
METHODS FOR ANALYSIS OF NONLINEAR

THERMOACOUSTIC SYSTEMS

Iain Waugh
Emmanuel College

Department of Engineering

University of Cambridge

A thesis submitted for the degree of

Doctor of Philosophy

March 2013

mailto:icw26@cam.ac.uk
http://www.eng.cam.ac.uk
http://www.cam.ac.uk




Declaration

The work presented in this dissertation was conducted in the Department of Engi-

neering between October 2009 and March 2013. This dissertation is the result of

my own work and includes nothing which is the outcome of work done in collabo-

ration except where specifically indicated in the text. No part of this dissertation

has already been, or is being concurrently submitted for any other degree, diploma

or qualification.

This dissertation contains approximately 55000 words and 86 figures.

.........................................................

Iain Waugh

18 February 2013





To my wife, who knows more about thermoacoustics

than she ever wanted to.





Acknowledgements

My thanks go to my supervisor, Dr. Matthew Juniper, for his guidance and patience
during my PhD. There are few supervisors that understand that the best research
comes from following ideas just to see where they will go, and that the time it takes
to reach an answer cannot be known beforehand. He has also taught me patiently,
against much resistance, how to write scientific papers so that they can be easily
understood.

My thanks also go to those who have collaborated directly on the work in this the-
sis: Matthias Geuß, for helping to generate results for chapters 2 and 3, which were
originally part of Refs. [1] and [2]; Prof. Sujith and Vivekanandan Jegadeesan,
for their collaboration in studying noise induced transitions and for letting their
experimental results be included in this thesis; Simon Illingworth, for providing his
code for the diffusion flame model in chapter 6, and his flame describing functions
which were compared against continuation results in Ref. [3]; Karthik Kashinath
and Santosh Hemchandra, for providing their code for the premixed flame model
in chapter 7, and for their patience during the process of getting the continua-
tion analysis to work. Indirect collaboration has come from the many researchers
that I have met through conferences and AIM Network meetings, in particular the
researchers from IIT Madras and TU Munich.

My thanks must also go to the authors of the open source software packages used
in this thesis: DDE-BIFTOOL [4], LOCA [5] and Trilinos [6], and to Peter Benie
for helping me to compile them, and anything else that I have thrown his way. Due
acknowledgement must be given to the bodies that funded the work, without which
it would not have been possible: the EPSRC for the studentship, the IMechE for
their continued scholarship support and the RCUK for travel bursaries.

Lastly, I would like to thank the menagerie of labmates and researchers that made
studying fun, and to thank my wife for keeping me sane.





Methods for analysis of nonlinear thermoacoustic systems

Iain Waugh

Summary

This thesis examines the nonlinear behaviour of thermoacoustic systems by using ap-
proaches from the field of nonlinear dynamics. The behaviour of a nonlinear system is de-
termined by two things, which are the focus of this thesis: first, by the mechanism that the
system transitions from one attractor to another, and second, by the type and form of the
attractors in phase space.

In the first part of the thesis, a triggering mechanism is presented for a Rijke tube model,
whereby the system transitions from a stable fixed point to a stable limit cycle, via an unstable
limit cycle. Using this mechanism, low levels of stochastic noise result in triggering much before
the linear stability limit. Stochastic stability maps are introduced to visualise the practical
stability of a thermoacoustic system. These theoretical results match well with those from
experiments.

In the second part of the thesis, two time domain methods are presented for finding limit
cycles in large thermoacoustic systems: matrix-free continuation methods and gradient meth-
ods.

Most continuation methods are too computationally expensive for finding limit cycles in
large thermoacoustic systems. For dissipative systems, matrix-free continuation methods are
shown to converge quickly to limit cycles by preferentially using the influential bulk motions
of the system, whilst ignoring the features that are quickly dissipated in time. These matrix-
free methods are demonstrated on a model of a ducted 2D diffusion flame and a model of a
ducted axisymmetric premixed flame (with G-equation solver). Rich nonlinear behaviour is
found: fixed points, sub/supercritical Hopf bifurcations, limit cycles, period-2 limit cycles, fold
bifurcations, period-doubling bifurcations and Neimark-Sacker bifurcations. Physical informa-
tion about the flame-acoustic interaction is found from the limit cycles and Floquet modes.
Invariant subspace preconditioning, higher order prediction techniques, and multiple shooting
techniques are all shown to reduce the time required to generate bifurcation surfaces.

Gradient methods define a scalar cost function that describes the proximity of a state to a
limit cycle. The gradient of the cost function is calculated using adjoint equations and then used
to iteratively converge to a limit cycle (or fixed point). The gradient method is demonstrated
on a model of a horizontal Rijke tube.

This thesis describes novel nonlinear analysis techniques that can be applied to coupled
systems with both advanced acoustic models and advanced flame models. The techniques can
characterise the rich nonlinear behaviour of thermoacoustic models with a level of detail that
was not previously possible.





Abstract

This thesis examines the nonlinear behaviour of thermoacoustic systems by using

approaches from the field of nonlinear dynamics. The underlying behaviour of a

nonlinear system is determined by two things: first, by the type and form of the

attractors in phase space, and second, by the mechanism that the system transitions

from one attractor to another. For a thermoacoustic system, both of these things

must be understood in order to define a safe operating region in parameter space,

where no high-amplitude oscillations exist.

Triggering in thermoacoustics is examined in a simple model of a horizontal Rijke

tube. A triggering mechanism is presented whereby the system transitions from a

stable fixed point to a stable limit cycle, via an unstable limit cycle. The practical

stability of the Rijke tube was investigated when the system is forced by stochastic

noise. Low levels of noise result in triggering much before the linear stability limit.

Stochastic stability maps are introduced to visualise the practical stability of a

thermoacoustic system. The triggering mechanism and stochastic dependence of

the Rijke tube match extremely well with results from an experimental combustor.

The most common attractors in thermoacoustic systems are fixed points and limit

cycles. In order to define the nonlinear behaviour of a thermoacoustic system, it is

therefore important to find the regions of parameter space where limit cycles exist.

Two methods of finding limit cycles in large thermoacoustic sytems are presented:

matrix-free continuation methods and gradient methods.

Continuation methods find limit cycles numerically in the time domain, with no ad-

ditional assumptions other than those used to form the governing equations. Once

the limit cycles are found, these continuation methods track them as the operating

condition of the system changes. Most continuation methods are impractical for

finding limit cycles in large thermoacoustic systems because the methods require too

much computational time and memory. In the literature, there are therefore only

a few applications of continuation methods to thermoacoustics, all with low-order

models.



Matrix-free shooting methods efficiently calculate the limit cycles of dissipative sys-

tems and have been demonstrated recently in fluid dynamics, but are as yet unused

in thermoacoustics. These matrix-free methods are shown to converge quickly to

limit cycles by implicitly using a ‘reduced order model’ property. This is because

the methods preferentially use the influential bulk motions of the system, whilst

ignoring the features that are quickly dissipated in time.

The matrix-free methods are demonstrated on a model of a ducted 2D diffusion

flame, and the safe operating region is calculated as a function of the Peclet num-

ber and the heat release parameter. Both subcritical and supercritical Hopf bi-

furcations are found. Physical information about the flame-acoustic interaction is

found from the limit cycles and Floquet modes. Invariant subspace preconditioning,

higher order prediction techniques, and multiple shooting techniques are all shown

to reduce the time required to generate bifurcation surfaces. Two types of shooting

are compared, and two types of matrix-free evaluation are compared.

The matrix-free methods are also demonstrated on a model of a ducted axisym-

metric premixed flame, using a kinematic G-equation solver. The methods find

limit cycles, period-2 limit cycles, fold bifurcations, period-doubling bifurcations

and Neimark-Sacker bifurcations as a function of two parameters: the location of

the flame in the duct, and the aspect ratio of the steady flame. The model is seen

to display rich nonlinear behaviour and regions of multistability are found.

Gradient methods can also efficiently calculate the limit cycles of large systems. A

scalar cost function is defined that describes the proximity of a state to a limit cycle.

The gradient of the cost function is used in an optimisation routine to iteratively

converge to a limit cycle (or fixed point). The gradient of the cost function is found

with a forwards-backwards process: first, the direct equations are marched forwards

in time, second, the adjoint equations are marched backwards in time. The adjoint

equations are derived by partially differentiating the direct governing equations.

The gradient method is demonstrated on a model of a horizontal Rijke tube.

This thesis describes novel nonlinear analysis techniques that can be applied to

coupled systems with both advanced acoustic models and advanced flame models.

The techniques can characterise the rich nonlinear behaviour of thermoacoustic

models with a level of detail that was not previously possible.
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Chapter 1

Introduction

Thermoacoustic oscillations can occur whenever combustion takes place inside an acoustic

resonator. Unsteady combustion is an efficient acoustic source, and combustors have acoustic

resonances at certain frequencies. Therefore for suitable phase differences between combustion

and acoustic perturbations, large-amplitude self-excited limit cycles can occur. Because the

energy density in industrial combustors is so high, the amplitudes of the limit cycles can be

so large that the combustor is physically damaged or even destroyed. To avoid damage to

the combustors these oscillations must therefore either be avoided or they must be controlled.

Although there has been some progress in the field of active control of combustion instabilities,

by acoustic feedback [7], jet injection [8] and fuel injection [9], the technology is still far from

being applied in systems such as jet engines, largely because there are no actuators suitable

for operation in such harsh environments. The most common approach is therefore to avoid

thermoacoustic oscillations by defining a safe operating region, where oscillations either do not

occur or they remain at sufficiently low amplitude.

Defining a safe operating region, however, is not a trivial problem. Industrial combustion

systems often involve complex geometries, turbulent combustion and multi-phase flows. They

are therefore strongly non-linear systems that are inherently noisy. Because the systems are

strongly nonlinear, the system’s behaviour is often a strong function of the parameters that

define the operating condition. Industrial systems are generally tested experimentally to find

the safe operating region, but this process is extremely expensive. There is therefore good

motivation to develop techniques that can estimate the safe operating region of a combustor

computationally during the design phase.

Many methods have been used in the literature to find safe operating regions of thermoa-

coustic systems, both in the frequency domain and the time domain. These methods can be

divided broadly into those that use linear analysis and those that use nonlinear analysis.

1



1. INTRODUCTION

The linear analyses describe the stability of infinitesimal perturbations around a steady

state (fixed-point). The operating region of the combustor is then defined to be safe when the

steady state of the combustor is linearly stable. In the frequency domain, a Flame Transfer

Function (FTF) is often used for linear analysis, both in computational [10, 11] and experimen-

tal [12, 13, 14, 15] studies. The FTF is a transfer function between an acoustic perturbation

and a heat release perturbation. It has both a frequency-dependent phase and a frequency-

dependent gain. The FTF is then coupled with a linear acoustic model of the combustor, and

the stability of the system is analysed using techniques adapted from control theory. The sys-

tem is linearly unstable at operating conditions for which any frequency has a positive growth

rate in the coupled system.

In the time domain, the behaviour of small perturbations about the fixed point is described

by a Jacobian matrix. The eigenvalues of this matrix are used to define the linear stability of

the system [16, 17, 18]. The system is linearly unstable at operating conditions for which any

eigenvalue, or complex pair of eigenvalues, has a positive real part (growth rate). This analysis

calculates the same safe operating region as that calculated by the FTF approach. Unlike the

FTF, this approach cannot be used experimentally.

Linear stability analyses can calculate the operating conditions at which the steady state is

unstable, but cannot predict the resulting behaviour of the system. The system can evolve to

a limit cycle, a period-2n limit cycle, quasiperiodicity, chaos or another fixed point [19, 20, 21,

22, 23]. Linear stability analysis is often used in thermoacoustics to estimate the frequencies

of large-amplitude limit cycles [24, 25].

Nonlinear analyses are required in order to calculate limit cycle amplitudes and mode

shapes, and to quantify the extent of any bistable operating regions. In thermoacoustics, it is

common to see a branch of limit cycles emerging from a Hopf bifurcation [16, 17, 26]. A Hopf

bifurcation is where a complex pair of eigenvalues of the Jacobian matrix (for the fixed point)

have zero real part. Hopf bifurcations in thermoacoustics are either supercritical or subcritical,

as shown schematically in Figure 1.1(a) and (b). Both types of bifurcation have been seen in

experimental combustors [20, 27].

In the frequency domain, the Flame Describing Function (FDF) is commonly used to esti-

mate limit cycle amplitudes and to characterise the behaviour of flames in computational [28]

and experimental [29, 30] studies. The FDF is similar to the FTF, but its gain and phase

depend on the acoustic amplitude, as well as on the acoustic frequency. The main limitation

with the FDF is the assumption that the acoustic velocity and pressure signals are sinusoidal.

The FDF is nonlinear, but this assumption means that it still has some remnants of a linear

framework: it relies on a single-frequency in, single-frequency out relationship. This is because
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Figure 1.1: Schematic supercritical (a) and subcritical (b) Hopf bifurcations, in terms of the limit cycle
amplitude, as and a system parameter P . The critical parameter, Pc, is the parameter value where
limit cycles first occur. The linear stability limit, Pl, is the same as the Hopf bifurcation point. In the
subcritical Hopf bifurcation, there is a bistable region where there is both a stable fixed point and a
stable limit cycle (Pc < P < Pl). Triggering can occur in the bistable region.

the flame response is discarded at the harmonics of the forcing frequency, because, if p is si-

nusoidal, over one cycle
´
pq dt = 0 for the harmonics. In reality, if the heat release signal has

higher harmonics then the acoustics will respond at those higher harmonics, and the acoustic

velocity and pressure signals are no longer sinusoidal - the original assumption is broken. If

the heat release and pressure signals both have higher harmonics (i.e. are periodic but not

sinusoidal) then these harmonics contribute to energy growth over a cycle and the FDF result

will be inaccurate.

In the time domain, continuation methods have been developed in the field of nonlinear

dynamics to track solutions to the governing equations, whilst varying system parameters.

The solutions can be fixed points, limit cycles, or bifurcation points. The behaviour of a

fluid system, which may seem complex, can often be understood in terms of attraction to and

repulsion from these solutions [31]. Software packages such as AUTO [32], MATCONT [33] and

DDE-BIFTOOL [4] are available for continuation analysis of generic time dependent systems.

Continuation methods have been used in the field of thermoacoustics to calculate limit

cycles and sub-/supercritical bifurcations [16, 17, 18, 26, 34], but only for small systems with

O(10) variables. To investigate coupled flame-acoustic interaction, however, it is necessary to

model the flame shape, which even in reduced order models requires O(102 − 103) variables.

Conventional continuation methods are powerful for systems with O(10) variables, but are

impractical for larger systems because they use direct solvers for the underlying linear algebra.

Continuation methods rely on the solution of a series of linear equations to find limit cycles, and

the exact solution of these linear equations becomes prohibitively expensive for larger systems,

both in terms of computational time and memory usage. With recent advances in matrix-

free iterative methods, which require less computational time and less memory, continuation

3



1. INTRODUCTION

methods can now be applied to larger systems such as thermal convection [35].

An alternative method of finding limit cycles in the time domain is to reformulate the prob-

lem as the minimisation of a cost functional, where the value of the cost function represents

how far an initial condition is from being periodic. For large systems, adjoint equations can be

used to find the gradient of the cost functional using a forward-backward procedure: the di-

rect governing equations are marched forward in time, then the adjoint equations are marched

backwards in time [36]. This method of gradient evaluation is efficient for large systems be-

cause the gradient is evaluated with respect to every variable simultaneously using a single

forward-backward timemarch. Nonlinear adjoint equations can require a lot of memory stor-

age, however, because the adjoint equations require the state during the forward timemarch to

be saved. This memory requirement can be reduced by using checkpointing [37]. Minimisation

using adjoint derived gradients is relatively new in thermoacoustics [17] but is established in

the field of hydrodynamics, where it has been used to minimise cost functions in systems such

as boundary layers [38], Hiemenz flow [39] and shape optimisation [40, 41].

All of the above methods are used to generate the safe operating region of a system while

it is not forced by any external perturbations. In any physical combustion system, however,

there will be noise from acoustic and entropic waves [42] and noise arising from the stochastic

nature of turbulence and reaction processes. Under the influence of a particular form and

amplitude of noise, a stable operating condition may develop large oscillations by two separate

mechanisms: first, when the noise affects the system’s parameters, the stability of the stable

attractor may change from stable to unstable, and second, when the system is simply excited

by the noise, the system may be excited enough to reach the basin of attraction of another

attractor, such as a limit cycle. This second mechanism is commonly referred to as ‘triggering’

in thermoacoustics.

Triggering in thermoacoustics requires at least two stable attractors (bistability), one of

which is a stable fixed point, the other of which is commonly a stable limit cycle (but does

not have to be). It is the process whereby the system transitions from the stable fixed point

to the other stable attractor. In some linearly stable thermoacoustic systems, self-sustained

oscillations can be triggered by perturbations with amplitudes similar to the background noise

level [43, Ch1 §IV], or by exciting the system with a small impulse. The most common examples

of impulse instigated triggering are solid and liquid rocket motors, where triggering was initiated

using small explosive devices [43] - triggering is therefore termed “pulsed” instability in some

early literature [34].
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Linear analyses cannot find parameter regions that are bistable1, and therefore cannot de-

termine whether a particular operating region is susceptible to triggering. Many early linear

studies found that a system developed oscillations long before the fixed point became unstable

[44]. Premature instability of a linearly stable system is not unique to thermoacoustics, how-

ever. It occurs widely in hydrodynamics, and has been studied in areas such as bypass transition

to turbulence. The premature instability has been largely attributed to the non-normality of

the systems involved [45]. Non-normality occurs when a system’s stability operator is not

self-adjoint, i.e. L+L 6= LL+ where L+ is the adjoint of the linear operator L. Non-normality

leads to non-orthogonality of a system’s eigenmodes. With non-orthogonal eigenmodes, it is

possible for a perturbation to transiently grow in amplitude, even in a linear stable operating

condition. The degree of this transient growth can be large, and in some cases energy growth

factors of 106 occur in hydrodynamic systems [45]. In Ref. [46], the examples in hydrody-

namics where linear stability limit predictions worked well, such as Bérnard convection, are

those where the linearised system is normal. The examples in hydrodynamics where linear

stability limit predictions worked badly, such as planar Couette and Poiseuille flow, are those

where the linearised system is non-normal. Non-normality in hydrodynamics has two common

sources [47]: convective-type non-normality, where the direct and adjoint global modes have

different advection directions; and component-type non-normality, where the direct and adjoint

global modes have amplitudes in different velocity components (sometimes referred to as lift-up

non-normality).

Thermoacoustic systems have been shown to be non-normal [48, 49] because the eigenmodes

are non-orthogonal [50, 51]. It is likely therefore that techniques developed for non-normal

analysis will be relevant for thermoacoustic systems [17, 48, 49]. Triggering to self-sustained

oscillations in thermoacoustics has been shown to be analagous to bypass transition to turbu-

lence in hydrodynamics [17]. The role of non-normality in switching between stable states is

examined in this thesis.

The underlying behaviour of a nonlinear system is determined by two things: first, by the

type, form and stability of the attractors in phase space, and second, by the mechanism that

the system transitions from one attractor to another. The most commonly reported attractors

in thermoacoustics are fixed points and limit cycles2, which can be found by iterative methods.

Once the attractors are known, the mechanism by which a thermoacoustic system transitions

1Except parameter regions that contain two fixed points.
2Although authors in earlier literature may not have expected richer nonlinear behaviour such as quasiperi-

odicity.
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from one attractor to another can then be analysed by examining the trajectories in phase

space when the system is forced by noise or given a variety of initial conditions.

This thesis will analyse thermoacoustic systems in this manner. This thesis describes iter-

ative methods that efficiently find limit cycles in large dimensional systems and can find their

stability and bifurcations, and this thesis also describes a mechanism by which thermoacoustic

systems trigger from a stable fixed point to a stable limit cycle, via an unstable limit cycle.

1.1 Thesis scope

The aim and novelties of this thesis are threefold.

First, to provide efficient techniques to find the safe operating region of thermoacoustic

systems, with particular emphasis on systems that require large discretisations and where

timemarching is computationally expensive. The techniques presented - continuation methods

and gradient based methods - are orders of magnitude faster than conventional methods of

finding limit cycles when combustion parameters are varied. Furthermore, the techniques use

the fully coupled system; the acoustics can have multiple modes, and the technique can account

for the inclusion of non-harmonic velocity and heat release fluctuations, unlike the FDF method.

Second, to provide a technique of quantifying the stochastic dependence of the safe oper-

ating region on the noise present in the system. The technique developed has been used in

experimental systems and shown to match theoretical predictions well.

Third, to demonstrate the techniques above by analysing the stability of three simple

thermoacoustic systems, containing a hot wire, a diffusion flame and a premixed flame. The

techniques can calculate the limit cycles and bifurcations (fold, period-doubling and Neimark-

Sacker) of systems that were previously too large for such computation to be feasible. The

techniques can also examine the perturbations around a limit cycle (the Floquet modes), which

makes it possible to better understand the coupled flame-acoustic interaction, and to quantify

the non-normality around a limit cycle by examining the pseudospectra of the monodromy

matrix. The monodromy matrix and Floquet multipliers are defined section 5.2.1.

The continuation methods developed in this thesis deserve special emphasis, because they

are arguably the most versatile and accurate tool available for finding and understanding the

limit cycles of nonlinear thermoacoustic models. In particular, they can efficiently find the limit

cycles of systems with advanced acoustic network models, such as LOTAN [52, 53], coupled

with accurate flame models, such as the kinematic G-equation with curvature dependent flame

speed (chapter 7). They are also able to detect qualitative changes in system behaviour,
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1.2 Thesis structure

such as bifurcations to period-2n or quasiperiodic oscillations. Furthermore, by examining the

Floquet multipliers, it is then possible to show exactly which coupled flame-acoustic motion is

responsible for causing the change in system behaviour. This is a significant advance of the

state of the art.

1.2 Thesis structure

The thesis is divided into two parts. The first part of the thesis is the result of the first year’s

work, the second part of the thesis is the result of the latter two years’ work.

The first part of the thesis concentrates on triggering in thermoacoustics, and the effect of

noise on the practical stability of a thermocoustic system. The thesis begins in chapter 2 with

an introduction to the theoretical model of the horizontal Rijke tube, which is used as test model

in chapters 3, 4 and 8. The nonlinear behaviour of the Rijke tube is analysed with no forcing

from noise. In chapter 3, a bistable operating region of the Rijke tube model is used to present

a triggering mechanism, whereby an unstable attractor is used as a temporary stepping stone

for small perturbations to develop into large amplitude oscillations. This triggering mechanism

is demonstrated with several initial conditions and low amplitude periodic noise. In chapter

4, the concept of practical stability is introduced to define the stochastic nature of stability

when a system is excited by random noise. A method of quantifying the stochastic stability

of a theoretical or experimental system is presented, and theoretical predictions are compared

against experimental results.

The results in chapters 3 and 4 show that the most important feature of a thermoacoustic

system is its nonlinearity, rather than its non-normality. This is because it is much more

important to know the stable and unstable states of the system, which is governed by the

nonlinearity, than it is to know how the system transitions between these states, which is

governed by both the non-normality and the nonlinearity.

The second part of the thesis therefore concentrates on efficient methods for computing

the limit cycles of large thermoacoustic systems, in particular when timemarching is computa-

tionally expensive. Chapter 5 presents a matrix-free continuation method which can efficiently

find limit cycles in large thermoacoustic systems. This method is demonstrated on a model

of a ducted diffusion flame in chapter 6, and a model of a ducted premixed flame in chapter

7. Chapter 8 then presents an alternative method for finding limit cycles in large thermoa-

coustic systems, which minimises a cost function by using adjoint equations to find gradient

information. This method is demonstrated on the horizontal Rijke tube model.

The thesis finishes with conclusions and suggestions for further work.
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Part I

Triggering in thermoacoustic systems
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Chapter 2

The Rijke tube with a hot wire

The horizontal Rijke tube with a hot wire is a simple thermoacoustic system, which is used

as a test model in chapters 3, 4 and 8. Figure 2.1 shows a schematic of a horizontal Rijke

tube. It consists of an open ended tube with a baseflow imposed through it by an external

fan. Air is heated by an electrically powered wire gauze at a location xf from one end. This

simple model contains the interaction between heat release and acoustics, without further

complications added by flame dynamics. When conditions are such that an acoustic oscillation

exists, a standing wave is set up in the open-ended tube.

xf

heater airflow

L

Figure 2.1: Schematic of the horizontal Rijke tube. The baseflow is imposed through the tube by an
external fan. The heater is an electrically heated wire gauze.

The Rijke tube is often used in a vertical form, where no external fan is used but a baseflow

arises from natural convection. This can also result in acoustic oscillations, but it it makes the

model more complicated. To minimise modelling complexities a horizontal Rijke tube is used

in this thesis.

2.1 Governing equations

The thermoacoustic system examined in this thesis is identical to the simple Rijke tube model

studied by Refs. [17, 49], which contain a complete description. In summary, it is a tube of

length L0 in which a hot wire gauze is placed x̃f from one end. A base flow is imposed through

the tube with velocity u0.
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2. THE RIJKE TUBE WITH A HOT WIRE

Standard linear acoustics are coupled with a heat release model and a damping model to

form the governing equations. The relationship between velocity and heat-release at the wire

mesh is based on a correlation by Heckl [54]. This is an adaptation of King’s Law that includes

a nonlinear saturation of heat release and a time delay. The perturbation heat release equation

from Heckl’s correlation is:

˜̇Q =
2L̃w(T̃w − T̃0)√

3

(
πλc̃v ˜̄ρ

d̃w
2

) 1
2
(∣∣∣∣ ũ0

3
+ ũ′(t− τ̃)

∣∣∣∣ 12 − ( ũ0

3

) 1
2

)
(2.1)

where the physical gas properties in the tube are defined by the constant volume specific heat

capacity, cv, the ratio of specific heats, γ, and the thermal conductivity, λ, and where τ , the

time delay, is estimated in Ref. [55] to be:

τ̃ = 0.2
d̃w
ũ0

(2.2)

The damping in the model is assumed to come from two sources: boundary layer losses at

the tube walls and sound radiated from the ends of the tube. Derivations from Ref. [56] for each

of these terms are added to give a damping coefficient, which is dependent on the frequency,

ω, length of the tube, L̃, radius of the tube, R̃, kinematic viscosity, ν̃, thermal diffusivity, χ̃,

speed of sound, c̃0, and ratio of specific heats, γ.

ζ(ω) =
R̃2ω2

c̃2
0

+

√
2ωL̃

R̃c̃0

(√
ν̃ +

√
χ̃(γ − 1)

)
(2.3)

The non-dimensional governing equations for momentum and energy are therefore:

∂u

∂t
+
∂p

∂x
= 0, (2.4)

∂p

∂t
+
∂u

∂x
+ ζ(ω)p− βδ(x− xf )

(∣∣∣∣13 + uf (t− τ)

∣∣∣∣ 12 − (1

3

) 1
2

)
= 0,

where if the subscript 0 represents mean quantities, the heat release parameter, β, is depen-

dent on the wire length, Lw, wire temperature, Tw, wire diameter, dw, and tube cross sectional

area, S:

β =
1

p0
√
u0

(γ − 1)

γ

2Lw(Tw − T0)

S
√

3

(
πλcvρ0

dw
2

) 1
2

(2.5)

The system has four control parameters: ζ, which models the damping; β, which encapsu-

lates all the information about the hot wire, base flow and ambient conditions; τ , which is the

time delay between the velocity at the wire and the subsequent heat release and xf , which is

12



2.1 Governing equations

the position of the wire. The heat release parameter, β, is equivalent to k/γM in Ref. [49].

For the system examined in this thesis, ∂u/∂x and p are both set to zero at the ends of the

tube. These boundary conditions are enforced by choosing an appropriate basis set:

u(x, t) =
N∑
j=1

ηj(t) cos(jπx), (2.6)

p(x, t) = −
N∑
j=1

(
η̇j(t)

jπ

)
sin(jπx), (2.7)

In this Galerkin discretisation, all the basis functions (often referred to as Galerkin modes) are

orthogonal. It is important to point out that these Galerkin modes are not, in general, the

eigenmodes of the system. They are merely the basis set into which u and p are decomposed.

The governing equations then reduce to two ordinary differential equations for each mode,

labelled j:
d
dt
ηj − jπ

(
η̇j
jπ

)
= 0, (2.8)

d
dt

(
η̇j
jπ

)
+ jπηj + ζj

(
η̇j
jπ

)
+ 2β sin(jπxf )

(∣∣∣∣13 + uf (t− τ)

∣∣∣∣ 12 − (1

3

) 1
2

)
= 0, (2.9)

where:

uf (t− τ) =
N∑
k=1

ηk(t− τ) cos(kπxf ). (2.10)

and if the frequency of each Galerkin mode is assumed to remain at a constant multiple of the

fundamental mode, ω = ω1j, then:

ζj =
R̃2ω2

1

c̃2
0

j2 +

√
2ω1L

R̃c̃0

(√
ν̃ +

√
χ̃ (γ − 1)

)
j

1
2 , (2.11)

The state of the system is given by the amplitudes of the Galerkin modes that represent

velocity, ηj , and those that represent pressure, η̇j/jπ. These are given the notation u ≡
(η1, . . . , ηN )T and p ≡ (η̇1/π, . . . , η̇N/Nπ)T . The state vector of the discretised system is the

column vector x ≡ (u;p). The most convenient measure of the size of the perturbations is the

acoustic energy per unit volume:

E =
1

2
u2 +

1

2
p2 =

1

2
xHx =

1

2
||x||2, (2.12)

where || · || represents the 2-norm.

Equations (2.8 - 2.9) can be linearised into the form dx/dt = Lx, from which it is found

that L is non-normal [49]. (A non-normal operator satisfies LHL 6= LLH , where H denotes the
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2. THE RIJKE TUBE WITH A HOT WIRE

Hermitian transpose.) Non-normality gives rise to linear transient growth, which is discussed

in chapters 3 and 4.

2.2 Nonlinear analysis of the system

Combustion systems have been shown to display limit cycle, period-2n, chaotic and quasi-

periodic behaviour [19, 20, 21], which are well studied phenomena in the field of nonlinear

dynamics. Using analysis techniques developed in nonlinear dynamics the underlying behaviour

of the Rijke tube system can be defined. In particular, continuation analysis can be used to

iteratively find the fixed points (steady states) and limit cycles of the system, as a function of

system parameters. An open source continuation tool for delay-differential equations, DDE-

BIFTOOL [4], is used in this section to calculate bifurcation diagrams for the Rijke tube

model.

2.2.1 Bifurcation diagrams

Figure 2.2: Limit cycle amplitudes of the Rijke tube model in terms of the minimum acoustic energy
of the limit cycle (logarithmic), as a function of the non-dimensional heat release parameter (β). The
linearly stable region of the fixed point, and the safe operating region are annotated.

The bifurcation diagram in Figure 2.2 shows the minimum acoustic energy of the limit

cycles of the Rijke tube model as the heat release parameter β is varied. The parameters that

are held fixed are ζj = 0.05j2 + 0.01j1/2, xf = 0.3 and τ = 0.02, and 20 Galerkin modes are

used. The Floquet multipliers of the limit cycles are calculated to determine whether they are
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2.2 Nonlinear analysis of the system

stable (solid lines) or unstable (dashed lines). Figure 2.2 is similar to the bifurcation diagrams

in Ref. [43, Ch1 Fig. 1.17] and Ref. [30].

Even though the system is linearly stable for 0 ≥ β ≥ 0.866, it can support a high amplitude

self-sustained limit cycle for β ≥ 0.478 and a separate low amplitude limit cycle for β ≥ 0.722.

The Hopf bifurcation at β = 0.866 is sub-critical, which is typical of combustion systems that

exhibit triggering or “pulsed” instabilities [26]. The importance of this subcritical bifurcation

for triggering is covered in chapters 3 and 4.

There are two sets of unstable and stable limit cycles in Figure 2.2. Figure 2.2 has a

logarithmic energy scale because there is a large difference in amplitude between these two sets

of oscillations. The higher amplitude set of limit cycles occurs due to the nonlinearity of the

modulus term in the heat release equation. These limit cycles are used in the next chapter for

demonstrative purposes because they act in qualitatively the same way as the lower amplitude

limit cycles, but it should be noted that they are probably non-physical. It is important to

note that the lines in Figure 2.2 are projections of the N -dimensional trajectories of the limit

cycles, and not fixed energy boundaries of the system.

Figure 2.3: Stability surface for varying non-dimensional wire temperature (β) and time delay (τ),
obtained with continuation methods

When multiple parameters are varied simultaneously, stability surfaces can be obtained with

continuation methods. Figure 2.3 shows the time delay dependence of the Hopf bifurcation

(blue) and the fold bifurcation (red). The Hopf bifurcation is the linear stability limit of the
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2. THE RIJKE TUBE WITH A HOT WIRE

system; the fold bifurcation is where the limit cycles transition from stable to unstable. For the

Rijke tube model, the fold bifurcation also defines the boundary of the safe operating region,

where no limit cycles exist. An increase in time delay moves the Hopf bifurcation to a lower

wire temperature, and also results in a smaller bistable region. The energy of oscillations also

increases with the time delay. Further examples of bifurcation surfaces for the Rijke tube are

detailed in Ref. [18].
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Figure 2.4: Robustness of the subcritical bifurcation to changes in the number of discretisation modes.

The results in Figure 2.2 are presented for a 20 Galerkin mode discretisation, but have been

calculated for 10, 20, 40 and 50 modes and are shown in Figure 2.4. The differences between

the 20 and 50 mode results are negligible, so as a compromise between accuracy and speed 20

modes are used for the rest of this thesis.

2.3 Limitations to the model

It is important to consider some of the limitations to the Rijke tube model and what effect they

may have on accuracy. First, the model contains only linear acoustics and therefore there will

be some inaccuracy when limit cycles have large amplitudes. Second, the model also takes no

account of the temperature variation of the flow along the pipe. A temperature jump across the

wire would introduce several changes: the acoustic modes would not be sinusoidal, the mode

frequencies would no longer be exactly harmonic, gas properties would vary, there would be less

heat release when there is reverse flow over the hot wire and the non-normality of the system

may decrease [51]. Third, the damping model is simplistic in that only discrete frequencies are
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2.3 Limitations to the model

damped and that reflection coefficients are not used. Damping is not the key element of study

for this model, however, and the simplistic damping model should not alter the fundamental

nature of the triggering mechanisms investigated in chapters 3 and 4. Fourth, the heat release

model is simplistic in that it is based on an empirical fit of experimental data that mimics

King’s Law. The empirical fit is designed to match the fraction of mean flow where nonlinear

saturation begins, but is not likely to give accurate heat release values when the velocity is

significantly less than the mean flow [57]. Fifth, the time delay is constant. In reality, the

time delay is both frequency and amplitude dependent, and not even constant across the duct,

because the mean flow will have a parabolic profile.

Lastly, the Galerkin discretisation method does not allow travelling waves to enter and leave

the tube. It is likely that the baseflow entering the tube will be noisy, and these perturbations

will travel downstream. Although it would be more accurate to include travelling waves when

noise is considered in chapter 4, the noise induced triggering mechanisms identified in chapter

4 will be unchanged.
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Chapter 3

Analogy between triggering in
thermoacoustics and bypass transition
in hydrodynamics

In some linearly stable thermoacoustic systems, self-sustained oscillations can be triggered

by perturbations with amplitudes similar to the background noise level [43, Ch1 §IV]. This is

known as triggering. In some linearly-stable hydrodynamic systems, turbulence can be triggered

by perturbations with a similarly small amplitude [45]. This is known as bypass transition to

turbulence. While it is clear that non-linear effects are important in thermoacoustics, it has only

recently been shown that non-normal effects are also influential [48, 49]. An analogy between

triggering in thermoacoustics and bypass transition in hydrodynamics has been suggested by

Lieuwen [43, Ch1 §IV] and recently demonstrated by Juniper [17].

This chapter investigates this analogy further by examining the mechanism by which small

perturbations and low amplitudes of periodic noise can cause the system to trigger from a

stable fixed point to a stable limit cycle. The content of this chapter was originally published

in Ref. [1], with co-authors Matthias Geuß and Matthew Juniper.

3.1 Bypass transition mechanism

In hydrodynamics, bypass transition can be divided into five stages [45]. The first stage is

initiation of small perturbations to the flow. The second stage is linear amplification of these

perturbations due to non-normal growth. The third stage is non-linear saturation towards a

new unstable quasi-steady periodic state. The fourth stage is growth of secondary instabilities

on top of this periodic base flow. The fifth stage is breakdown to turbulence, where non-
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3. TRIGGERING AND BYPASS TRANSITION

linearities and/or symmetry-breaking instabilities excite an increasing number of scales in the

flow.

The second, third and fourth stages can also be considered in terms of dynamical systems

[58, 59, 60]. A boundary in state space is identified between trajectories that decay to a laminar

solution and trajectories that evolve to a turbulent solution. This is known as the ‘edge of

chaos’. Trajectories from certain regions of state space are attracted towards this boundary.

Those that are attracted from lower energy states exhibit the non-normal transient growth

identified in stage 2. The boundary itself corresponds to the unstable periodic state identified

in stage 3. In hydrodynamics, this boundary contains several heteroclinic saddle points and at

least one local relative attractor, each corresponding to a periodic travelling wave solution [60].

The saddle points have at least two unstable eigenvalues in the boundary. This means that

trajectories enter along their stable manifolds and exit along their unstable manifolds without

leaving the boundary. The state therefore wanders from the vicinity of one travelling wave

solution to the vicinity of another until it reaches a local relative attractor. The local relative

attractor (an unstable attractor), has just one unstable eigenvalue so trajectories enter from all

directions along the boundary but exit perpendicular to the boundary. Whether this trajectory

then evolves towards a laminar solution or towards a turbulent solution, corresponding to stage

5 above, depends on the direction in which it exits the boundary. This, in turn, depends very

sensitively on its initial position in phase space at stage 1.

In thermoacoustics, the analogous boundary is between trajectories that decay to zero,

which are analogous to the laminar solution, and trajectories that evolve to high amplitude

self-sustained oscillations, which are analogous to the turbulent solution. Recent studies, such

as [30], have shown that a trajectory starting from this boundary can evolve to the high

amplitude state. If the analogy is appropriate, however, trajectories from other regions of

state space will be attracted towards this boundary and then be repelled either to a high or

a low amplitude state. Thermoacoustic systems, like many hydrodynamic systems, are non-

normal [49, 50, 51], meaning that this attraction can be from states with lower energy than the

boundary. Thermoacoustic systems, unlike many hydrodynamic systems, have nonlinearities

that do not conserve energy, which is another reason that this attraction can be from states

with lower energy than the boundary.

It has been shown that background noise and noise from combustion processes is present in

the limit cycles of combustors [27], and it is thus likely that some background noise and noise

from combustion processes exists before the system is triggered to self-sustained oscillations.

Furthermore, it has been shown theoretically that such noise can instigate triggering to these
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3.2 Unstable attractors in the Rijke tube

‘pulsed’ oscillations [42]. This chapter will analyse whether this triggering process uses the

unstable attractors in a similar way to bypass transition to turbulence.

The first aim of this chapter is to explore the analogy between triggering in thermoacoustics

and bypass transition in hydrodynamics. The second aim is, in light of this link, to investigate

the effect that different types of noise have on triggering in a simple thermoacoustic system.

3.2 Unstable attractors in the Rijke tube
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Figure 3.1: Bifurcation diagram for the 20-Galerkin mode system with τ of 0.02. The black points
indicate the starting points for the time marching routine, taken at β = 0.75.

From an initial state, the system converges to either a stable limit cycle or the zero fixed

point. If the initial state is close to a stable solution, the system will be attracted towards it.

If the initial state is far from a stable solution, however, the system acts more interestingly.

The aim of this section is to show that the unstable limit cycles can act as attractors during

the transient phase, before repelling the trajectory towards one of the stable solutions. Such

manifolds are unstable attractors, and are found in physical systems such as pulse-coupled

oscillators [61]. These manifolds have a stable eigenvalue in at least one dimension (often

more) and an unstable eigenvalue in at least one other dimension.

To demonstrate this, twenty different initial states are evolved forward in time for β = 0.75

using a 4th order Runge-Kutta scheme to solve (2.8 - 2.9). These initial states have been chosen

because they are all initially attracted towards the higher unstable limit cycle. For each initial

state, the total initial acoustic energy is shown as a dot on Fig. 3.1 and the initial energy

distribution between the Galerkin modes is shown in Fig. 3.2. Initial states 1 to 10 have less

energy than the minimum energy on the higher unstable limit cycle. Initial states 11 to 20

have more energy than this.
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Figure 3.2: Energy distribution between the modes of the initial states (modes 11-20 have zero energy).
Initial states 1 to 10 have low energy, initial states 11 to 20 have high energy.
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Figure 3.3: Time evolution from the ten low energy initial states shown in Figure 3.1. The acoustic
energy of the first 3 Galerkin modes is plotted. Higher Galerkin modes exhibit a similar decay to the
third mode.

For the ten initial states with low energy, the evolution of the first three Galerkin modes is

plotted in Fig. 3.3. They initially evolve towards the same periodic trajectory in state space,

which is the higher unstable limit cycle. The energies of the first two modes grow transiently

towards this while those of the third (and higher) modes decay. Although not shown in Fig. 3.3,

the trajectories then continue alongside the unstable limit cycle for several hundred time units

before either decaying to the lower stable limit cycle or growing to the higher stable limit

cycle [17]. It is worth noting that most of the energy in these initial states is in the first

three Galerkin modes. A full analysis of the transient growth process and a non-linear adjoint

looping algorithm for finding the lowest initial energy that can evolve to the higher unstable

limit cycle can be found in Ref. [17].

For the ten initial states with high energy, the evolution of the first three Galerkin modes
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Figure 3.4: Time evolution from the ten high energy initial states shown in Figure 3.1. The acoustic
energy of the first 3 Galerkin modes is plotted. Higher Galerkin modes exhibit a similar decay to the
third mode.

is plotted in Fig. 3.4. They also evolve towards the higher unstable limit cycle and, from there,

either to the lower stable limit cycle or to the higher stable limit cycle. These initial states,

however, lose a large proportion of their energy during the transient period. This can partly

be explained by the damping model, ζj = 0.05j2 + 0.01j1/2, which damps higher modes more

than lower modes. It is worth noting, however, that most of the initial states 11 to 20 start

with more energy in the first three modes than initial states 1 to 10. Thus growth or decay

from an initial state cannot be determined simply with an energy threshold condition.

Figs 3.1 to 3.4 demonstrate that the higher unstable limit cycle is an unstable attractor

whose basin of attraction spans a wide energy range. Trajectories that are attracted towards

this limit cycle are ultimately repelled either towards the higher stable limit cycle or the lower

stable limit cycle. Although not shown in this chapter, the same is true of the lower unstable

limit cycle [17]. The basins of attraction of both unstable limit cycles include regions with

lower energy than the point with lowest energy on the respective unstable limit cycle. This

low energy region reaches the unstable limit cycle via transient growth, which is a feature of

non-normal systems, and nonlinear processes that do not conserve energy, which is a feature

of thermoacoustic systems but not hydrodynamic systems. This process of attraction followed

by repulsion is analogous to bypass transition to turbulence in hydrodynamics. Specifically,

it corresponds to stages three and four in Ref. [45] and the unstable attractors are simpler

versions of the ‘edge of chaos’ described in Refs. [58, 59, 60].

During the evolution, each Galerkin mode oscillates at its own frequency, which varies in

time and is not necessarily its natural frequency. The frequency and growth rate of the first

Galerkin mode, which has the highest energy, are calculated from the data in Figs. 3.3 and

3.4, and their subsequent evolution with time. They are plotted as functions of each other in
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3. TRIGGERING AND BYPASS TRANSITION

Fig. 3.5 for initial states 1 to 10 (upper figure) and initial states 11 to 20 (lower figure). The

limit cycles have zero growth rate. The low energy stable limit cycle (LES) lies to the right of

Fig. 3.5 and the high energy stable limit cycle (HES) lies to the left. The unstable limit cycle,

to which the initial states all converge, lies in the middle. Initial states 1 to 10 have positive

growth rates towards this point while initial states 11 to 20 have negative growth rates towards

this point.
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Figure 3.5: Evolution of the frequency and growth rate of the 1st Galerkin mode from starting points
(white circles) to either the high stable limit cycle (black squares) or the low stable limit cycle (black
circles). Top frame: low energy initial states. Bottom frame: high energy initial states.

The phase portraits in Fig. 3.5 represent measurable outputs and can be compared with

previous theoretical and experimental results. In a comprehensive theoretical and experimental

study, Ref. [30, Figs. 8,9] found trajectories between the unstable limit cycle and the stable

limit cycles that are very similar to those found in this report. Ref. [30], however, considered

only the fundamental mode and assumes higher harmonics have negligible effects on system

stability. Transient growth or transient decay towards the unstable limit cycle cannot be

modelled in a single mode system [17], which means that Ref. [30] could capture the transition

away from the unstable limit cycle but could not capture the preceding transient behaviour

that is the subject of this chapter.

3.3 Noise transitions via unstable attractors

The previous section assumes that the system is noiseless and deals with triggering to sustained

oscillations from a given initial state. This is useful because it gives the maximum initial energy

below which all states decay to the zero solution (or to the lower stable limit cycle) in a noiseless

system. This section examines the effect of forcing the system with low levels of noise, firstly

as bursts of noise, secondly as continuous noise.
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3.3 Noise transitions via unstable attractors

Noise can be divided conceptually into four types: additive noise, where a small forcing is

added continually to the system; parametric noise, where coefficients in the governing equations

vary; multiplicative noise, where noise amplitude is proportional to the current state of the

system [62]; and modal noise, where energy is redistributed between the Galerkin modes,

without any overall change in energy.

Multiplicative and parametric noise have been shown to move the stability boundaries of a

combusting system [42, 62, 63]. Additive noise, however, excites the system but has no effect

on the location of the stability boundaries. This section deals with additive noise, and aims

to show that the excitation from the additive noise can be large enough to reach a non-linear

stability boundary, in this case the basin of attraction of an unstable attractor, as seen in §3.2.

In this way, the stability boundaries are not moved, but are reached. For each noise strength,

therefore, there will be an effective stability boundary, that will be different from the normal

stability boundaries if triggering can occur.

At certain parameter values and forcing levels, the evolution of the system is very sensitive

to the initial conditions and the forcing. This means that simulations with stochastic forcing

become less clear to analyse. In order to make simulations repeatable and comparable with

each other, the characteristics of the noise are determined in advance by specifying amplitudes

and relative phases of the forcing of the first 10 Galerkin modes. Above the 10th Galerkin

mode, the response of the system to forcing is very weak and so is not used here to form the

noise profiles. This forcing signal is periodic, with period equal to that of the natural frequency

of the first Galerkin mode. Three types of noise are considered: white noise, in which each

mode is forced equally; pink noise, in which the lower modes are forced more than the higher

modes; and blue noise, in which the higher modes are forced more than the lower modes. The

noise profiles used in this section are not optimal, in that the phases chosen will not exhibit

triggering with the minimum noise energy possible. However, the noise profiles chosen in this

section are representative of the trends between white, pink and blue noise.

3.3.1 Bursts of noise

Small bursts of noise in the system are examined in order to discover whether certain noise

profiles are more successful than others at triggering sustained oscillations. As shown in §3.2,

certain initial states are more successful at triggering sustained oscillations in a noiseless system.

It seems logical to suppose, therefore, that the same will be true of bursts of noise.

The first noise profile is white noise, in which every Galerkin mode has equal amplitude,

Fig. 3.6. The evolution of acoustic energy is shown in Fig. 3.7, in which this noise is added for
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Figure 3.6: White noise profile in terms of the forcing signal’s amplitude (top time series) and energy
(bottom time series). Each Galerkin mode is forced with equal amplitude (bottom bar chart) but
randomly-distributed phase (top bar chart). The noise level is quantified by the maximum energy of
the signal, which is 1.49× 10−3.
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Figure 3.7: Evolution of the energy of the system with bursts of white noise for 4, 5 and 6 periods
(shaded), showing attraction to the stable (S) and unstable (U) limit cycles.

4, 5 and 6 periods. Each time unit corresponds to L0/c0 seconds, where L0 is the tube length

and c0 is the speed of sound, so these bursts would be of order 10 ms in a typical Rijke tube.

The three plots in Fig. 3.7 capture the three types of behaviour that are expected. After

forcing for 4 periods (top plot), the system is not yet in the basin of attraction of the unstable

limit cycle (dashed line) and subsequently decays to the zero solution. After forcing for 5

periods, the system reaches the basin of attraction of the unstable limit cycle, is attracted

towards this solution and, from there, grows to the stable limit cycle (solid line). After forcing

for 6 periods, the system decays to the stable limit cycle without passing via the unstable limit

cycle.

The second noise profile is shown in Fig. 3.8. This is a blue noise profile, in which the
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Figure 3.8: Blue noise with energy 8.6× 10−3 (as for Fig. 3.6)
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Figure 3.9: As for Fig. 3.7 but for blue noise.

higher Galerkin modes are forced with higher amplitude than the lower Galerkin modes. The

maximum energy of the forcing signal is 8.6× 10−3, which is 5.8 times greater than that of the

white noise profile. The evolution of acoustic energy is shown in Fig. 3.9, in which this noise

is added for 4, 5 and 6 periods.

The three plots in Fig. 3.9 capture the same three types of behaviour seen for the white

noise. The blue noise, however, requires much higher energy than the white noise to trigger

self-sustained oscillations. This is expected from the results in §3.2, in which it was shown that

a system reaches sustained oscillations from a lower initial energy when that energy is mainly in

the lower Galerkin modes. Although not shown here, similar simulations with pink noise show

that, as expected, less energy (6.9 × 10−4) is required to trigger the system to self-sustained

oscillations than is required for white noise.

As well as triggering the system from the zero solution to the lower stable limit cycle, noise

can trigger the system from the lower stable limit cycle to the upper stable limit cycle. An
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Figure 3.10: Pink noise with energy 3.85× 10−4 (as for Fig. 3.6)
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Figure 3.11: Energy evolution of the system with a 10 period burst of pink noise (shaded), showing
transition from the lower stable limit cycle (S) to the higher stable limit cycle (S) via the higher unstable
limit cycle (U).

example of this is shown for the pink noise profile in Fig. 3.10 with maximum energy 3.85×10−4,

applied for 10 periods. This corresponds to velocity and pressure perturbations of less than

±2.2% at the wire. The evolution of acoustic energy is shown in Fig. 3.11. The top plot shows

the jump from the lower stable limit cycle (solid line) to the higher unstable limit cycle (higher

dashed line) during the time when the noise is applied (shaded). The bottom plot shows the

subsequent evolution from the higher unstable limit cycle to the higher stable limit cycle in

the absence of noise. As expected from §3.2, it takes very little energy for pink noise to trigger

the system to the higher stable limit cycle.

In summary, pink noise is more effective at triggering to the stable limit cycles than white

noise, which in turn is more effective than blue noise. Noise can cause triggering from the zero

solution to the stable limit cycles, as well as from the lower to the higher stable limit cycle.

Very little noise is required, particularly if it leaves the system in a similar state to the 10 lower
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energy points in §3.2, which will grow transiently to the unstable limit cycle. In more complex

thermoacoustic systems, where the degree of non-normality and transient growth is higher [48],

the latter effect will be more pronounced. Rapid triggering to high energy oscillations through

the action of low energy noise has been seen in experimental combustors, such as in Lieuwen

[27, Fig. 15].

It is worth noting that additive noise can also reduce the system’s acoustic energy, particu-

larly when added to the higher Galerkin modes. This is as expected from the 10 higher energy

points in §3.2.

3.4 Conclusions

This chapter explores the analogy between triggering in thermoacoustics and bypass transi-

tion in hydrodynamics, which was demonstrated by Juniper [17]. The behaviour of a simple

thermoacoustic system [17, 49] is compared qualitatively with that of simplified models of hy-

drodynamic systems [45, 58, 59, 60]. In the thermoacoustic system, it is shown that initial

states over a wide energy range evolve first towards an unstable attractor and then towards a

stable solution, which is either a limit cycle or a fixed point. Some of these states have lower

energy than the lowest energy on the unstable attractor and make use of non-normal transient

growth to reach it, which is analogous to bypass transition in hydrodynamics. These initial

states have higher amplitudes at low frequencies.

In light of this analogy, this chapter then explores the effect that different types of noise

have on triggering. Three types of noise are considered: pink noise (higher amplitudes at low

frequencies),white noise (similar amplitudes at all frequencies) and blue noise (higher ampli-

tudes at high frequencies). The noise is applied both as short bursts and continuously. In both

cases, pink noise is more effective than white noise, which is more effective than blue noise,

at causing triggering to a higher amplitude limit cycle. Indeed, blue noise can even inhibit

triggering. These results concur with the results in the first part of the chapter. The noise

signature of flames has been shown to be pink in nature [64], so these results are pertinent for

ducted flame systems.

The triggering mechanism presented in this chapter has since been demonstrated to occur

for a diffusion flame in an acoustic duct, in a detailed experimental study by Jegadeesan and

Sujith [65, 66]. Small amplitudes of noise were shown to cause triggering to a high amplitude

limit cycle via an unstable limit cycle. The similarity of these experimental results is discussed

further at the end of the next chapter.
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Chapter 4

Noise induced triggering

In the previous chapter, the Rijke tube model was analysed and a mechanism of triggering was

proposed with an analogy to bypass transition in hydrodynamics. It was shown that unstable

attractors exist in thermoacoustic systems, and that in the presence of low amplitude periodic

noise the system evolves via the unstable attractors to reach higher amplitude periodic states.

All physical thermoacoustic systems contain noise, so even if the behaviour of a thermoa-

coustic system has been characterised without noise, it is important to think about how the

system would behave when perturbed by noise. The concept of practical stability is introduced

in this chapter to describe the stability of a system when perturbed by noise.

In the first half of this chapter, the effect of random noise on the system is examined, and

a method is presented for quantifying noise transitions with a stochastic description. Practical

stability results are shown for the hot wire Rijke tube model, which demonstrate that random

noise causes triggering before the system becomes linearly unstable. Furthermore, the point at

which triggering occurs is shown to be stochastic and dependent on the strength of the noise.

These results are compared against those from an experimental combustor at the end of the

chapter. Good qualitative agreement is seen.

In the second half of this chapter, the effect of different types of noise is explored. Noise

can be characterised in several different ways, such as additive, parametric and multiplicative

noise. To give a complete description of the effect of noise on the hot wire Rijke tube model,

several different types of noise are examined. Each shows qualitatively similar behaviour, in

that triggering occurs before the system becomes linearly unstable.

The content of this chapter was originally published in Ref. [2], co-authored with Matthew

Juniper.
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4. NOISE INDUCED TRIGGERING

Figure 4.1: All three systems are linearly stable about the central point but, in (b) and (c), finite
perturbations can excite the system to the other stable states. The system in (b) is more practically
stable than in (c) because the central basin of attraction is larger and more attracting.

4.1 Introduction

Emphasis in thermoacoustics has often been placed on the importance of linear stability, but in

this chapter we wish to emphasise the importance of practical stability. Linear analysis is valid

for infinitesimal perturbations from the linearisation point, and linear stability implies that all

infinitesimal perturbations will eventually decay. If the system has only one stable state, then

linear stability further implies that all finite perturbations will eventually decay. If the system

has more than one stable state, however, then linear stability can no longer imply that all finite

perturbations will eventually decay. If a finite perturbation is large enough for the system to

reach the basin of attraction of another stable state, then the original stable state is unstable

to a perturbation of that size.

Practical stability is a measure of the stability of a state in the presence of noise [67],

and has been studied in the context of chaotic attractors and shown to be important in their

control [68, 69]. The difference between linear stability and practical stability is highlighted

in Figure 4.1. All three scenarios are linearly stable about the central point. When no other

stable solutions exist, Figure 4.1a, linear stability implies stability both to infinitesimal and

finite perturbations. In Figure 4.1b, three stable states exist and a large enough perturbation

can excite the system to either of the other stable states. In Figure 4.1c, the basin of attraction

around the current stable state is much smaller and shallower, so a much smaller perturbation

is required to reach either of the other stable states. Figure 4.1b is thus more practically stable

than Figure 4.1c.

To define practical stability [67] we must first define what we consider to be ‘stable’, and

then measure when this stability criterion is obeyed, in terms of the initial system condition,

x0, and perturbations in time p(x, t). In the context of triggering, we will define stability here

to be when the system remains in the basin of attraction of the steady state (fixed point at

0). The basin of attraction of the fixed point is termed Q, where Q ⊂ RN . We define the

perturbations to be less than some magnitude: ||p(x, t)|| ≤ δ , δ ≥ 0, and we define the initial
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conditions to be bounded: ∀x0 ∈ Q0 ⊂ Q. If we have a dynamical system:

∂x

∂t
= F (x, t) (4.1)

With a permanently acting perturbation this becomes [67]:

∂x

∂t
= F (x, t) + p(x, t) (4.2)

Then the practical stability in a given time period is defined by Yang [67] to be:

"The solution x = 0 to Eq. (4.1) is said to be practically stable with respect

to δ, Q and Q0 in finite time period [t0, T ], if for every perturbation p(x, t) with

||p(x, t)|| ≤ δ the solution x(t0, x0, t) to Eq. (4.2) remains in Q for t ∈ [t0, T ] and

x0 ∈ Q0."

This definition is complete, but it is difficult to compute basins of attraction for large

nonlinear dynamical systems, and even more difficult to compute the action of the system

under all possible perturbations ||p(x, t)|| ≤ δ. In this chapter we aim to examine the practical

stability of a thermoacoustic system under stochastic forcing, with perturbations, p(t), that

are independent of the current system state. Varying the mean amplitude of the perturbations

will show how sensitive the practical stability is to background noise. The practical stability

of the Rijke tube model to initial conditions has already been investigated by Juniper [17].

All physical thermoacoustic systems are subject to random noise, whether from incoming

flow fields, combustion processes or mechanical vibration. Various types of noise have been

shown to destabilise systems that are linearly stable when noiseless [42, 62, 63, 70]. Noise

resulting from entropy and vorticity has also been shown to play a part in the process [42].

Non-normality has been highlighted as a key factor in the amplification of noise [71], and the

susceptibility of a system to to be pushed out of the basin of attraction of the stable fixed

point.

Stochastic delay differential equations have been studied, but mainly with linear analyses

[70]. Ref. [70] showed that, for linear delay differential equations, additive noise has no

effect on stability boundaries. Other studies examine the stochastic effects of parametric and

multiplicative noise on a delay differential equation with a pitchfork bifurcation and show the

resultant changes in stability boundaries [72]. Ref. [72] uses the result of [70] as evidence that

additive noise will have no effect on stability boundaries. This chapter aims to demonstrate

that, in nonlinear systems, one of the key roles of noise is to force the system from one attracting

state to another, not necessarily to change the stability boundaries.
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4. NOISE INDUCED TRIGGERING

When stochastic forcing is present, probability density functions (PDFs) have been used

to describe the response of thermoacoustic systems in both experiments and theory [27, 42,

62, 73, 74]. These papers show that a single limit cycle creates a bimodal PDF, and that the

addition of other stable solutions creates additional peaks. These papers did not, however,

map these PDFs over a sub- or supercritical bifurcation as in other disciplines [72, 75].

The aim of this chapter is to investigate the effect that noise has on triggering in a simple

thermoacoustic system. The concept of a stochastic stability map is introduced in order to

visualise the practical stability of a system under stochastic forcing. This can be used to

define the region of practical stability of a thermoacoustic system for a given noise level. The

chapter ends with comparison of the stochastic stability maps of the Rijke tube model and an

experimental combustor. Good qualitative agreement is shown in both the stochastic stability

boundaries and the proposed mechanism of triggering.

4.2 Noise induced triggering

Chapter 3.2 assumes that the system is noiseless and deals with triggering to sustained oscil-

lations from a given initial state. This is useful because it gives the maximum initial energy

below which all states decay to the fixed point at zero (or to the lower stable limit cycle) in

a noiseless system. This section examines the effect of forcing the system with low levels of

noise.

The bifurcation diagram in Figure 4.2 is shown for the noiseless system. In the bistable

region, where both a stable fixed point at zero and a stable limit cycle exist, the system can

trigger from the former to the latter if perturbed strongly enough and this can occur via the
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Figure 4.2: Bifurcation diagram for the 20-Galerkin mode system with τ = 0.02. Dotted lines are
steady states (fixed points), undotted lines are limit cycles. A solid line represents a stable solution,
and a dashed line represents an unstable solution.
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4.2 Noise induced triggering

unstable limit cycle. Refs. [1, 17] show that the basin of attraction of the unstable limit cycle

contains states with lower energy than the minimum energy on the limit cycle, due to non-

normal and nonlinear growth around the unstable limit cycle. Therefore low amplitude noise

may be enough to cause triggering via this mechanism.

In this section, we consider triggering to the stable limit cycle in Figure 4.2. The practical

stability of the system will be examined when stochastic noise is present. Low levels of noise will

be seen to initiate triggering and cause the system to be practically unstable in some operating

conditions. Multiple random noise signals will be used to examine the practical stability of the

system in a probabilistic manner.

4.2.1 Noise definition

Noise can be divided conceptually into four types: additive noise, where a small forcing is added

continually to the system; parametric noise, where coefficients in the governing equations vary;

multiplicative noise, where noise amplitude is proportional to the current state of the system

[62]; and modal noise, where energy is redistributed between the Galerkin modes without any

overall change in energy.

Noise is added to the heat release term in equation (2.9) to give equation (4.3), where uN
is the noise term.

d
dt

(
η̇j
jπ

)
+ jπηj + ζj

(
η̇j
jπ

)
+ 2β sin(jπxf )

(∣∣∣∣13 + uf (t− τ) + uN (t− τ)

∣∣∣∣ 12 − (1

3

) 1
2

)
= 0,

(4.3)

This simple noise model examines the response of the heat release to base flow noise at

the wire. (General base flow noise propagating through the tube would require the tube

boundary conditions to be relaxed, which is beyond the focus of this study.) The noise profile

is independent of the current state of the system when added to uf , but the action of the

noise is not purely additive or independent of the system state because it must combine with

uf within the modulus and square root. It is a mixture of multiplicative and additive noise.

A purely additive noise signal will be analysed in section 4.3.1 and shown to produce similar

results.

The noise signal is generated by defining an amplitude distribution in the frequency domain

and assigning random phases to each discretised frequency. An inverse Fourier transform is

applied to the noise frequencies to form the noise signal in the time domain. This method allows

us to control the noise spectrum, and results in a signal that is random and non-periodic over

the time domain. We have found that results for this simple noise model are qualitatively
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Figure 4.3: Pink noise profile in (a) the frequency domain and (b) the time domain, with a strength of
0.5%. The enlarged portion of the trace in (b) is 20 time units long.

similar to those using noise generated by the rigorously stochastic Ornstein-Uhlenbeck process

[76].

The Rijke tube model used in this thesis was shown in chapter 3 to respond more strongly

to low frequency noise [1]. Noise that has higher amplitudes at low frequencies, herein referred

to as pink noise, will be used for the remainder of this chapter. A sample pink noise spectrum

and time domain trace are shown in Figure 4.3. The spectrum is chosen to be a smooth

function that has higher amplitude at lower frequencies. Higher frequency noise, which has

lower correlation time, also induces triggering but requires a higher noise strength.

The noise profile is not periodic so the maximum amplitude is not a good measure of the

noise strength. The noise strength in this chapter is quantified by the averaged absolute value

of the noise signal, uN , normalised by u0. A root mean square measure could also have been

used.

It was shown in §3.2 that the unstable limit cycles act as unstable attractors, and have

a basin of attraction which contains states of higher and lower energy than that of the limit

cycle itself. It seems logical to suppose, therefore, that if the system can reach these basins

of attraction from the non-normal and non-linear growth of noise, then triggering may occur.

The self-sustained oscillations that result from this process have sometimes been referred to as

pulsed oscillations [26, 42]. In this section, we consider triggering to the lower energy branch

of the bifurcation diagram in Figure 4.2.

4.2.2 Triggering mechanism

When sufficient noise is added, the model triggers to self-sustained oscillations as expected. If

the strength of a particular noise signal is increased to the point where it first triggers then

the system evolves via the unstable limit cycle. This is shown in Figure 4.4a and 4.4b, where

a fractional increase in noise strength results in triggering. If the noise strength is increased

36



4.2 Noise induced triggering

−1

0

1

P
re

ss
u
re

1

−1

0

1

−1

0

1

0 5000 10000
0

0.2

Time

E
n
er

g
y

 

 

(a) 0.7466% noise

S U

0 5000 10000
0

0.2

Time

 

 

(b) 0.7467% noise

S U

0 5000 10000
0

0.2

Time

 

 

(c) 0.8000% noise

S U

Figure 4.4: The system behaviour with β = 0.8 for a noise profile with amplitudes of (a) 0.7466%, (b)
0.7467%, (c) 0.8000%. The role of the unstable limit cycle in the triggering process is evident in (a)
and (b), where a small increase in noise results in triggering. With the higher noise amplitude in (c),
however, the system triggers directly to the stable limit cycle. Pressure traces in this chapter are shown
for the fundamental mode only, which contains most of the perturbation energy.

further then the system evolves directly to the stable limit cycle. This is shown in Figure 4.4c

and in Ref. [1].

At the limit of triggering, the trajectory of the system is affected by the proximity of

the unstable limit cycle to the stable fixed point at zero. In Figure 4.6 we plot the system

response to noise at the limit of triggering for the three values of β identified in Figure 4.5.

In Figure 4.6c, only weak noise is required to reach the unstable limit cycle and the system

stays near the unstable limit cycle for many cycles. In Figure 4.6b, stronger noise is required

to reach the unstable limit cycle and the system stays near the unstable limit cycle for few

cycles.

A conceptually different response is shown in Figure 4.6a, where the energy of the unstable

limit cycle is close to that of the stable limit cycle. (Energy alone is not enough to quantify
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Figure 4.5: Bifurcation diagram showing β values considered in Figure 4.6.
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Figure 4.6: Triggering at three different values of β, as illustrated by Figure 4.5. Noise is applied with
strength (a) 1.2%, (b) 0.73% and (c) 0.25%.
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Figure 4.7: Results from 4000 runs of 10000 time units with randomly generated pink noise. The plots
show (a) the percentage of triggering incidences and (b) the average time to triggering, for noise of
strengths 1.5%, 1% and 0.5%. Fainter points in (b) have larger errors due to their low triggering rate.
Arrows show the direction of increasing noise.

the proximity of two trajectories in N -dimensional state space, but both trajectories are rich

in the lower Galerkin modes and are close in state space.) The strong noise in this simulation

quickly triggers the system to the stable limit cycle and is also strong enough to dislodge the

system back to the fixed point at zero. The ability of the noise to link the basin of attractions

of the stable limit cycle and the fixed point at zero is examined further in §4.2.3.

The pressure trace of Figure 4.4b is similar to that seen in the experiments of Ref. [27, fig.

15b], in which the oscillations "first jump up rapidly, then stay relatively constant, and then

smoothly increase" . These experiments could indicate the presence of an unstable attractor

in a real combustor.

The region of practical instability for a particular noise strength can be visualised by exam-

ining the trends of repeated runs. Here 4000 evolutions of 10000 time steps are calculated for

each value of β and noise strength, and the trends are plotted in Figure 4.7. The percentage

of runs that results in triggering is shown in Figure 4.7a for three different noise levels. For
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4.2 Noise induced triggering

each noise level, there is a sharp transition between the β values that do and do not result in

triggering. The points are fitted with functions of the form y = 50 erf (a (x− µ)) + 50, where

a and µ are scaling and shifting constants. As noise strength increases, this transition occurs

at lower values of β, further away from the Hopf bifurcation. This shows qualitatively the

same result as Ref. [75, Fig. 10], where the most probable amplitudes and average amplitudes

are plotted for an electronic oscillator with increasing noise. Above the linear stability limit

(β > 0.866), all runs reach the limit cycle. This is due to linear amplification of perturbations

followed by nonlinear saturation to the limit cycle, rather than triggering.

It is also important to understand whether triggering is immediate or delayed. The trend of

average time to triggering is plotted in Figure 4.7b. We define triggering to have occurred after

the system has spent several cycles at the amplitude of the limit cycle. For each noise level,

the average time to triggering decreases as the system nears and enters the linearly unstable

region. An increase in noise strength results in a drop in average time to triggering at each

β location. Above the linear stability limit (β > 0.866), a finite time is still required for the

system to linearly amplify the perturbations and saturate to the limit cycle.

4.2.3 Stochastic stability maps

As demonstrated in §4.2.2, a system with a subcritical bifurcation can be triggered with low

amplitude noise. In the presence of noise, therefore, the linear stability limit in a bistable

region can be misleading. To analyse the practical stability of the system with stochastic

noise, a probabilistic approach must be used. The concept of a stochastic stability map is

introduced in this section.

Figure 4.7 shows how likely a system is to trigger as a function of noise and β but gives

no other information. For a given energy-time trace, such as Figure 4.8, the time spent by the

system at each energy level can be quantified by dividing the energy signal into quantisation
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Figure 4.8: An energy-time trace is taken for β = 0.85, with noise of 0.5%. The energy of the system
is divided into quantisation levels, and a normalised PDF created from the energy-trace. PDFs from
multiple time traces can be averaged for a set noise strength and β, to obtain a smoother curve which
is then used as a 2D slice in Figure 4.9.
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Figure 4.9: Probability Density Functions (PDFs) of the system energy with increasing velocity noise
strength, against the bifurcation diagram of the noiseless system. The bifurcation diagram for the
noiseless system is plotted for the mean energy of the limit cycles. The PDFs are generated with 4000
runs of 10000 time units for each β and noise strength combination. The vertical line marks the onset
of linear instability. A floor of 10−4 is applied to the PDF data for plotting.

levels and calculating a probability density function (PDF). In this figure, the increase in the

PDF around energy of 0.2-0.3 shows that the system has triggered.

If enough time series of a set length are examined for a particular β and noise strength,

but with randomly generated noise signals, then a smooth average PDF is created. The PDF

depends on the length of the time window, particularly for time windows that are of the same

order as the average triggering time. This sensitivity is particularly evident around the linear

stability limit, where triggering is very likely to occur for a given noise level. If enough time

series of a long enough length are used, however, then the PDFs become a useful quantity to

define a stable operating region.

For a fixed noise level, this process can be repeated at different β values and the 2D slices

combined to form a surface. We refer to this as a stochastic stability map, shown in Figure 4.9

for 6 levels of increasing noise, where the greyscale represents the PDF. The bifurcation diagram

of mean oscillation energy and the linear stability limit (vertical line) are superimposed onto

each map.

In the absence of noise, the system would only reach self-sustained oscillations beyond the

linear stability limit. In Figure 4.9a only a small amount of noise is applied. The stochastic

stability map shows that the system will reach self-sustained oscillations beyond the linear
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Figure 4.10: Probability Density Functions (PDFs) of the system energy at three values of β, as shown
in Figure 4.5, with increasing noise. The results are plotted for 4000 runs of 10000 time units for each
β and noise combination. A floor of 10−4 is applied to the PDF data.

stability limit, but also shows the system is likely to trigger slightly before it. As the strength

of noise is increased in Figure 4.9b-c, this region of triggering extends to lower values of β.

There is a sharp transition between β values that do and do not trigger, which is also seen in

Figure 4.7. The system starts from rest so, even beyond the linear stability limit, some time is

required for the system to reach the stable limit cycle. Consequently, the PDF value near the

fixed point at zero in Figure 4.9 and the average time to triggering in Figure 4.7b are non-zero.

Figure 4.9b-c correspond to the cases in Figure 4.6b and c, where the noise level is just high

enough to cause triggering, but not large enough to dislodge the system back to the fixed point

at zero. This is seen in the PDF diagrams, in which the system lies in two distinct regions.

One is between the fixed point at zero and the unstable limit cycle, the other is around the

stable limit cycle. This shows that, once the unstable limit cycle is reached, the system quickly

reaches the stable limit cycle and is unlikely to return. The PDFs in this region are qualitatively

the same the theoretical results from the combustion chamber model of [42].

In Figure 4.9d-f a bridge develops between these two regions around β = 0.8. This bridge

corresponds to energy traces such as in Figure 4.6a. Here the noise is strong enough to trigger

the system from the fixed point at zero to the stable limit cycle and also strong enough to

dislodge the system back from the stable limit cycle to the fixed point at zero. This forms

bursts of high energy oscillations as seen in Figure 4.6a. At the same noise level, the bridge is

much less pronounced at higher β, because the unstable limit cycle is further from the stable

limit cycle, and therefore the system is less easily dislodged from the stable limit cycle.

The formation of the bridge can be be seen clearly in Figure 4.10. This plots 2D slices

through the stochastic stability maps at three locations on the bifurcation diagram, as shown

in Figure 4.5. The PDFs of four different noise levels are compared at these three locations.
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4. NOISE INDUCED TRIGGERING

When the energy of the unstable limit cycle is high, as in Figure 4.10a, none of the noise

strengths result in triggering. As the noise increases, the spread around the fixed point at zero

increases. In Figure 4.10b, this spread comes close enough to the unstable limit cycle that

the system can trigger to the stable limit cycle. In Figure 4.10c, as the noise increases, the

probability of triggering and the spread around both stable solutions increase.

These results are qualitatively the same as those of Ref. [77], who studied a non-normal

model of magnetic energy in a turbulent dynamo, which exhibits a subcritical bifurcation. By

including multiplicative noise in the model, their system triggers from the zero fixed point

to the basin of attraction of a second fixed point. This lowers the PDF around the zero fixed

point and creates a new peak around the second fixed point. If their noise intensity is increased

further, their system can be dislodged back into the basin of attraction of the zero fixed point.

The same process can also dislodge their system into the basin of attraction of a third fixed

point.

System responses such as in Figure 4.6a, where the system displays quiet periods between

periods with self-sustained oscillations, were also predicted using multiplicative noise in the

model of [62, Fig. 5b]. It was assumed that this was due to the hysteresis region of a subcritical

bifurcation. This may be true in the case of multiplicative noise, which moves the stability

boundaries of the system, but is qualitatively different from the mechanism seen in this section.

Here the bimodal PDF results from noise dislodging the system from the stable limit cycle to

the fixed point at zero.

Ref. [71] neatly highlights the importance of non-normality in triggering by considering

a model of transition to turbulence. The probability of leaving the basin of attraction of the

fixed point at zero is plotted against a non-normality parameter for different strengths of noise

[71, Fig. 1]. This probability increases with the noise strength, and increases strongly with

the degree of non-normality. In combustors, the degree of non-normality and transient growth

is large [48]. The Rijke tube model exhibits transient energy growth with a factor of around

1.4, whereas more complex thermoacoustic models can have much larger factors [78]. This will

result in a stronger magnification of background noise and triggering with lower noise strengths.

4.3 Effect of different noise types

The noise term in equation (4.3) models the effect of velocity noise at the wire. The noise model

in this section is expanded to include parametric and multiplicative noise. Parametric noise

moves the stability boundaries relative to the system’s current state. This can temporarily
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4.3 Effect of different noise types

Figure 4.11: Physical effect of different noise types on the state of the system (pink circle). Additive
and multiplicative noise excite the system’s energy (εN and umN ), whereas parametric noise moves the
stability boundaries relative to the state of the system (βN and τN ).

make the system linearly unstable, or temporarily push the system into the basin of attraction

of the unstable limit cycle.

The new noise model is defined in equation (4.4), where ζjN (t), βN (t) and τN (t) are the

new parametric noise terms, umN (t− τ) is the multiplicative velocity noise term and εN (t) is

the additive noise term.

d
dt

(
η̇j
jπ

)
+ jπηj + ζj(1 + ζjN (t))

(
η̇j
jπ

)
+ 2β(1 + βN (t)) sin(jπxf )× . . .(∣∣∣∣13 + uf (t− (τ + τN (t)))× (1 + umN (t− τ))

∣∣∣∣ 12 − (1

3

) 1
2

)
= εN (t), (4.4)

The physical effect of the different noise types is summarised in Figure 4.11, superimposed on

the stability surface shown in Figure 2.3. The effect of the additive and velocity multiplicative

noise (εN and umN ) is to excite the energy of the system, but the effect of the parametric noise,

here βN and τN , is to move the system relative to the location of the stability boundaries. A

bifurcation surface similar to that of Figure 2.3 is formed when varying ζ instead of τ for the

y-axis. Damping noise (ζjN ) therefore has a similar effect to time delay noise (τN ).

The noise terms are generated in the same manner as Figure 4.3, but in this section the noise

amplitude is measured in terms of the standard deviation, as a percentage of the unperturbed

value. For the additive noise term, which has no mean value, a reference value of 1 is used.
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4. NOISE INDUCED TRIGGERING

4.3.1 Additive Noise

It has been shown with linear analyses that pure additive noise does not change stability

boundaries [70]. In a nonlinear system, however, there may be multiple stable states. Additive

noise does not change the stability boundaries of the system, but it may excite the system into

the basin of attraction of another stable state. This section aims to show that purely additive

noise will affect the practical stability of the system in a similar way to the velocity noise used

in section 4.2. A purely additive noise signal is defined, ε(t), with the same low frequency

spectrum as uN (t) in section 4.2.1. The strength of the noise is quantified by the averaged

absolute value of the noise trace, normalised by one half of the pressure non-dimensionalisation

quantity, p0γM .

d
dt

(
η̇j
jπ

)
+ jπηj + ζj

(
η̇j
jπ

)
+ 2β sin(jπxf )×

(∣∣∣∣13 + uf (t− τ)

∣∣∣∣ 12 − (1

3

) 1
2

)
= εjN (t), (4.5)

The stochastic stability map for the system with additive noise is shown in Figure 4.12.

The trends are qualitatively similar to those obtained for the velocity noise. The stochastic

stability map shows that the system will definitely reach self-sustained oscillations beyond the
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Figure 4.12: Probability Density Functions (PDFs) of system energy with increasing additive noise
strength, against the bifurcation diagram of the noiseless system. The bifurcation diagram for the
noiseless system is plotted for the mean energy of the limit cycles. The PDFs are generated with 4000
runs of 10000 time units for each β and noise strength combination. The vertical line marks the onset
of linear instability. A floor of 10−4 is applied to the PDF data for plotting.
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Figure 4.13: Differential Probability Density Functions (PDFs) of system energy with increasing wire
temperature noise strength (βN ), relative to the PDFs of the system under additive noise of amplitude
1% alone, against the bifurcation diagram of the noiseless system. The bifurcation diagram for the
noiseless system is plotted for the mean energy of the limit cycles. The PDFs are generated with 4000
runs of 10000 time units for each β and noise strength combination. The magenta line marks the onset
of linear instability. A floor of 10−4 is applied to the PDF data.

linear stability limit, but also shows that the system is likely to trigger slightly before it. As

the strength of noise is increased in Figure 4.12 (b-c), this region of triggering extends to lower

values of β. In Figure 4.12 (d-f), a bridge again develops between the two stable regions around

β = 0.8.

4.3.2 Parametric noise

4.3.2.1 Wire temperature

Figure 4.13 shows a differential stochastic stability map for for the wire temperature noise

(βN ). The multiplicative and parametric noise terms are applied to the system at the same

time as applying 1% additive noise (Figure 4.12b). The noise results are therefore presented

as differential PDFs, which have the logarithmic value:

Differential PDF = log10

PDFβ
PDFadd 1%

(4.6)

As defined by equation (4.6), a plotted value of 100.2 means that the system is 100.2 (1.6)

times more likely to exist at that particular energy level than with 1% additive noise alone.
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4. NOISE INDUCED TRIGGERING

Figure 4.14: Differential Probability Density Functions (PDFs) of system energy with increasing time
delay (τ) noise strength, relative to the PDFs of the system under additive noise of amplitude 1% alone,
against the bifurcation diagram of the noiseless system. Similar to Figure 4.13 but for time delay noise.

As the amplitude of wire temperature noise increases so does the likelihood of triggering,

because the differential stochastic stability map is positive (orange) at the low β end of the

stable limit cycle1. This positive (orange) region forms a ‘C’ shape around a negative (blue)

region at higher β. This means that the probability distribution around the stable limit cycle

at higher β (e.g. 0.85), has become shallower and wider. This indicates that the system is

varying in amplitude more around the stable limit cycle. A positive region is also present

around the unstable attractor, suggesting that the system is more likely to be excited and

attracted towards it. A large negative region also develops at low energies near the Hopf point.

This is because the β noise at this location sometimes temporarily pushes the system into a

linearly unstable region, increasing the chance of triggering.

4.3.2.2 Time delay

Figure 4.14 shows the equivalent results for time delay noise (τN ). They are slightly more

complicated to analyse than the β noise results, because the magnitudes of the differential

PDFs are lower, but important characteristics of parametric noise can still be recognised.

1An error in the code resulted in the non-dimensional wire temperature noise, (βN ), being normalised by
β2 instead of β, thus the actual noise strength for βN in this chapter is 0.7-0.9 times smaller than the presented
value. This does not change the qualitative trends observed
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The differential PDFs are defined relative to the PDF surface with 1% additive noise alone

(Figure 4.12(b)). Figure 4.12(b) shows that the probability of triggering is most sensitive to

changes in β when β ≈ 0.825. This is because the probability of triggering has a similar error

function profile to that of Figure 4.7a, the gradient of which is fitted by a Gaussian distribution

which represents the sensitivity to triggering in terms of the parameter β. The peak of the

Gaussian distribution is at β ≈ 0.825. In Figure 4.14, at β ≈ 0.825, the time delay noise

increases the probability of reaching the unstable attractor and triggering.

A physical explanation of this can be visualised using the limit cycle surface in Figure 4.11, if

the current system state (pink dot) were underneath the overhang of the subcritical bifurcation.

For a given additive noise level, the probability of triggering is most sensitive to changes in β

when the system is excited just enough to be attracted towards the unstable attractor. This

can be thought of in Figure 4.11 as when the system (pink dot) bounces just high enough

to reach the unstable limit cycle surface (or more accurately a point just below the surface

because the surface is attractive). If the time delay noise temporarily increases τ , then the

unstable attractor exists at a lower value of β, because the limit cycle surface is curved in the

β-τ plane. The system may therefore have enough energy to be attracted to the unstable limit

cycle surface at τ + dτ when it did not have enough energy to be attracted at τ . The time

delay noise therefore has the largest effect at the most sensitive region for triggering.

For β > 0.825, the probability of triggering is actually impaired by the time delay noise,

because the system can be shifted to τ − dτ , where the unstable limit cycle surface exists at

lower β values.

4.3.2.3 Damping

The results for damping noise (ζN ) are plotted in Figure 4.15. They are similar in nature to

those for the time delay noise in Figure 4.14. The parametric noise has the largest effect where

the probability of triggering is most sensitive.

4.3.3 Multiplicative noise

Figure 4.16 shows the equivalent results for multiplicative velocity noise (umN ). In Fig-

ure 4.16(a), the multiplicative noise seems to inhibit triggering. As the noise intensity increases

in Figure 4.16(c-f), however, the probability of triggering strongly increases at lower β values.

A very negative region also develops at low energies near the Hopf point, in a similar manner

to the results for wire temperature noise. The spread of the system state around the limit cycle

is also increased due to the multiplicative noise.

47



4. NOISE INDUCED TRIGGERING

Figure 4.15: Differential Probability Density Functions (PDFs) of system energy with increasing damp-
ing (ζ) noise strength, relative to the PDFs of the system under additive noise of amplitude 1% alone,
against the bifurcation diagram of the noiseless system. Similar to Figure 4.13 but for damping noise.

Figure 4.16: Differential Probability Density Functions (PDFs) of system energy with increasing mul-
tiplicative velocity (umN ) noise strength, relative to the PDFs of the system under additive noise of
amplitude 1% alone, against the bifurcation diagram of the noiseless system. Similar to Figure 4.13
but for multiplicative noise.

48



4.4 Comparison against experimental combustor data

Figure 4.17: Differential Probability Density Functions (PDFs) of system energy with increasing noise
strength of the combined noise signals, relative to the PDFs of the system under additive noise of the
same amplitude, against the bifurcation diagram of the noiseless system. Similar to Figure 4.13 but
for all noise signals at the same amplitudes, compared to the additive noise results for the equivalent
amplitude.

4.3.4 Combined noise

In this section the additive, parametric and multiplicative noise terms are all applied simulta-

neously, each with the same noise strength. The differential PDF in each subfigure is compared

to the equivalent noise strength with additive noise alone, not just to the 1% additive noise

results as defined before in equation (4.6). Each of the six subfigures of Figure 4.17 is therefore

compared with the equivalent subfigure in Figure 4.12.

The effect of combining the noise types can be seen to increase the probability of triggering,

and reduce the probability of the system remaining around the stable fixed point, E ≈ 0. As

noise intensity increases there is a large increase in probability of the system transitioning

between the stable limit cycle and the zero fixed point, indicated by the positive differential

PDF in the bridge region.

4.4 Comparison against experimental combustor data

The triggering mechanism in this chapter was proposed for a simple theoretical thermoacoustic

model, consisting of a simplified hot wire heat source and 1D duct. After the publication in

2011 of this mechanism and the methods of Section 4.2 [2], a thorough experimental study of
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4. NOISE INDUCED TRIGGERING

(a) The evolution of acoustic pressure and their cor-
responding phase portrait at xf = 0.36 for noise
levels of 38.8 Pa (a and b), 57.2 Pa (c and d) and
100 Pa (e and f). The time delay chosen for recon-
structing the phase space is τ = 13.

(b) Stochastic stability map for system for noise levels
(a) 18.6 Pa, (b) 38.8 Pa, (c) 57.2 Pa and (d) 100 Pa.

Figure 4.18: Time traces and stochastic stability map for the experimental system of Jegadeesan
and Sujith, under forcing with different amplitudes of quasi-white noise. The system undergoes the
same triggering mechanism as the theoretical Rijke tube model; for low amplitudes of noise the stable
limit cycle is reached via the unstable limit cycle (a(a), b(b-c)), for large amplitudes of noise the
system changes between the stable limit cycle and stable fixed point (a(c)) and therefore the bridging
phenomenon is seen in the stochastic stability map (b(d)). Both figures are reproduced from Ref. [65]
with kind permission of the authors.

these concepts was completed in 2012 by Jegadeesan and Sujith [65, 66] at IIT Madras. With

their kind permission, their results are reproduced in this section to demonstrate the similarity

between the results from the simple Rijke tube model and the results from an experimental

combustor.

The experimental combustor of Jegadeesan and Sujith consists of a non-premixed flame

(diluted methane/oxygen) in a cylindrical duct. The flame can be moved axially in the duct and

this position is the parameter used in the bifurcation diagrams. The flame is driven by acoustic

noise from a loudspeaker located in a plenum at the base of the fuel tube, and therefore the

noise appears as a fluctuation in the fuel flow rate. Pressure measurements, chemiluminescence

measurements and high speed photography are used to examine the dynamics of the flame.

The flame was observed to have a bistable region caused by a subcritical bifurcation, when

the flame is located one third of the way along the duct. Harmonic forcing was used to estimate
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the amplitude of the unstable limit cycle in this bistable region, referred to as the ‘triggering

amplitude’ in some literature. At some operating conditions, noise induced triggering was

probable even when the amplitude of the noise was less than 5% of the amplitude of the stable

limit cycle.

Figure 4.18 shows sample time traces for the system when forced with increasing amplitudes

of noise in the bistable operating region. The system undergoes the same triggering mechanism

as the theoretical Rijke tube model; for low amplitudes of noise the stable limit cycle is reached

via the unstable limit cycle (Figure 4.18 a(a), b(b-c)), for large amplitudes of noise the system

changes between the stable limit cycle and stable fixed point (Figure 4.18 a(c)) and therefore

the bridging phenomenon is seen in the stochastic stability map (Figure 4.18 b(d)).

4.5 Conclusions

Triggering is seen to be strongly dependent on the strength of additive noise and the parameter

β, and the system is shown to be unstable below the linear stability limit when forced with low

amplitude stochastic noise. As noise strength increases, the system becomes unstable further

from the Hopf point, increasing the region where triggering may occur. As noise strength

increases further it becomes possible for the system to unsettle itself from the stable limit cycle

and return to the stable fixed point, via the unstable limit cycle. This results in short bursts

of high energy oscillations.

Stochastic stability maps are introduced as a method of visualising the stability of a ther-

moacoustic system when forced by stochastic noise. Stochastic stability maps quantify the

probability of the state of the system lying in a particular region, and highlight the bimodal

PDFs in operating regions with potential for triggering. The stable oscillation amplitudes when

the system is forced by low amplitude noise agree well with those predicted by the noiseless

bifurcation diagram. If the level of noise in a real combustion system, such as a gas turbine,

is known, then a stochastic stability map could be used to predict a region of safe operation.

Alternatively, multiple experimental results could be used in a stochastic stability map to visu-

alise the stability of the system under operating conditions. The stochastic stability maps and

triggering mechanism of the Rijke tube model are seen to have a very similar form to those of

an experimental combustor.

Parametric and multiplicative noise are also shown to affect the probability of the system

triggering. Non-dimensional wire-temperature noise (βN ) and multiplicative velocity noise

(umN ) are seen to have a larger effect than parametric noise in the time delay (τN ) and

damping (ζjN ). Noise terms that excite the energy of the system, such as the velocity additive
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4. NOISE INDUCED TRIGGERING

noise in section 4.2.2 and the external noise in section 4.3.1, are demonstrated to be the most

dangerous for triggering.

In a real gas turbine combustor there will always be a combination of additive, paramet-

ric and multiplicative noise, from sources such as: additive noise from incoming flow fields,

turbulence in the compressor and vibration of the chassis, parametric noise from turbulence

and vibration in the fuel pipelines, multiplicative noise from the boundary layers and flow-

combustion interaction in the combustion chamber. As such, the combustor is continuously

forced by non-negligible noise sources and stability of the engine should be measured in terms

of practical stability rather than linear stability.

This chapter demonstrates that small amplitudes of noise can cause thermoacoustic systems

to transition between different attractors. In the case of the hot wire Rijke tube model there

are only two types of attractors: fixed points and limit cycles. In thermoacoustic systems

with flame models, such as that presented in chapter 7, there are often many other types of

attractors, such as period-2n, quasiperiodic or chaotic oscillations, and there may be many

stable attractors and many unstable attractors that exist at the same operating condition

[79]. In these cases noise induced transitions become more complicated, because the system

may evolve via more than one unstable attractor before a stable attractor is reached. The

stochastic methods of this chapter are not applied to the more complicated thermoacoustic

models in the latter half of this thesis, but qualitatively similar results are expected.
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Part II

Methods for finding limit cycles in
large thermoacoustic systems
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Chapter 5

Matrix-free methods and continuation
analysis

In chapters 3 and 4 a triggering mechanism was presented, whereby a thermoacoustic system

transitions from a stable fixed point to a stable limit cycle, via an intermediate unstable limit

cycle. The eventual behaviour of the system is governed entirely by the location and form

of the attractors involved. It is therefore useful to have efficient methods of finding the fixed

points and limit cycles in a thermoacoustic system.

In the Rijke tube model, which has O(10) variables, the fixed point and limit cycle at-

tractors were found using a continuation method suitable for delay differential equations [4].

Continuation methods have been used in the field of thermoacoustics to calculate limit cycles

and sub-/supercritical bifurcations [16, 17, 18, 26], but only for small systems with O(10) vari-

ables. To investigate more complex thermoacoustic systems that include coupled flame-acoustic

interaction, however, it is necessary to model the flame shape, which even in reduced order

models requires O(102 − 103) variables. For models of that size, most continuation methods

are practical for finding fixed points, but are impractical for finding limit cycles. This chapter

presents an efficient method for finding limit cycles of large thermoacoustic systems.

The content of this chapter is published in Ref. [80], co-authored with Simon Illingworth

and Matthew Juniper.

5.1 Introduction

Continuation methods rely on the solution of a series of linear equations to find limit cycles

by iteration. The exact solution of these linear equations, however, becomes prohibitively

expensive for larger systems, both in terms of computational time and memory usage.
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5. MATRIX-FREE METHODS

Matrix-free iterative methods can reduce both the time and memory required to solve these

linear equations [81, 82]. Matrix-free methods have recently been used to find cusp bifurcations

[83] and limit cycles in thermal convection [35], with O(103) variables. Continuation of steady

states has been performed for thermal convection [84] using the matrix-free algorithms of the

LOCA package [5], of which some subroutines are used in this chapter. Limit cycles have also

been extracted from turbulent Couette flow [85] with O(105) variables, and turbulent pipe flow

[86] with O(104) variables, using matrix-free methods and hook-step optimisation routines. For

larger systems, multiple-shooting techniques have been used to reduce the computational time

to find limit cycles, and have been used for Navier-Stokes flows [87] and ocean modelling [88],

with up to O(106) variables. The stability of the resulting solutions can also be found using

matrix-free methods, such as the Arnoldi [89] or Krylov-Schur [90] algorithms.

Because combustion and fluids systems are dissipative, only a few bulk fluid motions are

influential in the long time limit. This means that matrix-free methods are particularly well

suited to finding limit cycles. The iterative methods inexactly solve the linear equations by im-

plicitly using these influential bulk motions, whilst ignoring features that are quickly dissipated

in time.

The aim of this chapter is to present a method for finding limit cycles in large thermoa-

coustic systems, using an iterative matrix-free continuation technique. The technique is able

to calculate the safe operating region of the thermoacoustic system in the time domain, and

find the mode shape and frequencies of any limit cycles. By finding separate Hopf bifurcations

it is possible to follow separate branches of limit cycles for systems that have multiple unsta-

ble frequencies. The chapter begins by introducing two shooting methods and by introducing

the iterative techniques used to converge to the limit cycles. The chapter then describes how

the iterative process can be achieved with matrix-free techniques. Additional methods of in-

creasing the efficiency of the continuation process, such as invariant subspace preconditioning,

adaptive step sizing, and higher order prediction are then discussed. The numerical methods

are demonstrated on a model of a ducted diffusion flame in chapter 6, and a ducted premixed

flame in chapter 8.

5.2 Shooting methods

Continuation methods examine nonlinear systems whose evolution is governed by:

dx(t)

dt
= F (x(t), λ), x(t) ∈ RN (5.1)
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5.2 Shooting methods

where x is the current state of the system, λ are parameters, and N is the number of variables

in the state vector. The governing equations are in most cases derived from the discretisation

of a PDE.

Limit cycles satisfy:

x(0) = x(T ) ,
{
T ∈ R+|T 6= 0

}
, (5.2)

where T is the period of the cycle. For nonlinear thermoacoustic systems with delays, however,

this condition is less simple because the governing equation becomes ẋ(t) = F (x(t), x(t− τ), λ)

and a limit cycle must satisfy x(−τ ≤ t ≤ 0) = x(T − τ ≤ t ≤ T ).

Delays are often used in low order thermoacoustic systems to model a convective time

delay, because these systems use simple polynomial expressions for the heat release at the

flame [17, 18]. Polynomial expressions have no ‘memory’ because the heat release value is only

dependent on the current velocity, so therefore a time delay in the velocity values must be

used to model a convective delay. When a flame surface is modelled explicitly and has a space-

dependent velocity field, however, then no time delay is required because the space-dependence

of the velocity field is defined by the ‘memory’ of the convective process. Because this chapter

is describing a continuation method that is suitable for studying flame-acoustic interaction,

where the flame field is modelled explicitly, systems without delays will be considered for the

rest of this chapter.

Shooting methods are most applicable for finding limit cycles of large systems. Shooting

methods find states at distinct locations on the limit cycle, but do not attempt to find the shape

of the cycle1. The current guess for a state on the limit cycle, x(0), is iterated in order to satisfy

the condition for a limit cycle that x(0) = x(T ), where x(T ) is found with a timemarching

process. Numerically, the iteration process is stopped when a specific level of convergence is

reached, ||x(T )− x(0)|| < ε, {ε ∈ R+|ε 6= 0}, where ε is small.

It should be noted that it is possible to perform the shooting methods of this chapter

with delay differential equations, with a small modification. First, the methods must iterate

several (n) states, x(−nτ/n), . . . x(−iτ/n), . . . x(0), 0 ≤ i ≤ n, rather than just iterating x(0).

Second, to begin timemarching at time 0, a polynomial fit must be applied to these n states

to describe the system evolution between −τ < t < 0, to use in the equations for evolution of

the system between 0 < t < τ . Third, the residual of each of the n states must be minimised,

||x(T − iτ/n)− x(−iτ/n)|| < ε, 0 ≤ i ≤ n, until a predefined level of convergence is reached.

There are two main shooting methods, which will be referred to in this chapter as standard

shooting and Poincaré shooting.
1 In contrast, collocation methods attempt to find the shape of the cycle in terms of piecewise polynomial

splines. This is too expensive for large systems.
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Figure 5.1: Standard shooting method to find a limit cycle. Given a current guess for a state on a limit
cycle, x(0), we timemarch forward T time units to x(T ), where T is our guess for the period. We then
iterate our starting guess, x(0), to minimise the length of the residual vector, x(0) − x(T ), (dashed
arrow).

5.2.1 Standard shooting

The standard shooting method used in this chapter finds, by iteration, a state on the limit cycle,

x(0), and the period of the limit cycle, T . The magnitude of the residual vector, r = x(0)−x(T )

(Fig. 5.1), is reduced to a predefined tolerance by a two-step iteration process. First, we

consider the evolution of the system when started from small perturbations around our current

guess [x(0), T ]. We generate a (N+1)× (N+1) Jacobian matrix, which relates a general small

change in [x(0), T ] to the resulting change in [x(0) − x(T ), θ], where θ is a phase condition

described later. Second, we solve a linear equation with the Jacobian matrix to find the

[∆x,∆T ] that we should add to our current guess, [x(0), T ], in order to move closer to the

limit cycle. If the magnitude of the residual is still too large, we repeat the first step from the

improved guess.

Equation (5.3) shows the linear equation for the nth iteration, where i and j are the row

and column indices of the matrix [91]. It has the standard form for multi-dimensional Newton

iteration, J∆x = −r .

(N+1)×(N+1) I −M
c

b

d


(N+1)×1 ∆x

∆T

 = −

(N+1)×1(x(0)− x(T ))n

θn

 (5.3)

N×N

Mi,j =
∂xi(T )

∂xj(0)
,

N×1

bi = −∂xi(T )

∂T
,

1×N
cj =

∂θ

∂xj(0)
,

1×1

d =
∂θ

∂T

x(0)n+1 = x(0)n + ∆x, Tn+1 = Tn + ∆T

There is an infinite number of points on a limit cycle that satisfy r = 0, however, so a

condition is required to fix the phase of the limit cycle (θ) and therefore provide a unique
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solution state. For a limit cycle in a thermoacoustic system, a suitable phase condition is that

the instantaneous acoustic pressure in the fundamental mode is zero, or that the instantaneous

acoustic pressure at a set location (x/L) of the combustor is zero. Where multiple acoustic

modes are important, the value x/L must be irrational so that this location does not coincide

with a node of any acoustic modes.

The jth column of the Jacobian matrix can be numerically found in two ways: first, by

perturbing xj(0), then timemarching forward and measuring the resultant change in x(T ),

or second, by timemarching the first variational equations (section 5.3). To fill the Jacobian

matrix for each linear equation, N timemarches are required. For large thermoacoustic systems,

with O(103) variables, it is therefore impractical to form the Jacobian matrices, because the

computational expense of timemarching is too high. This is the primary driver for the use of

matrix-free methods.

In equation 5.3, the characteristics of the system are contained in the monodromy matrix

M , which relates a change in x(0) to a change in x(T ). The eigenvalues of the monodromy

matrix are called Floquet multipliers. In a dissipative system, such as in thermoacoustics,

most of the Floquet multipliers are clustered near zero. These correspond to quickly dissipated

motions, because a change in x(0) causes very little change in x(T ). The remaining few Floquet

multipliers are not clustered near zero. These correspond to the bulk motions of the system,

because a change in x(0) causes a significant change in x(T ). These bulk motions will govern

the flame-acoustic interaction (§6.2.3.2).

5.2.2 Poincaré shooting

In the Poincaré shooting method, the solution is constrained to lie on a hyperplane that is

perpendicular (or nearly perpendicular) to the limit cycle [35]. The starting state lies on

the hyperplane, and is marched forward in time until it crosses the hyperplane again, in the

same direction as n̂ (Figure 5.2). With the Poincaré shooting method, therefore, the iteration

takes place in an N − 1 dimensional space, defined by n̂ · (x− x0) = 0, where x0 is a point

on the hyperplane. The iteration is equivalent to finding the fixed point of a Poincaré map.

The point on the hyperplane is taken as the current guess, or that of a nearby converged

solution, x0 = x(0). The normal to the hyperplane is taken as the normalised time differential,

n̂ = ˆ̇x(0). In the standard shooting formulation, the period, T , is required as a variable, but

in the Poincaré shooting formulation, the period is found as a byproduct of the timemarching

process.

The linear equation for Poincaré shooting is in an (N − 1) dimensional space, so an efficient

technique for projecting from N dimensions is required (and vice versa). This is known as
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Figure 5.2: Poincaré shooting method to find a limit cycle. The starting state, x(0), and end state, x(T ),
are constrained to lie on a hyperplane perpendicular to the limit cycle. The system is timemarched until
it crosses the Poincaré plane again, in the same direction as n̂. The period T is found as a byproduct.

parametrisation. One method of parametrisation is shown in Figure 5.3 for a 3 dimensional

case [35]. In Figure 5.3a, a 2D test plane is shown in xyz space. To parametrise the test

plane, it is projected onto yz space and then only information in the yz plane is used in the

iteration process. In this example the yz plane is chosen because the angle between the test

plane and the yz plane is less than the angle between the test plane and the yx or xz planes.

This is equivalent to projecting away the information corresponding to the dimension k with

the highest value of |nk| , 1 ≤ k ≤ N . Using the notation and method of Sanchez [35], the

projection operator to discard the information in the kth dimension is defined as Rk, where:

Rk {x1, x2, . . . , xk−1, xk, xk+1, . . . , xN} = {x1, x2, . . . , xk−1, xk+1, . . . , xN}

In the two dimensional example of Figure 5.3b, the action of the projector is R1(p) = p̄,

R1(p0) = p̄0, where an overbar is used to denote a (N − 1)D state on the plane. To reverse

the process, if the components of the points are written as p = [px, py, pz], then px = p0x +

ny(p̄−p̄0)/nx, and py = p̄y (note that ny is negative). The inverse process to Rk is to return from

the projected plane to the original plane, which is achieved by the operator Ek. Following the

two dimensional argument, this is defined as:

Ek {x1, x2, . . . , xk−1, xk+1, . . . , xN} =

{
x1, x2, . . . , xk−1, x0k −

n̄ · (x̄− x̄0)

nk
, xk+1, . . . , xN

}

The iterative procedure is modified from equation (5.3), and now involves minimising the

residual, r̄(x(0), λ) = x̄(0)− x̄(T ), with the following steps :
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(a) 3D diagram of parametrisation of a
plane.

(b) 2D diagram of parametrisation of a
plane.

Figure 5.3: Parametrisation method, which takes an (N − 1) dimensional hyperplane with N variables,
and projects it onto a space with only (N − 1) variables. This is a quick method of reducing the number
of variables, so that the Poincaré shooting method can iterate in (N − 1) dimensions.

(N-1)×(N-1) I −M


(N-1)×1 ∆x̄

 = −

(N-1)×1(x̄(0)− x̄(T ))n

 (5.4)

(N-1)×(N-1)

Mi,j =
∂x̄i(T )

∂x̄j(0)
, xn+1(0) = xn(0) + Ek (∆x̄) , x0 = xn(0), n = ˆ̇x

n
(0)

The Poincaré shooting formulation has several advantages, most notably that if the plane

is perpendicular to the cycle, the eigenvalues of the monodromy matrix (M) are the Floquet

multipliers (without the trivial multiplier of 1 which has an eigenvector in the direction of ẋ(0)),

and that the eigenvalues of the Jacobian matrix are shifted Floquet multipliers, eigJ = 1−eigM .

This is not true for the standard shooting method, because the border of the monodromy matrix

contains terms that relate to the period (b, c, d in equation (5.3)), and therefore the eigenvalues

are not shifted Floquet multipliers. In continuation methods, the stability of the limit cycles

is determined by these Floquet multipliers. With the Poincaré shooting method, the Floquet

multipliers that are calculated when finding the stability can then be used directly to form

a preconditioner for the Jacobian. This can significantly reduce the number of timemarches

required to solve the next linear equation (see sections 5.4.1 and 6.2.4.1). The other main

advantage of the Poincaré shooting formulation is that it is easier to find bifurcations of the

limit cycle, such as Neimark-Sacker or period-doubling bifurcations.

The disadvantage of the Poincaré shooting method is that accurate techniques must be used

to detect the exact crossing point on the hyperplane, x(T ). Depending on the timemarching
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method used, this may be difficult to retrofit into existing thermoacoustic codes, and this may

introduce some noise into the derivatives that form the Jacobian. In the ducted diffusion flame

model of section 6.1, the exact crossing point of the hyperplane is found by varying the final

timestep with Newton-Raphson iteration until the distance between the end of the trajectory

and the hyperplane is less than a predefined tolerance.

5.3 Matrix-free methods

As stated in section 5.2.1, when finding limit cycles by the standard shooting method, N

timemarches are required to form the Jacobian matrix (N − 1 for Poincaré shooting). This

is unfeasible for large thermoacoustic systems. Alternative methods are therefore required to

solve the Newton equation without having to form the Jacobian.

Matrix-free methods are those that solve the linear equation, J∆x = −r , without ever

requiring the matrix J to be explicitly defined. The methods are iterative and only require

matrix-vector products, i.e. Jv, where v is an arbitrary vector. This differs from many conven-

tional methods of solving linear equations, where the matrix J is defined and then decomposed.

5.3.1 GMRES

The matrix-free method used in this chapter to solve J∆x = −r is the Generalised Min-

imal Residual method (GMRES) [92]. GMRES uses k matrix-vector products to define a

k-dimensional Krylov subspace:

Kk = span
{
r0, Jr0, J

2r0, J
3r0, ..., J

k−1r0

}
,

where r0 ≡ −r−J∆x0, and ∆x0 is an initial solution guess, often taken as the right hand side,

−r.
The vectors r0, Jr0, J

2r0, . . . become almost linearly dependent [93], so the standard Arnoldi

method is used to find orthonormal vectors, q
1
, . . . , q

k
, that span the Krylov subspaceKk. Mod-

ified Gram-Schmidt methods with re-orthogonalisation are generally used to orthonormalise the

vectors for large systems, because the standard Gram-Schmidt method suffers from numerical

problems with large state vectors.

In each Krylov subspace, the current guess for the solution, ∆xk, is changed to minimise

the residual:

resk = ||−r − J∆xk|| where ∆xk ∈ Kk
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If convergence occurs, where resk < εconv, the iterative procedure stops. If resk > εconv,

another matrix-vector product is taken to form Kk+1. Another Arnoldi step is taken, to add

another orthogonal direction q
k+1

. The residual is then minimised in this extra direction.

The vectors q
1
, . . . , q

k
are unchanged in Kk+1, and therefore the GMRES method converges

monotonically.

5.3.2 Finite difference matrix-vector products

Matrix-free methods require accurate evaluation of general matrix-vector products (Jv). In

the case of the Jacobian matrix, the matrix-vector product can be approximated by finite

differences, because the Jacobian matrix is formed of partial derivatives [82]. In this section, a

mapping operator, A, which represents the time marching process, is defined as:

x(T ) = A (x(0))

The spatial part of the Jacobian matrix is defined in equation (5.3), and can be written as:

Jij =
∂ (xi(0)− xi(T ))

∂xj(0)
(5.5)

The matrix-vector product for arbitrary vector v can therefore be approximated by equation

(5.6), where δ is small:

Jv = v − A(x(0) + δv)−A(x(0))

δ
+ O(δ) (5.6)

During the GMRES solution, evaluating each matrix-vector product therefore requires one

timemarch, to calculate the A(x(0) + δv) term. In the standard shooting formulation, the

phase (θ) components of the Jacobian matrix are also partial differentials (b, c, d in equation

(5.4)), and can similarly be calculated by a finite difference approach. The finite difference

matrix-vector product approximation is implemented in the Trilinos NOX/LOCA solvers [5].

Finite difference matrix-vector products are simple to evaluate, but numerical problems may

arise if the variables in the state vector are weighted poorly. This can occur when the variables

are not non-dimensionalised, or when the variables act at different scales.

5.3.3 First variational matrix-vector products

The matrix-vector product can also be calculated by taking the first variational equations,

sometimes referred to as the tangent linear equations, and integrating them in time. This

approach is used in the Navier-Stokes continuation of Sanchez [35, 87]. The first variational
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equations linearise about a trajectory, rather than a point. As in equation (5.1), for the kth

variable, the discretised nonlinear system evolves according to:

dxk
dt

= Fk (x)

If the first variational state is defined as X ′, then for the kth variable, the first variational

system evolves according to:
dX ′k
dt

=
∑
j

∂Fk (x)

∂xj
X ′j

If X ′(0) = v, then, for the standard shooting formulation, the matrix-vector product for a

general vector is:

Jv = v −X ′(T ) (5.7)

For the Poincaré shooting formulation the first variational approach requires an extra term

in the matrix-vector product evaluation. This arises because the time that the trajectory

crosses the hyperplane depends on the initial state. The trajectory end state, x(T ), lies on the

plane, but the combined trajectory and perturbation state, x(T ) +X ′(T ), lies off the plane. If

X ′(0) = Ek(v̄), then the first variational matrix-vector product is [93]:

Jv̄ = v̄ −Rk
(
X ′(T )− ẋ(T )

n̂ ·X ′(T )

n̂ · ẋ(T )

)
The matrix-vector products calculated by the first variational equations are more accurate

than those calculated by finite differences, and for highly nonlinear and chaotic systems the

finite difference products can be qualitatively different [94, 95]. More calculations are required

per timestep for the first variational equations, but the timestep can be made larger for the

same matrix-vector product accuracy. This could lead to a faster timemarching process, which

dominates the time taken to find a limit cycle. Although the first variational equations produce

more accurate matrix-vector products, they may be time consuming to retrofit to existing

thermoacoustic codes.

The accuracy of the finite difference and first variational approaches are compared in section

6.2.3.2, for the test model of a 2D diffusion flame in an acoustic duct.

5.4 Efficient continuation techniques

The matrix-free methods presented in the last section are efficient when converging to a single

limit cycle. This section presents three additional techniques that are efficient when finding a
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series of limit cycles that span a parameter range: invariant subspace preconditioning, adaptive

step sizing, and higher order prediction methods.

5.4.1 Invariant subspace preconditioning

To increase the convergence of GMRES, preconditioning can be used to reduce the spread of

the eigenvalues, or to decrease the non-normality of the matrix. The linear system can either

be left preconditioned, P−1J∆x = −P−1r, or right preconditioned, JP−1 (P∆x) = −r. The

preconditioner is worth evaluating if the convergence rate of the GMRES algorithm is improved

enough to outweigh the time in forming the preconditioning matrix. In continuation methods,

if the step between solutions is small, then information about the previous solution can be used

to form a preconditioner for the next. This is particularly useful where Krylov decompositions

can be recycled, with no need for further timemarching.

Preconditioning can be achieved with many techniques, such as ILU factorisations, multi-

grid methods and approximate inverse methods. For the continuation of limit cycles in large

systems, it is only practical to use preconditioners that can be evaluated with a matrix-free

method. One such method is to take the spectral information of J that is available from the

Arnoldi algorithm, and then use it to define an invariant subspace that is associated with a

particular set of eigenvalues [87, 96, 97] (an invariant subspace is simply one that, under the

action of an operator, maps onto itself). The eigenvalues of this invariant subspace can then be

altered to make the linear equation easier to solve, in a similar manner to eigenvalue deflation

in eigenvalue problems.

In a dissipative system, most of the eigenvalues of the monodromy matrix are clustered near

zero (section 5.2.1). When finding limit cycles in a dissipative system, most of the eigenvalues

of the Jacobian matrix are therefore clustered near (+1, 0), because the Jacobian matrix is

dominated by the (I−M) block (equation (5.3)). To reduce the eigenvalue spread in a shooting

formulation, the eigenvalues that are furthest away from the cluster at (+1, 0) should be moved

towards the cluster. The eigenvalues of interest are the eigenvalues of the monodromy matrix

that have the largest magnitude (from section 5.2.1). The eigenvalues can be found in a

matrix-free fashion with the Arnoldi algorithm or the Krylov-Schur algorithm of Stewart [90].

A k-dimensional partial-Schur decomposition of a matrix, J , takes the form JUk = UkSk,

where Uk is a (N × k) matrix with orthonormal columns, and Sk is an upper triangular (k × k)

matrix.
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N×N
J



N×k
↑ ↑ ↑
û1 û2 . . . ûk
↓ ↓ ↓


=

N×k
↑ ↑ ↑
û1 û2 . . . ûk
↓ ↓ ↓



k×k
(Jû1) · û1 (Jû2) · û1 . . . (Jûk) · û1

(Jû2) · û2 . . . (Jûk) · û2
. . .

...
(Jûk) · ûk



From the construction of the partial-Schur decomposition, the inverse must exist, J−1Uk =

UkS
−1
k , because S−1

k must exist as long as trace(Sk) 6= 0. A partial-Schur decomposition is

usually formed by taking the Arnoldi decomposition, JVk = VkHk, where Hk is a k dimensional

upper Hessenberg matrix, and further taking a Schur decomposition, HkQk = QkSk, giving

JUk = UkSk where Uk = VkQk. Using reordering techniques, such as Given’s rotations, it

is possible to get a partial-Schur decomposition where the k columns of Uk correspond to the

invariant subspace of the eigenvalues that we wish to deflate. The operator P is then defined as

having the same eigenvalues of J in the k-dimensions of the invariant subspace, and as having

an eigenvalue of 1 in all directions orthogonal to the invariant subspace.

P = UkSkU
T
k +

(
I − UkUTk

)
The preconditioner P−1, which deflates the eigenvalues in the invariant subspace to (+1,0), is

therefore of the form:

P−1 = UkS
−1
k UTk +

(
I − UkUTk

)
When premultiplying by J , the matrix-preconditioner product simplifies to:

JP−1 = UkU
T
k + J

(
I − UkUTk

)
The operator UkUTk is the projection operator onto the k-dimensional invariant subspace,

which acts like an eigenvalue of 1 in the invariant subspace. Conversely, the operator
(
I − UkUTk

)
gives zero for all parts of the invariant subspace, and is the identity for all perpendicular sub-

spaces. Therefore JP−1 acts as the identity on the invariant subspace, and as J on all perpen-

dicular subspaces. The preconditioner can be applied in a matrix-free fashion if Sk and Uk are

stored.

The concept of this preconditioner is similar to that used in the Newton-Picard method,

where an invariant subspace is found that contains all eigenvalues above a certain magnitude

[91, 98]. The iterative process is then split into Newton iteration in the invariant subspace and
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Picard iteration in all other directions. However, it is simpler to keep the invariant subspace

information in a preconditioner, rather than splitting the iteration process [35].

5.4.2 Adaptive step sizing

Adaptive step sizing is used in continuation algorithms to examine a parameter range more

quickly, whilst maintaining efficient and stable convergence of the iterative solver. Because

Newton iteration can become unstable when started far from a solution, initial residuals must

be kept low, or the iterative process may diverge1. Adaptive step sizing reduces the step size

in regions where the solution is changing rapidly, and increases the step size in regions where

the solution is changing slowly.

In this chapter, the adaptive step size routine from the LOCA framework is used [5]. The

step size is adapted based on the number of Newton iterations required for the last solution

(ITS), the maximum number of Newton iterations allowed (ITSmax), and the angle between

the last secant vectors [5]:

∆S = ∆Slast × τy ×
(

1 + a

(
1− ITSlast

ITSmax

)2
)

where τ is the cosine of the angle between the last two pairs of solutions, and is a measure of

how fast the solution is changing:

τ =
ˆ(
∂x

∂S

)
·

ˆ(
∂x

∂S

)
last

This adaptive step size routine is basic, but can easily be tuned to suit different thermoa-

coustic problems. The factor a defines how aggressive the routine is in increasing step size, and

the factor y defines how much the step size decreases when the solution is changing rapidly.

A more robust implementation would be based on the total number of matrix-vector products

required for the last solution, not just the number of Newton iterations [35].

5.4.3 Higher order prediction

Once a limit cycle is found, the limit cycle at the next parameter value must be predicted.

The prediction can be a simple secant extrapolation from the last two solutions, or it can use a

higher order prediction method. With a higher order prediction method, it is possible to make

a prediction that has a lower initial residual, which is therefore likely to converge faster and has
1In the literature, there are several globalisation strategies that can be used in tandem with Newton methods

to increase the zone of convergence [99].
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less chance of divergence. Alternatively, larger steps can be taken for the same magnitude of

initial residual, reducing the number of points required per bifurcation diagram. Because the

previous solutions are already known and stored, the higher order prediction methods require

no additional timemarching, so the computational expense is low.

One efficient method of implementing higher order prediction is to fit an nth-order polyno-

mial function to the last k solution vectors, where n < k. For each variable in the state vector,

x, a polynomial can be fitted using least squares regression. The polynomial can be defined

as a function of a system parameter or as a function of the arclength of the solution curve. If

the polynomial is a function of a parameter, however, the prediction will break down around

fold bifurcations, because the polynomial is single valued. For this reason, the arclength will

be used in this chapter.

The arclength can be estimated as the cumulative sum of the distance between successive

solution vectors. The least squares fitting procedure uses the arclength values from the last k

solutions, Sk, Sk−1, . . . S1, and the ith variable from the last k solutions, xi,k, xi,k−1, . . . , xi,1 to

find the polynomial coefficients for that variable, p
i,n
, p
i,n−1

, . . . , p
i,1
. We form a linear equation

for each variable in the state:

k x (n+1)

Snk . . . S2
k Sk 1

Snk−1 . . . S2
k−1 Sk−1 1

...
...

...
...

...

...
...

...
...

...
Sn1 . . . S2

1 S1 1



(n+1) x 1

p
i,n
...
p
i,2

p
i,1

p
i,0

 =

k x 1

xi,k
xi,k−1

...

...
xi,1


(5.8)

If we use the notation for this linear equation, Ap = b, then we solve this equation using the

least squares formulation ATAp = AT b. The columns of A will be independent if no repeated

solutions are included by the continuation process. It may seem time consuming to solve a

linear equation for each variable, but the matrix ATA is small, ((n+ 1)× (n+ 1)), and is the

same for each variable, so its decomposition need only be found once. The polynomial can

therefore be found efficiently for each variable by using a QR decomposition. Because the

polynomial is fitted to each variable in the state vector separately, the method is efficient for

vectors that are distributed across multiple processors.

The polynomial prediction works with either fixed parameter or pseudo-arclength contin-

uation methods. With the latter, some iteration is required after the polynomials have been

estimated, to find the predicted state that is both projected along the solution curve, and is

the correct distance from the last solution.

68



5.5 Software implementation

The order of the prediction technique cannot be increased indefinitely, however, due to

numerical errors arising from the scaling of the different terms in equation (5.8). Larger values

of Sn increase the condition number of the matrix A, so if the values of S are far from 1, they

should be shifted and scaled. A suitable shifting and scaling routine is Snew = S−S̄/σ, where

σ is the standard deviation of S. The order of the prediction technique that is most effective

will be problem specific (§5.4.3).

5.5 Software implementation

The methods above are implemented in a continuation code in C++, as a supplementary package

to the Trilinos framework written by Sandia National Labs [6]. The package uses the GMRES

solver from the NOX package, the parallelisable vectors from the Epetra package, some subrou-

tines from the LOCA package [5] and the Krylov-Schur eigensolver from the Anasazi package

[100]. The continuation code is designed to perform matrix-free continuation of limit cycles for

general time dependent systems, and has been tested with several thermoacoustic models with

serially and parallelly distributed discretisations.

To analyse a thermoacoustic model in the continuation software, the parameters of the

system to be varied must be specified, and routines must be supplied to return dx/dt given

x, to initiate the system, to supply a phase condition and to print solutions once converged.

Timemarching can then be achieved using fixed-timestep Runge-Kutta 4 or variable-timestep

Runge-Kutta-Fehlberg 45 routines, or through a user specified routine.

The software package is organised so the user need only specify the model specific code; all

the analysis specific options are then specified in a top-level list to minimise the code required

to analyse a new model. An object-oriented approach is used to switch simply between fixed

point, standard shooting, Poincaré shooting, multiple shooting and Hopf bifurcation tracking

algorithms. Similarly, there are options for fixed parameter or pseudo-arclength continuation,

adaptive stepsizing, higher order prediction and invariant subspace preconditioning. Auto-

mated routines are included in the software package to find a Hopf bifurcation and transition

to shooting on a branch of limit cycles, or to transfer between single and multiple shooting. The

framework can accept state vectors that are distributed across parallel machines, and in the

case of multiple shooting, sections of the limit cycle that are distributed on parallel machines.

A full description of the Jacobian and residual formation for the different continuation

algorithms supported by the software is given in section 5.5.1. The Hopf bifurcation tracking

routine is basic and requires a full matrix decomposition. It is effective for systems with

O(102) , but would not be suitable for much larger systems. Matrix-free methods for finding
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Hopf bifurcations are available in the literature [101, 102] and as part of the LOCA package

[103].

Tables 5.1, 5.2 and 5.3 detail the computational formulation for the continuation of steady

states and shooting of limit cycles. Switching between continuation types is achieved in the code

by changing one input string, to minimise the amount of code that has to be re-written whilst

generating bifurcation diagrams. All bordering of the state is done automatically, i.e. changes

in the length of the state to incorporate extra variables such as T and λ. Although Poincaré

shooting does not explicitely require the period in the state, it is included for ease of switching

between shooting types. The part of the Jacobian matrix multiplying the period acts as the

identity, and the residual is zero, which prevents the period from participating in the Newton

solution. This method is also used for the projection variable in the Poincaré shooting method,

and the parameter variable in fixed parameter continuation. The computational formulations

shown are for the finite difference matrix-free approach; for the first variational matrix-free

approach slightly different formulations would be required for the Hopf and Poincaré shooting

algorithms.

5.5.1 Computational formulation

In Tables 5.1-5.3 the following notation is used:

• dx
dt = F (x, λ)

• θ(x) is the phase condition

• Λ is the current normalised solution tangent, found with a secant method on the last two

solution vectors, with weighting factors for the parameter.

• xb if the bordered state

• ∆S is the current pseudo-arclength step

• σ is the real part of the eigenpair with the highest growth rate. This is found with a

full eigendecomposition of the Jacobian matrix, which would not be suitable for larger

systems.

• A superscript of T denotes a transpose vector.

• Tp represents the time taken for the trajectory to cross the plane.
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5. MATRIX-FREE METHODS

5.6 Conclusions

Continuation methods can track limit cycles as system parameters vary, and are therefore an

important tool for calculating the safe operating region of a thermoacoustic system. Conven-

tional continuation methods are powerful for systems with O(10) variables, but are impractical

for larger systems because they use direct solvers for the underlying linear algebra. They have

therefore only been used to analyse a few reduced order models of thermoacoustic systems.

Matrix-free continuation methods use matrix-free iterative solvers to solve the underlying

linear algebra inexactly. The matrix-free solvers do not require the monodromy matrix to be

explicitely formed. They only require the action of the monodromy matrix upon a vector.

For large systems, this represents a huge saving in computational time, because forming the

monodromy matrix requires timemarching N periods, where N is the number of variables. A

suitable matrix-free iterative solver is the Generalised Minimal Residual method (GMRES).

Thermoacoustic and fluid systems are dissipative, which makes them particularly suitable

for a matrix-free iterative method with GMRES. The iterative method converges quickly to

limit cycles by implicitly using a ‘reduced order model’ property. In other words, GMRES

preferentially uses the influential bulk motions of the system, whilst ignoring features that are

quickly dissipated in time (see section 6.2.4.3).

A software package is written in C++ to perform matrix-free continuation of generic time

dependent systems. The software package can find fixed points, Hopf bifurcations1 and limit

cycles. The continuation methods are demonstrated on a ducted diffusion flame model in

chapter 6 and a ducted premixed flame model in chapter 7.

1Hopf bifurcations are not found using a matrix-free technique.
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Chapter 6

Continuation analysis of a ducted
diffusion flame

In the last chapter, a matrix-free method of finding limit cycles was presented. In this chapter,

these methods will be applied to a model of a ducted diffusion flame to demonstrate the

efficiency of the numerics. A bifurcation surface of limit cycles is generated over a parameter

range to locally describe the ‘safe operating region’ of the flame model. Once the surface of

limit cycles is found, the limit cycles and their Floquet multipliers can be used to examine the

flame-acoustic interaction.

The content of this chapter is the subject of two papers: Ref. [80] and Ref. [3] (section

6.4). Both papers are co-authored with Matthew Juniper and also with Simon Illingworth,

who developed the ducted diffusion flame model and generated the FDF results in section 6.4.

6.1 Ducted 2D diffusion flame model

The ducted diffusion flame model consists of a Burke-Schumann flame in a 2D flame domain

coupled to a 1D acoustic duct. Earlier versions of this model were discretised using a Galerkin

method in the flame domain [48, 104]. This version was discretised by Illingworth using a

spectral method in the flame domain [3]. This improves its numerical accuracy, which is

important for the application of continuation methods. In the 2D flame domain, the mixture

fraction, Z, is discretised on a Chebyshev grid, with an axis of symmetry along the centreline.

The mixture fraction obeys the non-dimensional diffusion and advection governing equation,

and is specified to be pure fuel in the fuel pipe (Z = 1, 0 < |y| < α) and pure oxidiser

in the oxidiser pipe (Z = 0, α < |y| < 1), with boundary conditions such that there is no

diffusion into the walls, ∂Z/∂y|+1,−1 = 0, and such that the mixture fraction is homogenous
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(a) The geometry of the 1D acoustic duct and of the 2D flame field.
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Figure 6.1: A 2D mixture fraction field (Z) is used to describe the diffusion flame. The flame lies on
the Z = Zst contour, which is shown as a black line in (a) and (b). The heat release from the diffusion
flame domain acts at location xf in a 1D open ended duct.

far downstream,∂Z/∂x|10 = 0. The flame lies on the stoichiometric contour, Z = Zst, and is

assumed to be mixing controlled. The location of the flame is denoted f+.

The heat release from the model is coupled to a simple linear acoustic model of a duct

[17, 48, 49], where u and p are the non-dimensional velocity and pressure perturbations in the

duct. For the perturbation state, x = [u, p, z], the non-dimensional governing equations are

shown below, where the subscript f denotes that the value is taken at the flame position, and

a bar refers to a steady state quantity. The system has non-dimensional parameters: Peclet

number Pe (the ratio of advection to diffusion), the acoustic damping1 ζ, the stoichiometric

mixture fraction Zst, the flame position in the duct xf , the acoustic velocity at the flame uf ,

the fuel pipe width α, and the coupling parameter βT , defined by βT = 2/(Tinlet + Tadiabatic).

∂u

∂t
= −∂p

∂x
(6.1)

∂p

∂t
= −∂u

∂x
− ζp+

2βT
1− Zst

δ (x− xf )×(
−
ˆ ˆ y=f+

0

∂z

∂t
dydx+ uf

ˆ f̄+

0

(
Z̄ − Zst

)
dy

)
(6.2)

∂z

∂t
= −ūf

∂z

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
z − uf

∂Z̄

∂x
− uf

∂z

∂x
(6.3)

Equation (6.1) is derived from the acoustic momentum equation [17, 48]. Equation (6.2) is

derived from the acoustic energy equation [17, 48], where the last term corresponds to the heat

release from the flame field (similar to Ref. [48, 104]). Equation (6.3) is derived from the 2D

advection-diffusion equation [48, 104], with a constant velocity over the flame field, uf .

1The acoustic damping is defined as ζj = c1j
2 + c2

√
j, where j is the acoustic mode number [17].
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6.2 Numerical results

If the first variational state vector is defined as X ′ = [U ′, P ′, Z ′], the first variational

equations are (derived in appendix A):

∂U ′

∂t
= −∂P

′

∂x

∂P ′

∂t
= −∂U

′

∂x
− ζP ′ + 2βT

1− Zst
δ (x− xf )×(

−
ˆ ˆ f+

0

∂Z ′

∂t
dydx−

ˆ
f+

∂z

∂t
|∇Z|−1 Z ′ dl + U ′f

ˆ f̄+

0

(
Z̄ − Zst

)
dy

)

∂Z ′

∂t
= −ūf

∂Z ′

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
Z ′ − U ′f

∂Z̄

∂x
− U ′f

∂z

∂x
− uf

∂Z ′

∂x

A more complete description of the model is included in Ref. [3]. The results in this

chapter are generated with a 30 × 16 symmetric flame grid and 20 acoustic modes, giving

a total system dimension of 475 (the boundary values of the Chebyshev grid are defined by

the boundary conditions so are excluded from this number). The model is timemarched in

FORTRAN using the standard Runge-Kutta 4 technique with a timestep of 10−3. The results

of the model have been compared against those generated with a finer Chebyshev grid and a

finer timestep, with only a 1% difference in heat release fluctuation observed.

6.2 Numerical results

6.2.1 Fixed point plane

Figure 6.2 shows the stability of the fixed point solution for the ducted diffusion flame, as two

parameters are varied: Peclet number, which changes the ratio of advection to diffusion in the

flame, and βT , which controls the extent to which unsteady combustion perturbs the acoustics

(equation (6.2)). The parameters that are held fixed are Zst = 0.8, c1 = 0.0247, c2 = 0.018,

α = 0.35, xf = 0.25, ML/H = 1. The damping coefficients are typical for a laboratory scale

combustor, and Zst = 0.8 corresponds to diluted methane fuel and pure oxygen [p.94, 105].

By construction, the fixed point solution for the ducted diffusion flame model is when the

state vector is zero, because the state vector contains only perturbation quantities relative to

mean values. The Hopf bifurcation marks the boundary between linearly stable and linearly

unstable operating conditions. It is a strong function of Pe and βT . The bistable region has

both a stable fixed point and a stable limit cycle. The extent of the bistable region cannot

be determined by finding the fixed points alone, therefore, because the surface of limit cycles

must also be found. The limit cycle surface is shown in the next section.
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Figure 6.2: Stability of the fixed point solution, as a function of Pe and βT . Note that the Pe axis is
reversed to match the view in Figure 6.3.

6.2.2 Limit cycle surface

Figure 6.3 shows the limit cycle amplitudes as a function of Pe and βT , with the same fixed

parameters as section 6.2.1. Each limit cycle is calculated to a tolerance of ||x(0)−x(T )|| <
10−8. The z-axis represents the amplitude of sound generated in the duct by a limit cycle; it

is defined as the amplitude of acoustic velocity variation during the trajectory of a limit cycle.

The x-y plane of Figure 6.3 is therefore Figure 6.2.

The Hopf bifurcation marks the boundary between linearly stable and linearly unstable

operating conditions. The limit cycles form a surface which has both subcritical bifurcations

for 50 < Pe < 70 (Fig. 6.3a) and supercritical bifurcations for Pe < 50, P e > 70 (Fig.

6.3c). Where there is a subcritical bifurcation, there is a stable limit cycle at higher velocity

amplitudes. However, this stable limit cycle has velocity amplitude greater than 2 and is not

shown in the figure. The bistable operating conditions are those at which the system has both

a stable fixed point and a stable limit cycle. The surface of limit cycles is smooth and steep

because the model is only weakly nonlinear. The weakly nonlinear behaviour of the model

is discussed further in the conclusions of this chapter. A model with stronger nonlinearities

would display a much more distorted surface (see Chapter 7).

The limit cycles describe the behaviour of the fully coupled system, and are calculated by

the continuation method quite cheaply: the Hopf bifurcation line takes roughly 500s and the

surface of limit cycles takes 61 CPU hours1. The surface is composed of 70 slices and roughly

2500 converged limit cycles, requiring an average of 52 minutes per slice, and 90 seconds per

limit cycle. A lower resolution surface can be calculated in less than 10 CPU hours, with 15

1All computations run with an Intel i7-2600 3.4GHz processor.
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Figure 6.3: Continuation results for the ducted diffusion flame, as a function of Pe and βT . The
thick dark line is the Hopf bifurcation, which is the same as the linear stability limit. The linearly
unstable region is shaded dark gray and the bistable region is shaded light gray (the bistable region
is the vertical shadow of the subcritical bifurcation). The limit cycles are shown as dark dots on a
white surface. The surface is defined by slices taken at 70 Pe numbers. The z-coordinate of each limit
cycle is the amplitude of the acoustic velocity variation over its trajectory. The surface exhibits both
subcritical bifurcations (a) and supercritical bifurcations (c). The limit cycles are unstable in (a) and
stable in (c). Further physical analysis of these results is found in Ref. [3].

slices, coarser spacing between limit cycles, and use of preconditioning. The computation can

be easily parallelised because the surface is composed of separate two-dimensional slices.

The next subsections analyse the results for the ducted 2D diffusion flame model in terms

of the physical significance and the efficiency of the numerics. Further physical interpretation

of the results is the subject of a separate publication [3].

6.2.3 Physical significance of the results

The limit cycles and their Floquet multipliers can be examined in order to understand the

coupled flame-acoustic interaction. Floquet multipliers describe the evolution of a perturba-

tion around a limit cycle. The largest magnitude Floquet multipliers correspond to the most

influential coupled flame-acoustic modes (section 6.2.3.2).

6.2.3.1 Limit cycles

Figure 6.4 shows snapshots of the system during an unstable limit cycle, with Pe of 60, βT
of 1.31 and velocity amplitude 0.62. When the velocity perturbation at the flame is positive,

6.4(a)-(c), the flame becomes longer and, near the inlet, the regions of high and low z are
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Figure 6.4: Snapshots of an unstable limit cycle (Pe=60, βT=1.31), with velocity amplitude 0.62. In
each snapshot (a-h), the top two bars show the perturbation pressures and velocities in the 1D duct
(xa = 0 → 1), and the lower bar shows the 2D perturbation z field and current flame location (black
line) in the first part of the flame field (xc = 0 → 4). The flame location in the duct is marked by
the black box at xa = 0.25. The z values are scaled by a factor of 15 to share the colourbar with the
acoustic perturbations. The steady Z field is shown in (i) for comparison.

stretched. When the velocity perturbation at the flame becomes negative, 6.4(d)-(f), the flame

becomes shorter and, near the inlet, new regions of high and low z are formed. In turn, these

new regions are then stretched and convected down the flame. For this limit cycle, the length

of the flame only varies by ∆xc ≈ 0.4 during the cycle, but slight wrinkling of the flame surface

can be seen as the regions of high and low z are convected down the flame. The limit cycle

has an almost symmetric form during the first and second halves of the limit cycle, which

demonstrates that the nonlinearity in this flame model has weak response at even harmonics.
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Figure 6.5: Floquet multipliers for an unstable limit cycle (leading multiplier at 1.000455 + 0i). Any
Floquet multipliers in the grey region correspond to unstable perturbations to the limit cycle.

6.2.3.2 Floquet multipliers

Figure 6.5 shows the Floquet multipliers for an unstable limit cycle (Pe = 60, βT = 1.31). The

majority of the multipliers are located near the origin and correspond to the motions of the

system that are quickly dissipated. The rest of the multipliers correspond to the bulk motions

of the system. The bulk motions are not quickly dissipated and therefore they dominate in

the long time limit. The GMRES algorithm converges efficiently to limit cycles because of this

simple distinction between the bulk motions and the dissipated motions. This will be analysed

further in section 6.2.4.3.

Figure 6.6 shows the Floquet modes corresponding to the leading Floquet multipliers, which

are located on the ‘arm’ extending to the right in Figure 6.5. These are the influential bulk

motions of the system. In Figure 6.6 (a)-(g), the modes have large components in the 1st − 7th

acoustic modes respectively, and affect the z field around the flame, primarily near the inlet.

The Floquet modes corresponding to the 2nd and 6th acoustic modes, Figure 6.6 (b) and (f),

have no component in the flame field. This is because the flame is located at xf = 0.25, which

is a velocity node for these modes.
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Figure 6.6: Leading Floquet modes for an unstable limit cycle (Pe=60, βT = 1.31), corresponding to
the influential bulk motions of the system. The modes are sorted by the absolute values of the Floquet
multipliers, in decreasing order. A star indicates that the mode is one part of a complex conjugate
pair. In (a)-(g), the modes have large components in the 1st − 7th acoustic modes respectively. The z
values are scaled by a factor of 35 to share the colourbar with the acoustic perturbations.

The first Floquet multiplier has no imaginary component because it represents monotonic

growth away from this unstable limit cycle. The others have imaginary components because

they oscillate (as well as grow or decay) around the unstable limit cycle. The first Floquet

mode has a large component in the fundamental acoustic mode and has the same period as

the limit cycle. The mode shape is similar to that of the unstable limit cycle (Figure 6.4).

A perturbation in the direction of the unstable Floquet mode will make the amplitude of the

oscillation grow, and the system will reach the stable limit cycle at higher amplitude. Similar

results have been shown in a numerical model of a Rijke tube, and presented as a mechanism

for triggering [1, 2, 17].
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Figure 6.7: A selection of Floquet modes for an unstable limit cycle (Pe=60, βT = 1.31), corresponding
to typical dissipated motions of the system. The modes are sorted by the absolute values of the Floquet
multipliers, in decreasing order. A star indicates that the mode is one part of a complex conjugate pair.
In (a,b,c,e), the modes are dominated by the numerical boundary conditions at xc = 10 and yc = 1.
In (d) the mode corresponds to the 20th acoustic mode, which is heavily damped. Above the 250th

Floquet mode, as in (f,g), the modes correspond to small scale features in the z field. The z values are
scaled by a factor of 35 to share the colourbar with the acoustic perturbations.

Figure 6.7 shows a selection of typical Floquet modes corresponding to small Floquet mul-

tipliers, which are located around the origin in Figure 6.5. These are the quickly dissipated

motions of the system. Many of the dissipated modes are dominated by the numerical bound-

ary conditions, which are set to ∂z/∂y|+1,−1 = 0, ∂z/∂x|10 = 0. These modes are specific to

the Chebyshev discretisation used for the z field. Modes corresponding to these numerical

boundary conditions are seen in Figure 6.7(a,b,c,e). In Figure 6.7(d) the mode corresponds to

the 20th acoustic mode, which is heavily damped. Above the 250th Floquet mode, as in Figure

6.7(f,g), the modes correspond to small scale features in the z field.
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Sections 5.3.2 and 5.3.3 introduced two matrix-free approaches for evaluating matrix-vector

products: the finite difference approach and the first variational approach. For the limit cycle

in Figure 6.5, Table 6.1 shows the difference in the Floquet multipliers when evaluated with

these two approaches (with δ = 10−8 in Eq. 5.6). The results are almost identical for the value

of δ used, which is probably because the ducted diffusion flame model has weak nonlinearities.

For a model with stronger nonlinearities, these results may even be qualitatively different.

The first variational approach takes significantly more time to evaluate for this model,

however, due to the the line integral term that appears in the first variational equations. This

term is evaluated slowly with a Chebyshev discretisation. The results in this chapter are

therefore generated with the finite difference approach.

Floquet Multiplier Finite Difference First Variational Discrepancy

1 1.0005e+00 1.0005e+00 1.1363e-06
2* 8.8258e-01 - 4.1732e-02i 8.8258e-01 - 4.1732e-02i 3.1478e-11
4* 7.5645e-01 - 6.4094e-02i 7.5645e-01 - 6.4094e-02i 1.2788e-07
6* 6.4771e-01 - 6.2999e-02i 6.4771e-01 - 6.2999e-02i 2.8708e-15
8* 5.2433e-01 - 6.0199e-02i 5.2433e-01 - 6.0199e-02i 5.7604e-08

167* 4.7382e-05 + 2.7488e-05i 4.7393e-05 + 2.7518e-05i 3.2359e-08
169* 5.1481e-05 - 8.3624e-07i 5.1487e-05 - 8.0574e-07i 3.1135e-08
171* 3.1964e-05 - 3.7150e-05i 3.1964e-05 - 3.7150e-05i 1.3370e-15
173* 1.8760e-05 - 4.2192e-05i 1.8760e-05 - 4.2195e-05i 2.8777e-09
175* -2.7625e-05 - 2.9150e-05i -2.7626e-05 - 2.9149e-05i 1.2237e-09

467* -7.9359e-13 + 6.6930e-13i 1.1102e-16 1.0382e-12
469* 8.4577e-13 + 4.9561e-13i 1.1102e-16 9.8019e-13
471* 2.6668e-13 + 3.5235e-13i 0 4.4189e-13
473* -9.4147e-14 + 3.7290e-13i 0 3.8460e-13
475* 1.2035e-13 + 9.8341e-14i 0 1.5542e-13

Table 6.1: A selection of Floquet multipliers as calculated by the finite difference and first variational
matrix-vector product approaches. The Floquet multipliers are sorted by their absolute values, in
order of decreasing magnitude. The star indicates that the Floquet multiplier is one part of a complex
conjugate pair. The discrepancy is the magnitude of the difference between the two eigenvalues.

6.2.4 Efficiency of the numerics

6.2.4.1 Convergence to a limit cycle

Figure 6.8 shows the rate of convergence to a limit cycle for both the standard shooting and

Poincaré shooting formulations. A previously converged limit cycle is used as a starting guess

with a change in parameter ∆Pe = 1, which represents convergence from a relatively poor

initial guess. The convergence to a limit cycle depends on the system’s operating condition,

but this is a representative case for the diffusion flame model.
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(a) Standard shooting - no preconditioning
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Figure 6.8: Convergence to a limit cycle in terms of the residual magnitude, ||x(0)−x(T )||2, and number
of timemarches. The dots are the residual values after each Newton step and the line is the the estimated
residual within the solution of each Newton step. As the solution converges, the estimated reduction
in residual for each Newton step approaches the actual residual reduction achieved.

The solution converges steadily to the limit cycle and reaches the required tolerance,

||x(0)−x(T )|| < 10−8, in four Newton steps (x(0)n+1 = x(0)n + ∆x). Each Newton step

requires the iterative solution of J∆x = −r by GMRES, to a relative convergence tolerance

of ||r+J∆x||
||r|| < 10−3. In Figure 6.8, the dots are the actual residuals after each Newton step,

and the line is the estimated residual within the solution of each Newton step. The conver-

gence after the first Newton step is relatively poor. Poor convergence is common for Newton

based methods when far from a solution. In the last two Newton steps, the convergence is

much better, and the improvement in the actual residual matches well with that estimated by

GMRES.

The Poincaré shooting method converges faster than the standard shooting method for

two reasons. Firstly, Poincaré shooting does not include the period in the state vector, and

therefore the Jacobian has one fewer influential eigenvalue. Secondly, the Jacobian for the

standard shooting method has an additional eigenvalue near zero, which raises the condition

number of the matrix. It is harder for an iterative algorithm to solve a linear equation if the

matrix has a high condition number. The eigenvalue near zero results from the trivial Floquet

multiplier of +1 in the direction of ẋ(0), which is the dimension that is projected away in the

Poincaré shooting formulation.

Most importantly, with both methods the residual reduces by a factor of 105 using only

80 timemarches, when there are 475 variables in the system. If a matrix-free method were

not used, and the Jacobian matrices were explicitly formed for each Newton step, then four

Newton steps would have required 4 × 475 = 1900 timemarches. The matrix-free method is

therefore 24 times faster, even for this modestly sized test model. In the matrix-free method,
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6. CONTINUATION ANALYSIS OF A DUCTED DIFFUSION FLAME

the number of timemarches required does not depend on the number of variables. It depends

on the number of influential bulk motions. For example, if the resolution of the Chebyshev

grid were increased by a factor of two, the number of variables would increase, but the solution

would still be found in roughly 80 timemarches, because the increase in resolution adds no bulk

motions to the dynamics.

6.2.4.2 Convergence to a limit cycle with preconditioning

Using the same starting condition as Figure 6.8, Figure 6.9 shows the convergence of the

residual when preconditioning is used. The Jacobian matrix from the previous converged limit

cycle is used to form an invariant subspace preconditioner, with k deflated eigenvalues (section

5.4.1). The eigenvalues are converged to a precision of 10−4.
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(a) Standard shooting - with preconditioning
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(b) Poincaré shooting - with preconditioning

Figure 6.9: Convergence to a limit cycle in terms of the residual magnitude, ||x(0)−x(T )||2, and number
of timemarches. Preconditioning is used to increase the convergence of the GMRES solver. Results
are plotted for preconditioners with different numbers of deflated eigenvalues (k). Estimated residuals
within the solution of the Newton steps are not shown.

As the number of preconditioned eigenvalues increases, the number of timemarches required

for convergence steadily decreases. For a preconditioner with 7 converged eigenvalues, the

number of timemarches required is greatly reduced, from 83 timemarches to 30. To converge

to the 7 eigenvalues and form the preconditioner, however, requires 29 timemarches, so there is

only an overall reduction of 24 timemarches. The inverse of the preconditioner must be applied

before each of the 30 timemarches, but the additional cost of this application is negligible

compared to the cost of timemarching.

The preconditioner would significantly increase the speed of continuation if it were re-

used to find several limit cycles, or if it were generated with negligible extra cost. The latter

is true if the stability of the limit cycles is calculated post convergence, and the Floquet
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multipliers are used to form the preconditioner. With the Poincaré shooting method, the

Floquet multipliers can be directly used for preconditioning, because the eigenvalues of the

Jacobian are simply shifted Floquet multipliers (eigJ = 1 − eigM , section 5.2.2). With the

standard shooting method, however, preconditioning is more complicated because the terms

related to the period add another row and column to the borders of the Jacobian matrix,

and therefore the eigenvalues of the Jacobian matrix are no longer simply the shifted Floquet

multipliers (eigJ 6= 1 − eigM ). The same is true for pseudo-arclength continuation methods,

which add an additional row and column to the borders of the Jacobian matrix. In these two

cases the Floquet multipliers can be used for preconditioning if bordering methods are used

to solve the linear equation. Bordering methods split the Jacobian matrix into a large square

part and the resulting small bordering vectors, as shown in equation (5.3). The bordered form

of the matrix can be used to define a preconditioner [106, 107], or to solve a linear equation

in ordered steps [108]. For equation (5.3) and dummy solution states ∆x1,∆x2, a simple

example of a bordering method would be to solve: (1) (I −M)∆x1 = −(x(0) − x(T )), then

(2) (I −M)∆x2 = b, then (3)(d − c∆x2)∆T = −θ − c∆x1, then (4) ∆x = ∆x1 − ∆x2∆T .

The Floquet multipliers can be used to precondition steps (1) and (2), which are the most

computationally expensive. Bordering methods are discussed in the literature and will not be

covered further in this thesis.

Figure 6.10 shows the effect of the preconditioner on the Jacobian matrix. The subspace

chosen for preconditioning corresponds to the 11 eigenvalues furthest from (+1,0). In Fig-
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Figure 6.10: Demonstration of invariant subspace preconditioning, for an eigenspace of the 11 eigenval-
ues furthest from (+1,0). The eigenvalues of the Jacobian are shown as open circles and the eigenvalues
of the preconditioned Jacobian are shown as black dots. The preconditioner takes the eigenvalues fur-
thest from (+1,0), and moves them to (+1,0). Because the Jacobian has an eigenvalue close to zero
(-0.000455,0), the preconditioned Jacobian is much better conditioned.
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6. CONTINUATION ANALYSIS OF A DUCTED DIFFUSION FLAME

ure 6.10, the eigenvalues in the subspace were converged to a high tolerance, 10−6, using 40

timemarches. Therefore when the preconditioner is applied, the eigenvalues outside of the

subspace are almost unaffected. If there is inaccuracy in the estimated eigenvalues (and eigen-

vectors) in the subspace, then the eigenvalues outside of the subspace will be altered by the

preconditioner. This effect is stronger in more non-normal systems. If the preconditioner

moves the eigenvalues outside of the subspace, there is no guarantee that the preconditioning

will increase convergence.

Figure 6.10 also shows that the preconditioner makes the Jacobian better conditioned. The

limit cycle is taken from the unstable branch of limit cycles in the bistable region at Pe of 60

(Figure 6.3). The cycle has one Floquet multiplier that is just unstable, with value 1.000455+0i.

The Jacobian therefore has an eigenvalue of −0.000455 + 0i, which gives the Jacobian a high

condition number of 4638 (based on the ratio of the maximum and minimum singular values).

The preconditioned Jacobian has a condition number of 8. A high condition number can also

occur when a limit cycle is extremely unstable. High condition numbers result in numerical

inaccuracies in iterative processes, and may require a larger Krylov subspace for a solution. It

is therefore good to avoid high condition numbers, by using a preconditioner.

6.2.4.3 Convergence of the GMRES solver

The aim of this section is to demonstrate that the GMRES solver intrinsically uses a ‘re-

duced order model’ property when finding limit cycles. In other words, it converges first in

the eigenspace corresponding to the bulk motions of the system, and then in the eigenspace

corresponding to the quickly dissipated motions. Figure 6.11 shows the Ritz values and relative

residuals as the dimension of the Krylov subspace (the number of timemarches) increases. The

Ritz values are the estimated eigenvalues based on the current Krylov subspace. The relative

residual of the solution of J∆x = −r is defined as ||r+J∆xk||
||r|| .
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Figure 6.11: Convergence of the Ritz values within the GMRES solver and the convergence of the
relative residual, as the dimension of the Krylov subspace increases. The dimension of the Krylov
subspace is the same as the number of timemarches. The Ritz values (open circles) are the estimated
eigenvalues based on the current Krylov subspace. The eigenvalues of the Jacobian are shown as grey
dots. The Jacobian matrix used is for the Poincaré shooting formulation, for a converged limit cycle.

As the dimension of the Krylov subspace increases, the Ritz values converge preferentially

to the eigenvalues that are furthest from (+1, 0). These correspond to the bulk fluid motions

that are not quickly dissipated in time. This is because Krylov subspaces are formed from a

power series, v, Jv, J2v, . . . , Jnv, and therefore the Ritz values converge fastest to the extremal

eigenvalues.

The relative residuals decrease rapidly as the dimension of the Krylov subspace increases,

even when the Ritz values have not converged to the eigenvalues of the Jacobian. This is

because the the GMRES algorithm has already minimised the residual in the space spanned

by the eigenvectors, but has not yet converged to the eigenvectors themselves.
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Figure 6.12: Convergence of the GMRES solver for a fixed point (as in Figure 6.11, which was for a
limit cycle). The dimension of the Krylov subspace is the same as the number of gradient evaluations
required (ẋ = F (x, λ)).
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6. CONTINUATION ANALYSIS OF A DUCTED DIFFUSION FLAME

Limit cycles can be found easily with GMRES, whereas fixed points often cannot: finding

fixed points often requires preconditioning or restarted GMRES. This can be explained by

comparing the eigenvalues of the Jacobian matrices. As in Figure 6.11, Figure 6.12 shows

the convergence of the GMRES solver, but for a fixed point, not a limit cycle. In continuous

time formulations, which are used for fixed points, dissipated features have eigenvalues with

large negative real parts, with a large spread. The Ritz values converge fastest to the extremal

eigenvalues, which for a fixed point correspond to both heavily dissipated and lightly dissipated

features. There are a lot more influential eigenvalues than there are in a shooting formulation,

and there is no useful subset of eigenvalues that GMRES can prioritise. Therefore, for a

fixed point, GMRES requires a much larger Krylov subspace to converge to the same relative

residual.

The shooting formulation for limit cycles is therefore particularly suited for solution with

GMRES, whereas other continuation formulations may not be.

6.2.4.4 Effect of higher order prediction
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Figure 6.13: The effect of the order of the prediction polynomial on: (a) the average initial residual of
predicted states, and (b) the total number of timemarches required to find twenty limit cycles.

The aim of this section is to demonstrate that higher order prediction methods give lower initial

residuals for fixed steplength routines. This is particularly important for finding limit cycles

of large systems, because the prediction requires no additional timemarching and is therefore

comparatively cheap.

In Figure 6.13, a section of a supercritical bifurcation diagram (Pe = 35, 0.686 < βT <

0.719) is used as a test case. Twenty limit cycles are found, using a fixed arclength step routine

and higher order prediction methods (section 5.4.3). Figure 6.13a shows the average initial
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residual as a function of the order of the prediction polynomial. As the order increases, the

average initial residual decreases by a factor of ten per polynomial order, until some instability

begins at the fifth order. Figure 6.13b shows the total number of timemarches against the

order of the prediction polynomial. The fourth order polynomial requires half the number of

timemarches as a first order polynomial.

The diffusion flame test model has weak nonlinearities, and therefore the solution curve

is smooth and the prediction extends well to higher orders. For models with stronger local

nonlinearities, instability may occur at lower orders. A robust prediction methodology should

detect when the initial residuals are too large, and adjust prediction orders and steplengths

accordingly.

6.3 Multiple shooting

x (T)
3

x   T   
1 3

x   2T  
2 3

(a) Multiple standard shooting with 3 sec-
tions. Each section is T/3 long, where T is
the current period guess.

(b) Multiple Poincaré shooting with 3 sec-
tions. The plane definition must be commu-
nicated before timemarching is begun. The
period is found as a byproduct by summing
the times required to timemarch each section.

Figure 6.14: Multiple shooting methods, in which the limit cycle is split into n sections that are
timemarched separately. There are n starting states (black dots), which are iterated to minimise the
combined norms of the n residual vectors (dashed arrows).

For systems where the timemarching process is very computationally expensive, the real-time

required to find limit cycles can be reduced by parallelisation. Parallelisation can be applied

in two different ways (which can coexist): first, by splitting the state vector onto different

processors and using single shooting methods; second, by splitting the trajectory onto different

processors and using multiple shooting methods. The effect of the first parallelisation approach

is simple, because the GMRES solver sees the timemarching process as a black box. If paral-

lelising the state vector makes the timemarching process m times faster, then a limit cycle is
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6. CONTINUATION ANALYSIS OF A DUCTED DIFFUSION FLAME

found m times faster. The effect of the second parallelisation approach is more complicated,

however, and will therefore be investigated in this section.

Multiple shooting methods divide the limit cycle into n sections, which are timemarched

separately from the n different starting states [87]. In a similar manner to the single shooting

methods, n states are found by iteration, where the sum of the residual vector magnitudes is

below a predefined tolerance (Figure 6.14).

The advantage of multiple shooting is that each matrix-vector product, which was previ-

ously evaluated by timemarching one period, T , is now evaluated by timemarching n sections

by T/n. If separate processors are used for each section, then each matrix-vector product

evaluation is therefore n times faster.

The disadvantage of multiple shooting, however, is that the state vector is now nN variables

long, and a GMRES solver will require roughly n times more matrix-vector products to converge

to the solution [87]. This arises because the eigenspace corresponding to the bulk fluid motions

is now n times larger, because the eigenvalues of the monodromy matrix are the nth roots of

the Floquet multipliers, as shown in Figure 6.15.
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Figure 6.15: Eigenvalues of the monodromy matrix for the multiple Poincaré shooting formulation, for
1, 2 and 4 sections. For a multiple shooting system with n sections, the eigenvalues are the nth roots
of the Floquet multipliers.

Without preconditioning, the advantage and the disadvantage of multiple shooting almost

cancel each other out [87], although there is some additional speedup for highly unstable limit

cycles, because the multiple shooting matrices are better conditioned. This is because as n

increases the Floquet multipliers (both unstable and stable) tend to the unit circle when the

nth root is taken.

Invariant subspace preconditioning (section 5.4.1) can be used to offset the disadvantage

of increasing the state vector size, by reducing the number of matrix-vector products required
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per GMRES solve. As n increases, so does the dimension of the invariant subspace that is

required to maintain a set speed increase [87], but the overall process, including preconditioner

formation, can approach a linear speed increase with n [87].
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Figure 6.16: Speed increase for the multiple Poincaré shooting formulation against number of processors,
measured over 15 limit cycles with fixed parameter continuation. The speed increase factor is normalised
by the speed of the continuation with one processor and no preconditioning. The lines show the effect
of preconditioning with (k×Processors) converged eigenvalues. Speed increase factors are shown when
the time for preconditioner formation is excluded (left) and included (right).

Figure 6.16 shows how the speed of continuation increases with a multiple shooting for-

mulation, for varying degrees of preconditioning. A preconditioner is formed and then the

multiple Poincaré shooting formulation is used to find 15 limit cycles with a fixed parame-

ter step. The speed increase factor is defined as the real time to find the limit cycles, nor-

malised by the equivalent real time when using one processor and no preconditioned eigen-

values, SIF = (Real time)1Proc, 0 eigs / (Real time)nProcs, (k×n) eigs. The subspace chosen for

preconditioning corresponds to the (k×n) eigenvalues furthest from (+1,0), and the eigenvalue

tolerance is 10−3.

Without preconditioning (k = 0), there is no speed increase with multiple processors, for

the reasons described in the previous paragraphs. With preconditioning, there is a significant

speed increase. When k = 1, the preconditioner gives a speed increase factor of 1.5− 2.0, even

though the preconditioner is fast to compute (hence the k = 1 lines are almost the same in

both halves of Figure 6.16). As in Figure 6.15, there is a Floquet multiplier close to (+1,0),

which means that the Jacobian matrix has an eigenvalue close to the origin. When k = 1

the eigenvalue close to the origin is moved, significantly reducing the condition number of the

Jacobian matrix and increasing the rate of convergence (section 6.2.4.2). When k increases,

the speed increase factor also increases, but for this test case there is little difference between

the speed for two and four processors. The preconditioners also take longer to form, resulting

in greater differences between Figure 6.16(a) and (b) at high k and high n.
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Multiple shooting formulations can therefore reduce the time required to form a bifurcation

diagram when used with preconditioning. The overall speed increase depends on the time taken

to form the preconditioner and on the number of limit cycles that it can be reused for. When

generating most bifurcation diagrams, the stability of the limit cycles is of great importance,

and it is therefore likely that the Floquet multipliers will be calculated every few cycles. In

this case the preconditioner is generated for negligible extra cost.

6.4 Comparison between the continuation method and the flame
describing function

In this section, the limit cycles found by the continuation method are compared with the limit

cycles predicted by the Flame Describing Function (FDF). The FDF uses a gain and a phase

to describe the relationship between an acoustic perturbation and a heat release perturbation.

The gain and phase are both dependent on the frequency and amplitude of the acoustic per-

turbation. The main limitation with the FDF is the assumption that the acoustic velocity and

pressure signals are sinusoidal. In reality, if the heat release signal has higher harmonics of the

forcing frequency then the acoustics will respond at those higher harmonics, and the acoustic

velocity and pressure signals are no longer sinusoidal - the original assumption is broken. This

assumption can therefore lead to inaccuracy in the predicted limit cycle amplitudes if the flame

responds strongly at frequencies other than the forcing frequency.

Figure 6.17 shows a comparison between the limit cycle amplitudes predicted by the FDF

method and those calculated by the continuation method [3]. The results from the FDF

method, calculated by Illingworth, match excellently with those calculated by the continuation

method. This is because the flame responds weakly at frequencies other than the forcing

frequency, and therefore the approximations made in forming the FDF - namely that higher

harmonics of the flame’s response may be neglected - are valid for the diffusion flame model

under investigation [3].
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Figure 6.17: Comparison between limit cycle amplitudes predicted by the FDF method (dots) and the
continuation method (lines), for (a) the subcritical case (Pe = 60) and for (b) the supercritical case
(Pe = 35). These two cases are highlighted in Figure 6.3(a,c).

The FDF method was also used by Illingworth to demonstrate that the diffusion flame model

under investigation has particularly weak nonlinearities, because the gain and phase of the FDF

were only weakly amplitude dependent [3]. This explains the steep increase in amplitude of the

limit cycle surface around the Hopf bifurcation in Figure 6.3, and it explains why the stable

limit cycles in the bistable region have such large amplitudes (not shown in Figure 6.3). The

weak amplitude dependence probably results from assuming a uniform velocity in the flame

field.

When generating a bifurcation surface the computational efficiency of the continuation

method, relative to the FDF method, depends on the information that is required. If the flame

operating condition is fixed, and the acoustic operating condition is varied, then the FDF

method is efficient, because only one FDF evaluation is required. If both the flame and the

acoustic operating conditions are varied, however, then the FDF method is inefficient, because

the FDF must be re-evaluated at each new flame operating condition. The major advantage

of the continuation method over the FDF method is that it is efficient when both the flame

and the acoustic operating conditions are varied. In the bifurcation surface of Figure 6.3, for

example, one parameter sets the flame operating condition (Pe), and the other sets the acoustic

operating condition (βT ), so one FDF evaluation is required per 2D slice. Using this particular

diffusion flame model, one FDF evaluation takes roughly 16 CPU hours [3], so the FDF would

require roughly 1120 CPU hours to recreate Figure 6.3, which is 18 times slower.
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6.5 Non-normality in the ducted diffusion flame model

The importance of non-normality in causing triggering was described in chapters 3 and 4. In

particular, non-normality of the linear operator around a fixed point leads to transient growth

of small perturbations. If the perturbations grow enough, the system may then be attracted

towards an unstable attractor. In the Rijke tube model, this mechanism was shown to lead to

triggering to a stable limit cycle. Furthermore, the non-normality of the monodromy matrix

of the unstable limit cycle has been shown to be influential in defining the magnitude of the

smallest perturbations that lead to triggering [109].

In this section the non-normality of the diffusion flame model is examined. The fixed point

and unstable limit cycle are taken from the bistable operating condition at Pe of 60, βT of 1.31

.

6.5.1 Fixed point

Figure 6.18 shows the pseudospectra (red) and numerical range (blue) of the stable fixed

point in the bistable region at Pe of 60, βT of 1.31. The fixed point is stable because every

eigenvalue has a negative real part. Some transient energy growth can be expected at small

times, however, because the numerical range extends into the unstable half-plane (shaded grey).

The pseudospectra show that the diffusion flame system is only slightly non-normal, because

the contours form almost regular circles around most of the eigenvalues and the contours of

the pseudospectra do not extend far into the unstable half-plane. This is in contrast with the

results of Balasubramian et al. [48], where the pseudospectra of the same diffusion model do

extend far into the unstable half-plane. Figure 6.18 suggests that the degree of transient growth

reported by Balasubramian et al. [48] - which has been heavily repeated in the literature - is

incorrect, which has been demonstrated since by the detailed study of Magri [110].

96



6.5 Non-normality in the ducted diffusion flame model

−60 −40 −20 0

−60

−40

−20

0

20

40

60

ωr

ω
i

−1.6

−1.6

−1.4

−1.4

−1.4

−1.4

−1.2

−1.2

−1.2

−1.2

−
1

−1

−1

−
1

−1

−1

−
1

−
1

−
0
.8

−0.8

−0.8

−
0
.8

−0.8

−0.8

−
0
.8

−
0
.8

−
0
.6

−0.6

−0.6
−

0
.6

−0.6

−0.6

−
0
.6

−
0
.6

−
0
.4

−0.4

−0.4

−0.4

−0.4

−
0
.4

−
0
.4

−
0
.4

−
0
.4 −0.2

−
0
.2

−0.2

−
0
.2

−0.2

−0.2

−0.2

−
0
.2

−
0
.2

−
0
.2

(a)

−8 −6 −4 −2 0 2
−10

−8

−6

−4

−2

0

2

4

6

8

10

ωr

ω
i

−
0
.2

−
0
.2

−
0
.2

0

0

0

0
0

0

0.4

0
.4

0
.4

0.4

0.4

0.4

0.8

0
.8

0
.8

0.8

0.8

1.2

1
.2

1
.21.2

1.2

1.2

1.2

1.2

1.2

1.2

1.6

1
.6

1
.6

1
.61

.6

2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2
2

(b)

Figure 6.18: Pseudospectra (red) and numerical range (blue) of the Jacobian for the stable fixed point
at Pe of 60, βT of 1.31, with a zoomed section around the real axis in (b).

6.5.2 Monodromy matrix

Figure 6.19 shows the psuedospectra (red) and numerical range (blue) of the monodromy

matrix for the unstable limit cycle at Pe of 60, βT of 1.31 and velocity amplitude of 0.62. The

psuedospectra show that the monodromy matrix is only slightly non-normal, similar to the

results for the fixed point in the previous section. It is therefore suggested that the diffusion

flame model is both weakly non-normal and weakly non-linear. It is likely that if some of

the unphysical assumptions in the model were relaxed, the model would become both more

strongly non-linear and more strongly non-normal. Some of the unphysical assumptions that

could be relaxed are: the uniform temperature in the acoustic duct, the uniform velocity in the

z field and the compact flame assumption. In hydrodynamics, non-normality is often a result

97



6. CONTINUATION ANALYSIS OF A DUCTED DIFFUSION FLAME
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Figure 6.19: Pseudospectra (red) and numerical range (blue) of the monodromy matrix for the unstable
limit cycle at Pe of 60, βT of 1.31 and velocity amplitude of 0.62.

of strong convection in the flow, which would be introduced into this model if the velocity in

the z field were space-dependent.

6.6 Conclusions

This chapter shows that matrix-free continuation methods can calculate limit cycles efficiently

for thermoacoustic systems with O(103) variables. Continuation methods track the limit cycles

and bifurcations of the system as parameters vary, in order to find the stability limits of the

system over a wide parameter range. The methods operate solely in the time domain and use

the fully coupled system. Continuation methods therefore do not assume that the velocity

fluctuations and flame response are harmonic, whereas the FDF approach does, because it

operates in the frequency domain.

Thermoacoustic and fluid systems are dissipative, which makes them particularly suitable

for a matrix-free iterative method with GMRES. The iterative method converges quickly to

limit cycles by implicitly using a ‘reduced order model’ property. In other words, GMRES

preferentially uses the influential bulk motions of the system, whilst ignoring features that are

quickly dissipated in time. When combined with preconditioning and higher order prediction

techniques, the iterative method generates bifurcation diagrams with modest computational

time. For larger systems, or where timemarching is expensive, multiple shooting may be used

to speed up the process of taking matrix-vector products.

98



6.6 Conclusions

A thermoacoustic model of a ducted 2D diffusion flame is used as a test case, with 475

variables. The continuation method converges quickly to limit cycles. The finite difference and

first variational matrix-vector products give almost identical convergence for this test case, but

this may not be true for models with stronger nonlinearities.

The continuation methods are used to generate a surface of limit cycles for the ducted

diffusion flame, as two system parameters vary. Both subcritical and supercritical Hopf bifur-

cations are found. The mode shapes of the limit cycles are given directly by the continuation

method. The mode shapes of any instability to the limit cycles are given by the Floquet mul-

tipliers. Examination of the mode shapes gives physical insight into the nature of the coupled

flame-acoustic interaction.

When compared to the FDF method, the continuation method is more efficient in finding

limit cycles when studying the effect of the flame operating condition. This is because the FDF

is valid for all acoustic operating conditions, but only one specific flame operating condition.

The FDF must therefore be recalculated at each new flame operating condition. The continu-

ation method, however, is equally fast for changes in acoustic or flame operating conditions. It

can therefore be used to study the sensitivity of the safe operating region to general changes

in acoustic or flame operating conditions.

The ducted diffusion flame model is shown to be only weakly non-normal, around both

fixed points and limit cycles. This disagrees with the result in Ref. [48], where the ducted

diffusion flame was suggested to be strongly non-normal around fixed points.
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Chapter 7

Continuation analysis of a ducted
premixed flame

Continuation methods were used in chapter 6 to analyse a model of a ducted diffusion flame.

The methods were shown to be efficient at calculating limit cycles whilst varying system param-

eters, and these limit cycles were plotted as a bifurcation surface. The diffusion flame model was

found to be only weakly nonlinear, however, so the bifurcation surface was relatively smooth,

and the model did not exhibit period-2, quasiperiodic or chaotic behaviour.

In this chapter continuation methods are used to analyse a model of a ducted premixed

flame. The heat release of premixed flames is generally a more nonlinear function of velocity

than the heat release of diffusion flames. Premixed flames have been shown to exhibit periodic,

period-2, quasiperiodic and chaotic behaviour in both experiments [20, 21, 22, 23] and numerical

simulations [28, 79, 111]. Bifurcation surfaces are generated over a parameter range and the

limit cycles analysed as in chapter 6.

The work in this chapter was undertaken in collaboration with Santosh Hemchandra (IISc

Bangalore)[112], who wrote the original version of the LSGEN2D code, and has used it to

analyse the response of premixed flames to acoustic forcing [113] and to equivalence ratio

fluctuations [114]. The work was also undertaken in collaboration with Karthik Kashinath

(CUED), who constructed the velocity field models for the current version of the LSGEN2D

code, and has studied the nonlinear behaviour of premixed flames in detail [28, 111]. In a

co-authored paper Kashinath has also used the LSGEN2D code developed in this chapter to

show the importance of unstable attractors in mode switching [79].
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

7.1 Model description

The ducted premixed flame model consists of a 2D flame domain coupled to a 1D acoustic

duct. The 2D flame domain uses the G-equation and a level set method to advect the flame

shape. The flame domain can represent either 2D or axisymmetric flame configurations. The

model of the acoustic duct is the same as that used in the diffusion flame model of chapter 6

and the Rijke tube model of chapter 2.

7.1.1 Acoustic field

Similar to the Rijke tube model in Chapter 2, the dimensional acoustic equations are:

ρ̃0
∂ũ

∂t̃
+
∂p̃

∂x̃
= 0

∂p̃

∂t̃
+ γp̃0

∂ũ

∂x̃
+ ζ

c̃0

L̃0

p̃− (γ − 1) ˜̇Qδ (x̃− x̃f ) = 0

Using the non-dimensionalisations u = ũ
ũ0
,p = p̃

γMp̃0
, x = x̃

L̃0
,t = t̃c̃0

L̃0
, the equations become:

∂u

∂t
+
∂p

∂x
= 0

∂p

∂t
+
∂u

∂x̃
+ ζp− βT Q̇δ (x− xf ) = 0

where if α is the ratio of burner width to duct width, and Q̇ is the heat release rate, then the

heat release parameter, βT , is:

βT =
(γ − 1) ˜̇Q0α

γp̃0ũ0
and Q̇ =

˜̇Q
˜̇Q0

7.1.2 Flame field

Premixed flames propagate in a direction that is normal to the local flame surface. Simulations

of laminar premixed flames must be able to calculate both the location of the flame surface

and the normal vector to the flame surface. This is commonly achieved in one of two distinct

ways: flame tracking, where the location of the flame surface is discretised by a spline or by

discrete points along its length; or the G-equation, where the flame surface is defined as the

zero contour of a scalar field and the flame normals are defined by the local gradient of the

scalar field. The latter approach is used in this chapter because it has several advantages, most

notably that it can can cope with flame flashback, pinch-off and the formation of cusps. A
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7.1 Model description

boundary condition is defined in section 7.2.2 that allows the attachment point of the flame

to either flash back into the burner tube, or move across the burner lip when the outwards

perturbation velocity is larger than the flame speed.
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Figure 7.1: An example of the G-field for an axisymmetric flame with centreline at x = 0. The burner
body is shown as a thick black rectangle, and the flame surface as a thin black line at the zero contour
of G. The colours show the value of the scalar G, which are a signed distance function when local to
the flame, and are set to fixed signed values when far from the flame.

Figure 7.1 shows the scalar field G(x, y). The G-field is defined by two constraints: first,

that the flame surface is the contour G = 0, and second, that the value of G is a signed distance

function from the G = 0 contour. A signed distance function has a gradient of magnitude 1,

which ensures that the gradient of the G-field is equal to the normal vector to the flame. It is

important to note that the scalar G has no intrinsic physical property. The G-equation is an

example of a level set method, which track surfaces using fixed grids.

It is only necessary to measure the G-field locally around the flame surface (Figure 7.1),

because the flame propagation is governed only by quantities at the flame surface: the normal

vector, the curvature and the local velocity field. To evaluate the gradients at the flame surface,

a stencil of several grid cells either side of the flame surface is used with a fifth order Weighted

Essentially Non Oscillatory (WENO) procedure [115, 116, 117]. It is therefore only necessary

for the G-field to be a signed distance function in a thin tube around the flame surface, because

only information in that tube is required to evolve the flame surface in time.

The evolution of the G-field in time is given by:
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

∂G

∂t∗
+ U∗ · ∇G− sL |∇G| = 0 (7.1)

where sL is the flame speed, and U∗ is the velocity vector in the flame field, and an asterisk

represents a dimensional quantity in the flame domain.

Equation (7.1) can be rearranged, using the substitution |∇G| = ∇G·∇G
|∇G| , to give:

∂G

∂t∗
+ U∗ · ∇G− sL

∇G · ∇G
|∇G| = 0

∂G

∂t∗
+

(
U∗ − sL

∇G
|∇G|

)
· ∇G = 0

∂G

∂t∗
+ (U∗ − sLn̂) · ∇G = 0

where n̂ is the unit normal to the flame surface, which is the given by the gradient of the

G-field.

In two dimensions, the velocity field is split into x∗ and y∗ components, U = [U, V ]. The

G-equation in two dimensions is therefore:

∂G

∂t∗
+ U

∂G

∂x∗
+ V

∂G

∂y∗
− sL

√(
∂G

∂x∗

)2

+

(
∂G

∂y∗

)2

= 0

7.1.3 Heat release

The heat release rate in 2D is:

Q̇ =

ˆ
D
ρsL (φ)hR (φ) |∇G| δ (G) dx∗dy∗

where the δ(G) function is a two dimensional numerical integral over the zero contour of the

G field (section 7.2.3).

When the equivalence ratio is fixed across the domain, the heat release rate in 2D is given

by:

Q̇2D = ρsL0 (φ)hR (φ)

ˆ
D

(1 +Mκκ2D) |∇G| δ (G) dx∗dy∗

where Mκ is the Markstein length and κ2D is the two dimensional curvature (section 7.2.7)

When the equivalence ratio is fixed across the domain, and the domain is axisymmetric,

the heat release rate is given by:

Q̇axi = ρsL0 (φ)hR (φ)

ˆ
D

2πr (1 +Mκκaxi) |∇G| δ (G) dr∗dz∗ (7.2)
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7.2 Numerical formulation

Strain effects are not included in the flame speed because it is not appropriate with the

current velocity model (section 7.2.6).

7.2 Numerical formulation

The LSGEN2D code was originally written by Santosh Hemchandra (IISc Bangalore) and used

to study the response of premixed flames to acoustic forcing [113] and to equivalence ratio

fluctuations [114]. The same G-equation solver has also been used by Preetham to study the

effects of velocity models and flame strain on flame dynamics [118]. The flame model was later

modified by Karthik Kashinath (CUED) to include a simple velocity model and coupling to

1D duct acoustics [28, 79, 111]

Continuation methods require the numerical model to have very low numerical noise lev-

els, especially when matrix-vector products are evaluated using a finite difference procedure.

Several of the routines in the LSGEN2D code needed to be upgraded in order to reduce the

noise to a suitable level for continuation to work. The most notable modifications were, in or-

der of increasing importance: a cut-off function in the advection equation, rotating boundary

conditions, WENO derived curvature effects in the flame speed, a higher order delta function

to integrate the heat release rate, and a modified reinitialisation equation. Together these

techniques have reduced the noise in the code by at least four orders of magnitude. Some of

the more important details of the numerical formulation are described in this subsection.

7.2.1 Domain geometry

The domain is two dimensional and uses a Cartesian grid. The WENO gradient of a cell value

uses weighted finite difference stencils, which require the values from three cells upwind and

three cells downwind. To allow the cells at the edge of the domain to take gradients using

two-sided stencils, a border of ghost cells is added around the 2D grid. A vector of boundary

conditions is used to describe the location of the lip of any burner walls within the domain. At

each of these burner lips, a rotating boundary condition is added (section 7.2.2). The local level

set band around the flame surface is split into two regions as defined by Ref. [119]: the tube,

which immediately surrounds the flame surface, and the halo, which immediately surrounds

the tube. The tube and the halo are treated differently in the advection equation (see section

7.2.5).
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Figure 7.2: Mask to distinguish between the important regions in the flame domain: (0) ghost cells, (1)
unused domain cells, (2) tube cells, (3) halo cells, (5+) boundary condition region (section 7.2.2). The
black line shows the flame contour, the red circle shows the location of the burner lip and the magenta
dashed line shows the centreline.

A mask is defined to distinguish between each of these separate regions in the domain.

Figure 7.2 shows this mask for a typical axisymmetric configuration. The mask is updated

every timestep to ensure that the flame remains in the centre of the tube, and to ensure that

the boundary condition is in the correct orientation (section 7.2.2).

To define the geometry of the flame it is necessary to provide three things: first, the location

of the centreline, second, a flag to define whether the flame is 2D or axisymmetric, and third, a

vector of boundary condition information. The boundary condition information must include

three things: the (x, y) location of the burner lip, a flag to define whether it is the left or right

hand side of the burner (important for flashback), and the width of the burner (important for

bulging). The geometry information provided to the code allows many different configurations

to be analysed, some examples of which are: one half of a 2D symmetric/axisymmetric flame,

both halves of a 2D flame, a 2D/axisymmetric dump combustor, multiple flames side by side.

7.2.2 Rotating boundary conditions

At the burner lip, premixed flames exist in one of four different forms. They are either anchored

to the burner lip, flashing back into the burner, bulging out onto the top of the burner, or lifted

off the burner completely. The LSGEN2D code can model the first three forms but cannot

model lift-off. A boundary condition must be defined at the burner that allows the flame to
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progress smoothly between the attached, flashback and bulging forms. Physically, flashback

occurs when the flame speed is higher than the vertical velocity at the attachment point and

the flame surface is locally horizontal. Bulging occurs when the horizontal velocity at the

burner lip is outwards (away from the centreline) and the flame surface is locally vertical.
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Figure 7.3: Rotated boundary condition when the flame is attached to the burner lip. The thick black
lines show the walls of the burner, which has a finite width to allow the flame to bulge on the top of the
burner. The red circle shows the attachment point. The dashed magenta rectangle shows all cells that
are considered for the boundary condition in the attached and bulging cases. The boundary condition
domain is surrounded by a solid magenta line. In this region the G-field is extended from the values at
the attachment point.

A rotating boundary condition is applied to maintain a constant gradient of the G-field at

the burner lip. Figure 7.3 shows the rotating boundary condition when the flame is attached

to the burner lip. All cells in the dashed magenta rectangle are examined to see whether they

lie in the flame domain or the boundary condition domain. The boundary condition domain

is shown by the solid magenta line (and the BC region in Figure 7.2). Whether a cell lies in

the flame domain or the boundary condition domain is decided by the normal vector at the

attachment point, n̂att, and a simple cross product relationship, where σ = 1 for the right hand

side of the burner and σ = −1 for the left hand side:
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

Flame domain if: σ
[
x− xatt
y − yatt

]
× n̂att ≤ 0

Boundary condition domain if: σ
[
x− xatt
y − yatt

]
× n̂att > 0

Figures 7.4a and 7.4b show the rotating boundary condition during flashback and bulging.

When the flame is flashing back or bulging the attachment moves along the burner surface,

but the G-field remains smooth at the attachment point. If multiple boundary conditions are

included in the domain then they act independently; one boundary condition might be flashing

back whilst another might still be attached.
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(a) Flashback
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Figure 7.4: Rotating boundary condition during (a) flashback and (b) bulging.

108



7.2 Numerical formulation

7.2.3 Delta function

The delta function, δ(G), is used to integrate the flame area and get the heat release rate. The

delta function in this chapter uses the numerical formulation of Wen [120]. The delta function

first finds each cell that contains the flame contour, and uses cubic polynomial interpolation to

find the two locations where the flame surface crosses the cell boundaries (Figure 7.5, red dots).

An intermediate point between the two crossing locations is then found by two dimensional

cubic polynomial interpolation (Figure 7.5, blue dots) and then Simpson’s rule is used to

integrate the length of flame surface within the cell.
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Figure 7.5: Delta function to integrate the heat release. The locations where the flame surface crosses
cell boundaries (red dots) are found by polynomial interpolation. An additional location is found
between the cell crossings (blue dots) by two dimensional polynomial interpolation.

7.2.4 Reinitialisation equation

The gradient of the G-field must be equal to the normal vector to the flame surface, which

can only be achieved if the G-field is a signed distance function from the flame surface. After

each timestep the flame surface has moved, however, so it is necessary to reset the G-field to

be contours from the new flame surface location. This process is known as reinitialisation.

Reinitialisation can be achieved in one of two ways: first, by calculating the signed distance

from the location of interest to every point on the flame, and then choosing the distance with

the lowest absolute value; second, by solving the Eikonal equation (|∇G| = 1) using a pseudo-
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

time dependent PDE. The PDE has a steady solution with gradient of magnitude 1, and a

time dependent factor that carries information hyperbolically away from the flame surface.

The G-field is reinitialised by marching the PDE forwards in pseudo-time towards its steady

state. The PDE approach is efficient when accurate G contours are only required in a narrow

band around the flame surface, and is therefore the approach used in this chapter.

A reinitialisation method should create a contour field without altering the location of the

zero contour. Early versions of the LSGEN2D code used the reinitialisation method of Peng

[119], which was found to move the zero contour significantly, in particular by rounding off

cusps. This movement of the zero contour resulted in large amounts of noise, because both

the advection and reinitialisation routines continually changed the flame shape. Each timestep

the reinitialisation equation rounded off the cusps slightly, then the advection equation let the

cusps sharpen again and the cycle continued. Because this process happened every timestep,

significant noise was generated.

In this chapter the HCR-2 reinitialisation method of Hartmann [121, 122] is used with fifth

order WENO gradients. Hartmann’s method modifies the method of Peng [119] to include

an additional forcing term in the PDE that minimises the movement of the zero contour.

This modification reduced the noise level in the timemarching code by over three orders of

magnitude, with only a small extra computational cost. The reinitialisation equation is:

∂G

∂tr
= −S(G) (|∇G| − 1) + F

where tr is the reinitialisation timescale, S(G) is a smoothed sign function S(G) = G/
√
G2 + ε2,

ε � 1, and F is the forcing function [121]. This forcing function is applied only to the cells

that directly surround the flame surface. In terms of the timescale tr, the information about

the zero contour propagates outwards with speed 1. A Courant number of 0.5 is used for the

reinitialisation equation in this chapter.

7.2.5 Advection equation

The advection equation uses fifth order WENO gradients and a Runge-Kutta 3 Total Variation

Diminishing (TVD) timemarching scheme. As suggested by Peng [119, eq.9], a cut-off function

is applied across the tube and halo. The cut-off function is exactly one within the tube and

exactly zero at the edge of the halo, with a smooth function between the two. This means that

the cells within the tube advect fully, whereas those in the halo advect only partially. This

reduces instability at the Runge-Kutta pseudo timesteps, because the field is not reinitialised
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7.2 Numerical formulation

after each pseudo timestep. The rotated boundary condition is applied after each pseudo-

timestep.

7.2.6 Velocity field

A simple velocity field is applied to the flame domain. Experiments on premixed flames have

shown that acoustic perturbations cause travelling waves to advect down the flame [29]. The

travelling waves typically advect more slowly than the mean flow. In this chapter, the 1D

advection equation propagates the acoustic disturbance at the burner downstream [28, 113,

118], at a speed of u0/K, where K is a parameter set typically between 1.0 and 1.5 [123]. The

velocity field is therefore simply the time history of the acoustic perturbation at the burner

lip; the further from the burner lip, the further back in time that the acoustic disturbance was

generated. The transverse velocity is determined by satisfying continuity.

The velocity model produces flame shapes that look similar to those seen in experiments

using a relatively simple formulation. This velocity model gives rise to some non-physical

behaviour, however, such as that the mean heat release rate decreases as the forcing amplitude

increases. It should stay the same because the average amount of fuel entering the flame is

constant, and all fuel must be burnt. This defect was detected late in the project but, because

it does not affect the successful application of the continuation algorithms, the model was

retained. A more advanced velocity model, such as the Euler method used by Preetham [118],

would be better for more detailed studies.

The value of K has been demonstrated in numerical studies to have a strong effect on the

nonlinear behaviour of premixed flames [28]. In particular, subcritical Hopf bifurcations are

more prevalent at high values of K, and there are more parameter regions that have multiple

limit cycles at different amplitudes and frequencies.

7.2.7 Curvature dependent flame speed

Much of the noise in the early LSGEN2D code was generated at the flame cusps and at the

centreline. This is because sharp cusps cause a discontinuity in the contour field which increases

error in gradient calculations. Adding curvature dependence to the flame speed causes sharp

cusps to become more rounded, and causes the flame to become horizontal at the centreline.

This more closely represents the physics of experimental flames. For a conical flame which has

been scaled by β in the x direction, the flame speed is dependent on the flame aspect ratio, β,

and is given by:
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sL =
u0√

1 + β2
(1 +Mκκ)

where Mκ is a nondimensionalised Markstein length and κ is the signed curvature, which has

a different formula in the 2D and axisymmetric cases. Strain effects are not included in the

flame speed because it is not appropriate with the simple velocity field model.

Without curvature effects, the cusps formed by the LSGEN2D code are unphysically sharp.

Curvature effects are therefore used in this chapter to both reduce the noise and make the flame

shapes more physically realistic. Because curvature is a second order quantity, however, adding

curvature effects requires a significant drop in timestep to ensure that the CFL condition is

met, and therefore timemarching is significantly slower.

7.3 Adaptation for matrix-free continuation methods

To perform continuation methods, a suitable state vector must be defined. The state vector

is a snapshot of the system at an instant in time. For continuation methods, the state vector

must obey three principles. First, the state vector must contain all the information required

to describe the system at that instant in time. It should be possible to restart the simulation

exactly from the state vector alone - time traces of any variable or derived quantity should show

no sign of a restart having occurred. Second, the state vector should contain no information

that is not required to describe the state of the system - each variable in the state vector

must contain some independent information. Otherwise, if a dependent quantity is included

in the state vector then the state vector may become inconsistent when perturbed by the

continuation algorithm. For example, it would not be appropriate to include a mean flame

speed if the mean equivalence ratio were also included. Third, the state vector must have a

suitable form for perturbation. This last principle is subtle and often problem specific.

If matrix-vector products are obtained by the first variational equations, this last principle

can be achieved solely by weighting the variables in the state vector. The variables should

be weighted such that a perturbation of a fixed size affects the system to a similar degree,

for example: a perturbation of size 10−2 on a pressure value of 105Pa would have almost no

effect on system behaviour, but the same perturbation on a mixture fraction value might have

a significant effect on system behaviour - in this case the pressure value should be scaled down.

Note that this weighting methodology is not the same as simply scaling each variable to have

a similar magnitude, although this often has a similar effect. The weighting is important for

two reasons: first, so that the Jacobian matrices are well conditioned and therefore easier for
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7.3 Adaptation for matrix-free continuation methods

iterative methods to solve, and second, so that a 2-norm of the state vector is appropriate to

indicate convergence of the iterative methods.

If matrix-vector products are obtained by finite difference approximations, however, then

weighting alone is no longer enough to ensure that the state vector is suitable for perturbation.

Finite difference matrix-vector products for limit cycles were defined in chapter 5, equation

(5.6), to be Jv = v − (A(x(0) + δv)−A(x(0))) /δ + O(δ), where v is an arbitrary vector and

A(x) represents timemarching forward T time units from state x. The accuracy of the matrix-

vector product is dependent on both δ and the level of noise in the timemarching process.

The value of δ should be small for an accurate matrix-vector product (to be approximately

linear), but must also be large enough that the effect of the perturbation is not lost in the

timemarching noise. A noisy timemarching process therefore means that a larger value of δ

must be used, which in the case of the premixed flame model, limits which discretisations can

be used to define the flame shape. This is discussed further in the next section.

7.3.1 Discretisation of the flame shape

In the premixed flame model of this chapter, the state vector must include the state of the

acoustic field, the state of the velocity field and the state of the G-field. In the previous section,

it was established that variables that do not contain any independent information should not

be included in the state vector, because it leads to inconsistencies when the state vector is

perturbed. The G-field is a good example of this point. The G-field is described entirely by

the location of the flame surface. The signed distance function is a one to one mapping: each

flame shape defines a unique G-field, and each G-field defines a unique flame shape.

It would be inappropriate to include the entire G-field in the state vector because when

the state vector is perturbed the G-field will no longer be a signed distance function. This is

because each value of G in the 2D field is not independent - it is defined by the location of the

flame surface - and therefore it cannot be varied independently. A perturbation to the state

vector must result in a new G-field that obeys a signed distance function to the flame surface.

The only information in the G-field is the shape of the flame surface. The state vector

must therefore include a discretised version of this flame shape. The flame shape is a 2D curve,

which may have multiple cusps, and may have multiple separate sections (during pinch-off).

The discretisation used to describe the flame shape must satisfy four conditions. First, the

discretisation must define a unique 2D shape to a suitable level of accuracy. Second, the size

of the discretisation must not change when the flame surface is perturbed slightly, because the

state vector must not change size during the solution of each linear equation (equation (5.3)).

If the state vector changes size when perturbed, because the flame surface is slightly longer
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

or shorter, then the Jacobian matrix would change dimension during the iterative solution

of the linear equation, which invalidates the linear equation that is being solved. Third, the

discretisation must be suitable for comparing two flame shapes; as much as is possible, the

discretisation should allow easy comparison between the same parts of a curve. This is not

the case with arclength based discretisations (see later). Fourth, when a random perturbation

of size δ is added to the discretisation to take a matrix-vector product, the flame shape must

remain smooth. If the discretisation were simply (x, y) points along the flame surface, for

example, with a fine spacing to accurately describe the flame shape, then it is possible for

the perturbation to create ripples on the flame surface with wavelength of double the point

spacing. The LSGEN2D code can only accurately timemarch features that are several grid cells

in size, so sub grid cell size ripples would cause extra noise and make matrix-vector products

less accurate.

Several approaches have been considered for discretising the flame shape, which can be

divided roughly into arclength based approaches and fixed location based approaches. A few

of these approaches are discussed in this subsection, and evaluated against the four criteria

in the previous paragraph. The discretisations are generally inappropriate during pinch-off or

flashback, but that does not mean that the continuation methods cannot find limit cycles that

contain pinch-off/flashback. Pinch-off and flashback generally occur for only a fraction of the

limit cycle, therefore a limit cycle can be found if the phase of the cycle is fixed such that

there is no pinch-off or flashback in the starting state, x(0). This is because the continuation

methods see the timemarching process as a black box that maps an input state, x(0), to an

output state, x(T ), and therefore the pinch-off phenomena is within the black box and does

not affect the continuation methods.

Arclength based approaches discretise the flame shape by storing quantities as a function

of cumulative arclength, s. Because the length of the flame will change but the size of the

discretisation must remain constant, it is better to store quantities in terms of normalised

arclength, ŝ = s
sTOTAL

, and to store the total arclength, sTOTAL, separately. One arclength

approach would be to define two functions, x = f1(ŝ) and y = f2(ŝ). Another arclength

approach would be to define the curvature of the flame shape, κ = f(ŝ), and the angle of the

flame shape at the burner lip, φ0. By integrating the curvature function twice, it is possible to

recreate the 2D flame shape [124]. Arclength based approaches have the significant advantage

that functions of arclength are always single valued. Arclength based approaches have two main

disadvantages, however: first, the process of calculating arclength (and curvature) generates

errors which affect matrix-vector product accuracy; and second, it is not easy to compare the

same parts of a curve when using normalised arclength. This latter disadvantage is important
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7.3 Adaptation for matrix-free continuation methods

with iterative methods. For example, imagine comparing two flame shapes that are identical

near the burner but different near the centreline. Even where the flames are identical, the

values of the discretisation are different, because the length of the two flames is different and

therefore the discretisation points have slid along the flame surface. This makes it harder for

the iterative algorithms to reduce the residual between two flame shapes, because they cannot

operate solely on a small section of the flame; to reduce the difference between flame shapes

on a small section of the flame requires all the values in the discretisation to be changed.

The simplest fixed location approach would be to evaluate the curve as a function y = f(x),

by storing y values of the flame surface at fixed x locations. This is simple but does not allow

the function f to be multi-valued, and therefore cannot discretise cusps. This discretisation

has been used before in flame tracking models for linear stability analysis of premixed flames

[10, 125], where amplitudes are small and sharp cusps do not occur. An equivalent discretisation

using y values at set fractions of the flame height, x = f(y), would be unable to discretise the

flame during flashback and would often be ill-conditioned, because the flame shape is often flat

near the centreline when forced by the acoustics.
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Figure 7.6: Discretisation method based on polar co-ordinates. A reference point, p, is placed at the
centre point level with the burner lip. The flame shape is described by the radius from the reference
point, rp = f(θp), with a Chebyshev spacing in θp.

A fixed location approach based on polar co-ordinates is chosen to generate the results in

the latter part of this chapter. The discretisation is shown schematically in Figure 7.6. A

reference point (P) is placed at the centreline at the level of the burner lip. The flame shape

is then defined in polar co-ordinates from this point, with Chebyshev spacing in θp between

0 and π
2 , to form a function rp = f(θp). The subscript p is used to denote that this is the

radius from the reference point, not the radius from the burner centreline. The Chebyshev

discretisation ensures high accuracy and a smooth function over θp. The discretisation is not

perfect: it will fail if cusps are sharp and near the centreline, because rp will no longer be a
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

single valued function of θp. The discretisation also clusters points near the start and end of

the curve, which may lead to sub grid size ripples when a large number of points is used. For

the parameter regions studied in the results section, with a suitable choice of phase condition

this discretisation was able to capture the flame shapes without failing.

Figure 7.7 shows a summary of the discretisation process, and shows how the GMRES solver

of the continuation methods interacts with the LSGEN2D G-equation solver. The LSGEN2D

timemarching routine is written in C, but the continuation routines and interface routines

are written in MATLAB. The continuation routines and interface routines require negligible

computational time compared to the timemarching routine.

7.4 Results

The matrix-free continuation methods of chapter 5 were used to generate a bifurcation surface

of limit cycles as two parameters are varied: the flame location in the duct, xf , and the aspect

ratio of the flame, β =

√(
u0
sL

)2
− 1. The parameters that are held fixed are: φ = 1.0, α = 0.7,

K = 1.5, Mκ = 0.04, L0 = 1, ρ0 = 1.16kg/m3, p0 = 105Pa, γ = 1.4, and acoustic damping

factors c1 = 0.012 and c2 = 0.0241 . The G-field is discretised on a 401× 401 grid with spacing

0.005 and tube and halo regions both 3 grid cells wide. A timestep of 1.5× 10−4 is used with

14 reinitialisation steps per timestep, with reinitialisation Courant number of 0.5. Twenty

Galerkin modes are used.

The aim of this section is to demonstrate that the continuation algorithms can efficiently

map the nonlinear dynamics of a thermoacoustic system with a premixed flame model, by

finding limit cycles and bifurcations to the limit cycles. The results demonstrate this well.

Unfortunately, a small error was found in the code just before submission of the thesis: the

(1 +Mκκaxi) term was not included in the heat release integral (equation (7.2)). The period-

doubling and Neimark-Sacker bifurcations shift slightly in parameter space, but the qualitative

behaviour remains unchanged.

Because the focus of this chapter is on the implementation of the continuation methods,

rather than the quantitative location of bifurcations, these results are presented anyway.

1It should be noted that there is a slight inconsistency with these damping values - which are dependent
on the duct dimensions, R0, L0 - and the flame parameters, which set a physical flame size through the flame
speed, and the ratio Rf/R0 through α. For a consistent set of parameters, c1 should be set slightly lower, and c2
set slightly higher. Because the damping model in the acoustics is already basic, and the results of this chapter
are not used for quantitative comparisons this discrepancy was considered acceptable.
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

7.4.1 Bifurcation surfaces

Figure 7.8 shows the bifurcation surface of period-1 limit cycles, whose frequency is close to

that of the fundamental acoustic mode. The surface has regions with unstable limit cycles

(dashed gray lines) and regions with stable limit cycles (solid black lines), whose boundaries

are defined by the location of the period-doubling bifurcation (red line) and the Neimark-Sacker

bifurcation (magenta line). The surface is shown only for realistic flame aspect ratios in the

region 2 < β < 6, and when the flame is in the first half of the acoustic duct, xf < 0.5.

Figure 7.8: Bifurcation surface of period-1 limit cycles, as two parameters are varied: the flame location
in the duct, xf , and the flame aspect ratio, β. The surface is composed of over 600 limit cycles each
converged to ||x(0)−x(T )|| < 5×10−4. The z-axis is the maximum acoustic velocity at the flame. The
surface has regions with unstable limit cycles (dashed gray lines) and regions with stable limit cycles
(solid black lines), whose boundaries are defined by the location of the period-doubling bifurcation (red
line) and the Neimark-Sacker bifurcation (magenta line). Subfigure (a) shows the surface from above,
and subfigures (b) and (c) show the same 3D surface from two different views.
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Figure 7.9 shows the bifurcation surface of period-2 limit cycles, whose frequency is close to

half that of the fundamental acoustic mode. The surface shows the maximum velocity value at

the flame during the limit cycle - this is one of several surfaces that show the period-2 cycle (see

Figure 7.10). The surface has regions with unstable limit cycles (dashed blue lines and gray

shading) and regions with stable limit cycles (solid blue lines), whose boundaries are defined

by the location of the period-doubling bifurcation (red line) and the fold bifurcation (green

line). The period-doubling bifurcation is the same as that on the period-1 surface (Figure 7.8).

The surface is shown for the same parameter range as Figure 7.8. The fold bifurcation exists

at high β but its location is unresolved.

Figure 7.9: Bifurcation surface of period-2 limit cycles, as two parameters are varied: the flame location
in the duct, xf , and the flame aspect ratio, β. The surface is composed of over 1200 limit cycles each
converged to ||x(0) − x(T )|| < 5 × 10−4. The surface has regions with unstable limit cycles (dashed
blue lines and gray shading) and regions with stable limit cycles (solid blue lines), whose boundaries
are defined by the location of the fold bifurcation (green line) and the location of the period-doubling
bifurcation (red line) - which is the same as that in Figure 7.8. Subfigure (a) shows does not show
the unstable limit cycle surface; subfigures (b) and (c) show both the stable and unstable limit cycle
surfaces from two different views.
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

Figures 7.8 and 7.9 only show the amplitude of the velocity fluctuation during the limit

cycles. For the period-2 cycles, more information can be gained by plotting both the peaks and

the troughs of the time series during the limit cycle. This is how the experimental results of

Kabiraj [20] and the computational results of Kashinath [79] are presented. Figure 7.10 shows

a 2D slice of the combined period-1 and period-2 bifurcation surfaces, taken at β = 4, with the

y-axis showing both the peaks and the troughs of the limit cycles.
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Figure 7.10: 2D slice of the combined period-1 and period-2 bifurcation surfaces, taken at β = 4. The
y-axis plots the peaks and troughs of the velocity time series: period-1 peaks and troughs are shown
in black, period-2 peaks are shown in red and period-2 troughs in blue. A solid line represents a stable
limit cycle; a dashed line represents an unstable limit cycle. The period-doubling bifurcation is shown
as a red dot; the fold bifurcations are shown as green dots.

The period-1 cycles (black) have only one peak and one trough, and these are not symmetric

about zero - the velocity peak has a larger magnitude than the velocity trough. The period-2

peaks (red) and period-2 troughs (blue) form a more complicated shape. At some locations

the period-2 cycles have two peaks and two troughs (0.15 < xf < 0.16, 0.17 < xf ), and at

other locations the period two cycles have only one peak and one trough (xf < 0.15, 0.16 <

xf < 0.17). This difference occurs because the period-2 cycles are composed of two frequencies,

whose relative magnitudes change along the period-2 branch (see next section). As the period-

2 branch approaches the period-doubling bifurcation, the two peaks and two troughs close

together. The period-doubling bifurcation is subcritical: the period-2 cycles emerging from it
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are unstable, and overlap with the stable period-1 limit cycle. There is therefore a region of

bistability between 0.182 < xf < 0.240, where four attractors exist: a stable period-1 limit

cycle, a stable period-2 limit cycle, an unstable period-2 limit cycle, and an unstable fixed

point.

It is important to note that there are only two fold bifurcations on Figure 7.10 - the four

green dots at xf = 0.240 are not four separate fold bifurcations, they are a single fold bifurcation

acting simultaneously on the four separate traces. The same is true of the two green dots at

xf = 0.06.

The period-2 peaks and troughs on Figure 7.10 oscillate with a wavelength of ∆xf = 0.1,

which matches the wavelength of the twentieth Galerkin mode (only twenty were considered).

This is probably an indication that a larger number of Galerkin modes are required in the

discretisation. Including more Galerkin modes would probably smooth the peaks and troughs,

but would probably not qualitatively change the behaviour.

7.4.2 Limit cycles

Once the limit cycles have been found by the continuation methods, their form can then be

analysed. At an operating condition of xf = 0.195 and flame aspect ratio 4 (Figure 7.10),

there are three limit cycles: a stable period-1 limit cycle, an unstable period-2 limit cycle and

a stable period-2 limit cycle. All three of these cycles have comparable velocity amplitudes at

the flame. In this section, the form of and spectra of these three limit cycles are compared.

Figure 7.11a shows snapshots of the flame during the stable period-1 limit cycle. The flame

shapes are qualitatively similar to those seen in experimental axisymmetric flames [29]. In

particular, it was found that including curvature effects was important if flame shapes are to

be compared with experimental ones. Without curvature the cusps become too sharp, especially

at the centreline.

Figure 7.11b shows the time traces and spectra of the acoustic velocity and pressure at the

flame, and the heat release of the flame. The heat release time trace is not sinusoidal because

it contains a significant amount of higher harmonics. This will always be true when there are

cusps on the flame surface.
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Figure 7.11: Snapshots of the flame surface (a) and time traces and spectra (b) for the stable period-1
limit cycle at xf = 0.195, with steady state flame aspect ratio of 4.

Near the period-doubling bifurcation, the period-2 cycles have a particular form where the

cusps alternate position during the first and second halves of the cycle. Figure 7.12 shows the

equivalent of Figure 7.11, but for the unstable period-2 limit cycle. The black lines show the

flame shape during the first half of the cycle and the gray lines show the flame shape during

the second half of the cycle. Because this is a period-2 limit cycle, a peak has appeared on the

spectra at 0.9, which is half the frequency of the fundamental acoustic mode.
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Figure 7.12: Snapshots of the flame surface (a) and time traces and spectra (b) for the unstable period-2
cycle at xf = 0.195, with steady state flame aspect ratio of 4. The time scale is the same as Fig. 7.11.

When further from the period-doubling bifurcation, however, it is more difficult to identify

that the cycle is part of the period-2 branch, and not just a limit cycle with half the frequency

of the fundamental acoustic mode - the peaks of the time trace lose the characteristic one-up,

one-down structure that is commonly associated with period-2 cycles. In other words, the

half-frequency starts to dominate, and the flame shape does not alternate between the two
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Figure 7.13: Snapshots of the flame surface (a) and time traces and spectra (b) for the stable period-2
cycle at xf = 0.195, with steady state flame aspect ratio of 4. The time scale is the same as Fig. 7.11.

halves of the cycle. Figure 7.13b shows an example of this, for the stable period-2 cycle.

The qualitative change in the form of the cycle along the period-2 branch can be seen

using phase portraits. Figure 7.14 shows the phase portraits of the converged period-2 cycles

at different locations along the period-2 branch of Figure 7.10, starting from near the Hopf

bifurcation (Figure 7.14(a)) and moving along the branch towards towards the period-doubling

bifurcation (Figure 7.14(t)). Because this branch of period-2 cycles is a strong function of

two frequencies, it will not be captured well by frequency domain methods such as the FDF,

because they consider each frequency independently.

7.4.3 Floquet multipliers

The Floquet multipliers describe the stability of a limit cycle to infinitesimal perturbations,

as was discussed in section 6.2.3.2 for the model of the ducted diffusion flame. Bifurcations

to the limit cycle occur when a Floquet multiplier, or complex pair of Floquet multipliers,

cross the unit circle. The location of the crossing point defines the type of bifurcation. The

ducted premixed flame model shows several bifurcations of limit cycles: fold bifurcations,

period-doubling bifurcations and Neimark-Sacker bifurcations.

7.4.3.1 Fold bifurcation

A fold (LPC) bifurcation occurs when a Floquet multiplier crosses the unit circle at +1. The

bifurcation changes the stability of a branch of limit cycles from stable to unstable. A fold

bifurcation is observed on the period-2 branch of Figure 7.10 at xf = 0.239. Figure 7.15

shows the Floquet multipliers of the period-2 cycles either side of the fold bifurcation in Figure

7.10, which clearly show the Floquet multiplier crossing +1. Together, the fold bifurcation
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Figure 7.14: Phase portraits of the period-2 limit cycles at different locations along the period-2 branch
of Figure 7.10. Near the Hopf bifurcation (a), the cycle is nearly sinusoidal with a frequency of half
the fundamental acoustic mode. The cycle becomes less sinusoidal as xf increases (b-j), because the
response at the fundamental acoustic mode increases relative to the response at the half frequency. As
the cycle moves closer to the period-doubling bifurcation (k-t) the phase portraits develop the familiar
double loop form of a period-2 cycle, because the response of the fundamental acoustic mode is much
greater than that of the half frequency. The fold bifurcation occurs between (q) and (r); the period-2
cycles (a-q) are stable, the period-2 cycles (r-t) are unstable.
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Figure 7.15: Floquets multipliers either side of the fold bifurcation, at (xf ,max(uf )) values of
(0.239, 0.224) (left) and (0.239, 0.244) (right). The fold bifurcation is caused by the Floquet multiplier
crossing +1. The four largest Floquet multipliers are converged to 10−2 accuracy with the Arnoldi
algorithm. The Floquet multiplier at (+1,0) is the trivial one which defines a limit cycle.

at xf = 0.239 and the subcritical period-doubling bifurcation at xf = 0.182 create a bistable

region, because between 0.182 < xf < 0.239 there are both stable period-1 limit cycles and

stable period-2 limit cycles. Mode switching is possible in this parameter region.

7.4.3.2 Period-doubling bifurcation

A period-doubling (flip) bifurcation occurs when a Floquet multiplier crosses the unit circle

at -1. The bifurcation creates a branch of period-2 limit cycles, and the period-1 limit cycle

becomes unstable. Figure 7.16 shows the Floquet multipliers at a limit cycle either side of the

period-doubling bifurcation in Figure 7.10, which clearly show the Floquet multiplier crossing

-1.
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Figure 7.16: Floquets multipliers either side of the period-doubling bifurcation, at xf values of 0.193
(left) and 0.175 (right). The period-doubling bifurcation is caused by the Floquet multiplier crossing
-1. The four largest Floquet multipliers are converged to 10−2 accuracy with the Arnoldi algorithm.
The Floquet multiplier at (+1,0) is the trivial one which defines a limit cycle.
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

A period-doubling bifurcation can also be seen from a time series (Figure 7.17). Starting

at the unstable limit cycle just after the period-doubling bifurcation, the system grows expo-

nentially away from the limit cycle, with the peaks forming a characteristic one-up, one-down

pattern. Because the limit cycle was converged to a high tolerance, and because the unstable

Floquet multiplier is only just outside the unit circle, the system requires a long time to reach

the period-2 limit cycle.
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Figure 7.17: Time series of the system growing exponentially away from an unstable period-1 limit cycle
just after a period-doubling bifurcation. The peaks form a characteristic one-up, one-down pattern.
The first and the last boxes have the same scale, to show that the period-2 limit cycle has roughly twice
the period of the unstable period-1 limit cycle.

The mode switching section of the time series in Figure 7.17 also shows that the period-

doubling bifurcation is subcritical. Because the unstable limit cycle is only just beyond the

period-doubling bifurcation, then if the bifurcation were supercritical, the system would quickly

reach a stable period-2 limit cycle with a relatively low magnitude in the half frequency. In

other words, the stable period-2 cycle would be very similar to the unstable period-1 cycle,

with only a small one-up, one-down variation in the peaks and troughs.

At the period-doubling bifurcation, the Floquet mode that corresponds to the Floquet

multiplier at -1 shows which coupled motion of the system is responsible for the bifurcation.

This Floquet mode is shown schematically in Figure 7.18. At the frequency of the fundamental

acoustic mode, the flame has two cusps on its surface. At half of this frequency, there should

be only one cusp. The Floquet mode is a coupled motion with: (1) a flapping motion of the

flame surface, where the tip and base of the flame move outwards and the middle of the flame

moves inwards, coupled with (2) a variation in the velocity field every other cycle, and (3)

a reduction in acoustic pressure in the duct and an increase in acoustic velocity in the duct

before the flame.
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Figure 7.18: Floquet mode for the Floquet multiplier that causes the period-doubling bifurcation. The
left hand image shows the flame shape and streamlines of the velocity field at a state on the limit cycle
at the period-doubling bifurcation (aspect ratio 4). With the y-axis limits chosen, the velocity field
in the lower half of the domain is repeated in the upper half of the domain - the velocity field is the
history of the acoustic perturbation over the last two cycles; the last cycle corresponds to the lower
half of the domain, the second to last cycle corresponds to the upper half of the domain. The right
hand image shows the same as the left image (gray), superimposed with the state when perturbed a
small amount in the direction of the Floquet mode that causes the period-doubling bifurcation (red).
The coupled motion responsible for the period-doubling bifurcation is therefore: (1) a flapping motion
of the flame surface, where the tip and base of the flame move outwards and the middle of the flame
moves inwards, coupled with (2) a variation in the velocity field every other cycle, and (3) a reduction
in acoustic pressure in the duct and an increase in acoustic velocity in the duct before the flame. The
flame shape perturbation is scaled by a factor of two for clarity.

7.4.3.3 Neimark-Sacker bifurcation

A Neimark-Sacker (torus) bifurcation occurs when a complex pair of Floquet multipliers crosses

the unit circle. The bifurcation creates a branch of quasiperiodic oscillations. A quasiperiodic

oscillation has two incommensurate frequencies, and therefore forms a torus in phase space.

Figure 7.19 shows the Floquet multipliers at a limit cycle either side of the Neimark-Sacker
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Figure 7.19: Floquets multipliers either side of the Neimark-Sacker bifurcation on Figure 7.8, at flame
aspect ratio of 2.4 and xf values of 0.2 (left) and 0.175 (right). The Neimark-Sacker bifurcation is
caused by the pair of Floquet multipliers crossing the unit circle. The four largest Floquet multipliers
are converged to 10−2 accuracy with the Arnoldi algorithm. The Floquet multiplier at (+1,0) is the
trivial one which defines a limit cycle.

bifurcation, which clearly show the pair of Floquet multipliers crossing the unit circle.

A Neimark-Sacker bifurcation can also be seen from a time series. Starting at the unstable

limit cycle just after the Neimark-Sacker bifurcation, the system grows exponentially away

from the limit cycle, with the peaks oscillating at a second frequency. The ratio between these

two frequencies is given by the argument of the complex eigenvalue pair, divided by 2π. For

the pair of Floquet multipliers in Figure 7.19, the ratio between the two frequencies is 10.57

(to 2d.p.). This can be seen in the time series of Figure 7.20, where the peaks oscillate with

a period 10.57 times that of the limit cycle. It is important to note that if this number were

rational, then the oscillation would be frequency locked and not quasiperiodic.
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Figure 7.20: Time series of the system growing exponentially away from an unstable limit cycle just
after a Neimark-Sacker bifurcation. The peaks oscillate at a second frequency that is defined by the
argument of the pair of Floquet multipliers that cross the unit circle.
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Figure 7.21: Real part of the Floquet mode for the complex Floquet multiplier pair that causes the
Neimark-Sacker bifurcation. The coupled motion responsible for the Neimark-Sacker bifurcation is
therefore: (1) a bulging motion of the flame surface, where the base of the flame move outwards and
the tip of the flame moves inwards, coupled with (2) a variation in the velocity field with a period much
greater than that of the limit cycle, and (3) a reduction in acoustic pressure in the duct and an increase
in acoustic velocity in the duct before the flame. The changes in the velocity field are much harder to
understand visually than the changes for the period-doubling bifurcation in Figure 7.18, because the
velocity field changes slowly over 10.57 cycles.

At the Neimark-Sacker bifurcation, the Floquet mode that corresponds to the complex Flo-

quet multiplier pair at the unit circle shows which coupled motion of the system is responsible

for the bifurcation. Figure 7.21 shows the real part of this pair of Floquet multipliers. The

Floquet mode is a coupled motion with: (1) a bulging motion of the flame surface, where the

base of the flame moves outwards and the tip of the flame moves inwards, coupled with (2) a

variation in the velocity field with a period much greater than that of the limit cycle, and (3)

a reduction in acoustic pressure in the duct and an increase in acoustic velocity in the duct

before the flame. The perturbation in the velocity field is much less clear to analyse than that
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7. CONTINUATION ANALYSIS OF A DUCTED PREMIXED FLAME

of the period-doubling bifurcation in Figure 7.18, because it does not affect the velocity history

from previous cycles in a symmetric way (whereas the period-doubling bifurcation did). In the

Neimark-Sacker case, the perturbation to the velocity history is changing both the peaks and

troughs of the previous cycles, and the size of these changes varies at a frequency lower than

that of the original limit cycle.

7.4.4 Numerical efficiency

Chapter 6 showed that the convergence of the GMRES solver is not dependent on the number

of variables in the state vector. Instead, it is dependent on the number of bulk motions of the

system.

Figure 7.22 shows the convergence to an unstable limit cycle (xf = 0.175, β = 2) as a

function of the number of periods that are timemarched. The continuation methods converge

steadily to the limit cycle from a relatively poor initial guess, converging by a factor of 1000 in

only 26 timemarches. Convergence tests have managed to reach a tolerance of ||x(0)−x(T )|| <
2× 10−6, which is a relative residual of ||x(0)−x(T )||

||x(0)|| < 2× 10−7. A tolerance of ||x(0)−x(T )|| <
5×10−4 is chosen in this chapter to signify that a limit cycle has been found, however. At this

level of tolerance, the difference between the flame shapes at x(0) and x(T ) is everywhere less

than 1% of the size of a grid cell. This tolerance is considered to be low enough to ensure that

a limit cycle has been found, but high enough to ensure that computing bifurcation surfaces is

fast.

The continuation methods converge by timemarching only a few cycles, but the real-time to

create a bifurcation surface is governed by the speed of timemarching one cycle. The LSGEN2D
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Figure 7.22: Typical convergence to a limit cycle in terms of the residual magnitude, ||x(0)−x(T )||2,
and number of timemarches. The dots are the residual values after each Newton step and the line is
the estimated residual within the solution of each Newton step.
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code used in this chapter is several hundred times slower at timemarching than the diffusion

flame code used in chapter 6. Despite the LSGEN2D code being more computationally expen-

sive to timemarch, only around 14000 CPU hours were required to generate the bifurcation

surfaces in section 7.4.1 and to analyse the stability of the limit cycles: this is equivalent to

80 CPU cores running for one week. Because the surface is composed of several 2D slices, the

process of forming a surface is easily parallelisable. For relatively little computational cost,

therefore, the continuation methods can characterise the nonlinear behaviour of the coupled

system over a wide parameter range.

It should be noted that the convergence is not as fast as it could be. There are several

immediate areas that would be worth further investigation: (i) Discretisations - the Chebyshev

polar coordinate discretisation is not ideal, because the point spacing is too small near the

edges of the flame, and it does work not for arbitrary flame shapes, such as in pinch-off or

flashback. The Chebyshev discretisation will also be poorly conditioned - or will fail - when

there is a sharp cusp near the centreline. For the Chebyshev discretisation, an immediate

extension would be to use a mapping function to increase the point spacing near the edges of

the flame. (ii) Accuracy of the reinitialisation routine - the reinitialisation routine is responsible

for most of the timemarching noise. If the timemarching noise were reduced then the finite

difference matrix-vector products would be more accurate. (iii) Smoothing - the flame shape

will always be smooth after timemarching one cycle, but the output from the linear solver will

not be perfectly smooth. A smoothing function could be applied after each GMRES solution

to ensure that the next guess for a state on the limit cycle has a smooth flame shape. (iv)

Dynamic phase condition - the phase condition could be altered for each limit cycle to ensure

that there are no sharp cusps near the centreline, which would ensure that the Chebyshev polar

coordinate discretisation is well conditioned.

7.5 Conclusions

Matrix-free continuation techniques were applied to a model of a ducted premixed flame. The

flame model uses the kinematic G-equation, with a local level set solver. The premixed flame

model has many attributes of equivalent experimental systems: the flame is axisymmetric, the

flame speed is dependent on the curvature, the flame has sharp cusps, and the flame is capable

of pinch-off, flashback and bulging at the burner lip. The ducted premixed flame model has

been shown previously by Kashinath to exhibit limit cycle, period-2n, quasiperiodic and chaotic

behaviour [79], and to have many parameter regions that are multistable. These results show

qualitatively the same phenomena observed in experiments by Kabiraj [20].
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The continuation techniques are used to efficiently find a surface of stable and unstable

limit cycles, as two system parameters vary. The continuation methods also explicitly find

period-doubling and Neimark-Sacker bifurcations, by examining the Floquet multipliers of the

limit cycles. A separate surface of period-2 limit cycles was found emerging from a subcrit-

ical period-doubling bifurcation. This is the first computational thermoacoustic study where

period-doubling and Neimark-Sacker bifurcations have been found. The Floquet modes are

examined at the bifurcations to show the coupled flame-acoustic motions that are responsible

for the qualitative changes in behaviour. The continuation methods can find unstable limit

cycles easily, whereas many other techniques cannot. This is important because the unstable

limit cycles are crucial for mode switching [2, 79] and for separating the basins of attraction of

different attractors.

The monodromy matrix was used to define the Floquet multipliers of a limit cycle. The

monodromy matrix for the premixed flame was not analysed in detail in this chapter, but it

contains extra information that would be worthy of further investigation. First, the pseudospec-

tra of the monodromy matrix - with a physically based norm - defines the transient growth

around the limit cycle (section 6.5.2) which is important for mode switching and triggering.

Because the diffusion flame of chapter 6 showed lower transient growth than that reported in

the literature, it would be interesting to compare the transient growth for the premixed flame.

Second, the acoustic-acoustic section of the monodromy matrix shows how much interaction

there is between the acoustic modes - how much energy is transferred between modes during

one cycle. The degree of coupling between the modes would help understand the physical

nature of thermoacoustics.

The LSGEN2D code is able to capture the dynamics of a premixed flame under acoustic

forcing, and the continuation methods are able to calculate any limit cycles and bifurcations

when the flame model is coupled to an acoustic model. The results from the continuation

methods could be compared with experiments in one of two ways: first, by comparing flame

shapes and heat release responses; second, by comparing the self-excited behaviour and the

bifurcation diagrams. With improvements to the velocity model and the acoustic model (see

further work section), the method described in this chapter could be an effective means of

predicting and analysing the nonlinear behaviour seen in experimental premixed flame systems.
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Chapter 8

Gradient methods

After the work on the influence of noise (part I), I decided to focus on finding limit cycles of

large thermoacoustic systems. I developed two different approaches in parallel because, at that

time, it was not clear whether either or both would work. As it turns out, they both work and

they have complementary features, which will benefit future research in this area. The method

developed in this chapter would have been harder to implement for the large thermoacoustic

systems in chapters 6 and 7, so the matrix-free techniques were used instead. Nevertheless, in

this chapter, I describe these gradient methods because current developments in the field of

algorithmic differentiation will make them easier to implement in the future.

Chapter 5 described an efficient method for finding limit cycles in large thermoacoustic

systems. This method required the inexact solution of a series of linear equations, each of

which has the standard form for multidimensional Newton iteration, J∆x = −r . Newton

iteration converges quadratically when started close to a solution (proportional to the second

derivative). When started far from a solution, however, Newton iteration may diverge. The

matrix-free methods of chapter 5 are therefore only useful when a good estimate of a limit

cycle is known. In this chapter an alternative method of finding limit cycles is presented,

which should be more stable when converging from poor initial guesses.

8.1 Introduction

When attempting to find a limit cycle in a large thermoacoustic system, a good estimate of a

limit cycle may already be known. This estimated limit cycle may come from a known Hopf

bifurcation, or from timemarching data that shows a feature that is nearly periodic. Stable

fixed points and stable limit cycles can be found by timemarching. Unstable fixed points and

unstable limit cycles are harder to find by timemarching, however, because the trajectories
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diverge1. By extracting near-periodic features from timemarching data, and then attempting

to converge to a limit cycle, it has been possible to find unstable limit cycles in a model of

2D turbulence [86]. This process is time-consuming, however, because it requires a lot of

timemarching, and many near-periodic features are found that do not correspond to a nearby

limit cycle.

In this chapter a method of finding limit cycles is presented which should be more stable

when converging from poor initial guesses. This method formulates the problem as the min-

imisation of a scalar cost function. The simplest cost function, J, is the length of the residual

vector, J = r · r = (x(T )− x(0)) · (x(T )− x(0)) [126, 127]. Gradient methods use the direction

of the gradient of the cost function, dJ/dx(0), to iterate towards a nonlinear minimum. The

gradient of the cost function, dJ/dx(0), defines the direction in which the cost function increases.

The value of the cost function can therefore be reduced by heading in the opposite direction

to the gradient. This is the foundation of all gradient based optimisation methods.

It is important to have an efficient method of finding the gradient of the cost function,

because the gradient vector contains the derivative of the cost function with respect to each of

the system variables, dJ/dx(0). In this chapter adjoint equations will be used to calculate the

gradient of the cost function. As will be shown later in this chapter, for any system dimension,

N , the adjoint equations provide the gradient of the cost function in two timemarches, one

forwards and one backwards. Therefore when N is large, adjoint methods are far more efficient

at finding gradients than finite difference methods, which separately vary each variable in

the state vector to evaluate dJ/dxi(0). As N increases, however, adjoint methods require large

amounts of memory and elaborate checkpointing routines. As will be discussed later in this

chapter, this memory requirement can be reduced by using multiple shooting methods.

Adjoint equations were first used to find limit cycles by Nakhla [126] and then later by

Tadi [127], who independently derived the form of the standard shooting method described in

the next section. Tadi additionally introduced higher order terms into the cost function that

match the time derivatives at x(0) and x(T ). Higher order terms of a different form will be

described later in this chapter. Neither of these references, however, considered a Poincaré

shooting method, which is derived in this chapter. Multiple shooting methods have also been

implemented by Lan [128] and Boghosian [129].

This chapter begins with general derivations for the standard shooting and Poincaré shoot-

ing methods. The chapter then discusses modification of the cost function by normalisation

and by inclusion of higher order terms. A general form of the second order adjoint is then
1The unstable fixed points and unstable limit cycles are unstable attractors, so trajectories initially converge

towards them from directions that are stable. The trajectories will eventually diverge, however, in a direction
that is unstable.
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derived for the standard shooting method. A general form of the multiple shooting method

is then derived to provide a gradient method equivalent to the multiple shooting method of

chapter 6. The numerical methods are then demonstrated on the horizontal Rijke tube model.

8.1.1 Definition of inner products

Various inner products are used throughout this chapter. They are defined here as integrals in

time and integrals over some measure of space (z):

{
f, g
}t2
t1
≡
ˆ t2

t1

f(t) · g(t) dt〈
f, g
〉
≡ f · g[

f, g
]t2
t1
≡
ˆ t2

t1

ˆ
f(z, t) · g(z, t) dz dt

8.2 Standard shooting method

As in chapter 5, this derivation is for nonlinear systems whose evolution is governed by:

dx(t)

dt
= F (x(t), λ), x(t) ∈ RN

where x is the current state of the system and λ are parameters. In the rest of this section,

the parameter dependence of the system will be dropped from the notation for clarity. Limit

cycles satisfy:

x(0) = x(T ) ,
{
T ∈ R+|T 6= 0

}
, (8.1)

For finding limit cycles, the cost function is defined as:

J = ||x(T )− x0||2 = (x(T )− x0) · (x(T )− x0) (8.2)

where x0 is the current guess for a state on the limit cycle.

The Lagrange equation is:

L ≡ J− C

where C are the constraints. For finding limit cycles, there are two constraints: first, that the

system evolves with dx
dt = F (x) for all time; and second, that the current guess for a state on

the limit cycle, x0, is the state at time t = 0, x0 = x(0). These constraints are functions of

time and space but the Lagrangian is a scalar, therefore inner products of the constraints are
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taken. If these constraints are put into the format C = 0 (for reasons explained later), and

inner products are taken, then the Lagrangian equation becomes:

L ≡ J−
ˆ T

0
θ ·
(
dx
dt
− F (x)

)
dt−G · (x(0)− x0) (8.3)

where θ and G are Lagrange multipliers. The adjoint variables, θ, are the Lagrange multipliers

of the direct governing equations. They are time dependent. In the literature a dagger is often

used to denote the adjoint state (θ = x†), but in this chapter θ is used for clarity.

With the inner product definitions of section 8.1.1, equation (8.3) can be rewritten as:

L ≡ J−
[
θ,

dx
dt
− F (x)

]T
0

− 〈G, x(0)− x0〉 (8.4)

The Lagrangian (L) is therefore a function of the starting state, the direct variables and

the adjoint variables, L = f (x0, x(x0, t), θ(x0, x, t)). Gradient methods require the gradient of

the cost function with respect to the starting state, dJ/dx(0). Each component of the gradient

contains two terms:

dJ
dx0k

=
∂J

∂x0k

+
∑
i

∂J

∂xi(x0, t)

∂xi(x0, t)

∂x0k

The first term is simple to evaluate but the second term is not, because the ∂xi(x0,t)
∂x0k

term

is the result of a nonlinear integration in time and therefore cannot be expressed analytically.

Adjoint equations use the Lagrangian equation, and a mathematical trick, to find the gradient

of the cost function without having to explicitly calculate this unknown term.

Using the chain rule, differentiating the Lagrangian with respect to one variable in the

initial state gives the following, where the subscript i is used to denote the ith variable in the

state vector (but the current guess, x0 6= xi|i=0) :

J = L + C

dJ
dx0k

=
∂L

∂x0k

+
∑
i

∂L

∂xi(x0, t)

∂xi(x0, t)

∂x0k

+
∑
i

∂L

∂θi(x0, x, t)

∂θi(x0, x, t)

∂x0k

. . .

+
∂C

∂x0k

+
∑
i

∂C

∂xi(x0, t)

∂xi(x0, t)

∂x0k

+
∑
i

∂C

∂θi(x0, x, t)

∂θi(x0, x, t)

∂x0k

(8.5)

Because the system is nonlinear, the ∂xi(x0,t)
∂x0k

and ∂θi(x0,t)
∂x0k

terms are unknown. If it were

possible to fix ∂L
∂xi(x0,t)

= ∂L
∂θi(x0,x,t)

= 0, and construct all of the constraints so that C = 0,

however, then these unknown terms are multiplied by zero, and equation (8.5) would reduce
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8.2 Standard shooting method

to:
dJ
dx0k

=
∂L

∂x0k

(8.6)

By the construction of equation (8.4), ∂L
∂θi(x0,x,t)

is always zero because the governing equa-

tion constraint is zero, dx
dt − F (x) = 0. As will be seen in the following derivation, setting

∂L
∂xi(x0,t)

= 0 defines particular boundary conditions for the adjoint variables, and also defines

how they evolve in time. These are the adjoint equations.

The first step in the derivation of the adjoint equations is to integrate the second term of

equation (8.4) by parts, which gives two extra terms. These terms will later be used to define

the boundary conditions for the adjoint state:

L = J−
[
dθ
dt
,−x

]T
0

− [θ,−F (x)]T0 − 〈θ(T ), x(T )〉+ 〈θ(0), x(0)〉 − 〈G, x(0)− x0〉

The second step in the derivation is to differentiate the Lagrangian with respect to one of

the direct variables:[
∂L

∂xk
, δxk

]T
0

= 〈2(xk(T )− xk0), δxk(T )〉+

[
dθk
dt

, δxk

]T
0

+

[
θ,
∂F (x)

∂xk
δxk

]T
0

. . .

−〈θk(T ), δxk(T )〉+ 〈θk(0), δxk(0)〉 − 〈Gk, δxk(0)〉 (8.7)

The adjoint formulation must set ∂L
∂x(x0,t)

= 0, to agree with equation (8.6). Summing compo-

nents of δxk, and setting them equal to zero gives an evolution equation for each of the adjoint

variables, θk:
dθk
dt

+
∑
i

θi
∂Fi(x)

∂xk
= 0 (8.8)

Summing the components at time t = T and setting them equal to zero gives the boundary

condition:

θk(T ) = 2(xk(T )− x0k) (8.9)

and the equivalent at time t = 0 gives:

θk(0)−Gk = 0

The third step in the derivation is to differentiate the Lagrangian with respect to one of

the variables in the starting state:[
∂L

∂x0k

, δx0k

]T
0

= 〈−2(xk(T )− x0k), δx0k〉+ 〈Gk, δx0k〉 (8.10)
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From equation (8.6), the gradient of the cost function is equal to ∂L
∂x0

:

dJ
dx0k

=
∂L

∂x0k

= Gk − 2(xk(T )− x0k) = θk(0)− 2(xk(T )− x0k) (8.11)

Therefore the gradient of the cost function is:

dJ
dx0

= θ(0)− 2(x(T )− x0) (8.12)

The equation for the gradient in equation (8.12) requires the difference between the start and

end of the loop, based on the current guess for x0 and T , and requires the adjoint state at time

0, θk(0). The only known adjoint state is at t = T from equation (8.9), but the time evolution of

the adjoint state is defined by equation (8.8). The evaluation of the gradient therefore requires

two separate timemarches: first, the direct equations must be marched forward in time from

x(0) to x(T ), second, the adjoint equations must be marched backwards in time from θ(T ) to

θ(0).

If the direct governing equation is nonlinear then the adjoint equations at time t re-

quire knowledge of x(t), because
∑

k

∑
i
∂Fi(x)
∂xk

= f(x). Conversely, if the governing equa-

tion is linear then the adjoint equations at time t do not require knowledge of x(t), because∑
k

∑
i
∂Fi(x)
∂xk

is a constant. When finding limit cycles in nonlinear systems, the values of x(t)

must therefore be stored in memory or recalculated during the backwards timemarch. For large

systems checkpointing algorithms are used, which are effective but significantly increase the

complexity and memory requirements of the calculations.

To find limit cycles with a standard shooting formulation, the value of dJ/dT is also required.

J = ||x(T )− x0||2 = (x(T )− x0) · (x(T )− x0)

dJ
dT

=
∂J

∂x(T )
· ∂x(T )

∂T

where:

∂x(T )

∂T
=

∂

∂T

ˆ T

0
ẋdt

=

´ T+ε
0 ẋdt−

´ T
0 ẋdt

ε

= ẋ(T ) = F (x(T ))
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8.2 Standard shooting method

Therefore the gradient of the cost function with respect to time is [126]:

dJ
dT

= 2 (x(T )− x0) · ẋ(T )

When the combined gradient,
[

dJ
dx0

; dJ
dT

]
, is passed to an optimisation algorithm, poor con-

vergence (or instability) may occur if dJ
dT is a different order of magnitude to the other compo-

nents of the gradient. This can be mitigated by weighting the initial conditions, x0. A vector

of weights, rather than a single weight, is recommended when the elements of x0 are of different

magnitudes [127]. When a Poincaré plane formulation is used, the gradient with respect to T

is not required (section 8.3).

8.2.1 Adjoint looping algorithm

1. Given a starting state x0 and guess for the period T , integrate forward to t = T with the

direct equations:

x(0) = x0

dx
dt

= F (x)

2. Initialize the adjoint variables at t = T with:

θk(T ) = 2(xk(T )− x0k)

3. Integrate backward in time to t = 0 with the adjoint equations:

dθk
dt

+
∑
i

θi
∂Fi(x)

∂xk
= 0

4. Calculate the gradient information at t = 0 with:

dJ
dx0k

= θk(0)− 2(xk(T )− x0k)

dJ
dT

= 2 (x(T )− x0) · ẋ(T )

5. Pass the gradient information to an optimisation algorithm, which calculates a new initial

starting state x0 and a new guess for the period T . Optimisation algorithms will be

discussed later in the chapter.

6. Return to step 1 until J < tol, where tol is some positive convergence value, normally

some factor of ||x0||.
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8.2.1.1 Phase condition

The cost function, J = (x(T )−x0)·(x(T )−x0), is zero at every point on the limit cycle, therefore

every point on the limit cycle is a minimum. For some minimisation algorithms to converge

efficiently, a single minimum point is required. This can be achieved by adding a phase condition

to the cost function. The simplest phase condition fixes the value of a particular variable that

is known (a priori) to change during a limit cycle. In a simple thermoacoustic system, with

time varying amplitudes of acoustic modes, one might fix the instantaneous amplitude of the

fundamental velocity or pressure mode to be zero.

The cost function with this phase condition is:

J = (x(T )− x0) · (x(T )− x0) + α
(
x0ph − θ

)2 (8.13)

where ph is the index of the variable that is fixed to be equal to some constant, θ, which the

variable is known (a priori) to take during the limit cycle. The scalar α is a weighting between

the periodicity and phase terms. The phase condition adds a term to the gradient for the fixed

variable:
dJ

dxph0

= θph(0)− 2(xph(T )− x0ph) + 2α
(
x0ph − θ

)
8.3 Poincaré shooting method

The adjoint looping algorithm for a Poincaré shooting method is similar to that derived above

for the standard shooting method. With a Poincaré shooting method (section 5.2.2), the direct

timemarching is stopped at time Tp when the hyperplane is reached, therefore the adjoint state

is initialised at time Tp, θk(Tp) = 2(xk(Tp) − x0k). The adjoint equations are then marched

backwards in time from θ(Tp) to θ(0). Extra terms must be included when evaluating dJ/dx0,

however, because Tp = f(x0):

dJ
dx0k

=
∂J

∂x(Tp)
· ∂x(Tp)

∂Tp

∂Tp
∂x0k

+
∂J

∂x0k

(8.14)

The exact value of ∂Tp/∂x0k depends on the how the hyperplane is defined in the Poincaré

shooting method. If the plane is defined by the starting state, x0, and the normal is defined by

ẋ0, then the normal also changes with x0, whereas if the hyperplane is defined by a state from

a previous converged solution, x∗0, and the normal is defined by ẋ∗0, then the normal does not

also change with x0. When the hyperplane is defined by x0, the Poincaré shooting formulation

converges well if x0 is close to a limit cycle, but may not converge if x0 is far from a limit cycle,

because the trajectory may not recross the plane defined by ẋ0.
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8.3 Poincaré shooting method

8.3.1 Hyperplane defined by the starting state

In this section, the first part of the derivation assumes a hyperplane that varies with x0. The

second part of the derivation simplifies the first part to derive the formulation with a hyperplane

that is fixed by x∗0. The crossing of the hyperplane is defined by:

ẋ0 · (x(Tp)− x0) = 0 or ẋ∗0 · (x(Tp)− x∗0) = 0 (8.15)

When the hyperplane varies with x0, equation (8.15) must still be obeyed when starting

from x0 + δx0k:(
F (x0) +

∂F (x0)

∂x0k

δx0k

)
· (8.16)(

∂x(Tp)

∂x0k

δx0k + F (x(Tp))
∂Tp
∂x0k

δx0k −
dx0

dx0k

δx0k + (x(Tp)− x0)

)
= 0

Because the normal to the hyperplane is perpendicular to the residual in the hyperplane,

F (x0) · (x(Tp)− x0) = 0, then using only first order terms in δx0k, equation (8.16) reduces to:

F (x0) ·
(
∂x(Tp)

∂x0k

+ F (x(Tp))
∂Tp
∂x0k

− dx0

dx0k

)
+
∂F (x0)

∂x0k

· (x(Tp)− x0) = 0 (8.17)

The F (x0) · ∂x(Tp)
∂x0k

term is the dot product of F (x0) with the kth column of the mon-

odromy matrix, or alternatively, it is the kth row of the matrix-vector product MTF (x0) .

This matrix-vector product can be evaluated by setting θp(Tp) = F (x0) and integrating the

adjoint equations backwards in time, to get the matrix-vector product, MTF (x0) = θp(0).

Rearranging equation (8.17) expresses how the crossing time depends on a variable in the

starting state:

∂Tp
∂x0k

=
F (x0) · dx0dx0k

− F (x0) · ∂x(Tp)
∂x0k

− ∂F (x0)
∂x0k

· (x(Tp)− x0)

F (x0) · F (x(Tp))

Expanding equation (8.14) to include the terms derived in equation (8.11), the gradient

becomes:

dJ
dx0k

= θk(0)− 2(xk(Tp)− x0k) + 2(x(Tp)− x0) · ẋ(Tp)
∂Tp
∂x0k

The ∂Tp
∂x0k

term requires the evaluation of F (x0) · ∂x(T )
∂x0k

, which can be calculated by inte-

grating the adjoint equation backwards in time. It is not necessary to integrate the adjoint
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8. GRADIENT METHODS

equations separately to find θk(0) and F (x0) · ∂x(T )
∂x0k

, however. The two values can be evaluated

in one backwards timemarch, if the adjoint boundary condition θ(Tp) is modified:

dJ
dx0k

= θk(0)− 2(xk(Tp)− x0k) +

(
2(x(Tp)− x0) · ẋ(Tp)

F (x0) · ẋ(Tp)

)
×(

F (x0) · dx0

dx0k

− F (x0) · ∂x(Tp)

∂x0k

− ∂F (x0)

∂x0k

· (x(Tp)− x0)

)
= θk(0)− 2(xk(Tp)− x0k)−

(
2(x(Tp)− x0) · ẋ(Tp)

F (x0) · ẋ(Tp)

)
F (x0) · ∂x(Tp)

∂x0k

. . .

+

(
2(x(Tp)− x0) · ẋ(Tp)

F (x0) · ẋ(Tp)

)(
Fk(x0)− ∂F (x0)

∂x0k

· (x(Tp)− x0)

)
= θck(0)− 2(xk(Tp)− x0k) . . .

+

(
2(x(Tp)− x0) · ẋ(Tp)

F (x0) · ẋ(Tp)

)(
Fk(x0)− ∂F (x0)

∂x0k

· (x(Tp)− x0)

)
(8.18)

where the combined adjoint boundary condition is:

θck(Tp) = 2(xk(Tp)− x0k)−
(

2(x(Tp)− x0) · ẋ(Tp)

F (x0) · ẋ(Tp)

)
Fk(x0) (8.19)

To summarise, when using the Poincaré shooting method, and a formulation where the

hyperplane is defined by x0, there are three differences with the standard shooting adjoint

formulation. First, the forward timemarch must stop exactly at Tp, where the trajectory crosses

the hyperplane. Iteration may be required to find Tp exactly. Second, the adjoint boundary

condition at time Tp in equation (8.19) has one more term than equation (8.9). Third, the

gradient evaluation in equation (8.18) has one more term than equation (8.12). These extra

terms arise because the crossing time is dependent on the initial condition, and the hyperplane

is dependent on the initial condition.

8.3.2 Hyperplane defined by a fixed state

When the hyperplane is defined by a fixed state, x∗, the +
∂F (x0)
∂x0k

δx0k and − dx0
dx0k

δx0k terms

from equation (8.17) have no equivalent, and the equation for crossing the hyperplane becomes:

F (x∗0) ·
(
∂x(Tp)

∂x0k

δx0k + F (x(Tp))
∂Tp
∂x0k

δx0k + (x(Tp)− x∗0)

)
= 0 (8.20)

The last term is zero because the residual on the plane, (x(Tp)− x∗0), is perpendicular to

the plane normal, F (x∗0). Therefore:

F (x∗0) ·
(
∂x(Tp)

∂x0k

+ F (x(Tp))
∂Tp
∂x0k

)
= 0
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8.4 Normalised cost function

∴
∂Tp
∂x0k

=
−F (x∗0) · ∂x(T )

∂x0k

F (x∗0) · F (x(Tp))

As in equation (8.19), the F (x∗0) · ∂x(T )
∂x0k

term can be found by timemarching the adjoint

equations backwards, and it can be incorporated into the adjoint boundary condition as before:

dJ
dx0k

= θk(0)− 2(xk(Tp)− x0k) + 2(x(Tp)− x0) · ẋ(Tp)
−F (x∗0) · ∂x(T )

∂x0k

F (x∗0) · F (x(Tp))

= θck(0)− 2(xk(Tp)− x0k)

where the combined adjoint boundary condition is:

θck(Tp) = 2(xk(Tp)− x0k)−
(

2(x(Tp)− x0) · ẋ(Tp)

F (x∗0) · F (x(Tp))

)
Fk(x

∗
0)

To summarise, when using the Poincaré shooting method, and a formulation where the hyper-

plane is fixed by x∗0, there are two differences with the standard shooting adjoint formulation.

First, the forward timemarch must stop exactly at Tp, where the trajectory crosses the hyper-

plane. Iteration may be required to find Tp exactly. Second, the adjoint boundary condition

at time Tp in equation (8.19) has one more term than equation (8.9). This extra terms arises

because the crossing time is dependent on the initial condition.

For good convergence of the optimisation routine with a fixed Poincaré plane, it is important

that the initial starting state lies on the starting Poincaré plane, and that the gradient is

projected onto the plane each iteration:

dJ
dx0

∣∣∣∣
PLANE

=
dJ
dx0

− n̂
(
n̂ · dJ

dx0

)

8.4 Normalised cost function

The cost function specified in section 8.2, J = (x(T ) − x0) · (x(T ) − x0), tends to zero at a

limit cycle or fixed point. In an oscillatory system it also tends to zero, however, when the

amplitude of an oscillation tends to zero, simply because the system is acting at a smaller scale

rather than because the system is nearer a periodic state. To make the cost function tend to

zero only near limit cycles or fixed points, a normalised cost function can be defined:

Jnorm =
(x(T )− x0) · (x(T )− x0)

x0 · x0 + ε

where ε is a small positive number that prevents the cost function becoming infinite at x0 = 0.
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The normalised cost function changes both the adjoint boundary condition at t = T and

the gradient evaluation condition:

θk(T ) =
2(xk(T )− x0k)

x0 · x0 + ε

dJ
dx0k

= θk(0)− 2(xk(T )− x0k)

x0 · x0 + ε
− 2x0k(x(T )− x0) · (x(T )− x0)

(x0 · x0 + ε)2

dJ
dT

=
2 (x(T )− x0) · ẋ(T )

x0 · x0 + ε

8.5 Higher order cost functions

The convergence of gradient methods depends on the shape of the cost function about the local

minimum; a smoother cost function space will aid convergence. A higher order cost function

can be created by using additional limit cycle constraints. The simplest higher order cost

function includes time differentials [127], because a limit cycle requires x(0) = x(T ) but also

ẋ(0) = ẋ(T ), ẍ(0) = ẍ(T ) etc. . The higher order cost function has additional terms:

J = (x(T )− x0) · (x(T )− x0) + α1(ẋ(T )− ẋ0) · (ẋ(T )− ẋ0) + . . .

A higher order cost function of this type may lead to numerical inaccuracy because the

time differentials of a limit cycle may increase in magnitude as more differentials are taken.

Some weighting factors, αn ∈ R+, are therefore required to improve the numerical conditioning

of the problem. These weighting factors may be based on a characteristic timescale of the

system, αn = ∆tn. In practice, even with weighting factors, numerical instability may arise

at higher orders near the minimum if there are errors in the gradient evaluation. The adjoint

formulation for this cost function is almost identical to the derivation in section 8.2, but with

extra terms in the adjoint boundary condition and gradient evaluation equations.

Figure 8.1a shows that an alternative method is to define the cost function over a path,

where the cost function is the sum of the norms of n residual vectors, each spaced dt apart. The

cost function has the form of equation (8.21) . Including multiple states is similar to including

time differentials, but with fewer complications arising from different scales.

J = (x(T )− x(0)) · (x(T )− x(0)) . . .

+(x(T + dt)− x(dt)) · (x(T + dt)− x(dt))

+ . . .+ (x(T + ndt)− x(ndt)) · (x(T + ndt)− x(ndt)) (8.21)

Figure 8.1b shows the equivalent cost function for the Poincaré shooting method, where
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x(0)

x(T)

x(dt)
x(2dt)

x(T+2dt)
x(T+dt)

x(ndt)
x(T+ndt)

(a) The cost function is the sum of norms of residual
vectors (blue).

(b) The cost function is sum of norms of resid-
ual vectors on Poincaré hyperplanes (blue).

Figure 8.1: Higher order cost functions over a path, with (a) the standard shooting method and (b)the
Poincaré shooting method. For the Poincaré shooting method, note that ndt 6= dtn.

the cost function is the sum of the norms of n residual vectors on hyperplanes defined every dt

time units. It is important to note that with the Poincaré shooting formulation the nth residual

vector is not x(T + ndt)− x(0 + ndt), because the time between crossing the hyperplanes will

not be the same for different parts of the trajectory. A similar higher order cost function can

be applied to a multiple shooting formulation.

The derivation of the first order adjoint equations (FOA) for a cost function over a path is

identical to that in section 8.2, except that there are 2n discontinuities in the adjoint variables,

at times t = dt, 2dt, . . . ndt and t = T +dt, T +2dt, . . . T +ndt, due to the extra terms of ∂J/∂x.

The FOA equations were originally:

FOA =


θ(T ) = 2 (x(T )− x0) , Boundary condition
dθk
dt +

∑
i θi

∂Fi(x)
∂xk

= 0, 0 < t < T
dJ
dx0

= θ(0)− 2(x(T )− x0), Gradient evaluation

Incorporating the higher order cost function in equation (8.21) adds the additional discon-

tinuities in the adjoint variable:

FOAHO =



θ(T + ndt) = 2 (x(T + ndt)− x(ndt)) , Boundary condition
θ(t) = θ(t) + 2 (x(T + kdt)− x(kdt)) t = T + kdt, {k ∈ Z+| [0, n)}
dθk
dt +

∑
i θi

∂Fi(x)
∂xk

= 0, 0 < t < T + ndt

θ(t) = θ(t)− 2 (x(T + kdt)− x(kdt)) t = kdt, {k ∈ Z+| (0, n]}
dJ
dx0

= θ(0)− 2(x(T )− x0), Gradient evaluation
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The changes to an existing adjoint code are minor, so the higher order cost functions can

be easily retrofitted to existing codes.

8.6 Optimisation algorithms

The convergence of gradient methods is very dependent on the choice of optimisation algorithm.

The simplest algorithm to implement is the steepest descent algorithm, where xi+1 = xi+α dJ
dx0

.

The optimisation heads in the direction of the current gradient, using either a fixed steplength,

or a line search until a minimum is found in the gradient direction. The steepest descent

algorithm is not efficient for high dimensional systems, however, because the shape of the cost

function is often a strong function of the location in N -dimensional space. Most importantly,

if the cost function has second derivatives that are high in some directions but low in others -

which is true when the cost function contours form elongated shapes - then the optimisation

trajectory will zig-zag back and forth (see section 8.9.2.1) and the algorithm will converge

slowly.

A more suitable optimisation method is the nonlinear conjugate gradient (CG) algorithm,

which is much more effective than steepest descent when the cost function contours form

elongated shapes. For each new direction, d, a line search is performed until the gradient

is perpendicular to the search direction, or in reality until
∣∣∇J · d∣∣ < ε, ε ∈ R+. This can

be achieved numerically by the Secant method, or the Newton-Raphson method when the

Hessian-direction product, ∇2Jd, is available to be calculated. A method of calculating the

Hessian-direction product is derived in section 8.7, with a second order adjoint formulation.

There are several methods for calculating the next search direction in nonlinear CG algorithms,

most notably the Fletcher-Reeves and Polak-Ribieré formulae [130]. The Polak-Ribieré formula

is less stable, but it converges faster if started near a minimum. Conjugate gradient methods

do not recover well from inaccuracies in gradient calculation, so if errors are present then

restarting CG with a steepest descent step may be necessary. Preconditioners can increase

the convergence of nonlinear CG methods. Near to a minimum, the preconditioner is usually

an approximate inverse of the Hessian matrix evaluated at the minimum, P =
(
∇2J

)−1
∣∣∣
x∗
.

The preconditioner causes the cost function contours to be more hyperspherical in the region

around the minimum.

An alternative optimisation approach attempts to minimise the norm of the gradient, which

becomes zero at a minima. A general Taylor series about a minima, x∗, has the form in equation

(8.22), which when truncated below O
(
∆x3

)
is called the quadratic form. The Hessian matrix
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is denoted ∇2J.

J(x∗ + ∆x) = J(x∗) +∇J·∆x+
1

2
∆x ·

(
∇2J∆x

)
+ O

(
∆x3

)
(8.22)

Differentiating equation (8.22) by ∆x and truncating terms gives equation (8.23):

∇2J∆x = −∇J (8.23)

Equation (8.23) can be used to converge to the minima using standard multidimensional

Newton iteration (see section 5.2). Newton’s method is widely used because it converges

superlinearly when started close to a solution. When started far from a solution, however,

it can diverge. An additional disadvantage is that the solution of the linear equation can be

computationally expensive, although matrix-free methods such as GMRES [92] can be used if

a matrix-free procedure is available for Hessian-vector product evaluations (see section 5.3).

In practice, equation (8.23) is often not solved explicitly, but its action is approximated by

∆x = −W∇J, where W ≈
(
∇2J

)−1 and is symmetric positive definite. The approximate

inverse of the Hessian, W , is estimated from previous location-gradient pairs and is updated

after each new gradient evaluation. Techniques such as this are collectively known as Quasi-

Newton methods.

Quasi-Newton methods can require large amounts of memory when N is large, because they

must store enough previous location-gradient pairs to approximate the properties of the Hessian

matrix. There are several limited memory quasi-Newton methods, such as L-BFGS [131], that

truncate the information stored in W as the number of gradient evaluations increases. This

truncation process involves extra computations, but does not require additional costly matrix-

vector product evaluations.

With no phase condition, the cost function in equation (8.2) does not satisfy the quadratic

form as there is a minimum J = 0 around the entire orbit. This is equivalent to the Hessian

matrix becoming singular as the search location nears the limit cycle. Whilst the CG algorithm

still converges with a singular matrix, the speed of convergence may be reduced. When finding

limit cycles with CG algorithms, it is therefore recommended that a phase condition is added

to the cost function, or applied implicitly by using the Poincaré shooting method.

Both the steepest descent and CG algorithms are demonstrated on the horizontal Rijke tube

model in section 8.9. Because the gradient methods in this chapter are developed specifically

to converge to limit cycles from poor initial guesses, quasi-Newton methods are not discussed

any further.
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8.7 Second order adjoint formulation

A second order adjoint (SOA) formulation can be derived in order to evaluate the Hessian-

vector product. The Hessian-vector product is useful for several reasons: first, it can be

used for Newton-Raphson iteration to speed up line searches; second, it can be used to solve

the Newton equation by iteration; and third, it can be used to determine the sensitivity of

limit cycles to external perturbations. The sensitivity of limit cycles has been studied for

several applications, including oscillator noise in circuitry [132] and weakly coupled oscillators

in neuroscience [133]. The general second order adjoint formulation is derived in this section

for the standard shooting method.

In the first order adjoint (FOA) derivation of section 8.2, it was shown that for a given

starting state, x0, the gradient of the cost function, ∇J, is evaluated by timemarching the

direct equations forward, and then timemarching the adjoint equations backwards. The second

order adjoint (SOA) will be used in this section to evaluate the Hessian-vector product [134, 135,

136, 137], where the kth element of the product follows
(
∇2Jx′0

)
k

=
∑

i
∂∇J

k
∂x0i

x′0i. This process

requires an extra forwards timemarch and an extra backwards timemarch. The Hessian-vector

product could be estimated using finite differences (equation (8.24)), which is less accurate

than that found by the SOA method.

∇2Jx′0 =
∇J
∣∣
x0+δx′0

− ∇J
∣∣
x0

δ
+ O(δ) (8.24)

The gradient is found in the FOA derivation by constraining the Lagrangian such that:

dJ
dx0k

=
∂L

∂x0k

The Hessian matrix, ∇2Jj,k = ∂2J
∂x0k∂x0j

, is found in the SOA derivation by constraining the

Lagrangian such that:

d2J

dx0kdx0j

=
∂2L

∂x0k∂x0j

(8.25)

Differentiating the Lagrangian twice, and summing over the columns of the Hessian matrix
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(i) gives an expression for the kth row of the Hessian-vector product:

J = L + C∑
i

dJ
dx0kdx0i

x′0i =
∑
i

x′0i

(
∂2L

∂x0k∂x0i

+
∂2L

∂x(x0, t)∂x0i

· ∂x(x0, t)

∂x0k

. . .

+
∂L

∂x(x0, t)
· ∂

2x(x0, t)

∂x0k∂x0i

+
∂2L

∂θ(x0, x, t)∂x0i

· ∂θ(x0, x, t)

∂x0k

. . .

+
∂L

∂θ(x0, x, t)
· ∂

2θ(x0, x, t)

∂x0k∂x0i

+
∂2C

∂x(x0, t)∂x0i

· ∂x(x0, t)

∂x0k

. . .

+
∂C

∂x(x0, t)
· ∂

2x(x0, t)

∂x0k∂x0i

+
∂2C

∂θ(x0, x, t)∂x0i

· ∂θ(x0, x, t)

∂x0k

. . .

+
∂C

∂θ(x0, x, t)
· ∂

2θ(x0, x, t)

∂x0k∂x0i

+
∂2C

∂x0k∂x0i

)
(8.26)

The ∂x(x0,t)
∂x0k

,
∂θ(x0,x,t)
∂x0k

,
∂2x(x0,t)
∂x0k∂x0i

and ∂2θ(x0,x,t)
∂x0k∂x0i

terms are unknown because the system is

nonlinear. The first order adjoint formulation fixes ∂L
∂x(x0,t)

= ∂L
∂θ(x0,x,t)

= 0, and constructs all

of the constraints so that C = 0 and C 6= f(x0, x(x0, t), θ(x0, t)). For the second order adjoint

formulation, to reduce equation (8.26) to the form of equation (8.25), it must also fix:

∂2L

∂xk(x0, t)∂x0i

=
∂2L

∂θ(x0, x, t)k∂x0i

= 0, 1 ≤ i, k ≤ N (8.27)

The Hessian-vector product becomes:

(
∇2Jx′0

)
k

=
∑
i

∂∇J
k

∂x0i

x′0i =
∑
i

∂
(

∂L
∂x0k

)
∂x0i

x′0i

In the standard shooting method, the direct equations are integrated between limits 0 and

T , so the FOA Lagrangian formulation is:

L = J−
[
dθ
dt
,−x

]T
0

− [θ,−F (x)]T0 − 〈θ(T ), x(T )〉+ 〈θ(0), x(0)〉 − 〈G, x(0)− x0〉

with differentials:[
∂L

∂xk
, δxk

]T
0

= 〈2(xk(T )− x0k), δxk(T )〉+

[
dθk
dt

, δxk

]T
0

+

[
θ,
∂F (x)

∂xk
δxk

]T
0

. . .

−〈θk(T ), δxk(T )〉+ 〈θk(0), δxk(0)〉 − 〈Gk, δxk(0)〉

[
∂L

∂θk
, δθk

]T
0

= −
[
δθk,

dxk
dt

]T
0

− [δθk,−Fk(x)]T0 . . .

−〈δθk(T ), xk(T )〉+ 〈δθk(0), xk(0)〉
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Several steps are now required to enforce the conditions in equation (8.27) and derive the

SOA equations. To make the derivation easier, two variables are defined, x̂i,k and θ̂k,j . They

represent time varying elements in the matrices of partial differentials of the direct state and

FOA state respectively:

x̂i,k ≡
∂xi
∂x0k

, θ̂k,j ≡
∂θk
∂x0j

First, the differential of the Lagrangian with respect to one of the FOA variables is dif-

ferentiated again with respect to x0j , and then forced to equal zero in accordance with the

condition in equation (8.27):[
∂L

∂θk
, 1

]T
0

= −
[
1,

dxk
dt

]T
0

− [1,−Fk(x)]T0

[
∂L

∂θk∂x0j

, δx0j

]T
0

= −
[
δx0j ,

∂2xk
∂t∂x0j

]T
0

−
[
δx0j ,−

∂Fk(x)

∂x0j

]T
0

∴
dx̂i,k
dt

=
∑
j

∂Fi(x)

∂xj
x̂j,k

Second, the differential of the Lagrangian with respect to one of the state variables is

differentiated with respect to x0j , and then forced to equal zero in accordance with the condition

in equation (8.27). The notation δt(T ) ≡ δ(t−T ) is the Dirac delta at a time T , and the notation

δij ≡ 1, i = j, 0, i 6= j.[
∂L

∂xk
, 1

]T
0

= 〈2(xk(T )− x0k), δt (T )〉+

[
dθk
dt

, 1

]T
0

+

[
θ · ∂F (x)

∂xk
, 1

]T
0

. . .

−〈θk, δt (T )〉+ 〈θk, δt(0)〉 − 〈Gk, δt(0)〉

[
∂L

∂xk∂x0j

, δx0j

]T
0

=

〈
∂2(xk(T )− x0k)

∂x0j

δt (T ) , δx0j

〉
+

[
∂2θk
∂t∂x0j

, δx0j

]T
0

. . .

+

[
∂θ

∂x0j

· ∂F (x)

∂xk
, δx0j

]T
0

+

[
θ ·
(
∂2F (x)

∂xk∂x0j

)
, δx0j

]T
0

. . .

−
〈
∂θk
∂x0j

δt (T ) , δx0j

〉
+

〈
∂θk
∂x0j

δt(0), δx0j

〉
. . .

−
〈
∂Gk
∂x0j

δt(0), δx0j

〉
(8.28)
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Rewriting equation (8.28) with the new notation gives:

[
∂L

∂xk∂x0j

, δx0j

]T
0

=
〈
2(x̂k,j(Tp)− δkj)δt(T ), δx0j

〉
+

[
dθ̂k,j
dt

, δx0j

]T
0

. . .

+

[
θ̂ · ∂F (x)

∂xk
, δx0j

]T
0

+

[
θ ·
(∑

m

∂2F (x)

∂xk∂xm

∂xm
∂x0j

)
, δx0j

]T
0

. . .

−
〈
θ̂k,jδt(T ), δx0j

〉
+
〈
θ̂k,jδt(0), δx0j

〉
−
〈
Ĝk,jδt(0), δx0j

〉
Equating this to zero gives a boundary condition at time T , and a time evolution equation:

θ̂k,j(T ) = 2(x̂k,j(T )− δkj)

dθ̂k,j
dt

+ θ̂ · ∂F (x)

∂xk
+ θ ·

(∑
m

∂2F (x)

∂xk∂xm
x̂m,j

)
= 0 (8.29)

Third, to get the Hessian-vector product, an expression for ∂L
∂x0k∂x0j

is required. From the

FOA: [
∂L

∂x0k

, δx0k

]T
0

= 〈−2(xk(T )− x0k), δx0k〉+ 〈Gk, δx0k〉

Differentiating this w.r.t x0j gives:[
∂L

∂x0k∂x0j

, δx0j

]T
0

=
〈
−2(x̂k,j(T )− δkj), δx0j

〉
+
〈
Ĝk,j , δx0j

〉
The formula for the Hessian-vector product is therefore:

∑
j

∂L

∂x0k∂x0j

x′0j =
∑
j

x
(
−2(x̂k,j(T )− δkj) + Ĝk,j

)
x′0j

=
∑
j

(
−2(x̂k,j(T )− δkj) + θ̂k,j(0)

)
x′0j

=
∑
j

(
−2x̂k,j(T ) + θ̂k,j(0)x′0j

)
+ 2x′0k

In the formula for the Hessian-vector product each contribution is summed over all x′0j .

Therefore, combined variables can be defined as:

X ′k ≡
∑
j

x̂k,jx
′
0j

θ′k ≡
∑
j

θ̂k,jx
′
0j
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These are the first variational state, and the first variational adjoint state. The first varia-

tional state, X ′, is governed by the first variational equations:

dx̂i,k
dt

=
∑
j

∂Fi(x)

∂xj
x̂j,k

∑
k

dx̂i,k
dt

x′0k =
∑
k

∑
j

∂Fi(x)

∂xj
x̂j,kx

′
0k

∴
dX ′i
dt

=
∑
j

∂Fi(x)

∂xj
X ′j

The first variational equations are equivalent to linearising about the state x, both in space

and time. The first variational equations arise from a perturbation to the state, X ′, in the

limit for small X ′:

d (xk +X ′k)

dt
= Fk(x+X ′) ≈ Fk(x) +

∑
i

∂Fk(x)

∂xi
X ′i ≈

dxk
dt

+
dX ′k
dt

Summing equation (8.29) over all x′0j gives:

∑
j

x′0j

(
dθ̂k,j
dt

+ θ̂ · ∂F (x)

∂xk
+ θ ·

(∑
m

∂2F (x)

∂xk∂xm
x̂m,j

))
= 0

which becomes the second order adjoint equations:

dθ′k
dt

+ θ′ · ∂F (x)

∂xk
+ θ ·

(∑
m

∂2F (x)

∂xk∂xm
X ′m

)
= 0

with boundary conditions:

θ′k(T ) = 2(X ′k(T )− x′0k)

For the standard shooting method we also require the Hessian-vector product terms related

to the period,
∑

i
dJ

dTdx0i
x′0i and

d2J
dT 2 . These are:

∑
i

dJ
dTdx0i

x′0i = −2ẋ(T ) · x′0

d2J

dT 2
T ′ = 2 (ẋ(T ) · ẋ(T ) + (x(T )− x0) · ẍ(T ))T ′
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8.7 Second order adjoint formulation

8.7.1 Second order adjoint summary

1. Given a starting point x0 and guess for the period T , first perform the FOA in accordance

with the equations in section 8.2.1. The direct and adjoint variables are stored in time,

with checkpointing if necessary.

2. The Hessian-vector product is now found, where the vector is x′0. The first variational

state is initialised with the vector:

X ′(0) = x′0

3. The first variational equations are integrated forward to time T using information from

the direct variables, x, calculated in the FOA.

dX ′i
dt

=
∑
j

∂Fi(x)

∂xj
X ′j

4. The SOA variables are initialised at time T with:

θ′k(T ) = 2(X ′k(T )− x′0k)

5. The SOA equations are integrated backwards to time 0 using information from the direct

variables, x, and adjoint variables, θ, calculated in the FOA.

dθ′k
dt

+ θ′ · ∂F (x)

∂xk
+ θ ·

(∑
m

∂2F (x)

∂xk∂xm
X ′m

)
= 0

6. The Hessian-vector product is calculated at time 0 with:

∑
j

∂L

∂x0k∂x0j

x′0j = θ′k(0)− 2
(
X ′k(T )− 2x′0k

)
7. The terms relating to the period are also calculated with:

∑
i

dJ
dTdx0i

x′0i = −2ẋ(T ) · x′0

d2J

dT 2
T ′ = 2 (ẋ(T ) · ẋ(T ) + (x(T )− x0) · ẍ(T ))T ′

8. The Hessian-vector product can now be used for line searching routines, or Newton

methods.
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The SOA is not demonstrated in the results section of this chapter, but the derivation is

included in this thesis because it is very useful for analysing systems with limit cycles: first, it

can greatly increase the efficiency of line search routines used to iterate to a limit cycle; second,

it is required to find bifurcations of limit cycles and to find limit cycle sensitivities. If the FOA

and SOA are derived and coded by hand, then implementing the SOA is a time consuming

process. The SOA can be generated automatically by algorithmic differentiation, however,

such as in the dolfin-adjoint extension to the FEniCS finite element package [138, 139]. The

potential of algorithmic differentiation is discussed further in chapter 9.

8.8 Multiple shooting methods

Multiple shooting methods were introduced in section 6.3. In the multiple shooting method,

the limit cycle is split into n segments, which are timemarched separately. This is particularly

useful for nonlinear adjoint calculations, which have large memory requirements because the

direct state is required in the adjoint equations. Multiple shooting methods also reduce the real

time required for a gradient evaluation; if the limit cycle is split into n segments, timemarching

each segment is n times faster than timemarching with only one segment.

The multiple shooting method, however, requires minimising a cost function over nN +

1 variables, as oppose to N + 1 variables for the standard shooting method. To achieve a

given level of convergence, the multiple shooting method will therefore require more gradient

evaluations than the single shooting method. If the multiple shooting method requires less

than n times the number of gradient evaluations that the single shooting method requires,

however, then the multiple shooting method will converge faster if sufficient parallel processors

are available.

The formulation in this section differs from some multiple shooting methods in the liter-

ature. The formulation in Ref. [128] forces the N initial states to form a closed loop, even

before a guess for the period is known. Their method then forms a PDE to govern the evolution

of this closed loop using a ‘Newton descent’ strategy, which minimises a cost function that is

the integrated value of ẋp · tp around the cycle, where ẋp is the time derivative of a point on

the loop and tp is the tangent vector of the loop at that point. This approach is not like the

multiple shooting approach in chapter 6, which only attempts to find N initial states on the

cycle - but is not interested in the cycle trajectory in between them. The approach of Ref.

[128] describes a closed loop, and then distorts the entire closed loop until it matches the cycle.

Their method may diverge, however, when an initial guess for a closed loop is not known a
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priori. The formulation in Ref. [129] also considers a cost function integrated around the loop,

but can also calculate the dependence of the cost function on the period.

The derivation of the adjoint technique for the standard shooting method was given in

section 8.2. In the next section, the adjoint formulation is derived for the multiple shooting

method with two segments (double-shooting). The adjoint formulation for a general number

of segments then follows by analogy.

8.8.1 General form of the double shooting method

In this subsection, the limit cycle is split into two segments and the formulation of the double-

shooting algorithm is derived. The first segment of the loop will be referred to with subscript

f and the second with subscript s. Initial conditions are shown with subscript 0 and T/2

respectively. Segment 1 (f) is integrated from t = 0→ T/2 and segment 2 (s) from t = T/2→ T .

With two separate segments the cost function minimises the distance between the ends of both

segments:

J =
〈
xs(T )− xf0 , xs(T )− xf0

〉
+
〈
xf (T/2)− xsT/2 , xf (T/2)− xsT/2

〉
(8.30)

With the loop divided into two segments, the Lagrangian becomes:

L ≡ J−
[
θf ,

dxf
dt
− F (xf )

]T
2

0

−
[
θs,

dxs
dt
− F (xs)

]T
T
2

. . .

−
〈
Gf , xf (0)− xf0

〉
−
〈
Gs, xs(T/2)− xsT/2

〉
(8.31)

Differentiating the Lagrangian with respect to one of the first variables gives:

[
∂L

∂xfk
, δxfk

]
=

〈
2(xfk(T/2)− xsT/2k), δxfk(T/2)

〉
+

[
dθfk
dt

, δxfk

]T
2

0

. . .

+

[
θfk,

∂F (xf )

∂xfk
δxfk

]T
2

0

−
〈
θfk(T/2), δxfk(T/2)

〉
. . .

+
〈
θfk(0), δxfk(0)

〉
−
〈
Gfk, δxfk(0)

〉
(8.32)
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Differentiating the Lagrangian with respect to one of the second variables gives:[
∂L

∂xsk
, δxsk

]
=

〈
2(xsk(T )− xfk0), δxsk(T )

〉
+

[
dθsk
dt

, δxsk

]T
T
2

. . .

+

[
θsk,

∂F (xs)

∂xsk
δxsk

]T
T
2

− 〈θsk(T ), δxsk(T )〉 . . .

+ 〈θsk(T/2), δxsk(T/2)〉 − 〈Gsk, δxsk(T/2)〉 (8.33)

Summing the components of δxfk and equating them to zero gives the adjoint equations

and the adjoint boundary conditions. The adjoint equations are identical in form for the

two segments. Differentiating with respect to the two starting conditions gives the last two

equations that are required to find the gradient:[
∂L

∂xf0k

, δxf0k

]
=
〈
−2(xsk(T )− xfk0), δxf0k

〉
+
〈
Gfk, δxf0k

〉
(8.34)

[
∂L

∂xsT/2k
, δxsT/2k

]
=
〈
−2(xfk(T/2)− xsT/2k), δxsT/2k

〉
+
〈
Gsk, δxsT/2k

〉
(8.35)

Substituting θfk(0) = Gfk and θsk(T/2) = Gsk into the previous equation gives the gradient

equations. The double-shooting method is therefore:

FOADS =



θf (T/2) = 2(xfk(T/2)− xskT/2), Boundary conditionf
dθfk
dt +

∑
i θfi

∂Fi(xf )

∂xfk
= 0, 0 ≤ t ≤ T/2

θsk(T ) = 2(xsk(T )− xfk0), Boundary conditions
dθsk
dt +

∑
i θsi

∂Fi(xs)
∂xsk

= 0, T/2 ≤ t ≤ T
dJ

dxf0
= θf (0)− 2(xs(T )− xf0), Gradient evaluationf

dJ
dxsT/2

= θs(T/2)− 2(xf (T/2)− xsT/2), Gradient evaluations

8.8.2 General form of the multiple shooting method

The equations derived in the previous section follow a pattern. When dividing the loop into n

segments, the state vector for optimisation is of length nN , and contains all n starting states[
x0, x 1

n
, x 2

n
, . . . , xn−1

n

]
. The cost function becomes:

J = 〈xn(1)− x0 , xn(1)− x0〉+

n−1∑
j=1

〈
xj(j/n)− x j

n
, xj(j/n)− x j

n

〉
(8.36)

For each of the n segments the same procedure is used to find the gradient of the cost
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function. For the jth segment, the process is:

1. Timemarch forward from the initial state, x j−1
n
, from t = j−1/n → j/n, using the direct

equations:
dx
dt

= F (x) (8.37)

2. Initialise the adjoint state, at time t = j/n, to be twice the difference between the end of

this segment and the start of the next:

θj(j/n) = 2(xj(j/n)− x j
n

) (8.38)

This is cyclic, so the end of the nth segment is compared with the start of the first.

3. Timemarch backwards with the adjoint equations from time t = j/n→ j−1/n

dθk
dt

+
∑
i

θji
∂Fi(x)

∂xk
= 0 (8.39)

4. Evaluate the gradient of the cost function with respect to the nth initial state:

dJ
dx j−1

n

= θj(j−1/n)− 2(xj(j/n)− x j
n

) (8.40)

5. Assemble the gradients from all segments to form the full gradient vector:

∇J =

[
dJ
dx0

,
dJ
dx 1

n

,
dJ
dx 2

n

, . . . ,
dJ

dxn−1
n

]
(8.41)

6. This gradient is used in an optimisation algorithm to change the starting states,[
x0, x 1

n
, x 2

n
, . . . , xn−1

n

]
. Steps 1-6 are repeated until a predefined level of convergence is

reached.

8.8.3 Extensions to the multiple shooting method

In the multiple shooting method above, the adjoint equation for each segment of the limit cycle

is initialised with the state at the start of the next segment. This results in poor convergence

because the start of the next segment appears fixed. The start of the next segment will move,

however, when the gradient information is used to change the initial state. Each segment has

no knowledge of how the start of the next segment will move, and therefore the gradient of the

cost function changes rapidly as the starting conditions move.
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In section 8.5, higher order cost functions were introduced as a method of increasing the

convergence of the optimisation procedure. A higher order cost function can be used in the

multiple shooting method at each joint between segments. This increases the strength of the

matching required between segments and smooths the cost function.

In the next section, the adjoint formulation is derived for the double-shooting method with

a higher order cost function. The adjoint formulation for a general number of segments then

follows by analogy.

8.8.4 General form of the double shooting method with a higher order cost
function

In this subsection, the limit cycle is split into two segments, and the adjoint formulation is

derived in a similar manner to section 8.8.1, but with additional terms in the cost function

to increase the coupling between segments. Each segment of the limit cycle is timemarched

further than the T/2 needed to close the limit cycle, in order to give an overlap between the

segments; segment 1 (f) is integrated in time from t = 0 → T/2 + ∆ and segment 2 (s) from

t = T/2 → T + ∆, where 0 < ∆ ≤ T/2. In the case of double shooting, when ∆ = T/2, it is

equivalent to single shooting with two separate segments of the limit cycle and there are no

computational benefits. For simplicity, in this section ∆ is taken to be a single value, which

means that there is only one extra residual vector per segment, and therefore that only two

extra terms are added to the cost function. When multiple extra residual vectors are added

(as in Figure 8.1a), the adjoint variable has more discontinuities in time, in a similar manner

to the derivation in section 8.5.

The cost function is the distance between the ends of both segments, and the distance

between the overlap points:

J =
〈
xs(T )− xf0 , xs(T )− xf0

〉
. . .

+
〈
xs(T + ∆)− xf (0 + ∆) , xs(T + ∆)− xf (0 + ∆)

〉
. . .

+
〈
xf (T/2)− xsT/2 , xf (T/2)− xsT/2

〉
. . .

+
〈
xf (T/2 + ∆)− xs(T/2 + ∆) , xf (T/2 + ∆)− xs(T/2 + ∆)

〉
(8.42)

With the loop divided into two segments, the Lagrangian becomes:

L ≡ J−
[
θf ,

dxf
dt
− F (xf )

]T
2

+∆

0

−
[
θs,

dxs
dt
− F (xs)

]T+∆

T
2

. . .

−
〈
Gf , xf (0)− xf0

〉
−
〈
Gs, xs(T/2)− xsT/2

〉
(8.43)
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Differentiating the Lagrangian with respect to one of the first variables gives:[
∂L

∂xfk
, δxfk

]
=

〈
2(xfk(T/2)− xsT/2k), δxfk(T/2)

〉
. . .

+
〈
2(xfk(T/2 + ∆)− xsk(T/2 + ∆)), δxfk(T/2 + ∆)

〉
. . .

−
〈
2(xsk(T + ∆)− xfk(0 + ∆)), δxfk(0 + ∆)

〉
. . .

+

[
dθfk
dt

, δxfk

]T
2

0

+

[
θfk,

∂F (Xf )

∂xfk
δxfk

]T
2

0

−
〈
θfk(T/2), δxfk(T/2)

〉
. . .

+
〈
θfk(0), δxfk(0)

〉
−
〈
Gfk, δxfk(0)

〉
(8.44)

Differentiating the Lagrangian with respect to one of the second variables gives:[
∂L

∂xsk
, δxsk

]
=

〈
2(xsk(T )− xf0k), δxsk(T )

〉
. . .

+
〈
2(xsk(T + ∆)− xfk(0 + ∆)), δxsk(T + ∆)

〉
. . .

−
〈
2(xfk(T/2 + ∆)− xsk(T/2 + ∆)), δxsk(T/2 + ∆)

〉
. . .

+

[
dθsk
dt

, δxsk

]T
T
2

+

[
θsk,

∂F (xs)

∂xsk
δxsk

]T
T
2

− 〈θsk(T ), δxsk(T )〉 . . .

+ 〈θsk(T/2), δxsk(T/2)〉 − 〈Gsk, δxsk(T/2)〉 (8.45)

Summing components of δxfk and equating them to zero gives the adjoint equations and the

adjoint boundary conditions. The adjoint equations are identical in form for the two segments.

There are two more conditions than for the formulation without a higher order cost function,

which appear as discontinuities in the adjoint variable at t = T/2 + ∆, T + ∆. Differentiating

with respect to the two starting conditions gives the last two equations that are required to

find the gradient:[
∂L

∂xf0k

, δxf0k

]
=
〈
−2(xsk(T )− xfk0), δxf0k

〉
+
〈
Gfk, δxf0k

〉
(8.46)

[
∂L

∂xsT/2k
, δxs1/2k

]
=
〈
−2(xfk(T/2)− xsT/2k), δxsT/2k

〉
+
〈
Gsk, δxs1/2k

〉
(8.47)

Substituting θfk(0) = Gfk and θsk(T/2) = Gsk into the previous equation gives the gradient
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equations. The double-shooting method with a higher order cost function is therefore:

FOADS =



θf (T/2 + ∆) = 2(xf (T/2 + ∆)− xs(T/2 + ∆)), Boundary conditionf
dθfk
dt +

∑
i θfi

∂Fi(xf )

∂xfk
= 0, 0 ≤ t ≤ T/2 + ∆

θf (T/2) = θf (T/2) + 2(xf (T/2)− xs(T/2)), t = T/2

θf (0 + ∆) = θf (0 + ∆)− 2(xs(T + ∆)− xf (0 + ∆)), t = 0 + ∆

θs(T + ∆) = 2(xs(T + ∆)− xf (0 + ∆)), Boundary conditions
dθsk
dt +

∑
i θsi

∂Fi(xs)
∂xsk

= 0, T/2 ≤ t ≤ T + ∆

θs(T ) = θs(T ) + 2(xs(T )− xf (0)), t = T

θs(T/2 + ∆) = θs(T/2 + ∆)− 2(xf (T/2 + ∆)− xs(T/2 + ∆)), t = T/2 + ∆
dJ

dxf0
= θf (0)− 2(xs(T )− xf0), Gradient evaluationf

dJ
dxsT/2

= θs(T/2)− 2(xf (T/2)− xsT/2), Gradient evaluations

8.8.5 General form of multiple shooting method with higher order cost
function

The equations derived in the previous section follow a pattern. When dividing the loop into n

segments, the state vector for optimisation is of length nN , and contains all n starting states[
x0, x 1

n
, x 2

n
, . . . , xn−1

n

]
. In this derivation, 0 < ∆ < T/n, but the overlap between segments

could be derived to overlap several segments. This would increase the timemarching cost, but

may result in a more favourable cost function to solve. The cost function becomes:

J = 〈xn(T )− x0(0) , xn(T )− x0(0)〉 . . .

+
n−1∑
j=1

〈
xj(j/n)− xj+1(j/n) , xj(j/n)− xj+1(j/n)

〉
. . .

+ 〈xn(T + ∆)− x0(0 + ∆) , xn(T + ∆)− x0(0 + ∆)〉 . . .

+
n−1∑
j=1

〈
xj(j/n + ∆)− xj+1(j/n + ∆) , xj(1/n + ∆)− xj+1(j/n + ∆)

〉
For each of the n segments the same procedure is used to find the gradient of the cost

function. For the jth segment, the process is:

1. Timemarch forward from the initial state, x j−1
n
, from t = j−1/n → j/n + ∆, using the

direct equations:
dx
dt

= F (x) (8.48)

2. Initialise the adjoint state, at time t = j/n + ∆, to be twice the difference between the
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end of the overlap of this segment and the equivalent point in the next segment:

θj(j/n + ∆) = 2(xj(j/n + ∆)− x(j+1)(j/n + ∆)) (8.49)

This is cyclic, so the overlap of the nth segment is compared with the start of the first.

3. Timemarch backwards with the adjoint equations from time t = j/n + ∆→ j−1/n

dθk
dt

+
∑
i

θji
∂Fi(x)

∂xk
= 0 (8.50)

4. During the timemarch, discontinuities will have to be added to the adjoint state at times

t = j/n and t = j−1/n + ∆.

θj(j/n) = θj(j/n) + 2(xj(j/n)− x(j+1)(j/n)), t = j/n (8.51)

θj(j−1/n + ∆) = θj(j−1/n + ∆) . . . (8.52)

−2(x(j−1)(j−1/n + ∆)− xj(j−1/n + ∆)), t = j−1/n + ∆

5. Evaluate the gradient of the cost function with respect to the nth initial state:

dL
dx j−1

n

= θj(j−1/n)− 2(xj(j/n)− x j
n

) (8.53)

6. Assemble the gradients from all segments to form the full gradient vector:

∇J =

[
dJ
dx0

,
dJ
dx 1

n

,
dJ
dx 2

n

, . . . ,
dJ

dxn−1
n

]
(8.54)

7. This gradient is used in an optimisation algorithm to change the starting states,[
x0, x 1

n
, x 2

n
, . . . , xn−1

n

]
. Steps 1-6 are repeated until some predefined level of convergence

is reached.
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8.9 Nonlinear adjoint of the Rijke tube

The nonlinear adjoint equations for the horizontal Rijke tube model (chapter 2) are derived in

Appendix B. The derivation is very similar to that of Juniper [17], but with the cost functional

for finding limit cycles, and a smoothing applied to the modulus term in the hot wire heat

release (|x| ≈
√
x2 + ε2 , ε� 1). The time evolution equations are calculated by C++ routines,

with mexfunction wrappers for use in MATLAB.

8.9.1 Gradient information

Figure 8.2 shows the gradient information for a 1 Galerkin mode Rijke tube model, for the stan-

dard shooting method (a) and the Poincaré plane method (b). The gradient vectors evaluated

by the adjoint method agree numerically with those evaluated with finite difference techniques.

Figure 8.2 also shows the normalised cost function contours, J = ||x(T )− x(0)||2 /(||x(0)||2 +ε)

with ε = 5× 10−4, for the single shooting method (c) and the Poincaré plane method (d). The

stable limit cycle (outer ring) and unstable limit cycle (inner ring) are not obvious in (a) be-

cause the initial guess for the period is poor, but the limit cycles are obvious in (b) because

the Poincaré plane formulation does not require a guess for the period.

Figure 8.3 shows the change in cost function contours when a phase condition is applied to

the standard shooting method (with optimal period). The phase condition is applied as defined

in equation (8.13), with phase condition η1(0) = 0.45 and weighting α = 0.02. Figure 8.3

illustrates both the advantage and disadvantage of this simple phase condition. The advantage

is that there are now only two discrete minima on the limit cycle, one at (0.45,0.67) and

one at (0.45,-0.67). The disadvantage is that the phase condition may not be fulfilled by all

limit cycles, and if it is not, then the local minima will not coincide with that limit cycle.

For example, the unstable limit cycle has η1(t) < 0.45, ∀t, therefore the phase condition and

periodic condition cannot both be satisfied. The minima near the unstable limit cycle therefore

moves towards 0.45 and locally Jmin > 0. It is therefore recommended that either the phase

condition is chosen so that it applies for all limit cycles (for this case η1(0) = 0 would suffice),

or that the phase condition is only applied once the current starting state is sufficiently close

to a limit cycle.
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(a) Gradient information and cost function
contours for the standard shooting method
(T = 2).

(b) Gradient information and cost func-
tion contours for the Poincaré shooting
method.

(c) Logarithmic normalised cost function
surface for the standard shooting method
(T = 2).

(d) Logarithmic normalised cost function
surface for the Poincaré shooting method.

Figure 8.2: Comparison of cost function shape for a single shooting method with T = 2 (a,c) and for
the Poincaré plane method (b,d). In both cases the gradient vectors are correctly orthogonal to the
cost function contours (a,b). With the single shooting method, the location of the limit cycles is not
obvious from plot of the cost function (c), because the current guess for the period is 20% too high.
With the Poincaré plane formulation in (d), however, the limit cycles and fixed point are obvious; the
stable limit cycle is the outer ring and the unstable limit cycle is the inner ring.
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(a) Without phase condition. (b) With phase condition.

Figure 8.3: Logarithmic normalised cost function contours for the standard shooting method with
optimal period (T = 1.78), without phase condition (a), and with phase condition (b). The phase
condition term in the cost function is Jphase = α(η1(0)−0.45)2/(||x(0)||2+ε), α = 0.02 and ε = 5×10−4.

8.9.2 Convergence to a limit cycle

8.9.2.1 Steepest descent algorithm

Figure 8.4 shows convergence to a limit cycle using the steepest descent algorithm for two

initial states: (a) where the initial period guess is too low, and (b) where the initial period

guess is too high. Both initial states converge to the same limit cycle. The steepest descent

algorithm converges similarly when multiple Galerkin modes are included. Figure 8.5 shows

the convergence of an initial state to a limit cycle with the steepest descent algorithm and

set step length (black) and line search algorithm (pink), using 2 Galerkin modes and the

Poincaré shooting method with hyperplane defined by η1 = 0. With 2 Galerkin modes the

state vector has dimension 4, and the hyperplane therefore has dimension 3. The hyperplane

is defined by η1 = 0, so that the three dimensional hyperplane has orthogonal axes defined

by the remaining variables, [η2,
η̇1
π ,

η̇2
2π ]. This hyperplane is not ideal for convergence because

it is not perpendicular to the limit cycle. It is clearer to visualise the convergence, however,

when the orthogonal axes are defined by [η2,
η̇1
π ,

η̇2
2π ] and not defined by 4D orthogonal vectors

projected from an arbitrary plane.

The coloured lines in Figure 8.5 are logarithmic cost function contours, evaluated at slices

through the 3D cost function field. A blue colour indicates a low cost function value, a dark

red contour indicates a high cost function value. There are two global minima in the figure

(both zero), one at the fixed point and one at the limit cycle (η1 = 0, η2 = −0.015, η̇1
π =

0.83, η̇2
2π = −0.067). A local minima can also be seen in the bottom left of (b), when η̇1

π = 0.
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(a) Initial period guess too low (T0 = 1.3) (b) Initial period guess too high (T0 = 2.1)

Figure 8.4: Convergence to a limit cycle with 1 Galerkin mode for two cases, with initial period guess
too low (a), and initial period guess too high (b). The markers show the initial state (red) and end
state (green). Both (a) and (b) converge to the same limit cycle at T = 1.78.

From the fixed point the finger of low cost function extends up to η̇1
π ≈ 0.5. This finger is long

because the cost function in Figure 8.5 is not normalised.

The black line shows the trajectory of the initial state if a fixed step length is used to

generate the next initial state, xk+1 = xk0 − δ∇J, where δ is small. This is the smoothest

trajectory to reach the minima using the gradient information. An efficient optimisation routine

will not follow this trajectory, however, because it requires too many gradient evaluations. The

pink line shows the trajectory of the initial state if a line minimisation routine is used to

generate the next initial state. The minimisation routine finds the value α that minimises

J(xk0 + α∇J).

The steepest descent algorithm converges relatively inefficiently, because the cost function

has a tubular shape (the 3D equivalent of a 2D valley). When the cost function forms a valley

shape, steepest descent routines are inefficient because they zig-zag back and forth between

the two slopes of the valley (Figure 8.5(a)).

8.9.2.2 Conjugate gradient algorithm

Figure 8.6 shows the convergence of an initial state to a limit cycle with the steepest descent

algorithm and set step length (black) and conjugate gradient algorithm (pink). Unlike the

steepest descent algorithm in Figure 8.5, the conjugate gradient algorithm trajectory does not

zig-zag. It is therefore more efficient because it requires fewer gradient evaluations to converge.

The conjugate gradient algorithm is efficient for cost functions that form a valley shape, because

the trajectory first descends to the valley floor, then it moves along the valley floor.
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(a)

(b)

(c)

Figure 8.5: Convergence to a limit cycle with the steepest descent algorithm and set step length (black)
and line search algorithm (pink), using 2 Galerkin modes and the Poincaré shooting method with
hyperplane defined by η1 = 0. Figures (a-c) show the same information from different angles. The
colours denote logarithmic cost function contours at slices through the 3D cost function field. The
initial state is x = [0, 0, 1, 0]
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Figure 8.6: Convergence to a limit cycle as in Figure 8.5, but with conjugate gradient algorithm (pink).
The conjugate gradient algorithm trajectory does not zig-zag in the same manner as the steepest descent
algorithm in Figure 8.5a, so is therefore more efficient.

(a) (b)

Figure 8.7: Cost function value against number of gradient evaluations (a) and number of cost function
evaluations (b), for the steepest descent algorithm (blue) and conjugate gradient algorithm (red). The
conjugate gradient algorithm converges much faster than the steepest descent algorithm. The markers
in (b) indicate when new gradients are evaluated and a new line search is begun.

For the trajectories shown in Figures 8.5 and 8.6, Figure 8.7(a) shows the cost function

convergence as a function of number of gradient evaluations, for both the steepest descent

algorithm (with line search) and the conjugate gradient algorithm. The convergence with the

first 4 gradient evaluations is almost identical, because the trajectories follow roughly the same

path into the tube of low cost function. Once inside the tube, the conjugate gradient algorithm

continues to converge quickly, whereas the steepest descent algorithm begins to converge slowly.

Figure 8.7(b) shows the the cost function convergence as a function of number of cost function

evaluations. For both the steepest descent and conjugate gradient algorithms, there are more

cost function evaluations than gradient evaluations because only cost function evaluations are

used in the line search routine.
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8.10 Conclusions

This chapter describes a gradient method for finding limit cycles in large thermoacoustic sys-

tems. This method is capable of converging to limit cycles or fixed points (or local minima),

even with poor initial guesses. In contrast, the continuation method of chapter 5 can diverge

with a poor initial guess, because it is based on a Newton method. Because the gradient

method will converge to either fixed points or limit cycles, it is useful for picking out influential

features in a nonlinear system. It is much faster at finding these features than brute force

approaches, where the system is marched forward in time until it tends to a stable attractor.

The gradient method will also find unstable fixed points and unstable limit cycles, which is

extremely difficult with timemarching alone. For strongly nonlinear systems, there may be

local minima that do not correspond to fixed points or limit cycles. These local minima are

simple to identify, however, because their cost function value is not zero.

The convergence to a limit cycle can be improved by adding terms to the cost functional, for

example, by adding a normalisation term, by adding time derivatives or by adding additional

states to optimise over a path.

The gradient methods are demonstrated on the horizontal Rijke tube. The gradient meth-

ods converge quickly to limit cycles and fixed points. The conjugate gradient algorithm con-

verges more quickly than the steepest descent algorithm.

Implementing the adjoint equations from scratch for a new model is a time consuming

process, especially when the model is large and elaborate checkpointing routines are required.

The gradient methods of this chapter are therefore significantly harder to implement than the

continuation methods of Chapter 5. This may not always remain the case, however, because

recent developments in the field of algorithmic differentiation [138, 139] can calculate and

timemarch the adjoint equations automatically. These algorithmic differentiation routines are

implemented in the FEniCS finite element package, which can solve arbitrary PDEs [140].

Implementing the gradient methods of this chapter on a large model using the FEniCS package

would be an area worthy of future study.

In summary, the matrix-free methods described in chapter 5 and the gradient methods

described in this chapter complement each other: the matrix-free methods converge very fast

when close to a limit cycle, but diverge when far from a limit cycle; the gradients methods

converge slower when close to a limit cycle, but converge fast when far from a limit cycle. The

gradient methods can therefore be used to generate good initial guesses for the matrix-free

continuation methods.
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For the application in this thesis, however, the matrix-free methods were chosen and the

gradient methods in this chapter were not implemented on the more complex thermoacoustic

models.
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Chapter 9

Conclusions

The behaviour of thermoacoustic systems is determined by the attractors in phase space and

by the mechanisms through which the system transitions between them. The first half of

the thesis concentrated on the mechanism of triggering, whereby a thermoacoustic system

transitions from a stable fixed point to a stable limit cycle (or other high amplitude state).

The second half of the thesis then concentrated on how to find the attractors of thermoacoustic

systems, in particular on methods of finding limit cycles in large thermoacoustic systems.

9.1 Overview of work completed

The first part of the thesis examined triggering in thermoacoustics from a dynamical systems

perspective. In chapters 3 and 4, unstable limit cycles are identified in the Rijke tube model

and are shown to be unstable attractors. These unstable limit cycles exist in bistable regions

where the system has undergone a subcritical Hopf bifurcation. A mechanism of triggering is

presented, whereby the system transitions from the stable fixed point to the stable limit cycle,

via the unstable limit cycle. The unstable limit cycle is an unstable attractor, and because the

system is non-normal and the nonlinearities do not conserve energy, perturbations with lower

energy than the unstable limit cycle can transition to the stable limit cycle in three steps: first,

the perturbations transiently grow in amplitude; second, the system is then attracted to the

unstable limit cycle; third, the system is then propelled away from the unstable limit cycle

towards the stable limit cycle.

This mechanism allows small perturbations or low amplitude noise to cause triggering to

large amplitude limit cycles. In chapter 3, the Rijke tube is forced with low amplitudes of

periodic noise and this mechanism is observed. For the Rijke tube, both low frequency noise

and high frequency noise can cause triggering, but low frequency noise is more dangerous
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because it causes triggering at lower amplitudes. This is unsurprising because the Rijke tube

damping model acts like a low pass filter. The noise signature of flames has been shown to

have higher amplitudes at low frequencies [64] so these results are pertinent for ducted flame

systems.

In chapter 4, the Rijke tube model is forced with low amplitudes of random noise and the

stochastic nature of triggering is examined. Triggering is seen to be strongly dependent on the

strength of noise and the hot wire temperature. Furthermore, with low amplitudes of noise the

system is shown to be practically unstable below the linear stability limit. As noise strength

increases, the system becomes practically unstable further from the Hopf point, increasing the

region where the fixed point is linearly stable but triggering is likely to occur. As noise strength

increases further it becomes possible for the system to unsettle itself from the stable limit cycle

and return to the stable fixed point via the unstable limit cycle. This results in short bursts

of high energy oscillations.

Stochastic stability maps are introduced as method of visualising the stability of a thermoa-

coustic system when it is forced by stochastic perturbations. Stochastic stability maps quantify

the probability of the state of the system lying in a particular region, and highlight the bimodal

PDFs in operating regions with potential for triggering. The stable limit cycle amplitudes un-

der small stochastic perturbations agree well with those predicted by the noiseless bifurcation

diagram. If the level of noise in a real combustion system, such as a gas turbine, is known, then

a stochastic stability map could be used to predict a region of safe operation. Alternatively,

multiple experimental results can be used in a stochastic stability map to visualise the practical

stability of the system. Stochastic stability maps have since been created experimentally by

Jegadeesan and Sujith [65, 66] for a ducted diffusion flame. Both the triggering mechanism

and the predicted stochastic dependence were shown to agree excellently with the theoretical

predictions from the Rijke tube model.

Parametric and multiplicative noise are also shown to cause triggering. Non-dimensional

wire-temperature noise and multiplicative velocity noise have a larger effect than parametric

noise in the time delay and damping. Noise terms that excite the energy of the system, such

as the additive noise in section 4.3.1, are demonstrated to be the most dangerous.

The results of chapters 3 and 4 demonstrated that if a system is multistable, sources of

noise must be considered to determine which of the stable attractors the system will reach.

To examine noise induced transitions or the effect of non-normality, it is first necessary to

determine which attractors are present by characterising the nonlinear behaviour of the system.

The most common attractors in thermoacoustics are fixed points and limit cycles, so the second
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part of the thesis therefore focused on developing efficient numerical methods to find limit cycles

in large thermoacoustic systems. Two different methods were developed in parallel: matrix-free

continuation methods (chapters 5-7) and gradient methods (chapter 8). Both of these methods

are efficient when the system has a large discretisation and timemarching is computationally

expensive. It was necessary to develop new methods for analysing nonlinear thermoacoustic

systems in the time domain. Existing frequency domain methods, such as the FDF, assume

that the acoustics are harmonic, and therefore cannot predict limit cycles that are composed of

multiple frequencies, which is often the case for limit cycles, and always the case for period-2n

and quasiperiodic oscillations.

Chapter 5 introduced matrix-free continuation methods, which are a new, quick, and ver-

satile method for finding limit cycles of reasonably sophisticated models of thermoacoustic

systems. Furthermore, with increased computing power, they readily scale up to larger mod-

els. Continuation methods track the limit cycles and bifurcations of a system as parameters

vary, in order to find the safe operating region of the system over a wide parameter range.

The methods operate solely in the time domain, which does not require the single-frequency

in single-frequency out assumption used in the FDF method.

Thermoacoustic and fluid systems are dissipative, which makes them particularly suitable

for a matrix-free iterative method with GMRES. The iterative method converges quickly to

limit cycles by implicitly using a ‘reduced order model’ property. In other words, GMRES

preferentially uses the influential bulk motions of the system, whilst ignoring features that are

quickly dissipated in time. When combined with preconditioning and higher order prediction

techniques, the iterative method generates bifurcation diagrams with modest computational

time. For larger systems, or where timemarching is expensive, multiple shooting may be used

to speed up the process of taking matrix-vector products.

A software package is written in C++ to perform matrix-free continuation of generic time

dependent systems. A thermoacoustic model of a ducted 2D diffusion flame is used as a test

case, with 475 variables. The continuation method converges quickly to limit cycles. The finite

difference and first variational matrix-vector products give almost identical convergence for this

test case, but this is likely not true for models with stronger nonlinearities.

The continuation methods are used in chapter 6 to generate a surface of limit cycles for a

ducted diffusion flame model, as two system parameters vary. Both subcritical and supercritical

Hopf bifurcations are found. The mode shapes of the limit cycles are given directly by the

continuation method. The mode shapes of any instability to the limit cycles are given by the

Floquet multipliers. Examination of the mode shapes gives physical insight into the nature of

the coupled flame-acoustic interaction.
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When compared to the FDF method, the continuation method is more efficient in finding

limit cycles when studying the effect of the flame operating condition. This is because the FDF

is valid for all acoustic operating conditions, but only one specific flame operating condition.

The FDF must therefore be recalculated at each new flame operating condition. The continu-

ation method, however, is equally fast for changes in acoustic or flame operating conditions. It

can therefore be used to study the sensitivity of the safe operating region to general changes

in acoustic or flame operating conditions.

The continuation methods are also used in chapter 7 to generate a surface of stable and

unstable limit cycles for a ducted premixed flame model. Using the Floquet multipliers of

the converged limit cycles, the continuation methods showed fold bifurcations, period-doubling

bifurcations and Neimark-Sacker bifurcations. A separate surface of period-2 limit cycles was

generated, and shown to emerge from the period-doubling bifurcation.

Chapter 8 introduced gradient methods for finding limit cycles of large thermoacoustic

systems. The proximity to a limit cycle is formulated as a scalar cost function, and a minimum

is found iteratively by using the gradient of the cost function in an optimisation routine. Adjoint

equations obtain the gradient of the cost function in two timemarches, one forwards and one

backwards. The gradient method efficiently finds a limit cycle or a fixed point (or a local

minima), and converges even with a poor initial guess. In contrast, the matrix-free method of

chapter 5 is based on Newton iteration, which will diverge with a poor initial guess.

The methods of finding limit cycles that are discussed in this thesis can be ranked in

terms of decreasing time for implementation. First, the easiest method to implement is the

matrix-free continuation method with finite difference matrix-vector products, because it only

requires a timemarching routine for the direct governing equations. This can be used easily

with legacy codes. Second, the matrix-free continuation method with first variational matrix-

vector products. The matrix-vector products are more accurate, which may be crucial in

strongly nonlinear systems, but the first variational equations must be derived, implemented

and timemarched in addition to the direct equations. Third, the hardest method to implement

is the gradient method for finding limit cycles, because the adjoint equations must be derived,

implemented and timemarched in addition to the direct equations. For large systems, elaborate

checkpointing routines will also be required. The implementation of the gradient method can

be made easier, however, using recent developments in the field of algorithmic differentiation

[138, 139].
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9.2 Summary

This thesis demonstrates that triggering can occur with low levels of background noise, by using

unstable attractors as a low energy pathway to reach high energy stable state, which may be

periodic, quasiperiodic or chaotic. This thesis therefore highlights the need for thermoacoustic

systems to be analysed with nonlinear techniques, because linear techniques cannot calculate

the location and form of the unstable attractors, and they cannot calculate the location and

form of the final stable state. This thesis therefore describes nonlinear time domain methods

for evaluating the safe operating region of coupled thermoacoustic systems. In particular,

matrix-free continuation methods are developed and shown to be efficient at calculating limit

cycles and period-2n cycles, and their bifurcations, as a function of system parameters. For

computational studies, these time domain methods are both much faster and more accurate

than frequency domain equivalents.

9.3 Further work

Chapter 7 described the use of continuation methods on a relatively sophisticated model of a

laminar premixed flame, albeit with a simple model of the velocity field and a simple model of

the acoustic duct. The flame model is extremely versatile - it can model conical flames, gutter

flames, axisymmetric dump combustors, and multiple interacting flames side by side. The

acoustics in the code are also extremely versatile, due to advances by Illingworth, described

next. The LSGEN2D code uses a state space representation of the linear acoustic model, which

require two matrices, A, C, and one vector, B, such that:

ẋac = Axac +Bq̇ and
[
uf
pf

]
= Cxac

Illingworth has developed methods of obtaining accurate time domain state space models

from frequency domain network models, and in particular, from the LOTAN package [52,

53]. LOTAN is able to provide accurate acoustic models of combustors with complicated

geometries, such as ducts with temperature jumps, dump combustors or annular combustors.

These acoustic models are used in industry, and are significantly more advanced than the simple

Galerkin mode acoustics used in this thesis. Although the LSGEN2D code was modified to use

these LOTAN generated acoustic models, there was not time to generate results for this thesis.

Together, the LOTAN generated state space acoustics, the LSGEN2D generated flame

dynamics, and the GMRES generated continuation results form a powerful package. The

combination of advanced acoustic models, advanced flame models and advanced nonlinear
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analysis techniques are a significant improvement on the low order thermoacoustic models

in the literature. In particular, they are a significant advance on models that only use a

polynomial derived heat release or frequency domain methods to estimate nonlinear behaviour

- these cannot capture the rich nonlinear behaviour seen in experimental systems.

This LOTAN/LSGEN2D/GMRES combination is currently being used by Alessandro Or-

chini to simulate an axisymmetric dump combustor, with the aim of comparing the nonlinear

behaviour predicted by the simulations with existing experimental results on the burner of Bal-

achandran [141]. The LOTAN/LSGEN2D/GMRES combination could also be used to compare

computational results with the experimental results of the ducted premixed flame of Kabiraj

[20, 21]. In particular, there are two aspects of these experimental results that can be com-

pared: first, the behaviour of self-excited experiments and their bifurcation diagrams; second,

the flame shapes and heat release signals in forced flame experiments.

The largest weakness in the LSGEN2D flame model is the simplistic velocity model that

converts acoustic perturbations at the burner lip to travelling waves that move along the flame

surface. An immediate extension to the work in this thesis would be to improve this velocity

model by using the Euler equation, which been demonstrated by Preetham [118] in tandem with

the G-equation. In particular, an improved velocity model would keep the mean heat release

rate of the flame constant and allow the flame speed to depend on flame stretch. The diffusion

flame in chapter 6 has very weak nonlinearities, which is unphysical. This improved velocity

model could also be used in the diffusion flame model to make the results more physical.

Quasiperiodic oscillations have been recently shown in several experimental thermoacoustic

systems [20, 21, 22, 23, 142]. In this thesis, methods of finding Neimark-Sacker bifurcations

were presented, which allows regions of quasiperiodicity to be defined. Combining experimental

results and modelling results, it is possible to examine the underlying processes in the quasiperi-

odic regime. A particular example of this is the recent work of Li [143], where a combination

of modelling and experiments has helped explain the dynamics of forced flames and jets. Ad-

ditionally, no methods were presented in this thesis for following branches of quasiperiodic or

chaotic oscillations. Another extension would be to develop continuation techniques that can

follow quasiperiodic features.

Chapter 8 introduced gradient methods for finding limit cycles in large thermoacoustic

systems, which use adjoint equations to calculate gradient information. These methods were

not used for the thermoacoustic models of chapters 6 and 7, however, because the matrix-free

methods were easier to implement in these cases. Recent developments in the field of algo-

rithmic differentiation by Farrell [138, 139] have made implementation of the adjoint equations
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much easier, because they can be derived automatically. These developments not only remove

the difficulty of manually implementing adjoint equations and checkpointing routines, they also

evaluate the adjoint results faster than if the adjoint equations were implemented by hand. For

the finite element package FEniCS [140], which is designed for general PDEs, the dolfin-adjoint

package can now automatically calculate first order adjoints and second order adjoints. These

algorithms can be easily incorporated into optimisation routines to find limit cycles and their

bifurcations using gradient methods. Because the second order adjoint is available, it is also

possible to analyse the sensitivity of limit cycles to external perturbations.

It should also be noted that these algorithmic differentiation methods can also automati-

cally calculate the first variational and second variational equations (tangent linear and tangent

quadratic equations). As described in chapters 5 and 6, the first variational equations can be

used to give accurate matrix-vector products for the continuation methods. The second varia-

tional equations can be used to give accurate matrix-vector products when using continuation

methods to find bifurcations. If a package of continuation methods were written as a Python

wrapper for the FEniCS/dolfin-adjoint packages, then it would be an extremely powerful tool

for bifurcation analysis of generic PDEs with finite element discretisations.
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Appendix A

Derivation of the first variational
equations for the ducted diffusion
flame model

The first variational equations of the ducted diffusion flame model are derived in this appendix.

The model is described in chapter 6.

A.1 Governing equations

The governing equations for the acoustic field and mixture fraction field are given as pertur-

bations from the mean values. The governing equation for the mixture fraction field, where

Z = z + Z̄ is:

∂z

∂t
= −ūf

∂z

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
z − uf

∂Z̄

∂x
− uf

∂z

∂x

with boundary conditions Z = 1 at the fuel inlet, Z = 0 at the oxidiser inlet, ∂Z/∂y|+1,−1 = 0,

∂Z/∂x|xc = 0. The flame lies on the contour Z = z + Z̄ = Zst, and is assumed to have an

infinite reaction rate.

The heat release from the model is coupled to a simple linear acoustic model of a duct.

∂u

∂t
+
∂p

∂x
= 0

∂p

∂t
+
∂u

∂x
+ ζp = βT δ (x− xf ) q̇

where u(x, t), p(x, t), z(x, y, t) and q̇ is the heat release from the flame.
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A. DERIVATION OF THE FIRST VARIATIONAL EQUATIONS FOR THE
DUCTED DIFFUSION FLAME MODEL

A.2 First variational equations

The first variational equations with respect to the state are derived in this section. First

variations with respect to parameter are not derived for clarity (this would increase complexity

significantly because Z̄ = f(Pe, α)).

The diffusion flame model is a time-dependent system with independent variables, and is

governed by a set of nonlinear partial differential equations of the form:

∂xk
∂t

= Fk (x)

where in this appendix, x is the non discretised state.

Once the system is discretised, we have a set of nonlinear ordinary differential equations,

where xD is the discretised state:
dxDk
dt

= Fk (xD)

Once the system is discretised, the first variational equations are an ODE for the discretised

perturbation state X ′D:
dX ′Dk
dt

=
∑
j

∂Fk (xD)

∂xDj
X ′Dj

In this appendix the first variational equations are derived from the original PDE. The

continuous first variational equations are of the form:

∂X ′k
∂t

=
∑
j

∇xjFk (x) ·X ′j (A.1)

where ∇x1Fk (x) etc. are covariant derivatives. They are defined as:

∇xjf (x) ·X ′j = lim
ε→0

f
(
x1, x2, . . . , xj + εX ′j , . . . , xN ,

)
− f

(
x1, x2, . . . , xj , . . . , xN ,

)
ε

For the ducted diffusion flame model, the non-discretised time-dependent state is

x = [u, p, z], and the evolution is governed by:

∂u

∂t
= −∂p

∂x
(A.2)

∂p

∂t
= −∂u

∂x
− ζp+ βT δ (x− xf ) q̇ (A.3)

∂z

∂t
= −ūf

∂z

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
z − uf

∂Z̄

∂x
− uf

∂z

∂x
(A.4)
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A.2 First variational equations

The equation for the heat release equation is: (simplified due to symmetry):

q̇ =
1

1− Zst

(
−
ˆ ˆ

Z≥Zst

∂z

∂t
dydx+ u

ˆ f̄+

f̄−

(
Z̄ − Zst

)
dy

)

=
2

1− Zst

(
−
ˆ ˆ f+

0

∂z

∂t
dydx+ uf

ˆ f̄+

0

(
Z̄ − Zst

)
dy

)

where f̄+ refers to the positive y location of the steady state flame, and f+ the time-

dependent positive y location of the flame. Because the flame surface is defined by

Z = z + Z̄ = Zst, f+ depends on the z field.

The first variational equations describe the evolution of the first variational state

X ′ = [U ′, P ′, Z ′].

A.2.1 Heat release equation

The value of the heat release is a functional, q̇ [u, z]. The functional derivatives of q̇ are required

for the first variational pressure equation (section A.2.3). They are :

q̇ [u, z] =
2

1− Zst

(
−
ˆ ˆ f+

0

∂z

∂t
dydx+ uf

ˆ f̄+

0

(
Z̄ − Zst

)
dy

)

δq̇ [u, z]

δu
(U ′) = +

2

1− Zst
U ′f

ˆ f̄+

0

(
Z̄ − Zst

)
dy

δq̇ [u, z]

δp
(P ′) = 0

δq̇ [u, z]

δz
(Z ′) = lim

ε→0

(
− 2

1−Zst
´ ´ f+|

z+εZ′
0

∂(z+εZ′)
∂t dydx

)
−
(
− 2

1−Zst
´ ´ f+

0
∂z
∂t dydx

)
ε

(A.5)

The differential w.r.t u is constant in time and equal to the steady state heat release. The

most difficult differential is that w.r.t. z as both the integrand and the limits of the integral

are functions of z. Partially differentiating an integral, where both the integrand and limits

are functions of a variable has a standard result (Leibniz integration rule ). For example, the

Reynolds transport theorum gives for three dimensions:

∂

∂t

ˆ
D(t)

F (x, t) dV =

ˆ
D(t)

∂F (x, t)

∂t
dV +

ˆ
B(t)

F (x, t) (v · n̂) dA
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A. DERIVATION OF THE FIRST VARIATIONAL EQUATIONS FOR THE
DUCTED DIFFUSION FLAME MODEL

This equation gives the formula for the rate of change of a volume integral, with a time

dependent domain (D(t)). The result is equal to the integral of the rate of change of the

function within the domain, plus the rate of expansion of the domain (in terms of volume)

multiplied by the function value at the domain boundary (B(t)). Considering a point on the

boundary, B, the velocity is just v = ∂B
∂t .

Equation (A.5) does not require a differential with respect to time, but it does require a

differential with respect to the field z. In a similar manner to the Reynolds transport theorum,

equation (A.5) therefore becomes:

δq̇ [u, z]

δz
(Z ′) = lim

ε→0

(
− 2

1−Zst
´ ´ f+|

z+εZ′
0

∂(z+εZ′)
∂t dydx

)
−
(
− 2

1−Zst
´ ´ f+

0
∂z
∂t dydx

)
ε

= − 2

1− Zst

(ˆ ˆ f+

0

∂Z ′

∂t
dydx+

ˆ
f+

∂z

∂t

((
∇zf+ · Z ′

)
· n̂
)
dl

)
(A.6)

The flame location is a function of streamwise distance, f+(x), so the covariant derivative

with respect to the mixture fraction field is required to show how the flame contour moves

when a perturbation, Z ′, is added to the Z field.

The unit normal to the flame contour (evaluated at the flame surface) is:

n̂ = − ∇Z|∇Z|

When perturbed in z, the flame contour moves in the opposite direction to the gradient of

Z:

(
∇zf+ · Z ′

)
=

n̂

|∇Z|Z
′δf+

where δf+ represents the spatial location of the flame. In other words, an increase of δz

moves the flame contour in the direction of n̂ with magnitude δz |∇Z|−1.

Equation (A.6) therefore simplifies to:

δq̇ [u, z]

δz
(Z ′) = − 2

1− Zst

(ˆ ˆ f+

0

∂Z ′

∂t
dydx+

ˆ
f+

∂z

∂t

(
n̂

|∇Z| · n̂
)
Z ′ dl

)

= − 2

1− Zst

(ˆ ˆ f+

0

∂Z ′

∂t
dydx+

ˆ
f+

∂z

∂t
|∇Z|−1 Z ′ dl

)
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A.2 First variational equations

A.2.2 Velocity equation

∂u

∂t
= −∂p

∂x
= F1(u, p, z)

∇uF1 (x) · U ′ = ∇zF1 (x) · Z ′ = 0

The velocity equation is only affected by the pressure, so the first variational velocity

equation is trivial:
∂U ′

∂t
= −∂P

′

∂x

A.2.3 Pressure equation

∂p

∂t
= −∂u

∂x
− ζp+ βT δ (x− xf ) q̇ = F2(u, p, z)

∇uF2 (x) · U ′ = −∂U
′

∂x
+ βT δ (x− xf )

δq̇

δu
(U ′)

= −∂U
′

∂x
+ U ′

2βT
1− Zst

δ (x− xf )

ˆ f̄+

0

(
Z̄ − Zst

)
dy

∇pF2 (x) · P ′ = −ζP ′ + βT δ (x− xf )
δq̇

δp
(P ′)

= −ζP ′

∇zF2 (x) · Z ′ = βT δ (x− xf )
δq̇

δz
(Z ′)

= − 2βT
1− Zst

δ (x− xf )

(ˆ ˆ f+

0

∂Z ′

∂t
dydx+

ˆ
f+

∂z

∂t
|∇Z|−1 Z ′ dl

)

The first variational pressure equation is therefore:

∂P ′

∂t
= −∂U

′

∂x
+ U ′f

2βT
1− Zst

δ (x− xf )

ˆ f̄+

0

(
Z̄ − Zst

)
dy − ζP ′ . . .

− 2βT
1− Zst

δ (x− xf )

(ˆ ˆ f+

0

∂Z ′

∂t
dydx+

ˆ
f+

∂z

∂t
|∇Z|−1 Z ′ dl

)

The first part of the heat release term is the linearisation of adding a perturbation to

the Z field within the current flame limits. The second part of the heat release term is the

linearisation of changing the integral limit. If an infinitessimal perturbation Z ′|Zst is added to

193
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the Z value at the flame location, the flame contour moves a distance ∆ = Z′

|∇Z|

∣∣∣
Zst

in the

direction of n̂, and therefore adds an additional ∂z
∂t

∣∣
Zst

∆ to the area integral. This additional

term is then integrated along the flame contour (i.e. it is a line integral).

A.2.4 Mixture fraction equation

∂z

∂t
= −ūf

∂z

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
z − uf

∂Z̄

∂x
− uf

∂z

∂x
= F3(u, p, z)

∇uF3 (x) · U ′ = −U ′f
∂Z̄

∂x
− U ′f

∂z

∂x

∇pF3 (x) · P ′ = 0

∇zF3 (x) · Z ′ = −ūf
∂Z ′

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
Z ′ − uf

∂Z ′

∂x

The first variational equation for the mixture fraction is therefore:

∂Z ′

∂t
= −U ′f

∂Z̄

∂x
− U ′f

∂z

∂x
− ūf

∂Z ′

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
Z ′ − uf

∂Z ′

∂x

A.3 Summary of the PDEs

With state vector x = [u, p, z], the evolution is governed by:

∂u

∂t
= −∂p

∂x
∂p

∂t
= −∂u

∂x
− ζp+

2βT
1− Zst

δ (x− xf )×(
−
ˆ ˆ f+

0

∂z

∂t
dydx+ uf

ˆ f̄+

0

(
Z̄ − Zst

)
dy

)
∂z

∂t
= −ūf

∂z

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
z − uf

∂Z̄

∂x
− uf

∂z

∂x

With first variational state vector X ′ = [U ′, P ′, Z ′], the first variational evolution is gov-

194



A.3 Summary of the PDEs

erned by:

∂U ′

∂t
= −∂P

′

∂x

∂P ′

∂t
= −∂U

′

∂x
− ζP ′ + 2βT

1− Zst
δ (x− xf )×(

−
ˆ ˆ f+

0

∂Z ′

∂t
dydx−

ˆ
f+

∂z

∂t
|∇Z|−1 Z ′ dl + U ′f

ˆ f̄+

0

(
Z̄ − Zst

)
dy

)

∂Z ′

∂t
= −ūf

∂Z ′

∂x
+

1

Pe

(
∂2

∂x2
+

∂2

∂y2

)
Z ′ − U ′f

∂Z̄

∂x
− U ′f

∂z

∂x
− uf

∂Z ′

∂x
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Appendix B

Derivation of the adjoint equations for
the Rijke tube

B.1 Nonlinear adjoint of the Rijke tube equations

In this appendix the adjoint equations of the Rijke tube model are derived, with a linearised

time delay. The equations are applied in section 8.9. The derivation is similar to that of

Juniper [17], but with the cost functional for finding limit cycles, and a smoothing applied to

the modulus term in the hot wire heat release.

B.1.1 Direct governing equations

The Rijke tube governing equations, with linearised time delay are [17]:

F1 ≡ ∂u

∂t∗
+
∂p

∂x
= 0, (B.1)

F2 ≡ ∂p

∂t∗
+
∂u

∂x
+ ζp− β

(∣∣∣∣13 + vf (t∗)

∣∣∣∣ 12 − (1

3

) 1
2

)
δD(x− xf ) = 0 (B.2)

F3 ≡ v(t∗)−
(
u(t∗)− τ ∂u(t∗)

∂t∗
)

)
= 0 (B.3)

The heat release term is now modified to give a smooth transition around vf = 0, which makes

the time evolution of the adjoint variables smooth (sudden jumps appear if the modulus sign

is kept).

∣∣∣∣13 + vf (t∗)

∣∣∣∣ 12 ≈
((

1

3
+ vf (t∗)

)2

+ ε2

) 1
4

(B.4)
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The parameter ε is constant and must be chosen to be small. In the current formulation

ε = 0.001.

When searching for limit cycles, these equations are integrated from t∗ = 0 to t∗ = T . In

the following derivation the time is non-dimensionalised by T such that t∗ = Tt and t ∈ [t0, t1],

where t0 = 0 and t1 = 1. This makes it easier to express T as a variable in the problem rather

than being hard-wired into the integration:

F1 ≡ 1

T

∂u

∂t
+
∂p

∂x
= 0, (B.5)

F2 ≡ 1

T

∂p

∂t
+
∂u

∂x
+ ζp . . .

−β

((1

3
+ vf (t)

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 δD(x− xf ) = 0 (B.6)

F3 ≡ v(t)−
(
u(t)− τ

T

∂u(t)

∂t
)

)
= 0 (B.7)

The gradients of the cost function are required with respect to initial values u(t0) and p(t0).

It helps to separate these initial values from the continuous functions u(t) and p(t). The initial

values are denoted u0 and p0, and are constrained to be the starting states by:

G1 ≡ u(t0)− u0 = 0 (B.8)

G2 ≡ p(t0)− p0 = 0. (B.9)

B.1.2 Definition of inner products

The following inner products are defined on x ∈ [x0, x1] and t ∈ [t0, t1], where x0 = t0 = 0 and

x1 = t1 = 1:

〈g, h〉 ≡
ˆ x1

x0

gh dx, (B.10)

{g, h} ≡
ˆ t1

t0

gh dt, (B.11)

[g, h] ≡
ˆ x1

x0

ˆ t1

t0

gh dt dx. (B.12)

B.1.3 Definition of the cost functional

The simplest cost functional for finding limit cycles is defined as:

J ≡ 〈(u(t1)− u0)2 + (p(t1)− p0)2〉. (B.13)
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B.1 Nonlinear adjoint of the Rijke tube equations

More complicated cost functionals will include normalisation, phase conditions or higher order

terms as described in chapter 8.

B.1.4 Definition of variations

The functional derivative of J with respect to u, for instance, is defined as:[
∂J

∂u
, δu

]
≡ lim

ε→ 0

ˆ x1

x0

ˆ t1

t0

J(u+ εδu)− J(u)

ε
dt dx (B.14)

B.1.5 Definition of the Lagrangian functional

The Lagrangian functional is defined as the cost functional minus a set of constraints. The

constraints are zero if the direct equations are satisfied. The Lagrangian is:

L ≡ J− [a, F1]− [b, F2]− [c, F3]− 〈d,G1〉 − 〈e,G2〉 (B.15)

The Lagrange multipliers a, b and c can be interpreted as the system’s sensitivity to pertur-

bations of the direct governing equations, F1, F2 and F3. The Lagrange multipliers d and e

can be interpreted as the system’s sensitivity to perturbations of the constraints on the initial

state, G1 and G2.

To calculate the gradient of the cost function, the following conditions must be satisfied for

general δu, δp, and δT : [
∂L

∂u
, δu

]
= 0, (B.16)[

∂L

∂p
, δp

]
= 0, (B.17)

(B.18)

These will be evaluated by re-arranging (B.15). Applying these two conditions (B.16–B.17)

will give the adjoint equations and adjoint boundary conditions, and evaluating ∂L
∂u0

, ∂L
∂p0

and

∂L
∂T will give gradient information.
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First, the contributions to (B.16–B.17) from the cost functional, J, is derived.[
∂J

∂u
, δu

]
= lim

ε→ 0

ˆ x1

x0

ˆ t1

t0

J(u+ εδu)− J(u)

ε
dtdx

= lim
ε→ 0

ˆ x1

x0

(u(t1)− u0 + εδu(t1))2 − (u(t1)− u0)2

ε
dx

=

ˆ x1

x0

2(u(t1)− u0)δu(t1) dx

= 〈δu(t1), 2u(t1)− 2u0〉 (B.19)

[
∂J

∂p
, δp

]
= 〈δp(t1), 2p(t1)− 2p0〉 (B.20)

〈
∂J

∂u0
, δu0

〉
= lim

ε→ 0

ˆ x1

x0

J(u0 + εδu0)− J(u0)

ε
dx

= lim
ε→ 0

ˆ x1

x0

(u(t1)− u0 − εδu0)2 − (u(t1)− u0)2

ε
dx

=

ˆ x1

x0

−2(u(t1)− u0)δu0 dx

= 〈δu0, 2u0 − 2u(t1)〉 (B.21)

〈
∂J

∂p0
, δp0

〉
= 〈δp0, 2p0 − 2p(t1)〉 (B.22)

Second, the linear terms in (B.15) are rearranged, leaving the nonlinear term, K, as yet
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B.1 Nonlinear adjoint of the Rijke tube equations

undefined.

− [a, F1] = −
ˆ 1

0

ˆ 1

0
a

(
1

T

∂u

∂t
+
∂p

∂x

)
dt dx

= −
ˆ 1

0

1

T
(a(t1)u(t1)− a(t0)u(t0)) dx+

ˆ 1

0

ˆ 1

0
u

1

T

∂a

∂t
dt dx . . .

−
ˆ 1

0
(a(x1)p(x1)− a(x0)p(x0)) dt+

ˆ 1

0

ˆ 1

0
p
∂a

∂x
dt dx

= − 1

T
〈a(t1), u(t1)〉+

1

T
〈a(t0), u(t0)〉 − {a(x1), p(x1)} . . .

+ {a(x0), p(x0)}+

[
u,

1

T

∂a

∂t

]
+

[
p,
∂a

∂x

]
(B.23)

−[b, F2] = −
ˆ 1

0

ˆ 1

0
b

(
1

T

∂p

∂t
+
∂u

∂x
+ ζp−K

)
dt dx

= − 1

T
〈b(t1), p(t1)〉+

1

T
〈b(t0), p(t0)〉 − {b(x1), u(x1)} . . .

+ {b(x0), u(x0)}+

[
p,

1

T

∂b

∂t

]
+

[
u,
∂b

∂x

]
− [p, ζb] + K (B.24)

−[c, F3] = −[v, c] + [u, c]− [
τ

T

∂u

∂t
, c]

= −[v, c] + [u, c] + {τc(x1), p(x1)} − {τc(x0), p(x0)} −
[
τ
∂c

∂x
, p

]
= −[v, c] + [u, c]−

〈 τ
T
c(t1), u(t1)

〉
+
〈 τ
T
c(t0), u(t0)

〉
. . .

+

[
τ

T

∂c

∂t
, u

]
(B.25)

−〈d,G1〉 = 〈u0, d〉 − 〈u(t0), d〉 (B.26)

−〈e,G2〉 = 〈p0, e〉 − 〈p(t0), e〉 (B.27)

The terms in the curly brackets are equal to zero because p(x0) = p(x1) = b(x0) = b(x1) = 0

due to the acoustic boundary conditions.

The contribution to L of the nonlinear term, K, comes from −[b, F2]:

K ≡ −

b,−βδD(x− xf )

((1

3
+ vf

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 . (B.28)
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The first variation of K with respect to variations in v(x, t) is:

((
1

3
+ (vf + εδvf )

)2

+ ε2

) 1
4

=
1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

ε δvf , (B.29)

where δvf is the variation of v evaluated at the hot wire position and δD represents the Dirac

delta:

δvf ≡
ˆ X

0
δv δD(x− xf ) dx. (B.30)

For all vf , the first variation of K is therefore:[
∂K

∂v
, δv

]
≡ lim

ε→ 0

ˆ x1

x0

ˆ t1

t0

K(v + εδv)−K(v)

ε
dt dx

= −

b,−βδD(x− xf )
1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δvf


=

ˆ x1

x0

ˆ t1

t0

βbδD(x− xf )
1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δvf dt dx

=

ˆ t1

t0

βbf
1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δvf dt

=

ˆ t1

t0

βbf
1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4 ˆ x1

x0

δv δD(x− xf ) dx dt

=

ˆ t1

t0

ˆ x1

x0

βbf
1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δv δD(x− xf ) dx dt

=

δv, βbf 1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δD(x− xf )

 . (B.31)
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In summary, the linear terms are:

− [a, F1] = − 1

T
〈a(t1), u(t1)〉+

1

T
〈a(t0), u(t0)〉+

[
u,

1

T

∂a

∂t

]
+

[
p,
∂a

∂x

]

−[b, F2] = − 1

T
〈b(t1), p(t1)〉+

1

T
〈b(t0), p(t0)〉+

[
p,

1

T

∂b

∂t

]
+

[
u,
∂b

∂x

]
. . .

− [p, ζb] + K

−[c, F3] = −[v, c] + [u, c]−
〈 τ
T
c(t1), u(t1)

〉
+
〈 τ
T
c(t0), u(t0)

〉
+

[
τ

T

∂c

∂t
, u

]

−〈d,G1〉 = 〈u0, d〉 − 〈u(t0), d〉

−〈e,G2〉 = 〈p0, e〉 − 〈p(t0), e〉

In the next step of the derivation, the variations in L w.r.t. variations in u, p, v, u0, p0 are

summed:[
∂L

∂u
, δu

]
= +

[
1

T

∂a

∂t
, δu

]
+

[
∂b

∂x
, δu

]
+ [c, δu] +

[
τ

T

∂c

∂t
, δu

]
. . .

− 1

T
〈a(t1), δu(t1)〉+

1

T
〈a(t0), δu(t0)〉 . . .

−〈d, δu(t0)〉+ 〈2u(t1)− 2u0, δu(t1)〉 . . .

−
〈 τ
T
c(t1), δu(t1)

〉
+
〈 τ
T
c(t0), δu(t0)

〉
(B.32)

[
∂L

∂p
, δp

]
= +

[
1

T

∂b

∂t
, δp

]
− [ζb, δp] +

[
∂a

∂x
, δp

]
. . . (B.33)

− 1

T
〈b(t1), δp(t1)〉+

1

T
〈b(t0), δp(t0)〉 . . .

−〈e, δp(t0)〉+ 〈2p(t1)− 2p0, δp(t1)〉

[
∂L

∂v
, δv

]
= −[c, δv] +

βbf 1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δD(x− xf ), δv

 .(B.34)
[
∂L

∂u0
, δu0

]
= 〈d, δu0〉+ 〈2u0 − 2u(t1), δu0〉 (B.35)

[
∂L

∂p0
, δp0

]
= 〈e, δp0〉+ 〈2p0 − 2p(t1), δp0〉 (B.36)

The differentials ∂L
∂u and ∂L

∂p must equal zero (chapter 8). This yields three relationships:
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B. DERIVATION OF THE ADJOINT EQUATIONS FOR THE RIJKE TUBE

the boundary conditions for the adjoint variables at time t = t1, the adjoint time evolution

equations, and a condition for the adjoint variables at time t = t0.

First, the conditions at t = t1 is:

− 1

T
a(t1)− τ

T
c(t1) + (2u(t1)− 2u0) = 0

− 1

T
b(t1) + (2p(t1)− 2p0) = 0.

Rearranging these conditions gives the boundary conditions for the adjoint variables:

a(t1) = −τc(t1) + T (2u(t1)− 2u0)

b(t1) = T (2p(t1)− 2p0).

Second, for t ∈ [0, 1] (non-dimensional time), the following conditions must also be satisfied:

+
1

T

∂a

∂t
+
∂b

∂x
+ c+

τ

T

∂c

∂t
= 0

+
1

T

∂b

∂t
− ζb+

∂a

∂x
= 0

−c+ βbf
1

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δD(x− xf ) = 0

Rearranging these conditions gives the time evolution equations for the adjoint variables:

F+
1 =

1

T

∂a

∂t
+
∂b

∂x
+ c+

τ

T

∂c

∂t
= 0

F+
2 =

1

T

∂b

∂t
+
∂a

∂x
− ζb = 0
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B.1 Nonlinear adjoint of the Rijke tube equations

where

τ

T

∂c

∂t
=

∂bf
∂t

β
τ

2T

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δD(x− xf )

+bfβ
τ

2T

∂vf
∂t

((
1

3
+ vf

)2

+ ε2

)− 3
4

δD(x− xf )

−3

2
bfβ

τ

2T

∂vf
∂t

(
1

3
+ vf

)2
((

1

3
+ vf

)2

+ ε2

)− 7
4

δD(x− xf )

= β
τ

2T

((
1

3
+ vf

)2

+ ε2

)− 3
4 (∂bf

∂t

(
1

3
+ vf

)
+ bf

∂vf
∂t

. . .

−3

2
bf
∂vf
∂t

(
1

3
+ vf

)2
((

1

3
+ vf

)2

+ ε2

)−1
 δD(x− xf )

The contributions from c and ∂c
∂t can be added and simplified to give:

c+
τ

T

∂c

∂t
= β

1

2

((
1

3
+ vf

)2

+ ε2

)− 3
4 ((

bf +
τ

T

∂bf
∂t

)(
1

3
+ vf

)
+
τ

T
bf
∂vf
∂t

. . .

− τ
T

3

2
bf
∂vf
∂t

(
1

3
+ vf

)2
((

1

3
+ vf

)2

+ ε2

)−1
 δD(x− xf )

Note that the derivative ∂vf
∂t is included as vf varies in time.

Third, the condition at t = t0 is:

1

T
a(t0) +

τ

T
c(t0)− d = 0

1

T
b(t0)− e = 0

The gradient information for (u0, p0) is given by:

∂L

∂u0
= d+ 2u(t1)− 2u0 =

1

T
a(t0) +

τ

T
c(t0) + 2u0 − 2u(t1)

∂L

∂p0
= e+ 2p(t1)− 2p0 =

1

T
b(t0) + 2p0 − 2p(t1)

To converge to a limit cycle using the standard shooting method, the quantity ∂J/∂T is also
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required:

∂J

∂T
=

∂J

∂u(t1)

∂u(t1)

∂T
+

∂J

∂p(t1)

∂p(t1)

∂T

=

〈
2 (u(t1)− u0)

∂u(t1)

∂T
+ 2 (p(t1)− p0)

∂p(t1)

∂T

〉
It is easier to find the derivatives with respect to T in the original time frame t∗.

u(T ) = u0 +

ˆ T

0

∂u

∂t∗
dt∗ (B.37)

∂u(T )

∂T
=

´ T+δT
0

∂u
∂t∗dt

∗ −
´ T

0
∂u
∂t∗dt

∗

δT
(B.38)

=

´ T+δT
T

∂u
∂t∗dt

∗

δT

=
∂u(T )

∂t∗
=

1

T

∂u(t1)

∂t

The gradient of the cost function with respect to period is therefore:

∂J

∂T
=

〈
2 (u(t1)− u0)

1

T

∂u(t1)

∂t
+ 2 (p(t1)− p0)

1

T

∂p(t1)

∂t

〉
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Summary of the adjoint looping algorithm before discretisation

The adjoint looping algorithm is as follows:

1. Choose a starting state (u0, p0)

2. Integrate forward to t1 with the direct equations, storing u and p:

F1 ≡ 1

T

∂u

∂t
+
∂p

∂x
= 0,

F2 ≡ 1

T

∂p

∂t
+
∂u

∂x
+ ζp− β

((1

3
+ vf

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 δD(x− xf ) = 0

F3 ≡ v − u+
τ

T

∂u

∂t
= 0

3. Initialize the adjoint variables at t = t1 with:

a(t1) = −τc(t1) + T (2u(t1)− 2u0)

b(t1) = T (2p(t1)− 2p0).

4. Integrate backwards in time to t0 with the adjoint equations:

F+
1 =

1

T

∂a

∂t
+
∂b

∂x
+ c+

τ

T

∂c

∂t
= 0

F+
2 =

1

T

∂b

∂t
+
∂a

∂x
− ζb = 0

c+
τ

T

∂c

∂t
= β

1

2

((
1

3
+ vf

)2

+ ε2

)− 3
4 ((

bf +
τ

T

∂bf
∂t

)(
1

3
+ vf

)
+
τ

T
bf
∂vf
∂t

. . .

− τ
T

3

2
bf
∂vf
∂t

(
1

3
+ vf

)2
((

1

3
+ vf

)2

+ ε2

)−1
 δD(x− xf )

5. Calculate the gradient information at t = t0 with:

∂L

∂u0
=

1

T
a(t0) +

τ

T
c(t0) + 2u0 − 2u(t1)

∂L

∂p0
=

1

T
b(t0) + 2p0 − 2p(t1)

∂J

∂T
=

〈
2 (u(t1)− u0)

1

T

∂u(t1)

∂t
+ 2 (p(t1)− p0)

1

T

∂p(t1)

∂t

〉
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B.1.6 Discretization of the direct equations

The velocity and pressure perturbations are decomposed into basis functions:

u(x, t) =

N∑
j=1

ηj(t) cos(jπx), (B.39)

p(x, t) = −
N∑
j=1

(
η̇j(t)

jπ

)
sin(jπx), (B.40)

These expressions are substituted into the governing equations, which are then multiplied by

sin(kπx) and integrated over x ∈ [0, 1] using the relationship:

ˆ 1

0
sin(jπx) sin(kπx) dx = δj,k/2

(This integration is not necessary for the momentum equation, for which the result is obvious):

1. Momentum equation:

1

T

∂

∂t

N∑
j=1

ηj(t) cos(jπx)− ∂

∂x

N∑
j=1

(
η̇j(t)

jπ

)
sin(jπx) = 0,

⇒
N∑
j=1

1

T

dηj
dt

cos(jπx)−
N∑
j=1

(
η̇j
jπ

)
jπ cos(jπx) = 0,

⇒
N∑
j=1

(
1

T

dηj
dt

cos(jπx)−
(
η̇j
jπ

)
jπ cos(jπx)

)
= 0,

⇒ 1

T

d
dt
ηj − jπ

(
η̇j
jπ

)
= 0
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2. Energy equation:

0 = − 1

T

∂

∂t

N∑
j=1

(
η̇j(t)

jπ

)
sin(jπx) +

∂

∂x

N∑
j=1

ηj(t) cos(jπx) . . .

−ζ
N∑
j=1

(
η̇j(t)

jπ

)
sin(jπx) . . .

−β

((1

3
+ vf

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 δD(x− xf )

⇒ 0 = −
N∑
j=1

1

T

d
dt

(
η̇j
jπ

)
sin(jπx)−

N∑
j=1

ηjjπ sin(jπx) . . .

. . .−
N∑
j=1

ζ

(
η̇j
jπ

)
sin(jπx) . . .

−β

((1

3
+ vf

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 δD(x− xf )

⇒ 0 =

ˆ x1

x0

− N∑
j=1

1

T

d
dt

(
η̇j
jπ

)
sin(jπx)−

N∑
j=1

ηjjπ sin(jπx) . . .

−
N∑
j=1

ζ

(
η̇j
jπ

)
sin(jπx) . . .

−β

((1

3
+ vf

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 δD(x− xf )

 sin(kπx)dx

⇒ 0 = − 1

T

d
dt

(
η̇k
kπ

)
− ηkkπ − ζ

(
η̇k
kπ

)
. . .

−2β

((1

3
+ vf

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 sin(kπxf )

0 = ⇒ 1

T

d
dt

(
η̇j
jπ

)
+ jπηj + ζ

(
η̇j
jπ

)
. . .

+2β

((1

3
+ vf

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 sin(jπxf )

3. v-equation (non-dimensional time):

vf = uf −
τ

T

∂uf
∂t

=

N∑
j=1

(
ηj −

τ

T
η̇j

)
cos(jπxf )
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As described in chapter 2, a damping coefficient, ζj , is defined for each mode. In summary,

the discretized direct equations are:

F1G ≡ 1

T

d
dt
ηj − jπ

(
η̇j
jπ

)
= 0

F2G ≡ 1

T

d
dt

(
η̇j
jπ

)
+ jπηj + ζj

(
η̇j
jπ

)
. . .

+2β

((1

3
+ vf

)2

+ ε2

) 1
4

−
(

1

3

) 1
2

 sin(jπxf ) = 0

vf =
N∑
j=1

(
ηj −

τjπ

T

(
η̇j
jπ

))
cos(jπxf )

B.1.7 Discretization of the adjoint equations

The adjoint equations are:

F+
1 =

1

T

∂a

∂t
+
∂b

∂x
+ c+

τ

T

∂c

∂t
= 0

F+
2 =

1

T

∂b

∂t
+
∂a

∂x
− ζb = 0

c+
τ

T

∂c

∂t
= β

1

2

((
1

3
+ vf

)2

+ ε2

)− 3
4 ((

bf +
τ

T

∂bf
∂t

)(
1

3
+ vf

)
+
τ

T
bf
∂vf
∂t

. . .

− τ
T

3

2
bf
∂vf
∂t

(
1

3
+ vf

)2
((

1

3
+ vf

)2

+ ε2

)−1
 δD(x− xf )

Using the substitution h = c+ τ
T
∂c
∂t , the adjoint equations can be simplified to:

F+
1 =

1

T

∂a

∂t
+
∂b

∂x
+ hδD(x− xf ) = 0

F+
2 =

1

T

∂b

∂t
+
∂a

∂x
− ζb = 0

h = β
1

2

((
1

3
+ vf

)2

+ ε2

)− 3
4 ((

bf +
τ

T

∂bf
∂t

)(
1

3
+ vf

)
+
τ

T
bf
∂vf
∂t

. . .

− τ
T

3

2
bf
∂vf
∂t

(
1

3
+ vf

)2
((

1

3
+ vf

)2

+ ε2

)−1

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Similar to the discretisation of the direct variables, the adjoint variables are decomposed into

basis functions:

a(x, t) =
N∑
j=1

(
ξj
jπ

)
cos(jπx),

b(x, t) = −
N∑
j=1

νj sin(jπx),

These are substituted into the adjoint equations.

1. F+
2 equation:

1

T

∂b

∂t
+
∂a

∂x
− ζb = 0

− 1

T

∂

∂t

N∑
j=1

νj sin(jπx) +
∂

∂x

N∑
j=1

(
ξj
jπ

)
cos(jπx) + ζ

N∑
j=1

νj sin(jπx) = 0

−
N∑
j=1

1

T

d
dt
νj sin(jπx)−

N∑
j=1

(
ξj
jπ

)
jπ sin(jπx) +

N∑
j=1

ζνj sin(jπx) = 0

− 1

T

d
dt
νj −

(
ξj
jπ

)
jπ + ζνj = 0

2. F+
1 :

0 =
1

T

∂a

∂t
+
∂b

∂x
+ hδD(x− xf )

⇒ 0 =
1

T

∂

∂t

N∑
j=1

(
ξj
jπ

)
cos(jπx)− ∂

∂x

N∑
j=1

νj sin(jπx) + hδD(x− xf )

⇒ 0 =
N∑
j=1

1

T

d
dt

(
ξj
jπ

)
cos(jπx)−

N∑
j=1

νjjπ cos(jπx) + hδD(x− xf )

⇒ 0 =

ˆ 1

0

 N∑
j=1

1

T

d
dt

(
ξj
jπ

)
cos(jπx)−

N∑
j=1

νjjπ cos(jπx) . . .

+hδD(x− xf )) cos(kπx) dx

⇒ 0 =
1

T

d
dt

(
ξk
kπ

)
− νkkπ + 2h cos(kπxf )

(B.41)
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where

h = β
1

2

((
1

3
+ vf

)2

+ ε2

)− 3
4 ((

bf +
τ

T

∂bf
∂t

)(
1

3
+ vf

)
+
τ

T
bf
∂vf
∂t

. . .

− τ
T

3

2
bf
∂vf
∂t

(
1

3
+ vf

)2
((

1

3
+ vf

)2

+ ε2

)−1


bf = −
N∑
j=1

νj sin(jπxf )

vf =
N∑
j=1

(
ηj −

τjπ

T

(
η̇j
jπ

))
cos(jπxf )

∂vf
∂t

=
N∑
j=1

(
jπT

(
η̇j
jπ

)
− τjπ

T

∂

∂t

(
η̇j
jπ

))
cos(jπxf )

∂bf
∂t

= T
N∑
j=1

(
ξj
jπ

)
jπ sin(jπxf )− T

N∑
j=1

ζνj sin(jπxf )

B.1.8 Initialization of the adjoint variables at t = t1

In the following equations the shorthand notation δf = δD(x− xf ) will be used.

a(t1) = −τc(t1) + T (2u(t1)− 2u0)

⇒
N∑
j=1

(
ξj
jπ

(t1)

)
cos(jπx) = −βbf (t1)

τ

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δf . . .

+2T

 N∑
j=1

ηj(t1) cos(jπx)−
N∑
j=1

ηj0 cos(jπx)



⇒
ˆ 1

0

 N∑
j=1

(
ξj
jπ

(t1)

)
cos(jπx)

 cos(kπx)dx = . . .

ˆ 1

0

−βbf (t1)
τ

2

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

δf

 cos(kπx)dx . . .

+2T

ˆ 1

0

 N∑
j=1

ηj(t1) cos(jπx)

 cos(kπx)dx . . .

−2T

ˆ 1

0

 N∑
j=1

ηj0 cos(jπx)

 cos(kπx)dx
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⇒ ξj
jπ

(t1) = −βbf (t1)τ

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

cos(jπxf )

+2T (ηj(t1)− ηj0)

b(t1) = T (2p(t1)− 2p0)

⇒ −
N∑
j=1

νj(t1) sin(jπx) = +2T

(
N∑
j=1

(
η̇j0(t1)

jπ

)
sin(jπx) . . .

−
N∑
j=1

(
η̇j(t1)

jπ

)
sin(jπx)

)

⇒ νj(t1) = +2T

(
η̇j(t1)

jπ
− η̇j0
jπ

)

B.1.9 Calculating gradient information

The gradient information at t = t0 is calculated with:

∂L

∂u0
=

1

T
a(t0) +

τ

T
c(t0) + 2u0 − 2u(t1)

⇒ ∂L

∂ηj0
=

1

2

(
1

T

(
ξj(t0)

jπ

)
+
τ

T
βbf (t0)

(
1

3
+ vf

)((
1

3
+ vf

)2

+ ε2

)− 3
4

cos(jπxf ) . . .

+2ηj0 − 2ηj(t1)

)

∂L

∂p0
=

1

T
b(t0) + 2p0 − 2p(t1)

− ∂L

∂(η̇j0/jπ)
=

1

2

(
− 1

T
νj(t0) + 2

(
η̇j(t1)

jπ

)
− 2

(
η̇j0
jπ

))
∂L

∂(η̇j0/jπ)
=

1

2

(
1

T
νj(t0)− 2

(
η̇j(t1)

jπ

)
+ 2

(
η̇j0
jπ

))
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(The minus sign on the LHS in the second line arises because p is −∑(η̇j/jπ) . . .) The gradient

with respect to period T is:

∂L

∂T
=

〈
2 (u(t1)− u0)

1

T

∂u(t1)

∂t
+ 2 (p(t1)− p0)

1

T

∂p(t1)

∂t

〉

=
2

T

〈 N∑
k=1

ηk(t1) cos(kπx)−
N∑
j=1

ηj0 cos(jπx)

 N∑
l=1

lπT

(
η̇l(t1)

lπ

)
cos(lπx) . . .

+

 N∑
k=1

(
η̇k(t1)

kπ

)
sin(kπx)−

N∑
j=1

(
η̇j0
jπ

)
sin(jπx)

 N∑
l=1

∂

∂t

(
η̇l(t1)

lπ

)
sin(lπx)

〉

=
1

T

N∑
j=1

(
(ηj(t1)− ηj0) jπT

(
η̇j(t1)

jπ

)
+

((
η̇j(t1)

jπ

)
−
(
η̇j0
jπ

))
∂

∂t

(
η̇j(t1)

jπ

))

B.1.10 Discretising the cost function

The cost function is summed over space:

J =

ˆ x1

x0

(
(u(t1)− u0)2 + (p(t1)− p0)2

)
dx

=

ˆ x1

x0

 N∑
j=1

ηj cos(jπx)−
N∑
k=1

ηk0 cos(kπx)

2

. . .

+

− N∑
j=1

(
η̇j(t1)

jπ

)
sin(jπx) +

N∑
k=1

(
η̇k0

kπ

)
sin(kπx)

2 dx

=
1

2

N∑
j=1

((
ηj(t1)2 + η2

j0 − 2ηj(t1)ηj0
)
. . .

+

((
η̇j(t1)

jπ

)2

+

(
η̇j0
jπ

)2

− 2

(
η̇j(t1)

jπ

)(
η̇j0
jπ

)))
dx

=
1

2

(
(ηj(t1)− ηj0)2 +

((
η̇j(t1)

jπ

)
−
(
η̇j0
jπ

))2
)

This is just 1
2 of the square of the 2-norm of the difference vector.
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