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Table 7.4 Validation MSE of the grid search for multi-task DAN2 network: tasks of predicting
recovery rate, purity and energy consumption. n−ξsh represents the number of task-specific
layers and ξsh represents the number of shared layers.

Task Number of Layers
ξsh

3 5 8

Recovery rate n−ξsh

3 3.950×10−5 9.225×10−6 6.579×10−5

5 2.783×10−5 8.316×10−5 1.858×10−5

8 1.436×10−5 6.459×10−3 5.104×10−5

Purity n−ξsh

3 3.559×10−2 5.749×10−5 9.900×10−3
5 9.624×10−3 3.144×10−6 1.163×10−4

8 8.298×10−6 3.753×10−6 1.640×10−6

Energy Consumption n−ξsh

3 7.320×10−6 3.027×10−6 4.784×10−7

5 4.413×10−7 4.079×10−5 4.211×10−6

8 1.694×10−2 3.303×10−2 1.086

7.7.2 Heuristic Search Scheme

The grid search, although systematic, is time-consuming and limited in scope. Finding
each set of optimal architectural parameters requires the rerunning of the whole network.
Thus, only a small number of architectures can be evaluated in a limited number of runs. To
determine the architectural parameters to evaluate based on a grid is also a difficult task. The
size of the grid, the number of points to evaluate, the spread of the points on the grid, are all
free parameters to be determined and they may significantly affect the performance of the
network.

Therefore, I propose a heuristic search scheme for the optimisation of multi-task DAN2
network. The optimisation scheme is heuristic in nature where a sequential method is adopted.
In the original network where only one output is calculated, the total number of layers is
the only free parameter to adjust and is settled when the percentage difference between two
consecutive SSEs is smaller than a user-defined value ε⋆. In the case of multi-task learning,
the total number of layers consists of the number of shared layers ξsh and the number of
task-specific layers ξts. The heuristics become more complicated when the number of tasks
increases. For example, when there are three tasks to regress, the total number of parameters
to optimise increases to 4, including ξsh and ξ1, ξ2, ξ3 for each task.

Traditional methods to optimise a high number of architectural parameters include random
search, grid search, evolutionary algorithms, Bayesian optimisation or reinforcement learning.
Random search is unsystematic and grid search covers a small space to optimise. The other
methods are complicated in nature and require specific implementation of packages.
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Table 7.5 Training MSE of the grid search for multi-task DAN2 network for the OIL-
DROPLET dataset. n−ξsh represents the number of task-specific layers and ξsh represents
the number of shared layers.

Task Number of Layers
ξsh

1 2 3

SAve n−ξsh

1 3.812×10−3 3.795×10−3 3.794×10−3

2 3.781×10−3 3.914×10−3 3.776×10−3

3 3.766×10−3 3.841×10−3 3.735×10−3

DFinalAve n−ξsh

1 5.032×10−3 5.162×10−3 4.938×10−3

2 5.160×10−3 5.197×10−3 5.073×10−3

3 4.946×10−3 5.031×10−3 5.029×10−3

SMax n−ξsh

1 1.534×10−2 1.530×10−2 1.548×10−2

2 1.535×10−2 1.578×10−2 1.534×10−2

3 1.540×10−2 1.528×10−2 1.531×10−2

DAve n−ξsh

1 3.984×10−3 3.978×10−3 3.979×10−3

2 3.987×10−3 4.105×10−3 4.005×10−3

3 3.991×10−3 4.000×10−3 3.998×10−3

This section proposes a novel heuristic method to sequentially optimise the number of
shared layers and the number of task-specific layers. The method provides a systematic
framework in which the optimal multi-head structure can be found. Although there is no
proof of optimality in the structure generated, the dynamic nature of the network dictates
that a relatively minimal structure extended from one basic initial layer is obtained.

The optimisation scheme consists of two steps: (a) increasing the number of shared
layers by 1, and (b) increasing the number of task-specific layers by 1. The stopping
criterion for Step (a) is defined as εtotal ≥ ε⋆total where ε⋆total is a user-defined small value
and εtotal = (SSEtotal − SSEtotal,prev)/SSEtotal,prev. Since layers are shared between tasks,
the total SSE for all tasks is used in the calculation of the stopping criterion. The stopping
criterion for Step (b) is defined as εtask ≥ ε⋆task where ε⋆task is another user-defined small value
and εtask = (SSEtask − SSEtask,prev)/SSEtask,prev. The task-specific SSE is used because I
would like to train the layers such that the number of layers differs for each task.

I employ an iterative procedure where Step (a) and Step (b) alternates until the overall
SSE is smaller than a tolerance value. The tolerance value is arbitrarily small and determines
the structure of the network. The pseudocode for the optimisation of the multi-task learning
network is shown in Algorithm 10.

I apply the multi-head structure to both datasets. In the PSA dataset, the optimal architec-
tural parameters combined with training and testing MSE are listed in Table 7.7. It is evident
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Algorithm 10 Optimisation of DAN2 Network
Initialize: R → Random, X → Input, y → Out put and SSE → ∞

α = arccos(R∗X)
F0 = LinearRegressionFit(X ,y)
G1 = cos(α) and H1 = sin(α)
F1 = LinearRegressionFit(F0,G1,H1)
a1,b1,c1,d1 → Coefficients of F1
ξsh = 0 and ξts = 0
function CALCULATE(a,b,c,d,Fprev)

F = a+bFprev + ccos(µα)+d sin(µα)
end function
while SSE ≥ tol do

while εtotal ≥ ε⋆total do
ξsh = ξsh +1
µξsh

→ argmaxµ F
Gξsh

= cos(µξsh
α) and Hξsh

= sin(µξsh
α)

Fξsh
= LinearRegressionFit(Fξsh−1,Gξsh

,Hξsh
)

aξsh
,bξsh

,cξsh
,dξsh

→ Coefficients of Fξsh+1
SSE = ∑(Fξsh

− y)2

εtotal = (SSE −SSEtotal,prev)/SSEtotal,prev
end while
while εtask ≥ ε⋆task do

ξts = ξts +1
µξts → argmaxµ F
Gξts = cos(µξtsα) and Hξts = sin(µξtsα)
if ξts == 1 then:

Fξts = LinearRegressionFit(Fξsh
,Gξts,Hξts)

else:
Fξts = LinearRegressionFit(Fξts−1,Gξts,Hξts)

end if
aξts,bξts,cξts,dξts → Coefficients of Fξts+1
SSE = ∑(Fξts − y)2

εtask = (SSE −SSEts,prev)/SSEts,prev
end while

end while
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Table 7.6 Validation MSE of the grid search for multi-task DAN2 network for the OIL-
DROPLET dataset. n−ξsh represents the number of task-specific layers and ξsh represents
the number of shared layers.

Task Number of Layers
ξsh

1 2 3

SAve n−ξsh

1 1.081×102 8.361×101 1.316×100

2 6.422×10−1 5.305×10−3 4.472×101

3 2.738×102 9.753×10−1 1.392×101

DFinalAve n−ξsh

1 3.546×102 3.473×10−2 7.950×100

2 7.634×10−2 5.529×10−3 1.794×101

3 6.729×101 2.705×101 7.596×101

SMax n−ξsh

1 1.148×102 4.376×10−1 6.486×101

2 1.554×101 2.607×10−2 1.653×101

3 4.211×100 4.921×101 8.850×102

DAve n−ξsh

1 2.801×102 5.279×10−1 5.144×10−1

2 2.557×102 4.029×10−3 9.362×10−1

3 3.125×102 1.591×101 2.344×101

that the multi-head structure is capable of producing a network generating small training
and validation losses. The value for Energy Consumption diverges because of outlier values
in the dataset. Since in each layer there are 5 network parameters and there is a total of 23
layers, the total number of network parameters is 115.

Table 7.7 Training and validation results of applications of multi-head DAN2 to the PSA
dataset. The training loss is reported as SSE and the validation loss is reported as MSE. The
average training loss is defined as the sum of individual SSEs for each task-specific layer.
The average validation loss is defined as the average of MSEs for each task-specific layer.

Layer Number Training Loss Validation Loss

Shared layers 8 6.272×10−3 1.302×10−6

Task-specific layers (Recovery Rate) 6 8.620×10−5 2.690×10−6

Task-specific layers (Purity) 4 2.861×10−4 1.335×10−6

Task-specific layers (Energy Consumption) 5 7.507×10−4 3.937
Average - 3.743×10−4 1.312

The application to OILDROPLET dataset is shown in Table 7.8. In this case, no diver-
gence is observed and both the training and validation losses are small and the number of
layers used is very limited. This demonstrates the effectiveness of the network acting as an
approximator to nonlinear processes. Adapting to a multi-head structure does not limit the
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effectiveness of the network in generating small training and validation losses. Since there
are 5 network parameters in each layer and there are 10 layers in total, the total number of
parameters used is 50.

Table 7.8 Training and validation results of applications of multi-head DAN2 to the OIL-
DROPLET dataset. The training loss is reported as SSE and the validation loss is reported as
MSE. The average training loss is defined as the sum of individual SSEs for each task-specific
layer. The average validation loss is defined as the average of MSEs for each task-specific
layer.

Layer Number Training Loss Validation Loss

Shared layers 2 8.019×10−3 8.047×10−3

Task-specific layers (SAve) 2 3.914×10−3 5.305×10−3

Task-specific layers (DFinalAve) 2 5.197×10−3 5.529×10−3

Task-specific layers (SMax) 2 1.578×10−2 2.607×10−2

Task-specific layers (DAve) 2 4.105×10−3 4.029×10−3

Average - 7.248×10−3 1.364×10−2

7.7.3 Comparison with Traditional Neural Network

I construct artificial neural networks to compare the performance of the DAN2 network
with traditional artificial neural network. The hyperparameters of the traditional deep neural
network is optimised manually. I control the total number of network parameters in the ANN
to be the same as that in DAN2 model.

The DAN2 network for PSA dataset has 115 parameters. A comparable ANN with one
hidden layer of 11 neurons entails 113 network parameters, since the input dimension is 6
and the output dimension is 3. I train the network using Adam optimiser with MSE loss.
Empirical experimentation has demonstrated that both networks generate comparable results
as enlisted in Table 7.9, with the exception of divergence. From Table 7.9, it can be observed
that the DAN2 training MSE is of a similar order of scale to that from a traditional ANN.
For validation MSE, values are of similar order of scale except the divergent value in DAN2
network. The divergence is possibly due to the initial shared structure in the multi-head
structure which limits the performance of prediction in each head. Overall, traditional ANN
performs slightly better but rather comparable to the multi-DAN2 network.

The DAN2 network for OILDROPLET dataset has 50 parameters. A comparable ANN
with a similar number of parameters will entail a network with 52 parameters. The structure
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Table 7.9 Comparison between DAN2 and ANN with applications to the PSA dataset.

ANN Training MSE ANN Validation MSE

Recovery Rate 1.647×10−4 1.042×10−7

Purity 2.879×10−4 1.965×10−7

Energy Consumption 1.896×10−3 1.069×10−6

Average 7.828×10−4 4.566×10−7

DAN2 Training MSE DAN2 Validation MSE

Recovery Rate 8.620×10−5 2.690×10−6

Purity 2.861×10−4 1.355×10−6

Energy Consumption 7.507×10−4 3.937
Average 1.123×10−3 1.312

consists of one hidden layer with 4 neurons. The comparison between the ANN and the
DAN2 network is enlisted in Table 7.10.

Table 7.10 Comparison between DAN2 and ANN with applications to the OILDROPLET
dataset.

ANN Training MSE ANN Validation MSE

SAve 4.340×10−3 4.700×10−3

DFinalAve 7.090×10−3 7.593×10−3

SMax 1.970×10−2 2.021×10−2

DAve 5.542×10−3 5.868×10−3

Average 9.168×10−3 9.593×10−3

DAN2 Training MSE DAN2 Validation MSE

SAve 3.914×10−3 5.305×10−3

DFinalAve 5.197×10−3 5.529×10−3

SMax 1.578×10−2 2.607×10−2

DAve 4.105×10−3 4.029×10−3

Average 7.248×10−3 1.364×10−2

From Table 7.10, all training MSEs are of the same order of scale for the traditional ANN
and multi-DAN2 network. This is similarly observed in validation MSE with some values
of multi-DAN2 over-performing and some values under-performing the traditional ANN
network.
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7.7.4 Time and Memory Analysis

CPU Time Analysis

A comparison between the CPU time required for the training of each network is performed.
The results are tabulated in Table 7.11. The architecture of the networks are the same as the
ones used in the analysis above. From the results, it is evident that the networks of ANN and
DAN2 spend similar amount of time on the tasks of regressing multi-dimensional output
using multi-task learning architecture.

Table 7.11 Comparison between the CPU time of DAN2 and ANN with applications to the
PSA and OILDROPLET datasets.

ANN CPU Time (s) DAN2 CPU Time (s)

PSA 0.503 0.0853
OILDROPLET 0.495 0.595

Memory Storage

The method does not require the storage of matrices. The coefficients in each layer are stored
as separate vectors. There is no need of matrix multiplication and only manipulation of
vectors is required. The total number of vectors to store depends on the number of layers
used in the network hence this number varies. Overall, the memory storage is of O(n).

7.8 Optimisation of Serial Architecture

I propose a serial structure of multi-task learning as shown in Figure 7.4. The input undergoes
transformations from shared layers and the task-specific layers are arranged sequentially such
that the number of layers an output undergoes differ for different outputs. This structure is
adopted because I observe that the outputs are correlated and some outputs need to undergo a
higher number of layers in order to generate accurate results.

The structure is motivated by the correlated nature of the potential outputs to the system.
This structure can also be adapted for time-series data where a number of outputs into the
future can be predicted from each input.

In this case, there are several free architectural parameters to optimise. I use ξ1, ξ2, ξ3,
etc. to represent the different number of task-specific layers, and ξsh as the number of shared
layers. Thus, the architectural search problem is converted to an optimisation problem with
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Figure 7.4 A serial structure of the multi-task learning network

more than one free parameters to optimise. The objective function will be the training or
validation SSE of the whole network, which is a complicated, non-linear and non-convex
function relative to the free parameters.

7.8.1 Grid Search

Common optimisation practices include random search, grid search, Bayesian optimisation,
reinforcement learning and evolutionary algorithms. I optimise the architectural parameters
using a grid search. The results for training are tabulated in Table 7.12 and the results for
validation are tabulated in Table 7.13.

Table 7.12 Training MSE generated from a grid search adopting the serial structure for the
implementation of the PSA dataset.

ξsh ξ1 ξ2 ξ3 MSE1 MSE2 MSE3 Average MSE

2

1 1 1 2.868×10−8 1.038×10−7 6.057×10−7 7.382×10−7

2 2 2 2.826×10−8 1.013×10−7 6.367×10−7 7.662×10−7

3 3 3 2.769×10−8 1.018×10−7 6.514×10−7 7.809×10−7

4 4 4 2.860×10−8 1.042×10−7 6.060×10−7 7.388×10−7

3

1 1 1 2.865×10−8 1.066×10−7 5.904×10−7 7.257×10−7

2 2 2 2.840×10−8 1.025×10−7 6.254×10−7 7.563×10−7

3 3 3 2.852×10−8 1.044×10−7 6.050×10−7 7.379×10−7

4 4 4 2.810×10−8 1.039×10−7 6.370×10−7 7.690×10−7

4

1 1 1 2.856×10−8 1.048×10−7 6.090×10−7 7.424×10−7

2 2 2 2.842×10−8 1.066×10−7 6.132×10−7 7.482×10−7

3 3 3 2.854×10−8 1.060×10−7 5.995×10−7 7.340×10−7

4 4 4 2.859×10−8 1.058×10−7 5.914×10−7 7.258×10−7
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Table 7.13 Validation MSE generated from a grid search adopting the serial structure for the
implementation of the PSA dataset.

ξsh ξ1 ξ2 ξ3 MSE1 MSE2 MSE3 Average MSE

2

1 1 1 2.904×10−8 4.067×10−7 4.602×10−6 1.679×10−6

2 2 2 9.897×10−8 4.680×10−7 5.183×10−6 1.917×10−6

3 3 3 1.176×10−7 4.841×10−7 4.942×10−6 1.848×10−6

4 4 4 2.933×10−8 3.866×10−7 4.591×10−6 1.669×10−6

3

1 1 1 2.906×10−8 3.962×10−7 4.575×10−6 1.667×10−6

2 2 2 5.479×10−8 3.818×10−7 5.501×10−6 1.979×10−6

3 3 3 2.921×10−8 3.950×10−7 4.638×10−6 1.687×10−6

4 4 4 1.826×10−7 5.317×10−7 6.310×10−6 2.341×10−6

4

1 1 1 3.376×10−8 4.141×10−7 4.919×10−6 1.789×10−6

2 2 2 3.613×10−8 4.244×10−7 4.743×10−6 1.735×10−6

3 3 3 2.976×10−8 3.971×10−7 4.554×10−6 1.660×10−6

4 4 4 2.922×10−8 4.190×10−7 4.569×10−6 1.672×10−6

From Table 7.12 and Table 7.13, it can be observed that in the PSA dataset, a minimal
structure of 2 shared layers and 1 task-specific layer for each task is capable of producing a
small training and validation MSE.

I similarly apply the grid search on the multi-task DAN2 network to the OILDROPLET
dataset. The results are tabulated in Table 7.14 and Table 7.15. From the results, it can be
observed that the network is able to arrive at a low training and validation MSE, indicating
the validity and effectiveness of the serial model.

The grid search is effective in finding the optimal architecture of the DAN2 network.
However, the grid search is rigid, in the sense that it is difficult to determine a particular
number of layers for task-specific layers. There is also no guidance with regard to how many
layers to adopt for shared layers. Therefore, the heuristic scheme is proposed to solve these
problems.

7.8.2 Heuristic Search Scheme

In Section 7.7.2, I proposed a novel algorithm for the optimisation of a multi-head structure.
In this algorithm, I similarly adopt a heuristic scheme where the number of shared layers ξsh

and the number of task-specific layers ξts are optimised sequentially in an iterative manner.
The pseudocode is the same as Algorithm 10 since both methods share the overall structure
and the subroutines.
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Table 7.14 Training MSE generated from a grid search adopting the serial structure for the
implementation of the OILDROPLET dataset.

ξsh ξ1 ξ2 ξ3 ξ4 MSE1 MSE2 MSE3

2

1 1 1 1 3.629×10−3 1.533×10−2 5.254×10−3

2 2 2 2 3.600×10−3 1.511×10−2 5.217×10−3

3 3 3 3 3.621×10−3 1.527×10−2 5.244×10−3

4 4 4 4 3.631×10−3 1.535×10−2 5.258×10−3

3

1 1 1 1 3.595×10−3 1.508×10−2 5.205×10−3

2 2 2 2 3.612×10−3 1.519×10−2 5.250×10−3

3 3 3 3 3.616×10−3 1.527×10−2 5.254×10−3

4 4 4 4 3.624×10−3 1.530×10−2 5.233×10−3

4

1 1 1 1 3.614×10−3 1.526×10−2 5.237×10−3

2 2 2 2 3.617×10−3 1.519×10−2 5.203×10−3

3 3 3 3 3.615×10−3 1.527×10−2 5.262×10−3

4 4 4 4 3.622×10−3 1.524×10−2 5.187×10−3

ξsh ξ1 ξ2 ξ3 ξ4 MSE4 Average MSE

2

1 1 1 1 6.681×10−3 3.089×10−2

2 2 2 2 6.649×10−3 3.057×10−2

3 3 3 3 6.671×10−3 3.080×10−2

4 4 4 4 6.686×10−3 3.092×10−2

3

1 1 1 1 6.633×10−3 3.052×10−2

2 2 2 2 6.674×10−3 3.073×10−2

3 3 3 3 6.680×10−3 3.082×10−2

4 4 4 4 6.670×10−3 3.083×10−2

4

1 1 1 1 6.651×10−3 3.076×10−2

2 2 2 2 6.579×10−3 3.059×10−2

3 3 3 3 6.688×10−3 3.084×10−2

4 4 4 4 6.584×10−3 3.063×10−2

I apply the serial structure to the regression problem adopting the PSA and the OIL-
DROPLET dataset. The results of the performance are presented in Table 7.16 and Table
7.17.

From the results in Table 7.17, it is evident that serial structure is capable of reaching
low values of training and validations losses, demonstrating the effectiveness of the network
structure. It is also evident that the number of layers used are comparable, though slightly
higher, compared to that generated from a multi-head structure. The training and validation
losses are also comparable, and slightly higher, compared to the losses in the multi-head
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Table 7.15 Validation MSE generated from a grid search adopting the serial structure for the
implementation of the OILDROPLET dataset.

ξsh ξ1 ξ2 ξ3 ξ4 MSE1 MSE2 MSE3

2

1 1 1 1 4.187×10−3 2.437×10−1 1.285×10−2

2 2 2 2 3.818×10−1 2.153×10−1 5.164×10−1

3 3 3 3 4.564×10−3 3.234×10−2 2.308×10−2

4 4 4 4 7.579×10−3 2.942×10−2 4.000×10−2

3

1 1 1 1 3.638×10−3 1.568×10−1 1.373×10−2

2 2 2 2 2.607×10−2 3.782×10−2 7.058×10−1

3 3 3 3 1.055×10−2 2.056×10−2 5.908×10−2

4 4 4 4 2.594×10−2 2.182×10−1 6.176×10−2

4

1 1 1 1 5.824×10−1 1.845×10−1 1.609×10−1

2 2 2 2 5.275×10−3 3.045×10−2 1.516×10−2

3 3 3 3 3.734×10−3 2.295×10−2 2.256×10−2

4 4 4 4 1.648×10−1 1.466×10−1 1.632×10−2

ξsh ξ1 ξ2 ξ3 ξ4 MSE4 Average MSE

2

1 1 1 1 1.024×10−2 6.774×10−2

2 2 2 2 7.297×10−1 4.608×10−1

3 3 3 3 1.1534×10−2 1.788×10−2

4 4 4 4 1.486×10−2 2.297×10−2

3

1 1 1 1 1.431×10−2 4.712×10−2

2 2 2 2 1.115×10−1 2.203×10−1

3 3 3 3 5.031×10−2 3.513×10−2

4 4 4 4 6.693×10−1 2.438×10−1

4

1 1 1 1 1.409×10−1 2.672×10−1

2 2 2 2 1.173×10−2 1.566×10−2

3 3 3 3 9.458×10−3 1.468×10−2

4 4 4 4 6.532×10−2 9.825×10−2

structure. In either case, the number of layers used is minimal, requiring a small number of
parameters. Thus, they serve as effective alternative to artificial neural networks.

In the PSA dataset in particular, there is no divergence of the output in the prediction of
energy consumption. This is a prominent improvement from the multi-head DAN2 network
where the algorithm can be unstable and diverge in the prediction of energy consumption.

In comparison with the results generated from grid search, it can be observed that more
freedom and flexibility is given in the search of an optimal architecture with the heuristic
search method. It is possible to obtain different number of task-specific layers. Moreover,
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Table 7.16 Training and validation results of the applications of the serial DAN2 to the PSA
dataset. The training loss is reported as SSE and the validation loss is reported as MSE. The
average training loss is defined as the sum of individual SSEs for each task-specific layer.
The average validation loss is defined as the average of MSEs for each task-specific layer.

Layer Number Training Loss Validation Loss

Shared layers 2 2.857×10−8 2.968×10−8

Task-specific layers (Recovery Rate) 4 2.846×10−8 3.033×10−8

Task-specific layers (Purity) 2 1.047×10−7 4.089×10−7

Task-specific layers (Energy Consumption) 3 5.979×10−7 4.545×10−6

Average - 1.899×10−7 1.254×10−6

Table 7.17 Training and validation results of the application of the serial DAN2 to the
OILDROPLET dataset. The training loss is reported as SSE and the validation loss is
reported as MSE. The average training loss is defined as the sum of individual SSEs for each
task-specific layer. The average validation loss is defined as the average of MSEs for each
task-specific layer.

Layer Number Training Loss Validation Loss

Shared layers 2 3.626×10−3 1.173×10−2

Task-specific layers (SAve) 3 3.626×10−3 3.987×10−3

Task-specific layers (DFinalAve) 2 1.533×10−2 2.613×10−2

Task-specific layers (SMax) 3 5.255×10−2 1.205×10−2

Task-specific layers (DAve) 2 6.686×10−3 1.053×10−2

Average - 1.636×10−2 1.077×10−2

both the grid search and the heuristic search arrive at a minimal architecture, although the
grid search is more of a systematic guess of architectural optimality whereas the heuristic
search is more guided.

7.8.3 Comparison with Traditional Neural Network

I perform comparison between the serial architecture and the ANNs with a similar number of
parameters. The results are shown in Table 7.18 and 7.19.

In the PSA dataset, the serial structure has 11 layers with 55 parameters in total. A
comparable ANN has one hidden layer of 5 neurons entailing 53 parameters. I train the
network using Adam optimiser with regard to MSE loss. The results of running the ANN in
comparison to the serial DAN2 network is shown in Table 7.18.
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Table 7.18 Comparison between DAN2 and ANN with applications to the PSA dataset.

ANN Training MSE ANN Validation MSE

Recovery Rate 1.647×10−4 1.042×10−7

Purity 2.879×10−4 1.965×10−7

Energy Consumption 1.896×10−3 1.068×10−6

Average 7.829×10−4 4.562×10−7

DAN2 Training MSE DAN2 Validation MSE

Recovery Rate 2.846×10−8 3.033×10−8

Purity 1.047×10−7 4.089×10−7

Energy Consumption 5.979×10−7 4.545×10−6

Average 2.436×10−7 1.661×10−6

The second dataset of OILDROPLET makes use of 12 layers with 60 parameters. This
is equivalent of an ANN with one hidden layer of 5 neurons with a total number of 59
parameters. I run the comparalbe ANN and report the results in Table 7.19.

Table 7.19 Comparison between DAN2 and ANN with applications to the OILDROPLET
dataset.

ANN Training MSE ANN Validation MSE

SAve 4.340×10−3 4.670×10−3

DFinalAve 7.090×10−3 7.593×10−3

SMax 1.969×10−2 2.020×10−2

DAve 5.542×10−3 5.868×10−3

Average 9.166×10−3 9.583×10−3

DAN2 Training MSE DAN2 Validation MSE

SAve 3.626×10−3 3.987×10−2

DFinalAve 1.533×10−2 2.613×10−2

SMax 5.255×10−2 1.205×10−2

DAve 6.686×10−3 1.053×10−2

Average 1.955×10−2 2.215×10−2

In either table, the performance of DAN2 is comparable to that of ANNs with some
entries having a better performance than ANNs. As the MSE values are close to zero, it
follows that both networks are effective in generating accurate predictions based on the
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results. Therefore, DAN2 network with a serial architecture can act as a good alternative to
ANNs.

7.8.4 Time and Memory Analysis

CPU Time Analysis

I perform a comparison between the CPU time spent on optimising DAN2 and ANN, and the
results are tabulated in Table 7.20. The architectures of DAN2 and ANN used are reported in
the previous section. From the results, it is evident that DAN2 network with a serial structure
spends a lower amount of time on optimising the network to generate comparable MSE. This
demonstrates the advantage of a DAN2 network which is the faster processing time.

Table 7.20 Comparison between the CPU time of DAN2 and ANN with applications to the
PSA and OILDROPLET datasets.

ANN CPU Time (s) DAN2 CPU Time (s)

PSA 0.461 0.0444
OILDROPLET 0.992 0.422

Memory Storage

Similar to the multi-head structure, the algorithm only requires the storage of vectors, and
there is no storage of matrices. The number of vectors stored depends on the total number of
layers. Overall, the memory storage is of O(n).

7.8.5 Comparison between Multi-head and Serial Structure

I perform an empirical comparison of the two architectures adopting heuristic search - the
multi-head and the serial architecture. The results are tabulated in Table 7.21 and Table 7.22.

From the results, it is evident that in the PSA dataset, serial structure outperforms
multi-head structure in terms of both training and validation MSE. Moreover, in the serial
dataset, the divergence of the Energy Consumption data is not observed. However, in
the OILDROPLET dataset, the serial structure underperforms the multi-head structure,
generating a higher MSE in both the training and the validation dataset.

I postulate that the serial structure is more suitable to the PSA dataset because there
is stronger inter-correlation between the outputs. The stronger correlation dictates that
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Table 7.21 Comparison between DAN2 with a multi-head and serial structure with applica-
tions to the PSA dataset.

Multi-head structure Serial structure
ξ MSETrain MSEVal ξ MSETrain MSEVal

Shared 8 6.272×10−3 1.302×10−6 2 2.857×10−8 2.968×10−8

Recovery Rate 6 8.620×10−5 2.690×10−6 4 2.846×10−8 3.033×10−8

Purity 4 2.681×10−4 1.335×10−6 2 1.047×10−7 4.089×10−7

Energy Consumption 5 7.507×10−4 3.937 3 5.979×10−7 4.545×10−6

Average - 1.123×10−3 1.312 - 1.899×10−7 1.254×10−6

Table 7.22 Comparison between DAN2 with a multi-head and serial structure with applica-
tions to the OILDROPLET dataset.

Multi-head structure Serial structure
ξ MSETrain MSEVal ξ MSETrain MSEVal

Shared 2 8.019×10−3 8.047×10−3 2 3.626×10−3 1.173×10−2

SAve 2 3.914×10−3 5.305×10−3 3 3.626×10−3 3.987×10−2

DFinalAve 2 5.197×10−3 5.529×10−3 2 1.533×10−2 2.613×10−2

SMax 2 1.578×10−2 2.607×10−2 3 5.255×10−2 1.205×10−2

DAve 2 4.015×10−3 4.029×10−3 2 6.686×10−3 1.053×10−2

Average - 7.248×10−3 1.364×10−2 - 1.955×10−2 2.215×10−2

processing of one output may extract features related to the processing of another output.
The serial structure reduces the total number of layers by processing simultaneously multiple
outputs, thus achieving better performance in both time and accuracy.

The multi-head structure is more suitable to the OILDROPLET dataset because the
outputs are more independent compared to the PSA dataset, and thus the parallel structure
outperforms a serial structure. The serial structure may confound the processing of different
outputs. This may also lead to the increase in the number of layers required for processing.
Therefore, multi-head structure allows better performance in the OILDROPLET dataset
under comparable CPU time.
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7.9 Discussion and Future Work

7.9.1 Comparison with Other Machine Learning Models

I have also applied other regressors commonly used in machine learning literature and
compare the performance with the DAN2 network. The regressors include Support Vector
Regression (SVR), K-nearest neighbours regression (KNN), Ridge regression (RR) and
Decision Tree regression (DT). The performance are tabulated in Table 7.23 and Table 7.24.
The MSEs in the tables refer to the validation MSEs. From the tables, I observe that both
the multi-head DAN2 and the serial DAN2 obtain comparable performance to the current
machine learning regression models in the literature.

Table 7.23 Comparison between DAN2 and other machine learning models with applications
to the PSA dataset.

Recovery Rate Purity Energy Consumption Average
SVR MSE 2.564×10−7 3.394×10−7 1.706×10−7 1.916×−7

KNN MSE 3.482×10−8 6.220×10−8 1.260×10−7 5.575×10−8

RR MSE 2.921×10−8 5.722×10−8 1.185×10−7 5.124×10−8

DT MSE 7.394×10−8 9.515×10−8 1.415]×10−7 7.764×10−8

Multi-head DAN2 MSE 2.690×10−6 1.355×10−6 3.937 1.312
Serial DAN2 MSE 3.033×10−8 4.089×10−7 4.545×10−6 1.661×10−6

Table 7.24 Comparison between DAN2 and other machine learning models with applications
to the OILDROPLET dataset.

SAve DFinalAve SMax DAve Average
SVR MSE 6.652×10−3 5.032×10−3 1.527×10−2 4.094×10−3 7.762×10−3

KNN MSE 2.921×10−3 3.995×10−3 1.294×10−2 2.732×10−3 5.644×10−3

RR MSE 3.946×10−3 6.595×10−3 1.739×10−2 5.060×10−3 8.249×10−3

DT MSE 1.208×10−3 3.029×10−3 8.224×10−3 2.021×10−3 3.621×10−3

Multi-head DAN2 MSE 5.305×10−3 5.529×10−3 2.607×10−2 4.029×10−3 1.364×10−2

Serial DAN2 MSE 3.987×10−2 2.613×10−2 1.205×10−2 1.053×10−2 2.215×10−2

7.9.2 Data Pre-processing

The DAN2 network structure can be adapted for the task of pre-processing multi-variate
regression data. The structure of the model is shown in Figure 7.5, where I have a separate
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Figure 7.5 Adoption of DAN2 for data pre-processing

input head for each dimension of the input. The DAN2 network effectively acts to compress
the data into a three-dimensional value (two CURLONE outputs and one CAKE output). As
future work, it is possible to adopt the DAN2 network for data pre-processing, allowing a
good summary of the data before inputting into other models for further analysis.

7.9.3 Multi-labelled Classification

The proposed network has been applied to regression tasks. Another important area of
application is classification, especially multi-labelled classification. The multi-head DAN2
and the serial DAN2 can be used to perform this task by combining different categories of
labels into pseudo-labels, which effectively converts a multi-labelled classification problem
into a single-labelled case. Alternatively, in the multi-head architecture, it is possible to make
each head into a classifier for each label, hence the proposed algorithm can be converted to a
serch for an effective multi-labelled classifier.

7.10 Summary

In this chapter, I develop neural architectural search algorithms for multi-task learning
structures adapted from DAN2. Two structures of multi-task learning are proposed, a multi-
head structure and a serial structure. In each case, a grid search method and a heuristic search
method are adopted to find the optimal architecture. Comparison between the two methods
demonstrates that the heuristic method is capable of finding smaller structures that gives good
performance. Comparison with traditional neural networks also demonstrates comparable
performance.
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As future work, it could be possible to apply alternative methods to optimise the network,
to adopt the network for data pre-processing and to implement multi-labelled classification.
Overall, the multi-task DAN2 network has great potential to be applied to the field of
engineering with a efficient network of a minimal number of parameters. The effective
heuristic architecture search scheme enables this application by finding an effective method
to arrive at an optimal architecture through the process of "Dynamic Neural Architecture
Construction".





Chapter 8

Deep Cascade Generative Model

8.1 Introduction

In this chapter, I address the problem of architectural search through the adoption of deep
cascade network towards the fitting of generative models in the context of the problem of
de novo molecular design. The research is motivated by recent advances in the application
of deep cascade network to the problem of Human Activity Detection (HAD) [267] [268].
While the deep cascade network is a fully connected neural network in nature, the model
proposed in this chapter is a generative model with an automatic search of its architecture.

Deep cascade network adopts a dynamic architecture search where the topology of the
network changes as the training process progresses. The weights are frozen such that the
extraction of more general but coarser features is stored and the vanishing gradient problem
is avoided. I describe in detail the architecture in Section 8.2.1. Different to the dynamic
architecture I defined in Chapter 7 that is more focused on solving problems of a smaller
scale, the deep cascade generative models are well-suited to large-scale problems with key
advantages over networks trained end-to-end.

The advantage of adopting a deep cascade network is that the additional layer is always
close to the output layer thus it avoids the problem of vanishing gradient. It is also very
adept at extracting higher-level information compared to end-to-end learning. Moreover, it is
computationally efficient, and requires less memory and computational resources [155].

I would like to focus on the de novo molecular design problem because it is currently a
challenging large-scale problem in the chemical and drug industry. The context is defined
by the problem of finding chemical molecules that are active towards a particular bio-
target. Automated approaches for designing compounds with the desired properties de novo
have been actively researched [269]. This area of research entails many state-of-the-art
machine learning algorithms with much novelty in the approaches to decipher a chemical
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structure [270]. Moreover, with developments in hardware, computational algorithms and
high-throughput screening technologies have enabled the expansion of virtual libraries and
high-performance algorithms to run searches on a fully developed database [269].

The challenges faced by de novo molecular design are two-folds: 1) how to structure
the search space into regions of molecules with desired or undesired properties, and 2) how
to design a systematic search strategy [271]. To effectively solve the problem, a number of
machine learning methods have been developed. These methods are described in Section
8.2.2.

I believe that cascading layers in the generative model is suited to the de novo molec-
ular design problem because the proposed algorithm is capable of extracting higher-level
representations that, in the context of molecular design, can be functional groups or related
groups of molecules that define bio-chemical properties. The network can extract bioactivity
information based on latent features in the molecule that are less observant by simply viewing
the molecular structure by naked eyes.

This chapter is organised as follows:

• Section 8.2 describes the current landscape in the cascade learning research and in
the application of chemical design, with also an introduction of various deep neural
network structures used in the research.

• Section 8.3 describes the motivation behind this research project.

• Section 8.4 describes the optimisation problem behind this research project.

• Section 8.5 summarises the deep cascade learning algorithm used to optimise architec-
tures.

• Section 8.6 demonstrates the results of the training of an autoencoder using cascade
learning versus end-to-end training.

• Section 8.7 describes the results obtained from the training of a variational autoencoder
using cascade and end-to-end method.

• Section 8.8 discusses the results obtained and explores the outlook of adopting the
generative model.

• Section 8.9 explores the potential application of the problem in the area of transfer
learning.
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8.2 Literature Review

8.2.1 Literature Review - Architecture Search

In 1990, the concept of Cascade Correlation Network was developed where the network was
formed by incrementally adding neurons to some initial structure with the parameters of the
neuron fixed upon addition [154]. Key properties such as generalisation of the network have
also been discussed in literature [272]. Performance on evaluating functions was researched
in [273]. From then on, a few structures have developed based on Cascade Correlation
Network. For example, the authors of [274] proposed a network to predict stock prices with
an architecture consisting of two blocks. The first block was a multi-layer perceptron network
connected to the second block which was a Cascade Correlation Network. Empirical results
demonstrated that the hybrid model had good accuracy of prediction. In [275], modular units
instead of neurons were cascaded in an autonomous robot context.

There has also been research into modifying the structure of Cascade Correlation Net-
work. In [276], it has been proposed to generate networks with restricted node creation and
small depth by controlling connectivity. The results have demonstrated a trade-off between
connectivity and performance attributes such as learning time. Cascade learning has also
acted as a benchmark of comparison in architecture search problems together with pruning
methods in [277][278].

The deep cascade learning method is built upon the idea of cascade learning where layers
instead of neurons are cascaded [155]. The model is similar to a constructive structure termed
Resource Allocation Network found in Platt’s work [279]. The scalability of the deep cascade
network to large-scale problems is demonstrated in [257]. A convergence study of layerwise
training can be found in [280].

In the following sections, I review in detail the algorithm of Cascade-correlation learning
and the deep cascade network.

Cascade-correlation Learning Architecture

The Cascade Correlation Network is essentially an architectural search algorithm that is
dynamic in nature. Traditional neural network is trained with a fixed topology a priori,
which limits the flexibility of the structure and often leads to excessive structural components
requiring pruning to optimise. Some earliest work has been proposing a dynamically additive
architecture, termed Cascade-correlation Learning Architecture [154]. Starting from some
minimal network, the algorithm automatically trains and adds new hidden units one by one,
until a multi-layered structure is created. The key characteristic of the network is that once a
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neuron is added, its input-side weights are frozen. The neuron becomes a permanent feature
detector that will not change its parameters albeit changes in input data.

The network entails three advantages: 1) it is fast in training as parameters are frozen for
incremental neurons, 2) it is flexible and self-determinant in size and topology, and 3) no
back-propagation of errors is required.

Deep Cascade Network

Deep Cascade Network [155] is motivated by the dynamically changing architecture of the
Cascade Correlation Network [154], but is extended to solve a large data problem. Unlike
Cascade Correlation Network that adds hidden neurons one by one, Deep Cascade Network
adopts a bottom-up approach while performing layer additions.

The deep cascade network is trained with the following steps [155]:

• Connect first layer to be trained to the "output block": several dense layers or an
average pooling layer followed by an activation function to the output layer

• Backpropagate through the first layer to learn the parameters for the first layer

• Connect second layer to the first layer in the front and to the "output block" at the end
and perform forward propagation through the first layer

• Backpropagate the second layer with parameters in the first layer fixed.

• Repeat until all layers are learned. Hyperparameters can be changed in the process

The advantage to train a network in a cascade way is that it solves the vanishing gradient
problem by ensuring that the added layer is always close to the output. The vanishing
gradient problem occurs when the total number of layers to be trained is high [155]. During
backpropagation, the multiplicative effect of the chain rule leads to larger gradients in layers
near the output while initial layers have weight updates much smaller. Deep cascade network
solves this problem by fixing the parameters in each layer trained such that backpropagation
only occurs when the trained layer is close to the output layer.

Moreover, in [155], it has been empirically shown that in deep cascade network, better,
more domain-specific representations can be learned in early layers, in comparison to end-
to-end learning. Thirdly, the algorithm has computational and memory advantages over
end-to-end learning [281] [282] [283], and can act as a pre-training step [155]. Lastly, the
algorithm does not have static depth and remains flexible to the size of the training data [155]
[283].
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8.2.2 Literature Review - Chemical Design Problem

The emergence of new experimental techniques such as High-Throughput Survey (HTS),
parallel synthesis, etc. [284] have led to the wide accessibility and the increasing size
of accumulated chemical data. This amplification of available data size encourages the
application of data-driven analysis tools. Typically, techniques of machine learning have
been widely adopted in the chemical industry for purposes such as de novo molecular design
[270] [285], chemical properties prediction [286] [287] [288], prediction of protein structures
[289] [290], synthetic route analysis [291] [292] and retro-synthesis [293]. Commonly used
algorithms in these categories include support vector machines (SVM) [294] [295], artificial
neural networks (ANNs) [296] [297] [298], random forests (RF) [299] [300] and more
recently, deep neural networks (DNNs) [301] [302] [303] [304]. Deep neural networks have
especially gained attention due to its flexibility and ability to handle large dataset [302]. This
review focuses on the de novo molecular design problem applied in drug discovery.

The common databases used for chemical design problems include PubChem [305],
ZINC [306], ChEMBL [307], ChEBI [308], DrugBank [309], GDB [310], EPA CompTox
[311] and nmrshiftdb [312]. The most widely used is the PubChem database and the ZINC
database. The PubChem Database [305] contains over 253 million substances, 103 million
compounds, and 268 million BioAssay records. The ZINC Database [306] contains over
750 million commercially available compounds. The DrugBank [309] is also particularly
useful for drug design and contains items such as drugs, drug actions and drug targets. These
databases serve as the foundation for research on molecular design problems.

The greatest challenge behind using de novo molecular design is the sheer size of the
search space, making it a hard job to screen and filter the most relevant molecule. It has
been estimated that there are 1060 molecules available for drug discovery [313]. To find a
particular drug molecule active towards a bio-target, high-throughput screening is often used
in traditional search methods to screen molecules at a scale of 106 per run [314]. Although a
drastic improvement from traditional in vitro studies, this method does not satisfy the need to
screen large amounts of molecules and the cost increases rapidly with larger scale [315].

Machine learning acts as a solution to this challenge by performing virtual screening
of molecules before bio-assay. Common methods of searching are based on similarity-
metrics to find molecules with potentially similar chemical properties [316]. In the de novo
design problem, the aim is to screen the search space and create new molecules with desired
bio-activity.

The key assumption behind the use of machine learning to perform de novo molecular
design is the Quantitative Structural-Activity Relationship (QSAR). The most common
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practice is to use SMILES strings as representations of structural data [270]. Common
classes of machine learning methods used include:

• Recurrent Neural Network (RNN) [317] [318]

• Convolutional Neural Network (CNN) [88] [319]

• Reinforcement Learning (RL) [320]

• Evolutionary Algorithm [271]

• Autoencoder [88]

The most commonly used model in de novo design of molecules is the autoencoders
[321]. This is because autoencoders are capable of converting discrete representations to
continuous values, allowing gradient-based applications to run on the latent representations
leading to the location of new molecules decoding into discrete molecular structures. In
[88], the authors proposed the adoption of variational autoencoders (VAE) to generate new
molecules based on the latent representation extracted from the autoencoder network. The
inputs used are SMILES (Simplified Molecular Input Line Entry System) strings from the
ZINC database. The encoder-decoder network enables transformations between the discrete
representations of the molecules and the continuous latent representations. New molecules
with desired properties are generated by optimising the latent space through techniques such
as Bayesian optimisation. The authors in [322] used a VAE in combination with a Generative
Adversarial Network (GAN) to generate new structures with desired anti-cancer properties.
VAE was also used in [270] to generate molecules active towards dopamine receptor type 2.

Overall, a variety of deep neural networks have been applied in the de novo drug design
industry. With the new functionality brought about by novel machine learning techniques,
the difficulty and complexity of searching for a valid molecule has been greatly reduced.

8.2.3 Literature Review - Deep Neural Network and its Variants

In this section, I introduce the variants of DNNs I have implemented in this chapter for
the problem of de novo drug design. A number of structures have been derived from the
feedforward DNN archetype. These structures inherit similar computational procedures from
the fully-connected feedforward DNNs but each is specialised to perform specific tasks. For
example, Convolutional Neural Networks are often adopted in image processing due to its
ability to extract higher representational details from 2-D data. Recurrent Neural Networks,
on the other hand, are particularly effective in dealing with time-series data, and hence are
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common in speech analysis. This section describes some of the structures that are adopted in
this thesis.

Convolutional Neural Network

Convolutional Neural Network (CNN) is a deep learning neural network designed for process-
ing structured arrays of data [323]. The theoretical operation behind one layer of convolution
is shown in Figure 8.1. Convolutional layers achieve feature extraction through convolut-
ing with the kernel, an operation that replaces matrix multiplication in feedforward DNNs.
Maxpooling layers usually follow convolutional layers to achieve size reduction and further
feature extraction. The operation behind maxpooling layer is shown in Figure 8.2.

Figure 8.1 The computation of a convolutional layer

Recurrent Neural Network

Recurrent Neural Networks (RNNs) are often used to process a sequence of inputs. Com-
pared to networks without sequence based specialisation, RNNs are capable of processing
sequences of large scale with variable lengths [12]. A key feature of RNNs is parameter
sharing across time, under which the model is capable of generalising to variable sequence
length without specifying rules to dissect the sequence [12]. A typical structure of an RNN
is shown in Figure 8.3.

Figure 8.2 The operation of maxpooling
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Figure 8.3 The structure of RNN.

To formulate an RNN, the recurrent property is represented:

s(t) = f (s(t−1),θ) (8.1)

This is recurrent because information from a previous point in time s(t−1) is used to calculate
the current point s(t). In an RNN, I define a hidden unit:

h(t) = f (h(t−1),x(t);θ) (8.2)

where the recurrent nature of the hidden values can be observed. More specifically, an RNN
performs the following set of computations in generating an output:

h(t) = tanh(b+Wh(t−1)+Ux(t)) (8.3)

ŷ(t) = softmax(c+V h(t)) (8.4)

The hidden values h(t) can be seen as a linear combination of the previous hidden values h(t−1)

and the current input x(t) with coefficients b,W,U , transformed by an activation function tanh
(tanh is often used for RNNs). The output is then the linear combination of h(t) followed by
activation with softmax.

The training of an RNN involves optimising a loss function that are commonly defined to
minimise the difference between ŷ and the label y.

There are many variants of RNNs, but the widely recognised ones include long-short
term memory (LSTM) and gated recurrent unit (GRU). They are collectively called gated
RNNs and are empirically effective in performing sequence processing [12].
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Figure 8.4 The architecture of an autoencoder consisting of an encoder and a decoder network.

In GRUs, the update equation is:
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where U and W are coefficients, σ is the activation function, u is the "update" gate and r is
the "reset" gate. The values of the gates are defined by:
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Although other variants are present, the currently most optimal architectures are the LSTM
and GRU [324].

Autoencoders

One typical form of deep neural networks is the autoencoder network. The network seeks to
reproduce the input from its output. The network consists of two parts: an encoder function
h = f (x) and a decoder function r = g(h), where h is the hidden layer that is often extracted
as latent representation. Conceptually, I set g( f (x)) = x, but practically, it is often restricted
to copy the inputs approximately and to copy only inputs that resemble the data [12]. Some
modern autoencoders are stochastic in its mappings pencoder(h|x) and pdecoder(x|h). The
structure of an autoencoder is shown in Figure 8.4.
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From the Figure 8.4, I can see that the structure is similar to that of a feedforward neural
network except that there is a bottleneck between the encoder and the decoder. Autoencoders
are commonly used for dimensionality reduction and feature learning. This is because the
bottleneck layer, or the latent representation, is often set to a lower dimension than the inputs
and outputs. This layer is often used in further analysis to extract properties of the input data.
It is often perceived as a lower level representation of the input data.

Another common application of autoencoders is to convert discrete values into continuous
ones. The discrete values will be input to the network and the latent representation is extracted
with continuous values. This is a common technique used in many research [88] [325].

The training of the autoencoder is simply to minimise the loss function L (x,g( f (x)).
Common optimisation techniques work similarly in autoencoders such as gradient descent
or Adam. To extract the latent representation, the input is transformed through the trained
encoder and the result is stored. Variants of the autoencoder include sparse autoencoders,
denoising autoencoders, autoencoders with regularisation by penalising derivatives and
stochastic autoencoders [12].

A special type of autoencoders is the variational autoencoder (VAE) [326]. It provides
a formulation in which the continuous representation, termed z, is interpreted as a latent
variable in a probabilistic generative model. Suppose p(z) is the prior distribution imposed
on the continuous representation, then qφ (z|X) is the encoding distribution and pθ (X |z) is
the decoding distribution. The training of a VAE is essentially obtaining parameters for
qφ (z|X) and pθ (X |z). The decoder is optimised by maximising the log-likelihood pθ (X |z).
The encoder is regularised to approximate p(z) by minimising Kullback-Leibler divergence.

The advantage of VAE is that it entails a stochastic generation process. This stochastic
generation means, that even for the same input with the mean and standard deviations
remaining the same, the actual encoding will vary on every single pass simply due to the
process of sampling. This is what characterises VAE as a generative model.

8.3 Motivation, Problem Definition and Methodology

In this chapter, I aim to develop an effective model to perform the task of automated de novo
chemical design through the dynamic architectural search of a neural network. The dynamic
architectural search allows a minimal number of layers to be adopted in a neural network and
I test the effectiveness of the architectural search process in the context of automated de novo
chemical design. The problem I aim to address in this research is how to adopt a dynamic
architectural search strategy to produce neural networks that solve the problem of de novo
chemical design.
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Automated de novo chemical design is defined as a computational process whereby
structural coordinate data of the target, together with a design strategy, forms the input to
a system that outputs optimal molecular structures to fit the a search problem optimally
without further human intervention [327]. The aim is to produce molecular structures with
desired pharmacological properties and to complement high-throughput screening [328].
The molecular structures generated from the design process are usually delivered for post-
processes such as analysing synthetic tractability and drug-like properties [327].

There are three challenges related to de novo chemical design: 1) how to assemble
candidate compounds, 2) how to evaluate potential quality, and 3) how to sample the search
space [328]. In our design paradigm, the first and third challenges are achieved through
an open-ended search in the continuous latent space. This reduces the tasks of selecting
candidate compounds and finding sample search spaces to a computational problem of
unconstrained optimisation. As the continuous latent space is divisible and contains infinitely
many representations, it can effectively be claimed that the search space is very large. With the
functionality of autoencoders converting molecular representations back and forth between
continuous and discrete forms, it can be safely claimed that a large number of potential
candidates are assembled with a well-defined search space. The second challenge is currently
controlled by commercially available packages to ensure that the output from the algorithm
is valid. It has been widely accepted that automatic de novo design may generate invalid
molecules and only few transforms into a prospective new lead series with desired properties
for further analysis [328].

Machine learning techniques such as deep learning have been suitable to solve this
problem because the total number of molecules to search for is combinatorially large. Given
the different types of elements and the linkages, it is difficult to perform exhaustive search
for all structural combinations [328]. Machine learning techniques are able to solve this
problem by learning the correlations between the structural information and the properties of
the molecules, thus generating an informed search direction and a few molecules from the
guided search. Therefore, algorithm-driven de novo design often involves machine learning
processes.

The key obstacle of designing an algorithm for chemical design is the stochasticity
inherent to the model that produces novel molecules [328]. A direct ramification is the
generation of different molecules in different runs of the algorithm. To prevent such cases,
constraining the search to certain regions in the latent space has been popular in literature.
There are two types of constraints: positive design restricts the search to certain regions more
likely to produce drug-like molecules and negative design forbids regions where molecules
in those regions have unwanted properties. However, the stochasticity in the model can
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be treated as a positive trait that introduces flexibility into the model [88], allowing the
generation of valid molecules that otherwise might fall into "dead region" in the search space
in a deterministic model. Moreover, to maximise flexibility and functionality, unconstrained
optimisation is performed.

The database I use is the ZINC database. The ZINC database is selected because it is
open-source and contains a large amount of commercially available molecules to train and
test our algorithm. As the database is large, I employ the High Performance Computing
Services to perform the optimisation of the algorithm.

The representation of molecules I adopt in this research is the SMILES representation.
Although there are other representations available such as the chemical fingerprint [329], con-
volutional neural networks on graphs [330], similar graph-convolutions [331], and Coulomb
matrices [332], I adopt SMILES strings because it is easily and readily convertible to a
molecule. There are several advantages of adopting SMILES representation, especially when
applied to de novo chemical design. One key advantage of adopting SMILES in comparison
to a molecular graph is its representations of important molecular features, such as the
presence of cycles, the cis-/trans- isomerism, and the presence of sp2 and sp3 atoms [333].
Secondly, with a SMILES string representation rather than a 2-D or 3-D representation,
the problem of analysing and generating new molecules can be undertaken effectively by
1D-convolutional layers and GRUs respectively. The complication brought about by a high
dimensional input is avoided. Thirdly, the SMILES representation allows easy breakdown of
molecules into its atomic or group components that entail key structural information. The
breakdown allows one-hot representations of the molecules which are formations easily
analysed by machine learning techniques. Although there are key advantages of molecular
graphs as well [333], the SMILES representations are a simple and elegant form that I adopt
in my research.

The key machine learning algorithm adopted is a set of autoencoders. The distinct feature
of the algorithm is the dynamic addition of encoder layers to allow the extraction of more
general features. I initially experiment with autoenocders and then with the generative
variational autoencoders.

8.4 The Problem of Optimisation

The training of the autoencoders can be formulated as an optimisation process, where the
objective function is defined such that the network reconstructs the original input. For a
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two-layer network, the calculative process is summarised in Equation 8.8 and 8.9 [334]:

h = fe(x) = se(Wex+be) (8.8)

xr = fd(x) = sd(Wdh+bd) (8.9)

where x ∈Rd , fe : Rd −→Rh and fd : Rh −→Rd . W and b are the weights corresponding to the
neural network architecture. h is the latent representation and xr is the reconstructed input.
Common practices is to keep xr as a copy or a noise added copy to the input x. The training
of autoencoders is thus an optimisation over the reconstruction error:

JAE(Θ) = ∑
x∈D

L (x,xr) (8.10)

where L is the loss function of reconstruction error and D is the training dataset.
More specifically, the training in a dynamic manner with addition of layers after weights

are frozen in the previously trained layers can be formulated as optimisation processes. A
typical analysis of layer-wise training in autoencoders is summarised below [334].

The loss function for a single layer autoencoder is defined as:

JGAE(Θ) = ∑
x∈D

Exc∈Q(xc|x) [L (x, fd ◦ fe(xc))]+λR(Θ) (8.11)

where λ ≥ 0, and R(Θ) is an arbitrary regularisation function over parameters.
In [334], two methods are proposed to train the autoencoder layerwise:

• Greedy layerwise training: define J (·) as the single layer autoencoder objective and
Θn the parameters for layer n. Suppose there is a two-layer autoencoder. The training
process optimises J (Θ1) first as a single layer using original input. Then the output
is treated as latent representation to input into the second layer. The second layer is
trained with objective J (Θ2).

• Training with overall objective: define the overall objective ∑x∈D L (x,xr). All layers
are trained based on this overall objective function.

Deep cascade learning is in essence layer-wise training of the autoencoders. In this
research, I would like to apply layer-wise training to the autoencoders following the second
scheme, i.e. optimising layers with respect to the overall objective. This method is selected
because I would like to oversee the performance of the whole architecture instead of focusing
on a particular layer. I believe with the selected optimisation scheme, it is possible to arrive
at a better solution through the layer-wise optimisation process.
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8.5 Algorithm and Optimisation

8.5.1 Autoencoders for De Novo Chemical Design

A set of autoencoders is adopted in this research for the problem of de novo chemical
design. The input to the autoencoders consists of structural representations of the molecules
converted to one-hot representation. The structural representations adopt the SMILES system
to encode each input into short ASCII strings. It effectively converts 3-D representations
of the molecules to 1-D. Atoms, bonds, rings, aromaticity, branching, stereo-chemistry and
isotopes are all represented with ASCII symbols. In my model, I recognise 120 sets of
ASCII symbols as a breakdown of each molecular input, registering inputs into one-hot
representations of dimension 120.

The encoder and the decoder are composed of simple standard neural layers. The encoder
consists of 1D-convolutional layers followed by a set of fully connected layers. Optionally,
the convolutional layers can be followed by batch-normalisation layers. Similarly, the few
fully-connected layers can be separated by dropout layers and batch-normalisation layers.
The decoder layers consist of GRU layers to output sequences of molecular representations.
It has been mentioned in the original paper [88] that due to the character-by-character
nature of SMILES representation and the fragility of its internal syntax, the decoder may
produce invalid syntax. The package RDKit has been adopted to screen out invalid molecules,
allowing maximised flexibility with the autoencoder network.

After the implementation of autoencoders, I also construct a variational autoencoder
to perform the task of de novo drug design. This is because the variational autoencoder is
a generative model that is capable to introducing flexibility to the results of the network
with less rigid and more innovative solutions. Both the autoencoder and the variational
autoenocder are similarly analysed and the results are compared to that obtained from
end-to-end training.

8.5.2 Deep Cascade Learning on Autoencoders

In the original setting of deep cascade network [155], the optimised network is the convolu-
tional network. This allows simple stacking of layers below each other during the training
process to enable layer-wise training. The layer-wise training process becomes more dif-
ficult in the case of autoencoders. This is because the model consists of an encoder and a
decoder where the output is only directly connected to the decoder. I cannot train an encoder
separately from a decoder. Therefore, the layers of the encoder are cascaded in a layer-wise
manner whereas the layers of the decoder act as a constant transformation between the latent



8.5 Algorithm and Optimisation 239

representation and the output in my proposed algorithm. The process of training is illustrated
in Figure 8.5.

I employ an optimisation scheme that is heuristic in nature. I sequentially add one
encoder block to the network until a satisfactory result based on loss criteria is obtained. The
optimisation scheme is implemented with the following steps:

(a) Define the model input layer

(b) Add one encoder block (a convolutional layer and potentially a batch-normalisation
layer)

(c) Connect to fully connected layers in the encoder

(d) Connect to fully connected layers in the decoder

(e) Add all decoder blocks (GRUs)

(f) Train the model with respect to the output

(g) Store the weights to the added encoder block and remove the fully connected layers
and the GRUs in the decoder

(h) Repeat from Step (b), freezing network parameters that have been trained, until a
satisfactory number of encoder blocks (defined by the training or validation error) are
added.

I have implemented fully-connected layers in all the training process because they act
as bridges between the encoder and the decoder. The main feature extraction occurs at the
encoder blocks thus only encoder block layers are cascaded.

I cascade new layers from outside to inside. This is to ensure that initially trained layers
are closer to the output hence they extract coarser features from data. The later layers capture
the finer details of the data as they are farther away from the input and output layers. As I
freeze the weights of the trained layers, the structure is able to store essential information
regarding coarser and finer feature characteristics of the data. The weights of the fully-
connected layers are not frozen, since I expect these layers to act like bridges and will buffer
any change made in the encoder and decoder blocks.

The advantage of the method is that it is simple to implement, as the process involves
a simple heuristic to optimise the network in a layer-wise manner. Moreover, it employs a
systematic search scheme that allows efficient layer-wise training of the encoder and decoder
simultaneously, allowing the production of a symmetric autoencoder network. Thirdly, it
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Figure 8.5 The process of cascading autoencoders.
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inherits all the advantages of a deep cascade network, where weights are frozen in each layer
thus better capture the general features of the network.

A limitation would be that the autoencoder trained under this scheme will have more
encoder layers than decoder layers.A solution to this would be to adopt the heuristic scheme
as in Chapter 7, where I iterate on the addition of encoder blocks and decoders blocks in an
alternating sequence. However, empirically this leads to unnecessarily deep encoder layers
or decoder layers. Therefore, the method is not adopted in this optimisation setting.

Another limitation is that it is less effective in solving the vanishing gradient problem
compared to the cascading process in a simple feedforward network. Although it employs
layer-wise training, the training layers are away from the outputs by the length of the decoder,
with each consecutive layer farther away from the input and output. However, due to the
freezing of weights, the vanishing gradient problem is less prominent compared to end-to-end
training.

8.5.3 Flowchart and Pseudocode

To further illustrate the logic behind the autoencoder or variational autoencoder used in
the chemical problem, a flowchart is drawn in Figure 8.6. The key functionality of the
algorithm is to perform property predictions based on the latent representation obtained from
the training of autoencoders or variational autoencoders. Two models work independently in
this flowchart. The autoencoder finds the latent representation and the property predictor is a
separate multi-layered perceptron network that acts on the latent representation. The flow
terminates when the predicted properties of the concerned molecules are obtained.

The pseudocode for the end-to-end optimisation process is shown in Algorithm 11. The
pseudocode for a cascaded network is shown in Algorithm 12.

8.6 Training Results of Autoencoders

I first investigate the performance of cascade learning using the the slightly modified version
of the optimal structure suggested in [88]. The details of the structure is enlisted in Table 8.1.
I adopt the structure from literature as a starting point because this will lead to an optimal
point where the most effective model adopting cascade learning is compared to end-to-end
training. However, I acknowledge that the model hyperparameters from the literature is
found through random search, which may not be the most optimal. I perform hyperparamters
tuning after a preliminary comparison of the two models. The original model is obtained by
performing random search over hyperparameters. I attempt to perform random searches on
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Algorithm 11 Autoencoders with end-to-end learning.
function ENCODER_LAYERS(parameters)

Add Input Layer
for <number of encoder_blocks> do

Add Conv1D Layer
Add BatchNormalisation Layer

end for
return Encoder_Model

end function

function DECODER_BLOCK(parameters)
Add encoder Dense Layers
Add decoder Dense Layers
Add Flatten Layer
Add RepeatVector Layer
for <number of GRU_layers> do

Add GRU Layer
end for
return Decoder_Model

end function

function END-TO-END(parameters, encoder_blocks, decoder_block, X_train, Y_train,
X_test, Y_test, epochs, loss_function, batch_size)

Initialise: optimiser and learning rate
Compile Encoder_Model and Decoder_Model
Fit Encoder_Model and Decoder_Model using X_train, Y_train, X_test, Y_test,

epochs, batch_size
Store optimisation history

end function
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Algorithm 12 Autoencoders from Cascade Learning
function CASCADE_LEARNING(parameters, encoder_blocks, decoder_block, X_train,
Y_train, X_test, Y_test, epochs, loss_function, batch_size)

for <i in number of encoder_blocks> do
Append first i encoder blocks to Current_Model
Append decoder block to Current_Model
Define Sequential_Model
if <i==0> then

Add layers in Current_Model to Sequential_Model
else

Remove decoder block
Set encoder block to be not trainable
Add newly added encoder block to the Sequential_Model
Add decoder block

end if

Initialise: optimiser and learning rate
Compile Sequential_Model using loss_function
Fit Sequential_Model using X_train, Y_train, X_test, Y_test, epochs, batch_size
Store optimisation history

end for
end function
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Figure 8.6 Flowchart of the logic behind autoencoders in the problem of de novo chemical
design.

the hyperparamters as well and the parameters are listed in Table 8.2. The total number of
epochs is set to the value of 70 which is found in the original model.

The dataset I use contains 250,000 chemical formulas described by SMILES represen-
tation and their corresponding properties including the water-octanol partition coefficient
(logP), the synthetic accessibility score (SAS) and the Quantitative Estimation of Drug-
likeness (QED), which ranges in values between 0 and 1, with higher values indicating that
the molecule is more drug-like.

I perform two sets of training: 1) end-to-end training, and 2) cascade learning. This is to
gauge the effectiveness of the cascade learning on this particular problem. The objective is to
compare the values of weights obtained by cascade learning versus the values obtained by
end-to-end learning.

8.6.1 Weights Comparison

I perform a comparison of the values of weights on the two models. I illustrate the comparison
in Figure 8.7.

There are two observations I can generate from Figure 8.7: 1) the two models contain
weights that are very differently distributed; the end-to-end weights have a higher kurtosis
(kurtosis = 0.549, platykurtic) whereas the cascaded weights have a lower kurtosis (kurtosis
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Table 8.1 Structure of a simple and small network adopting cascade learning.

Layer Output Shape #Parameters

Input (120, 25) 0
Convolution1D (113, 8) 2248
BatchNormalisation (113, 8) 32
Convolution1D (106, 8) 520
BatchNormalisation (106, 8) 32
Convolution1D (99, 8) 520
BatchNormalisation (99, 8) 32
Convolution1D (92, 8) 520
BatchNormalisation (92, 8) 32
Flatten (736,) 0
Dense (100,) 73700
Dropout (100,) 0
BatchNormalisation (100,) 400
Dense (100,) 10100
Dropout (100,) 0
BatchNormalisation (100,) 400
Dense (100,) 300
Dropout (100,) 0
BatchNormalisation (100,) 400
Dense (100,) 10100
Dropout (100,) 0
BatchNormalisation (100,) 400
RepeatVector (120,100) 0
GRU (120, 35) 14385
GRU (120, 35) 7560
GRU (120, 35) 7560
GRU (120, 35) 7560

Table 8.2 Hyperparameters of a simple and small network adopting cascade learning.

Parameters Value

Epochs 70
Dropout rate 0.0828
Batch size 126
Encoder layers 4
Decoder layers 4
Middle layers 2
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Figure 8.7 The distribution of weight values between the trained weights of the end-to-end
model and the cascade model in an autoencoder.

=-3.0, highly platykurtic); and 2) the end-to-end weights (skewness = -0.385) are more
skewed to the left compared to the cascaded weights (skewness = 0.0).

The reason I look at the distribution of the weights is two-fold: 1) I would like to observe
the effect of cascade learning on the values of weights; as the weights are not identically
distributed, it is reasonable to conclude that there is a strong effect of cascade learning on the
weights obtained, and 2) the weights of cascade learning is more clustered around the mean,
indicating that the values are more similar; this is possibly due to the fact that trained layers
are always close to the output, hence there is not the problem of diminishing gradient.

8.6.2 Training Performance

I also investigate the effects on training and validation losses. Within models adopting
cascade learning, I compare the effects of the minimal model and the layers added to the
model. The learning curve is shown in Figure 8.8. For example, curve labelled with Iteration
1 represents the minimal model with one Conv1D layer and one Batchnormalisation layer
whereas Iteration 2 represents the model with 2 Conv1D layers and 2 Batchnormalisation
layers alternating. The number of epochs in each iteration differs since I choose to save
the "best" model with the lowest validation losses in the first 20 epochs. I only present the
training performance up until the best model since this is the model that is fed to the next
iteration.

From Figure 8.8, I observe that overall, the training losses decrease with increasing
number of epochs. The validation losses trace the decrease in training losses but fluctuate
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(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 8.8 The learning curve for each step of optimisation in the cascade learning in an
autoencoder.

up and down throughout the process. This is expected because the model will demonstrate
inaccuracies after being generalised to a different dataset. The overall decreasing trend of the
validation losses demonstrate the effectiveness of the training process.

8.6.3 Optimisation Performance

Previous analysis has based the cascade learning model on the optimal model produced in
[88]. However, there is no guarantee that such a model is the optimal. Therefore, I perform a
search of optimal structure by adopting a heuristic search scheme of architectural parameters
combined with random search on other hyperparameters. The heuristic search allows the
addition of layers until a sufficiently small validation error is obtained. To observe the effect
of optimising the network with regard to the addition of layers, I obtain the optimisation
results in the form of reconstruction MSE layerwise. Since the shape of the input is 3
dimensional (consisting of batch size each with a two dimensional one-hot encoding), I
define the MSE in this case to be the mean of the reconstruction error for all entries in the
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one-hot encoding. From Table 8.3, it can be observed that the cascade model outperforms
the end-to-end model in both training MSE and validation MSE, indicating the effectiveness
of architecture search to find the most optimal model.

Table 8.3 The reconstruction error of the autoenocder trained through cascade learning vs
end-to-end learning.

Layer Training MSE Validation MSE

1 0.00915 0.00911
2 0.00918 0.00907
3 0.00919 0.00915
4 0.00917 0.00907

End-to-end 0.00919 0.00909

8.6.4 Property Prediction

The effectiveness of each model is evaluated by making property predictions in the latent
space. A multi-layered perceptron network is employed to act on the latent space to perform
property prediction. The hyperparameters adopted for both models are enlisted in Table 8.4.
For activation function, I have adopted tanh as this is the original activation function used in
[88], which is the literature my research is based on.

Table 8.4 Hyperparameters of the network solving the problem of property prediction.

Parameters Value

Training Epochs 20
Batch Size 126
Network Depth 3
Network Width 36
Activation Function Tanh
Objective Function Mean Squared Error
Batch-normalisation Layers Included

Adopting the latent space obtained from the cascade model, I obtain a mean squared
error of 0.91065 in the testing dataset. This draws comparison to the latent space obtained
from the end-to-end model which has a mean squared error of 0.93953. The cascade model
is outperforming the end-to-end model in this setting.

I also perform principle component anlaysis (PCA) on the latent space, compressing the
latent space into 2 dimensions. The compressed results for latent space from the cascaded
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model are demonstrated in Figure 8.9. The compressed results for latent space from the
end-to-end model are demonstrated in Figure 8.10. It can be observed from Figure 8.9 and
Figure 8.10 that the latent space from cascade learning takes a curved line shape with some
discontinuity due to the discrete nature of the input molecules. That is, only a subset of
the molecules are considered in the training dataset thus generating a discontinuous graph.
The highly different shape of the compressed latent space demonstrate the effect of cascade
learning in generating a highly different model from end-to-end training.

(a) PCA of logP (b) PCA of QED

(c) PCA of SAS

Figure 8.9 The principle component analysis of the embedding obtained form cascade training
the autoencoder model.

8.6.5 Comparison of Filters

I compare the filter values obtained for each convolutional layer. The convolutional layer
is 1D hence the filter obtained is 1D as well. The filters have a shape of 1×8 since this is
defined in the hyperparameters. The comparison of filters obtained from end-to-end learning
versus the deep cascade learning is tabulated in Figure 8.11. In Figure 8.11, the value of
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(a) PCA of logP (b) PCA of QED

(c) PCA of SAS

Figure 8.10 The principle component analysis of the embedding obtained form end-to-end
training the autoencoder model.

the filter used in the CNN is converted to grey-scale images to better visualise the value
difference.

From Figure 8.11, I observe that the filters obtained from the two models are very
different, indicating the effects of cascade learning on the model parameters. The filters of
the first layer are more similar since the weights are trained in a similar environment. The
filters of later layers are more different due to the freezing of weights in the previous layers.
This almost results in completely opposite filters in the last layer. This indicates that the
optimisers arrive at different local minima in the process of optimisation.

Overall, it can be claimed that the two optimisation processes generate very different
local minima. With the optimisation performance of the cascade model outperforming the
end-to-end model, the cascade model is capable of reaching a lower minimum compared to
the end-to-end model.
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(a) End-to-end Layer 1 (b) Cascade Layer 1

(c) End-to-end Layer 2 (d) Cascade Layer 2

(e) End-to-end Layer 3 (f) Cascade Layer 3

(g) End-to-end Layer 4 (h) Cascade Layer 4

Figure 8.11 The images of filter values for each layer in the end-to-end and the cascade
learning model adopting an autoencoder.
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8.7 Implementation of Variational Autoencoder

I explore the effects of generative models used for the problem of de novo chemical design.
A typical model is the variaitonal autoencoder. The theory behind a variational autoencoder
has been discussed in Section 8.2. Since the variational autoencoder entails a probabilistic
generative process, the advantage of using a variational autoencoder in this problem is that
newly generated molecules have some degree of flexibility compared to molecules generated
from only an autoencoder. This means that more freedom is allowed in the generation of new
molecules.

8.7.1 Weights Comparison

I perform a comparison of the values of the weights in the end-to-end model against that in
the cascade model. The comparison is illustrated in Figure 8.12.

Figure 8.12 The distribution of weight values between the trained weights of the end-to-end
model and the cascade model in a variational autoencoder.

From Figure 8.12, it can be observed that the two models generate very different weights:
the end-to-end weights have a kurtosis of 0.927 whereas the cascade weights have a kurtosis
of 3.003; the end-to-end weights have a skewness of -0.416 whereas the cascade weights
have a skewness of -0.223. This demonstrates that the two models arrive at different local
optima and the cascade learning model tends to have more clustered weights, indicating that
the weights are not diminishing across layers. This is the effect of training and freezing each
layer during the optimisation process, such that the weights calculated are always close to
the output, and are taking values closer to each other.
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8.7.2 Training Performance

I plot the learning curve of the variational autoencoder throughout the process of adding
layers in cascade learning (delimited by "Iterations"). The number of epochs in each iteration
differs since I choose to save the "best" model with the lowest validation losses in the first
20 epochs. I only present the training performance up until the best model since this is
the model that is fed to the next iteration. In iteration 1 and 2 where there are 1 and 2
convolutional layers respectively, the training and validation losses trace each other. In
Iteration 3 and 4 where there are 3 and 4 convolutional layers respectively, there training
losses decrease gradually whereas the validation losses fluctuate up and down. This is
attributed to the generative element in the network that brings flexibility and uncertainty
to the results obtained. Moreover, the fluctuations observed in Iteration 4 is largely due
to the smaller y-coordinate scale being used. The fluctuations are indeed much smaller in
raw values. The decrease of training loss is less obvious in Iteration 4 because the model is
already very well-trained with a very low training loss overall.

(a) Iteration 1 (b) Iteration 2

(c) Iteration 3 (d) Iteration 4

Figure 8.13 The learning curve for each step of optimisation in the cascade learning in a
variational autoencoder.
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8.7.3 Optimisation Performance

Since I am performing cascade learning on the encoder, the encoder is divided into 4 levels,
with each level consisting of a Convolutional Layer and a Batchnormalisation layer. The
reconstruction error is compared for different levels of network produced from cascade
learning. The results are demonstrated in Table 8.5. The definition of the MSE is the same as
outlined in Section 8.6.3.

Table 8.5 The reconstruction error of the variational autoencoder trained through cascade
learning vs end-to-end learning.

Level Training MSE Validation MSE

1 0.00922 0.00917
2 0.00917 0.00906
3 0.00916 0.00912
4 0.00913 0.00907

End-to-end 0.00952 0.00919

From Table 8.5, it can be observed that the training errors are decreasing with levels
added through cascade learning. This demonstrates that the addition of layers improves
model performance. However, the values of the validation losses fluctuate up and down
throughout the cascade learning process, indicating the lack of generalisation of the model
developed.

Comparing to the end-to-end training, the cascade network produces a model with lower
training MSE after 4 iterations of cascade learning. Moreover, validation errors of iteration 2
and 3 outperform that of the the end-to-end model.

8.7.4 Principle Component Analysis

I employ Principle Component Analysis (PCA) of the latent embedding to observe the effect
of the generative process on the autoencoder. The PCA technique converts high-dimensional
data into lower-dimensions such that it can be visualised. I plot the embedding transformed
by PCA and the results for the cascade training and the end-to-end training are shown
in Figure 8.14 and Figure 8.15 respectively. In either case, the latent space reduces to a
two-dimensional matrix is a curved line. The continuity of the latent space representation
demonstrates that the model encodes the molecular representation into a small defined latent
space. The difference in the latent space representation demonstrates the effectiveness of the
cascade learning, generating a highly different model and a different latent representation.
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(a) PCA of logP (b) PCA of QED

(c) PCA of SAS

Figure 8.14 The principle component analysis of the embedding obtained from the cascade
training of the variational autoencoder model.
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(a) PCA of logP (b) PCA of QED

(c) PCA of SAS

Figure 8.15 The principle component analysis of the embedding obtained from the end-to-end
training of the variational autoencoder model.
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8.7.5 Property Prediction

Similarly, I employ a multi-layered perceptron on the latent space to perform the property
prediction task. The same set of hyperparameters are adopted for the cascade model and the
end-to-end model, as enlisted in Table 8.4. Performing property prediction on the latent space
obtained from the cascade model, I obtain a mean squared error of 0.67003. Performing the
same task on the latent space obtained from the end-to-end model, I obtain a mean squared
error of 0.88205. The cascade model is outperforming the end-to-end model in the property
prediction task.

8.7.6 Comparison of Filters

I compare the filters obtained from each model, as demonstrated in Figure 8.16. From Figure
8.16, it can be observed that the cascade model and the end-to-end model arrive at very
different filters, which demonstrates the impact of applying cascade learning on the problem.
It can also be observed that the filters for the first few layers are similar for the cascade model
and the end-to-end model. However, as optimisation progresses, the filters at the last few
layers are becoming more different. This is due to the accumulated difference obtained from
the freezing of the initial layers which leads to escalated differences in later stages.

Overall, I have demonstrated that the two models arrive at very different optimised results,
indicating the great potential of cascade model to be used as an alternative optimisation
method to generate results for further analysis.

8.8 Discussion

8.8.1 Model Validity and Quality

The autoencoder and the VAE model described are capable of producing results with low re-
construction errors and low errors on the property prediction task. However, the performance
is not robust and is unstable when conditions change. In the VAE, for example, the quality of
results generated largely depends on the generative process. The uncertainty entailed within
the VAE model implies varied performance over different runs and different initialisations.
Therefore, it can be claimed that the model is valid due to the production of positive results,
but it is difficult to assert that the model has good robustness. A slight change in initialisation
can lead to very different results.

I believe that the cascaded model has better performance based on both the reconstruction
error and the error on the property prediction task. I believe this is due to the capability of
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the cascaded model to capture coarser features from the training data and the avoidance of
the vanishing gradient problem. However, it is noteworthy that hyperparameters tuning and
randomised initiation play important roles in achieving such results.

8.8.2 Model Variants

The model structure is solely based on the literature from [88] where the encoder consists of
CNN layers and the decoder consists of GRU layers. However, other variants of the model
structure is possible. For example, the input to the model is highly sparse (one-hot in nature),
allowing the use of fully-connected layers as a pre-processing step or as the encoder layers.

8.8.3 Challenges of Adopting Deep Cascade Generative Models

Although generative models have been used as a popular research tool in augmenting the
understanding of large data, there are key challenges existent within the adoption of generative
models and the application of deep cascade learning on those models.

First, since the underlying distribution of the data is unknown, it is difficult to compare
the performance of the end-to-end model [335] and the cascaded model. I can only "embed
intuition in the machine’s understanding" through the application of deep cascade learning on
generative models [335]. Thus, it is possible to use common metrics to compare performances
but it is difficult to arrive at which model truly represents the underlying distribution of the
data.

Second, the current generative models adopted in drug design is only at a stage of infancy,
thus the application of deep cascade learning is also nascent. While models as described in
literature (Section 8.2) have demonstrated some effectiveness, it is still difficult to produce
an all-encompassing end-to-end pipeline to automate the process of de novo drug design. A
high level of domain expertise coupled with deep understanding of the generative models
are often required to produce a truly performing model. Therefore, to apply deep cascade
learning on such models relies highly on expert knowledge as well and should not be simply
interpreted as a blind application of layer-wise optimisation. More understanding of the
chemical search space will be critical in generating a functional cascaded generative model.

Moreover, both the end-to-end and the cascaded model produced often have limited
generalisation. Practical implementation has demonstrated that a change in the training
and validation dateset often leads to large changes in the resulting model. Changes in the
hyperparameters and the data size also vary the performance of the models greatly. Therefore,
the application of deep cascade learning on generative models for the purpose of de novo
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drug design needs to overcome the hurdle of proper model development in order to become
integrated in an automated process.

The third challenge is how to make use of the generative models to augment human
understanding. While the models are effective in generating novel molecules, the process is
still largely "black-box" in nature. How to make use the the model results, for example the
latent representation in the case of autoencoders, to assist human’s understanding into the
pharmacology of the designed drugs is still a great challenge today. To understand how deep
cascade learning improves model performance in a more fundamental sense is also a difficult
task. More dive into the nature of end-to-end learning versus the deep cascade learning is
required to truly improve our understanding of a guided search in the chemical space.

While the challenges of adopting deep cascade learning on generative models in the
context of de novo drug design exist, there are also advantages of such a methodology. For
one, the application of deep cascade learning is novel. The current models in literature
exclusively focus on modifications of the model to improve performance [336], and few
investigates the method from the perspective of an architecture search. In the past, deep
cascade learning is often adopted in Human Activity Recognition tasks [267]. To apply it in
the drug design space is a novel idea.

8.8.4 Outlook of Deep Cascade Learning

The key reason that I have applied deep cascade learning on the generative model in the area
of de novo drug design is that I believe the layer-wise optimisation is capable of extracting
coarser information from the dataset, in this case, the properties related to molecular structures
at a larger scale. The positive results obtained demonstrate the potential validity of this
hypothesis.

However, to fully prove such a hypothesis requires much more research into the fun-
damental aspect of the model, which is out of scope of the current research project. It is
noteworthy that to fully prove such a hypothesis, the new molecules generated from the latent
space should be examined and compared with the molecules generated from the end-to-end
model. The properties of the generated molecules should be compared for both models in
order to fully assert that one model outperforms the other. Since research into this area is
still at a nascent stage, and due to the sheer size of the chemical space being researched into,
such research entails much difficulty and requires a large amount of efforts.

There are several advantages of adopting deep cascade learning on the generative model.
For one, the model freezes the trained parameters in each run, reducing the computational
expense in each iteration, allowing less computations compared to the training of an end-
to-end model. Second, the model has demonstrated good performance in transfer learning
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[267], thus guiding research directions into applying the model to smaller datasets. For
example, data on drug properties less well-researched can be calculated in the model to
predict such properties from molecular structures. Third, the different latent space obtained
from the end-to-end model may indicate a future research direction in comparing whether
the cascaded latent space is a better alternative in drug design research. Overall, I believe
research into deep cascade learning to be applied to de novo drug design has great potential
and I should encourage on-going research into this area.

8.9 Summary

In this chapter, I have described a dynamic method of searching for the optimal architecture
through deep cascade learning. An autoencoder and a variational autoencoder are developed
to solve the problem of de novo drug design. Similar to Chapter 7 where layers are added
one by one, the deep cascade learning method also adds encoder layers layer-wise to train
for network parameters that is capable of extracting the coarser features from the input data.
This is because during optimisation, the encoder layer is always close to the output data
points. Compared to the model in Chapter 7, this model is applicable to dataset of a larger
scale and is capable of producing variant forms of ANNs.

In terms of future work, the key advantage of deep cascaded network is that it is better
at extracting coarser features from the input data, thus preserving more information in the
initial layers of the network. Therefore, it is applicable to transfer learning, where similar
problems are solved with the same initial layers. I believe our network is suitable for transfer
learning in the de novo chemical design problem as I could predict chemical properties based
on the features extracted from the same set of molecules.

Another application is in drug repositioning, alternatively called drug repurposing. Drug
repositioning is the process of developing new functionality of an already commercialised
drug or a drug under investigation. The aim is to find uses outside the scope of original
indications. Our approach can be adopted to this field by utilising the latent representations of
the trained molecules and finding the drugs with similar latent representations. It is believed
that if two molecules are geometrically close in the latent space, they may exhibit similar
properties. A commercialised drug close to a certain group of molecules in the latent space
is expected to exhibit similar properties to that group. Therefore, observing the latent space
is applicable to the process of drug repositioning.
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(a) End-to-end Layer 1 (b) Cascade Layer 1

(c) End-to-end Layer 2 (d) Cascade Layer 2

(e) End-to-end Layer 3 (f) Cascade Layer 3

(g) End-to-end Layer 4 (h) Cascade Layer 4

Figure 8.16 The images of filter values for each layer in the end-to-end and the cascade
learning model adopting a variational autoencoder.





Chapter 9

Discussion, Conclusion and Future Work

9.1 Discussion and Conclusion

In this chapter, I conclude the thesis by summarising and evaluating key contributions in the
research and identifying possible areas of future research. To evaluate the key contributions,
I define a series of desiderata for an optimisation process. I also discuss the possibility of
integrating the optimisation processes into a complete framework. Lastly, I discuss popular
topics in the area of machine learning research and how this research is impacted by those
topics. Future areas of research are also investigated in relation to the popular topics.

9.1.1 Overview of Thesis

The contributions of thesis is six-fold. In each contribution, I define and develop an optimisa-
tion process involved in the design of Deep Neural Networks (DNNs), including the training
or the neural architecture search process. I summarise the contributions as follows:

• Chapter 3 proposed a novel quasi-Newton optimisation method for the training of
DNNs.

• Chapter 4 proposed a lifting framework for the automated search of optimal architecture
of DNNs in a pruning process that focused on network sparsification.

• Chapter 5 investigated a method to evolve the architecture of the DNNs dynamically
under the lifting scheme.

• Chapter 6 proposed a multi-scale hierarchical search algorithm to define a novel
training process. A binary search tree was adopted to identify the most sensitive layer
to train.
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• Chapter 7 introduced multitask learning to the Dynamic Architecture Neural Network
and proposed a heuristic search scheme to optimise the architecture.

• Chapter 8 performed dynamic architecture search in the context of de novo chemical
design.

9.1.2 Evaluation of Contributions

I define the following desiderata for each optimisation process in the design of DNNs. The
desiderata include robustness, efficiency, accuracy, computational simplicity, speed and
memory advantage.

In Chapter 3, I developed the HFGF method to optimise the training process. Consid-
ering the desiderata, the algorithm is robust with regard to changes in the network input,
fairly efficient and accurate in comparison to first-order training algorithms. Although the
computational simplicity is higher than the state-of-the-art and the speed is slower in some
cases, the algorithm has an advantage in reducing the number of iterations optimised to the
local minimum. The storage memory is also comparable to the state-of-the-art algorithms.

In Chapter 4, the architecture optimisation method based on Lagrangian multipliers is
robust, efficient, accurate and conceptually simple. However, due to the increased number
of variables involved in the lifting scheme, the method is disadvantaged in memory storage
and speed compared to other sparsification algorithms. However, it is a novel idea in terms
of how sparsification is performed and it introduces the possibility to regularise a layer or a
neuron instead of a particular connection.

In Chapter 5, the adoption of attenuation/amplification factor generates an algorithm that
is robust, efficient and accurate. The calculation is less computationally complex compared
to other network-evolving algorithms as outlined in Chapter 2. In terms of speed and memory,
the algorithm is advantaged similarly due to its simple concept compared to other network-
evolving algorithms, although the speed is reduced when a larger network or a higher number
of data points are introduced.

In Chapter 6, the proposed method of multi-scale hierarchical tuning is robust and
accurate. It is computationally simpler as only one layer is tuned in each iteration. The
speed and efficiency is less of an advantage but there is the potential of parallelisation. The
memeory storage is the same as the end-to-end backpropagation algorithm.

In Chapter 7, I developed a heuristic search algorithm to optimise a multi-task DAN2
network. The key advantage of the algorithm is its simplicity, with a data-driven convergence
criterion. The algorithm is not as robust as traditional DNNs due to the divergence in some
cases. However, it is more efficient and computationally simple with a limited number of
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parameters in each layer. The accuracy and speed is comparable to traditional DNNs, but the
memory storage is much lower.

In Chapter 8, the deep cascade learning method is robust and accurate. It is less efficient
and takes longer to train compared to traditional end-to-end learning due to its calculation
of weights layer-wise. However, it has the advantage of optimising to a better optimum. It
is conceptually and computationally simple. In each step, memory storage is required for
weights in only the layer optimised.

A summary of each contribution evaluated based on the desiderata is shown in Table
9.1. Overall, each method has its own advantages and disadvantages compared to traditional
or state-of-the-art algorithms. As the "no free lunch" theorem dictates, there is no single
algorithm that wins over all other algorithms in all optimisation tasks. Thus, I believe our
proposed algorithms are novel and ingenious, and they provide alternative ways of thinking
to approach the problem of the design of deep neural networks.

Table 9.1 Summary of contributions evaluated based on defined desiderata

Chapters 3 4 5 6 7 8

Robustness +++ +++ ++ +++ + ++
Efficiency ++ +++ ++ + +++ +
Accuracy ++ +++ ++ +++ ++ ++
Computational
Simplicity

+ +++ +++ +++ +++ +++

Speed + + + + ++ +
Memory
Advantage

++ + + + +++ +++

9.1.3 Integration of Framework

The thesis discusses separately several optimisation processes involved in the design of a
deep neural network (DNN). In particular, Chapter 3 and Chapter 6 discuss methods to
train a network, and the other chapters discuss methods to evolve a network in a dynamic
and interactive manner. This completes the design process of a deep neural network which
involves training and architecture search. Although the methods have been introduced
separately, I discuss the possibility of integrating the ideas into a complete optimisation
framework.
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The problem of neural network design is essentially a bilevel optimisation problem,
where on the outer level is the optimisation of the network architecture and on the inner level
is the optimisation of the weights (training). This is defined as follows:

min
ρ

Lval(w⋆(ρ),ρ) (9.1a)

subject to w⋆(ρ) = argmin
w

Ltrain(w,ρ) (9.1b)

where ρ refers to the architectural parameters and w refers to the weights of the network.
To best balance between the two optimisation levels, several methods have been developed.

In [150], it achieves the balance by optimising the outer level and the inner level each for
one iteration in turn. This provides a simple solution to the originally complicated bilevel
optimisation problem. Adopting this method, it is possible to integrate the training and the
architecture search process, by alternating between the two optimisation processes.

For example, the training method proposed in Chapter 6 and the architecture search
method proposed in Chapter 5 both makes use of the sensitivity values of the attenua-
tion/amplification factor obtained through finite difference method. Thus, it is possible to
integrate the two processes by calculating the sensitivity values and optimise the architecture
and the weights in turn, with an unequal number of iterations in each case defined by a
hyperparameter. Therefore, there is great potential of integration into a complete framework
for the design of deep neural networks.

The architecture optimisation processes proposed in Chapter 7 and Chapter 8 automat-
ically involves the training in the architecture process. They are viewed as an integrated
framework because the training is naturally involved in the architecture search process. I
believe the integration into a framework can greatly simplify the design of deep neural
networks and facilitate the democratisation of AI.

The practical end of AI democratisation is the development of a complete data-driven
framework performing tasks of AutoML. Although I have reviewed commercial applications
of AutoML in Section 2.3, an open-source and easy-to-use framework designed particularly
for Neural Architecture Search is yet designed. Although there are much current research
interest in the area with cutting-edge research being implemented in practical applications, a
framework with high performance results and good functionality is widely desired.

Our proposed method has the potential to contribute to the development of AutoML,
by introducing optimisation processes that can complete the framework of automatically
search for the optimal architecture and weights. As future research, it is possible to enable



9.2 Future Work 267

the AutoML function of the proposed algorithms and make contributions to the AutoML
literature.

9.2 Future Work

In this section, I discuss several important aspects of the proposal of a framework that
automate the optimisation processes used in deep neural networks. I also discuss topics
related to the automation of deep neural network design which consist of the current and
future research directions. I explore the correlation of each topic with different frameworks
proposed in this thesis and examine the implications of each framework in each topic.

9.2.1 Democratisation of AI

The ultimate purpose of instigating research into training and architecture search is not only
about enhancing the understanding of how neural networks operate. More importantly, the
research aims to facilitate AI democratisation and the adoption of AI in the chemical industry.

Democratisation of AI is currently an important topic of research since an automated
system where less domain expertise is required can unleash the hidden power AI exhibits.
By simplifying AI system operations and allowing participation with a lower hurdle, more
industrial practitioners can make use of AI in their respective field. Traditional AI research
on neural networks require domain-specific expertise. Since the design of neural networks
is conventionally manual and arbitrary, a researcher in computer vision cannot transfer his
or her expertise in designing neural networks to other fields such as speech recognition.
By allowing automated search for the architecture, the problem of neural network design
becomes a data-driven problem. Expertise from various fields does not input to the system
that generates the optimal design.

I discuss how our developed algorithms deliver a push towards the democratisation of AI.
In the Chapter 3, I proposed a training method that enables more efficient search towards the
optimal point, which provides a handy tool allowing the automatic search of optimality in a
neural network. In the following three chapters, I allow democratisation by fully automate the
architecture search process that allows the network to evolve with regard to the data, to fully
define a data-driven process. The autonomous system requires minimal input from the user,
enabling even a freshman to be able to use the AI system and design the optimal architecture.
In Chapter 7, an easily designed heuristic scheme allows the search for an optimal structure
to become a simple concept. This allows democratisation by simplifying the optimisation
process with an alternative novel architecture. In Chapter 8, the architectural search process
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is also automatic, allowing a layman to be able to solve a complicated chemical problem
with easily defined deep neural networks.

More specifically, this thesis demonstrates how democratised AI can be used in the
context of chemical industry. In particular, I have developed solutions to the prediction
problems in the chemical engineering space in Chapter 3 and 7. In Chapter 4-6, I provide
solutions to the ANN control problems in both the chemical industry as an example and
possibly also in other industries. In Chapter 8, I choose the de novo chemical design problem
that is more efficiently solved by the automatic architectural search framework. In all chapters,
I have demonstrated that the democratised AI can have profound effects when applied to the
chemical industry.

The authors of [54] pointed out the key qualities of frameworks that aim to democratise
AI. These include accessibility, affordability, explainability, credibility and fairness. I demon-
strate that our designed frameworks ace at such criteria. In particular, the algorithms are
accessible in that the concepts behind the implementation is simple and easily reproducible.
They are affordable because the programs are scalable, and depending on the data size, the
algorithms can be run on simple CPU processors or scaled up to GPU processors. They
are explainable, all backed up with clear-cut mathematical principles. For example, the
autonomous learning system developed in Chapter 4-6 gives a sound explanation that the
evolution of the network is guided by sensitivities. In the same sense, the algorithms are
credible and reproducible. They provide fairness given that the algorithms are open to
application from anyone.

9.2.2 Reproducibility

Reproducibility is a big problem because in most current research of neural architectural
search, the results are often not well-reproducible due to randomness in the search process.
Attempts seeking to reproduce the search often arrive at less optimal architecture and the
results reported in literature cannot always been reproduced (since most processes require
random initialisation and require a long processing time) [337]. Thus, this poses a challenge
to current research in whether an optimal architecture can always be produced.

Our results in Chapter 4-6 generate an almost deterministic model to guide the search
of optimal architecture, transforming the stochastic architectural search process into a pro-
cess with high certainty, thus generating optimality that is more credible. Therefore, the
architectural search process is advanced in the sense that it overcomes the lack of repro-
ducibility in different runs, outperforming many counterparts in current literature in terms of
reproducibility.
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The results from Chapter 7 contains a high level of certainty in comparison to many
other models. Since the core of the operation relies on linear regression and trigonometric
operations, the model is almost deterministic. The only randomness comes from the reference
vector used in evaluating the trigonometric functions. If this reference vector is fixed, the
model is highly reproducible.

The cascade learning model in Chapter 8 is less deterministic in nature. Due to the
increased complexity in the model obtained, the random initialisation and the random
dropout makes the model less reproducible but comparable performance can be obtained
with different randomised values.

Reproducibility is an important topic because it widely acts as a criterion to assess the
model validity [337]. In the area of neural architecture search, there are recent advances
in coming up with a framework to assess models [152] [151] [338], and reproducibility is
an important criterion. While the current measure to improve reproducibility is to increase
the number of runs and obtain aggregated results, a model with a higher level of inherent
certainty is desirable in the machine learning community.

9.2.3 Continual Learning

Continual learning refers to the machine learning technique that captures changes in the dis-
tribution of input data, altering its learning with new data input [339] [340] [341]. The key is
to accumulate a set of knowledge learned sequentially and extract essential information from
past experience without too much storage and without "catastrophic forgetting" [342] [343]
[344]. Catastrophic forgetting occurs when the model forgets previously learnt experiences
when adapting to new data input.

The architecture in Chapter 7 is particularly suited to continual learning tasks due to its
dynamic accumulative nature of the architecture. This draws parallel to research literature
in continual learning where the network is expanded dynamically with the addition of new
data while freezing previously learnt weights [345] [346]. To allow continual learning in
the DAN2 network, it is possible to expand layers of the network while freezing the trained
layer. Since the number of parameters required in each layer is small, the continual learning
model will not be as expensive in terms of storage as traditional neural networks. Moreover,
the proposed heuristic search process still works and the continual learning model can be
combined with the multi-task model to allow full functionality of the network. However, how
many weights to freeze in order to maximise continual learning performance is an ongoing
research topic, particularly applied to DAN2 network.

The cascade network proposed in Chapter 8 has a similar mechanism that dynamically
expands the network while freezing previously trained weights. While this is not applicable
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in the case of de novo chemical design, the principle is applicable to continual learning in
areas such as computer vision [346] and robotics [339].

I would like to discuss continual learning because it is a growing area of research that
entails elements of architectural design. Dynamic networks are particularly designed for
continual learning which are also well-researched in neural architecture search. The design
for an ordinary dynamic architecture can easily be converted to a continual learning design
by defining the optimisation target to be that of the new data. Therefore, it is identified as a
potential research area extended from neural architectural search.

9.2.4 Explainable AI

Unlike highly transparent models such as decision trees, most of the current state-of-the-art
DNN models lack transparency and interpretability due to their black-box nature. There is an
increasing need to provide interpretable results from these models, leading to the research
area of "explainable artificial intelligence (XAI)" [347] [348] [349].

In Chapter 4-6, the proposed architectural search method explores the idea of explainabil-
ity by introducing sensitivity measures to explain the significance of each neuron.

The models in Chapter 7 and Chapter 8 lack transparency and explanability because the
method overall is the evaluation of a function of the objective function with regard to each
layer. Although I can empirically prove the significance of the method, the model is less
advanced in terms of explainability.

9.2.5 AutoML

Automatic Machine Learning, or AutoML, is a popular research area [350] [351]. In Chapter
2, I have reviewed the current research and commercial applications of AutoML. Our research
is in essence a research on AutoML with the proposal of automated architecture evolving and
training algorithms. I believe our research has the potential to be applied in AutoML to allow a
more deterministic search for architectures with minimal user input and minimal involvement
of complicated architecture. The key advantages of our methods are the simplicity and
transparency. I believe our methods are highly integratable to research in the area of AutoML.
As future work, I could compare the performance of our proposed AutoML algorithms and
the performance of current commercialised products mentioned in Chapter 2. This will
evaluate our proposed algorithms from a different angle.
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9.3 Summary

In this chapter, I have evaluated the contributions of the thesis with a series of desiderata,
including robustness, efficiency, accuracy, computational simplicity, speed and memory
advantage. The possibility of integrating the contributions into a complete framework
for the design of the deep neural networks is also investigated. I have also discussed the
potential of our research to be applied to many popular research topics in the current machine
learning research literature. Most importantly, our research has the potential to advance
the democratisation of AI. By proposing an automated framework to search for the optimal
weights and architecture, the research allows optimisation of the neural network requiring
less domain expertise. The network is inherently deterministic in terms of network design
and can self-evolve based on the value of the objective function. Moreover, the research
results are highly reproducible and the models developed can contribute to many research
areas including continual learning, explainable AI and AutoML.

As the final chapter of the thesis, I would like to reiterate the importance of the research
on automating the process of the design of deep neural networks. As Artificial Intelligence
infiltrates every industry and research field, the framework to automate a search of optimal
weights and architectures will gain importance. This thesis contributes to such areas of train-
ing and architecture search, and thus is an essential process in achieving the democratisation
of AI.
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Appendix A

Dataset Description

This section describes the relevant details regarding the generation and collection of the data

for the applications of the multitask DAN2 algorithm.

A.1 The PSA Dataset

Process Description. A pressure swing adsorption (PSA) process is an energy-efficient

technology for gas separation. It achieves gas separation by operating a cyclic process where

the gas species is absorbed at a higher pressure and released at a lower pressure. The data

used in this research adopted a four-stage PSA process model for CO2 capture as reported in

Haghpanah’s work [352].

Data generation method. The PSA dataset is a dataset calculated from the software

Dymola to simulate the PSA process through a set of differential equations [352] programmed

in Modelica [353]. The PSA cycle is simulated iteratively under a series of defined operating

conditions. I evaluate the system parameters operating under these conditions until cyclic

steady state (CSS) is reached. At cyclic steady state, I evaluate the recovery, purity and

energy consumption of the system.
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Data description. The PSA dataset contains 6 sets of continuous input features and 3

continuous output values. The inputs are operating conditions (e.g. set points for pressure,

duration for adsorption or desorption stages, and inlet flow rate). The outputs are the recovery

rate, purity and energy consumption of the system.

Data preprocessing. I apply the normalisation of the data before inputting to the multi-

task DAN2 and the ANN. Normalisation is required because the ranges of the inputs are of

different scales. Normalisation converts the numeric values in columns to their own column

scale, thus equalising the ranges of different inputs without affecting their relative value.

Data Accuracy. The collected data comes from a simulation process which means that

the data points collected are highly accurate and to-the-point. Therefore, there is no concern

that there might be anomalies in the dataset.

A.2 The OILDROPLET Dataset

Date collection method. The dataset is generated by a high-throughput droplet-generating

robot which can execute and record a 90s droplet experiment every 111 seconds, including

mixing, syringe-driven droplet placement, recording, cleaning and drying. Further details of

the experimental setup can be found in [354].

Data description. The dataset includes 24,422 experimental entries, and within each

entry, there are 7 input variables which are the ratios of four oils (diethyl phthalate, 1-octanol,

octanoic acid and 1-pentanol) in the droplet, the viscosity, the surface tension and the density

of the mixture. The observation space are generated by observing the movement and merging

of the oil droplet on the water surface, including average movement speed, maximum speed

of a single droplet, average number of droplets in the last second, average number of droplets

throughout the experiment.

Data pre-processing. Similar to the prepreocessing step in the PSA dataset, I have

applied normalisation to the data before inputting into the neural networks.



A.2 The OILDROPLET Dataset 301

Data Accuracy. The dataset comes from experiments which means that there might

be collection errors in the process. However, I have not identified anomalies in the datast

that might be troublesome to deal with. The data points are accurate to the point that the

collection process is carefully conducted and the data are carefully pre-processed.
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