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Abstract

There are several works characterizing the total-variation mixing time of a reversible
Markov chain in term of natural probabilistic concepts such as stopping times and hit-
ting times. In contrast, there is no known analog for the L2 mixing time, τ2 (while
there are sophisticated analytic tools to bound τ2, in general they do not determine τ2

up to a constant factor and they lack a probabilistic interpretation). In this work we
show that τ2 can be characterized up to a constant factor using hitting times distri-
butions. We also derive a new extremal characterization of the Log-Sobolev constant,
cLS, as a weighted version of the spectral gap. This characterization yields a proba-
bilistic interpretation of cLS in terms of a hitting time version of hypercontractivity.
As applications of our results, we show that (1) for every reversible Markov chain, τ2 is
robust under addition of self-loops with bounded weights, and (2) for weighted nearest
neighbor random walks on trees, τ2 is robust under bounded perturbations of the edge
weights.
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1 Introduction

There are numerous essentially equivalent characterizations of mixing in L1 (e.g. [1, Theorem
4.6] and [17]) of a finite reversible Markov chain. Some involve natural probabilistic concepts
such as couplings, stopping times and hitting times (see § 3.5). In contrast, (paraphrasing
Aldous and Fill [1] last sentence of page 155, which mentions that there is no L2 counterpart
to [1, Theorem 4.6]) while there are several sophisticated analytic and geometric tools for
bounding the L2 mixing time, τ2, none of them has a probabilistic interpretation, and none
of them determines τ2 up to a constant factor.

In this work we provide probabilistic characterizations in terms of hitting times distribu-
tions for the L2 mixing time and also for the mixing time in relative entropy, τEnt (see (3.2)
and (3.5) for definitions), of a reversible Markov chain (Theorem 1.1).

While the spectral gap is a natural and simple parameter, the Log-Sobolev constant (see
(3.11)), cLS, is a more involved quantity. When one first encounters cLS, it may seem like
an artificial parameter that “magically” gives good bounds on τ2. We give a new extremal
characterization of the Log-Sobolev constant as a weighted version of the spectral gap. This
characterization gives a direct link between cLS and τ2 (answering a question asked by James
Lee, see Remark 1.2) and can be interpreted probabilistically as a hitting-time version of
hypercontractivity (see the discussion following Fact 3.3). We note that recently, Cattiaux
and Guillin [5] established a different connection between hitting times distributions and the
existence of a Log-Sobolev inequality for diffusions.

We present our main results in the continuous-time setup. All of our results can be
extended to the setup of discrete-time chains (see § 2.3). We note that most of our results
can be extended to the general setup of ergodic Markov chains. However, working in such
generality leads to many technical difficulties which we chose to avoid for the sake of clarity
of presentation.

1.1 Characterizations of τ2 and τEnt using hitting times

We now describe the aforementioned characterizations of τ2 and τEnt. More refined versions
will be given later on in Theorems 5.1 and 5.2. Recall that for a Markov chain (Xt)t≥0 with
state space Ω, the hitting-time of a set A ⊂ Ω is TA := inf{t : Xt ∈ A}. We say that A
is connected if Pa[Tb < TAc ] > 0, for all a, b ∈ A. We denote by Conδ the collection of
all connected sets A satisfying π(A) ≤ δ, where throughout, π shall denote the stationary
distribution of the chain. Denote

ρ := max
x∈Ω

ρx and ρEnt := max
x∈Ω

ρEnt,x, where (1.1)

ρx := min{t : Px[TAc > t] ≤ π(A) +
1

2

√
π(A)π(Ac) for all A ∈ Con1/2},

ρEnt,x := min{t : Px[TAc > t] ≤ min

(
CEnt

| log π(A)|
,

99

100

)

, for all A ∈ Con1/2},
(1.2)

for some absolute constant CEnt > 0 to be determined later (in § 4.1 in the discussion
following (4.1)). Note that allowing A above to range over all A ⊂ Ω such that π(A) ≤ 1/2
does not change the values of ρx and ρEnt,x.
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Theorem 1.1. There exist absolute constants C1, C2, C3 such that for every irreducible re-
versible Markov chain on a finite state space

ρ ≤ τ2 ≤ ρ + C1/cLS ≤ C2ρ. (1.3)

ρEnt ≤ τEnt ≤ C3ρEnt. (1.4)

Note that in the definitions of ρ and ρEnt, the smaller A is, the smaller we require the
chance of not escaping it by time ρ or ρEnt, respectively, to be. In other words, the smaller
A is, the higher the “penalty” we assign to the case the chain did not escape from it. As we
explain in § 4.1, the first inequalities in (1.3)-(1.4) are easy and even somewhat “naive”.

1.2 A new extremal characterization of the Log-Sobolev time.

A lot of attention has been focused on inequalities that interpolate between the Log-Sobolev
inequality and the Poincaré (spectral gap) inequality (e.g. [3, 15]). Using similar ideas as
described above we prove a new extremal characterization (up to a constant factor) of the
Log-Sobolev constant (Theorems 1.2), cLS (see (3.11) for a definition). The Log-Sobolev time
is defined as tLS := 1/cLS.

The aforementioned characterization has a relatively simple form which does not involve
any entropy. Instead, it describes the Log-Sobolev constant as a weighted version of the
spectral gap. This characterization provides some insights regarding the hierarchy of the
aforementioned inequalities. Before presenting it, we first need a few definitions.

The time-reversal of P is defined as P ∗(x, y) := π(y)P (y, x)/π(x). This is the dual
operator of P w.r.t. L2(Ω, π). We say that P is reversible if P = P ∗. Denote Q := (P +P ∗)/2.
Note that Q = Q∗. The spectral gap of P , denoted by λ, is defined as the smallest non-zero
eigenvalue of I − Q. The relaxation-time is defined as trel := 1/λ. Let A ( Ω. Let QA

(resp. PA) be the restriction of Q (resp. P ) to A. Note that QA and PA are substochastic.
The spectral gap of PA, denoted by λ(A), is defined as the minimal eigenvalue of I − QA.
Denote trel(A) := 1/λ(A). Denote

κ := 1/α, α := min
A∈Con1/2

α(A), where α(A) := λ(A)/| log π(A)|. (1.5)

As mentioned earlier, α is a weighted version of λ since ([1, Lemma 4.39] and [9, (1.4)])

λ/2 ≤ min
A∈Con1/2

λ(A) ≤ λ, and so trel log 2 ≤ κ. (1.6)

Theorem 1.2. For every irreducible Markov chain on a finite state space

κ ≤ tLS ≤ 2(κ + trel(1 + log 49)) ≤ 2(1 + (1 + log 49)/ log 2)κ < 17κ. (1.7)

Remark 1.1. The inequality κ ≤ tLS is easy. See Lemma 4.2 in [9] for a stronger inequality.
The harder and more interesting direction is tLS ≤ Cκ, which is an improvement over the
well-known inequality tLS ≤ trel

log[1/π∗−1]
1−2π∗

, where π∗ := minx∈Ω π(x) [6, Corollary A.4].
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Remark 1.2. Despite the fact that tLS is a geometric quantity, Logarithmic Sobolev inequal-
ities have a strong analytic flavor and little probabilistic interpretation. For instance, the
proof of the inequality tLS ≤ 2τ2(1/e) [6, Corollary 3.11] (where τ2(ε) is the L2 mixing time
defined in (3.2)) relies on Stein’s interpolation Theorem for a family of analytic operators.
Our analysis yields a probabilistic proof of the fact that tLS ≤ Cτ2 for reversible chains. The
problem of finding such a proof was posed by James Lee at the Simons institute in 2015. In-
deed by Theorem 1.2 and (3.17), tLS/17 ≤ κ ≤ 3ρ ≤ 3τ2. The second inequality is relatively
easy, and is obtained by analyzing hitting times, rather than by analytic tools. As we show
in § 4.1, the inequality ρ ≤ τ2 also has a probabilistic interpretation.

We note that while some effort was made to make most constants explicit in order to
demonstrate that they are not large, we did not attempt to optimize constants. We use the
convention that C,C ′, C1, . . . (resp. c, c′, c1, . . .) denote positive absolute constants which are
sufficiently large (resp. small). Different appearances of the same constant at different places
may refer to different numeric values.

1.3 Organization of this work

In § 2 we present some applications of our main results, two of which concern robustness
of mixing times and one (§ 2.3) concerns a comparison result between the (L2 and rela-
tive entropy) mixing times of the discrete-time averaged chain (defined in § 2.3) and of the
continuous-time chain. In § 3 we provide some background about mixing-times, the spectral
gap and the Log-Sobolev constant and present some auxiliary results about maximal inequal-
ities and hitting times. In § 4.1 we prove the lower bounds on τ2 and τEnt from (1.3) and (1.4)
and in § 4.2 we present a sketch of the proof of the upper bound on τ2 from (1.3). In § 5 we
prove our main results (we prove Theorem 1.2 and also slightly more refined versions of the
upper bounds from (1.3) and (1.4), resp.). The necessary adaptations for the discrete-time
setup are given at § 5.4. In § 6 we prove the two applications from § 2 concerning robustness
of mixing times (Corollary 2.1 and Theorem 2.1). We conclude with some open problems in
§ 7.

2 Applications

2.1 Robustness of τ2 under addition of self-loops of bounded weights.

Corollary 2.1. Let (Xt) be a reversible irreducible continuous-time Markov chain on a finite
state space Ω with generator G. Let (X̃t) be a chain with generator G̃ obtained by multiplying
for all x ∈ Ω the xth row of G by some rx ∈ (1/M,M) (for some M ≥ 1). Then for some
absolute constant C the corresponding L2 and relative-entropy mixing times satisfy

τ̃2/(CM log M) ≤ τ2 ≤ (CM log M)τ̃2. (2.1)

τ̃Ent/(CM log M) ≤ τEnt ≤ (CM log M)τ̃Ent. (2.2)

This corollary, proved in § 6.1, is an analog of [17, Corollary 9.5], which gives the corre-
sponding statement for τ1. While the statement is extremely intuitive, surprisingly, it was
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recently shown that it may fail for simple random walk on an Eulerian digraph [4, Theorem
1.5].

Observe that the generator G of a reversible chain on a finite state space Ω, can be
written as r(P − I), where P is the transition matrix of some nearest neighbor weighted
random walk on a network which may contain some weighted self-loops. The operation of
multiplying the xth row of G by some rx ∈ (1/M,M) for all x ∈ Ω is the same as changing
r above by some constant factor and changing the weights of the self-loops by a constant
factor.

Remark 2.2. Similarly, one can show that under reversibility the L2 mixing time in the
discrete-time lazy setup is robust under changes of the holding probabilities. More precisely,
for every δ ∈ (0, 1/2] if we consider a chain that for all x ∈ Ω, when at state x it stays put
w.p. δ ≤ a(x) ≤ 1 − δ and otherwise moves to state y w.p. P (x, y) (where P is reversible),
then its L2 mixing time can differ from the L2 mixing time of the chain with a(x) = 1/2 for
all x only by a factor of Cδ−1| log δ|.

2.2 Robustness of τ∞ for trees.

Recall that for reversible chains the L2 mixing time, τ2, determines the Lp-mixing time up to
a factor cp for all 1 < p ≤ ∞ (see (3.3)). Denote the Lp mixing time of simple random walk
on a finite connected simple graph G by τp(G). Kozma [12] made the following conjecture:

Conjecture 2.3 ([12]). Let G and H be two finite K-roughly isometric graphs of maximal
degree ≤ d. Then

τ∞(G) ≤ C(K, d)τ∞(H). (2.3)

It is well-known that (2.3) is true if one replaces τ∞ with tLS (e.g. [6, Lemma 3.4]). Ding
and Peres [7] showed that (2.3) is false if one replaces τ∞ with τ1. In part, their analysis
relied on the fact that the total variation mixing time can be related to hitting times, which
may be sensitive to small changes in the geometry. Hence it is natural to expect that a
description of τ∞ in terms of hitting times might shed some light on Conjecture 2.3. Indeed
this was one of the main motivations for this work. In [10] the first author constructed a
counterexample to Conjecture 2.3, where also there the key is sensitivity of hitting times.

Peres and Sousi [17, Theorem 9.1] showed that for weighted nearest neighbor random
walks on trees (see § 6.2 for a definition), τ1 can change only by a constant factor, as a result
of a bounded perturbation of the edge weights. As an application of Theorem 1.1 we extend
their result to the case of τ2.

Theorem 2.1. There exists an absolute constant C such that for every finite tree T = (V,E)
with some edge weights (we)e∈E, the corresponding random walk satisfies that

max(τ1, tLS/4) ≤ τ2 ≤ τ1 + C max(tLS,
√

tLSτ1), (2.4)

Consequently, if (w′
e)e∈E, (we)e∈E are two edge weights such that 1/M ≤ we/w

′
e ≤ M for all

e ∈ E, then there exists a constant CM (depending only on M) such that the corresponding
L∞ mixing times, τ∞ and τ ′

∞, satisfy

τ ′
∞/CM ≤ τ∞ ≤ CMτ ′

∞. (2.5)
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Remark 2.4. Since tLS is robust under a bounded perturbation of the edge weights (e.g. [6,
Lemma 3.3]), indeed (2.5) follows from (2.4) in conjunction with the aforementioned L1

robustness of trees (and the fact that τ2 ≤ τ∞ ≤ 2τ2, see (3.3)).

2.3 Comparison of continuous-time, discrete-time and averaged chains

Let (Xk) be a finite irreducible reversible discrete-time Markov chain with transition matrix
P . Since reversible Markov chains can only have period 2, one may wonder whether it
suffices to average over two consecutive times (i.e. to make a single lazy step) in order to
avoid near-periodicity issues. This motivates considering the following Markov chain. For
any t ≥ 1, denote At := (P t + P t−1)/2. The averaged chain, (Xave

t )∞t=0, with initial
state x, is a Markov chain, whose distribution at time t ≥ 1 is At(x, ∙), where At(x, y) :=
(P t(x, y) + P t−1(x, y))/2. Equivalently, (Xave

t )∞t=1 := (Xt−ξ)
∞
t=1, where ξ is a Bernoulli(1/2)

random variable, independent of (Xt)
∞
t=0.

We may consider the Lp-mixing times of the discrete-time and averaged chains τdiscete
p (∙)

and τ ave
p (∙), resp., defined in an analogous manner as τp(∙), obtained by replacing ht(x, y) =

Ht(x, y)/π(y) with kt(x, y) := P t(x, y)/π(y) and at(x, y) := At(x, y)/π(y), resp. (see § 3.1).
Similarly, we may consider the relative-entropy mixing times of the discrete-time and av-
eraged chains τdiscrete

Ent (∙) and τ ave
Ent(∙), resp.. We define ρdiscete and ρdiscete

Ent in an analogous
manner to ρ and ρEnt, where now the hitting times are defined w.r.t. the discrete-time chain.
Denote the eigenvalues of P by 1 = λ1 > λ2 ≥ ∙ ∙ ∙ ≥ λ|Ω| ≥ −1. Define tabsolute

rel :=
max{| log |λ2||−1, | log |λ|Ω|||−1}. Let β(A) := 1 − λ(A) and

κdiscrete := max
A∈Con1/2

log 1
β(A)

(
1

π(A)

)

≤ κ.

Theorem 2.5. There exist positive absolute constants c, C1, C2, C3 such that for every irre-
ducible reversible Markov chain on a finite state space

ρdiscete ≤ τ ave
2 ≤ ρdiscete + C1κdiscrete ≤ C2ρdiscete. (2.6)

ρdiscete
Ent ≤ τ ave

Ent ≤ C3ρ
discete
Ent . (2.7)

max(ρdiscete, t
absolute
rel log 2) ≤ τdiscete

2 ≤ ρdiscete + C1(κdiscrete + tabsolute
rel ) ≤ C2(ρdiscete + tabsolute

rel ).
(2.8)

max(ρdiscete
Ent , ctabsolute

rel ) ≤ τdiscrete
Ent ≤ C3(ρ

discete
Ent + tabsolute

rel ). (2.9)

Moreover, there exists an absolute constant M ≥ 1/2 such that

τdiscete
2 (M) ≤ ρdiscete + C1κdiscrete. (2.10)

In conjunction with Theorem 1.1 and Lemma 3.9, which asserts that ρdiscete ≤ C̄ρ and
ρdiscete

Ent ≤ C̄ ′ρEnt, we get the following corollary.

Corollary 2.6. There exists an absolute constant C > 0 such that for every irreducible
reversible Markov chain on a finite state space

τ ave
2 ≤ Cτ2 and τ ave

Ent ≤ CτEnt.
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Remark 2.7. To see that the reverse inequalities are false consider simple random walk
(SRW) on the n-clique, for which τ ave

2 ≤ 2 while τ2 = Θ(log n) and τEnt = Θ(log log n).
Indeed, it is possible that ρdiscrete � ρ. Loosely speaking, this type of behavior is possible
when max(|λ|Ω||, |λ2|) � 1 (e.g. for SRW on the n-clique λ2 = λn = − 1

n−1
). More generally,

consider an arbitrary distribution π and the transition matrix Π whose rows are all equal to
π. Then τdiscrete

∞ = 1 while τ∞ ≈ | log(2 minx π(x))|. Note that λi = 1i=1.

Remark 2.8. The fact that under reversibility τ ave
1 ≤ Cτ1 is due to Peres and Sousi [17]. In

fact, in [11] the authors confirmed a conjecture by Aldous and Fill [1, Open Problem 4.17]
by showing that under reversibility, for all t,M ≥ e and x ∈ Ω

‖Ht+M
√

t(x, ∙)−π(∙)‖TV−e−cM2

≤ ‖At(x, ∙)−π(∙)‖TV ≤ ‖Ht−(M log M)
√

t(x, ∙)−π(∙)‖TV+C/M,

where ‖μ − ν‖TV = 1
2
‖μ − ν‖1,π = 1

2

∑
x |μ(x) − ν(x)| and Hs := e−s(I−P ).

The following proposition refines the inequality τ ave
2 ≤ Cτ2. The argument is borrowed

from [6, Corollary 2.2].

Proposition 2.9. For every finite irreducible reversible Markov chain, for every k ≥ 2

∀k′ ≥ 1, ‖Ak+k′(x, ∙)− π(∙)‖2
2,π ≤

(
1

2ek′

)2

(‖Pk−2
x − π‖2

2,π + 1) + (1− λ)2k′+2‖Pk−2
x − π‖2

2,π.

3 Propaedeutics

3.1 Different notions of distance and mixing times and their relations

Generically, we shall denote the state space of a Markov chain (Xt) by Ω and its stationary
distribution by π. We denote such a chain by (Ω, P, π). We say that the chain is finite,
whenever Ω is finite. The continuous-time version of a chain is a continuous-time Markov
chain whose distribution at time t is given by the heat kernel Ht := e−t(I−P ). We denote
ht(x, y) := Ht(x, y)/π(y).

We denote by Pt
x (resp. Px) the distribution of Xt (resp. (Xt)t≥0), given that the initial

state is x. The Lp norm of a function f ∈ RΩ is ‖f‖p := (Eπ[|f |p])1/p for 1 ≤ p < ∞ (where
Eπ[h] :=

∑
x π(x)h(x)) and ‖f‖∞ := maxx |f(x)|. The Lp norm of a signed measure σ is

‖σ‖p,π := ‖σ/π‖p, where (σ/π)(x) = σ(x)/π(x).

We denote the worst case Lp distance at time t by dp(t) := maxx dp,x(t), where dp,x(t) :=
‖Pt

x − π‖p,π. Under reversibility for all x ∈ Ω and t ≥ 0 (e.g. (2.2) in [9])

d2
2,x(t) = h2t(x, x) − 1, d∞(t) = max

y
ht(y, y) − 1. (3.1)

The ε-Lp-mixing-time of the chain (resp. for a fixed starting state x) is defined as

τp(ε) := max
x

τp,x(ε), where τp,x(ε) := min{t : dp,x(t) ≤ ε}. (3.2)
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When ε = 1/2 we omit it from the above notation. Let mp := 1 + d(2 − p)/(2(p − 1))e. It
follows from (3.1), Jensen’s inequality and the Reisz-Thorin interpolation Theorem that for
reversible chains, the Lp mixing times can be compared as follows (e.g. [18, Lemma 2.4.6]):

τ2(a) ≤τp(a) ≤ 2τ2(
√

a) = τ∞(a) for all p ∈ (2,∞] and a > 0,

1

mp

τ2(a
mp) ≤ τp(a) ≤ τ2(a) for all p ∈ (1, 2) and a > 0,

(3.3)

Hence for all 1 < p ≤ ∞ the Lp convergence profile is determined by that of L2.

The relative entropy of a distribution μ w.r.t. π is defined as

D(μ||π) :=
∑

x

μ(x) log(μ(x)/π(x)) = Entπ(μ/π), where for f ∈ RΩ
+ (3.4)

Entπ(f) := Eπ[f log f ] − Eπ[f ] logEπ[f ] = Eπ[f log(f/Eπ[f ])].

The mixing time in relative entropy is defined as

τEnt,x := inf{t : D(Pt
x||π) ≤ 1/2} and τEnt = max

x
τEnt,x. (3.5)

The relative entropy distance can be compared with the L1 and L2 distances as follows: [14,
p. 110-112]

2D(μ||π) ≥ ‖μ − π‖2
1,π + (M−1‖μ − π‖1,π)M for some constant M ≥ 3, (3.6)

and ([8, Theorem 5])
D(μ||π) ≤ log(1 + ‖μ − π‖2

2,π). (3.7)

3.2 Background on the spectral-gap and the Log-Sobolev constant

The following fact (often referred to as the Poincaré inequality) is standard. It can be proved
by elementary linear-algebra using the spectral decomposition (e.g. [1, Lemma 3.26]).

Fact 3.1. Let (Ω, P, π) be a finite irreducible Markov chain. Let x ∈ Ω and s, t ≥ 0. Then

‖Pt+s
x − π‖2,π ≤ e−s/trel‖Pt

x − π‖2,π. (3.8)

In particular, for all x ∈ Ω and M ≥ 1,

τ2,x ≤ τ2,x(M/2) + trel log M.

The relaxation-time provides a lower bound on L1 mixing time as follows. Let β 6= 1 be
an eigenvalue of P . Then under reversibility ([13, Theorem 12.4 and Lemma 20.11])

‖P k(x, ∙) − π(∙)‖1,π ≥ |β|k and ‖Pt
x − π‖1,π ≥ e−(1−β)t.

Consequently, under reversibility, for all δ ∈ (0, 1] we have that

τdiscrete
1 (δ) ≥ tabsolute

rel log(1/δ) and τ1(δ) ≥ trel log(1/δ). (3.9)
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It follows from (3.6) that there exists some absolute constant c > 0 such that

τdiscrete
Ent ≥ ctabsolute

rel . (3.10)

With the convention 0 log 0 = 0, for all non-zero f, g ∈ RΩ
+ we define 〈f, g〉π := Eπ[fg],

E(f, g) := 〈(I − Q)f, g〉π and E(f) := E(f, f). The Log-Sobolev constant of the chain is

cLS := inf{E(f)/Entπ(f 2) : f is non-constant}. (3.11)

Recall that tLS := 1/cLS. It is always the case that tLS ≥ 2trel (e.g. [6, Lemma 3.1]).

There are numerous works aiming towards general geometric upper bounds on τ∞. Among
the most advanced techniques are the spectral profile [9] and Logarithmic Sobolev inequalities
(see [6] for a survey on the topic). Let π∗ := minx∈Ω π(x). It is classical (e.g. [6, Corollary
3.11]) that for reversible chains

tLS/2 ≤ τ2(1/e) ≤ tLS(1 +
1

4
log log(1/π∗)). (3.12)

There are examples demonstrating that each of these bounds can be attained up to a constant
factor.

Let 1 ≤ p1, p2 ≤ ∞. The p1 → p2 norms of a linear operator A are given by

‖A‖p1→p2 := max{‖Af‖p2 : ‖f‖p1 = 1}.

If ‖A‖p1→p2 ≤ 1 for some 1 ≤ p1 < p2 ≤ ∞ we say that A is a hypercontraction. For all
p1, p2, ‖Ht‖p1→p2 is non-increasing in t. It is a classic result (e.g. [6, Theorem 3.5] and [1,
Theorem 8.24]) that the Log-Sobolev time can be characterized in terms of hypercontrativity.

Fact 3.2. Let (Ω, P, π) be a finite reversible chain. Let sq := inf{t : ‖Ht‖2→q ≤ 1}. Then
tLS = 4 supq:2<q<∞ sq/ log(q − 1).

The following result ([6, Theorem 3.10]) will allow us to bound tLS from above.

Fact 3.3. Let (Ω, P, π) be a finite reversible chain. Fix 2 < q < ∞. Assume that rq and Mq

satisfy that ‖Hrq‖2→q ≤ Mq. Then

tLS ≤
2q

q − 2
rq + 2trel(1 +

q

q − 2
log Mq). (3.13)

Fix some 0 < ε < 1/2 and A ∈ Con2−1/ε . Assume that Pπ[TAc > t] ≥ 2π(A)1+ε. Let πA

denote π conditioned on A (i.e. πA(a) = π(a)1a∈A

π(A)
). Then PπA

[TAc > t] ≥ 2π(A)ε and so

B = {a ∈ A : Pa[TAc > t] ≥ π(A)ε}

satisfies πA(B) ≥ π(A)ε (i.e. π(B) ≥ π(A)1+ε). Consequently, for q > 2(1+ε)
1−2ε

‖Ht1A‖q ≥ [
∑

b∈B

π(b)Ht(b, A)q]1/q ≥ π(B)1/qπ(A)ε ≥ π(A)ε+(1+ε)/q >
√

π(A) = ‖1A‖2.

Thus a natural hitting time version of hypercontractivity is

tht := min{t : Pπ[TAc > t] ≤ π(A)5/4 for all A ∈ Con1/2}.
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Question. Is there an absolute constant C such that for every finite irreducible reversible
Markov chain tht/C ≤ tLS ≤ Ctht.

Trivially, tht = min{t : PπA
[TAc > t] ≤ π(A)1/4 for all A ∈ Con1/2}. Note that if we

replace πA by the quasi-stationary distribution of A, denoted by μA, then by (3.16) we
get precisely κ/4. This explains why also κ can be interpreted as a hitting time version
of hypercontractivity. We note that the above question resembles Open problem 4.38 in
[1], which asks whether for reversible chains trel ≤ C maxA∈Con1/2

EπA
[TAc ], where indeed [1,

Lemma 4.39] trel ≤ maxA∈Con1/2
EμA

[TAc ] (the formulation in [1] is slightly different, but it is
equivalent to our formulation).

3.3 Starr maximal inequality and a useful lemma

In this section we prove a maximal inequality which shall be central in what comes. Denote
St := e−(I−Q)t =

∑∞
k=0

e−ttk

k!
Qt. When considering Q instead of P we write Pt

x, Px and Yt

instead of Pt
x, Px and Xt, respectively.

Theorem 3.4 (Starr’s Maximal inequality [19]). Let (Ω, P, π) be an irreducible Markov
chain. Let f ∈ RΩ. Its corresponding maximal function f ∗ ∈ RΩ is defined as

f ∗(x) := sup
0≤t<∞

|St(f)(x)| = sup
0≤t<∞

|Ex[f(Yt)]|.

Then for every 1 < p < ∞

‖f ∗‖p ≤ p∗‖f‖p, where p∗ := p/(p − 1) is the conjugate exponent of p. (3.14)

Moreover, under reversibility, for f∗,even(x) := supk∈Z+
|P 2kf(x)| we have that (3.14) holds

also with f∗,even in the role of f ∗ and hence f∗(x) := supk∈Z+
|P kf(x)| satisfies for 1 < p < ∞

‖f∗‖
p
p ≤ ‖f∗,even‖

p
p + ‖(Pf)∗,even‖

p
p ≤ (p∗)p(‖f‖p

p + ‖Pf‖p
p) ≤ 2(p∗)p‖f‖p

p. (3.15)

The following Lemma is essentially due to Norris, Peres and Zhai [16].

Lemma 3.5. Let (Ω, P, π) be a finite irreducible Markov chain. Let fA(x) := 1x∈A/π(A).

∀A ⊂ Ω, max(
1

2
‖(fA)∗‖1, ‖f

∗
A‖1) ≤ e max(1, | log π(A)|).

Proof. We first show that ‖f ∗
A‖1 ≤ e max(1, | log π(A)|). By (3.14) for all 1 < p < ∞

‖f ∗
A‖1 ≤ ‖f ∗

A‖p ≤ p∗‖fA‖p = p∗[π(A)]−1/p∗

Taking p∗ := max(1 + ε, | log π(A)|) and sending ε to 0 (noting that the r.h.s. is continuous
w.r.t. p∗) concludes the proof. The same calculation shows that (last inequality)

‖(fA)∗‖1 ≤ ‖(fA)∗,even‖1 + ‖(PfA)∗,even‖1 ≤ 2‖(fA)∗,even‖1 ≤ 2e max(1, | log π(A)|).

We note that by [19, Theorem 2] (1−e−1)‖f ∗
A‖1−1 ≤ ‖fA log[max(1, |fA|)]‖1 = | log π(A)|.
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3.4 Bounding escape probabilities using κ

Recall that PA and QA are the restriction to A of P and Q, resp.. Denote

HA
t (x, y) := e−t(I−PA)(x, y) = Px(Xt = y, TAc > t) and similarly SA

t := e−t(I−QA).

Recall that λ(A) is the smallest eigenvalue of I−QA. By the Perron-Frobenius Theorem there
exists a distribution μA on A, known as the quasi-stationary distribution of A, satisfying
that the escape time from A w.r.t. Q, starting from μA, has an Exponential (resp. Geometric
in discrete-time) distribution with mean trel(A) = 1/λ(A). Equivalently, for all t ≥ 0

μAQA = (1 − λ(A))μA and μASA
t = e−λ(A)tμA.

Throughout we use μA to denote the quasi-stationary distribution of A. Recall that we
denote π conditioned on A by πA.

Using the spectral decomposition of QA (e.g. [2, Lemma 3.8] or [1, (3.87)]) it follows that

∀A ( Ω, s ≥ 0, PπA
[TAc > s] ≤ PμA

[TAc > s] = μASA
t 1A = e−λ(A)sμA(A) = e−λ(A)s.

∀A ( Ω, k ≥ 0, πAQk
A1A ≤ μAQk

A1A = (1 − λ(A))kμA(A) = (1 − λ(A))k.

(3.16)

Proposition 3.6. For reversible chains

κ ≤ 3ρ and κdiscrete ≤ 3ρdiscrete. (3.17)

Proof: We first show that κ ≤ 3ρ. Let A ∈ Con1/2 be such that κ = trel(A)| log π(A)|.
By (3.16) PμA

[TAc > κ/3] = π(A)1/3. Since a1/3 > a + 1
2

√
a(1 − a), for all 0 ≤ a ≤ 1/2, we

have that

max
x∈A

Px[TAc > κ/3] ≥ PμA
[TAc > κ/3] = π(A)1/3 > π(A) +

1

2

√
π(A)π(Ac).

We now show that κdiscrete ≤ 3ρdiscrete. Let B ∈ Con1/2 be such that κdiscrete = | log 1
1−λ(A)

π(B)|.

Denote the hitting time of Bc w.r.t. the discrete time chain as T discrete
Bc . By (3.16)

max
x∈B

Px[T
discrete
Bc > κdiscrete/3] ≥ μBP

κdiscrete/3
B 1B = π(B)1/3 > π(B) +

1

2

√
π(B)π(Bc).

Definition 3.7. ρ̄ := maxx ρ̄x and ρ̄Ent := maxx ρEnt,x, where

ρ̄x := min{t : Px[TAc > t] ≤ π(A)3 for all A ∈ Con1/2}.

ρ̄Ent,x := min{t : Px[TAc > t] ≤
1

16e2[log(e3/2/π(A))]3
for all A ∈ Con1/2}.

(3.18)

Note that by the Markov property, maxx Px[TAc > mt] ≤ (maxy Py[TAc > t])m and so

ρ ≤ ρ̄ ≤ 9ρ and c′ρEnt ≤ ρ̄Ent ≤ C ′ρEnt, (3.19)

for some absolute constants c′, C ′ > 0 (for ρ̄ ≤ 9ρ, use the inequality a1/3 ≥ a+ 1
2

√
a(1 − a),

valid for all 0 ≤ a ≤ 1/2). The following proposition refines the inequality ρ̄ ≤ 9ρ.
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Proposition 3.8. For every reversible chain,

∀x ∈ Ω, ρ̄x ≤ ρx + s, where s := 8κ + 2trel log 8. (3.20)

Proof: Let x ∈ Ω and A ∈ Con1/2. By (1.6) 2trel ≥ maxB∈Con1/2
trel(B) and so by (3.16)

PπA
[TAc > s] ≤ e−λ(A)[trel(A)(8| log π(A)|+log 8)] = π(A)8/8.

Thus the set
B = B(A) := {y : Py[TAc > s] > π(A)3/2}

satisfies
π(B)/π(A) = πA(B) < PπA

[TAc > s]/(π(A)3/2) ≤ π(A)5/4,

and so by the definition of ρx, Px[TBc > ρx] ≤ π(B) + 1
2

√
π(B)π(Bc) ≤

√
π(B) ≤ 1

2
π(A)3

(where we used π(B) < 2−8). Finally, by the definition of B and the Markov property

Px[TAc > ρx + s] ≤ Px[TBc > ρx] + max
b/∈B

Pb[TAc > s] ≤
1

2
π(A)3 +

1

2
π(A)3 = π(A)3.

Lemma 3.9. For every finite irreducible Markov chain we have that

ρdiscete ≤ Cρ,

ρdiscete
Ent ≤ C ′ρEnt.

Proof: Let A ∈ Con1/2 and x ∈ Ω. To avoid ambiguity we denote the distributions of
the discrete and the continuous-time chains started at x by Px and Hx, resp.. Since for all
M ∈ N we have that Hx[TA > Mt] ≤ (maxy Hy[TA > t])M it suffices to show that for all
t ∈ N we have that Px[TA > 4t] ≤ 4Hx[TA > t]. Indeed, if Nt ∼ Pois(t) then

Hx[TA > t] =
∑

k

P[Nt = k]Px[TA > k] ≥ P[Nt ≤ 4t]Px[TA > 4t] ≥
1

4
Px[TA > 4t].

3.5 Related work

Let
hit(ε) := max

x
hitx(ε), hitx(ε) := min{t : Px[TA > t] ≤ ε, ∀A ∈ Con1/2}.

Let tmix(ε) := τ1(2ε) be the total-variation ε-mixing-time. In [2] it was shown that for finite
irreducible reversible chains, for all ε ∈ (0, 1), δ ∈ (0, 1

2
min(ε, 1 − ε)) we have that

hit(ε + δ) − 4trel| log δ| ≤ tmix(ε) ≤ hit(ε − δ) + 4trel| log δ|, (3.21)

Generally, trel| log(2ε)| ≤ tmix(ε) for all 0 < ε ≤ 1/2, however often trel � τ1. In particular,
this is the case for a sequence of reversible chains which exhibits cutoff (i.e. abrupt conver-
gence) in total variation ([13, Lemma 18.4]). In [2, Theorem 3] (3.21) is exploited in order
to obtain a characterization of the cutoff phenomenon for reversible Markov chains, in terms
of concentration of hitting times of “worst” (in some sense) sets.

The main tool in the proof of (3.21) is Starr’s Lp maximal inequality (Theorem 3.4). In
other words, an Lp maximal inequality is used to characterize convergence in L1. A look
into the proof of (3.21) reveals that it does not require the full strength of Starr’s inequality.
It is thus natural to try applying Starr’s Lp maximal inequality to study stronger notions of
convergence. Indeed Theorem 1.1 can be seen as the p > 1 counterpart of (3.21). Also in
our analysis the main tool is Starr’s inequality.
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4 An overview of our approach

4.1 Lower bounding mixing times using hitting times

We start with an illustrating example: if Px[TAc > t] > 3π(A)/2 for some set A, then

[Ht(x,A) − π(A)]/π(A) ≥ [Px[TAc > t] − π(A)]/π(A) > 1/2.

Denote π conditioned on A by πA(a) := 1a∈Aπ(a)/π(A). Finally, note that

d∞,x(t) ≥ max
a∈A

ht(x, a) − 1 ≥
∑

πA(a)(ht(x, a) − 1) = [Ht(x,A) − π(A)]/π(A) > 1/2.

Hence τ∞,x ≥ min{t : Px[TAc > t] ≤ 3π(A)/2, for all A}.

This generalizes as follows. Let P(Ω) be the collection of all distributions on Ω. Let
A ( Ω, x ∈ Ω, t > 0 and δ ∈ (0, 1). Let

PA,δ := {μ ∈ P(Ω) : μ(A) ≥ π(A) + δπ(Ac)}.

Clearly, if Px[TAc > t] ≥ π(A) + δπ(Ac), then Pt
x ∈ PA,δ. Note that

νA,δ := δπA + (1 − δ)π ∈ PA,δ.

Moreover, min{δ′ : νA,δ′ ∈ PA,δ} = δ. It is thus intuitive that for a convex distance function
between distributions, νA,δ is the closest distribution to π in PA,δ.

Proposition 4.1. Let (Ω, P, π) be some finite irreducible Markov chain. Let A ( Ω. Denote
νA,δ := δπA + (1 − δ)π. Then for all δ ∈ (0, 1),

min
μ∈PA,δ

‖μ − π‖2,π = ‖νA,δ − π‖2,π = δ
√

π(Ac)/π(A).

min
μ∈PA,δ

D(μ‖π) = D(νA,δ‖π) = u(π(A), δ),
(4.1)

where u(x, y) := [y + x(1 − y)] log(1 + y(1−x)
x

) + (1 − y)(1 − x) log(1 − y).

Proof. The first equality in both lines can be verified using Lagrange multipliers. The second
equality in both lines is straightforward.

Proposition 4.1 motivates the definitions in (1.2). We argue that (4.1), implies the first
inequalities in both (1.3)-(1.4) by making suitable substitutes for δ in (4.1). For (1.3) sub-

stitute δ = 1
2

√
π(A)
π(Ac)

in the first line of (4.1). For every x ∈ Ω and t < ρx there is some

A ∈ Con1/2 such that

Px[TAc > t] > π(A) +
1

2

√
π(A)π(Ac) = π(A) + δπ(Ac),

where the equality follows by our choice of δ. As mentioned above, this implies that
Pt

x ∈ PA,δ′ for some δ′ > δ and so by (4.1) and the choice of δ, we have that ‖Pt
x −

π‖2,π > 1/2. For (1.4), it is not hard to verify that for some C ′, CEnt > 0, we have that

u(x, min( C′

| log x| ,
99
100

−x)

1−x
) ≥ 1/2 and x + C′

| log x|(1 − x) ≤ CEnt

| log x| for all x ∈ (0, 1/2]. Substituting

δ = min( C′

| log x| ,
99
100

−x)

1−x
) in the second line of (4.1) implies the first inequality of (1.4) in a

similar manner to the above derivation of the first inequality of (1.3).

13



4.2 Upper bounding mixing times using hitting times

We now explain the idea behind the proof of the upper bound on τ2 from (1.3). Let x ∈ Ω.
Denote t := ρx + 8κ + 6trel log 2. By Theorem 1.2 it suffices to bound d2,x(t).

Step 1: Show that (Proposition 3.8)

∀B ∈ Con1/2, Px[TBc > t] ≤ π(B)3.

Step 2: Show that (Lemma 5.1) for As := {y : ht(x, y) ≥ (s + 1)}

∀M ≥ 1 ‖Pt
x − π‖2

2,π ≤ M2 +

∫ ∞

M

2sπ(As)ds.

=⇒ By Poincaré ineq. (3.1) it suffices that sπ(As) ≤ 2s−3/2 for s ≥ M (for some M).

Step 3: For Bs = {y : supk Hk(y, As) > s
2
π(As)} by step 1 and the Markov property,

sπ(As) ≤ Ht(x,As) = Px[TBc
s

> t,Xt ∈ As] + Px[TBc
s
≤ t,Xt ∈ As]

≤ Px[TBc
s

> t] + sup
y/∈Bs,k≥0

Hk(y, As) ≤ π(Bs)
3 +

s

2
π(As).

(4.2)

Step 4: If π(Bs) ≤ s−1/2, then we are done. Unfortunately, we do not know how to prove this
estimate. Hence we have to define the set Bs in a slightly different manner: Bs := {y :
supk Hk(y, As) > e

√
s| log π(As)|π(As)}. By Lemma 3.5 indeed π(Bs) ≤ s−1/2. Since

e
√

s| log π(As)|π(As) ≤ sπ(As)/2, unless π(As) ≤ Ce−
√

s, repeating the reasoning in
(4.2) with the new choice of Bs concludes the proof.

The proof of Theorem 1.2 is similar. The general scheme is as follows. Define a relevant
family of sets As. Define Bs to be of the following form {y : sup |gs(y)| > as} with appropriate
choices of gs and as ∈ R+ so that the desired inequality we wish to establish for As holds
with some room to spare given that TBc

s
≤ t (for an appropriate choice of t). Finally, control

the error term P[TBc
s

> t] (using the choice of t) by controlling π(Bs) using an appropriate
maximal inequality.

5 Proofs of the main results

5.1 An upper bound on τ2

In this section we prove the following theorem, which refines (1.3) from Theorem 1.1.

Theorem 5.1. For every finite irreducible reversible Markov chain (Ω, P, π) we have that

∀x, ρx ≤ τ2,x ≤ ρ̄x + 5trel ≤ ρx + 8κ + (5 + 6 log 2)trel. (5.1)

The same holds when x is omitted from all of the terms above. Consequently,

ρ ≤ τ2 ≤ (9 + 15/ log 2)ρ. (5.2)
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Lemma 5.1. Let Ax,t(s) := {y : ht(x, y) ≥ s + 1}. For every finite irreducible reversible
chain, for all x ∈ Ω and ` ≥ 1

∀t ≥ 0, ‖Pt
x − π‖2

2,π ≤ `2 +

∫ ∞

`

2sπ(Ax,t(s))ds.

Proof: Fix some x ∈ Ω, t ≥ 0 and ` ≥ 1. Let f(y) := |ht(x, y) − 1|. Then ‖Pt
x − π‖2

2,π =
‖f‖2

2 = Eπ[f 2]. Note that for all s > 1, {f ≥ s} = Ax,t(s). Observe that

Eπ[f 21f>`] =

∫ ∞

0

2sπ({f1f>` > s})ds ≤ π(f > `)`2 +

∫ ∞

`

2sπ(Ax,t(s))ds.

Finally, since f 2 ≤ f 21f>` + 1f≤``
2, we get that

Eπ[f 2] ≤ π(f ≤ `)`2 + Eπ[f 21f>`] ≤ `2 +

∫ ∞

`

2sπ(Ax,t(s))ds.

Proof of Theorem 5.1: We first note that (5.2) follows from (5.1) in conjunction with
(3.17) and (1.6). We now prove (5.1). Let x ∈ Ω. The inequality ρx ≤ τ2,x follows from (4.1)
and the discussion following it. Set t := ρ̄x. As above, denote As := {y : ht(x, y) ≥ s + 1}.
By the Poincaré inequality (Fact 3.1) and Lemma 5.1 it suffices to show that

∫ ∞

e4

2sπ(As)ds ≤ e7 ≤ e10/4 − e8.

Let gs(y) := supk Hk(y, As)/π(As). By Lemma 3.5 ‖gs‖1 ≤ e| log π(As)|. Let

Bs := {y : gs(y) > 2e−1
√

s + 1| log π(As)|} = {y : sup
k

Hk(y, As) ≥ 2e−1
√

s + 1π(As)| log π(As)|}.

Let s ≥ e4. By Markov inequality π(Bs) ≤ e2/(2
√

s + 1) ≤ 1
2

and so by the definition of ρ̄x

Px[TBc
s

> t,Xt ∈ As] ≤ Px[TBc
s

> t] ≤
e6

8(s + 1)3/2
.

Also, by the definition of Bs we clearly have that

Px[TBc
s
≤ t,Xt ∈ As] ≤ sup

b/∈Bs,k≥0

Hk(b, As) ≤ 2e−1
√

s + 1π(As)| log π(As)|.

Since by the definition of As (first inequality)

(s + 1)π(As) ≤ Ht(x,As) = Px[TBc
s

> t,Xt ∈ As] + Px[TBc
s
≤ t,Xt ∈ As],

we get that if Px[TBc
s

> t,Xt ∈ As] ≤ Px[TBc
s
≤ t,Xt ∈ As], then

(s + 1)π(As) ≤ 4e−1
√

s + 1π(As)| log π(As)|,

which simplifies as follows
2sπ(As) ≤ 2se−e

√
s+1/4.
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while if Px[TBc
s

> t,Xt ∈ As] > Px[TBc
s
≤ t,Xt ∈ As], then we have that

2sπ(As) < 4Px[TBc
s

> t,Xt ∈ As] ≤
e6

2(s + 1)3/2
.

Let f(s) = 15(s + 1)3/2e−e
√

s+1/4. Then f(e4) < e6 and for s ≥ e4 we have that d
ds

(−f(s)) ≥
(15e

8
− 45

2e2 )(s + 1)e−e
√

s+1/4 ≥ 2se−e
√

s+1/4. Hence indeed

∫ ∞

e4

2sπ(As)ds ≤
∫ ∞

e4

max(2se−
√

s+1/(2e),
e6

2(s + 1)3/2
)ds ≤ f(e4) +

e6

(e4 + 1)
1
2

≤ e7.

5.2 A hitting times characterization of mixing in relative entropy

Recall the definitions of ρEnt, ρ̄Ent, ρEnt,x and ρ̄Ent,x from (1.1) and (3.18). Recall that by
(3.19), cρEnt ≤ ρ̄Ent ≤ CρEnt. The following theorem refines (1.4) from Theorem 1.1.

Theorem 5.2. Let (Ω, P, π) be a finite irreducible reversible Markov chain. Then

∀x, ρx,Ent ≤ τEnt,x ≤ ρ̄x,Ent + 14trel. (5.3)

The same holds when x is omitted from all of the terms above. Consequently

ρEnt ≤ τEnt ≤ C1ρEnt. (5.4)

Proof of Theorem 5.2: Let x ∈ Ω. The inequality ρx,Ent ≤ τEnt,x follows from (4.1) and
the discussion following (4.1). The inequality τEnt ≤ C1ρEnt follows from (5.3) and (3.19), in
conjunction with the fact that (under reversibility) ctrel ≤ ρEnt for some absolute constant
c > 0 (c.f. [2, (3.19)] for the fact that there exist some A ∈ Con1/2 and a ∈ A so that
Pa[TAc > εtrel] ≥ e−ε ≥ 1 − ε, for all ε ≥ 0). We now prove that τEnt,x ≤ ρ̄x,Ent + 14trel.
Denote r := ρ̄x,Ent, r′ := 14trel. Let

D := {y : hr(x, y) > e10}.

Denote δ := Hr(x,D) − e10π(D),

μ(y) := δ−11y∈D[Hr(x, y) − e10π(y)],

ν(y) := (1 − δ)−1[1y/∈DHr(x, y) + 1y∈De10π(y)].

Denote μ` := μH` and ν` := νH`. Then Pr+r′

x = δμr′ + (1− δ)νr′ and so by convexity (which
holds for D(∙‖π) by Jensen’s inequality applied to each y separately) and (3.7)

D(Pr+r′

x ||π) ≤ δD(μr′ ||π)+(1−δ)D(νr′ ||π) ≤ δD(μr′ ||π)+(1−δ) log(1+‖νr′−π‖2
2,π). (5.5)

By (3.8)
‖νr′ − π‖2,π ≤ ‖ν − π‖2,πe−14 ≤ ‖ν − π‖∞,πe−14 ≤ (1 − δ)−1e−4.

Using
√

1 + a ≤ 1 +
√

a and log(1 + a) ≤ a we get that

(1 − δ) log(1 + ‖νr′ − π‖2
2,π) ≤ 2(1 − δ) log (1 + ‖νr′ − π‖2,π) ≤ 2e−4.

16



By (5.5) to conclude the proof it is left to show that δD(μr′ ||π) ≤ 1/2 − 2e−4. Denote

ay := 1y∈D[Hr(x, y) − e10π(y)], g(y) = ay/π(y).

δD(μ||π) =
∑

ay log(g(y)/δ) = δ| log δ| + Eπ[g log g].

Since δ| log δ| ≤ 1/e, for all δ ∈ [0, 1], in order to show that δD(μr′ ||π) ≤ 1/2 − 2e−4

it suffices to show that Eπ[g log g] ≤ 1/10 < 1/2 − 1/e − 2e−4. (5.6)

Similarly to the proof of Theorem 5.1, let

As = {y : g(y) ≥ s} and Bs := {y : sup
`

H`(y, As) >
√

s + e10π(As)| log π(As)|}.

Then

Eπ[g log g] ≤
∫ ∞

0

π({y : g(y) log g(y) > s})ds =

∫ ∞

1

(1 + log s)π(As)ds. (5.7)

Note that (e10 + s)π(y) ≤ Hr(x, y) for every y ∈ As. Hence as in the proof of Theorem 5.1

(e10 + s)π(As) ≤ Hr(x,As) ≤ Px[TBc
s

> r] + Ex[Xr ∈ As | TBc
s
≤ r]. (5.8)

By the definition of Bs and the Markov property,

Ex[Xr ∈ As | TBc
s
≤ r] ≤ sup

y/∈Bs,`≥0

H`(y, As) ≤
√

s + e10π(As)| log π(As)|. (5.9)

By Lemma 3.5 π(Bs) ≤ e/
√

s + e10 ≤ 1/2 and hence by the definition of r,

Px[TBc
s

> r] ≤
1

16e2(1
2
(log(s + e10) + 1))3

=
1

2e2(1 + log(s + e10))3
.

As in the proof of Theorem 5.1, it follows that for all s ≥ 1, (s+e10)π(As) ≤ 2
2e2(1+log(s+e10))3

,

as otherwise by (5.8) (s + e10)π(As) < 2Ex[Xr ∈ As | TBc
s
≤ r], which by (5.9) implies that

π(As) ≤ exp(−
1

2

√
s + e10) ≤ exp(−

√
s/8 −

√
e10/8) < e−50−

√
s/8 <

(s + e10)−1

e2(1 + log(s + e10))3
,

a contradiction. Thus for all s ≥ 1,

(1 + log s)π(As) ≤
1

e2(s + e10)(1 + log(s + e10))2
,

which yields that
∫∞

1
(1 + log s)π(As)ds ≤

∫∞
1+e10

e−2ds
s(1+log s)2

= e−2

1+log(1+e10)
< e−2/11. This

concludes the proof using (5.6) and (5.7).
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5.3 Proof of Theorem 1.2

Proof of Theorem 1.2: As mentioned in the introduction, it is known that κ ≤ tLS. Denote
r := 1

2
κ. Note that P and Q = (P + P ∗)/2 have the same trel and tLS. Thus we may work

with St = e−t(I−Q) instead of Ht. By (3.13) it suffices to show that ‖Sr‖2→4 ≤ 7. Fix some
f ∈ RΩ such that ‖f‖2 = 1. Our goal is to show that ‖Srf‖4 ≤ 7. By considering |f | instead
of f we may assume that f ≥ 0. Let

As := {x : Srf(x) ≥ s}.

Then ‖Srf‖4
4 =

∫∞
0

4s3π(As)ds ≤ 64 +
∫∞

6
4s3π(As)ds. Hence to conclude the proof

it suffices to show that

∫ ∞

6

4s3π(As)ds ≤ 256 ≤ 74 − 64. (5.10)

Recall that Stf(x) = Ex[f(Yt)] and that for all A ⊂ Ω, SA
t f(a) = Ea[f(Yt)1TAc>t]. Let

Bs := {x : sup
t

Stf(x) > s/2} = {f ∗ > s/2}, where f ∗(x) = sup
t

Stf(x)

Ds := {x ∈ Bs : Ex[f(Yr)1TBc
s
>r] ≥ s/2}, Fs := {x ∈ Bs : Ex[f

2(Yr)1TBc
s
>r] ≥ s2/4}.

By the Markov property (first inclusion), As ⊂ Ds ⊂ Fs (the second inclusion follows by the
Cauchy-Schwarz inequality). Thus π(As) ≤ π(Fs). Hence, by (5.10) in order to conclude the
proof it suffices to show that

∫∞
6

4s3π(Fs)ds ≤ 256. By Starr’s maximal inequality (3.14)
we know that

∫∞
0

16sπ(Bs)ds = 64‖f ∗‖2
2 ≤ 256‖f‖2

2 = 256. Thus in order to show that∫∞
6

4s3π(Fs)ds ≤ 256, and conclude the proof, it suffices to show that for all s ≥ 6 we have
that π(Fs) ≤ 4s−2π(Bs).

Fix some s ≥ 6. Note that since ‖f ∗‖2
2 ≤ 4, by Markov inequality we have that π(Bs) ≤

16/s2 < 1/2. Using the spectral decomposition of the restriction of f to Bs (c.f. [2, Lemma
3.8]) and the choice of r

EπBs
[f 2(Yr)1TBc

s
>r] ≤ EπBs

[f 2(Y0)]e
−2λ(Bs)r ≤ (‖f‖2

2/π(Bs))e
−2λ(Bs)r = (1/π(Bs))×π(Bs) = 1.

Thus by the def. of Fs,
1
4
s2πBs(Fs) ≤

∑
y∈Fs

πBs(y)Ey[f
2(Yr)1TBc

s
>r] ≤ EπBs

[f 2(Yr)1TBc
s
>r] ≤ 1

and so indeed π(Fs) ≤ 4s−2π(Bs).

5.4 The necessary adaptations in the proofs of the results concerning the discrete-
time and averaged chains

The proofs of the lower bounds ρdiscete ≤ min(τ2, τ
ave
2 ) and ρdiscete

Ent ≤ min(τEnt, τ
ave
Ent) in The-

orem 2.5 are identical to those from Theorem 1.1 (namely, these are “naive” bounds that
can be proven using the same argument as in § 4.1). The inequalities tabsolute

rel log 2 ≤ τdiscete
2

and ctabsolute
rel ≤ τdiscrete

Ent from (2.8) and (2.9) follow from (3.9)-(3.10), resp.. The proofs of the
upper bounds require the following minor adaptations:

(i) In the definition of the sets As (both in the proof of the L2 case and of the relative-
entropy case) one needs to replace ht(x, y) with kt(x, y) = P t(x, y)/π(y).
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(ii) In the applications of Starr’s inequality one has to work with the discrete-time version,
and thus pick up a multiplicative factor of 2 (which is a non-issue). Namely, when
applying Lemma 3.5 one has to use the estimate ‖(fA)∗‖1 ≤ 2e max(1, | log π(A)|),
instead of ‖f ∗

A‖1 ≤ e max(1, | log π(A)|).

(iii) One has to replace the Poincaré inequality with the discrete and averaged analogs, to
be described shortly (Lemma 5.2).

For the sake of completeness we prove (2.10) in full details, leaving (2.7) and (2.9) as exercises.
We first note that the inequalities

τ ave
2 ≤ ρdiscete + C1/αdiscrete and τdiscete

2 ≤ ρdiscete + C1(1/αdiscrete + tabsolute
rel )

are simple consequences of (2.10). Indeed, this follows from the following extension of the
Poincaré inequality.

Lemma 5.2. Assuming reversibility, for all μ ∈ P(Ω), M ≥ 1 and k ∈ Z+ we have

‖μP k −π‖2,π ≤ ‖μ−π‖2,πe
− k

tabsolute
rel , thus τdiscete

2 ≤ τdiscete
2 (M/2)+ dtabsolute

rel log Me. (5.11)

‖μAk−π‖2,π ≤ ‖μ−π‖2,π max(|λ2|
k,

1

2
|λ|Ω||

k(1+λ|Ω|)) ≤ ‖μ−π‖2,π max(e−k/trel ,
1

2ek
), (5.12)

thus τ ave
2 ≤ τdiscete

2 (M/2) + dmax(trel log M,M)e.

Proof: We first prove (5.12). The second inequality in (5.12) follows from elementary
calculus. We now explain why the first inequality in (5.12) holds. Let fμ = μ

π
. By reversibility

‖μAk − π‖2,π = ‖Akfμ − 1‖2 = ‖Ak(fμ − Eπ[fμ])‖2 = 1
2
‖P k(P + I)(fμ − Eπ[fμ])‖2. Consider

an orthonormal basis of RΩ consisting of eigenvectors f1, . . . , f|Ω| such that Pfi = λifi for
all i (where f1 = 1 and λ1 = 1). Denote bj := Eπ[fμfj ]. Then,

‖μAk − π‖2
2,π =

1

4

|Ω|∑

i=2

b2
jλ

2k
i (1 + λi)

2 ≤ max(λ2k
2 ,

1

4
λ2k
|Ω|(1 + λ|Ω|)

2)

|Ω|∑

j=2

b2
j .

Substituting ‖μ−π‖2
2,π = ‖fμ−Eπ[fμ]‖2

2 =
∑|Ω|

j=2 b2
j in the r.h.s. concludes the proof of (5.12).

For (5.11),

‖μP k − π‖2
2,π =

|Ω|∑

i=2

b2
jλ

2k
i ≤ max(λ2, λ|Ω|)

2k

|Ω|∑

i=2

b2
j = ‖μ − π‖2

2,πe
− 2k

tabsolute
rel .

We now prove (2.10). Define ρ̄discrete
x and ρ̄discrete in an analogous manner to the definition

of ρ̄x and ρ̄. Then, similarly to Proposition 3.8, we have that ρ̄discrete
x ≤ ρdiscrete

x + C4κdiscrete,
for all x ∈ Ω. Thus it suffices to show that for all x

τdiscete
2,x (e9/2) ≤ ρ̄discrete

x . (5.13)

Denote t := ρ̄discrete
x and Ad

s := {y : kt(x, y) ≥ s + 1}, where kt(x, y) := P t(x, y)/π(y).
Since, similarly to Lemma 5.1 we have that ‖P t(x, ∙) − π(∙)‖2

2,π ≤
∫∞

`
2sπ(Ad

s)ds + `2, for

19



all x ∈ Ω and ` ≥ 1, it suffices to show that
∫∞

e8 2sπ(Ad
s)ds ≤ e15 ≤ e18/4 − e16. Let

gd
s (y) := supk P k(y, Ad

s)/π(Ad
s). Similarly to Lemma 3.5 (using the discrete-time version of

Starr inequality) ‖gd
s‖1 ≤ 2e| log π(Ad

s)|. Let

Bd
s := {y : gd

s (y) > 4e−3
√

s + 1| log π(Ad
s)|} = {y : sup

k
P k(y, Ad

s) ≥ 4e−3
√

s + 1π(Ad
s)| log π(Ad

s)|}.

Let s ≥ e8. By Markov inequality π(Bd
s ) ≤ e4/(2

√
s + 1) ≤ 1

2
and so by the definition of

ρ̄discrete
x

Px[TΩ\Bd
s

> t,Xt ∈ Ad
s ] ≤ Px[TΩ\Bd

s
> t] ≤

e12

8(s + 1)3/2
.

Since by the definition of Ad
s (first inequality)

(s + 1)π(Ad
s) ≤ P t(x,Ad

s) = Px[TΩ\Bd
s

> t,Xt ∈ Ad
s ] + Px[TΩ\Bd

s
≤ t,Xt ∈ Ad

s ],

we get that if Px[TΩ\Bd
s

> t,Xt ∈ As] ≤ Px[TΩ\Bd
s
≤ t,Xt ∈ As], then by the Markov property

and the definition of Bd
s

(s + 1)π(Ad
s) ≤ 8e−3

√
s + 1π(Ad

s)| log π(Ad
s)|,

which simplifies as follows
2sπ(Ad

s) ≤ 2se−e3
√

s+1/8.

while if Px[TΩ\Bd
s

> t,Xt ∈ Ad
s ] > Px[TΩ\Bd

s
≤ t,Xt ∈ Ad

s ], then we have that

2sπ(Ad
s) < 4Px[TΩ\Bd

s
> t,Xt ∈ Ad

s ] ≤
e12

2(s + 1)3/2
.

Let f(s) = e(s + 1)3/2e−e3
√

s+1/8. Then f(e8) < e6 and for s ≥ e8 we have that d
ds

(−f(s)) ≥
( e4

16
− 3

2e3 )(s + 1)e−e3
√

s+1/8 ≥ 2se−e3
√

s+1/8. Hence indeed

∫ ∞

e8

2sπ(Ad
s)ds ≤

∫ ∞

e8

max(2se−e3
√

s+1/8,
e12

2(s + 1)3/2
)ds ≤ f(e8) +

e12

(e8 + 1)
1
2

≤ e9.

This concludes the proof of (5.13) and thus of (2.10).

Proof of Proposition 2.9: Denote am(x, y) := Am(x, y)/π(y). Then

‖Am(x, ∙) − π(∙)‖2
2,π =

∑

y

π(y)(am(x, y) − 1)2 =
∑

y

π(y)(a2
m(x, y) − 1).

By reversibility,
∑

y π(y)(a2
m(x, y) − 1) = −1 +

∑
y

Am(x,y)Am(y,x)
π(x)

=
(( I+P

2
)2P 2m−2)(x,x)

π(x)
− 1.

Denote the eigenvalues of P by 1 = λ1 > λ2 ≥ ∙ ∙ ∙ ≥ λ|Ω| ≥ −1 and let f1, . . . , f|Ω| be an
orthonormal basis of RΩ such that Pfi = λifi for all i. Denote r−(`) :=

∑
i:λi<0 λ`

if
2
i (x)

and r+(`) :=
∑

i>1:λi>0 λ`
if

2
i (x). Using the spectral decomposition and (1 + x)xk′

≤ 1
ek′ for

−1 ≤ x ≤ 0, we have that

‖Ak+k′(x, ∙) − π(∙)‖2
2,π =

|Ω|∑

i=2

λ
2(k+k′−1)
i

(
1 + λi

2

)2

f 2
i (x)
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≤

(
1

2ek′

)2

r−(2k − 2) + r+(2k + 2k′ − 2) ≤

(
1

2ek′

)2

r−(2k − 2) + λ2k′+2
2 ‖Pk−2

x − π‖2
2,π,

where we have used r+(2k + 2k′ − 2) ≤ λ2k′+2
2 r+(2k − 4) and (using (3.1) and 1 − x ≤ e−x)

r+(2k − 4) ≤
|Ω|∑

i=2

exp[−(2k − 4)(1 − λi)]f
2
i (x) = h2k−4(x, x) − 1 = ‖Pk−2

x − π‖2
2,π.

Denote k`(x, y) = P `(x, y)/π(y). Then

0 ≤ k2`+1(x, x) =

|Ω|∑

i=1

λ2`+1
i f 2

i (x).

Thus r−(2` + 2) ≤
∑

i:λi>0 λ2`
i f 2

i (x) ≤
∑|Ω|

i=1 e−2`(1−λi)f 2
i (x) = h2`(x, x) = ‖P`

x − π‖2
2,π + 1.

Hence

‖Ak+k′(x, ∙) − π(∙)‖2
2,π ≤

(
1

2ek′

)2

(‖Pk−2
x − π‖2

2,π + 1) + λ2k′+2
2 ‖Pk−2

x − π‖2
2,π.

6 Application to robustness of mixing

6.1 Proof of Corollary 2.1

Proof. We only prove (2.1) as the proof of (2.2) is analogous. It is not hard to verify that
Theorem 1.1 is still valid in the above setup (this can be formally deduced from Theorem 1.1
via the representation of the generator appearing in the paragraph following Corollary 2.1).
Hence it suffices to verify that (2.1) is valid if we replace τ2 and τ̃2 by ρ and ρ̃, resp. (where
ρ̃ is the parameter ρ of the chain (X̃t)). Denote by π, trel and G (resp. π̃, t̃rel and G̃) the
stationary distribution, relaxation time and generator of (Xt) (resp. (X̃t)), where trel is the
inverse of the smallest non-zero eigenvalue of −G (equivalently, we can write G = K(P − I)
for some transition matrix P and K > 0, and define trel := trel(P )/K, where trel(P ) is the
relaxation time of P ). In the notation of Corollary 2.1 we have that G̃(x, y) = rxG(x, y) for

all x, y and so π̃(x) = π(x)/rx

L
for all x, where L :=

∑
y π(y)/ry and maxy max(ry, 1/ry) ≤ M .

Hence M−2 ≤ π(x)/π̃(x) ≤ M2 for all x. It follows from the extremal characterization of the
relaxation time that trel ≤ Mt̃rel. Indeed, using Varπ f := Eπ[(f −Eπf)2] ≤ Eπ[(f −Eπ̃f)2] ≤
LMEπ̃[(f − Eπ̃f)2] = LM Varπ̃ f , we get that

trel = max
Varπ f

Eπ[(−Gf)f ]
= max

Varπ f

LEπ̃[(−G̃f)f ]
≤ max

M Varπ̃ f

Eπ̃[(−G̃f)f ]
= Mt̃rel,

where the maxima are taken over all non-constant f ∈ RΩ.
Recall that if Z ∼ Exp(1), then α−1Z ∼ Exp(α) for all α > 0. Let Z1, Z2, . . . be

i.i.d. Exp(1). A straightforward coupling of the chains in which they follow the same trajec-
tory (i.e. they make the same sequence of jumps, possibly at different times) in which if the
(k + 1)th jump is from vertex xk then the time spent at xk by the chains between their kth
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and (k + 1)th jumps is Zk

−G(xk,xk)
and Zk

−rxG(xk,xk)
, resp., shows that for all x and A the hitting

time of A starting from x for the two chains, TA and T̃A, resp., satisfy that

T̃A/M 6 stTA 6 stMT̃A, (6.1)

where 6 st denotes stochastic domination.
Let ρ≤δ,δ′ := inf{t : maxx,A:π(A)≤δ Px[TA > t] ≤ δ′[π(A) + 1

2

√
π(A)π(Ac)]} and similarly

ρ̃≤δ,δ′ := inf{t : maxx,A:π̃(A)≤δ Px[T̃A > t] ≤ δ′[π̃(A)+ 1
2

√
π̃(A)π̃(Ac)]}. By the submultiplicity

property of hitting times

∀t ≥ 0,m ∈ Z+ and A ⊂ Ω, max
x

Px[T̃A > tm] ≤ (max
x

Px[T̃A > t])m,

we get that for all δ′ ∈ (0, 1/2]
ρ̃≤ 1

2
,δ′ ≤ C0ρ̃| log δ′|. (6.2)

Similar reasoning as in the proof of (3.20) yields that (c.f. [2, Corollary 3.4])

ρ ≤ ρ≤ 1
2M2 , 1

2
+ C1trel log M. (6.3)

Using (6.1) and the fact that for all A we have that π̃(A)/M 2 ≤ π(A) ≤ M2π̃(A) (first
inequality) and (6.2) (second inequality) we get that

ρ≤ 1
2M2 , 1

2
≤ Mρ̃≤ 1

2
, 1
2M2

≤ C2(M log M)ρ̃.

This, in conjunction with (6.3) and trel ≤ Mt̃rel ≤ C3Mρ̃ yields that ρ ≤ C(M log M)ρ̃, as
desired. By symmetry, we also have that ρ̃ ≤ C(M log M)ρ.

6.2 Robustness of trees

We start with a few definitions. Given a network (V,E, (ce)e∈E), where each edge {u, v} ∈ E
is endowed with a conductance (weight) cu,v = cv,u > 0, a random walk on (V,E, (ce)e∈E)
repeatedly does the following: when the current state is v ∈ V , the random walk will move
to vertex u (such that {u, v} ∈ E) with probability cu,v/cv, where cv :=

∑
w:{v,w}∈E cv,w. This

is a reversible Markov chain whose stationary distribution is given by π(x) := cx/cV , where
cV :=

∑
v∈V cv = 2

∑
e∈E ce. Conversely, every reversible Markov chain can be presented in

this manner by setting cx,y = π(x)P (x, y) (e.g. [13, Section 9.1]).

Let T := (V,E) be a finite tree. By Kolmogorov’s cycle condition every Markov chain on
T (i.e. P (x, y) > 0 iff {x, y} ∈ E) is reversible. Hence we may assume that T is equipped with
edge weights (ce)e∈E. Following [17], we call a vertex v ∈ V a central-vertex if each connected
component of T \ {v} has stationary probability at most 1/2. A central-vertex always exists
(and there may be at most two central-vertices). Throughout, we fix a central-vertex o and
call it the root of the tree. The root induces a partial order ≺ on V , as follows. For every
u ∈ V , we denote the shortest path between u and o by `(u) = (u0 = u, u1, . . . , uk = o). We
call u1 the parent of u. We say that u′ ≺ u if u′ ∈ `(u) (i.e. u is a descendant of u′ or u = u′).
The induced tree at u is Tu := {v : u ∈ `(v)} = {u} ∪ {v : v is a descendant of u}. Fix some
leaf x and δ ∈ (0, 1/2). Let Wx,δ be the collection of all y ≺ x such that π(Ty) ≥ δ and let

xδ := argmin{π(Ty) : y ∈ Wx,δ}
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(i.e. d(x, xδ) = miny∈Wx,δ
d(x, y), where d denotes the graph distance w.r.t. T ). Recall

that α(A) = λ(A)/| log π(A)| and that by Theorem 1.2, α := supA∈Con1/2
α(A) ≥ cLS. Let

Dβ = Dβ,x be the connected component of x in T \ {xβ}. For a leaf x we denote

αx(δ) := α(Dδ) and αx := max
δ∈(0,1/4]

αx(δ) ≥ α.

Let us now describe the skeleton of the argument in the proof of Theorem 2.1.

Step 1: Show that it suffices to consider leafs as initial states. More precisely

Lemma 6.1. There exists an absolute constant C > 0 so that if y ≺ x then

τ2,y ≤ τ2,x + C(tLS +
√

trelτ1). (6.4)

Step 2: Show that for a leaf x we can replace (in (3.19)) ρ̄x (defined in (3.18)) with

bx := sup
δ∈(0,1/4]

bx(δ) where bx(δ) := min{t : Px[Txδ
> t] ≤ δ3/4}.

Proposition 6.2. Let x be a leaf. Let 0 < δ ≤ 1/4 and A ∈ Conδ. Denote Ā = Ac\Dδ,
where Dβ = Dβ,x is the connected component of x in T \ {xβ}. Then

Px[TAc > bx + 3κ + 10trel] ≤ Px[Txδ
> bx] + Pxδ

[TĀ > 3κ + 10trel] < δ3/2. (6.5)

Step 3 For a leaf x and δ ∈ (0, 1/4], derive a large deviation estimate for Txδ
:

Proposition 6.3. There exists some C > 0 so that for a leaf x and δ ∈ (0, 1/4],

bx(δ) ≤ Ex[Txδ
] + max

(
32

αx(δ)
, 8
√
Ex[Txδ

]/αx(δ)

)

≤ τ1 + C max(κ,
√

κτ1). (6.6)

The second inequality follows from the first using the fact that Ex[Txδ
] ≤ τ1 +C5

√
τ1trel

[2, Corollary 5.5].

Step 4 Similar reasoning as in the proof of (3.20) yields that (c.f. [2, Corollary 3.4])

ρ̄x ≤ min{t : Px[TAc > t] ≤ π(A)3/2 for all A ∈ Con1/4} + 10trel

By (6.4)-(6.6) in conjunction with (5.1) and (1.7) we have that

τ2 − C1

√
trelτ1 ≤ max

x:x a leaf
τ2,x + C1tLS ≤ max

x:x a leaf
ρ̄x + C2tLS

≤ max
x:x a leaf

bx + C3tLS ≤ τ1 + C4 max(tLS,
√

tLSτ1).

Remark 6.4. While it is intuitive that “typically” the worst initial state is a leaf (i.e. τ2 =
τ2,x for some leaf x), it is not clear if this is always the case.
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To conclude the proof of Theorem 2.1 we now prove Lemma 6.1 and Propositions 6.2-6.3.

Proof of Lemma 6.1: Let y ≺ x. Let s := τ2,y − MtLS for some constant M > 0 to be
determined later. We may assume s > 64

√
trelτ1 as otherwise there is nothing to prove. By

(5.1) it follows that we can choose M so that τ2,y − MtLS < ρy, and so for some A ∈ Con1/2

Py[TAc > s] > π(A) +
1

2

√
π(A)π(Ac). (6.7)

Denote the connected component of x in T \{y} by A′. Since y ≺ x we have π(A′) ≤ 1/2.
Hence, for all z ∈ A′ we have Pz[Ty > τ1] ≤ Hτ1(z, A

′) ≤ π(A′) + 1/4 ≤ 3/4. Using the
Markov property, by induction we get that Pz[Ty > kτ1] ≤ (3/4)k for all k ∈ N and z ∈ A′

and so Ex[Ty] ≤ 4τ1.
Let (v0 = x, v1, . . . , vk = y) be the path from x to y. Define ξi := Tvi

− Tvi−1
. Then by

the tree structure, under Px, we have that Ty =
∑k

i=1 ξi and that ξ1, . . . , ξk are independent.

Denote Φ(Tvi
) := π(vi)P (vi,vi+1)

π(Tvi )
. By specializing Kac’s formula to trees (see [1, (2.23)] for

the general Kac’s formula we are using and for its specialization for trees see (6.12) below
and c.f. [2, Proposition 5.6 and Lemma 5.2]) we have that Evi−1

[Tvi
] = 1/Φ(Tvi

) and that
Evi−1

[T 2
vi

] ≤ 2Evi−1
[Tvi

]EπTvi−1
[Tvi

] ≤ 4trelEvi−1
[Tvi

]. Whence,

Varx[Ty] =
k∑

i=1

Varvi−1
[Tvi

] ≤
k∑

i=1

Evi−1
[T 2

vi
] ≤ 4trel

k∑

i=1

Evi−1
[Tvi

] = 4trelEx[Ty] ≤ 16trelτ1.

By Chebyshev inequality

Px[|Ty − Ex[Ty]| > 32
√

trelτ1] ≤ 1/64. (6.8)

Let s′ := max(Ex[Ty]− 32
√

trelτ1, 0). By (6.7), (6.8), s > 64
√

trelτ1 and the Markov property

Px[Xs+s′ ∈ A] ≥ Px[|Ty − Ex[Ty]| ≤ 32
√

trelτ1] × Py[TAc > s] > (π(A) +
1

2

√
π(A)π(Ac))

63

64
,

and so Px[Xs+s′ ∈ A] ≥ π(A)+ 1
8

√
π(A)π(Ac). The proof is concluded using (4.1) as follows.

In the notation from (4.1), Ps+s′

x ∈ PA,δ for some δ ≥ 1
8

√
π(A)/π(Ac) and thus (using the

Poincaré inequality) ‖Ps+s′−2trel
x − π‖2,π > 4‖Ps+s′

x − π‖2,π ≥ 4δ
√

π(Ac)/π(A) ≥ 1/2.

Proof of Proposition 6.2: Fix some leaf x, 0 < δ ≤ 1/4 and A ∈ Conδ. Recall that
Ā = Ac \ Dδ. Using the tree structure it is easy to see that for all s, s′ ≥ 0

Px[TAc > s+s′] ≤ Px[TĀ > s+s′] ≤ Px[Txδ
> s]+Pxδ

[TĀ > s′] ≤ Px[Txδ
> s]+PπTxδ

[TĀ > s′]

and so by (3.16), the def. of bx and the fact that πV \Ā(Txδ
) > 1/2 (as π(V \Ā) < 2δ < 2π(Txδ

))

Px[TAc > bx + 3κ + 10trel] ≤ Px[Txδ
> bx] + PπTxδ

[TĀ > 3κ + 10trel]

< Px[Txδ
> bx] + 2PπV \Ā

[TĀ > 3κ + 10trel] ≤ δ3/4 + δ3/4 = δ3/2.
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Proof of Proposition 6.3: By [2, Corollary 5.5] we have that Ex[Txδ
] ≤ τ1 + C5

√
τ1trel and

hence it suffices to show that

∀t ∈ [0, 2Ex[Txδ
]], Px[Txδ

≥ Ex[Txδ
] + t] ≤ exp[−t2λ(Dδ)/(8Ex[Txδ

])]. (6.9)

∀t ≥ 2Ex[Txδ
], Px[Txδ

≥ Ex[Txδ
] + t] ≤ exp[−λ(Dδ)t/4]. (6.10)

Indeed, if t1 := 8
√
Ex[Txδ

]/αx(δ) ≤ 2Ex[Txδ
] then by (6.9) Px[Txδ

≥ Ex[Txδ
] + t1] ≤ δ3/4.

Otherwise, t2 := 32/αx(δ) > 2Ex[Txδ
], and by (6.10), Px[Txδ

≥ Ex[Txδ
] + t2] ≤ δ3/4.

We note that (6.9) is essentially Lemma 5.8 in [2]. We start with an auxiliary calculation

Claim 6.5. Fix some leaf x and δ ∈ (0, 1/4]. Let Dδ be the connected component of x in
T \ {xδ}. Let y ∈ Dδ and z be its parent. Then for all β ≤ λ(Dδ)/2 we have that

Ey[e
βTz ] ≤ 1 + Ey[Tz]β(1 + 2β/λ(Dδ)) ≤ eEy [Tz ]β(1+2β/λ(Dδ)). (6.11)

Proof of (6.11): Let Φ(Ty) := π(y)P (y,z)
π(Ty)

. Let f and g be the density functions of Tz

started from y and πTy , resp.. By Kac formula (c.f. [2, Proposition 5.6] or [1, (2.23)]),

∀t ≥ 0, g(t) = Φ(Ty)Py[Tz > t], and hence Φ(Ty)Ey[Tz] = 1. (6.12)

Recall that by (3.16) the law of Tz starting from πTy is stochastically dominated by the
Exponential distribution with parameter λ(Ty) ≥ λ(Dδ) and so for every non-decreasing
function k we have that

∫∞
0

k(t)g(t)dt ≤
∫∞

0
k(t)λ(Dδ)e

−λ(Dδ)tdt. Finally by (6.12)

Ey[e
βTz ] − 1 =

∫
(eβt − 1)f(t)dt =

∫
βeβtPy[Tz > t]dt = Ey[Tz]

∫
βeβtg(t)dt

= βEy[Tz]

∫
eβtλ(Dδ)e

−λ(Dδ)tdt =
βEy[Tz]λ(Dδ)

λ(Dδ) − β
≤ Ey[Tz]β(1 + 2β/λ(Dδ)),

where we used β ≤ λ(Dδ)/2 to deduce that λ(Dδ)
λ(Dδ)−β

= 1 + β
λ(Dδ)−β

≤ 1 + 2β
λ(Dδ)

.

We now return to conclude the proofs of (6.9)-(6.10). Let t ∈ [0, 2Ex[Txδ
]]. Set β =

tλ(Dδ)
4Ex[Txδ

]
(note that β ≤ λ(Dδ)/2). Let the path from x to xδ be (y1 = x, . . . , yr = xδ).

Observe that starting from x we have that Txδ
=
∑r

i=2 Tyi
− Tyi−1

. By the Markov property
the terms in the sum are independent and Tyi

− Tyi−1
is distributed as Tyi

started from yi−1.
Denote μi := Eyi−1

[Tyi
] and μ :=

∑r
i=2 μi = Ex[Txδ

]. By (6.11), independence and our choice
of β

Px[Txδ
≥ μ + t] ≤ e−β(μ+t)

r∏

i=2

Eyi−1
[eβTyi ] ≤ e−β(μ+t)

r∏

i=2

eμiβ(1+2β/λ(Dδ)) = e−t2λ(Dδ)/(8μ).

The proof of (6.10) is analogous, now with the choice β = λ(Dδ)/2.
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7 Open Problems

The modified Log-Sobolev constant is defined as

cMLS := inf
f∈RΩ

E(ef , f)/Entπ(ef ).

The following question suggests a natural extension of Theorem 1.2. Recall that under
reversibility 1/cLS ≤ 2τ∞ and λ−1 log 2 ≤ τ1 (e.g. [13, Lemma 20.11]). The following question
asks whether a similar relation holds between cMLS and τEnt.

Question 7.1. Is it the case that 1/cMLS ≤ CτEnt for some absolute constant C?

Question 7.2. Is it the case that under reversibility 1/cMLS ≤ CρEnt for some absolute
constant C (and thus 1/cMLS ≤ CτEnt)?

Question 7.3. Recall that under reversibility τ2 ≤ ρ+C/cLS. Is it true that under reversibil-
ity τEnt ≤ ρEnt + C/cMLS?
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