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Abstract

Background To explore the relationship between various

autoregulatory indices in order to determine which

approximate small vessel/microvascular (MV) autoregula-

tory capacity most accurately.

Methods Utilizing a retrospective cohort of traumatic brain

injury patients (N = 41) with: transcranial Doppler (TCD),

intracranial pressure (ICP) and cortical laser Doppler

flowmetry (LDF), we calculated various continuous indices

of autoregulation and cerebrovascular responsiveness: A.

ICP derived [pressure reactivity index (PRx)—correlation

between ICP and mean arterial pressure (MAP), PAx—

correlation between pulse amplitude of ICP (AMP) and

MAP, RAC—correlation between AMP and cerebral per-

fusion pressure (CPP)], B. TCD derived (Mx—correlation

between mean flow velocity (FVm) and CPP, Mx_a—

correlation between FVm and MAP, Sx—correlation

between systolic flow velocity (FVs) and CPP, Sx_a—

correlation between FVs and MAP, Dx—correlation

between diastolic flow index (FVd) and CPP, Dx_a—cor-

relation between FVd and MAP], and LDF derived (Lx—

correlation between LDF cerebral blood flow [CBF] and

CPP, Lx_a—correlation between LDF-CBF and MAP).

We assessed the relationship between these indices via

Pearson correlation, Friedman test, principal component

analysis (PCA), agglomerative hierarchal clustering

(AHC), and k-means cluster analysis (KMCA).

Results LDF-based autoregulatory index (Lx) was most

associated with TCD-based Mx/Mx_a and Dx/Dx_a across

Pearson correlation, PCA, AHC, and KMCA. Lx was only

remotely associated with ICP-based indices (PRx, PAx,

RAC). TCD-based Sx/Sx_a was more closely associated

with ICP-derived PRx, PAx and RAC. This indicates that

vascular-derived indices of autoregulatory capacity (i.e.,

TCD and LDF based) covary, with Sx/Sx_a being the
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exception, whereas indices of cerebrovascular reactivity

derived from pulsatile CBV (i.e., ICP indices) appear to not

be closely related to those of vascular origin.

Conclusions Transcranial Doppler Mx is the most closely

associated with LDF-based Lx/Lx_a. Both Sx/Sx-a and the

ICP-derived indices appear to be dissociated with LDF-

based cerebrovascular reactivity, leaving Mx/Mx-a as a

better surrogate for the assessment of cortical small vessel/

MV cerebrovascular reactivity. Sx/Sx_a cocluster/covary

with ICP-derived indices, as seen in our previous work.

Keywords Cerebrovascular reactivity � Autoregulation �
Laser Doppler � ICP index � Covariance � Machine learning

Introduction

Continuous assessments of autoregulation/cerebrovascular

reactivity in traumatic brain injury (TBI) patients focus on

the calculation of moving Pearson correlation coefficients

between physiologic variables that characterize systemic

and cerebrovascular dynamics [1–3]. These indices are

derived by comparing slow wave changes of a surrogate for

cerebral blood volume (CBV)/cerebral blood flow (CBF),

to the intravascular driving force, mean arterial pressure

(MAP) or cerebral perfusion pressure (CPP) [1, 3]. Com-

monly monitored surrogates for slow waves of CBV and

CBF are intracranial pressure (ICP) and transcranial Dop-

pler (TCD)-based CBF velocity (CBFV). The correlation

coefficient between various combinations of these physio-

logic variables carries information related to the phase shift

between these signals [3, 4]. Positive and negative corre-

lation coefficients typically denote ‘‘impaired’’ and

‘‘intact’’ autoregulatory capacity/cerebrovascular

reactivity, respectively.

Pressure reactivity index (PRx), derived from ICP and

MAP, and mean flow index (Mx), derived from transcranial

Doppler-derived CBFV and CPP, are the two most com-

monly quoted continuous indices of cerebrovascular

reactivity in TBI. Critical thresholds for both morbidity and

mortality exist for both PRx [5] and Mx [6], with moderate

inter-index correlation (r values quoted up to 0.58) [7].

However, other continuous indices of autoregulation/cere-

brovascular reactivity, using multimodal monitoring, have

also been employed [3], with variable levels of validation.

Given the different monitoring techniques utilized to pro-

duce these indices, these carry different physiologic

information, and may not provide similar information

regarding cerebral autoregulation/vessel reactivity.

Though no longer employed clinically, laser Doppler

flowmetry (LDF) affords the ability to obtain continuous

direct measure of small vessel/microvascular (MV) CBF

[8–11]. This device requires insertion into the subdural

space and uses the Doppler shift in the reflected light signal

to calculate cortical CBF in the region of the probe [8].

Given the availability of this direct measure of cerebral

MV flow, it is worth asking how Mx and other TCD-

derived indices of cerebrovascular reactivity (which are

indices based on regional CBF velocity in a single vascular

territory—typically the middle cerebral artery [MCA]),

relate to MV autoregulatory capacity.

A previous study [12] showed interesting differences

between Lx (correlation between LDF-CBF and CPP) and

Mx, but did not address relationships with other TCD-

based indices (such as Sx—correlation between systolic

flow velocity and CPP, and Dx—correlation between

diastolic flow velocity and CPP). Further, the existing data

provide no guidance on how PRx (and other ICP-derived

indices of cerebrovascular reactivity based on ‘‘global’’

ICP), relate to MV autoregulatory capacity. While focal

continuous assessment MV CBF is possible with thermal

diffusion catheters, their use in the assessment of MV

behavior over extended periods is limited, given the need

for repeated re-calibration and moderate noise in the parent

signal derived [12]. However, given that, of all the con-

tinuous bedside monitors available, the MV flow best

approximates nutritive perfusion, such relationships are

critically important in helping validate and interpret less

direct metrics of vascular biology in the injured brain.

The goal of this retrospective cohort study is to explore

the relationship between various commonly used bedside

autoregulatory/cerebrovascular reactivity indices in order

to determine which indices best approximate cortical small

vessel/MV autoregulatory capacity. We employ various

tests of multivariate assessment of covariance in order to

assess these relationships, similar to a recent publication

from our group on covariance/clustering of multimodal

monitoring-based continuous autoregulation/cerebrovascu-

lar reactivity indices [13].

Methods

Patient Population

The patient population included in this study is a subpop-

ulation of a cohort that has been previously described

[8, 11]. This patient cohort was one in which the main goal

of the initial prospective study was to assess regional CBF

via LDF in TBI patients, where local Cambridge Health

Authority research ethics committee approval was

obtained. Through retrospective analysis of this cohort, we

identified that the raw monitoring signals included data that

would allow us to determine various indices of autoregu-

latory capacity/cerebrovascular reactivity, assessing the

relationship between those derived from different
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monitoring devices. All recording sessions included in this

study had the following monitors: ICP, MAP, CPP, LDF-

CBF, and TCD-based CBFV of the middle cerebral artery

(MCA) ipsilateral to the ICP and LDF monitors.

This study was conducted as a retrospective analysis of a

prospectively maintained database cohort, in which 61

separate recordings were analyzed. Most recordings were

approximately 30 min–1 h in duration. All patients in both

cohorts suffered moderate–severe TBI, or deteriorated after

an initial admission with mild TBI and required sedation

and mechanical ventilation for clinical care in the Neuro-

sciences Critical Care Unit at Addenbrooke’s Hospital,

Cambridge. Treatment received during the recording peri-

ods included standard ICP-directed therapy, with an ICP

goal of less than 20 mm Hg and CPP goal of greater than

60 mm Hg. All patients were nursed with head of the bed

at 30�. For refractory elevations in ICP, bolus dosing of

mannitol was administered (for ICP > 25 mm Hg for

15 min). From the available records, no patients underwent

therapeutic hypothermia therapy for refractory ICP.

Data on age, injury severity, and clinical status at hos-

pital discharge were recorded at the time of monitoring on

this database, and no attempt was made to re-access clin-

ical records for additional information. Since all data were

extracted from the hospital records and fully anonymized,

no data on patient identifiers were available, and formal

patient or proxy consent was not sought.

Signal Acquisition

Various signals were obtained through a combination of

invasive and noninvasive methods. Arterial blood pressure

(ABP) was obtained through either radial or femoral arte-

rial lines connected to pressure transducers (Baxter

Healthcare Corp. CardioVascular Group, Irvine, CA). ICP

was acquired via an intraparenchymal strain gauge probe

(Codman ICP MicroSensor; Codman & Shurtleff Inc.,

Raynham, MA).

LDF-based CBF was obtained via placement of a

MBF3D dual-channel laser LDF (Moor Instrument Ltd,

Devon UK) in the subdual space, ipsilateral to the ICP

monitor. The LDF probe employed a low energy laser

(0.5–1.5 mW) with light generated in the near-infrared

spectrum (780–820 nm). LDF signals were recorded at a

frequency of 14.6 kHz. All probes were precalibrated prior

to insertion. Details on the insertion technique and cali-

bration method can be found in the 1994 study by

Kirkpatrick et al. [8].

Finally, TCD assessment of MCA CBFV was conducted

via Doppler Box (DWL Compumedics, Singen, Germany)

or Neuroguard (Medasonic, Fremont, CA, USA). Unilat-

eral MCA recordings (ipsilateral to the ICP and LDF

monitors) were obtained in every patient during these

sessions.

All recorded signals were digitized via an A/D con-

verters (DT9801; Data Translation, Marlboro, MA),

sampled at frequency of 50 Hertz (Hz) or higher and

recorded using WREC software (Warsaw University of

Technology) and analyzed retrospectively using ICM+

software (Cambridge Enterprise Ltd, Cambridge, UK,

http://www.neurosurg.cam.ac.uk/icmplus). All signal arti-

facts were removed prior to further processing or analysis.

Signal Processing

Post-acquisition processing of the above described signals

was conducted utilizing ICM+ software. CPP was deter-

mined utilizing the virtual signals by: CPP = MAP—ICP.

Systolic ABP (ABPs) was determined by calculating the

maximum ABP over a 1.5 s window, updated every sec-

ond. Similarly, diastolic ABP (ABPd) was also determined

by calculating the minimum ABP over a 1.5 s window,

updated every second. Systolic flow velocity (FVs) was

determined by calculating the maximum flow velocity (FV)

over a 1.5 s window, updated every second. Diastolic flow

velocity (FVd) was calculated using the minimum FV over

a 1.5 s window, updated every second. Mean flow velocity

(FVm) was calculated using average FV over a 10 s win-

dow, updated every 10 s (i.e., without data overlap). Pulse

amplitude of ICP (AMP) was determined by calculating the

fundamental amplitude of the ICP signal over a 10 s win-

dow, updated every 10 s. Ten second moving averages

(updated every 10 s to avoid data overlap) were calculated

for all recorded signals: ICP, ABP (which produced MAP),

ABPs, ABPd, CPP, FVm, FVs, FVd, and LDF-CBF.

Autoregulation/Cerebrovascular Reactivity Indices

The autoregulation/cerebrovascular reactivity indices were

derived in a similar fashion, the example provided is for

PRx. A moving Pearson correlation coefficient was calcu-

lated between ICP and MAP using 30 consecutive 10 s

windows (i.e., five minutes of data), updated every 10 s. A

10 s update period was chosen given the short duration of

the recordings. Details on each index calculation can be

found in Appendix A of the supplementary materials.

Statistics

The analysis conducted is identical to that performed in our

previous publication on covariance of multimodal moni-

toring autoregulation/cerebrovascular reactivity indices

[13]. The only difference for this study is that we have

slightly larger patient/recording numbers, no brain tissue
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oxygenation or near infrared spectroscopy (NIRS) moni-

toring, and the presence of LDF signal.

General Statistics

Data were provided on a 10 s-to-10 s basis for the duration

of the recordings for each recording. This was extracted

from ICM+ in to comma separated variable (CSV) docu-

ments, which were collated into one continuous data sheet

(compiled from all patients). We then determined indi-

vidual recording grand means for each variable. The

statistical analysis was performed on both data sheets:

10 s-by-10 s data and grand mean data.

Statistics were performed utilizing XLSTAT (Addinsoft,

New York, United States; https://www.xlstat.com/en/) add-

on package to Microsoft Excel (Microsoft Office 15, Ver-

sion 16.0.7369.1323) and R statistical software [14]. Tests

for normality were performed using the Shapiro–Wilks test

for all indices and measured variables. All indices and

variables were determined to be nonparametric in nature.

Alpha was set at 0.05 for all results describing a p value.

Autoregulation/Cerebrovascular Index: Correlative

Statistics

For assessment of the autoregulatory indices, we employed

a Pearson correlation coefficient matrix to assess correla-

tion between the various indices, which was conducted

after performing a Fisher transformation to the data set

(given nonparametric distribution for each index). This was

the only test in which transformed data were utilized within

the analysis.

Grouped variance between different combinations of

indices was assessed using the Friedman test (with and

without multiple comparisons), to account for within sub-

ject variation. The main assumption made was that all

indices were measuring the same physiologic variable (i.e.,

autoregulation). The Friedman test was performed on the

following groups: all indices, ICP-derived indices (PRx,

PAx, RAC), TCD-derived indices (Mx, Sx, Dx, Mx_a,

Sx_a, Dx_a) and LDF-CBF-derived indices (Lx, Lx_a).

Given the results of the Friedman test were similar for both

with and without multiple comparisons, we only mention

the ‘‘with’’ multiple comparisons data within the manu-

script and supplementary material.

Multivariate Clustering and Assessment

of Covariance

Finally, multivariate statistics were performed to further

delineate the associations between the various indices.

Currently, it is unclear as to which multivariate clustering

technique is superior within the exploration of time series-

based physiologic variables, thus we chose to employ an

array of testing techniques. Three different multivariate

methods were employed in order to assess the covariance

within various combinations of indices. This was done, so

as to be comprehensive and to provide confirmation of the

potential clustering seen in any individual given test. This

analysis was identical to that performed in our previous

publication, assessing covariance and clustering between

numerous monitoring-based continuous indices of cere-

brovascular reactivity [13].

First, principal component analysis (PCA) was per-

formed using a Spearman-type PCA, chosen to account for

the nonparametric data distribution in the data set (with

significance set at p < 0.05). The PCA has been described

in detail in other publications and is ideally suited as an

‘‘exploratory’’ statistic for small patient cohorts with large

numbers of variables [15, 16]. The purpose of the PCA is to

highlight which combinations of variables explain the

overall variance within the entire data set, and thus which

variables may be related and of further interest to study via

other methods. We refer the readers to cited publications

on PCA for more information [15, 16].

Second and third, agglomerative hierarchal clustering

(AHC) and k-mean-based cluster analysis (KMCA) (using

Euclidean distance) were also performed. These tests pro-

vide an overall assessment of the similarity between

variables, grouping them into clusters (or stems on a den-

drogram, as seen within AHC) based on the mean distance

away from one another, as assessed by Euclidean distance.

For the AHC, the statistical strength of the correlation

between the clusters produced in the dendrograms was

quantified using cophenetic correlation coefficients [17].

Cophenetic correlation coefficients were produced by the

Spearman correlation between the original Euclidean dis-

tance matrix calculated for the AHC, and the cophenetic

distance matrix. The cophenetic distance is defined as the

distance between two clusters that contain two indices

individually and the point where both clusters are merged

(i.e., it represents the height on the dendrogram at which

the branch points occur). The cophenetic correlation

coefficient is believed to be an estimate of how well the

AHC dendrogram maintains pairwise distances when

compared with the original data set (i.e., the baseline dis-

tance matrix between variables).

With the KMCA, the number of clusters can be set by

the investigator. We utilized the ‘‘Elbow method’’ of

KMCA in order to determine the appropriate number of

clusters for the final analysis. The Elbow method consists

of computing all possible k-means clusters. Subsequently, a

plot of the within-group sum of squares versus cluster

number, allowed selection of an inflection point (or ‘‘el-

bow’’) at which the plot showed the most dramatic slope
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change. This is deemed the ‘‘most appropriate’’ cluster

number for the final analysis.

Results

Patient Demographics

A total of 40 patients, with 61 recordings, were included

within this study. The average age was 31.1 ± 15.3 years,

with a median admission Glasgow Coma Scale of 5 (IQR

4–7). The median 6-month Glasgow Outcome Score for

these patients was 2 (range 1–5). Given the age of the data

(i.e., early 1990’s) the available information is limited for

patient demographics and injury characteristics. No

archived imaging information was available to allow us to

determine injury patterns. Further clinical details on sub-

populations of this cohort can be found in other

publications on this cohort [8, 11]. Figure 1 displays an

example of signal and autoregulatory/cerebrovascular

reactivity index responsiveness during a plateau wave in a

patient with LDF monitoring.

Autoregulation/Cerebrovascular Reactivity Index

Analysis

Inter-index Correlation

We compared the inter-index correlation via a Pearson

correlation matrix, for both the 10 s-by-10 s data and the

grand mean data. The Pearson matrices, with p value

matrices, for both data sheets can be found in Appendix B

of the Supplementary materials. Of note, the ICP-derived

indices (PRx, PAx and RAC) display moderate-to-strong

inter-technique correlation (r Z 0.5 in all, p < 0.05 in

all). A similar trend was noted with the TCD-derived

indices (Mx, Mx_a, Dx, Dx_a, Sx, Sx_a). Mx and PRx

were correlated (r = 0.346, p = 0.006). Sx and Sx_a were

moderately correlated with the ICP-derived indices.

Finally, the LDF-derived indices were correlated more with

TCD indices (Mx: r = 0.561, p < 0.0001; Dx: r = 0.492,

p < 0.0001). Thus, it appears that cortical small vessel/

MV autoregulatory capacity may be better approximated

by TCD-derived Mx/Mx_a and Dx/Dx_a, versus other

indices. These relationships were confirmed in both data

sheets.

Grouped Variance Analysis: Friedman Test

Similarity between various groups of autoregulatory indi-

ces was assessed by the Friedman test (with and without

multiple comparisons), with the pretest assumption that

each index was assessing the same aspect of physiology,

autoregulation. In both the 10 s-by-10 s and grand mean

data sheets, Friedman testing confirmed that the indices

were not all the same (p < 0.0001, Q = 301.204). Further

Friedman tests were applied to groups of monitor-specific

indices (i.e., derived indices were grouped based on their

monitoring signal source: ICP, TCD, etc). The within

monitor Friedman testing also confirmed each index was in

fact different. A summary of the Friedman test results (with

multiple comparisons) for both data sheets can be seen in

Appendix C of the Supplementary Materials.

Principle Component Analysis

Spearman PCA was conducted on both data sheets, with

similar results. Eleven principal components (PC) (also

referred to as factors [F]) were identified, with the first 5

PC’s composing *90% of the overall variance in the data

set. PC eigenvalue data, scree plots, and variable-specific

loadings can be seen in Appendix D of the supplementary

materials.

A loading biplot for PC1 (denoted F1) and PC2 (denoted

F2) can be seen in Appendix C. As can be seen within the

biplot, the ICP-derived indices (PRx, PAx and RAC) are

clustered in the same quadrant of the biplot, contributing to

the overall variance of both PC1 and PC2. Furthermore,

PRx/PAx/RAC appeared to be associated with TCD-based

Sx and Sx_a, in terms of their contributions to the variance

of the whole data set. Similarly, the TCD-based indices

(Mx, Mx_a, Dx and Dx_a) were colocated within the area

of the biplot most associated with PC1. LDF indices (Lx,

Lx_a) covaried with TCD-derived Mx/Mx_a/Dx/Dx_a,

confirming the correlations seen in the Pearson analysis.

Agglomerative Hierarchal Clustering

AHC was performed on both data sheets, yielding identical

results. Figure 2 demonstrates the dendrogram produced.

Of note is the clustering of ICP, TCD and LDF-based

indices. ICP indices cocluster with Sx and Sx_a, as dis-

played in both Pearson and PCA testing. Similarly, TCD-

based Mx/Mx_a and Dx/Dx_a cocluster with Lx/Lx_a, as

seen in the Pearson and PCA testing. The cophenetic cor-

relation coefficient for the grand mean AHC was 0.77,

indicating moderate-to-strong significance of the cluster-

ing. The dendrogram for the 10 s-by-10 s data can be seen

in Appendix E of the Supplementary Materials.

K-Means Cluster Analysis

KMCA was performed on both data sheets, producing

identical clustering results. Based on the ‘‘Elbow Method,’’

the optimal number of centroids for the KMCA was

determined to be 4. The clustering of the indices was
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similar to that seen in the AHC, PCA and Pearson testing.

Details of the KMCA and cluster tables can be seen in

Appendix F of the Supplementary Materials.

Discussion

Through the analysis of this TBI LDF data set, we have

been able to better define the relationships between various

ICP/TCD/LDF autoregulatory indices in humans. First,

intratechnique correlations were seen for ICP, TCD, and

LDF-CBF-derived indices across Pearson, PCA, ACH, and

KMCA. This result is not surprising, given indices derived

from the same signals, should be expected to be inter-

related. Second, LDF-CBF-based Lx and Lx_a were found

to be more closely associated with TCD-based Mx/Mx_a

and Dx/Dx_a, than with Sx/Sx_a or the ICP-derived indi-

ces. This was confirmed on all forms of the analysis. This

suggests that TCD ‘‘vascular’’-based measures (Mx/Mx_a

and Dx/Dx_a) are a better approximation of cortical small

vessel/microcirculatory autoregulation. Third, Sx/Sx_a

appear to be more closely associated with the ICP-derived

indices (PRx, PAx and RAC), as confirmed on all forms of

the analysis. This was also seen in our previously published

work [13]. This likely stems from the peak pulsatile sys-

tolic component of CBFV yielding a stronger contribution

to the ICP signal, than mean or diastolic CBFV’s. Further,

it is not surprising that by the time that CBF reaches the

small cortical vessels that the peak systolic pulsatile

component has less of an impact on regional LDF-CBF

signal, where it is more likely to be dependent on mean

flow or diastolic flow parameters. This, however, requires

confirmation.

Limitations

Some important limitations should be highlighted. First,

this is a small retrospective cohort of patients that were

studied. The patients had heterogeneous injury patterns and

were subject to variations in intensive care unit therapies/

Fig. 1 Example of parent signal and autoregulation index fluctua-

tions during plateau wave. AMP fundamental amplitude of ICP, a.u.

arbitrary units, CPP cerebral perfusion pressure, Dx diastolic flow

index (between FVd and CPP), FVd diastolic flow velocity, FVm

mean flow velocity, FVs systolic flow velocity, ICP intracranial

pressure, LDF laser Doppler flowmetry, LDF-CBF LDF cerebral

blood flow, Lx laser Doppler flow index (between LDF-CBF and

CPP), Mx mean flow index (between FVm and CPP), PAx between

AMP and MAP, PRx pressure reactivity index (between ICP and

MAP), RAC between AMP and CPP, TCD transcranial Doppler. ICP,

MAP, and CPP are measured in mm Hg. LDF-CBF, PRx, PAx, RAC,

Mx, Sx, Dx, and Lx are all measured in a.u
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treatments during the short recording sessions. This could

have impacted signal heterogeneity and quality, leading to

a direct influence on both the results of the slow wave and

autoregulatory index analysis. Further to this, given the age

of the initial data (ie. early 1990’s), we were limited in the

available patient demographics and intracranial injury

pattern/burden. Limited paper records were available and

no archived imaging was available. As a result, we cannot

comment on the impact of various patient comorbid factors

or injury pattern/burden factors on the various autoregu-

latory indices. In addition, these patients were not

randomized in any fashion, but were merely a unique

cohort with ICP, LDF, and TCD high frequency signal

linked in time series, allowing for an interesting retro-

spective analysis. Therefore, the strength of conclusions

that can be drawn from our analysis is limited. However,

with that said, we do believe the analysis conducted pro-

vides more than anecdotal insight into the covariance and

inter-index relationship, providing valuable information all

involved in the critical care management of moder-

ate/severe TBI patients. Second, LDF-CBF probes are no

longer in clinical use in humans, thus despite the interest-

ing trends, it proves difficult to confirm the analysis with

newer and larger patient cohorts. Therefore, we are

unfortunately left with retrospective data sets like these or

animal studies still employing LDF, to analyze relation-

ships of still commonly applied monitors to LDF-based

cortical/small vessel CBF. The decline in their use stem-

med from cost, maintenance, invasive placement, and

focality of measure. Not to mention the relatively noisy

signal generated from red blood cell flux measurements.

With that said, they provided useful and unique informa-

tion on cortical cerebral blood flow, and subsequent

cerebrovascular reactivity. Currently, the spatially resolved

NIRS-based continuous autoregulatory index TOx (also

known as COx) is the only index, aside from PRx, that has

been validated in an animal model against the lower limit

of autoregulation, with LDF providing the continuous

assessment of CBF during this study [18]. Thus, this TOx

index, the correlation between total oxygenation index and

CPP, may be the closest surrogate to LDF-based indices.

However, this has not been proven, as we are unaware of

any human-based data set of high frequency time series

including ICP, LDF and NIRS monitoring. A potential

solution, though not necessarily definitive for clinical

application, would be a similar covariance analysis con-

ducted in this previously described animal data set [18].

Third, the statistics utilized within the autoregulatory index

analysis are mainly exploratory and not 100% confirmatory

of the relationships described. The use of PCA, AHC, and

KMCA is exploratory multivariate statistical techniques

designed to highlight potential relationships of interest

within an entire data set, which would then drive further

prospective focused assessment of the individual relation-

ships identified. Given the limitations mentioned around

the clinical use of LDF, the analysis will have to remain

‘‘exploratory’’ for human data. With that said, the rela-

tionships were all confirmed across Pearson, PCA, AHC,

and KMCA, potentially indicating that the various clus-

tering/correlations are more than just by chance within an

Fig. 2 AHC of autoregulatory indices—grand mean data. AHC

agglomerative hierarchal clustering, AMP fundamental amplitude of

ICP, CPP cerebral perfusion pressure, Dx diastolic flow index

(between FVd and CPP), Dx_a arterial diastolic flow index (between

FVd and MAP), FVd diastolic flow velocity, FVm mean flow velocity,

FVs systolic flow velocity, ICP intracranial pressure, Lx laser Doppler

flow index (between LDF-CBF and CPP), Lx_a arterial laser Doppler

flow index (between LDF-CBF and MAP), Mx mean flow index

(between FVm and CPP), Mx_a arterial mean flow index (between

FVm and MAP), PAx between AMP and MAP, PRx pressure

reactivity index (between ICP and MAP), RAC between AMP and

CPP
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individual multivariate test. In addition to this, future

prospective evaluation of the index relations can be carried

out within controlled animal studies, given the continued

application of LDF within this setting. Finally, the use of

the Friedman test within the context of comparing various

indices derived from various monitoring devices is con-

troversial. We made the assumption that all indices were

measuring the same biological construct—autoregulatory

capacity. The results of this analysis of variance between

indices should be interpreted with caution.

Future Considerations

Based on the current available literature on cerebral

autoregulation in humans, it is unknown as to what defines

the ‘‘gold standard’’ for cortical microcirculatory autoreg-

ulatory capacity. The most commonly employed index of

autoregulation is PRx, a variable derived from a global ICP

measure, and based on our work above, does not appear

closely associated with cortical indices. LDF had the

potential to define cortical pial/microcirculatory reactivity,

though has fallen out of favor, leaving only these small

unique data sets to provide limited insight into cortical

autoregulation.

These devices are still employed in animal studies, and

this may provide the next logical avenue for comparison of

existing, commonly employed, monitoring devices and the

continuous indices of cerebrovascular reactivity derived

from their signals. Through comparing current, and

emerging, multimodal monitoring-based continuous

assessments of cerebrovascular reactivity to LDF-based

indices in animal models, we may be able to more accu-

rately characterize which monitoring variables are linked to

cortical autoregulatory capacity, and potentially provide a

‘‘surrogate’’ measurement technique for LDF in humans.

It has yet to fully uncovered in the literature, but

knowledge of cortical microcirculatory autoregulatory

capacity may prove to be dramatically different than the

existing global-based assessment (ie. PRx). It may be that

impairment of cortical cerebrovascular reactivity has more

of a relationship to global outcome measures, or even more

subtle executive functioning capabilities in the long-term

post-TBI, or other cerebral insult. Additional work is

required.

Conclusions

Of the bedside indices of autoregulation in common use,

TCD-based metrics, and Mx in particular, are most closely

related to LDF-derived measures of MV flow (Lx/Lx_a).

Both Sx/Sx-a and the ICP-derived indices appear to be

dissociated from LDF-based cortical small vessel

cerebrovascular reactivity, leaving Mx/Mx-a/Dx/Dx-a as a

better surrogate for the assessment of cortical small vessel/

MV cerebrovascular reactivity. Sx/Sx_a cocluster/covary

with ICP-derived indices, as seen in our previous work.
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