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Summary 

Somatic Mutations in Primary Sjögren’s Syndrome 

Aleksandra Ivovic 

 

Despite decades of research and many insightful findings, a complete understanding of the 

pathogenesis of autoimmune diseases continues to elude us. In this thesis, I explore the 

hypothesis that somatic mutations may underpin the development and progression of 

autoimmune disease, specifically primary Sjögren’s syndrome (PSS). PSS is a chronic, systemic 

autoimmune disease characterized by dysfunction of salivary and lacrimal glands, which is 

mediated by immune cell infiltration into these tissues.  

 

As cells age and divide, they accumulate mutations and structural changes in DNA. These 

somatic mutations are often inconsequential but sometimes result in cell death, cancerous 

transformation, or other phenotypes. To describe the somatic mutational landscape of 

relevant cell types in PSS and investigate whether somatic mutations may have a role in the 

pathogenesis of this disease, we performed targeted and whole genome sequencing of 

glandular epithelial cells and tissue-infiltrating T and B lymphocytes from biopsies of minor 

salivary glands from PSS patients and controls. The results illustrate the mutational trends 

and clonal dynamics present in immune cells and glandular epithelial cells, suggesting ways 

in which somatic mutations in key cell types may be affecting disease pathogenesis. To 

complement the genomic studies and interrogate the lymphocyte cell types present in the 

salivary glands, I also a performed single cell transcriptome analysis of tissue-infiltrating 

immune cells. Based on the results of this transcriptomic investigation, I highlight new insights 

about the phenotypes and activation states of immune cells in the inflamed salivary glands. 

 

To our knowledge, this is the first study to perform genomic sequencing of affected tissue and 

tissue-infiltrating immune cells to investigate the presence of somatic mutations in 

autoimmune disease. Additionally, this is the first single cell genome-wide transcriptomic 

investigation of lymphocytes infiltrating minor salivary glands in PSS. The genomic and 

transcriptional findings of this research contribute novel insights to understanding the 

molecular origins of primary Sjögren’s syndrome. 
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Chapter 1: Introduction 

Somatic mutations beyond cancer 

The study of somatic mutations has long been relegated solely to the domain of cancer 

research. The somatic evolution of malignant clones has been extensively studied, leading to 

our current understanding of the origin and progression of cancer. In essence, individual cells 

within an organism acquire mutations and changes in DNA throughout their lifetime, most of 

which are phenotypically inconsequential; occasionally, these changes result in a selective 

advantage over other cells, leading to sustained survival and proliferation - an early event in 

the trajectory leading to cancer1. Additional mutations subsequently occurring in the cell can 

provide the definitive push towards malignant transformation. We therefore understand 

cancer to be an acquired genetic disease, centred on the accumulation and Darwinian 

selection of somatic mutations within an organism – evolution on a microscale. 

 

In recent years, the study of somatic mutations has begun to explore healthy tissues to better 

understand the early mutagenic events that precede the development of cancer. These 

sequencing studies began to shed light on the mutational burden, patterns, and mutagenic 

processes operative across different normal, non-cancerous cell types. As it turned out, 

somatic mutations are prevalent and diverse in normal tissues, and they accumulate 

consistently with age2–5. Mutations previously associated with cancer are found to exist in 

healthy cells and drive the clonal dynamics of the tissue2–5. A clone, which consists of all the 

cells that derive from a common progenitor and share the same mutations, can exist in 

various sizes, and it can shrink and expand over time in response to selection pressures in the 

microenvironment. The majority of mutated clones will not go on to drive cancer, but they 

will shape the mosaic structure of the tissue. This perhaps unexpected finding has imparted 

more complexity to the classical paradigm of cancer evolution, suggesting a fluid and 

malleable process rather than a linear progression, as was previously implied.  

 

If pathogenic somatic mutations exist in phenotypically healthy tissue and shape its clonal 

landscape, do they also play a role in non-cancerous diseases? If mutations accumulate with 
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cellular ageing, could they contribute to diseases that occur sporadically in the lifetime of an 

organism? Based on current knowledge of the role of somatic mutations in cancer and healthy 

tissue, we sought to apply this line of inquiry to the realm of chronic and age-related diseases, 

specifically autoimmune disease.  

 

Autoimmune disease occurs when the immune system loses tolerance toward antigens of the 

body and begins to attack its own cells and tissues. There are over 80 different known 

autoimmune diseases, and their cumulative burden in the population is around 5%6. These 

chronic diseases range from mild to life-threatening with a diverse set of symptoms. There 

are no cures, and until recently treatment options were limited and often associated with 

considerable toxicity. With the advent of modern biological treatments, we are now better 

equipped than previously to ease the burden of suffering in patients, yet there still remains a 

significant unmet need not addressed by current therapies. For most autoimmune diseases, 

there is a sparse understanding of the genetic basis and external factors that are thought to 

drive the pathogenesis. 

 

We hypothesized that somatic mutations might play a role in autoimmune disease 

pathogenesis, building on previous work that has suggested this idea7,8. Whether functionally 

relevant somatic mutations are present in immune cells is a concept that has not been 

experimentally explored until recently, even though the connection between somatic 

mutations and autoimmunity was first proposed by MacFarlane Burnet in 19657. Somatic 

mutations in lymphocytes may be a driving factor in the loss of immune tolerance and 

development of autoimmune disease, or they may be an occurrence secondary to the disease 

itself and lead to subsequent complications such as lymphoma development. To explore these 

concepts, we undertook a study of somatic mutations in the autoimmune disease primary 

Sjögren’s syndrome. While most investigations of autoimmune disease have relied on 

profiling readily available blood samples to infer systemic changes in the immune response, 

examining affected tissue, which is often harder to come by, presents an opportunity to study 

the localized tissue-specific autoimmune response. By obtaining biopsies of affected salivary 

glands from patients with primary Sjögren’s syndrome, we were able to analyse infiltrating 

immune cells as mediators of the localized autoimmune response and somatic mutations 

which may be enriched in cells at the site of tissue inflammation. In this dissertation, I will 
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discuss our exploration of the landscape and putative role of somatic mutations in primary 

Sjögren’s syndrome.  

 

I. SOMATIC EVOLUTION 

I.1 Somatic mutations in non-cancerous tissue 

The study of somatic mutations in cancer exploded in the twenty-first century with the advent 

of next generation sequencing, which enabled whole exome and whole genome sequencing 

at massive scale. These studies led to a comparative understanding of mutational burden, 

rates of mutagenesis, structural variation, and other features across a wide array of cancer 

types9. Specific patterns of mutation, known as mutational signatures, were attributed to 

specific mutagens, explaining some of the driving forces behind mutation acquisition10–12. The 

mutational landscape and genetic patterns of cancer thus became understood on a new level.  

 

The logical extension in this process of inquiry then became to understand early events of 

somatic mutation accumulation in normal cells that sets them on the road to cancerous 

transformation. A few early landmark studies of normal tissue shifted the focus of the cancer 

genomics field, and the study of somatic mutations in normal cells took off. 

 

I.2 Clonal haematopoiesis & somatic mutations in blood 

Clonal haematopoiesis is the occurrence of a disproportionally large fraction of mature blood 

cells deriving from a single haematopoietic stem cell, thus forming a “clone” of blood cells. In 

2014, two parallel studies by Jaiswal et al and Genovese et al found that clones harbouring 

leukaemia-associated somatic mutations accumulate in the blood of healthy individuals over 

time, indicating clonal haematopoiesis that is likely driven by somatic mutations13,14. This 

unexpected finding in apparently healthy people is a phenomenon now known as “clonal 

haematopoiesis of indeterminate potential” (“CHIP”) or “age-related clonal haematopoiesis”. 

Based on whole exome sequencing data analysed in these studies, the prevalence of clonal 

haematopoiesis increased with age, with 10% of individuals older than 65 years harbouring a 

clone with a somatic mutation, compared to only 1% of those younger than 50 years13. Those 
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over the age of 90 had detectable somatic mutations in 18.4% of cases14. In subsequent 

studies, where deeper sequencing was implemented for improving the sensitivity of 

detection, these proportions were even higher15. 

 

Clonal haematopoiesis increases the risk of developing haematological malignancy and is also 

associated with a higher risk of cardiovascular disease and all-cause mortality13,14,16,17. Across 

all age groups, the most commonly mutated are three genes encoding for epigenetic 

regulators which are associated with myeloid malignancy: DNMT3A, ASXL1, and TET2.  

Stratification of individuals with clonal haematopoiesis by number of mutations, clone size, 

and enrichment of specific genes demonstrated that it is possible to quantify cancer risk and 

identify those more likely to develop acute myeloid leukaemia in subsequent years versus 

those who have benign age-related clonal haematopoiesis18. The presence of TET2 mutations 

in particular is correlated with adverse cardiovascular outcomes and has been shown to 

contribute to atherosclerosis in mouse models16,17. 

 

While the concept of clonal haematopoiesis has been known for many years, mainly through 

studies of non-random X-inactivation in blood19, the detection of it through somatic 

mutations has greatly expanded this field of research. The aforementioned sequencing 

studies have illustrated the prevalence of clonal haematopoiesis in healthy individuals’ blood 

and demonstrated its utility in predicting risk of blood cancer and other conditions. 

 

Clonal haematopoiesis has been significantly associated with aplastic anaemia, an 

autoimmune disease in which the immune system destroys hematopoietic cells and leads to 

bone marrow failure. Aplastic anaemia has a high incidence of clonal haematopoiesis, 

occurring in 47% of 439 patients analysed in a study by Yoshizato et al20. Clones with somatic 

mutations in DNMT3A and ASXL1 were found to increase in size over time and were 

associated with worse outcomes and higher rate of progression to acute myeloid leukaemia 

and myelodysplastic syndromes. Conversely, clones harbouring mutations in PIGA, BCOR, and 

BCORL1 were correlated with better response to immunosuppressive treatment and longer 

progression-free survival20. The differential outcomes associated with these two sets of 

mutations may indicate distinct selective pressures in the bone marrow environment. Clones 

with DNMT3A and ASXL1 mutations have a proliferative advantage over other cells, as they 
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do in healthy individuals, while clones carrying PIGA, BCOR, and BCORL1 mutations are likely 

an adaptation selected to confer protection from the pathogenic immune response. 

 

Most studies investigating clonal haematopoiesis of indeterminate potential have focused 

exclusively on myeloid cells and the presence of known myeloid drivers in the blood. 

However, examples of pre-symptomatic lymphocyte expansion are known as well, most 

notably monoclonal gammopathy of undetermined significance (“MGUS”), where an 

otherwise healthy individual has a monoclonal component in the blood (an antibody or 

paraprotein), indicative of monoclonal plasma cell expansion and imparting a predisposition 

to myeloma21. Individuals with monoclonal gammopathy of undetermined significance have 

been shown to harbour cancerous mutations associated with myeloma, though a notably 

lower mutational burden has been observed than that of myeloma22. A related pre-malignant 

disorder is clonal B-cell lymphocytosis, where a monoclonal B lymphocyte population exists 

in the blood of an asymptomatic individual and imparts a predisposition to B-cell malignancy, 

most often B-cell chronic lymphocytic leukaemia23. The significance of lymphoid and myeloid 

clonal expansions is not only in their ability to predict risk of developing haematological 

cancers, but increasingly in correlating the pre-malignant state with other morbidities as well, 

such as myeloid TET2 mutations with cardiovascular disease17 or thrombosis and osteoporosis 

with monoclonal gammopathy of unknown significance24. 

 

Ongoing research into the clonal evolution of blood cells continues to elucidate the biological 

mechanisms of healthy haematopoiesis. Somatic mutations in haematopoietic stem cells can 

be traced through their progeny of differentiated blood cells to quantify the contribution of 

respective progenitors. This approach has been used to construct phylogenetic trees of 

hematopoietic differentiation based on shared somatic mutations25,26. The authors identified 

stem cell clones that generated multilineage progeny, both myeloid and lymphoid. 

Additionally, Lee-Six et al inferred the number of active haematopoietic stem cells present in 

a healthy donor to be in the range 50,000 to 200,000 cells25. Lineage tracing using somatic 

mutations as cellular barcodes can thus be an important tool for studying clonal dynamics in 

normal tissue and disease states. 

 



 6 

I.3 Somatic mutations and clonal evolution in tissue 

Akin to the study of clonal haematopoiesis in healthy blood, there has been a surge of interest 

in the study of somatic mutations in other healthy tissues in the past several years. The first 

study to launch this wave was an investigation of the somatic mutational landscape of 

healthy, sun-exposed skin by Martincorena et al in 20152. Deep sequencing of 234 skin micro-

biopsies from four donors revealed that ~25% of all cells contained at least one “driver” 

mutation previously associated with cancer, namely with cutaneous squamous cell 

carcinoma. Clones carrying driver mutations were numerous and expanded to varying sizes in 

the tissue. The high prevalence and clonal expansion of cells carrying driver mutations 

indicates that the mutated genes were under positive selection in normal skin. The total 

burden of mutations per cell was high, comparable to or higher than that seen in many 

cancers2. The main mutagenic force associated with the excess burden of mutations was UV-

light, recognizable by its characteristic mutational signature. These surprising findings 

suggested that hidden clonal competition is continually taking place in otherwise normal skin, 

reshaping the tissue microenvironment and, in turn, our understanding of the early inciting 

mutations that lead to skin cancer. 

 

To understand whether similar mutational burden is found in tissues that are not exposed to 

a strong mutagen such as UV light, the authors undertook a study of normal human 

oesophageal epithelium4. The skin and the oesophagus have a similar histological structure 

consisting of a layered epithelium that has a high rate of shedding and turn-over, as well as 

an association with respective squamous cell carcinomas, so they are apt tissues for 

comparison. As expected, the mutational burden in the oesophagus was lower than in skin, 

however the density of cancer-associated driver mutations was surprisingly high, indicating a 

strong positive selection of clones carrying these mutations. The burden of mutations 

increased with age and was attributed largely to endogenous cellular process associated with 

age or transcription. The size of mutated clones also increased with age, where in middle age 

more than half of the oesophageal epithelium was colonized by mutant clones. Fourteen 

cancer-associated genes were found to be under positive selection in normal oesophagus, at 

least 11 of which are canonical drivers of oesophageal squamous cell carcinoma (ESCC). 

Interestingly however, there was a higher prevalence of NOTCH1 mutations in normal 



 
 

7 

oesophagus than is found in ESCC, with 30-80% of normal oesophageal epithelium being 

colonized by a NOTCH1 clone. This suggests that NOTCH1 mutations may drive benign clonal 

expansions but are less likely than other mutations to drive evolution towards ESCC. 

Conversely, TP53 mutations were less common in normal oesophagus but highly prevalent in 

ESCC, indicating that selection of TP53 clones occurs in the process of malignant 

transformation. In this comparative fitness model of normal tissue, different mutant clones 

appear to have varying degrees of cancer progression risk.  

 

The findings of the oesophageal epithelium study have important implications for 

understanding the events that precede carcinogenesis, as well as the biology of ageing. The 

increasing appropriation of tissue by mutant clones with age may play a role in its 

physiological decline, supporting the long-hypothesized somatic theory of ageing. 

Furthermore, the finding that some expanded clones are less likely than others to evolve into 

cancer, e.g. NOTCH1 clones appearing more benign than TP53 clones, opens a possibility of 

intervention whereby the benign clones could be stimulated to outcompete the higher-risk 

clones and thus reduce cancer risk. In a recent study, Fernandez-Antoran et al tested the 

effects of oxidative stress from low-dose ionizing radiation on the fitness of wild-type and 

TP53 mutant cells in the transgenic mouse oesophagus27. While exposure to low-dose ionizing 

radiation induced oxidative stress and caused TP53 mutant cells to proliferate and 

outcompete wild-type cells, the addition of an antioxidant reversed this effect, causing 

proliferation of wild-type cells and reduction of TP53 mutant clones. The external 

modification of selection pressures by redox manipulation demonstrates that intervention to 

deplete high-risk clones in tissues is possible. This example of low-dose ionizing radiation 

draws parallels with patients undergoing frequent CT scans, which may translate to a clinical 

opportunity for intervention with antioxidizing agents. 

 

In addition to the studies of blood, skin, and oesophagus, further genomic investigations have 

characterized the landscape of somatic mutations in healthy colon5, endometrium3,28, liver29, 

bronchial epithelium30, and brain31, yielding new tissue-specific observations as well as 

confirming trends that occur across many cell types. New insights were also found from clever 

repurposing of transcriptomic data to detect somatic mutations. An RNA sequencing meta-

analysis of 6,700 samples from 29 normal tissues revealed macroscopic clonal expansions 
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across many of the tissues32. While lower in resolution compared to DNA sequencing 

analyses, the findings of the transcriptional dataset aligned with what is known so far about 

mutations in normal tissue: the highest burden was found in sun-exposed skin, oesophagus, 

and lung – tissues that are exposed to exogenous mutagens. Mutations accumulated with 

age, and cancer driver mutations were commonly seen across various tissues. Importantly, 

the mutational burden of a tissue was associated with its rate of cell proliferation and turn-

over, and consequently its propensity to form macroscopic clones32,33. 

 

I.4 Mutational signatures in normal tissues 

While the concept of mutational signatures has been known for some time, cancer genome 

sequencing has greatly broadened the spectrum of signatures attributable to distinct 

carcinogens. An early landmark study in 1991 compared the types of TP53 mutations across 

different cancers and found that some tumour types such as colon and brain are dominated 

by T to C transitions, while others like lung and breast contain mostly A to G transitions in 

TP5334. Subsequent studies elucidated the predilection of mutagens towards certain base 

changes, such as the high rate of C > T and CC > TT mutations caused by UV light as compared 

to G >T mutations caused by tobacco35. UV light and tobacco smoke were some of the earliest 

mutagens characterized molecularly, and it was not until the implementation of wide-scale 

genomic sequencing that the mutational signatures of many others became known. 

 

Single nucleotide changes can be categorized into six classes, C>A, C>G, C>T, T>A, T>C, and 

T>G, which can further be expanded into 96 categories by the inclusion of the 3’ and 5’ 

adjacent base to establish a trinucleotide context. Several large-scale studies in the last 

decade compared the mutation distribution in various cancers among these categories and 

discovered associations with numerous mutagens, both endogenous to the cell and those in 

the external environment10–12,36–39. Signatures SBS1 (Single Base Substitution 1) and SBS5 

defined in the COSMIC database (Catalogue of Somatic Mutations in Cancer)40 were found in 

most tissues and are the result of cellular ageing and replication, thus are appropriately 

termed “clock-like” signatures36. Other novel signatures identified included those associated 

with defective homologous recombination, defective mismatch repair, cytidine deaminases 

AID and APOBEC39, damage by reactive oxygen species41, aristolochic acid42, and more. 
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Additionally, signatures of dinucleoutide substitutions, insertion and deletions, and structural 

variants have been identified11,43. A significant portion of identified signatures still do not have 

a known aetiology. 

 

Recent genomic studies of normal tissues have investigated the presence of known and novel 

mutational signatures in non-cancerous cells. As in cancer, the largest proportion of single 

base substitutions in healthy cells is attributable to ubiquitous “clock-like” signatures SBS1 

and SBS5, which have been identified in normal blood25,26, colon5, liver29,33, brain31, 

endometrium3,28, lung30, and other tissues. Tissue-specific endogenous signatures were also 

found, such as the AID cytidine deaminase signature in mature B cells44 and a novel signature 

found across blood cells25,26. Higher rates of SBS1 were found in tissues with higher turnover 

rate such as small intestine and colon5,33, compared to tissues with lower turnover such as 

liver33,29. The contribution of SBS5 increased with age in a linear trend across many tissues, 

suggesting an intrinsic mutational mechanism independent of cell type or proliferation rate33. 

The mutational spectra of driver genes in cancer types corresponding to the normal tissues 

surveyed showed highly similar trends, indicating that endogenous processes driving 

mutagenesis in normal tissue contribute to tumorigenesis11,33,36. 

 

In addition to signatures of endogenous origin, various signatures of environmental exposure 

were found in normal tissues. As mentioned, a high burden of UV-light signature was found 

in healthy sun-exposed skin2. Tobacco smoke significantly increased the burden of C>A 

mutations in bronchial epithelium of healthy donors30 and has also been found in samples of 

healthy and non-cancerous cirrhotic liver29. Non-cancerous hepatocytes in the study by 

Brunner et al also demonstrated the presence of signature SBS22, characteristic of 

aristolochic acid29,42 as well as SBS24 associated with aflatoxin-B1 exposure29,45, in certain 

individuals whose personal histories confirmed those exposures. Ongoing research continues 

to investigate novel signatures in cancer and healthy tissue to find further environmental 

exposures contributing to tumorigenesis, with the hope of identifying preventable causes of 

cancer. The sum of mutational signatures in a cell represent a record of its exposure to both 

exogenous and endogenous mutational forces, providing a retrospective summary of its life 

history, which is highly pertinent to the study of cancer and chronic diseases. 
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I.5 Somatic mutations in chronic disease 

Somatic mutational findings in normal tissue have implications for ageing and chronic 

diseases. The expansion of a clone with a single driver mutation can be an inciting event in 

the trajectory leading to cancer, but it might also be an early molecular event leading to 

physiological decline in the context of ageing or a pathological manifestation in the context 

of chronic disease. Support for the latter is the connection of certain chronic diseases with 

cancer, such as that of liver cirrhosis with hepatocellular carcinoma33,46 or autoimmune 

diseases with non-Hodgkins lymphoma47. Thus, the aetiology of many chronic diseases may 

be clonal in origin. 

 

There are examples of rare diseases caused by early embryonic mutations such as the 

overgrowth disorders Proteus syndrome and melorheostosis. During my PhD, I collaborated 

on a study that discovered that somatic mutations in the MAP2K148 or SMAD349 genes cause 

the rare sporadic bone overgrowth condition Melorheostosis. In a similar way, Proteus 

syndrome is caused by a single somatic mutation in the AKT1 gene that leads to overgrowth 

of skin and connective tissues50. These overgrowth disorders are caused by somatic activating 

mutations in growth-promoting genes, with the mutated clones being sequestered in mosaic 

regions of the body.  

 

In some rare disorders of the immune system, embryonic mutations in immune-activating 

genes are the cause of disease, and these are mimics of Mendelian disorders involving those 

same genes51–53. In this scenario, the mutations promote immune stimulation by constitutive 

activation of inflammasome complexes or similar mechanisms in a subset of mutated immune 

cells, but they do not necessarily have a selective advantage by means of a growth-promoting 

cellular phenotype. Early embryonic mutations with significant functional consequences such 

as these are one way in which somatic mutations play a direct role in rare chronic diseases. 

In common chronic diseases, the situation is more complex and likely due to multiple 

molecular events occurring throughout the lifetime of an individual. There is now early 

evidence in favour of this hypothesis. As previously mentioned, the genomic analysis of 

healthy liver as compared to chronic liver disease portrays a vastly different mutational 

landscape in the disease state, manifesting as higher mutational burden, more frequent driver 
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mutations, more structural variation, and larger clonal expansions29. As chronic liver disease 

predisposes to hepatocellular carcinoma, this indicates that the genomic instability leading to 

malignancy is gradually acquired throughout the progression of chronic liver disease. 

Unexpectedly, there is also an enrichment of mutations not associated with cancer in 

regenerative nodules of cirrhotic liver, suggesting selection of clones that appear to promote 

hepatocyte fitness and a decrease in fibrosis54.  

 

Additionally, an enrichment of mutations in genes involved in insulin signalling are observed 

in non-alcoholic fatty liver disease that are not observed in hepatocellular carcinoma (Ng et 

al, submitted 2020). The recurrent mutations were observed in conserved regions of insulin 

signalling genes and were shown to disrupt  downstream metabolic pathways. Non-alcoholic 

fatty liver disease is common in the population and is highly associated with metabolic 

syndrome, in particular insulin resistance55. The findings of this study suggest a novel 

hypothesis linking fatty liver disease and metabolic syndrome: selection of hepatocyte clones 

with reduced insulin reactivity allows them to escape death from lipotoxicity and oxidative 

stress in a fatty liver environment – a survival advantage that comes at a metabolic cost to 

the organism.  

 

Perhaps more related in pathophysiology to Sjögren’s syndrome is a recent set of studies on 

somatic mutations in inflammatory bowel disease. Sequencing of colonic crypts and 

organoids from Crohn’s disease and ulcerative colitis patients identified expansions of clones 

with mutations that converge on the IL-17a signalling pathway (including NKFBIZ, TRAF3IP2, 

ZC3H12A and PIGR genes)56–58. This suggests a potential adaptive mechanism for escaping 

inflammatory damage by IL-17 activation, as most of the mutations conferred protection from 

IL-17 mediated cytotoxicity. Alternatively, mutations disrupting IL-17 signalling, specifically 

PIGR mutations, may be directly contributing to pathogenesis by causing commensal 

dysbiosis which recruits a sustained immune response and positive feedback loop, leading to 

expansion of the mutated clone57,58. The latter, more provocative hypothesis warrants further 

mechanistic investigation but is supported by GWAS findings associating loci in PIGR and other 

IL-17 pathway genes with susceptibility to inflammatory bowel disease59–61. Overall, the 

enrichment of mutations in immune-signalling genes demonstrates a distinct mechanism of 

positive selection in inflammatory bowel disease that does not necessarily contribute to 
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neoplastic transformation, as the aforementioned IL-17 related genes are not found in colon 

cancers associated with inflammatory bowel disease. 

 

I.6 Methods and challenges of somatic mutation detection in normal tissue 

Next generation sequencing advances have enabled the study of somatic mutations in normal 

tissue, which was previously precluded by significant technical challenges. In contrast to 

neoplastic clones which are often macroscopic and easily detectable, clones found in normal 

tissue are smaller and more difficult to identify. It is straightforward to detect somatic 

mutations in a clonal population of cells but less so in a mixed polyclonal population in which 

each mutation is represented by fewer sequencing reads. To increase the sensitivity of 

somatic mutation detection in polyclonal samples, high depth sequencing can be used to 

detect mutations present at low allele frequency. Whilst this approach is useful for detecting 

mutations in a targeted set of genes, sequencing whole exomes and genomes at very high 

depth quickly becomes cost-prohibitive. Additionally, in a polyclonal sample it is difficult to 

assess if multiple mutations derive from the same clone or multiple clones. To overcome 

some of these challenges and allow somatic mutation assessment across normal tissues, 

several approaches have been adopted. 

 

Since clonal composition is an important factor for mutation detection, it is worthwhile to 

consider the origin of normal and neoplastic clonal structures. It is well established that 

cancers arise from long-lived cells with proliferative potential, i.e. progenitor and stem 

cells33,62, as opposed to differentiated cells which are short-lived and senescent. Moreover, it 

has been shown that the organ-specific risk of acquiring cancer is directly related to the 

number of stem cell divisions, explaining the differential incidence of cancer across tissues63. 

Similarly, the rate of stem cell division in a tissue determines the size of non-neoplastic clones 

and the resulting tissue microarchitecture. For example, colonic crypts are a clonal unit, 

deriving from a stem cell at the bottom of the crypt which divides to create daughter cells 

that populate the walls of the crypt as they differentiate into a squamous epithelium5,64. 

Characteristics like these can be taken advantage of when designing studies, such that 

dissection of a colonic crypt will provide a clonal population which carries all the mutations 

present in the basal stem cell. This allows genome-wide assessment of the mutational 
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processes that occurred in the lifetime of that stem cell, independently of surrounding cells. 

The clonal composition of a tissue can be modified by selective pressures, as seen in 

inflammatory bowel disease by spreading of clones between multiple colonic crypts56–58. 

Therefore, tissue composition and clonality are important considerations for designing 

sequencing studies.  

 

To enrich for the presence of clonal populations, small biopsies have been the approach of 

choice in many studies. Dividing a tissue into evenly-sized small biopsies to limit the number 

of clones present was performed in the study of sun-exposed epithelium2. More recently, 

laser capture microdissection has been paired with an ultra-low input DNA library preparation 

method to make high quality sequencing libraries from as few as 100 cells3,5. This approach 

enables microdissection of specific histological structures such as colonic crypts or 

endometrial acini, which contain few cells but are highly clonal.  

 

While microbiopsies work well for easily dissected tissue types, other tissues such as blood or 

brain require different approaches. Haematopoietic stem cells have been successfully 

expanded into colonies in vitro, enabling study of mutational dynamics of the single clone 

while providing abundant genetic material to make sequencing libraries25,26. A similar idea is 

applied to single cell derived organoids, such as those used in the study of healthy bronchial 

epithelium organoids30. The replication machinery of the cell is less error-prone than whole 

genome amplification methods, and although mutations arise in vitro, they can be largely 

corrected by removal of those with low variant allele frequency. 

 

Ultimately, single cell genomic sequencing is the ideal solution for querying mutations in 

single cells within a mosaic population. While ongoing efforts are being made to optimize this 

technique, the drawback of the approach is the difficulty of whole genome amplification of 

DNA from a single cell, which is necessary to generate enough material to create a sequencing 

library. Commonly, a technique called multiple displacement amplification is used to amplify 

the genomic material from a single cell. However, this process generates many artefacts 

which are later difficult to distinguish from true mutations, and it also amplifies the genome 

unevenly leading to inadequate coverage of some regions65. To reduce these artefacts, some 

investigators have used in silico error correction methods to identify true variant calls in the 
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data. Lodato et al used a linkage-based approach to identify true variants in single neurons31, 

while Zhang et al paired an optimized DNA amplification protocol with a mutation caller that 

adjusts for local amplification bias44. While these implementations do reduce the burden of 

artefacts, further improvement is needed before single cell sequencing can become the gold 

standard method for somatic mutation detection in polyclonal cell populations. 

 

Finally, ultra-accurate sequencing methods enable detection of rare somatic variants with 

high certainty. The duplex sequencing method labels both strands of a DNA molecule with a 

unique barcode, allowing the sequences of the two strands to be sequenced separately and 

then compared in the resulting data66. A true mutation will be present on both the 5’ and the 

3’ strand, while artefacts resulting from PCR amplification will presumably only be present on 

one strand, allowing for distinction of true variants. However, the probability of both strands 

being amplified, sequenced, and represented in the downstream data is low and requires a 

significant amount of sequencing depth for a given genomic region. Therefore, the efficiency 

of this approach is low and its application is limited to small genomic targets67. A related 

method called BotSeqS (bottleneck sequencing system) aims to reduce this difficulty by 

introducing a simple dilution step of the barcoded library prior to PCR amplification68, which 

produces a random sampling of template molecules while increasing the likelihood of 

retrieval of the 5’ and 3’ sequences from each of them. This results in a set of high-confidence 

variant calls, but it can only be used to survey the mutational landscape rather than to 

thoroughly assess the mutations present in a given genomic region. 

 

For the genomic profiling of lymphocytes and glandular epithelium from primary Sjögren’s 

syndrome patient biopsies discussed in this thesis, we enriched for clonal populations by laser 

capture microdissection and by fluorescence activated cell sorting (described in Methods 

section).  

 

II. AUTOIMMUNE DISEASE 

Autoimmune diseases are a diverse set of disorders ranging from mild to life-threatening that 

occur when the immune system attacks the host’s own tissues. Collectively, they affect about 
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5% of the population6 and are the third most common cause of morbidity after cancer and 

heart disease in the West69. Despite numerous interrogations into the pathophysiology, the 

mechanisms by which immune tolerance is lost and autoimmunity develops remain obscure. 

It has long been hypothesized that autoimmune diseases occur as a combination of genetic 

predisposition and environmental triggers such as infection, though this has not been proven. 

Genome-wise association studies (GWAS) have identified variants associated with 

autoimmune diseases, most prominently in the HLA locus, but also in other genes converging 

on key immune system pathways70. They have identified overlapping patterns of inheritance 

associated with distinct clusters of autoimmune disease, but the inherited landscape has been 

described as distinctly polygenic, with individual variants contributing low odds ratios70,71. 

Therefore, with the exception of certain rare early-onset disorders for which there is a 

monogenic cause72, the heredity of most common autoimmune diseases remains complex 

and difficult to translate into a functional understanding of pathophysiology. Therefore, in 

this thesis I examine the that hypothesis that, in addition to the effect of predisposing 

inherited variants, somatic mutations may play an important role in the pathogenesis of 

autoimmune disease.  

 

An important feature of many autoimmune diseases that is not well understood is the 

distinctly higher prevalence in women. Differences in sex hormones and expression of genes 

from the X chromosome have been suspected73, but still no definitive explanation exists. 

Additionally, many autoimmune diseases confer an increased risk of lymphoma 

development74–76. It is suspected that lymphocytes, the primary cells driving autoimmune 

pathology, accumulate somatic mutations over the course of the disease and are the ones to 

develop into malignancy. Primary Sjögren’s syndrome is the autoimmune disease we have 

chosen for investigating the somatic mutation hypothesis due to its high predisposition to 

lymphoma and pronounced female predominance, in addition to the availability of tissue 

biopsies. The overview below will outline the current understanding of the aetiology of 

primary Sjögren’s syndrome to contextualize the aims of this thesis.  
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II.1 Primary Sjögren’s syndrome: overview 

Primary Sjögren’s syndrome (PSS) is a chronic, systemic autoimmune disease that is 

characterized by immune-mediated destruction of exocrine glands, also known as 

autoimmune epithelitis. It manifests with hallmark “sicca symptoms”, i.e. severe dryness of 

the eyes and mouth known as keratoconjunctivitis sicca and xerostomia. The implications of 

oral and ocular dryness include difficulty swallowing and susceptibility to infections and tooth 

cavities77. Dryness, joint pain, and fatigue, which can be debilitating, are a characteristic 

clinical triad present in around 80% of PSS patients78. Systemic complications are observed in 

30-40% of patients and include peripheral neuropathy, kidney disease, vasculitis, and lung 

disease78,79. Primary Sjögren’s syndrome is defined as occurring on its own, whereas 

secondary Sjögren’s syndrome co-occurs with another autoimmune disorder, such as 

rheumatoid arthritis or systemic lupus erythematosus77.  PSS has a peak incidence around 50 

years of age and occurs with a highly skewed sex ratio of 9:1 in women versus men75. It is one 

of the most common systemic autoimmune diseases, second only to rheumatoid arthritis, 

with a population prevalence of around 0.5%74,76. PSS confers the highest risk of lymphoma 

among the common autoimmune diseases, constituting a 44-fold increased risk80 or 5-10% 

lifetime chance of developing the malignancy74,81. The lymphomas are mainly marginal zone 

B-cell non-Hodgkin lymphomas occurring in the mucosa-associated lymphoid tissues (MALT 

lymphoma), most often in the major salivary glands80. 

 

While there is no cure, treatment for PSS includes alleviation of sicca symptoms, and in more 

advanced cases, immunosuppressive therapy. Biological therapies targeting B cell activity and 

other inflammatory pathways are under investigation in clinical trials. 

 

II.2 Diagnosis of primary Sjögren’s syndrome 

Diagnostic criteria for PSS include clinical confirmation of sicca symptoms, serological testing 

for systemic autoimmunity, and histopathologic evidence of lymphocytic infiltration in labial 

salivary glands. Diagnosis does not require all the criteria to be fulfilled; presence of clinical 

symptoms paired with significant autoantibody findings in the blood may be sufficient for 

diagnosis, obviating the need for minor salivary gland biopsy82. PSS is a seropositive 
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autoimmune disease, commonly occurring with characteristic autoantibodies in the blood, 

including antibodies to Ro/SSA and La/SSB antigen (present in 60-80% of patients), as well as 

rheumatoid factor and antinuclear antibodies. In the absence of a strongly positive antibody 

test, patients with suspected PSS frequently undergo biopsies of the minor (labial) salivary 

glands for histopathologic analysis to determine the presence of lymphocytic infiltrates. The 

degree of infiltration is assigned a focus score by the number of lymphocytic foci (dense 

aggregates of lymphocytes) per 4 mm2 of tissue, each of which is defined as 50 or more 

mononuclear lymphoid cells adjacent to normal-appearing mucous acini. The histopathologic 

criterion for a positive biopsy is a focus score ≥1, termed focal lymphocytic sialadenitis82. 

Minor salivary gland biopsies from PSS patients also show progressive atrophy and 

destruction of glandular acini, fibrosis, and duct dilation. 

 

II.3 Association studies: genes and epigenomes 

The last decade has seen many insightful findings contributing to the understanding of PSS. 

Genome-wide association studies (GWAS) have identified several key pathways, most notably 

in the HLA region (HLA-DQB1, HLA-DRA, and HLA-DQA1)83. Multiple independent studies have 

highlighted associations of PSS with polymorphisms in the immune regulating genes IRF5, 

STAT4, and TNFAIP384,85. Furthermore, loci in other immune-relevant genes such as BLK, 

IL12A, CXCR5, TNIP1, PRDM1, GTF2I, KLRG1, SH2D2a, and NFAT583 have been identified. BLK 

mediates activation of B cells through the B cell receptor; PRDM1 promotes plasma cell 

differentiation; HLA/MHC implies antigen-presentation and T cell involvement, and TNFAIP3 

is critical for control of the NF-kB signalling pathway which is activated in multiple immune 

cell types. Additionally, genome-wide methylation studies have found interferon-regulated 

genes to be hypomethylated in PSS, which correlated with their increased gene expression in 

B cells86. Other genes identified by GWAS were commonly affected by hypomethylation as 

well. Recently, miRNAs have come into focus as being associated with PSS, especially miR-

30b-5p87, which has been found to have a role in stimulating B cells through the B cell 

activating factor (BAFF). 
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II.4 B cells and plasma cells in PSS 

B cells have long been considered key players in autoimmune disease. They have several roles 

including the production of cytokines, antigen presentation, and secretion of autoantibodies. 

Autoantibody production is a characteristic feature of PSS, similarly to rheumatoid arthritis 

(RA) and systemic lupus erythematosus (SLE). PSS patients also tend to have higher counts of 

plasmablasts and immunoglobulins in peripheral blood (even though lower total lymphocyte 

counts are common)78, suggesting a role for antibody production in disease. For this reason, 

much attention has been focused on B cells and CD4 helper T cells as mediators of the 

autoantigen-driven humoral immune response. Additionally, there are indications of T 

independent B cell activation, as demonstrated by the increased presence of marginal zone 

type B cells in blood and salivary glands of PSS patients88. Lymphomas arising as a 

complication of PSS in salivary glands are often of the marginal zone type89, underscoring the 

importance of this B cell subset. In addition to infiltration of B cells and plasma cells, elevated 

expression of the B cell attracting chemokine CXCL13 is also observed in PSS minor salivary 

gland tissue90. 

 

In PSS, the two most commonly found autoantibodies target the ubiquitous 

ribonucleoproteins Ro/SSA and LA/SSB (Sjögren's-syndrome-related antigens A and B). A 

shared, or “public,” clonotypic autoantibody against Ro/SSA has been identified in the serum 

of several patients with PSS, consisting of an IGHV3-23 immunoglobulin heavy chain paired 

with a Vk3-20 light chain91. A longitudinal study of this clonotype in patients showed that it is 

constantly replenished by new clonal variants, suggesting sustained, cyclic B cell activation 

rather than production of autoantibodies by long-lived plasma cells activated at the onset of 

disease92. However, a direct functional role for these autoantibodies in the pathogenesis of 

PSS has not been established. It is thought they may contribute to disease indirectly through 

the formation of immune complexes. The presence of immune complexes can stimulate the 

production of interferons, which in turn additionally stimulate B cells, resulting in a sustained 

feedback loop of immune activation74. 

 

Another common autoantibody in PSS is rheumatoid factor (RF), which was originally 

discovered in rheumatoid arthritis93. It is reactive against the Fc portion of IgG 
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immunoglobulins. Production of RF by marginal zone B cells bearing RF surface Ig is stimulated 

by the presence of immune complexes94. RF is pathogenic in cryoglobulinemia that can 

develop as a complication of Sjögren’s syndrome, where it forms a crystallizable immune 

complex that precipitates in tissues at low temperature, often resulting in vasculitis or kidney 

disease95. There are two known public idiotypes of RF, with the “Wa” idiotype (IGHV1-

69/IGHJ4 heavy chain paired with a IGKV3-20) being more common than the “Po” idiotype 

(IGHV3-7/IGHJ3 and light chain IGKV3-15)96,97. The presence of RF factor has been associated 

with higher PSS disease activity and increased risk of lymphoma98, and it is thought that RF-

positive B cells are frequently the ones to undergo lymphomatous transformation99. 

 

Salivary glands are thought to be a site of significant antibody production in PSS74. The 

infiltration of salivary glands by B cells and plasma cells increases with the progression of 

disease, and in about 25% of PSS biopsies, ectopic germinal centre-like structures are found 

in the glands90,100. These structures are characterized by lymphoid organization into a dark 

zone and a light zone, along with a follicular dendritic cell network supportive separation into 

B and T enriched areas and T-B cell interactions  conducive to the processes of antigen-driven 

somatic hypermutation, receptor editing, and isotype-switching. Some studies have 

associated the presence of germinal centre-like structures with more advanced disease, 

higher autoantibody production, and higher risk of lymphoma81. 

 

BAFF is a crucial cytokine that promotes proliferation and differentiation of B cells and has 

been repeatedly associated with PSS74. Increased levels of BAFF are found in PSS patient 

serum and salivary gland biopsies101, and higher serum BAFF levels correlate with higher levels 

of autoantibodies102. Additionally, transgenic mice that overexpress BAFF develop 

autoimmune disease with sialadenitis (inflammation of salivary glands) and are predisposed 

to lymphoma103. BAFF is characteristically produced by myeloid cells in response to type I and 

type II interferons (IFNs). However, it can also be produced by other cell types including 

infiltrating lymphocytes and salivary epithelial cells101, the latter suggesting involvement of 

the affected tissue in promoting an aberrant immune response. Further evidence of B cell 

involvement is suggested by elevated levels of additional B cell activating cytokines in serum 

or salivary glands of PSS patients, such as IL-14, IL-21, and others74. 
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Despite much optimism about treatment of PSS by B cell depletion with rituximab, a 

monoclonal antibody targeting the CD20 B cell surface marker, the therapeutic effects 

observed in clinical trials were disappointing104,105. Reasons for this are complex and likely due 

to the involvement of multiple different cell types, including pathogenic plasma cells lacking 

CD20, which are not targeted by the drug. Future clinical trials may focus on administration 

of B cell-targeting therapies earlier in the course of disease, as well as in combination with 

therapeutics targeting other cell types and pathways. 

 

II.5 Interferons and the innate immune response 

Importantly, an ‘interferon signature’ has been observed in peripheral blood and minor 

salivary glands of PSS patients106. Biochemical and transcriptomic studies have characterized 

the presence of type I and type II IFNs in blood107 and tissue108,109, and cells that produce type 

I IFN (IFN-α) have been detected in salivary gland biopsies110. Elevated levels of interferon 

indicate activation of the innate immune system, which can in turn incite an adaptive immune 

response. The physiological role of interferons is primarily in the defence against viral 

infection. IFN-α can be produced by a virally infected cell to protect surrounding cells in a 

paracrine manner, or it can be produced in large quantities by plasmacytoid dendritic cells 

(PDCs) which detect microbial nucleic acids and activate Toll-like receptor (TLR) signalling to 

produce IFN-α. PDCs have been detected in minor salivary glands of PSS patients110, as well in 

affected tissues of other autoimmune diseases106.  

 

Interferons can induce the production of chemokines, which recruit immune cells to the site 

of inflammation. They can also activate dendritic cells, T cells, and B cells and thereby initiate 

an adaptive immune response. Type I and type II IFNs have been shown to promote the 

production of B-cell stimulating cytokine (BAFF), which is why BAFF is considered to be an 

important link between the innate and adaptive immune response78,94. Interestingly, it has 

been observed that individuals given IFN-α for the treatment of viral infection or cancer 

frequently develop autoantibodies and sometimes distinct autoimmune disease111, which is 

another line of evidence pointing to the role of the interferon system in the loss of immune 

tolerance. 
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II.6 Quantitative immunophenotyping: identifying key cell types in PSS 

In a recent immunophenotyping study, Mingueneau et al used cytometry by time-of-flight to 

profile immune cell populations in paired blood and minor salivary gland biopsies of PSS 

patients112. This approach was more quantitative and unbiased than previous studies using 

histology and immunohistochemistry (IHC) to study cell types in affected tissue. The 

conclusions were two-fold: a blood cell-type signature associated with PSS, and a description 

of predominant cells types in tissue that correlate with disease activity. In the blood, total 

numbers of CD4 T cells, memory B cells, and plasmacytoid dendritic cells were decreased, 

while the numbers of activated HLA-DR+ CD4, activated HLA-DR+ CD8 cells, and total 

plasmablasts were increased in PSS patients (markedly in those with anti-SSA antibodies) as 

compared to non-PSS controls. Analysis of PSS minor salivary gland biopsies revealed that 

most infiltrating cells are CD3 T cells, which are present in non-PSS glands as well but at much 

lower abundance. The infiltrating T cells comprised both the CD4 and CD8 subtypes, but only 

the CD8 compartment had a significant number of HLA-DR+ activated T cells. This suggests 

that perhaps cytotoxic CD8 T cells have a more prominent role in disease than previously 

appreciated and require further investigation. Patient biopsies also had significantly elevated 

levels of fully differentiated plasma cells. Additionally, the salivary epithelial cells of PSS 

patients upregulated HLA-DR in comparison to non-PSS control epithelium, indicating a 

possible antigen presenting role of these cells. 

 

II.7 Salivary epithelium, microbial defence, and hormones 

Epithelial cells that form acini and ducts of the salivary glands are targets of the autoimmune 

response, but they are also emerging as active participants in the immunopathology. The 

epithelium is a first line of defence against microbial pathogens and as such has to carefully 

balance the induction of a sufficient immune response in the event of pathogen invasion 

without inducing excessive cytotoxicity that would significantly damage the tissue. If this 

balance is perturbed, it is plausible that immune autoreactivity could develop as a 

consequence. Indeed, salivary epithelial cells proximal to heavy immune infiltration in PSS 

have been shown to express high levels of molecules involved in immune stimulation and 

recruitment. Studies using in-situ expression and long-term cultured PSS salivary gland 
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epithelial cells have shown constitutive upregulation of MHC class I and II molecules, 

costimulatory molecules involved in T cell activation, BAFF, Toll-like receptors (TLR-3, TLR-7, 

TLR-9), proinflammatory cytokines (IL-1, IL-6, TNFα, and other), and various chemokines 

(CCL3, CXCL13, CXCL-9, and others)90,113. These findings suggest that the perpetual abundance 

of cytokines observed in salivary glands of PSS patients comes in part from the epithelium 

itself, which is likely an active participant, not a passive target, in the process of constitutive 

antigen presentation and immune activation.  

 

Elevated levels of Toll-like receptors in the salivary glands of patients point to activation of 

the innate immune system. In particular, constitutive expression of TLR3 is markedly 

increased in PSS salivary gland epithelial cells113,114. The primary role of TLR3 is response to 

viral infection by detection of viral dsRNA molecules, which leads to activation of the innate 

immune response and type I IFN production. In the NZB/W F1 mouse model of lupus, TLR3 

stimulation has been shown to promote accelerated sialadenitis115, suggesting a possible 

viral-driven, TLR3-mediated route for initiation of autoimmunity. This complements a long-

standing theory regarding the pathogenesis of PSS, which suspects viral infection as a trigger 

for disease. Much attention has been focused on Epstein-Barr virus (EBV) as a likely candidate, 

which has been demonstrated to promote the release of Ro/SSA and La/SSB ribonuclear 

proteins, the targets of canonical autoantibodies in PSS, by apoptosis of epithelial cells74,116. 

EBV small RNA can also form complexes with La/SSB that lead to interferon production 

through TLR3 activation109. Though these findings point to the involvement of EBV as a viral 

trigger, no causal link to PSS has ever been proven.  

 

Multiple studies have tested the association of PSS with other viruses as well, including 

cytomegalovirus, hepatitis C, and Coxsackie A virus, to name a few, but none of the candidates 

held up to replication and validation67. The difficultly may lie in the inability to detect the virus 

causing initial infection by the time PSS has reached a clinical course. Evidence for this is 

perhaps in the infection of Fas-deficient LPR mice, which have lupus-like autoimmunity but 

not salivary gland involvement, with cytomegalovirus (CMV). The mice developed sialadenitis 

three months after CMV infection, but the virus was no longer detectable by that point117. 

Alternatively, it is plausible that the trigger for PSS is the activation of endogenous 
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retroviruses rather than an exogenous pathogen118. This possibility deserves further 

examination, as it could be an overlooked stimulus for innate immune activation.  

 

The stark female preponderance of PSS is poorly understood. Given the average age of onset 

at 40-50 years, hormonal factors that change significantly during menopause could play a role. 

Since salivary epithelial cells express oestrogen receptors, the functional responsiveness to 

oestradiol was assessed in cultured salivary gland epithelial cells from PSS patients and 

controls119. The study found that pre-treatment of normal epithelial cells with 17-beta-

oestradiol impeded the downstream effects of IFN-γ, namely the upregulation of CD54, and 

that this functionality was significantly reduced in PSS epithelial cells, where IFN-γ signalling 

remained unimpeded. It therefore seems that in this context, oestrogen has an anti-

inflammatory role in the normal salivary gland. In a separate study, female wildtype mice after 

ovariectomy began to show apoptosis of salivary gland epithelial cells with lymphocytic 

infiltration similar to that in Sjögren’s syndrome120, suggesting a role of oestrogen in the 

maintenance of normal salivary gland function and a link to autoimmune disease.  

 

II.8 Clonal evolution and B cell lymphomas complicating Primary Sjögren’s 

syndrome 

The most serious complication of PSS is lymphoma. Most of the lymphomas associated with 

PSS are non-Hodgkin B cell lymphomas that develop in salivary glands (MALT lymphoma), 

which are usually indolent and low-grade but sometimes transition into more fulminant 

diffuse large B-cell lymphoma (DLBCL)89. Clinical and biochemical predictors of lymphoma in 

PSS patients include salivary gland swelling, lymphadenopathy, lymphocytopenia (usually of 

CD4 T cells), low complement levels, cryoglobulinemia, monoclonal gammopathy or 

paraprotein, and others89. It is suspected that lymphoma develops as a consequence of 

constitutive immune stimulation with autoantigens in salivary glands, in the very same B cells 

that are the effectors of the autoimmune response. In other words, it is likely that the 

autoimmune B cell that is constantly activated gains oncogenic mutations that allow it to 

escape from proliferative control.  
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Lymphomas are largely of marginal zone (MZ) B cell origin, which means that maturation of 

these B cells occurs independently of T cell help and outside of a germinal centre. Rheumatoid 

factor-producing B cells are often the MZ type, producing IgM antibodies in response to 

immune complexes presumably formed from other autoantibodies such as anti-Ro/SSA and 

anti-La/SSB, which are produced through antigen-driven B cell selection and T cell help94. The 

idea that RF+ B cells are the ones that transition to lymphoma is corroborated by evidence of 

rheumatoid factor-positivity in a large proportion of MALT lymphomas in PSS99. Autoreactivity 

of lymphomas to Ro/SSA or La/SSB has not been observed. 

 

The most strongly associated gene with PSS-related lymphomas is TNFAIP3, which encodes 

for the TNFAIP3 (A20) protein, a key regulator of NF-kB activation downstream of TNF-family 

receptors. The NF-kB pathway is central to the activation of B cells121 and other immune cell 

types, and germline mutations in TNFAIP3 are associated with several autoimmune and 

inflammatory diseases122,123. TNFAIP3 has been associated with PSS by GWAS studies83, and 

salivary glands from PSS patients were found to have lower levels of A20 and correspondingly 

higher NF-kB activity, compared to controls124. Importantly, TNFAIP3 mutations are 

commonly seen in MALT lymphoma, and in a recent study 77% of PSS-associated lymphomas 

analysed had either germline or somatic mutations in TNFAIP3 predicted to be functionally 

deleterious125. 

 

It is speculated that the evolution of the B cell response in salivary glands begins with a 

polyclonal infiltration, which over time may become increasingly monoclonal as antigen-

specific B cells are selected to proliferate88. The line between monoclonal B cell infiltration 

and lymphoma is a blurry one, as it can be difficult to differentiate a benign 

lymphoproliferative lesion from low-grade lymphoma. Therefore, this process could be 

viewed as a spectrum of B cell progression: from polyclonal, to monoclonal, to 

lymphomatous.  

 

II.9 Disease pathogenesis: hypotheses and future directions 

A proposed hypothesis of disease aetiology in PSS suggested by current knowledge is as 

follows. The initial stimulus for disease in a predisposed individual is likely to be a viral 
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infection, which induces the production of interferons and apoptosis of glandular epithelial 

cells leading to expulsion of autoantigens such as Ro/SSA and La/SSB. Interferons activate the 

adaptive immune response, which includes the production of antibodies against the released 

autoantigens and their formation into immune complexes that further perpetuate immune 

activation. Due to the constitutive presence of self-antigens, and perhaps a genetic 

background and hormonal environment that enhance immune function, the immune 

response continues to be perpetuated. What is initially a polyclonal B cell infiltration into 

salivary glands becomes a more evolved immune response favouring antigen-selected B cells, 

in some cases by germinal centre-like affinity maturation, leading to a more monoclonal 

population of cells over time. On this background of chronic stimulation and selection, it is 

likely that lymphomatous transformation occurs upon mutation accumulation and immune 

checkpoint dysfunction in the constitutively activated autoimmune B cells.  

 

Although clinical, molecular, and in vivo studies have yielded ample valuable insights, there 

remain many unknowns in the proposed PSS pathogenesis model. The presence of antibodies 

against Ro/SSA and La/SSB are a hallmark of PSS, yet a direct role for antibodies in disease 

pathogenesis has not been proven. It is unknown why autoantigens that are present in all 

cells are associated with tissue-specific autoimmunity. A viral trigger for disease, though 

heavily speculated, has not been proven. There has been interest in the effects of oestrogen 

on the immune system and on exocrine glands, yet its role remains complex and elusive. 

Understanding of the immune cell types involved in pathogenesis is rapidly evolving with new 

technology. It is increasingly appreciated that the affected tissue is a complex glandular milieu 

where various cell types of the innate and adaptive immune system interact, and further 

studies are needed to understand their contributions. GWAS studies have highlighted some 

immune pathways, however genetic predisposition has been difficult to pinpoint and most 

instances of PSS remain seemingly sporadic and late-onset (around middle-age)78. 

 

It is this latter concept that we sought to explore through the work described in this thesis. 

Given a seemingly sporadic midlife onset in (mainly female) individuals with little evidence of 

heredity, can this phenomenon be, at least to some extent, attributable to stochastic 

mutational processes that lead to the breakdown of immune tolerance? Early evidence in 
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favour of this hypothesis from recent studies of somatic mutations in related autoimmune 

disorders is described below.  

 

II.10 Somatic mutations in autoimmune disease  

The concept of this thesis, i.e. the examination of somatic mutations as a contributor to 

primary Sjögren’s syndrome, is situated in a wider context of emerging interest in the role of 

somatic mutations in health and disease outside of cancer. As an exploration into chronic 

immune disorders, several groups have made promising early findings of somatic mutations 

and clonal expansions in autoimmune and inflammatory diseases. 

 

A study by Savola et al in 2016 investigated T cells in the peripheral blood of newly diagnosed 

rheumatoid arthritis (RA) patients and detected somatic mutations and distinct clonal 

expansions126. By flow cytometry-based T cell receptor (TCR) assessment, it was apparent that 

CD8 T cells were more clonal than CD4 T cells, in the blood of both patients and controls, with 

patient clones tending to be larger and increasing with age. In 5 out 25 patients, somatic 

mutations were detected in CD8 clones, but none were found in CD4 clones. The mutated 

genes included SLAMF6 and IRF5, which have been previously associated with autoimmune 

disease, as well as several proliferation-associated genes. Transcriptomic profiling by RNA 

sequencing showed that the mutated clones upregulated cellular proliferation pathways, 

indicating activation of these cells. This study not only demonstrates the presence of CD8+ T 

cell clonal expansions associated with somatic mutations which may promote cellular survival 

and/or proliferation, but also highlights a possibly important and overlooked role of CD8 T 

cells in autoimmune disease, which warrants further investigation. 

 

Recently, an investigation of rheumatoid factor-producing cells by Singh et al discovered 

lymphoma-associated somatic mutations in these autoimmune B cell clones127. The study 

followed four patients with Sjögren’s syndrome who developed mixed-type cryoglobulinemia 

as a complication. While the presence of RF is thought to often be benign, in mixed 

cryoglobulinemia it is directly pathogenic by formation of precipitable immune complexes. By 

autoantibody peptide sequencing, the investigators found that three of the patients had the 

public “Wa” idiotype of RF, which has been previously described and consists of IGHV1-
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69/IGHJ4 heavy chain paired with a IGKV3-20 light chain. The fourth patient had the less 

common “Po” idiotype consisting of IGHV3-7/IGHJ3 and light chain IGKV3-15. Memory B cells 

with these receptor rearrangements were enriched from peripheral blood and processed for 

single cell DNA and RNA sequencing. The findings revealed somatic mutations in lymphoma-

associated genes in all four patients, as well as V(D)J somatic mutations that showed evolution 

from benign RF-producing clones to those producing pathogenic RF, as shown in functional 

assays. The mutated genes included CARD11, TNFAIP3, and KLHL6. The significance of CARD11 

in autoimmunity has previously been suggested by a mouse study where gain-of-function 

mutations in CARD11, analogous to those seen in DLBCL lymphomas, were found to be a 

switch that allows autoreactive B cells to evade anergy and immune checkpoints, resulting in 

activation and proliferation128. TNFAIP3 loss-of-function mutations observed were similar to 

those found in lymphoma and disinhibited downstream NF-κB activation. The driver 

mutations mostly preceded V(D)J somatic mutations in B cells, and KLHL6 mutations were 

especially found to increase the accumulation of V(D)J mutations, suggesting a KLHL6 mutator 

phenotype and raising the possibility of regulation of somatic hypermutation by KLHL6127. 

 

The relevant and important findings of this study demonstrate a long-suspected connection 

between the pathogenesis of autoimmune disease and that of lymphoma, lending further 

credence to the somatic mutation hypothesis proposed in this thesis. Identification and 

purification of autoreactive lymphocyte clones is a key challenge that the authors were able 

to overcome by selecting B cells with public clonotypes and performing single cell genomic 

sequencing. However, identifying pathogenic B and T cells remains a challenge in many 

autoimmune disease contexts where disease-associated clonotypes are unknown or difficult 

to isolate. In this dissertation, we focus on resident lymphocytes in affected tissue as a 

potential reservoir enriched in pathogenic cells. 

 

That somatic mutations should be found more commonly in B cells than other immune cell 

types is suggested by evidence of off-target activity of the physiological hypermutation 

machinery, AID (activation induced cytidine deaminase). AID is activated as part of the 

germinal centre reaction in order to introduce variation to the B-cell receptor 

complementarity determining regions (CDRs), and in doing so creates B cells with higher 

affinity for binding antigen. However, this process has been demonstrated to promiscuously 



 28 

introduce mutations outside of the immunoglobulin locus, genome-wide129. These off-target 

AID mutations have been found in lymphoma-associated genes, and AID mutagenesis is 

associated with malignant transformation in B cells130. As previously mentioned, a specific 

mutational signature dominated by T>G transversions is ascribed to AID and has been 

observed in B-cell lymphomas as well as in non-malignant post-germinal centre B-cells44. 

 

Disease-relevant somatic mutations in autoimmune conditions needn’t be confined to 

immune cells. Recent studies have demonstrated somatic mutations in the IL-17 signalling 

pathway in colonic epithelial cells from inflammatory bowel disease (IBD) patients56–58. In this 

context, the expansion of mutated clones that are less sensitive to inflammatory stimuli 

suggests an adaptation that evolved under the selective pressure of inflammatory damage. A 

similar mechanism may be operative in the synovial microenvironment in rheumatoid 

arthritis (RA). A study in 1997 by Firestein et al first observed recurrent TP53 somatic 

mutations in RA synovial tissue131, a finding reproduced in subsequent years132, though not 

with less biased NGS methods. These mutations are thought to arise in an environment of 

inflammatory oxidative stress and induce a proliferative synovial phenotype with potentially 

bone-invasive properties characteristic of the joint damage observed clinically. Once 

established, the selective advantage and invasive properties of these mutated synoviocytes 

could allow them to propagate joint damage independently of inflammation. This hypothesis 

lends itself to other inflammatory diseases which may operate through a similar mechanism 

of clonal selection in affected tissue. If proven, the mechanistic scenarios proposed in the IBD 

and RA studies have the potential to transform our understanding and approach to treatment 

of inflammatory disorders. 
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Thesis aims 

Guided by current evidence of somatic mutation dynamics in normal tissue and chronic 

diseases, we sought to examine the somatic mutational landscape of immune cells and 

affected tissue in primary Sjögren’s syndrome. The main aims of this study that will be 

described in the three results chapters include:  

1. Examination of infiltrating lymphocytes in minor salivary glands to assess clonality and 

presence of lymphoma-associated driver mutations 

2. Transcriptomic profiling of infiltrating lymphocytes to examine population trends and 

correlations with somatic mutation findings 

3. Comparison of the genomic landscape of epithelial cells in minor salivary glands from 

PSS patients and non-PSS controls 
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Chapter 2: Methods 

Contributions 

The project described in this thesis was collaborative in nature. Here I provide an overview of 

the contributions of others and myself, which will be outlined further in the corresponding 

method descriptions to follow. 

 

The idea to do deep sequencing on sorted lymphocyte populations from minor salivary gland 

biopsies to look for somatic mutations was conceived by Matthew Collin and Peter Campbell. 

The design of a bait set targeting key lymphoma and immune system genes was done by Paul 

Milne, Anthony Fullam, Matthew Collin, and Peter Campbell. Fresh tissue and blood samples 

were obtained from the Newcastle University clinic, courtesy of Fai Ng. Snap frozen minor 

salivary gland tissue for laser capture microdissection was obtained from the Newcastle 

University biobank. All sample processing, flow cytometry, and cell sorting was performed by 

Paul Milne. Tissue sectioning was performed by Yvette Hooks at the Sanger Institute. Tissue 

staining, immunohistochemistry, and laser capture microdissection were performed by me. 

 

Library preparation was done by the Sanger Institute Core Pipelines, and standard alignment 

to the genome was done by the Sanger Institute Core Informatics team (with the exception 

of SmartSeq2 single cell data alignment, which I performed myself). Library preparation, 

sequencing, and alignment of 10X Genomics single cell RNA data was done at Newcastle 

University by Paul Milne, Jason Lam, and Anastasia Resteu. Whole genome and whole exome 

somatic variant calling were done through the Cancer, Ageing, and Somatic Mutation 

standard pipeline facilitated by the core bioinformatics team. Filtering to remove bovine DNA 

contamination was done by Kathryn Beale and Mark Emery in the core bioinformatics team, 

and myself. 

 

All other bioinformatic analyses were carried out by me, unless specified otherwise in the 

following text. Statistical models, scripts, and advice were generously provided by colleagues 

in the group to assist with analysis. In particular, a filter to remove artefacts specific to the 

low input library preparation protocol was written by Mathijs Sanders. A variant filtering 
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approach using binomial models was written by Tim Coorens, as was a sensitivity adjustment 

model for mutational burden. An algorithm to map mutations onto phylogenetic trees was 

written by Nick Williams. Filters for Shearwater variant calls and several plotting scripts were 

provided by Federico Abascal and Inigo Martincorena. A pipeline for processing and analysing 

single cell RNA sequencing data was provided by Raheleh Rahbari. 

 

Interpretation of findings and design of subsequent experiments was done by me, through 

discussion with my PhD supervisors, Peter Campbell and Richard Siegel, and our Newcastle 

University collaborators, Paul Milne and Matthew Collin. 

 

Sample management and coordination of sequencing was done by the Cancer, Ageing, and 

Somatic Mutation administrative and lab support teams, with special thanks to Laura O’Neill 

and James Hewinson.  

I. SAMPLES AND WET LAB METHODS 

I.1 Minor salivary gland biopsies and blood samples 

Minor salivary gland tissue was obtained from individuals undergoing biopsies based on 

suspicion of primary Sjögren’s syndrome (PSS) at the Newcastle University clinic. Upon biopsy, 

individuals were diagnosed with either PSS, early or possible PSS, or non-PSS sialadenitis. Part 

of each biopsy was used for diagnostic purposes and part was donated to our research 

endeavours, with approval from the UK Research Ethics Committee and written informed 

consent from patients. Fresh biopsies were obtained from 55 patients for DNA sequencing 

and 16 patients for single cell RNA sequencing. Additionally, 23 snap frozen biopsies were 

obtained from the Newcastle Biobank for laser capture microdissection. Matched peripheral 

blood samples were obtained from a subset of patients. The sex and age characteristics of the 

cohort matched the general demographics of PSS patients, who are predominantly female 

and middle-aged. All samples were obtained in collaboration with Matthew Collin and Fai Ng 

at Newcastle University. 
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I.2 Processing of tissue and blood 

To disaggregate minor salivary gland biopsies, an enzymatic digestion protocol was used by 

Paul Milne. The tissue was minced with a scalpel, then incubated with a 1:1000 dilution of 

collagenase (type 4, Worthington Biochemical Corp.) for 3 hours to digest. The disaggregated 

cell suspension was filtered (Sysmex CellTrics 100 μm filter) before the downstream 

application of cell sorting. 

 

Where matched peripheral blood was available, mononuclear cells were isolated by density 

gradient centrifugation (Lymphoprep, StemCell) before cell sorting. 

 

I.3 Isolating lymphocyte populations from minor salivary gland tissue 

Fluorescence activated cell sorting (FACS) of single cell suspensions from minor salivary gland 

biopsies was performed by Paul Milne. After extensive prior flow cytometry analysis of PSS 

minor salivary glands with numerous cell markers, a subset of the markers was selected for 

sorting the samples used for this project. The antibodies used to sort lymphocytes were 

against the following cell surface markers: CD45, CD3, CD19, CD4, CD8, CD38, and HLA-DRA. 

The lymphocyte subsets defined by these markers included the following: 

B cells: CD45+CD3-CD19+CD38- 

Plasmablasts: CD45+CD3-CD19+CD38+ 

Plasma cells: CD45+CD3-CD19-CD38hi 

CD4 T cells: CD45+CD3+CD19-CD4+ 

CD8 T cells: CD45+CD3+CD19-CD8+ 

Antigen-presenting cells: CD45+CD3-CD19-HLADRA+ 

 

Sorting was done on a BD FACSAria Fusion instrument, with up to 5,000 cells per lymphocyte 

subset sorted into tubes for the low-input DNA sequencing protocol. The cells were then 

centrifuged, sorting medium was aspirated, and cell pellets were directly resuspended in 

Arcturus PicoPure proteinase solution for cell lysis. Cells were incubated in lysis buffer for 3 

hours at 65C and 10 minutes at 75C, per manufacturer instructions. Cell lysates were then 

frozen and shipped to the Sanger Institute for library preparation and DNA sequencing. 
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For plate-based single cell RNA sequencing, cell sorting was done by FACS with the same 

antibodies used above, except the cells were sorted into single wells of a 96-well plate. Cells 

were sorted directly into a bespoke lysis buffer developed at the Sanger Institute single cell 

facility, which allows for the extraction of both DNA and RNA from the same cells and contains 

the internal ERCC gene control spike-in. A total of 50 plates from 10 minor salivary gland 

biopsies were sorted in this way. 

 

For droplet-based single cell RNA sequencing, CD45+ immune cells were enriched from the 

digested minor salivary gland biopsies by magnetic bead selection, prior to single cell library 

preparation with the 10X Genomics protocol.  

 

I.4 Histology and immunohistochemistry of minor salivary gland biopsies 

For the purposes of laser capture microdissection, 23 snap frozen biopsies of minor salivary 

gland tissue were obtained from Newcastle University, courtesy of Fai Ng and Paul Milne. The 

biopsies were fixed in PAXgene ethanol-based solution (PAXgene Tissue FIX, Qiagen; contains 

no formalin). The fixed tissue was paraffin-embedded and cut into 10μm thick sections by 

Yvette Hooks at the Sanger Institute. Tissue sections were mounted onto slides covered with 

a polyethylene naphthalate membrane (required for laser capture microdissection) and left 

to dry at room temperature overnight. 

 

To stain the tissue sections for morphological features, I used a standard haematoxylin and 

eosin protocol. Slides were sequentially immersed in xylene twice for 2 minutes, 100% 

ethanol twice for 1 minute, deionized water for 1 minute, Gill’s haematoxylin for 15 seconds, 

tap water twice for 20 seconds, eosin for 10 seconds, tap water for 15 seconds, 70% ethanol 

twice for 20 seconds, and neo-clear xylene substitute twice for 15 seconds. Once dry, slides 

were mounted with temporary cover slips for high resolution scanning, which was done on a 

Hamamatsu NanoZoomer S60 instrument. The temporary cover slip was removed before 

laser capture microdissection.  

 

To stain subsets of infiltrating immune cells with chromogens, I used a dual-stain 

immunohistochemistry approach (ImmPRESS Duet Double Staining HRP/AP Polymer Kit, 
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Vector Labs). Red and brown stains were used to identify lymphocyte markers on 10μm tissue 

sections mounted on polyethylene naphthalate membrane slides. Tissue sections were 

stained to highlight the following combinations of markers: CD4/CD8, CD8/CD20, and 

CD20/CD38. The Vector Labs ImmPRESS Duet protocol was followed, with some slight 

adaptations. The antigen retrieval step, which involves a high temperature incubation that 

would have negative downstream implications for sequencing, was omitted. Secondly, the 

ImmPRESS Duet DAB stain was replaced with a slightly less sensitive DAB stain from Vector 

Labs (SK-4100) to resolve the issue of non-specific background staining. Primary antibodies 

were incubated for 3 hours at room temperature. They were titrated to find the optimal 

dilutions, which were the following: 

 

CD4 (MA5-12259, ThermoFisher)  1:100 

CD8 (RM-9116-S0, ThermoFisher)   1:200 

CD20 (NCL-L-CD20-L26, Leica Biosystems) 1:200 

CD38 (ab108403, Abcam)   1:200 

 

After dual staining was complete, tissue sections were counterstained with diluted 

haematoxylin (Vector Labs) to visualize morphological structures. A temporary cover slip was 

appended, and slides were scanned at high resolution on a Hamamatsu NanoZoomer S60 

scanner. 

 

I.5 Laser capture microdissection 

Laser capture microdissection (LCM) was used to dissect small features from polyethylene 

naphthalate membrane slides with H&E and immunohistochemistry staining, using a Leica 

LMD7 instrument. Individual acini and ducts of the minor salivary gland were dissected from 

H&E stained sections of 10μm thickness. Acini and ducts are small structures that required Z-

stacking of cuts from multiple adjacent sections to achieve the goal of minimum ~100 cells 

per well, an approximate threshold of success for the low-input DNA library preparation 

protocol. Lymphocyte aggregates were dissected from immuno-stained sections to enrich 

populations of CD20 B cells, CD38 plasma cells, CD4 T cells, and CD8 T cells. 
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Individual cuts fell into wells of a 96-well plate; images were taken before and after each cut. 

The dry dissected samples were then resuspended in 20μl of Arcturus PicoPure lysis and 

incubated for 3 hours at 65C and 10 minutes at 75C, per manufacturer instructions. Cell 

lysates were frozen and stored for library preparation. 

 

I.6 Library preparation and sequencing 

A bespoke, low-input library preparation protocol for DNA sequencing, using as little as 100 

cells, was developed at the Sanger by Peter Ellis and team133,3,5. This protocol was used for all 

DNA sequencing, including sorted lymphocyte populations and samples obtained by laser 

capture microdissection, and was carried out by the Sanger Institute Core Pipelines team. 

Starting from cell lysates obtained by incubation with Arcturus PicoPure proteinase buffer 

(intended for low-input samples), downstream library preparation steps were carefully 

optimised to maximise yield. This involved digestion with restriction enzymes instead of 

acoustic shearing to fragment the genomic material, which has been shown to decrease loss 

of DNA133. Additionally, genomic DNA was not initially purified from cell lysates, instead DNA 

in the lysate was bound to magnetic beads and enzymatic fragmentation were carried out 

directly on the bead-DNA mixture to minimise loss133. Standard Illumina sequencing adapters 

were then ligated and PCR amplification was performed in a standard way. DNA quantification 

was done after library preparation, and depending on sufficient concentration of libraries, 

samples were taken forward for targeted gene pull-down by hybridization. The recommended 

minimum library concentration needed for pull-down was 10 ng/μl, while the recommended 

minimum library concentration for whole genome sequencing was 5 ng/μl to obtain 10-15X 

coverage.  

Paired-end 2x75bp sequencing of targeted DNA libraries was done on an Illumina HiSeq2000 

or HiSeq4000 instruments, with 8 samples per lane. Paired-end 2x150bp sequencing of whole 

genomes was done on Illumina HiSeq4000 or Illumina NovaSeq instruments, with a target 

depth of 30X per genome. 

 

For plate-based single cell RNA sequencing, library preparation was done from single cell 

lysates in bespoke buffer developed at the Sanger Institute Single Cell Facility for stabilization 

and dual extraction of RNA and DNA. This buffer contained ERCC synthetic spike-ins which 
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serve as internal gene controls. For the purposes of this project, we sequenced only the RNA 

of single cells, not DNA. Reverse transcription of mRNA was performed from single cell lysates 

using the Smart-Seq2 template-switching protocol that allows subsequent PCR amplification 

of full-length cDNA molecules134. Library preparation was then performed using the Nextera 

XT protocol (Illumina). Single cell processing from lysates and library preparation was done by 

the Sanger Institute Single Cell Facility. Paired end 2x75bp sequencing was performed on an 

Illumina HiSeq4000 with one half-plate per lane, or equivalent on Illumina NovaSeq.  

 

For droplet-based single cell RNA sequencing, the 10X Chromium 5’ Gene Expression with 

V(D)J enrichment protocol (10X Genomics) was used for library preparation of CD45+ sorted 

immune cells from minor salivary gland biopsies. This was done by Paul Milne and Jason Lam 

at Newcastle University. In brief, individual cells were combined with gel beads containing 

unique cellular barcodes and enzymes by a droplet-generating approach. The uniquely 

barcoded single cells underwent cDNA amplification. The cDNA libraries were split in two, 

with one half used for PCR-based V(D)J enrichment and subsequent library preparation, and 

the other half used for library preparation of 5’ enriched total transcripts. V(D)J and 5’ gene 

expression libraries were sequenced separately, on an Illumina NextSeq instrument, at 

Newcastle University.  

 

II. DRY LAB METHODS 

II.1 Design of a bait set for targeted sequencing 

A targeted gene panel was designed to include known lymphoma driver genes, immune 

regulatory and checkpoint genes, V(D)J regions, HLA loci, polymorphic sites, and microRNAs 

associated with primary Sjögren’s syndrome. This list of genes was curated from the literature 

by Matthew Collin, Paul Milne, Peter Campbell, and Anthony Fullam, and designed by Agilent 

SureDesign software (https://earray.chem.agilent.com/suredesign/). A pool of biotinylated 

probes for hybridization-based pull-down of these genes was made by Agilent Technologies. 

The full list of genes can be found in Appendix Table 1. 
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II.2 Alignment of sequencing data 

All DNA sequencing data, including whole genome, whole exome, and targeted sequencing 

was aligned to the NCBI build37 human genome by the Sanger Institute Core Informatics 

team, using the BWA mem algorithm135. Reads were inspected for quality and coverage. After 

processing data from bulk sorted lymphocyte samples, I discovered a large excess of somatic 

variants in some samples. By performing a BLAST (Basic Local Alignment Search Tool)136 query 

of reads harbouring multiple variants, it became apparent that the reads strongly aligned to 

bovine DNA sequences, suggesting contamination with genetic material from cow. The source 

of this contamination was traced back to the foetal bovine serum added to the buffer used 

for fluorescence-activated cell sorting. To remove this artefact, we implemented the Xenome 

algorithm, which is designed to remove xenograft contamination137. Xenome realigned all 

reads from a given sample to human and cow genomes and separated them into the 

categories “human”, “cow”, “ambiguous”, or “neither”. For downstream analysis, only reads 

aligning exclusively to the human genome (NCBI build37) were kept. The Xenome algorithm 

was run by Kathryn Beale and Mark Emery in the Cancer, Ageing, and Somatic Mutation core 

bioinformatics team. 

 

For in-depth quantification of sequencing depth and breadth (which refers to the fraction of 

regions covered at a given depth, for example 65% of a genome being covered at 15X), I used 

the Mosdepth tool138. For targeted sequencing and whole exome sequencing data, I used 

Mosdepth to calculate the average depth per bait-targeted region. For whole genome data, 

average depth was calculated across 1 kilobase regions of the genome.  

 

Single cell RNA sequencing data from the plate-based Smart-Seq2 platform was processed by 

me, after initial demultiplexing of samples by Sanger Institute Core Informatics. Fastq files 

were trimmed to remove adapter sequences using the Cutadapt algorithm139. Reads were 

then aligned to the NCBI build37 genome using splice-aware mapping with the STAR 

aligner140. A count matrix of reads per gene per cell was generated with the FeatureCounts 

tool141.  
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Single cell RNA sequencing data from the droplet-based 10X Genomics platform was initially 

processed at Newcastle University by Anastasia Resteu. Raw fastq files were demultiplexed 

and aligned to the NCBI build37 genome genome build in a splice-aware manner, and a count 

matrix was generated, both using the accompanying 10X software, CellRanger. V(D)J data was 

also analysed by CellRanger to identify the B and T cell repertoires of individual cells. 

 

II.3 Caveman single nucleotide substitution calling and filtering 

Calling of somatic single nucleotide substitutions in whole genome and whole exome 

sequencing data was performed using the Cancer Variants through Expectation Maximization 

(CaVEMan) algorithm142. Caveman uses an expectation maximization approach to call variants 

by comparing “tumour” (in this case, lymphocyte) and normal reads to a reference genome 

and calculating a probability of the genotype at each base, assuming given copy number for 

tumour and normal samples. To maximize sensitivity, major copy number was set to 5 and 

minor copy number set to 2, as this empirically generated the best results in normal (non-

cancerous) samples. The algorithm also integrates base quality, read position, and read 

orientation to calculate sequence error rates at each position. Caveman is part of the Cancer, 

Ageing, and Somatic Mutation standard variant calling pipeline and was run through an 

interface facilitated by the core bioinformatics team.  

 

For laser capture microdissection samples, Caveman variant calling was performed using a 

synthetic “normal” sample and subsequently removing germline variants shared by all 

samples from a given donor. For bulk sorted lymphocyte samples, Caveman was run against 

a matched fibroblast normal sample.  

 

To filter the variant calls from Caveman, firstly BWA mem mapping artefacts were removed 

by filtering the median alignment score (ASMD ≥ 140) and soft clipping score (CLMP=0, 

meaning fewer than half the reads are clipped). Secondly, all DNA samples in this project 

underwent library preparation using the bespoke low-input protocol, which uses an 

enzymatic fragmentation step (instead of acoustic sonication) to cut DNA into smaller 

fragments. This enzymatic digestion step was found to introduce a specific mutational 

artefact to the sequence data, which results from the processing of cruciform DNA structures 
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by the enzymatic digestion and manifests as an excess of variants in regions of inverted 

repeats capable of forming hairpin structures. To remove this artefact, Mathijs Sanders 

devised a filtering method based on proximity of the variant to the alignment start site and 

standard deviation or median absolute deviation of the variant position in the supporting 

read3,5, features that correlated strongly with presence of the artefact. Thirdly, because the 

enzymatic library preparation protocol produced shorter reads than standard sonication 

protocols, paired end reads sometimes overlapped and resulted in the same variant being 

counted twice. To overcome this, Mathijs’ filtering method calculated fragment-based 

statistics instead of read-based statistics (after marking PCR duplicates), and retained variants 

supported by at least 3 high quality fragments (alignment score ≥ 40 and base scores ≥ 30). 

Variants were annotated using ANNOVAR143. Variant allele frequencies were recalculated 

based on number of mutant and wildtype reads at each site, across all samples from a given 

donor, using a pile-up method developed at Sanger, vafCorrect 

(https://github.com/cancerit/vafCorrect). 

 

For Caveman variants from laser capture microdissection samples, which were called against 

an unmatched synthetic normal sample, additional filters were required to remove germline 

variants. A germline filter was devised by Tim Coorens, using an exact binomial model which 

classified variants as germline or somatic based on variant allele frequency across all samples 

from a given donor. An additional filter created by Tim removed false positive variants by a 

beta binomial over-dispersion model, which typically removed sequencing artefacts present 

at low frequency in a majority of samples in genomic regions prone to noise. 

 

II.4 Pindel insertion/deletion calling and filtering  

Calling of somatic small insertion and deletion events in whole genome and whole exome 

sequencing data was performed using the cgpPindel approach144. This entails detection of 

read pairs where one is mapped and the other is unmapped or a split read, then performing 

remapping of query reads to identify putative indel sites. Empirically derived post-processing 

filters are then applied, which include filters for strand bias, existence in normal sample, 

highly repetitive small repeats, and sufficient depth. Variants are annotated as passing or 

failing the respective filters. For laser capture microdissection samples, cgpPindel was called 
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against an unmatched normal, then subsequently filtered to remove germline variants, as 

done with Caveman calls. For bulk sorted samples, cgpPindel was run against matched 

fibroblast samples. cgpPindel is part of the Cancer, Ageing, and Somatic Mutation standard 

variant calling pipeline and was run through an interface facilitated by the core bioinformatics 

team. 

 

For subclonal samples with modest depth, such as many bulk sorted lymphocytes and some 

laser capture microdissection samples, one of the default cgpPindel filters proved too 

stringent. This filter, which requires at least 5 reads supporting each indel call, was found to 

remove many true somatic indels, and therefore calls failing this requirement were rescued.  

Through previous analyses of normal tissue, others in the group discovered that a significant 

proportion of indel calls passing the aforementioned filters were artefacts comprised of 1 

base pair indels in homopolymer regions of 10 or more bases. A filter to remove these indel 

calls was applied. 

 

To remove germline indel calls in laser capture microdissection samples which were run 

against an unmatched control, a similar approach to filtering single nucleotide substitutions 

was applied. To determine accurate variant allele frequencies in all samples from a given 

donor, vafCorrect (https://github.com/cancerit/vafCorrect) was used. An exact binomial 

model, developed by Tim Coorens, was then applied to classify indels as somatic or germline 

based on variant allele frequency of a site across all samples.  

 

II.5 Shearwater variant calling and filtering 

To call single nucleotide substitutions and small insertion/deletion events in targeted 

sequencing data from bulk sorted lymphocytes, the Shearwater algorithm was used145. 

Shearwater has a higher sensitivity for calling subclonal variants than Caveman and has been 

shown to perform well with targeted deep sequencing data2. The Shearwater algorithm uses 

a beta binomial model to compute local error rates from a panel of normal samples and prior 

knowledge, which are then used to derive the likelihoods of true variants in samples of 

interest. The Shearwater algorithm is based on the deepSNV R package 
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(https://github.com/im3sanger/deepSNV)145. Advise and scripts for running Shearwater were 

provided by Federico Abascal and Inigo Martincorena. 

 

To run Shearwater on targeted sequencing of bulk lymphocytes, I attempted two 

configurations. In the first, I used all biopsy-derived fibroblast samples as a bulk normal panel 

for calling mutations in tissue lymphocytes and blood lymphocytes. In the second, I used both 

fibroblasts and blood samples as the normal panel, calling mutations in only tissue 

lymphocytes. By comparing the mutations in tissue lymphocytes from the two approaches 

and visually inspecting variants using the JBrowse read viewer146, I found that the second 

approach yielded a more accurate list of variant calls, with fewer artefacts. The reason for this 

is that having a larger panel of normal samples provides a more robust local error model for 

calling variants. To ensure that I was not missing variants that might be present both in tissue 

and in blood lymphocytes from a donor, I called variants in blood samples separately, using 

only fibroblasts as the normal panel. The overlap of the variants in blood and tissue from a 

given donor almost entirely consisted of germline variants that were not properly removed 

when calling against the fibroblast normal panel. Therefore, I proceeded with the cleaner set 

of variants in tissue lymphocytes produced by calling against both fibroblasts and blood as 

the normal panel. 

 

BWA mem mapping artefacts were removed by filtering reads on their median alignment 

score (ASMD ≥ 140) and soft clipping score (CLMP=0, meaning fewer than half the reads are 

clipped), which was shown to remove erroneous variant calls. Each variant called by 

Shearwater also had an associated p-value based on the local error model; these p-value were 

adjusted by a Benjamini-Hochberg multiple testing correction, and only those with a 

corrected p-value < 0.05 were considered further. Additionally, variants were required to 

have one supporting read from each strand. A KDM6A variant that failed the adjusted p-value 

cut-off (likely due to having only two supporting reads) was rescued post-hoc as a likely real 

variant during manual inspection of the KDM6A gene, which I did after discovering truncating 

variants in this gene in other samples. Similarly, two synonymous variants in KDM6A were 

removed on manual inspection due to alignment of the reads to the cow genome; these reads 

constituted a small fraction that were missed by the Xenome algorithm used to filter bovine 

DNA contamination. Finally, some germline variants were carried through these filtering 
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steps, so an additional filter based on an exact binomial model was used to remove them (as 

described in section II.3 above, written by Tim Coorens). 

 

II.6 Detection of driver mutations and selection 

For discovery of cancer driver mutations, two approaches were used: manual annotation and 

selection analysis using a dN/dS approach. To be considered a cancer driver by manual 

annotation, coding variants were required to be found in multiple tumour samples in the 

COSMIC (Catalogue of Somatic Mutations in Cancer)147 database, have a high predicted 

deleteriousness by CADD score (Combined Annotation Dependent Depletion)148, and not be 

located at a common polymorphic site149; alternatively, any protein-truncating mutation 

(nonsense, frameshift, or essential splice) in a known tumour suppressor gene described in 

the literature was considered a likely driver.  

 

Selection of genes across a set of samples was inferred by the ratio of nonsynonymous to 

synonymous variants (dN/dS) using the dNdScv algorithm150 

(https://github.com/im3sanger/dndscv). The dNdScv method compares the observed ratio of 

nonsynonymous to synonymous variants to the expected ratio under no selection pressure, 

adjusting for local mutation rates and processes across coding regions. The algorithm 

calculates the likelihood of missense, nonsense, and essential splice variants compared to a 

neutral model, using trinucleotide mutation contexts to build a robust local mutation rate 

model. Positive selection of a gene is indicated by an excess of nonsynonymous variants, while 

negative selection (which is less common) is indicated by a higher proportion of synonymous 

variants. 

 

The dNdScv method was implemented for both targeted and whole genome datasets. In the 

targeted lymphocyte dataset, dNdScv was used to evaluate selection of only the genes 

sequenced. In the whole genome lymphocyte dataset, dNdScv was used to detect selection 

both genome-wide, across all coding genes, as well as restricted to the same genes sequenced 

in the lymphocyte targeted dataset. For the epithelial sample dataset, variants found by 

whole genome and whole exome sequencing were evaluated for selection across all coding 
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genes as well as restricted to a set of 892 known cancer genes curated from TCGA (The Cancer 

Genome Atlas)151, which can be found in Appendix Table 2. 

 

II.7 Analysis of mutational burden 

Genome-wide mutational burden is a metric that has been shown to vary across tissues2,5, 

with exposures10,30, and with disease state11,58. I used a linear mixed effects model to evaluate 

the effects of age, sex, and diagnosis on mutation burden in the genomes of salivary epithelial 

samples. 

 

The number of variants detected in a sample is dependent on the coverage and the clonality 

of the sample. A sample with low coverage and low clonality will miss many true somatic 

variants due to low sensitivity of detection. To adjust for the variability in coverage and 

clonality of samples in my dataset, I used an adjustment calculation devised by Tim Coorens. 

A sensitivity parameter for each sample was calculated based on its median variant allele 

frequency (VAF) and mean coverage. Given that the Caveman variant calling algorithm 

requires four reads to call a variant, the sensitivity is the probability of observing four or more 

mutant reads at a given VAF based on a Poisson-distributed coverage given the mean 

coverage. This was calculated using the Poisson distribution function in R, “rpois”, with 

100,000 iterations. The observed number of variants in a sample was divided by the sensitivity 

parameter for the sample to obtain an adjusted number of variants, which was used in the 

linear mixed effects model. 

 

The linear mixed effects model was used to evaluate effects of age, sex, and diagnosis on 

mutational burden, while accounting for interpatient variation (non-independent sampling 

per patient). Patient samples with missing metadata were omitted. The model was first 

constructed using all three variables, then sequentially dropping those variables determined 

not to have a significant effect, until only the significant variables remained. This was done 

using the “lmer” package in R. 
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II.8 Copy number and structural variant calling 

Somatic copy number alterations in whole genome data were called using the ASCAT 

algorithm (Allele-Specific Copy number Analysis of Tumours)152. ASCAT calls copy number 

changes in a tumour sample using a matched normal as a control and accounting for tumour 

aneuploidy and tumour purity (which refers to “contamination” of a tumour sample with 

normal tissue). For sorted lymphocyte samples, ASCAT was run using a matched fibroblast 

control. For epithelial samples, a matched lymphocyte control was used if available, otherwise 

a different epithelial sample was used. 

 

Additionally, the Battenberg algorithm153 was also used to profile genome-wide copy number 

changes. Battenberg is especially useful for detecting subclonal copy number changes, making 

it appropriate for our data. However, Battenberg failed in a number of samples due to low 

tumour purity and coverage.  

 

For targeted and whole exome sequencing data, CNVkit154 was used to detect copy number 

changes. CNVkit was run using a panel of normal fibroblast samples as a reference to evaluate 

changes in the sorted lymphocyte populations. For the whole exome epithelial samples, 

which did not have matched controls, copy number calling was done using a “flat” reference 

panel of neutral copy number for each target gene region. 

 

Structural variants in whole genome data were called against a matched normal, where 

available, using the BRASS (Breakpoints via Assembly) algorithm, developed at Sanger 

(https://github.com/cancerit/BRASS). 

 

II.9 V(D)J repertoire assembly 

For V(D)J assembly of T and B cell receptor sequences in whole genome, targeted sequencing, 

and single cell Smart-Seq2 RNA sequencing data, I used the MiXCR algorithm155. MiXCR has 

analysis modules specific to the input data type, allowing assembly from genomic and 

targeted DNA, bulk and single cell RNA, or PCR-enriched V(D)J sequences 

(https://mixcr.readthedocs.io/en/master/#). MiXCR reconstructs fragmented V(D)J 

sequences, assembles clonotypes, identifies productive rearrangements, detects mutations 
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in germline sequences, and corrects PCR errors. The number of unique rearrangements 

detected in bulk sorted lymphocyte populations correlated to the estimated oligoclonality 

observed by mutation detection, and the single clones observed in single cell RNA data 

validated the ability of the algorithm to detect an accurate number of rearrangements. 

 

T and B cell repertoires from 10X Genomics single cell RNA sequencing data were obtained 

using the accompanying 10X software, CellRanger.  

 

II.10 Phylogenetic tree construction 

Phylogenetic trees of single nucleotide substitutions called in laser capture microdissection 

samples were constructed using the MPBoot software156. MPBoot uses the maximum 

parsimony principle to compute branch support, with an adaptation allowing for ultrafast 

bootstrapping. To construct phylogenies, mutations from all samples in a given donor were 

re-genotyped by the VAFcorrect approach, as described in the Caveman filtering protocol. 

Variants with variant allele frequency (VAF) > 0.3 were denoted as present and annotated 

“1”, those with VAF < 0.1 were denoted as absent (“0”), and those in between 0.1 and 0.3 

were denoted as ambiguous; this excluded private subclonal variants from the tree building 

process. The input variants were bootstrapped 1,000 times to construct trees, and nodes with 

confidence less than 50 were collapsed into polytomies. This was conducted with advice and 

scripts from Tim Coorens and is similar to an approach used in previous work3. Branch lengths 

were determined by the number of assigned substitutions, through a script written by Nick 

Williams.  

 

II.11 Mutational signature extraction 

Mutational signatures are characteristic patterns of mutation created by different mutagens, 

which can be distinguished by their nucleotide patterns in DNA. The COSMIC40 database 

(Catalogue of Somatic Mutations in Cancer) defines multiple signatures of exposure and 

endogenous mutagens based on the mutation type and trinucleotide context, meaning the 

adjacent 5’ and 3’ bases, resulting in 96 mutational categories. 
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To identify the single nucleotide substitution signatures present in my dataset, mutational 

signature analysis was performed using a method based on the Hierarchical Dirichlet 

Process157 (https://github.com/nicolaroberts/hdp) to estimate underlying signatures and 

their contribution to a sample.  

 

This approach is a nonparametric Bayesian clustering method that does two things 

simultaneously. Starting with a matrix of counts per mutational category per sample, the 

algorithm groups mutations into clusters to define a library of signatures. Then, the 

probabilistic contribution of each signature to each sample is estimated.  

 

Samples are manually arranged into a hierarchy (e.g., grouped first by diagnosis, then donor, 

then cell type) such that samples within a group are assumed to be more similar to each other. 

An initial signature library is defined by randomly assigning mutational categories to each of 

a random number of signatures (clusters). The likelihood of these signature definitions is 

assessed by comparison to the observed mutational frequencies, taking into account 

similarities between samples as defined by the hierarchical structure, and updated iteratively 

through a set number of cycles. Contribution of each signature to each sample is determined 

by the resulting posterior distribution. 

  

The algorithm can identify de novo signatures as well as detect known signatures by 

incorporating known signatures’ mutation distributions as fake data nodes, which makes real 

data more likely to be drawn into a common cluster with them. For mutational signature 

analysis of my dataset, lymphocyte and epithelial samples were grouped by tissue, cell type, 

and diagnosis, and the signature extraction was run using 30 known signatures from the 

COSMIC database included as priors. The approach identified matches to the known 

signatures as well as de novo signatures.  

 

II.12 Detection of viral elements 

To detect viral nucleotide sequences in whole genome epithelial and lymphocyte samples, I 

used the GOTTCHA metagenome analysis tool158. GOTTCHA breaks up input unmapped and 

split fastq reads into smaller fragments and aligns them to a library of viral genomes. Unique 
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segments of viral genomes at several taxonomic levels, including strain, genus, and species, 

were used for classification of input reads. The output was filtered to remove low confidence 

hits and only keep those in human-tropic viruses, excluding bacteriophage viruses. 

 

II.13 Single cell RNA expression analysis  

Analysis of single cell RNA sequencing data, from both Smart-Seq2 and 10X Genomics 

platforms, was performed using the Seurat suite of tools in R159,160. Raheleh Rahbari provided 

scripts and advice for analysis. The input to the pipeline was a raw matrix of counts per gene 

per cell, generated by the FeatureCounts141 tool (as described in the Alignment section of this 

chapter).  

 

The counts matrix was initially filtered to exclude cells with fewer than 500 detected genes 

(“features”) and to exclude genes expressed by fewer than 5 cells. Meta data was added to 

the Seurat object, which included patient number, diagnosis, sex, age, and cell type (referring 

to phenotype data from fluorescence activated cell sorting, performed prior to Smart-Seq2 

library preparation). Further filtering was done based on number of total features detected, 

removing those with more than 10,000 in the full-length cDNA (Smart-Seq2) dataset to get 

rid of “doublets”, where two cells are sequenced instead of one. In the 10X Genomics dataset, 

which was comprised of shorter reads, fewer features were detected (as expected), and the 

threshold of maximum number of features was set to 2,500. Cells were then filtered based 

on mitochondrial content, removing those with more than 10% of reads derived from 

mitochondrial genes. A high proportion of mitochondrial gene expression indicates low 

quality, apoptosis, or cellular stress161.  

 

In the full-length cDNA dataset, the percentage of synthetic spike-in ERCC control genes was 

assessed as an additional cell quality metric. Normally, high ERCC content indicates low quality 

cells, however in this dataset it was discovered that an excess amount of ERCC spike-in was 

added during library preparation, resulting a high proportion of ERCC transcripts across many 

cells. To assess whether the high ERCC content obfuscated biological signal in the data, I 

performed principal component analysis (PCA) to determine the contribution of ERCC genes 

to variability in the dataset. It turned out that ERCC genes did not contribute greatly to the 
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main principal components. Downstream analysis demonstrated that it was possible to 

correctly identify cell types based on gene expression, as validated by the cell phenotype 

information from fluorescence-activated cell sorting. Therefore, sufficient biological 

transcripts were detectable, and it was possible to proceed with analysis despite the high 

proportion of ERCC reads. 

 

After quality control and filtering, read counts were normalized to 10,000 counts per cell and 

log-transformed. This meant that normalization was carried out by dividing the read counts 

per gene for each cell by the total number of reads for the cell and multiplying by a scaling 

factor of 10,000, after which the values were log-transformed. Highly variable genes were 

then identified by calculating average expression and dispersion of genes across the dataset. 

Next, counts were scaled and centred, and a linear transformation was applied to reduce the 

effects of unwanted variation, such as the ERCC content (only in the full-length cDNA dataset), 

with the goal of improving downstream dimensionality reduction and clustering162.  

 

After normalization and scaling of counts, linear dimensionality reduction was performed by 

principal component analysis. The statistical significance of principal components as 

contributors to variation was evaluated to select the number of components used in 

downstream steps. Non-linear dimensionality reduction, t-stochastic neighbour embedding 

(tSNE), was then performed using the identified principal components. tSNE projections were 

used for visualization of dataset variability and cell-to-cell relationships. To identify groups of 

similar cells, a graph-based clustering approach called shared nearest neighbour analysis 

(SNN)163 was used, which utilized the previously identified principal components to calculate 

distance between cells and define clusters. The number of identified clusters depended on 

the number of principal components used, as well as a resolution parameter. The resolution 

parameter was empirically set to 0.8 in the Smart-Seq2 dataset and 0.6 in the 10X dataset.  

 

After defining clusters, differential gene expression analysis was conducted to identify the cell 

types and phenotypic states of cells that occupy the clusters. A non-parametric Wilcoxon rank 

sum test was used to compare gene expression between clusters. The differentially expressed 

genes were then manually annotated to identify cell types by comparing marker genes and 

expression signatures to those found in the literature.  
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Chapter 3: DNA sequencing of lymphocytes from minor salivary 

gland biopsies 

With emerging data describing cancer-driver mutations existing in normal tissues and 

reshaping their landscapes, we hypothesized that somatic mutational processes might 

underlie chronic diseases as well. We chose to explore this hypothesis in primary Sjögren’s 

syndrome, an autoimmune disease characterized by middle-age onset and a high 

predisposition to lymphoma. This chapter describes my study of the somatic mutational 

landscape of tissue-infiltrating lymphocytes in primary Sjögren’s syndrome (PSS), in order to 

understand whether somatic mutations may play a role in this disease. 

 

The ideal experimental scenario for somatic mutation study in autoimmune disease would be 

to isolate and sequence lymphocyte clones that are known to be autoreactive and mediate 

the pathogenic immune response. However, this presents a significant technical challenge in 

PSS, most notably due to the lack of ability to define and isolate autoreactive cells. Such a feat 

may be possible in certain diseases where there exists a clearly identified antigen to which 

there is a monoclonal response, and there is a means of selecting the lymphocytes responsible 

for this response by the affinity of their B-cell or T-cell receptor. For example, in pemphigus 

vulgaris, antibodies target the cell junction protein desmoglein, which results in an 

autoantibody-mediated skin condition that causes loss of cell adhesion and painful 

blistering164. The B cells secreting these directly pathogenic autoantibodies have been 

identified and well characterized, and targeted CAR T-cell therapies are currently being 

developed for antigen-specific B cell depletion165. The situation is not nearly as clear in the 

case of many complex autoimmune diseases such as PSS, which have elusive molecular 

targets and multiple associated autoantibodies whose pathogenic roles remain dubious. This 

makes targeting autoreactive lymphocytes in PSS and related diseases more challenging. 

 

As discussed in Chapter 1, B cells producing the canonical rheumatoid factor autoantibody 

have recently been successfully extracted from blood samples of patients with 

cryoglobulinemic vasculitis in the context of Sjögren’s syndrome, in which rheumatoid factor 
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is proven to be directly pathogenic127. In less advanced disease, such as PSS without 

cryoglobulinemia, expanded clones producing pathogenic rheumatoid factor autoantibodies 

are less likely to be found in blood. Other autoantibodies associated with PSS, such as anti-Ro 

and anti-La, do not have a known pathogenic role in disease, and their B cell receptor 

sequences are less well defined 166. Since there is therefore not a clearly identifiable 

pathogenic lymphocyte clone that can be targeted and isolated in early PSS, we focused our 

attention on a disease-affected tissue as a potential reservoir of autoimmune cells. Activated 

B cells and plasma cells have been detected in minor salivary gland biopsies of PSS patients 

and associated with auto-antibody production and disease severity94,167. Germinal-centre like 

structures are found in a subset of patient salivary glands and correlate with disease severity 

as well81,100. Disease-affected salivary glands are most often the location of discovery of 

Sjögren’s syndrome-associated lymphomas, which are thought to develop from auto-reactive 

marginal zone B cells residing in the tissue94,168. Salivary glands are also infiltrated by a large 

number of T cells implicated in pathogenesis169. 

 

For these reasons, I undertook a genomic study of lymphocytes that invade minor salivary 

glands in PSS to investigate the presence of somatic mutations and their possible role in 

pathogenesis. To our knowledge, this is the first study to characterize somatic mutational 

dynamics and the genomic landscape of tissue-resident lymphocytes in autoimmune disease. 

STUDY AIMS 

The main aim of this study was employing targeted and whole genome DNA sequencing to 

survey the mutational dynamics of tissue-infiltrating lymphocytes. The specific questions we 

hoped to answer include the following: 

 

1. Are there somatic mutations present in lymphoma-associated genes, cell-cycle 

regulating genes, and immune-related genes in tissue-infiltrating lymphocytes?  

 

I investigated the presence of somatic mutational events that may contribute to the 

fitness and loss of immune tolerance of a lymphocyte clone, and/or set it on the path 

to lymphoma transformation. While the association of salivary gland B cell lymphoma 
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and PSS has been firmly established, the hypothesis of somatic mutations as a primary 

cause of the autoimmune pathology has not been investigated. Whether potential 

somatic mutations in lymphocytes are the cause of immune dysfunction or whether 

they are secondary to it are not mutually exclusive scenarios. Demonstrating the 

presence of somatic mutations in lymphocytes would be a pivotal first step towards a 

novel avenue of inquiry of autoimmunity in PSS. 

 

2. Is there clonal expansion of lymphocytes in affected minor salivary glands?  

 

While there are reports in the literature of lymphocyte clonal expansion in PSS salivary 

glands, this has not been explored through next generation sequencing technologies. 

The clonality of tissue resident lymphocytes is an important consideration for disease 

pathogenesis, in order to understand whether potentially autoreactive cells are being 

produced at the site of disease, or whether affected tissue is merely an inflamed milieu 

attracting a diverse population of circulating lymphocytes.  

 

3. Is there an observable trend in the B-cell and T-cell receptor usage? 

 

The immunoglobulin and T-cell receptor repertoire sequences of lymphocytes in PSS-

affected minor salivary glands have been studied through classical methods such as 

PCR amplification of V(D)J segments. The tandem extraction of repertoire sequences 

and somatic mutation information from the same sample by DNA sequencing is a 

newer approach that permits us to infer correlations between the two findings. The 

repertoire sequences can be used to assess clonality and potential disease-associated 

trends in the usage of heavy chain and light chain genes. 

 

To address the aforementioned aims, we devised two ways of extracting lymphocytes from 

minor salivary glands to maximize the possibility of capturing clonal populations. The initial 

approach entailed fluorescence activated cell sorting (FACS) of T and B lymphocyte subsets 

from salivary gland biopsies, paired with an ultra-low input library preparation method to 

yield sequencing libraries from each population. The secondary approach employed laser 

capture microdissection (LCM) to extract spatially sequestered lymphocyte clusters from 
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histology sections of salivary gland tissue. (Figure 1) The results of each approach will be 

described separately in this chapter and then combined for further interpretation. 

 

I. SEQUENCING OF SORTED LYMPHOCYTE POPULATIONS FROM MINOR 

SALIVARY GLANDS 

Minor salivary gland biopsies are often undertaken to confirm a suspected diagnosis of 

primary Sjögren’s syndrome, where patients suffer from sicca symptoms (dry eye and dry 

mouth), but serological findings are insufficient for diagnosis. We took advantage of this 

diagnostic practice to obtain minor salivary gland tissue for our research purposes. Patients 

were subsequently diagnosed as having confirmed PSS, early or possible PSS, or non-PSS sicca 

based on the degree of focal lymphocytic infiltration in salivary glands, in conjunction with 

other diagnostic criteria. It is important to note that while most biopsies from patients 

deemed negative for PSS appear histologically normal, the patients from whom they were 

obtained clinically presented with sicca symptoms and therefore may have salivary gland 

dysfunction of a different aetiology. Occasionally, it is also possible that a patient with a 

diagnosis of Sjögren’s syndrome based on symptoms and serological tests has no immune cell 

infiltration on histological examination of minor salivary gland tissue. 

 

Figure 1. Overview of lymphocyte extraction approach from minor salivary gland biopsies. 
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I.1 Patient cohort 

Minor salivary gland biopsies were obtained from 55 patients at the University of Newcastle, 

in collaboration with Fai Ng and Matthew Collin. Approval by the UK Research Ethics 

Committee and written informed consent from patients were granted for the use of these 

biopsies for research purposes. Biopsies were processed immediately and sorted into 

lymphocyte subpopulations by Paul Milne. The cohort included 35 biopsies with focal 

lymphocytic infiltration that confirmed a diagnosis of PSS, 11 that were histologically 

ambiguous and had suspected early PSS, and 9 that were negative for PSS. Of the 55 patients, 

46 were female, and ages at the time of biopsy ranged from 23 to 91. (Figure 2a,b) This is 

representative of the broader demographics of PSS patients, ~90% of whom are female and 

most of whom are 40-50 years of age at the time of diagnosis78. 

 

I.2 Cell sorting of lymphocyte compartments 

Upon enzymatic digestion of biopsy tissue to obtain single cell suspensions, fluorescence-

activated cell sorting (FACS) was used by Paul Milne to separate cells into subpopulations by 

common haematopoietic and lymphoid surface markers (Methods). The main subsets 

Figure 2. a) Patient cohort by diagnosis and sex. b) Patient cohort stratified by diagnosis and focus score. 

a) 
 

b) 
 

Diagnosis 
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captured were CD4 T cells, CD8 T cells, B cells, plasma cells, and plasmablasts (Figure 3). The 

sorted subsets were gated by FACS using the following cell surface markers: 

 

B cells: CD45+CD3-CD19+CD38- 

Plasmablasts: CD45+CD3-CD19+CD38+ 

Plasma cells: CD45+CD3-CD19-CD38hi 

CD4 T cells: CD45+CD3+CD19-CD4+ 

CD8 T cells: CD45+CD3+CD19-CD8+ 

Antigen-presenting cells: CD45+CD3-CD19-HLADRA+ 

 

The number of total extracted immune cells varied between biopsies, from a few hundred to 

several thousand or more cells. Low cell counts precluded the extraction of all desired 

lymphocyte subsets from some biopsies, commonly biopsies from patients who were 

ultimately not diagnosed to be PSS. In these cases, for example, if there were not enough 

lymphocytes to sort both CD4 and CD8 T cells, then bulk CD3+ T cells or a bulk CD45+ sample 

was isolated instead.  

Figure 3. FACS separation of lymphocyte compartments, gating strategy. Figure courtesy of Paul Milne. 
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I.3 Library preparation 

The sorted cells were lysed and DNA libraries prepared through a bespoke in-house pipeline 

specially created at the Sanger Institute for low-input samples with 100-1000 cells (Methods). 

Some samples failed library preparation during the early stages of optimizing this pipeline, or 

they dropped out due to lack of enough genetic material to be sequenced at adequate depth. 

Samples used for library preparation contained no more than 1,000 cells. After creating 

adapter-ligated libraries, those with at least 10 ng/µl concentration were recommended for 

pull-down and enrichment of genes with the custom-designed bait set. However, due to the 

precious nature of patient samples, all samples with at least 5 ng/µl were submitted for 

targeted gene pull-down. This resulted in some samples with lower coverage but still 

adequate signal to detect mutational events with higher clonality. Of the total 55 patient 

biopsies obtained, library preparation and targeted sequencing yielded data from sorted 

lymphocytes of 31 patients and bulk B and T cells from an additional 3 patients (Table 1). 

Subsequent whole genome sequencing (described in section II of this chapter) was performed 

on remaining library material that did not undergo pull-down of target genes. 

 

A subset of patients also had available blood samples, from which lymphocyte populations 

matching those from the biopsy were isolated. Additionally, fibroblasts were extracted from 

the stromal part of the gland biopsy and cultured in vitro by Paul Milne to produce a bulk 

population of non-immune control cells (Table 1). 

 

Table 1. Total number of sorted samples per category, across patients. Mean sequencing depth per sample 
type. Number of matching samples from blood (PBMC), per category. Sequenced subsets not referenced in 
this table include one or more samples from the following groups: CD45+HLADR+ cells, CD45+CD19-CD3-
HLADR- cells, stromal cells, CD14+ monocytes from blood, and CD56+ NK cells from blood. 

 
B Cells Plasma 

Cells 
Plasma-
blasts 

CD8 T 
Cells 

CD4 T 
Cells 

Bulk T 
Cells 

Bulk B 
cells 

Bulk 
Cell 

Fibro-
blasts 

FACS 
markers CD19/CD38 CD19/CD38 CD19/CD38 CD3/CD8 CD3/CD4 CD3 CD19 CD45 NA 

Number 
Samples 31 30 29 31 31 3 3 8 40 
Seq 
Depth  111 124 98 130 109 160 324 269 169 
Matched 
PBMC  22 0 15 20 22 0 0 0 0 
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I.4 Targeted sequencing (TGS) of bulk sorted lymphocytes 

To investigate the presence of somatic mutations in key genes associated with lymphoma and 

immune dysregulation, we designed a custom gene panel for targeted deep sequencing. The 

panel covers genes curated from the literature and includes around 350 lymphoma and 

immune related genes, in addition to HLA loci, SNP sites, ncRNAs associated with PSS, and 

immunoglobulin and T-cell receptor V(D)J genes. The complete list of targeted genes can be 

found in the Appendix section (Table A1).  

 

All samples underwent library preparation with a custom in-house pipeline for low DNA input 

and subsequent hybridization-based pull-down of the genes of interest prior to sequencing. 

Samples were aligned to the NCBI build37 human genome as described in the Methods 

section, with an extra step to remove contamination that was found to be caused by foetal 

calf serum used for FACS sorting. After removal of PCR duplicates, the mean depth of coverage 

across all regions of the targeted gene set was calculated to be 149X, meaning targeted 

regions were covered by 149 sequencing reads on average (Figure 4).  

 

Calling of single nucleotide substitutions and small insertion/deletion events was performed 

using the Shearwater algorithm2,170 as described in the Methods section, with fibroblast and 

matched blood samples used as a combined panel of controls. Variants called by Shearwater 

were filtered by an FDR-adjusted q-value cut-off of 0.01 and filters that removed reads with 

soft clipped bases and low alignment scores. An additional filter was used to remove 

remaining germline variants that were not automatically removed, which consisted of an 

exact binomial model that discriminates between germline and somatic variants based on 

sharing of variants between multiple samples from the same individual (Methods). 
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I.5 Mutational findings in TGS dataset 

The mutational analysis from targeted deep sequencing identified 618 total variants across 

199 bulk sorted lymphocyte samples from minor salivary gland biopsies of PSS patients and 

non-PSS sicca controls. The majority of variants were found in B cell, plasmablast, and plasma 

cell subsets (Figure 5b). These variants were clustered in immunoglobulin gene regions of 

chromosomes 2, 14, and 22, and had a mutational spectrum indicative of canonical AID 

(activation induced deaminase) enzyme activity, which is enriched in mutations at the GCT 

trinucleotide (Figure 5c), indicating that somatic hypermutation had taken place in many of 

the cells. The variant allele frequencies (VAF) of these mutations are mostly small (< 0.1), 

indicating polyclonal populations of cells (Figure 5a), both in T and B cells, as well as in other 

cell types which include bulk lymphocytes and antigen-presenting cells. Several samples 

harboured VAFs in the range of 0.15 to 0.30, suggesting a more oligoclonal population where 

30% to 60% of cells in the given sample would carry the variant (assuming heterozygosity of 

variants, the fraction of mutated cells is calculated as VAF*2). 

Figure 4. Coverage of targeted regions. a) Proportion of regions covered at given depths, per sample. b) 
Mean coverage across all targeted regions, per sample. 

a) 
 

b) 
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Figure 5. Mutational landscape across target genes. a) Histogram of the median variant allele frequency across 
all cell populations. b) Number of variants detected in each cell type subset. c) Distance between adjacent 
variants plotted in chromosomal order for all B cell and plasma cell sample s. d) Mutational spectrum of all B 
cell and plasma cell samples (showing canonical AID signature). 
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In the context of cancer, “driver” mutations are those that impart a selective advantage to a 

cell, causing it to proliferate preferentially. As seen in normal tissue studies, driver mutations 

can exist in cells without causing cancer but still altering features of the tissue2,4. To detect 

putative driver variants which might drive clonal expansion of lymphocytes, I used two 

approaches: manual annotation of coding variants and application of a dN/dS algorithm to 

detect gene selection based on relative rates of nonsynonymous and synonymous variation171 

(described in Methods). From these analyses, a prominently mutated gene emerged: KDM6A, 

which encodes the X-linked histone demethylase and tumour suppressor, UTX (Ubiquitously 

transcribed tetratricopeptide repeat)172. Three truncating KDM6A mutations were found in 

CD8 T cell samples, and a fourth was found in a CD4 sample, all in PSS patients. Two of the 

four KDM6A mutations were found in one CD8 sample. Three of the four variants were called 

by the Shearwater pipeline and passed the filters described above, and a fourth variant was 

subsequently found by manual inspection of KDM6A reads. This variant was filtered out by 

the Shearwater q-value cut-off due to having only two unique supporting reads, however the 

mutated reads appeared clean and the mutation was represented on both forward and 

reverse strands, so it was included in further analysis. dN/dS analysis for gene selection in the 

targeted gene set across all samples identified KDM6A as a gene under significant positive 

selection (FDR q-value = 0.00068).  

 

The VAF of KDM6A mutations ranged from 3% in the rescued sample to 23% in the largest 

clone (Figure 6a-c, Table 2). Sample PD42055c did not carry other detectable mutations in 

the subset of genes targeted by this analysis, while PD42056c harboured two other variants 

at comparable VAFs to the KDM6A variants, in TLR9 and GRID2 genes. This CD8 T cell sample 

therefore harbours two truncating KDM6A variants along with potentially pathogenic variants 

in two immune-related genes. If co-occurring in the same clone, these mutations may have a 

proliferative or immune-activating effect. We recently obtained blood from patients with 

KDM6A mutations in order to assess whether the mutations are found in matched blood T 

cells as well; results are pending. 
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In addition to truncating KDM6A mutations identified in T cell samples, a loss-of-function 

mutation was found in another X-linked tumour suppressor gene, STAG2. This mutation was 

observed in a B cell sample at a VAF of 10% (Table 2).   

 

KDM6A is a tumour suppressor gene commonly mutated in many cancers, including 

haematological malignancies173,174. It does not undergo X-inactivation in females, so both 

copies should remain expressed in normal female cells. Male cells have a Y-chromosome 

paralogue, UTY, with some overlapping functions with UTX175. There is evidence of 

haploinsufficiency and a dosage-dependent effect of UTX-loss in lymphoma mouse models174, 

so it is possible that loss of a single copy, as observed in PSS T cell samples, could have a 

phenotypic effect. However, if both copies of this gene were to be lost, this would likely have 

significant effects on proliferation and demethylation of downstream genes, as documented 

in cancer studies172,174,176.  

 

I.6 Copy number alterations in TGS dataset 

Copy number analysis was carried out to assess possible somatic copy number variations in 

lymphocyte samples from PSS patients and non-PSS controls. Using the available 

a) 

b) c) 

Figure 6. KDM6A mutations: a) All truncating (nonsense) KDM6A variants found in T lymphocyte samples, 
with VAF noted. b,c) Snapshot of sequencing reads from Integrated Genomics Viewer software showing 
KDM6A mutation in patient b) PD42056c and c) PD42055c, where each mutated read is marked as coloured 
dash at genomic position highlighted in the centre. 
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chromosomal regions covered by the bait set, copy number profiles were inferred by the 

CNVkit algorithm (Methods), with a control panel of patient fibroblast samples used for 

normalization. An immediately noticeable trend of X chromosome aneuploidy emerged in 

female lymphocyte samples. Female T cells, but not B cells or plasma cells, had evidence of 

subclonal monosomy X, which was especially prevalent in female CD8 T cells (Figure 7a-c,e-

g). Copy number variation is shown in two ways: as the log-normalized ratio of the sample 

coverage to the coverage of the control panel (Figure 7a-c), and as the total copy number 

across chromosomes (Figure 7c-e). 

 

While the existence of monosomy X was obvious in some samples simply by looking at a log 

copy ratio plot (Figure 7a), other samples had subclonal monosomy X that resulted in subtle 

visual differences between X chromosome copy number and that of autosomes (Figure 7b). 

To define a threshold for detection of subclonal monosomy X within a sample, I used a p-value 

cut-off and an effect size cut-off to identify samples in which the copy number of X was 

significantly lower than the copy number of autosomes. The log copy ratio of autosomes was 

compared to that of the X chromosome by a one-sided T-test, and effect size of that difference 

was calculated. The threshold for X loss within a sample was then defined by an FDR-adjusted 

q-value < 0.01 and an effect size >0.1 (Figure 7d); the smallest subclone with monosomy X 

detected by this threshold comprised 5% of the sample (Table 5, Figure 8g).  

 

Table 2. X-linked truncating mutations and additional mutations co-occurring in the same samples. 

sample ID cell type chr amino acid vaf depth gene type trinucleotide 
context 

PD42075a CD4 T X Q274X 0.024 86 KDM6A stopgain CCA>CTA 

PD42056c CD8 T X L113X 0.058 55 KDM6A stopgain TTA>TGA 

PD42056c CD8 T X L896fs 0.042 124 KDM6A frameshift T>del 

PD42056c CD8 T 3 M58T 0.063 67 TLR9 nonsyn ATG>ACG 

PD42056c CD8 T 4 V957M 0.042 118 GRID2 nonsyn CGT>CAT 

PD42055c CD8 T X Q786X 0.226 76 KDM6A stopgain TCA>TTA 

PD42042c B cell X R614X 0.100 44 STAG2 stopgain GCG>GTG 

 
 
Table 3. X-linked truncating mutations and additional mutations co-occurring in the same samples. 
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Using these metrics, subclonal chromosome X loss was observed in 73% of female CD8 T cell 

samples (19 out of 26, Figure 7e), 26% of female CD4 T cell samples (7 out of 27, Figure 7f), 

and zero out of 81 total B cell, plasmablast and plasma cell female samples (Figure 7g). These 

findings demonstrate a striking prevalence of monosomy X in T cells, especially CD8 T cells, 

but a complete lack of this phenomenon in B lineage cells. 
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Figure 7. a-c) Log copy ratios across all chromosomes from CD8, CD4, and B cell samples from patient PD42055 
biopsy. d) FDR q-value (adjustment by number of target regions quantified) < 0.01 and effect size > 0.1 
thresholds used to determine significance of X chromosome loss across lymphocyte samples. e) CD8 T cell 
samples: mean X chromosome copy number compared to mean autosomal copy number. f) CD4 T samples: 
mean X chromosome copy number compared to mean autosomal copy number. g) B cell, plasmablast and 
plasma cell samples: mean X chromosome copy number compared to mean autosomal copy number. 
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Table 3. Large copy number alterations in lymphocyte subsets of female patients. “Y” indicates evidence of chr 
X loss, “N” indicates no detectable chr X loss, as identified by statistical threshold outlined in Fig.7b. Diagnosis 
of patients is stratified into three categories: “Non-PSS” for patients with sicca symptoms but unconfirmed PSS, 
“Early PSS” for histologically ambiguous biopsies but other indications suggesting possible early PSS, and “PSS 
FS” for confirmed diagnosis of PSS with numeric focus score of biopsy sample. The “-“ symbol indicates that the 
cell subset was not recovered in sufficient quantities or failed QC for DNA sequencing. “*” indicates significant 
q-value but effect size < 0.1; applied only to PBMC-derived samples. 

Patient Age Diagnosis CD8 T 
cells 

CD4 T 
cells 

Bulk CD3 
T cells 

CD19 B 
cells 

CD38 
plasma 

CD8 T 
PBMC 

PD42055 56 Early PSS Y Y - N N N 
PD42076 - Early PSS Y Y - N N - 
PD42079 - PSS FS2-3 Y Y - N N - 
PD42084 64 Non-PSS Y Y - N N Y* 
PD42090 52 PSS FS2-3 Y Y - N N - 
PD42085 48 Non-PSS Y N - N N Y* 
PD42073 - PSS FS2-3 Y N - N N Y 
PD40669 49 Early PSS Y N - N N N 
PD42040 52 Early PSS Y N - N N - 
PD42053 49 PSS FS2-3 Y N - N N - 

PD42056 71 PSS FS4-5 Y N - partial 
chX loss 

partial 
chX loss N 

PD42061 58 PSS FS4-5 Y N - N N - 
PD42070 50 PSS FS2-3 Y N - N N Y* 
PD42071 - PSS FS2-3 Y N - N N - 
PD42075 - PSS FS2-3 Y N - N N - 
PD42077 - PSS FS2-3 Y N - N N - 
PD42083 54 PSS FS2-3 Y N - N N N 
PD30969 63 Non-PSS Y - - N N - 
PD42088 52 PSS FS2-3 Y - - N N N 
PD42041 52 PSS FS4-5 N Y - N N - 
PD42067  PSS FS2-3 - Y - - - - 
PD40668 51 PSS FS4-5 N N - N N N 
PD42068 57 Early PSS N N - N N N 
PD42078 - PSS FS4-5 N N - N N - 
PD42089 27 PSS FS4-5 N N - N N N 
PD42066 53 Early PSS N N - N N N 
PD30967 73 PSS FS2-3 N - - N N - 
PD30968 50 PSS FS2-3 - N - N N - 
PD30970 64 PSS FS2-3 - N - - - - 
PD42064 69 PSS FS2-3 - N - N N - 
PD42042 52 Non-PSS - - Y N N N 
PD42060 23 Early PSS - - N N N - 
PD42065 39 Non-PSS - - - N N N 
PD30974 35 Non-PSS - - - - N - 
PD30971 64 PSS FS4-5 - - chX gain N N - 
PD30973 73 PSS FS0-1 - - - ch7 gain N - 
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Table 3 details the samples in which X chromosome ploidy was evaluated using the statistical 

thresholds defined above (Figure 7d); all samples shown are female. Not all patient biopsies 

yielded CD4, CD8, and B cell subsets, therefore only the available cell types are shown from 

each patient. Lymphocyte samples evaluated for monosomy X fell into all three diagnostic 

groups: confirmed PSS patients, patients with suspected early PSS based on ambiguous 

biopsy, and non-PSS sicca patients. Out of the 7 biopsies from female patients with non-PSS 

sicca, only 4 had infiltrating lymphocytes that were successfully isolated. Of those four, all 

have detectable X chromosome loss in CD8, CD4, or bulk CD3 T cell subsets, and two also have 

subtle X chromosome loss noted in paired PBMC-derived CD8 samples. The presence of 

monosomy X in the control group implies that it is not a feature specific to PSS, however it is 

worth noting that non-PSS sicca patients have salivary gland dysfunction of a different 

aetiology or possible early PSS that did not meet diagnostic criteria at the time of biopsy. 

Therefore, the non-PSS cohort is not a true control group for this study, though it is the closest 

we were able to obtain. Some non-PSS biopsies had a focus score of 1, indicating the presence 

of a histologically observable focal lymphocyte aggregate. Clinical details of the female PSS-

negative patients are shown in Table 3b.  

 

Monosomy X was observed in a majority of CD8 T samples and a quarter of CD4 T samples 

and was the sole genetic abnormality detected in most of them. The previously described 

KDM6A mutations also occurred in CD8 T cell samples with monosomy X, thereby these 

samples had two somatic events targeting the X chromosome. In the CD4 T cell sample which 

harboured the other KDM6A variant, the X chromosome copy number fell just short of the 

statistical threshold set for detection of subclonal monosomy X. However, this sample was 

Table 4. Clinical details of PSS-negative patients. Samples in red have detectable X chromosome loss in one 
or more T cell subsets. Patient IDs highlighted in red indicate those that had a subset of T samples with 
subclonal loss of X chromosome. 

Patient Diagnosis Age Focus 
Score 

Clinical detail 

PD42084 Non-PSS 64 1 Non-PSS sicca; acellular cyst 
PD42085 Non-PSS 48 1 Non-PSS sicca; reflux disease 
PD30969 Non-PSS 63 0 Non-PSS sicca; few scattered inflammatory cells 
PD42042 Non-PSS 52 0 Non-PSS sicca; no details available 
PD42065 Non-PSS 39 0 Non-PSS sicca; chronic fatigue  
PD30974 Non-PSS 35 0 Non-PSS sicca; no details available 
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very polyclonal, with VAF of KDM6A mutation being 3%, so a similarly-sized monosomy X 

subclone may have existed but was too small to detect. The matched CD8 sample from that 

patient’s biopsy, however, had distinct monosomy X. The estimated fraction of cells with X 

loss in CD8 samples is shown in Table 3c, as calculated by the difference of mean autosomal 

copy number and mean X chromosome copy number, multiplied by two. The proportion of 

cells in samples PD42055c and PD42056c that appear to lack the X chromosome is around 

30%, while the observed KDM6A variant allele frequencies in these samples are 23%, 6%, and 

4%. It is plausible that X chromosome loss and KDM6A mutations co-occur in the same 

subclone, however this is difficult to prove from bulk sequencing data.  

 

If monosomy X and a truncating KDM6A mutation do exist in the same clone, then both copies 

of the tumour suppressor UTX would be lost, which would have significant downstream 

epigenetic effects on many genes and would provide the clone with a selective advantage, as 

has been observed in cancer studies174. 

Table 5. Estimated size (fraction) of subclone with monosomy X in CD8 lymphocyte subsets, fraction of 
dominant clone identified by V(D)J rearrangement with CDR3 sequences and gene rearrangement. 

Sample X-loss 
clone Mutation Largest 

TRB clone TRB clone CDR3 V/D/J usage 

PD42079c 0.43 - 0.33 CASTRGEGTGELFF TRBV2/TRBD1/TRBJ2 

PD42056c 0.32 KDM6A 
(6%, 4%) 0.15 CASSTGQLTNTEAFF TRBV9/TRBD1/TRBJ1 

PD42090c 0.28 - 0.13 CASSAEAGTSTDTQYF TRBV5-5/TRBD1/TRBJ2 

PD42055c 0.28 KDM6A 
(23%) 0.10 CASSLARAAQETQYF TRBV7-6/TRBD1/TRBJ2 

PD42075c 0.27 - 0.31 CASSDKQGNYGYTF TRBV5-1/TRBD1/TRBJ1 
PD42061c 0.26 - 0.33 CAISDVGGGNQPQHF TRBV10-3/TRBD2/TRBJ1 
PD30969d 0.23 - 0.18 CASSLPYGPYGYTF TRBV28/TRBD2/TRBJ1 
PD42084c 0.21 - 0.21 CASSQSPGGTQYF TRBV14/TRBD1/TRBJ2 
PD42077c 0.19 - 0.16 CASSYSLDRGDTEAFF TRBV6-3/TRBD1/TRBJ1 
PD42073c 0.14 - NA CASSSEGGNTEAFF TRBV5-1/TRBD1/TRBJ1 
PD42071c 0.14 - 0.18 CASSLAWGADEQFF TRBV12-3/TRBD2/TRBJ2 
PD40669d 0.14 - 0.27 CASNPTGTSYEQYF TRBV27/TRBD1/TRBJ2 
PD42088c 0.12 - NA CSVGSQGTNEKLFF TRBV29-1/TRBD1/TRBJ1 
PD42085c 0.12 - 0.15 CASSLEGQGPTGSPLHF TRBV4-1/TRBD1/TRBJ1 
PD42083c 0.11 - 0.14 CASSLEGGAKNGYTF TRBV7-9/TRBD2/TRBJ1 
PD42076c 0.09 - NA CASSPSGDARDNEQFF TRBV11-1//TRBJ2 
PD42053c 0.07 - NA CASSVSGTRSGHQPQHF TRBV2/TRBD1/TRBJ1 
PD42070d 0.07 - 0.18 CASSLGRAVNEKLFF TRBV5-1/TRBD1/TRBJ1 
PD42040c 0.05 - 0.13 CASSDTDIENTEAFF TRBV6-1/TRBJ1 
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Previous studies have noted that loss of sex chromosomes occurs more frequently in 

lymphocytes than other cell types, with up to a few percent of peripheral blood lymphocytes 

losing the X or Y chromosome with age177,178. However, the rate of monosomy X in cytotoxic 

T cells seen here is much higher than that observed in healthy females in studies of peripheral 

blood. The phenotypic effects of losing the X chromosome are not completely clear, but some 

studies suggest that they might be associated with various morbidities such as cancer and 

autoimmune disease179,180.  

 

While copy loss of chromosome X was very common in T cell samples, one patient had a copy 

gain of chromosome X was in their bulk CD3 T cell sample (patient PD30971). The only whole-

chromosome aneuploidy event in autosomes was a gain of chromosome 7 in the bulk CD19 B 

cells of patient PD30973 (data not shown). Chromosome 7 gain is frequently observed in B 

cell lymphomas, suggesting its putative role in malignant transformation or progression181. 

 

I.7 Receptor sequences of tissue-derived lymphocytes 

The targeted gene set queried across the set of lymphocyte samples included the numerous 

V, D, and J genes that recombine to form antigen receptors of B and T cells. These included 

immunoglobulin IGH, IGK, and IGL, as well T cell receptor TRA and TRB genes. Due to the 

pulldown gene enrichment method, short-read platform, and overall polyclonality of the 

samples, reconstructing the receptor sequences from their discontinuous DNA segments 

proved challenging. I used the Mixcr algorithm (Methods) to extract heavy and light chain 

V(D)J rearrangements from T and B cell samples and considered only those rearrangements 

which were productive and yielded fully reconstructed CDR3 sequences. Some samples had 

many V(D)J clones reconstructed while others had few, presumably due to underlying 

differences in clonality and sequencing coverage. Overall, the number of total and unique 

clones detected per sample increased with the sequencing coverage (Figure 8a). The utility of 

reconstructing V(D)J sequences was twofold: assessing the clonal composition of lymphocyte 

samples and attempting to identify any disease-associated trends in repertoire usage. 

 

To address the question of clonality, we considered only samples in which at least 10 

independent V(D)J clones were reconstructed. The findings confirm what was observed by 
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the variant allele frequency trend, that salivary gland T and B cells are not monoclonal 

lymphocyte populations, but contain some expanded clones. In the CD8 T cell samples, the 

largest clone comprised 33% of a sample, as suggested by the TCR beta rearrangements 

identified, 33% of which shared an identical CDR3 sequence (Figure 8b,d). The size of the 

CDR3 clones somewhat correlated with the estimated size of clones harbouring monosomy X 

(Table 5, Figure 8g), suggesting that the largest expanded CDR3 clone may be the one lacking 

an X chromosome. Of the 15 biopsies which had matched CD8 T cell samples from peripheral 

blood, the major clone identified in biopsy-derived cells was also found in blood in only one 

case: CASSQDTSIGSPLHF was present in tissue-derived CD8 at 27% frequency and in PBMC-

derived CD8 in 1% of reconstructed CDR3 sequences. The significantly higher proportion of 

this clone in the tissue than in blood indicates local expansion of a circulating T cell and/or 

Figure 8. T and B cell receptor sequences. a) Number of total and unique T cell beta chain rearrangements detected 
versus sequencing coverage. b) T-cell receptor heavy chain diversity in a subset of CD8 samples (including PD42055c 
and PD42056c which harbour KDM6A mutations) with percentage of largest TCR clone labelled. c) B-cell and plasma 
cell BCR from patient PD30968 showing shared clone. d) B cell and plasma cell V(D)J: size of top three largest IGH 
clones per sample, from samples containing 10 or more identifiable CDR3 sequences. e) CD4 T cell clonality per 
patient, from samples containing 10 or more identifiable CDR3 TRB clones. f) Usage of IGHV genes across all 
detected BCR clones in B cells and plasma cells from biopsies. g) Comparison of estimated size of clones harbouring 
monosomy X and size of largest TCR clone across female CD8 T cell samples with observed X loss; TCR clone 
unavailable for some samples. 

b) 
 

d) 
 

c) 
 

e) 
 

f) 
 

g) 
 

a) 
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selective recruitment of that clonotype to the tissue. The lack of similar findings in other 

blood-derived CD8 cells is likely a technical hindrance, where the polyclonality of blood and 

limited sampling of the lymphocyte pool make it difficult to reconstruct repertoires from rare 

clones.  

 

The largest heavy chain CDR3 clone observed in B cells comprised 45% of the repertoire of 

the sample (Figure 8c). Interestingly, the clone identified in that CD19+ B cell sample was also 

found in the CD19-CD38+ plasma cell sample from this patient (Figure 8c), demonstrating that 

this clone likely matured from a B cell phenotype to a plasma cell phenotype within the 

salivary gland tissue. Sharing of clones between B cell and plasma cell compartments of a 

patient’s biopsy was observed in several other samples as well. No immunoglobulin heavy 

chain (IGH) CDR3 sequences were shared between patients, although several light chain 

CDR3s were found to be present in multiple patients.  

 

The most frequently used IGHV gene detected across all CDR3 clones observed in biopsy-

derived B cells was IGHV3-7 (Figure 8f). This finding prompted comparison to the previously 

described public “Po” idiotype of the rheumatoid factor antibody, which is comprised of a 

IGHV3-7/IGHJ3 heavy chain paired with an IGKV3-15 light chain97. This combination of heavy 

and light chains was found in 7 B cell samples from different patients, however since multiple 

heavy and light chain CDR3s were identified in each sample, it is not possible to know if the 

IGHV3-7/IGHJ3 was expressed by the same clone as IGKV3-15 in those samples. Other public 

clonotypes, such as the “Wa” idiotype of rheumatoid factor97, were not detected. 

 

Lastly, the TCR sequences reconstructed from CD4 samples were comprised of multiple small 

subclones. A few samples were exceptions and harboured dominant clones that comprised 

up to 40% of the heavy chain repertoires. The clonality of CD4 T cell samples by beta chain 

CDR3 usage is shown in Figure 8e.  

 

Overall, even though polyclonality of samples and variable depth of sequencing made 

repertoire extraction challenging, some important observations can be made from the 

findings. The lymphocyte populations were not monoclonal by the coarse grouping into CD4, 

CD8, B cell, plasmablast, and plasma cell populations, but there was distinctly less clonal 
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diversity observed in tissue samples than in their matched PBMC-derived counterparts. This 

observation supports the notion of localized clonal expansion within the tissue. The size of 

dominant CDR3 clones can be compared to the size of clones harbouring mutations or copy 

number changes to infer whether these events might co-occur in the same cells. In samples 

where the proportion of cells with monosomy X is approximately the same as the proportion 

of the largest TCR clone, we may conclude that X is lost in this particular receptor-bearing 

clone. In cases where the proportion of cells with monosomy X is larger than the largest TCR 

clone, it is possible that the chromosomal loss occurred either in a precursor T cell prior to 

V(D)J diversification or independently in two or more TCR clones. The latter scenario would 

suggest that loss of X is a common tissue-driven phenomenon that preferentially affects the 

cytotoxic T cell population and might be more common in disease and inflammation. 

 

To further explore the set of sorted lymphocyte samples, I analysed a subset of them by whole 

genome sequencing. The aim of this was to detect mutations outside of regions targeted by 

our gene panel, perform genome-wide copy number analysis, and gain insights into genome-

wide mutation patterns. 

 

II. Whole genome sequencing (WGS) of bulk sorted lymphocytes 

In order to further characterize a subset of bulk lymphocyte samples which contained 

intriguing features by targeted sequencing analysis, we sequenced whole genomes from the 

remaining DNA material. The samples selected for whole genome sequencing included those 

that carry a KDM6A mutation, have evidence of X chromosome loss, or harbour an expanded 

clone as determined by TCR/BCR repertoire analysis. The number of samples per cell type 

category that have been whole-genome sequenced is outlined in Table 6; additional samples 

are currently pending sequencing and analysis. This section will briefly discuss the WGS 

findings specific to bulk lymphocyte samples, while integrated analysis of these and LCM-

derived lymphocyte samples will be addressed later in this chapter. 

Table 7. Number of samples with WGS data per cell type category. 

CD8 T cell CD4 T cell B cell  Plasmablast Plasma cell Fibroblast 
7 2 2 0 1 6 

 
 
Table 8. Number of samples with WGS data per cell type category. 
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II.1 WGS findings 

Whole genomes of lymphocyte samples were sequenced to an average depth of 31X (Figure 

9a). Single nucleotide substitutions were called by the Caveman algorithm and small 

insertion/deletion events by the Pindel algorithm (Methods), using matched fibroblast 

control samples. The median VAF of single nucleotide substitutions genome-wide was in the 

range of 0.1-0.2, (Figure 9b) in line with the degree of oligoclonality seen in targeted 

sequencing data. The number of single nucleotide substitutions per sample ranged from 100 

to 500, with the lower end of the spectrum likely due to dropout of low VAF variants which 

were not adequately captured at the given depth of sequencing. WGS confirmed the 

nonsense KDM6A variant identified in sample PD42055c, however the two KDM6A variants 

in PD42056c which occurred at lower VAF were not detected, likely due to low sensitivity. 

Other potentially pathogenic coding variants were identified in multiple samples; however, 

none were obviously deleterious or recurrent. 

 

Genome-wide copy number profiles were detected by the Ascat and Battenberg algorithms 

(Methods) and confirmed the chromosomal findings from the TGS dataset. Copy loss of 

chromosome X was confirmed in six female CD8 T cell samples, while the seventh sample had 

normal diploidy of chromosome X in both datasets. The total copy number, logR (log ratio of 

sample copy number to control copy number), and BAF (B-allele frequency, or minor allele 

frequency) profiles shown here for sample PD42079c (Figure 10a-c) were similar to those of 

the other samples with X loss. Ascat analysis estimated that up to 60% of cells in this sample 

lack an X chromosome, suggesting a clonal expansion harbouring monosomy X. However, on 

closer inspection of the BAF distribution of polymorphic sites on X, we observe that there is 

a) b) 

Figure 9. a) Mean coverage of whole genome samples. b) Median VAF across whole genomes of 
lymphocyte samples. 
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not a clear divergence away from 0.5 as might be expected if around half the reads from either 

the maternal or the paternal X were missing, in which case we would expect bands around 

0.33 and 0.66. Instead, the frequency of the minor allele is centred around 0.5, implying that 

both the maternal and the paternal X are almost equally represented, even though the overall 

copy number of X is lower. There is more of a spread of BAF values on X than autosomes 

indicating a slight allelic disbalance, but there are no concentrated bands diverging from 0.5. 

This intriguing finding suggests that there might be multiple clones within the sample that 

have lost the X chromosome, some losing the maternal and others the paternal copy, resulting 

in a nearly even distribution of heterzyogous alleles. 

 

The Battenberg algorithm is better equipped to infer subclonal somatic copy number changes 

than Ascat, and it can depict the copy number profile of a subclone rather than the whole 

sample. For sample PD42079c, Battenberg detected a subclone with a divergence of BAF away 

from 0.5 on the X chromosome (Figure 10d-e), confirming allelic imbalance and a clonal loss 

of X. This sample, PD42079c, had the most pronounced copy loss of chromosome X among all 

a) d) 

b) 

c) 

e) 

Figure 10. WGS copy number analysis of CD8 T cell sample PD42079c. a) Ascat algorithm logR (log ratio of 
sample versus control copy number across chromosomes), b) Ascat BAF (B allele, or minor allele, frequency 
at heterozygous SNP sites), and c) Ascat copy number of B allele (blue) and total copy number (purple), d-e) 
Battenberg BAF of subclone harbouring copy number alteration in d) chromosome X and e) chromosome 1. 
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samples queried by both TGS and WGS. For most of the other samples, Battenberg failed to 

extract copy number profiles, likely due to clonality and coverage issues. In samples where 

Battenberg did generate subclonal copy number profiles, they did show the same allelic 

imbalance demonstrated by a split in the BAF. Therefore, it remains likely that in some 

samples, multiple clones might independently be losing the X chromosome. 

 

The implication of multiple monosomy X clones within a cell population is that X chromosome 

loss is a frequent mitotic event in this context. Whether that context is specific to PSS, related 

to general inflammation, or a result of tissue-driven expansion requires further investigation. 

The prevalence of X chromosome loss in T cells, especially CD8 T cells, and the absence of it 

in B cells suggests a cell-type specific phenomenon. 

 

III. Laser-capture microdissection approach for sequencing 

lymphocytes from PSS biopsies 

The lymphocyte populations sorted by FACS yielded valuable observations about mutational 

trends in different subsets of T, B, and plasma cells. However, the limitation encountered 

through this approach was the low degree of clonality across most samples. This presented a 

challenge for mutation detection of low frequency variants, matching heavy and light chain 

receptor rearrangements, pairing receptor sequences with mutational events, etc. To 

improve the probability of capturing a clonal population for sequencing, we turned to the 

histology of minor salivary glands. In PSS, infiltrating lymphocytes form focal aggregates, 

which are frequently used as a diagnostic criterion. These aggregates are often spatially 

isolated from each other in the gland and can be viewed as discrete units. We therefore 

hypothesised that individual lymphocytic aggregates have a higher likelihood of being clonal 

populations than do bulk lymphocyte subsets sorted from the entire biopsy, and we 

addressed this question using laser-capture microdissection (LCM).  

 

Due to the small size of the minor salivary gland biopsies, the entirety of tissue that was 

obtained in the first cohort of samples was used up for FACS isolation of lymphocytes. We 

acquired a new set of snap-frozen biopsy samples from the University of Newcastle Biobank 
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with the help of rheumatologist Fai Ng and our collaborators Paul Milne and Matt Collin. The 

new cohort consisted of 13 PSS-positive and 7 PSS-negative biopsies. The biopsies were 

ethanol-fixed and paraffin-embedded (Methods) prior to sectioning to a thickness of 10 µm 

and mounting onto histology slides, which was performed by Yvette Hooks. They were 

subsequently stained either by haematoxylin and eosin (H&E) or by immunohistochemistry 

(IHC) for surface markers of interest. LCM was used to dissect individual lymphocyte 

aggregates from the tissue, as well as glandular epithelium, which will be discussed in a 

separate chapter. Sequencing libraries were made from microdissected tissue by the bespoke 

library preparation protocol and submitted for whole genome sequencing (Methods).  

 

Table 9. Cohort of patient biopsies were used for laser-capture microdissection. 

Sample Diagnosis Focus score Sex Age Clinical detail 
PD42760 Non-PSS 0 F 51   
PD42764 Non-PSS 0 M 57   
PD42766 Non-PSS 0 M 57   
PD42763 Non-PSS 0 F 59   
PD42765 Non-PSS 0 F 59   
PD42759 Non-PSS 0 F 65   
PD42761 Non-PSS 0 M 67   
PD42767 PSS 3 - 22   
PD42768 PSS 3 F 31   
PD42769 PSS 3 F 42   
PD45528 PSS 4 F 58   
PD45532 PSS 2 - 60   
PD45527 PSS 5 F 68   

PD42773 PSS 3 M 71 
Peripheral neuropathy, IgM 
kappa positive, anti-MAG 
antibody low-positive 

PD42770 PSS 3 M 72   
PD42771 PSS 4 F -   
PD42772 PSS 5 F -   
PD42774 PSS 5 F -   

PD45529 PSS 0 F 61 Small fibre neuropathy, mild 
small vessel disease  

PD45530 PSS 0 F 46 

Meibomian gland dysfunction, 
punctate epithelial erosions in 
left eye, musculoskeletal pain, 
bilateral keratoconjunctivitis, 
sicca, vestibulitis. 

 
 
Table 10. Cohort of patient biopsies were used for laser-capture microdissection. 
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III.1 Histology and immunohistochemistry of minor salivary glands in PSS 

By H&E staining, we observed the classic histological features of minor salivary glands in PSS 

and how they compared to biopsies of non-PSS sicca controls. The biopsies from PSS patients 

ranged from those that were mildly inflamed, with one or few visible lymphocytic aggregates, 

to those completely inundated with lymphocytes and almost completely lacking in glandular 

acini (Figure 11b-c). While non-PSS biopsies had characteristic glandular architecture 

characterised by compact mucous acini, serous acini, and ducts enveloped into distinct 

lobules by connective tissue (Figure 11a), PSS biopsies frequently displayed destruction of 

these structures (Figure 11b-c). In addition to focal lymphocytic infiltration, PSS salivary 

glands often showed degradation or absence of acini and dilated, fibrotic ducts with 

thickened walls. These features were present in varying degrees across all but two of the 

biopsies from patients with confirmed PSS, which appeared histologically normal and were 

assigned a focus score of zero. These two patients were diagnosed based on sufficient clinical 

and serological evidence of disease, despite normal biopsies; this scenario occurs in a small 

subset of PSS patients.  

 

Many of the PSS biopsies had large lymphocytic infiltrates or large areas of the tissue covered 

by lymphocytes. To better assess the lymphocyte subtype composition and localization, I 

stained the slides for relevant B, T and plasma cell markers by immunohistochemistry (IHC). 

The IHC staining was used to guide microdissection, so that clusters of the same cell type from 

a regional aggregate were dissected as a unique sample. Staining for CD4 and CD8 T cell 

markers, CD20 B cell marker, and CD38 plasma cell marker helped identify the regional 

deposition of these cells. Non-PSS samples were stained as well, revealing interspersed 

plasma cells throughout the tissue (Figure 11d), along with occasional T cells. In PSS biopsies, 

plasma cells were much more prevalent throughout, while discrete clusters were often 

composed of CD20 B cells loosely surrounded by T cells (Figure 11e-g). The tight clustering of 

B cells made them good targets for microdissection (Figure 11h), while T cells proved more 

difficult to dissect due to their diffuse distribution. Libraries were made from the dissected 

samples, and those that had a minimum concentration of 5 ng/µl were selected for whole 

genome sequencing. Targeted sequencing of the previously queried set of genes was not 
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performed due to the higher starting amount of DNA necessary for hybridization-based 

selection of targets (10 ng/µl), which most LCM libraries did not meet. 

 

III.2 WGS of LCM-derived lymphocytes 

This section will highlight specific findings from whole genome sequencing of LCM-derived 

lymphocytes samples, and an integrated overview of these and previously discussed bulk 

sorted lymphocyte samples will follow in the next section of this chapter. 

 

a) d) 

b) 

c) 

e) 

f) 

g) 

h) 

Figure 11. H&E staining of minor salivary gland biopsies. a) Non-PSS biopsy, focus score = 0. b) PSS biopsy, 
focus score = 3. c) PSS biopsy, focus score ≥ 5. d) Non-PSS biopsy IHC, CD20 brown (DAB), CD38 red. e) PSS 
biopsy IHC, CD20 brown, CD38 red. f) PSS biopsy IHC, CD20 brown, CD8 red. g) PSS biopsy IHC, CD4 brown, 
CD8 red. h) LCM microscope image before and after dissection of DAB (brown) stained lymphocyte 
aggregate from PSS biopsy. 
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The laser-capture microdissection method yielded variable numbers of B and T cell samples 

from each biopsy, depending on the localization and ability to dissect enough cells for library 

preparation. Due to the lower cellularity of samples, the genomic sequencing coverage was 

lower than that of bulk sorted samples, with average depth ~15X (Figure 12a), as compared 

to ~30X for sorted samples. Samples with a mean coverage below 10X were excluded from 

analysis due to the limited ability to detect somatic variants (Table 8).  

 

The clonality of samples, represented by median VAF of single nucleotide variants is shown in 

Figure 12b. None of the samples were highly clonal (with a median VAF > 0.4), although many 

were in the range of 0.2 to 0.35, suggesting oligoclonal or near-clonal populations. 

 

Two female PSS biopsies (PD42771 and PD45527) had CD8 T cell clusters sequenced, for a 

total of seven CD8 T cell whole genomes. All of these seven showed lower copy number of X 

than of the autosomes, revealing subclonal monosomy X, as observed in the CD8 samples of 

the bulk sorted lymphocyte dataset (Figure 12c). Even though the coverage was lower and 

the copy number profiles were noisier than that of the bulk sorted CD8 samples, the X loss 

was discernible. No copy loss of X was observed in corresponding B or plasma cell samples 

from the same biopsies (Figure 12c). No KDM6A mutations were found in the CD8 T cell 

samples, however the sensitivity of detecting subclonal variants was low given that the 

coverage was only 10-15X (Figure 12a), so they may have been missed.  

 

From the pool of LCM-derived B cell samples, the most pronounced finding came from the 

biopsy of a 71-year old male patient with confirmed PSS and a focus score of 3 (PD42773). 

CD20 B cell clusters were sampled from three isolated regions of the biopsy and harboured a 

shared set of variant calls with high VAFs (Table 9, Figure 12b,d). These variants included 

numerous protein-coding mutations, including a known pathogenic variant in the MYD88 

Table 11. Number of LCM WGS samples with > 10X depth  

CD8 T cell CD4 T cell B cell  Plasma cell 
7 2 8 3 
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gene, L273P (a.k.a L265P, depending on transcript used for annotation), which is mutated in 

lymphoproliferative disorders. Additionally, nonsense mutations in tumour suppressor genes 

(ERBIN and PGC) and a nonsense mutation in the immuno-inhibitory LILRB2 gene were also 

found. The mutations were not shared with a nearby aggregate of plasma cells (sample CD38-

6). A common single B cell receptor rearrangement was found in all three CD20 samples as 

well (with a heavy chain CDR3 sequence CAKAGIGVGSGLNRDLQHW and Ig kappa light chain 

sequence CHQYNSFPLTF). The genome-wide number of mutations in these B cells was higher 

than that of other samples, with the excess burden of mutations attributable to off-target 

effects of activation-induced deaminase (polymerase-eta), as defined by signature SBS9 in the 

Figure 12. a) Mean genome-wide depth of coverage across LCM lymphocyte samples. b) Median VAF of WGS from 
LCM-derived lymphocyte samples. c) Copy number profiles of two female CD8 T cell samples from patients 
PD42771 and PD45527, plots from top down show: log copy ratio, B-allele frequency, total and B-allele copy 
number. d) Dissections of three CD20 B cell clusters (labelled 3, 6 ,and 9) and one plasma cell cluster (CD38-6) from 
patient PD42773. 

a) 
 

d) 
 

b) 
 

c) 
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COSMIC database. Further discussion of mutational signature analysis across all samples will 

follow in a subsequent section.  

 

The findings from the B cell sample of patient PD42773 illustrate the ability to extract 

expanded cell populations by tissue microdissection. This biopsy shows a CD20 B cell clone 

that has populated the gland and whose expansion was very likely driven by underlying 

proliferation-associated mutations. This was the only patient with a detectable monoclonal 

population of B cells harbouring known cancer driver mutations. It could be the case that this 

patient is on the trajectory to developing lymphoma and the B cell lesions could be considered 

pre-lymphoma. There are additional features that set this patient apart from the rest of the 

cohort and suggest more advanced disease, namely the clinical presence of peripheral 

neuropathy and a low-positive finding of anti-MAG (myelin-associated glycoprotein) antibody 

and IgM kappa paraprotein in the blood. The L265P mutation has been previously identified 

in patients with IgM anti-MAG paraprotein-associated peripheral neuropathy182. The L265P is 

also found in >90% of patients with Waldenstrom’s macroglobulinemia183, a low-grade B cell 

malignancy similarly associated with IgM kappa paraprotein, as well as in IgM monoclonal 

gammopathy of uncertain significance (MGUS)184. MYD88 L265P has also been found in 

marginal zone B-cell lymphomas, including MALT lymphoma185. Given the serological finding 

of IgM paraprotein and its association with the MYD88 mutation, it is possible that the B cell 

Table 13. Coding mutations found in discrete B cell clusters (3, 9, and 10) and a plasma cell cluster of 
biopsy from patient PD42773. “Nonsyn” denotes nonsynonymous amino acid change. 

Gene Amino acid Trinucleotide 
context 

Mutation 
type 

CD20-3 
VAF 

CD20-9 
VAF 

CD20-10 
VAF 

CD38-6 
VAF 

CCT6B N23S TTA>TCA nonsyn 0.32 0.30 0.53 0 
LILRB5 R95* GCG>GTG stopgain 0.40 0.38 0.44 0 
IGLL5 L39P CTG>CCG nonsyn 0.22 0.25 0.56 0 
MYD88 L265P CTG>CCG nonsyn 0.36 0.33 0.23 0 
ERBIN Q320* GCA>GTA stopgain 0.25 0.41 0.30 0 
PGC E327* CCT>CAT stopgain 0.32 0.27 0.41 0 
NYAP1 V524D GTC>GAC nonsyn 0.46 0.16 0.17 0 
KIAA1432 L1063P TTT>TAT nonsyn 0.32 0.32 0.44 0 
NCS1 E24G CTC>CCC nonsyn 0.14 0.23 0.40 0 
CXorf38 N95K ATG>AGG nonsyn 0.63 0.80 1.00 0 
GRIA3 R660G CTC>CCC nonsyn 0.40 0.50 0.57 0 
CGN R211W ACG>ATG nonsyn 0.22 0.14 0.06 0 
IGFN1 A2567S ACG>AAG nonsyn 0.12 0.17 0.20 0 
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clone harbouring this mutation would be detectable in the blood of this individual; 

sequencing of blood-derived B cells is pending.  

 

It is unclear whether the B cell findings from patient PD42773 are an isolated case, or if it is 

representative of more advanced PSS, as suggested by the clinical findings of peripheral 

neuropathy and a monoclonal component in the blood. Sequencing of additional LCM-derived 

samples is currently underway, which will determine whether B cell clusters from other 

patients are also clonally expanded. For this purpose, the LCM approach is more sensitive 

than bulk sequencing for evaluating B cell aggregates. However, for CD4 and CD8 T cell 

samples, the same success of isolating clonal populations was not replicated, since their 

distribution is more diffuse and therefore more difficult to microdissect. Extracting clonal 

populations for sequencing analysis from minor salivary gland biopsies remains challenging, 

but by using two approaches I have been able to demonstrate the respective strengths of 

each. 

 

IV. Integrated analysis of minor salivary gland lymphocytes  

With the combined set of FACS-sorted and LCM-derived lymphocyte samples, I performed 

further analyses to infer mutational patterns across the cell subtypes. These included 

mutational signature analysis to evaluate the mutagenic processes active in lymphocytes, and 

analysis of positive selection of genes by implementation of a dN/dS algorithm across 

samples. 

 

IV.1 Mutational signature analysis 

Single nucleotide variant (SNV) calls were used to extract mutational signatures and compare 

them to signatures of known exposure in the COSMIC database. This was done using a 

hierarchical Dirichlet process to break down the contribution of signatures in a sample using 

the distribution of mutations across a spectrum of 96 mutational trinucleotide contexts 

(Methods). Due to a low number of observed variants, resulting from low coverage and/or 

polyclonality, the signature extraction could not produce meaningful results for some 
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samples. Therefore, results from samples with less than 100 observed SNVs were not taken 

into consideration.  

 

In the group of B cell samples with sufficient SNVs called, we observed the presence of 

COSMIC Signature 9 (SBS9), associated with the off-target effects of B cell somatic 

hypermutation (SHM) machinery (Figure 13a). The three expanded B cell samples from 

patient PD42773 had the highest number of SNVs (up to 2,000), and the burden of additional 

mutations in these samples is attributed to SBS9, suggesting highly active SHM processes have 

occurred in this B cell clone at some stage of ontogeny. However, the pathogenic coding 

mutations observed in these samples are not the T>G transversions characteristic of SBS9, 

suggesting that SHM activity was not the cause of these mutations. Rather, the increased 

hypermutation activity may be subsequent to the mutations and a result of the activated 

phenotype of the cell. Endogenous signatures SBS1 and SBS5, attributed to normal “clock-

Figure 13. WGS mutational signatures in a) B cell samples; top bar chart shows number of variants, bottom 
chart shows proportion of mutations explained by given signature (white space denotes unattributed 
mutations); red line separates samples to the right which have too few mutations for extracting meaningful 
results. b) Mutational signatures in T cell samples. “S” signatures are those found in COSMIC database, “N” 
denotes novel signatures extracted by HDP algorithm 
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like” processes of cellular ageing and replication, were also found ubiquitously across the B 

cell samples, as expected. 

 

In T cell samples, we likewise observed signatures SBS1 and SBS5 across all samples with 

sufficient variant calls. Additionally, signature SBS8 was observed, and to a smaller extent, 

SBS18 (Figure 13b). The aetiology of SBS8 is not known, though it has been observed across 

a wide array of cancer types, mostly solid tumours11. SBS18 is thought to be a result of damage 

caused by reactive oxygen species and has been observed in varying degrees across normal 

tissues and cancer. Two of the three KDM6A substitutions are T>C transitions, possibly 

attributable to signature SBS5. 

 

IV.2 Analysis of genes under selection 

To assess if any genes in the combined lymphocyte dataset were under positive selection, we 

applied the dN/dS algorithm (Methods) to infer whether the ratio of nonsynonymous to 

synonymous mutations in any given gene was higher than expected based on its background 

mutation rate. This analysis was done using variant calls from whole genome and targeted 

sequencing of tissue-derived lymphocytes. The first method utilized only variants from WGS, 

and selection analysis was done in an unbiased manner across all coding regions of the 

genome. The second method used combined variant calls from TGS and WGS and focused the 

analysis only on genes targeted by the pull-down panel. In the latter approach, KDM6A was 

under significant positive selection (qval = 9.3·10−4, Table 10), which has been previously 

discussed in the TGS results section, but was not significant in the WGS-only analysis. This is 

due to the fact that the low VAF variants identified by TGS were not confirmed in the WGS 

due to lower sequencing depth and sensitivity of detection. 

 

Additionally, mutations in the IGLL5 gene were found to be significantly recurrent (qval = 

3.3·10−6 in targeted analysis, not significant in genome-wide analysis, Table 10). IGLL5 variants 

Table 15. Genes under positive selection by dN/dS analysis of genes in targeted gene panel. 

Gene # Synonymous # Missense # Nonsense # Splicing # Indels FDR q-value 
KDM6A 0 0 3 0 1 9.3·10−4 
IGLL5 1 5 0 0 0 3.3·10−6 
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were found in B cell and plasma cell samples, at variable VAFs, up to 0.56 in the clonally 

expanded PD42773 B cell sample. This gene is in the immunoglobulin lambda locus on 

chromosome 22 and forms part of the joining and constant regions of B cell receptor 

sequences, but not variable regions. Little else is known about the function of IGLL5, though 

it is found recurrently mutated in chronic lymphocytic lymphoma (CLL) and diffuse large B cell 

lymphoma (DLBCL)186, and in a CRISPR-screen study has been identified as a tumour 

suppressor in DLBCL187. Due to its location in the immunoglobulin locus, it is targeted by 

canonical AID hypermutation, but also by non-canonical AID effects186. We observed a total 

of six distinct coding variants in IGLL5 and several noncoding variants, several of them shared 

between multiple B lineage samples from the same individual. 

 

V. Discussion 

This study is the first to perform DNA sequencing for somatic mutation detection on 

lymphocytes from salivary gland biopsies from primary Sjögren’s syndrome. As far as we are 

aware, it is also the first to do so with tissue-infiltrating lymphocytes in any autoimmune 

disease. As discussed in the Introduction section, the interest in somatic mutations in normal 

tissue and chronic diseases has gained traction only in the past few years, driven by the 

development of technologies that have enabled these studies. The challenges faced centre 

around sensitivity of detection due to the low clonality of normal, non-cancerous tissues. In 

this study, we paired an ultra-low input library preparation protocol with techniques for cell 

type enrichment to investigate the mutational landscapes of tissue infiltrating lymphocyte 

subpopulations.  

 

We observed recurrent mutations in KDM6A in T cell samples, a total of four protein-

truncating variants. Apart from one KDM6A mutation which had a variant allele frequency 

(VAF) of 23%, the remaining variants were at much lower VAF, down to 3%. The sequencing 

coverage at the sites of KDM6A mutations was less than 100X in three out of four samples. 

Therefore, several of the variants found were just above the technical limit of detection. This 

begs the question: had it been possible to sequence these samples at higher depth, would we 

have found additional KDM6A mutations? To further explore this, more sensitive methods 

would be required. In particular, single cell methods would be best suited to overcome the 



 
 

85 

limitation posed by polyclonality of samples. We have made attempts to grow single cell 

lymphocyte colonies, however the success rate of this protocol is low and yielded no viable 

cultures from minor salivary gland lymphocytes. Sequencing of genomes from individual cells 

does not currently lend itself well to mutation discovery and signature analysis in polyclonal 

samples, as the rate of artefacts introduced by whole genome amplification is high. 

 

Nevertheless, the recurrence of loss-of-function UTX (KDM6A) variants in PSS is a novel and 

intriguing finding. Paired with loss of X chromosome in potentially the same clones as the 

mutations, this would result in cells with no functional UTX protein. KDM6A is a tumour 

suppressor commonly mutated in haematological malignancies and certain solid tumours, 

with inactivating mutations often found in lymphomas and T cell acute lymphoblastic 

leukaemia (T-ALL)172. KDM6A is one of several genes on the X chromosome that escapes X-

inactivation, thereby both copies are expressed in normal female cells. The mechanism of 

tumour suppression by KDM6A is incompletely understood but thought to possibly be 

independent of its histone demethylase function188. While it has been shown that inactivating 

mutations in UTX lead to increased H3K27 histone methylation of many genes and impart a 

proliferative advantage, it is unclear how the loss of UTX activates oncogenes172. 

Overexpression of wildtype KDM6A, on the other hand, has been shown to cause cell cycle 

arrest in human fibroblast cell lines189. The effect of UTX loss is dosage dependent, as 

demonstrated by mouse models of B cell lymphoma. Loss of both copies of UTX in female Eμ-

Myc transgenic mice (which are predisposed to lymphoma) greatly accelerates 

lymphomagenesis, while loss of one copy does so to a lesser but still significant extent174. 

Male Eμ-Myc mice with UTX knockout and an intact copy of the Y-chromosome paralog, UTY, 

developed lymphoma significantly faster than Eμ-Myc UTX+/- female mice, suggesting that 

UTY does not provide a comparable tumour suppressive function174. These and other relevant 

findings have been used to hypothesize that X-linked escape-from-inactivation tumour 

suppressor genes might be responsible for the higher rate of cancer in men190. If indeed loss 

of both copies of UTX imparts proliferative disinhibition, it would lead to selective expansion 

of the T cells that harbour it. To understand if this also has an immune activating effect, 

further studies such as expression and methylation analysis would be needed. UTX acts 

epigenetically on many downstream genes, including immune-related genes191,192, so 

assessing these downstream effects would be crucial. We were not able to perform additional 
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studies on the samples in which KDM6A mutations were identified since all biopsy material 

was consumed for the preparation of sequencing libraries. 

 

Much more frequently than KDM6A mutations, we observed loss of the X chromosome, in 

around three quarters of female CD8 T samples and a third of CD4 T samples (but no B lineage 

samples). It has long been recognized through cytogenetics studies that lymphocytes 

frequently lose sex chromosomes with age193,194. Why this happens preferentially in 

lymphocytes is not known. Estimates of the rate of Y and X chromosome loss range from one 

to several percent of blood lymphocytes in ageing individuals193,194. Loss of sex chromosomes 

was for a long time not thought of as a deleterious event, since it preferentially affects the 

inactive X chromosome in women and Y chromosome in men, both of which were considered 

dispensable to an ageing cell. More recently however, loss of the Y chromosome in blood cells 

has been associated with an increased cancer risk and overall higher mortality in men195. As 

such, this phenomenon is similar to clonal haematopoiesis of indeterminate potential (CHIP) 

in ageing individuals, which carries a similar risk of cancer and morbidity. The implications of 

age-associated monosomy X are unclear.  

  

It is known that monosomy X preferentially affects the inactive X (Barr body), and in a study 

of peripheral blood and buccal cells, rates of monosomy X were up to 0.45% in 75-year old 

apparently healthy women178. Due to the female predominance of many autoimmune 

diseases, some studies have investigated the presence of X chromosome aneuploidy and 

skewed patterns of X-inactivation in this context, and both events were found to be 

associated with certain autoimmune diseases including primary biliary cirrhosis, autoimmune 

thyroid disease, and scleroderma179. In one study, monosomy X was found in about 5.5% of 

peripheral lymphocytes of women affected by these diseases, compared to 1.5% of 

lymphocytes from healthy age-matched women179. Additionally, women with Turner’s 

syndrome (45,XO) are also predisposed to some of these particular autoimmune 

diseases196,197. Primary Sjögren’s syndrome has not specifically been associated with Turner’s 

syndrome however. It has instead been observed that men with Klinefelter syndrome 

(47,XXY) are over-represented in cohorts of male patients with PSS and lupus198,199. These 

observations point to an important but complex and poorly understood role of the X 
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chromosome in autoimmune diseases, which seemingly revolves around careful dosage 

control of multiple genes on X. 

 

Additionally, monosomy X has been observed in acute lymphoblastic leukaemia, sometimes 

as the only cytogenetic abnormality200. It has also been found in some cancers, including 

breast carcinoma180. Association with cancer suggests a role of the inactive X in controlling 

cellular proliferation, as has been previously alluded to by the discovery of tumour suppressor 

genes which escape X inactivation. 

 

The frequency of monosomy X in our dataset is significantly higher than what has been 

reported in blood lymphocytes of healthy women. Additionally, the previously mentioned 

studies did not observe a difference in rates of monosomy X between T and B lymphocytes, 

while our investigation shows a markedly higher rate in T cells, especially cytotoxic T cells. 

These findings suggest that perhaps monosomy X imparts a selective advantage that is 

specific to T cells in the context of disease. Tissue resident CD8 cells are driven to proliferate 

by innate immune activation and MHC-I expressing cells marked for cytotoxic deletion. In 

inflamed PSS salivary glands, CD8s may be aberrantly targeting healthy glandular epithelial 

cells expressing self-antigen, killing them and releasing more self-antigens into the 

environment, thereby stimulating a further immune response. In this context, CD8s might be 

continually primed for activation and selected for based on their survival ability. It is therefore 

tempting to conjecture that monosomy X, especially when paired with the loss of an X-linked 

tumour suppressor, may be providing the survival advantage that is selected in an 

environment of chronic immune stimulation.  

 

However, it remains difficult to draw confident conclusions about the pathogenicity of this 

phenomenon and its specificity to PSS due to the lack of normal tissue-derived lymphocytes 

as a true control for PSS biopsies. Several biopsies from patients who were not ultimately 

diagnosed with PSS showed evidence of monosomy X in cytotoxic T cells from tissue, along 

with subtle evidence of monosomy X in blood CD8s as well. It is difficult to contextualize this 

finding when the patients in question were not truly healthy controls, as they had symptoms 

of salivary gland dysfunction similar to that in PSS, and they had similar numbers of immune 

cells extracted from their salivary glands as some of the patients with confirmed PSS. 
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Therefore, to investigate whether monosomy X in tissue-resident T cells is truly a feature of 

PSS or if it is a phenomenon related to normal tissue-driven expansion, general inflammation, 

or age-related aneuploidy requires further investigation. This would entail extraction of 

tissue-resident lymphocytes from healthy uninflamed tissue and examining their karyotypes 

by cytogenetics or their copy number variations by sequencing. Additionally, a closer 

examination of the rates of monosomy X in blood T cells versus B cells would be beneficial, as 

this has not been thoroughly examined in previous studies. 

 

Another intriguing finding related to monosomy X in this study is that the aneuploidy does 

not in all cases seem clonal in origin, given the B-allele frequency trends and the comparison 

to size of largest TCR clone (Table 3c, Fig. 8f). In some CD8 samples, the estimated size of a 

clone with monosomy X is very close to the size of the largest TCR clone identified in that 

sample, so it is plausible to suspect that loss of X occurred in that particular TCR clone, which 

expanded in the tissue. In other samples, the clone sizes are not concordant, and the fraction 

of cells with monosomy X appears two or three times greater than the largest TCR clone. 

While the sensitivity of V(D)J detection in these polyclonal samples can legitimately be called 

into question, if we assume for the sake of argument that the TCR clone sizes detected are 

accurate, then there are two scenarios that can explain the data observed. The first possibility 

is that T cells with diverse V(D)J repertoires are produced early in life, released into the 

circulation, and eventually come to inhabit the salivary glands, where they are driven to 

proliferate by antigen, and in the process lose their X chromosome and subsequently lose the 

remaining copy of UTX by mutation as well. Thereby, the progression would be: repertoire 

diversification, X chromosome loss, acquisition of UTX mutation. Conversely, the second 

possibility is that the X loss and UTX mutation occur in a T cell precursor, prior to V(D)J 

diversification, which would result in several TCR clones harbouring both monosomy X and 

the UTX mutation. Given the clonal frequencies in sample PD42055c (XO clone = 28%, UTX 

clone = 23%, TCR clone = 10%; Table 3c), it seems the latter scenario is more likely for this 

sample. If this is true, then a significant proportion of T cells in blood of this individual would 

also harbour X loss and the UTX mutation. We have not yet been able to test this patient’s 

blood to determine if this is the case. 
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The B cell findings of this study highlighted the recurrently mutated IGLL5 gene in PSS. While 

significant by dN/dS analysis, it is difficult to interpret the importance of this finding since the 

function of this gene is poorly understood. It is not a known cancer driver, but it has been 

repeatedly mutated in chronic lymphocytic leukaemia186 and diffuse large B cell lymphoma187, 

therefore it could be affecting proliferation of B cells in the context of PSS as well. This study 

also yielded evidence of varying degrees of clonal expansion of B lineage cells by repertoire 

analysis, identified non-canonical AID activity as a major contributor to genome-wide 

mutagenesis in these cells, and identified IGHV3-7 as the most commonly used 

immunoglobulin heavy chain V gene in this cohort. 

 

However, the B cell findings overall revealed an unexpected paucity of lymphoma-driver 

mutations. Given the multiple previous studies that suggest active B cell proliferation in the 

PSS salivary glands and a propensity for development of B cell lymphoma88,94,168, we 

suspected that B cells would be accumulating detectable driver mutations during the course 

of the disease. While this is still a plausible hypothesis, the findings of this study have not 

strongly confirmed it, despite using different methods of cell isolation and sequencing to 

investigate the question. I observed bona fide cancer driver mutations in the clonally 

expanded B cells of patient PD42773, although this individual may be an isolated case in our 

cohort. Therefore, the original hypothesis that somatic mutations in “rogue” autoimmune B 

cells may be driving the pathogenesis of PSS from an early stage has not been proven by this 

study. Instead, the results suggest that perhaps lymphoma driver events occur at later stages 

of the disease, after many years of B cell stimulation and oligoclonal expansion in the 

inflammatory environment. Patient PD42773 seems to have had more advanced disease than 

the rest of the cohort, as indicated by peripheral neuropathy and a monoclonal component 

in the blood. If we were to sequence lymphocytes from patients with later stages of disease 

and paraprotenemia or other monoclonal features, perhaps we would see more mutation-

driven clonal expansion in tissue-resident B cells. Our overall cohort represented the earliest 

clinically validated stages of PSS, at the time of diagnosis, at which point we see little evidence 

of driver mutations in B cells. It is all the more striking perhaps, that we instead see recurrent 

somatic mutations and copy number changes in T cells (particularly cytotoxic T cells) at this 

stage, which may underlie the early pathogenesis of PSS. This study therefore identifies 

cytotoxic T cells as potential key players in PSS, a disease canonically considered to be a “B 
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cell disease”, highlighting the need for further investigation of their molecular function and 

effect of the somatic alterations. 
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Chapter 4: Single-cell expression profiling of lymphocytes 
infiltrating minor salivary glands 

To date, most immunophenotyping and transcriptomic studies in primary Sjögren’s syndrome 

(PSS) have focused on whole blood to detect systemic changes that characterize the 

autoimmune response102,107. This approach has successfully identified cell type trends and 

gene signatures significantly altered in the disease, such as lymphopenia and a persistent 

signature of interferon activation78,109. Conversely, the lymphocytic infiltrate in affected 

minor salivary glands has not been well characterized. Classical analysis by 

immunohistochemistry staining for lymphocyte markers and gene expression studies has 

identified an abundance of T cells in minor salivary glands of PSS patients169, along with 

increased levels of plasma cells and B cells, which sometimes aggregate into germinal centre-

like structures94,201. Recently, a more comprehensive investigation was carried out by mass 

cytometry with 34 specific antibodies to characterize various cell types present in the minor 

salivary glands and blood of PSS patients112. The key tissue-related findings from this study 

were high levels of activated CD8 T cells expressing MHC class II molecules, terminally 

differentiated plasma cells, and activated epithelial cells in PSS biopsies compared to non-PSS 

controls, which correlated with disease severity. These important observations point to 

previously under-appreciated cell types which likely play a role in disease, highlighting the 

need for further studies to understand their functions and characteristics.  

 

Transcriptomic studies can identify genes and signalling pathways that are differentially 

enriched in disease states and point to potential mechanisms of disease activity. Single cell 

transcriptome profiling takes this concept a step further, allowing for high resolution analysis 

and identification of rare and novel cell types. Single cell RNA sequencing has yielded many 

exciting discoveries in recent years, however, to our knowledge, it has not yet been used to 

query tissue infiltrating lymphocytes in PSS minor salivary glands. To characterize the cell 

types and transcriptomic features of these infiltrating immune cells, I performed a single cell 

RNA sequencing analysis of biopsy-derived immune cells from donors with PSS and those with 

non-PSS sicca symptoms as controls. The findings are described in this chapter. 
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STUDY AIMS 

1. Use single cell RNA (scRNA) sequencing to describe the cell types and gene expression 

profiles of lymphocytic infiltrates in minor salivary gland biopsies from PSS and non-

PSS donors. 

 

As mentioned, previous tissue phenotyping studies have described certain key 

characteristics of lymphocytic infiltrates in PSS minor salivary glands. scRNA 

sequencing has the potential to build on and expand those findings by analysing a 

greater number of genes and cells from a given donor in a high throughput manner. 

 

2. Investigate clonality and expansion trends by surveying the T-cell and B-cell receptor 

sequences. 

 

Certain techniques employed for scRNA library preparation allow for the downstream 

bioinformatic reconstruction of V(D)J rearrangements in T and B cells. The receptor 

sequences can inform us of clonal expansion with high resolution, and in conjunction 

with expression analysis, inform us of the cell type and functionality of clonally 

expanded cells. 

 

3. Look for potential correlates between findings of scRNA sequencing and findings of 

DNA sequencing of a different cohort of PSS and non-PSS biopsy-derived lymphocytes 

(described in Chapter 3). 

 

Our genomic investigation of tissue infiltrating lymphocytes yielded observations 

about clonality, receptor usage, and somatic alterations (particularly in cytotoxic T 

cells). Single cell transcriptome profiling, even from a different set of PSS and non-PSS 

donors, could potentially offer complementary insights. 
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STUDY DESIGN 

To conduct a single cell transcriptomic study, fresh minor salivary gland tissue was obtained 

from patients undergoing diagnostic biopsies based on suspicion of Sjögren’s syndrome. 

Biopsies were obtained at the Newcastle University clinic under a research protocol approved 

by the UK Research Ethics Committee. The samples obtained were not from the same 

individuals as those used for the study described in Chapter 3, which investigated somatic 

mutations by DNA sequencing. While matching DNA and RNA sequencing from the same 

donors might have been optimal for research purposes, biopsy size of minor salivary glands 

was too small to provide enough cellular material for both studies from the same tissue. All 

patients enrolled in the study experienced oral dryness and other symptoms indicative of 

Sjögren’s syndrome, and histopathological examination of their minor salivary gland biopsies 

determined whether there was focal lymphocytic infiltration which meets the diagnostic 

criteria for Sjögren’s syndrome. Based on the histological findings in conjunction with other 

criteria such as serum autoantibody findings, a diagnosis was made of either primary Sjögren’s 

syndrome or non-Sjögren’s sicca (non-PSS in further text). For the purposes of the study, both 

PSS and non-PSS samples were examined, using the latter as a control for the disease. 

However, it should be kept in mind that the “control” group had salivary gland dysfunction of 

a different nature, even if the tissue appeared histologically normal. 

 

Biopsies were processed and digested with a collagenase enzyme protocol by Dr Paul Milne 

at Newcastle University to obtain single cell suspensions. Downstream processing of 

disaggregated cells involved two protocols for two separate methods of single cell RNA 

sequencing. One batch of samples was processed for SmartSeq2 full length cDNA sequencing 

and another batch for 10X 5’ cDNA single cell sequencing with V(D)J enrichment. I therefore 

have two datasets of single cell transcriptomes, one from a full-length cDNA plate-based 

method and the other from a 5’ cDNA enriched droplet-based method (Figure 14).  

 

The first protocol involved fluorescence-activated cell sorting (FACS) of the disassociated cell 

suspensions into single wells of a plate, using lymphocyte surface markers for T and B cells. In 

this way, single cells were separated into wells and categorized by their lymphocyte 

compartments, which included the following groups (initially gated on CD45+ and CD3+/-): 
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CD4+ T cells, CD8+ T cells, CD3+ T cells, CD19+CD38- B cells, CD19+CD38+ plasmablasts, CD19-

CD38+ plasma cells, and CD19-CD38- “other” cells. The single cells were made into individual 

RNA sequencing libraries by the SmartSeq2 protocol. This process yielded full length cDNA 

sequences which allowed for both expression analysis and reconstruction of T cell and B cell 

receptor sequences through their expression of V(D)J genes. A total of six confirmed PSS 

biopsies and four non-PSS biopsies were processed in this way.  

 

The second protocol relied on enrichment of immune cells by selection of those expressing 

the CD45+ cell surface marker by a bead-based method, also done at Newcastle University. 

The enriched immune cells were processed according to the 10X Genomics bead capture 

protocol, which involves tagging individual cells with unique cellular barcodes prior to cDNA 

retrotranscription. The barcoded cDNA samples from each donor were then split into two, 

one for constructing a 5’ enriched transcriptome library and the other for making a PCR-

enriched library of T and B cell V(D)J regions. The expression and V(D)J libraries were then 

sequenced separately and later combined for bioinformatic analysis based on the unique 

cellular barcodes. A total of three confirmed PSS biopsies and three non-PSS biopsies were 

sequenced in this way. 

 

Figure 14. Two approaches to single cell RNA sequencing: plate-based full-length cDNA approach 
(SmartSeq2) and droplet-based 5’ expression with V(D)J enrichment approach (10X Genomics). 
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I. Results of plate-based full-length cDNA single cell sequencing 
(SmartSeq2 protocol) 

Upon sequencing both sets of samples, I analysed the results separately due to the different 

underlying library preparation methods and the significant batch effects they would impart if 

the datasets were combined. I opted to compare the findings observed across both datasets 

and use the particular strengths of each approach to extract any additional information. The 

findings of the SmartSeq2 plate-based method are described first, followed by a validation of 

the key findings in the 10X droplet-based method.  

 

A total of 50 plates and 4,714 single cells were FACS-sorted from the minor salivary gland 

biopsies of six patients with confirmed PSS and four patients with symptoms of oral dryness 

for whom diagnosis of PSS was excluded, referred to as the “non-PSS” cohort (Table 1). Of 

these cells, 4,292 were sequenced by the full-length cDNA SmartSeq2 method. Alignment of 

reads to the hg19 genome build was performed using the STAR aligner for RNA sequencing, 

followed by trimming of adapter sequences and generation of a count matrix using the 

FeatureCounts tool. The raw matrix of counts per gene per cell was analysed with the 

a) b) c) 

Figure 15. QC of SmartSeq2 cells. a) Number of features (genes) detected per cell, grouped by patient; cells 
with fewer than 500 features removed (denoted by red line). b) Percentage of mitochondrial genes per cell, 
grouped by patient; cells with more than 10% mitochondrial genes subsequently removed (denoted by red 
line). c) Percentage of ERCC spike-in per cell, grouped by patient. 
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SingleCellExperiment and Seurat tools in R (described in Methods). Cells with fewer than 500 

genes detected as well as genes present in fewer than four cells were excluded from analysis 

(Figure 15a). Additionally, cells with more than 10,000 genes detected were excluded due to 

a high likelihood of being “doublets”, i.e. two cells instead of one. Cells were also filtered 

based on mitochondrial content, removing those with greater than 10% mitochondrial 

content which indicate low quality (Figure 15b). Further inspection of gene counts revealed 

an unexpectedly high proportion of the External RNA Controls Consortium (ERCC) synthetic 

spike-ins across a majority of cells (Figure 15c), which were added as an internal gene control 

to the RNA sequencing experiment. Despite the observation that ERCC genes frequently 

accounted for >50% of all reads for a given cell, I was able to proceed with downstream 

analysis because of sufficient depth of sequencing which enabled detection of biological 

signal amidst the noise of ERCCs. To minimize the effect of ERCC genes in downstream steps, 

ERCC percentage was controlled for by linear regression (Methods). Principal component 

analysis (PCA) confirmed that ERCC content was not a significant source of variability in the 

dataset, since ERCC genes did not contribute to the main two principal components, and cells 

with high and low ERCC content did not separate into distinct groups in the PCA projection 

(Figure 16a). Therefore, cells with high ERCC content were not removed from the analysis. 

After filtering cells by the number of genes detected and the mitochondrial content, the 

number of cells that passed quality control for further analysis was 2,290.  

 

Table 16. Samples sequenced with SmartSeq2 protocol. 

Patient Diagnosis Focus 
Score 

Age Sex Diagnostic notes # Cells 
sorted 

DSO-297 PSS 2-3 61 F  410 
DSO-298 PSS 2-3 74 M  476 
DSO-301 PSS 2-3 57 M  412 
DSO-308 PSS 2-3 76 F Gastric MALT lymphoma 556 
DSO-312 PSS 2-3 35 F  732 
DSO-315 PSS 1 59 F  84 
DSO-296 Not PSS - 29 F Fibromyalgia 437 
DSO-309 Not PSS - 77 F Basal cell carcinoma, 

meningioma 
184 

DSO-311 Not PSS - 52 F Chronic fatigue syndrome 624 
DSO-314 Not PSS - 44 F Peripheral neuropathy, 

fibromyalgia 
801 

 
 
Figure 16Table 17. Samples sequenced with SmartSeq2 protocol. 
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I.1 Clustering and cell type detection 

Downstream analysis of filtered cells required normalization of gene counts, which was done 

with the Seurat package and entailed normalizing by the total counts in a given cell, 

multiplying by a scaling factor of 10,000, and log-transforming (Methods). The normalized and 

scaled gene counts were used in all subsequent steps. To understand and visualize the sources 

of variation in the dataset, linear and nonlinear dimensionality reduction methods were used: 

principal component analysis (PCA, Figure 16a) and t-distributed stochastic neighbour 

embedding (tSNE, Figure 16b-f), respectively. The t-SNE projection was coloured by cell type 

identities previously determined by FACS sorting, which showed that cells of the same type 

(including B cells, T cells, plasma cells, and HLA-DR+ cells) were correctly grouped together by 

the unsupervised t-SNE algorithm (Figure 16c). After labelling the cell type groups which 

corresponded to given areas of the t-SNE plot, colouring of the t-SNE projection by high and 

low ERCC expression was informative for determining that cells with a lower proportion of 

ERCCs were almost exclusively plasma cells and HLA-DR+ antigen presenting cells (Figure 

16b,c). This finding was biologically plausible, given that both cells types express high levels 

of transcripts which would lower the relative contribution of ERCCs: plasma cells express very 

high levels of immunoglobulins and HLA-DR+ cells are large antigen presenting cells with high 

transcriptional activity. 

 

Clusters of cells with shared characteristics were identified using a graph-based clustering 

approach, called shared nearest neighbour (SSN) analysis, shown on the t-SNE projection 

(Figure 16d). Many of the identified clusters corresponded to the cell type categories 

previously determined by FACS sorting (Figure 16c), confirming that the SNN analysis 

clustered cells into groups based on biological function and not by other effects such as inter-

patient variation (Figure 16f). Colouring the t-SNE projection by patient diagnosis, i.e. 

whether PSS diagnosis was ultimately confirmed or disproved upon biopsy, showed that some 

clusters had a higher proportion of cells from biopsies with confirmed PSS (Figure 16e). This 

includes SNN cluster 8, which corresponds to the FACS-sorted B cells (defined by CD45+CD3-

CD19+CD38- FACS gating). More than 95% of the 120 cells in this cluster originated from 
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confirmed PSS biopsies, suggesting that this cell type may be overrepresented in the disease. 

Similarly, over 90% of cells in SNN cluster 4, corresponding to FACS-sorted plasmablasts and 

plasma cells (defined by CD45+CD3-CD19+CD38+ and by CD45+CD3-CD19-CD38++, respectively), 

derive from PSS patient biopsies. Conversely, most of the plasmablasts and plasma cells from 

non-PSS biopsies were grouped into SNN cluster 0. It should be noted that there are about 

twice as many PSS cells as non-PSS cells in this analysis (1,560 versus 730). To evaluate the 

relative distribution of PSS and non-PSS cells among the clusters, the percentage of total PSS 

Figure 17. Visualization by dimensionality reduction. a) Projection of principal components 1 and 2, coloured 
by ERCC content of cells (>50% = ”high”, >50% = ”low”) b) tSNE projection coloured by ERCC content of cells. 
c) tSNE projection coloured by index sort cell types. d) tSNE projection coloured by clusters identified through 
shared nearest neighbour (SNN) analysis. 
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and non-PSS cells forming each cluster was compared by a Fisher’s exact test (Figure 17a). It 

became evident that PSS biopsies had a significantly higher proportion of cells belonging to 

SNN clusters 2,4,5,7, and 8 and a significantly lower proportion of cells in cluster 0 than the 

non-PSS biopsies. The proportion of total cells contributing to clusters 1,3,6, and 9 was similar 

between PSS and non-PSS biopsies.  

 

* 
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* 
 

* 
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4: Plasma cells 

 

8: B cells 

 
0: Plasma cells 

 

1: CD8 T cells 

 

3: Monocytes, dendritic 
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 6: CD4 T 
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9: NK cells 

 

2: CD8 T cells 

 

5: Plasma cells 

 

a) b) 

c) 

Figure 18. SNN cluster features. a) Fraction of total PSS and non-PSS in each cluster, compared by Fisher’s 
exact test (adjusted by multiple testing correction): SNN0 p=9.9·10−18; SNN2 p=3.1·10−15; SNN4 p=1.8·10−14; 
SNN5 p=1.7·10−4; SNN7 p=9.8·10−14; SNN8 p=1.9·10−13; SNN1,3,6,9 p-value not significant. b) Putative cell types 
annotated on t-SNE projection. c)Heatmap showing top six differentially expressed genes from each SNN 
cluster, coloured by Z-scored expression (where 0 is equal to population mean). 
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To further interrogate the cell types and functionalities defining the SNN clusters, 

differentially expressed genes were identified for each cluster by comparing expression levels 

with a non-parametric test (Wilcox test) in the Seurat suite of tools. The relative expression 

of the top six biomarkers from each cluster were visualized by a heatmap for comparison 

(Figure 17c). By performing a literature search of the cluster biomarkers in conjunction with 

known cell type information from the FACS sorting data, I inferred the most likely cell type 

identity for each cluster (Figure 17b). In addition to the expected T cell, B cell, and plasma cell 

groups that were FACS sorted, the analysis identified the presence of NK cells, dendritic cells, 

monocytes, and glandular epithelial cells. NK cells co-localized with SNN cluster 9, as 

suggested by high expression of common NK cell marker genes including granulysin (GNLY), 

NK cell granule protein 7 (NKG7), and killer cell lectin-like receptor D1 (KLRD1), (Figure 

17c,5c). Myeloid cells were identified in cluster 3 by the expression of MHC class II, with a 

subset of cells expressing monocyte markers CD14 and/or CD16 and a subset expressing 

dendritic cell markers CD1c and CD103 (Figure 17c, Figure 18c). Glandular epithelial cells were 

detected in cluster 7 based on high expression of commonly secreted salivary gland proteins 

such as salivary mucin 7 (MUC7), lysozyme (LYZ), and prolactin-induced protein (PIP) (Figure 

17c). 

 

I.2 T cell dynamics 

The unsupervised clustering analysis identified one cluster of CD4 T cells (cluster 6) and two 

clusters of CD8 T cells (clusters 1 and 2). The fraction of total cells from PSS samples in cluster 

6 was slightly higher than the fraction of non-PSS (not significant, Figure 17a). A majority of 

these CD4 cells were characterized by a CCR7+ profile (Figure 18a), suggesting a naïve or 

central memory CD4 phenotype. However, a comparison of subsets of PSS and non-PSS 

derived CD4 cells within cluster 6 showed that PSS CD4 cells had lower CCR7 expression 

(p<0.001, Wilcoxon test), slightly lower CD62L/SELL expression (p not significant) and higher 

STAT4 and CD69 expression (p<0.05, Figure 19a), indicative of T cell activation, suggesting 

that in disease the infiltrating CD4 cells might shift towards an effector memory phenotype.  
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Figure 19. Expression of key markers (log normalized expression). a) T cell markers: CD45, CD3, CD4, CD8, 
CCR7, and CD69. b) B cell markers: CD20 (MS4A1), CD38 (SDC1), CD27, IgM, IgG, IgA; groups enriched in PSS 
cells circled in red. c) Myeloid and NK cell markers: HLA-DRA, CD16 (FCGR3A), CD14, CD1C, NK cell granule 
protein 7 (NKG7), granulysin (GNLY) 

a) 

b) 

c) 

CD45 
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Figure 20. Markers of T cells. a) CD4 T cluster 6: comparison of within-cluster PSS and non-PSS cell activation 
markers CCR7, CD69, STAT4, and CD62L, log normalized expression compared by Wilcoxon rank sum test (* 
p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). b) CD8 T cell clusters 1 and 2: comparison of perforin, 
granzyme B, granulysin, and CXCR6 expression. c) Heatmap comparing differentially expressed genes between 
CD8 T cell clusters 1 and 2, Z-scored expression. 

b) 

1 2 

a) 

c) 

CD62L 
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Two groups of CD8 T cells were identified in the analysis, defined as clusters 1 and 2. Cluster 

2 constituted a significantly higher proportion of total PSS cells than non-PSS cells (p<10−13, 

Figure 17a) and was characterized by higher expression of genes related to cytotoxicity and  

effector function than cluster 1, including perforin, granzyme B, granulysin, and CXCR6 

chemokine (p<0.0001, Figure 19b). CD8 T cells in cluster 2 expressed higher levels of many 

activation and cytotoxicity-related genes than cluster 1 (Figure 19c), suggesting that the 

excess of cytotoxic T cells present in PSS salivary glands of these patients is made up of cells 

with a more active effector phenotype than CD8 T cells present in non-PSS biopsies. There 

was not notably higher expression of MHC class II molecules on these CD8 cells however, as 

identified by previous phenotyping studies using cytometry by time of flight. 

 

I.3 B cell and plasma cell dynamics 

Clustering analysis identified three clusters that are likely comprised of plasma cells and 

plasmablasts (clusters 0, 4, and 5) and one cluster of cells comprised of the CD45+CD3-

CD19+CD38- FACS-sorted population of B cells (cluster 8). Cluster 8 was distinctly separated 

from the plasma cells clusters on the tSNE projection and is composed of >95% cells derived 

from PSS biopsies, making this group of cells significantly enriched in the PSS cohort (p<10−12, 

Figure 17a). Cluster 8 highly expresses the B cell marker CD20 (MS4A1) and MHC class II 

molecules (HLA-DRA), but does not highly express CD27, CD138 (SDC1), and CD38 markers of 

memory B cell and plasma cell differentiation (Figure 18b). While a majority of the plasma 

cells in clusters 0, 4 and 5 expressed high levels of IgA transcripts (Figure 20a, Figure 18b), B 

cell cluster 8 expressed lower levels of IgA, moderate levels of IgM, and a small amount of 

IgD, suggesting that this group is comprised, at least in part, of IgM+ B cells which have not 

undergone class switch recombination. The high expression of MHC class II molecules implies 

an antigen presenting function, characteristic of an activated B cell  

phenotype. Cluster 8 did not express significant levels of germinal centre markers such as GL7, 

PD1, CD94, and BCL6 (not shown). The specificity of CD20+CD38- B cells to PSS minor salivary 

gland biopsies was shown in Chapter 3 with immunohistochemistry staining that 

demonstrated the presence of CD20-CD38+ plasma cells in non-PSS biopsies, while PSS 

biopsies showed localized aggregates of B cells expressing CD20 in addition to an increased 

number of plasma cells permeating the tissue throughout (Chapter 3, Figure 11d,e). 
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0 4 5 8 b) 

a) 

Figure 21. Markers of B cells and plasma cells. a) Plasma cell clusters 0, 4, 5 and B cell cluster 8: log normalized 
expression of immunoglobulins A1, G1, M and D. b) Heatmap of differentially expressed genes between 
plasma cell clusters (0,4,5) and B cell cluster 8 (Z-scored expression). 
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In addition to B cells, cluster 4 plasma cells were comprised mostly of cells from PSS biopsies 

(>90%) and contained a significantly higher portion of total PSS than total non-PSS cells 

(p=1.8·10−14, Figure 17a). This cluster contained a subset of cells which highly express IgG, 

setting it apart from the rest of the plasma cell population of clusters 0, 4, and 5 which highly 

expressed IgA (Figure 20a). A group of differentially expressed markers set cluster 4 apart 

from the other plasma cell clusters, 4 and 5 (Figure 20b). These include immunoglobulin genes 

as well as proliferation-associated genes such as long noncoding RNA LINC00152, which is 

highly expressed in various cancers202. It should be noted that a majority of cells in cluster 4 

(64%) derive from patient DSO308, who had a finding of earlier gastric mucosal-associated 

tissue (MALT) lymphoma noted in their clinical history. While the lymphoma was not found 

in salivary glands, it is worth keeping in mind the previous history of a B cell disorder in this 

individual and treating this sample as a potentially special case.  

 

I.4 V(D)J expression in single cells 

The full-length cDNA sequences obtained by the Smart-Seq2 library preparation method 

allowed for extraction of recombined V(D)J sequences that form the B cell and T cell 

receptors. To extract the expressed V(D)J sequences, the Mixcr algorithm was used, as 

mentioned in Chapter 3 for extraction of repertoires from bulk DNA sequencing reads 

(described in Methods). Additionally, the single cell platform allowed matching of heavy and 

light chain sequences from the same cell. The clonality of lymphocytes by donor and cell type 

group or cluster was assessed to determine the dynamics of clonal expansion of the 

infiltrating cells. 

 

As mentioned in the previous section, cluster 4 was populated mostly by plasma cells and 

plasmablasts from patient DSO308 and contained a subset of cells with high expression of 

IgG, which stood out from the remainder of cells which highly expressed IgA. To determine if 

cluster 4 IgG+ cells from DSO308 were clonal in origin, immunoglobulin heavy chain sequences 

were inspected. More than a third of these clones (36%) harboured receptors comprised of a 

heavy chain pairing between IGHV1-18 and IGHJ4 (Figure 21a), which formed several distinct 

but related CDR3 sequences, indicating that hypermutation of the original V(D)J sequence 

had taken place (Figure 21b,d). The overall population of cluster 4 (including  
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  a) b) c) 

d) 

e) 

f) g) 

h) i) 

Figure 22. B and T cell receptor sequence assessment. a) IGHV and IGHJ usage of IgG+ cluster 4 plasma cells 
from patient DSO308. b) CDR3 sequences of IgG+ cluster 4 plasma cells from patient DSO308. c) Clones found 
in cluster 8 B cells from patient DSO308. d) Receptor sequences of IgG+ cluster 4 plasma cells from patient 
DSO308. e) Receptor sequences of cluster 8 B cells from patient DSO298. f) IGHV + IGHJ pairing in cluster 8 B 
cell clones, coloured by patient. g) IGHV + IGHJ pairing in cluster 6 CD4 T cell clones, coloured by patient. h) 
IGHV + IGHJ pairing in cluster 2 CD8 T cell clones, coloured by patient. i) T cell heavy chain CDR3 sequences of 
patient DSO301 cells from CD8 cluster 2. 
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both IgG+ and IgA+ cells) was more oligoclonal, with the largest IGHV/IGHJ clone forming 11% 

of the cluster (not shown). Cluster 8, the group of B cells highly enriched in the PSS patient 

population, included only a few cells from individual DSO308. Among them the IGHV1-18 

/IGHJ4 clones were not found, however the second most-expanded clone in cluster 4 IgG+ 

cells, IGHV3-15/IGHJ4 (CSTFYDSQRAWRSFDNW), was observed (Figure 21c). Therefore, this 

clone existed both as an activated CD20+HLA-DR+ B cell and a class-switched antibody-

producing cell, suggesting that maturation into the plasma cell phenotype occurred within 

the tissue, or alternatively that this clone was selectively recruited to the site. 

 

Receptor analysis of B cell cluster 8, which was comprised of 112 reconstructed sequences, 

revealed a diverse, largely polyclonal V(D)J landscape with little evidence of clonal expansion. 

The largest clone was observed in patient DSO298, in which four out of 56 cells harboured 

the same IGHV3-33/IGHJ4 pairing and the same kappa light chain sequence. Given some 

variability in the IGHD and IGKV genes identified, along with mismatches in the CDR3 

sequence, these four cells may not actually be derived from the same parent cell but instead 

converged on a similar repertoire sequence. However, this is difficult to parse out definitively 

due to the similarity of small immunoglobulin genes to each other, which makes exact 

alignment challenging. Overall, this cluster of B cells, which is highly enriched in the PSS 

cohort, does not show evidence of significant intra-patient clonal expansion or inter-patient 

repertoire sharing based on analysis of the 112 reconstructed V(D)J sequences. 

 

As previously discussed, CD8 T cell cluster 2 contained a large proportion of PSS patient cells 

and displayed a more cytotoxic phenotype than the CD8 T cells of cluster 1. Repertoire 

analysis found that 20% of this cluster of 279 total cells was made up of an expanded clone of 

CD8 cells from patient DSO301, the largest clone of CD8 cells observed (Figure 21g). This clone 

was found in 19 out of 68 cells (28%) from patient DSO301 in this cluster (Figure 21h), while 

only two cells with this receptor were found in CD8 cluster 1 (not shown). The remaining 

clones in cluster 2 were smaller than 10% of the total cells but suggested oligoclonality of 

receptor usage (Figure 21g). CD4 T cells in cluster 6 were notably less clonal, with the largest 

clone comprising 2% of the total cells (Figure 21i). The oligoclonality of effector CD8 T cells 

observed here aligns with the levels of CD8 clonal expansion observed in bulk DNA sequencing 
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analysis in Chapter 3 and suggests that activated, clonally expanded cytotoxic T cells may be 

more prevalent in PSS minor salivary gland than non-PSS controls. 

 

The 2,290 cells analysed in this dataset represent a preliminary set of findings to guide further 

analysis. For a subsequent batch of samples, we opted to use the 10X Genomics single cell 

platform to sequence 5’ transcripts with enriched V(D)J sequences. The following section will 

describe how the findings of the droplet-based technique relate to the key findings from the 

plate-based analysis. 

 

II. Results of droplet-based 5’ expression with V(D)J enrichment single 
cell sequencing (10X Genomics protocol) 

In the previous section, the results of the plate-based single cell sequencing of 10 patient 

biopsies were described. For a further six biopsies, we opted to use a droplet-based platform 

instead, which has the advantage of higher throughput and obviates the need for FACS sorting 

of cells, a step which often results in high levels of sample attrition. The batch included three 

biopsies from patients with confirmed PSS and three from non-PSS controls (Table 12). This 

section will summarize the results of the droplet-based sequencing, focusing on the validation 

of key findings from the previous dataset rather than a methodical layout of all results, for 

the sake of brevity. 

 

 
Table 18. Samples sequenced with 10X Genomics 5’ expression with V(D)J expression protocol. 

Patient Diagnosis Focus Score Age Sex # Cells sequenced 
DSO-469 PSS 2 25 F 2,147 
DSO-470 PSS 5 32 F 771 
DSO-477 PSS 2 61 F 1,398 
DSO-478 Non-PSS - 64 F 1,132 
DSO-479 Non-PSS - 57 F 701 
DSO-480 Non-PSS - 45 F 989 
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The droplet-based method allowed for a higher number of cells per biopsy to be sequenced, 

however the average number of features (genes) detected per cell was lower than with the 

full-length cDNA platform (Figure 22a). For this dataset, cells with greater than 2,500 detected 

features were excluded to remove doublets. The percentage of mitochondrial DNA per cell 

was similar between the two platforms, and the same threshold of maximum 10% 

mitochondrial reads was applied (Figure 22b). Once low-quality cells were removed, 3,754 

total cells remained for downstream analysis. Normalization, dimensionality reduction, 

clustering, and differential expression analysis were done in the same way as described 

previously.  

 

The clustering analysis identified 13 clusters, as shown in the t-SNE projection (Figure 23a), 

and their cell type identities were inferred based on the cluster biomarkers (Figure 23b). Cell 

types identified correlated with those found in the plate-based approach and included B cells, 

plasma cells, CD4 and CD8 T cells, monocytes, dendritic cells, NK cells, and epithelial cells. 

Additionally, a cluster of stromal fibroblasts was identified based on high expression of 

stromal factors such as CXCL12, COL6A2, LUM, FN1, and MMPI4203. Like in the previous 

dataset, the percent contribution of total PSS cells was higher than that of non-PSS cells in B 

cell, plasma cell, and CD4 T cell clusters; however, unlike in the previous dataset, there was 

not a significant enrichment in the number of CD8 T cells (Fisher’s exact test, Figure 23d,c). 

CD8 clusters 1 and 3 had similar proportions of PSS and non-PSS cells. The differentially 

expressed genes of these two clusters showed different activation states, with cluster 1 

expressing higher levels of MHC class II molecules, interferon-gamma, and granzyme A, 

demonstrating an activated phenotype, while cluster 3 expressed higher levels of perforin,  

a) 
 

b) 
 

Figure 24. 10X droplet-based single cell sequencing QC, with red lines indicating filtering thresholds. 
a) Total features (genes) detected per cell. b) Percent mitochondrial reads per cell. 
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a) 

b) 

c) d) 

Figure 25. 10X dataset single cell projection and cluster biomarkers. a) t-SNE projection with inferred cell 
type identities of clusters labelled. b) Heatmap of top 6 differentially expressed genes per cluster (Z-scored 
expression). c) t-SNE projection labelled by diagnosis. d) Percent contribution of total PSS and non-PSS cells 
to each clusters, compared by Fisher’s exact test (Bonferonni adjusted p-values: SNN0=3.1·10−13, 
SNN1=6.3·10−2, SNN2=3.0·10−33, SNN3=1, SNN4=4.0·10−53, SNN5=1.0·10−38, SNN6=4.7·10−34, SNN7=1.5·10−16, 
SNN8=1.5·10−16, SNN9=1.9·10−16, SNN10=3.1·10−2, SNN1=1, SNN12=1.3·10−2) 
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granzymes A and K, and CXCR6, suggesting a cytotoxic phenotype. (p<0.0001, Wilcox test, 

Figure 24a). Within cluster 3, PSS CD8 cells displayed higher expression levels of perforin, 

granzymes A and K, and CXCR6 than the non-PSS cell population (Figure 24a), suggesting that 

the disease-associated CD8 T cells are in fact more cytotoxic than in non-PSS sicca, as 

observed in the previous dataset. Of the CD4 cells, cluster 2 (which is enriched in PSS cells, 

p<10−32), is distinct from CD4 cluster 5 (enriched in non-PSS cells, p<10−37) by higher 

expression of immune checkpoint and other genes associated with T cell activation, including 

CTLA4 and CD278 (Figure 23b), also underscoring the presence of a more active helper T cell 

population in disease. 

 

The 10X dataset validated the presence of the B cell population highly enriched in the disease 

setting: the CD20+HLA-DR+ B cells of cluster 4 (>95% PSS-derived cells). Likewise, an IgG 

producing plasma cell population (cluster 9) was highly enriched in PSS, as in the previous 

dataset (Figure 24a, Figure 23c). Both of these disease-specific clusters contained a large 

number of cells from donor PSS-477, so to examine potential clonal expansion in this patient, 
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Figure 27. CD8 T cell markers. Comparison of CD8 T cell markers between cluster 1 and 3, as well as between 
PSS and non-PSS cells within each group (Wilcoxon rank sum test). 
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the V(D)J repertoire was assessed. Repertoire sequences were obtained from the 10X 

CellRanger algorithm, which assembled the PCR-enriched V(D)J libraries. As before, the 

receptor sequences were oligoclonal, with the largest clone in this patient comprising 8% of 

the repertoire of this patient’s plasma cells in cluster 9 (Figure 25a). Cluster 4 B cells had few 

successfully assembled repertoires, and of those few, the main clones found in the patient’s 

plasma cells were not identified (not shown). While the 10X platform worked well for V(D)J 

assembly of plasma cells, it performed less well than the full-length cDNA approach for 

reconstructing repertoires of B cells in this group of samples. Overall, the B cell and plasma 

cell profiles were consistent across both datasets and highlighted two disease-specific 

populations with varying degrees of oligoclonal expansion. 

 

III. Discussion 

III.1 Summary of approach 

In this chapter, I undertook an analysis of single cell transcriptome dynamics of the infiltrating 

lymphocytes in PSS and non-PSS control biopsies. To our knowledge, this was the first study 

to analyse single cell genome-wide expression profiles in minor salivary glands of PSS. The 

approach was two-fold: sequencing one batch of samples with a full-length cDNA plate-based 

method (Smart-Seq2) and another with a droplet-based 5’ enriched cDNA method (10X 

Genomics). The two methods displayed distinct strengths and weaknesses for this type of 

tissue-derived sample, which was limited in cell number and required an enzyme-based tissue 

a) b) 

Figure 28. Heavy chain BCR repertoire rearrangements in cluster 9 plasma cells of patient PSS277. a)  IGHV 
and IGHJ pairing of clones. b) Unique CDR3 clones (sequences not shown). 

Unique CDR3 clones 
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disaggregation step. The full-length cDNA method, which involved fluorescence-activated cell 

sorting (FACS) prior to library preparation, had lower throughput in terms of number of cells 

successfully sequenced per donor. However, it had the advantage of more genes detected 

per cell, full length transcripts, and a more robust ability to detect V(D)J recombination. 

Conversely, the droplet-based method obviated the need for fluorescence-activated sorting 

of single cells, a step which results in significant sample attrition, yielding a higher number of 

successfully sequenced cells per donor. Despite these technical differences, both approaches 

yielded several similar conclusions. 

 

III.2 B cell findings 

Previous studies of tissue-infiltrating lymphocytes in minor salivary glands highlighted the 

presence of plasma cells and CD4 T cells as likely key cell types involved in the production of 

pathogenic autoantibodies88,169. Numerous studies have also described that, in some 

patients, infiltrating lymphocytes are organized into germinal centre-like structures that 

facilitate the production of antigen-specific plasma cells through T-cell help, and this feature 

is associated with worse clinical outcomes100,204. While the expression of germinal centre 

markers was not detected in plasma cells and B cells in this dataset, I did observe two distinct 

features of B lineage cells in the PSS patient cohort that differed from those of patients with 

non-PSS sicca. Firstly, the presence of CD20+HLADR+CD38-CD27- B cells was significantly 

enriched, with >95% of cells in this category deriving from PSS samples in both datasets. These 

B cells expressed higher levels of IgM and IgD, and lower levels of IgG and IgA, than plasma 

cells from the biopsies, suggested a mature activated B cell phenotype before class switching. 

This population of cells was also observed by immunohistochemistry, described in Chapter 3, 

wherein PSS biopsies displayed discrete clusters of CD20+ cells surrounded by diffuse plasma 

cell infiltration, which was not seen in non-PSS specimen. These B cell clusters were more 

likely to be clonal than surrounding plasma cells. The presence of this B cell population is in 

accordance with previous studies, including a cytometry by time of flight (CYTOF)112 

investigating PSS infiltrating lymphocytes, which also described an increased number of 

glandular B cells in PSS compared to non-PSS, phenotyped by CD19+CD38-CD27- expression. 

Given the physiological presence of plasma cells but not B cells in mucosal-associated 

lymphoid tissue, the finding of this B cell population in PSS is highly relevant. Whether they 
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are enriched in auto-reactive B cells that actively differentiate into autoantibody-producing 

plasma cells in the salivary glands is important to investigate in future functional studies. 

 

The number of infiltrating plasma cells in PSS biopsies was not significantly higher than in non-

PSS biopsies in this analysis, a finding which also agrees with the CYTOF study112. However, 

within the plasma cell population profiled here, there was an IgG producing subset highly 

enriched in the PSS samples, which was distinct from the remainder of plasma cells which 

expressed IgA. This group of IgG+ plasma cells comprised a small proportion of the overall 

plasma cell population, but it was more clonal than the IgA+ plasma cells, with up to one third 

of sequenced cells in a given patient harbouring the same V(D)J recombination. Within these 

clonal V(D)J sequences, there was evidence of somatic hypermutation. In some cases, it was 

possible to identify the same V(D)J clone in IgG+ plasma cells and in the CD20+ B cells from the 

same patient, indicating either that B cell maturation was occurring within the gland or that 

this particular clone was being selectively recruited to the site of disease from circulation. 

Given the strong association of autoantibodies with disease, the PSS-specific IgG+ plasma cells 

are strong candidate for further studies evaluating their pathogenicity. 

 

III.3 T cell findings 

As mentioned previously, there has long been interest in the role of CD4 T helper cells as 

mediators of B cell activation and the autoimmune humoral response which is characteristic 

of PSS. Indeed, our study shows a higher number of activated CD4 T cells in PSS-derived 

biopsies as compared to non-PSS. Overall numbers of infiltrating CD4 cells do not appear to 

be increased in PSS, and they display largely a naïve or central memory phenotype. 

Conversely, the CD8 infiltrating T cells of PSS and non-PSS display a terminal effector memory 

phenotype. However, when comparing PSS and non-PSS CD8 T cells, the PSS group has 

markedly higher expression of cytotoxicity genes, such as those encoding perforin, 

granzymes, and granulysin. The increased presence of activated CD8 T cells was also noted by 

the CYTOF study112, based on high expression of MHC class II molecule HLA-DRA. In this study, 

I characterized this further by showing a terminal effector CD8 phenotype, as well as evidence 

of oligoclonal expansion in some patients. This finding underscores the emerging role of 

cytotoxic T cells in PSS and other autoimmune diseases, which has seen increased scientific 
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interest in recent years. This has been suggested by several mouse and human 

studies126,205,206, including a recent study of T cells in psoriatic arthritis which identified clonal 

expansion of activated cytotoxic T cells at the site of disease207. 

 

The findings of bulk DNA sequencing in Chapter 3 also highlighted the potential role of CD8 T 

cells in PSS, as they frequently showed evidence of monosomy X in female samples, along 

with truncating mutations in the X-linked tumour suppressor KDM6A. This finding was 

unexpected given the supposition that B cells and CD4 T cell are key players in PSS; however, 

it seems that cytotoxic T cells might play a more crucial role than previously recognized. This 

notion is supported by the transcriptomic finding of significant upregulation in genes related 

to cytotoxicity in CD8 cells. Ideally, my analyses would have been performed on matched DNA 

and RNA sequencing data, to be able to compare the transcriptomic profile of cells with X 

chromosome alterations to those without it. However, this was not technically feasible with 

our protocol. Assessment of X loss in female cells by single cell RNA sequencing is challenging 

due to X chromosome inactivation, since physiologically only one copy of X is expressed. The 

exception to this are genes which escape X-inactivation (KDM6A being one of them), though 

many of these genes were lowly expressed in this dataset and did not show significant 

difference in expression between CD8 T cells and other cell types. Therefore, evaluating the 

transcriptional effects of monosomy X ultimately requires a paired single cell genome and 

transcriptome approach or acquiring enough sample to perform both analyses on bulk cells 

of the same tissue. 

 

III.4 Limitations and future directions 

This study used two single-cell methods to profile the transcriptomes of infiltrating 

lymphocytes. The main biological limitation underlying both approaches was the low 

number of input cells from the small tissue biopsies obtained. To overcome this, more tissue 

will be obtained from additional donors, as having more cells would strengthen the 

conclusions of the analysis thus far. Additionally, validation of the observations by a 

secondary method (flow cytometry) is currently underway. 
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CHAPTER 5: DNA sequencing of salivary gland epithelial cells 

While the initial focus of this thesis project was to examine the somatic mutational dynamics 

of tissue-infiltrating lymphocytes in primary Sjögren’s syndrome (as described in previous 

chapters), we also explored a complementary avenue examining the mutational landscape of 

affected epithelial cells in the minor salivary glands of patients and controls. Lymphocytes are 

considered the primary effectors of the autoimmune response in PSS, as evidenced by 

frequent serum autoantibody findings and numerous markers of an altered humoral immune 

response78. Nevertheless, affected exocrine gland tissue has itself been recently shown to 

have a more active role in promoting disease than previously thought, through a phenotype 

of “activated” epithelial cells that promote an immune response through elevated expression 

of Toll-like receptors and other immune-stimulating factors90,113. The drivers of this epithelial 

cell activation are not known.  

 

As discussed in the Introduction section, recent years have seen an increased interest in 

research of somatic mutations in normal tissue and chronic disease. There are now several 

examples of somatic evolution in the context of non-malignant disease that point to distinct 

selective pressures shaping the disease evolution. Profiling of colonic crypts in inflammatory 

bowel disease (IBD) points to an enrichment of mutations in the interleukin-17 signalling 

pathway that are thought to impart a selective advantage to clones by evasion of 

inflammatory damage56–58. Thus, the somatic mutations found in IBD appear to be an 

adaptation to the disease-mediated damage. A similar phenomenon is observed in non-

alcoholic fatty liver disease, where clonal selection favours mutations that drive hepatocyte 

regeneration and evade lipotoxicity29,54. In rheumatoid arthritis synovium, recurrently 

observed TP53 mutations are similarly thought to be an adaptation to inflammation131,132,208, 

since TP53 mutant clones are known to outcompete wildtype cells in an environment of 

oxidative stress27. The TP53 mutant clones could subsequently proliferate and invade 

surrounding bone tissue irrespective of an inflammatory stimulus, and thus potentially 

propagate joint disease of their own accord. It should be noted that the findings of TP53 

mutations in rheumatoid arthritis synovium date back to the 1990s and early 2000s and have 

not been validated by next generation sequencing methods. Taken together, these findings 
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highlight the importance of further investigation of somatic mutations in tissues affected by 

inflammatory disorders to elucidate patterns of somatic mutation underpinning clonal 

adaption, disease progression, and possibly disease initiation. 

 

An atlas of somatic mutation trends across all normal tissues is currently in the making, and 

as of yet, the genomes of normal, non-malignant salivary glands have not been sequenced. In 

our study, we utilized minor salivary gland biopsies from PSS patients and those determined 

not to have PSS upon biopsy. As with my study of lymphocytes, I compared the genomic 

landscape of salivary epithelial cells in PSS to non-PSS controls, bearing in mind that the 

control biopsies were obtained from individuals with complaints of oral dryness similar to that 

of PSS but who ultimately did not satisfy histological diagnostic criteria for PSS. This caveat 

notwithstanding, most of the non-PSS control biopsies appeared histologically normal and 

could be used to glean new insights about the genomic landscape of normal salivary gland 

epithelium. Therefore, my study of minor salivary glands is at the same time an investigation 

into inflamed tissue affected by the autoimmune response in PSS and a characterization of 

mutational dynamics in “normal” non-malignant salivary gland epithelium. 

 

By comparing PSS patient and non-PSS control biopsies I hoped to detect features of the 

mutational landscape that might differ between disease and normal state. In the previous 

examples, the mutational burden in IBD was higher than that of normal colon58, as was the 

mutational burden in chronic liver disease compared to healthy liver29. It therefore seems 

that in an inflammatory microenvironment the rate of mutation accumulation is altered, likely 

due to increased cell turnover and regeneration following inflammatory insult. The goal of 

this study was to comparatively investigate the genomic features that characterize salivary 

epithelium in PSS and non-PSS biopsies.  
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STUDY AIMS 

1. Describe the mutational burden, clonality, driver events, and mutational signatures 

operative in acinar and ductal epithelium of normal minor salivary glands. 

 

As the normal salivary gland has never been genomically profiled, I sought to describe 

its mutational features in order to infer tissue-specific dynamics. Similar studies of 

other normal tissues have revealed trends in mutation accumulation rates, selection 

of driver genes, unique mutational signatures, etc. that are informative of underlying 

processes in the tissue and can be extrapolated into its tendency for cancerous 

transformation. 

 

2. Compare the mutational features of salivary glandular epithelium between PSS and 

non-PSS donors. 

 

Using the non-PSS donor samples as controls, I attempted to identify any features that 

may be unique to the disease and potentially related to its pathogenesis. As suggested 

by the sequencing studies of IBD-affected colon, rheumatoid arthritis synovium, and 

non-alcoholic fatty liver, we might expect to find similar evidence of clonal selection 

and increased mutation burden in PSS minor salivary glands relative to controls. 

 

STUDY DESIGN 

To address the aims described above, I used laser capture microdissection (LCM) to extract 

sections of individual acini and ducts from histology slides. The biopsy specimen were the 

same ones as those used for LCM extraction of lymphocytic aggregates, described in Chapter 

3. The cohort of biopsy donors includes seven who are negative for PSS and thirteen with 

confirmed PSS diagnoses (Table 13).  

 

As previously discussed, minor salivary gland biopsies of patients with PSS frequently have 

several hallmark histological features, most notably lymphocytic aggregates of >50 clustered 

cells, a feature termed focal lymphocytic sialadenitis. Lymphocytic infiltration is accompanied 
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by degradation of mucous and serous acini, as well as fibrosis and dilation of ducts. The 

destruction of glandular microarchitecture in PSS biopsies is evident when compared to 

biopsies from non-PSS donors, which appear histologically normal (Figure 26a,b).  

 

LCM was used to dissect sections of individual acini and ducts from the tissue specimen 

(Figure 26 d,e). By extracting these discrete histological structures, we aimed to maximize the 

probability of selecting clonal cell populations. Because cross sections of acini and small ducts 

often contain few nuclei, this required dissecting the same feature from 5-6 multiple 

successive tissue sections to get enough genetic material for making sequencing libraries 

(Figure 26 c-e). As previously described, libraries were made through a bespoke protocol 

allowing low per-sample input, down to ~100 cells (Methods). The pairing of LCM with the 

low-input library preparation method allowed dissection of samples with a sufficient number 

of cells for library preparation but small enough to capture individual clones.  

a) c) 

b) 
d) 

e) 

Figure 29. a) H&E of minor salivary gland section from biopsy of an individual negative for PSS  and b) from 
an individual with confirmed PSS. Numbers indicate histological features as following, 1 – ducts, 2 – mucous 
acini, 3 – serous acini, 4 – fibroadipose tissue, 5 – lymphocytic aggregate. c) Depiction of LCM dissection of 
identical feature across multiple Z-stacked tissue sections. d,e) LCM microscope image before (left) and after 
(right) dissection of a single acinus and a single duct, respectively. 
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RESULTS 

I.1 Whole genome and exome sequencing of glandular epithelium 

Samples of acinar or ductal epithelium with adequate genomic material were sequenced by 

whole genome (WGS) or whole exome sequencing (WES). A minimum library concentration 

of 3 ng/ul was required for WGS, and a minimum of 10 ng/ul required for whole exome 

pulldown and sequencing. Due to low cellularity of the dissected features, many samples did 

not pass these thresholds. This was in part intentional, since I wanted to dissect samples of 

minimum required size for library preparation, in order to increase the probability of 

capturing individual clones. Samples with higher amounts of DNA were largely from 

microdissections of ducts, and many of these were processed for WES. Samples that 

underwent WGS have roughly equal contributions from acini and ducts. For downstream 

analysis of WGS samples, only those with a minimum mean coverage of 10X were considered 

(Figure 27a). Whole genome sequences of 86 samples were generated from four non-PSS and 

seven PSS donors, and an additional 62 whole exome sequenced were generated from a 

subset of the same donors plus one additional PSS patient donor (Table 13).  

 

For somatic mutation calling, we used the Caveman algorithm for single nucleotide 

substitutions and Pindel for small insertions and deletions (Methods), bearing in mind the 

limitation that in some samples low coverage may hinder the ability to detect variants present 

at lower allele frequency. Variants were called against an unmatched normal, and a filter to 

remove LCM-specific artefacts was applied. Germline variants were subsequently removed 

based on consensus between all samples from a given donor, using an exact binomial model 

a) b) 

Figure 30. Breadth and depth of coverage of a) WGS samples and b) WES samples. Coverage ranges in 
breadth from at least 1x (yellow) to at least 40x (dark blue). 



 
 

123 

approach. An additional filter based on a beta binomial model was used to remove low quality 

variants (Methods).  

 

I.2 Clonality and phylogenetic relationships 

Understanding the clonality of tissue structures not only aids in the discovery of somatic 

variants, it also informs us of the developmental dynamics underlying its microarchitecture. 

To assess the clonality of the samples, we considered the median variant allele frequency 

(VAF) of somatic variants from WGS (Figure 28a,b). For reference, a median VAF of 0.5 would 

suggest a perfectly clonal population where the same somatic heterozygous variants are 

present in every cell. Practically speaking, this is difficult to achieve and a VAF greater than 

0.3 implies a near-clonal population where 60% or more of cells are derived from a single 

ancestral clone. The median VAF distribution across samples ranged from 0.15 to >0.3, with 

a trend of higher clonality in acinar samples. The median overall VAF across all acini was  

Table 19. Cohort of non-PSS and confirmed PSS biopsy donors. 

Sample Diagnosis Focus 
score Sex Age  WGS samples WES samples 

PD42760 Non-PSS 0 F 51 14 3 
PD42763 Non-PSS 0 F 59 4 - 
PD42765 Non-PSS 0 F 59 6 4 
PD42761 Non-PSS 0 M 67 8 - 
PD42767 PSS 3 - 22 4 - 
PD42768 PSS 3 F 31 10 28 
PD42769 PSS    - 10 
PD45527 PSS 5 F 68 14 - 
PD42773 PSS 3 M 71 6 7 
PD42770 PSS 3 M 72 10 - 
PD42771 PSS 4 F - 3 - 
PD42774 PSS 5 F - 9 10 
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Figure 31. Variant allele frequency distribution of somatic variants genome-wide in epithelial cell samples. 
Kernel density estimation of VAF in all samples, coloured by a) patient of origin and b) type of feature (acinus 
or duct). Dashed line denotes median VAF of all acini and duct samples, respectively. 

a) b) 

Patient Tissue Structure 
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0.33, while the median VAF of all ductal samples was 0.24 (p=2.2·1016, Welch’s T test). This 

suggests that a single acinus is a clonal unit, comprised of daughter cells originating from a 

single ancestral progenitor cell, while ducts are larger, polyclonal structures that originate 

from two or more progenitor cells. This finding was consistent across both PSS and non-PSS  

biopsies and is similar to that of other healthy glandular tissues that have been genomically 

profiled in our laboratory, such as breast and prostate tissue (unpublished data).  

 

To construct phylogenetic trees of single base substitutions for the purposes of detecting 

shared common origins of samples, we used a maximum parsimony approach (Methods). Due 

to low sequencing depth or low clonality of some samples, the reconstructed phylogenies had 

limited resolution. Despite this, we observed that nearby structures often have shared 

mutations, while physically distant structures do not. In cases where adjacent acini were 

sequenced, we found that they are often clonally related but not identical, with branch 

divergence caused by their respective private mutations (Figure 29a-d). Acini and ducts from 

PSS biopsies did not appear to have more clonal relatedness than those from non-PSS 

biopsies. As such, there was no obvious evidence of clonal dominance that might occur under 

the cytotoxic pressure of an inflammatory environment. However, given that there were a 

limited number of samples sequenced per donor and that low sequencing depth frequently 

precluded high resolution clustering, a confident conclusion cannot be made. 

 

I.3 Mutational burden and driver detection 

The mutational burden of a tissue is an important feature that is often significantly altered in 

cancer and other disease states, the latter of which is evidenced by findings of elevated 

mutation number in chronic liver disease29 and inflammatory bowel disease5,58 compared to 

their respective normal tissues. To evaluate the effect of various factors that might impact 

the mutational burden across minor salivary gland samples, a linear mixed effects (LME) 

regression model was used. The model evaluated the contribution of age, diagnosis, and sex 

on the number of mutations per sample, while accounting for inter-patient variation. The 

number of mutations per sample used in the model was adjusted by a sensitivity coefficient 

that accounted for the mean depth and VAF of each sample (Methods). The LME model  
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found that mutational burden was not significantly impacted by diagnosis or sex, however it 

did vary significantly with age of the donor (p-value=0.0003419, LME regression Chi-squared 

test, Figure 30). The increase in mutational burden with age has been observed consistently 

in previous sequencing studies of normal tissue3,5, and this finding confirms the expected 
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Figure 32. Histology images showing microdissected acinar and ductal samples (circled), along with 
phylogenetic trees of single nucleotide variants reconstructed from these samples. a) H&E stained section 
from non-PSS patient biopsy PD42761, b) phylogeny from PD42761 variants, c) H&E stained section from PSS 
patient biopsy PD42771, d) phylogeny from PD42771 variants. 
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trend. The linearity of this relationship implies that mutations are accumulated throughout 

life at a constant rate in glandular epithelium. The lack of overt effect of PSS diagnosis on 

mutational burden suggests that perhaps the inflammatory microenvironment does not 

contribute a significant excess of mutations to the epithelium, which we might have expected. 

However, with a small cohort of seven PSS and four non-PSS samples, the analysis is 

underpowered to detect the true effect of PSS diagnosis on mutational burden. 

 

Next, we sought to determine whether there were putative driver mutations among the 

somatic variants observed. To do this, we combined the single nucleotide substitution and 

small indel calls from the WGS and WES datasets and used a dN/dS approach to detect genes 

under selection (Methods). This was done first in an unbiased way across all genes, and then 

in a restricted hypothesis manner with a set of known cancer genes curated from TCGA (The 

Cancer Genome Atlas) database. Neither approach identified any genes under significant 

positive selection in the epithelium. However, we observed that missense mutations in the 

IGFN1 gene occurred in samples from four PSS donors and zero non-PSS donors, though this 

finding was not statistically significant by dN/dS analysis. The function of IGFN1 has not been 

elucidated and it is not thought to a cancer driver gene, however one of the IGFN1 variants 

identified has previously been reported in two cancer samples in the COSMIC database. In the 

GTEx gene expression database209, salivary glands did not express high levels of IGFN1, 

Figure 33. Linear mixed effects model of mutational burden variation per sample (acini or 
duct) with age, by patient (colour) and by diagnosis (shape).  
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therefore there is currently no strong evidence of functional relevance of these mutations to 

PSS.  

 

A few individual samples, from both the PSS and non-PSS cohorts, harboured mutations in 

cancer-associated genes such as RB1, ARID1B, and FBXW10. However, none of the  

mutations were in known hotspots identified by previous cancer sequencing studies or were 

obviously deleterious by variant effect prediction algorithms, so their functional effect is not 

clear. Genes that were frequently mutated in cancers of the salivary gland (such as TP53, 

HRAS, NOTCH1, EGFR, and genes in the cyclin and PIK3 pathways)210–212 were not mutated in 

this cohort. We also did not observe the hallmark MYB-NFIB fusion that is commonly found 

in adenoid cystic carcinoma of salivary gland210,213. Overall, with the small dataset analysed 

we did not have enough statistical power to confidently identify genes under positive 

selection, therefore we cannot exclude the possibility of their existence without analysing a 

larger cohort of PSS and non-PSS patients.  

 

I.4 Mutational signature analysis 

To identify the mutagens acting on glandular epithelium, we performed mutational signature 

analysis using a signature extraction approach based on a Bayesian hierarchical Dirichlet 

process (Methods). This approach enables both the extraction of novel signatures and the 

matching of identified components to known signatures in the COSMIC database40, which 

were provided as priors for the analysis. The algorithm identified the ageing (“clock-like”) 

signatures SBS1 and SBS5 ubiquitously across the samples (Figure 31f,g), which was expected 

based on prior sequencing studies of normal tissues3,25,31,33. In addition, several samples 

exhibited a high contribution of signatures SBS2 and SBS13 to their mutational burden, which 

are associated with the APOBEC family of DNA cytidine deaminases214 (Figure 31a-c,f,g). The 

presence of APOBEC-associated signatures accounts for a higher mutational burden in 

samples that harbour it (Figure 31e). Signatures SBS2 and SBS13 are seen in both PSS (12 out 

of 53 samples, 23%) and non-PSS biopsies (7 out of 34 samples, 21%). Interestingly, almost all 

samples with high contributions of these signatures originated from ductal epithelium.  
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Figure 34. Mutational signature analysis. a) The trinucleotide spectrum of mutations in a sample with high 
APOBEC contribution. b,c) The SBS13 and SBS2 APOBEC-associated signatures from the COSMIC database, 
respectively. d) Intermutational distance plot of sample with high APOBEC contribution showing regional 
clustering of mutations. e) Total number of mutations in samples with high and low APOBEC contribution. 
f,g) Mutation count and signature contribution in PSS and non-PSS epithelial samples, respectively; “S” refers 
to known signatures from COSMIC database, “N” refers to novel signatures identified by HDP algorithm. 
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APOBEC activity has been observed in various cancers10 but less commonly in normal 

tissues2,4,215. It is primarily associated with cellular defence against viral integration and 

retrotransposon jumping216,217 but thought to also be activated in the context of cancer and 

tissue inflammation as well39,214. The mechanisms of APOBEC activation are not well 

understood. It is thought to often exert its hypermutation activity in bursts, called kataegis39, 

although we did not see evidence of mutational clustering in samples with high APOBEC 

activity, instead observing an even distribution of mutations across the genome (Figure 31d). 

Previous sequencing studies of salivary gland tumours have also identified APOBEC as a 

significant contributor to their mutational landscape211,218, a finding that paired with the 

analysis of normal tissue described here, suggests a pervasiveness of this process in salivary 

glands, both in healthy state and in cancer. 

 

I.5 Metagenomic analysis of viral elements 

As mentioned, APOBEC-associated signatures have been seen in various cancers39,214,219. In 

particular, they have been found in cancers with known association to oncogenic viruses, such 

as cervical cancer10,220,221. Given the suspected physiological function of APOBEC in viral 

defence, we sought to determine the presence of viral DNA in samples with and without 

APOBEC signatures. We used the GOTTCHA algorithm to align reads from WGS samples to a 

library of viral reference genomes (Methods). Taking into consideration all hits of human-

tropic viruses, we identified numerous instances of lesser known strains of human 

papillomavirus (HPV 10, 41, 131) as well as several instances of Epstein-Barr virus, in both 

non-PSS and PSS samples (Table 14). For reference, viral elements found in tissue-derived 

lymphocyte samples are also shown. Viral sequences found in epithelial samples were limited 

to HPV and EBV, while those found in lymphocytes were mainly from other human 

herpesvirus strains (6 and 7). 

 

Out of 87 epithelial samples, 19 showed significant contribution of APOBEC mutagenesis (>5% 

of observed mutations), while 20 samples had viral sequences detected; however only one 

sample (PD42773a_lo0001) had both viral presence and APOBEC signatures, indicating an 

overall mutual exclusion of the two observations (p=0.06, Fisher exact test). Since APOBEC is 

often activated as a defence against the integration of retroviruses217, it is plausible that cells 
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which activated APOBEC enzymes have successfully prevented viral integration into the 

genome during infection, while those that failed to activate APOBEC were more permissive 

to integration.  

 

These observations suggest that salivary epithelial cells are a frequent target of viral infection, 

which sometimes results in retroviral integration into the genome. Neither HPV nor EBV 

sequences were found exclusively in samples from patients with PSS diagnosis, therefore 

there is not an apparent association of virus with the disease. However, this does not exclude 

Table 20. Sequences of human viruses found in genomes of epithelial and lymphocyte samples. Samples 
excluded from list did not have any findings of human-tropic viruses. 

EPITHELIUM 
Sample Feature Taxa/strain Rel. abundance Length Bases mapped Hit count 
PD42760a_duct10 duct HPV type 41 0.1107 665 1079 31 
PD42760a_gland18 acinus HPV type 131 0.2093 285 873 27 
PD42760a_lo0001 duct HPV type 41 0.1442 684 1557 46 
PD42760a_lo0008 acinus HPV type 41 0.0754 234 521 15 
PD42760a_lo0022 acinus HHV-4 (EBV) 0.0236 1235 1287 40 
PD42760a_lo0023 duct HPV type 10 0.1244 801 1071 33 
PD42765a_lo0002 acinus HPV type 128 0.1279 496 1083 33 
PD42765a_lo0007 acinus HPV type 41 0.0713 301 395 12 
PD42765a_lo0020 acinus HPV type 41 0.0308 491 516 16 
PD42767a_duct7 duct HPV type 131 0.2019 439 648 20 
PD42768a_lo0001 acinus HPV type 4 0.0807 675 762 23 
PD42768a_lo0012 duct HPV type 128 0.2014 296 789 24 
PD42768a_lo0051 duct HPV type 41 0.0811 759 791 24 
PD42770a_gland4 acinus HPV type 92 0.1791 151 302 10 
PD42771a_gland1 acinus HPV type 131 0.1574 889 1552 46 

PD42773a_lo0001 acinus HPV type 10 0.0465 181 544 18 
HHV-4 (EBV) 0.0212 1023 1401 42 

PD42773a_lo0003 acinus HPV type 41 0.0977 699 1468 43 
HPV type 109 0.0619 241 321 10 

PD42773a_lo0010 acinus HPV type 41 0.0645 370 370 12 

PD42774a_lo0042 duct HPV type 109 0.1094 274 719 21 
HPV type 41 0.0693 471 783 24 

PD42774a_lo0106 duct HHV-4 (EBV) 0.0309 1222 1607 51 
LYMPHOCYTES 

Sample Cell type Taxa/Strain Rel. abundance Length Bases mapped Hit count 
PD42070d CD8 T HHV-6B 0.0149 536 536 15 

PD42079c CD8 T HHV-6B 0.0242 48035 252586 7745 
HHV-6A 0.0094 428 871 29 

PD42079c CD8 T HPV type 50 0.0053 624 713 22 

PD42079d B cells HHV-6B 0.0227 46838 231347 7063 
HHV-6A 0.0138 300 901 30 

PD42089c CD8 T HPV type 50 0.001 498 498 15 
HHV-6B 0.001 432 432 13 

PD42761a_CD38_CD20 B cells HHV-7 0.0963 6829 11835 361 
PD42761a_CD4-2 CD4 T HHV-7 0.2272 2083 3795 112 
PD42771a_CD20-2a B cells HPV type 41 0.187 397 615 18 
PD42771a_CD8-1b CD8 T HHV-7 0.122 2767 5837 177 
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the possibility that viral infection may play a role in the pathogenesis of PSS, a long-standing 

hypothesis which remains difficult to prove76. 

 

I.6 Copy number variation 

To infer copy number states, we employed the Ascat and Battenberg algorithms for genome-

wide analysis, and CNVkit for exome-wide analysis. Structural variation analysis was done 

with BRASS (Methods). The copy number profiles observed were fairly stable across both PSS 

and non-PSS samples with one particular exception: a duplication of chromosome 7 in several 

acinar and ductal samples from three PSS donors and none of the non-PSS donors. By both 

Ascat and Battenberg, the log copy ratios of chromosome 7 are higher while the B-allele 

frequencies show a divergence away from 0.5, indicating over-representation of one copy of 

chromosome 7 (Figure 32 a-f, Table 15). Samples with chromosome 7 duplication in patient 

PD45527 are phylogenetically related by single nucleotide variant analysis and are adjacent 

to each other in tissue sections (Figure 33a,b). In the non-PSS samples, the only large copy 

number change observed was a duplication of chromosome 13 in one sample. No significant 

or recurrent structural variants were detected in either cohort. 

 

Chromosome 7 contains numerous critical genes for cell cycle regulation and immune system 

signalling, and duplication of chromosome 7 has been observed in various cancers, notably in 

salivary ductal carcinoma222. Prior studies of other normal tissue have not identified recurrent 

duplication of chromosome 7, in fact the copy number profiles of normal tissue tended to be 

quite stable in general3–5,33. In light of this, the observation of chromosome 7 duplication in 3 

separate biopsies from PSS patients suggests that this event likely imparts a selective 

advantage to salivary epithelial cells in the context of disease.  

Table 21. Summary of chromosome 7 duplication findings. 

Donor Diagnosis Samples with chr7 gain Sample type 
PD42770 PSS 1 acinus 
PD42773 PSS 1 duct 
PD45527 PSS 3 acinus 
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Figure 35. Copy number alterations of chromosome 7. a) Copy number, copy log ratio, and B-allele frequency 
genome-wide profiles for samples PD42770a_gland5. b-f) Exome-wide copy log ratio profiles of five samples 
with duplication of chr 7. 

Figure 36. Clustering of samples with chr7 duplication in patient PD45527. a) H&E section of PD45527 biopsy 
showing location of three samples with chr7 duplication. b) Phylogenetic relationship of PD45527 by SNP 
sharing shows recent common origin of three indicated samples. 
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DISCUSSION 

II.1 Findings related to normal minor salivary gland epithelium 

Previous studies have profiled the exomes and genomes of salivary gland tumours, which 

were informative of the oncogenic events and mutational signatures operative in the 

malignantly transformed tissue211,213,223,224. However, they gave little insight into the 

underlying pre-malignant and normal tissue mutational dynamics. Our study of minor salivary 

glands has yielded the first glimpse into the genomic landscape of normal salivary epithelium.  

This investigation has allowed us to determine if any of the processes observed in cancer are 

also present in the normal tissue. Furthermore, it has contextualized the salivary gland 

genome within the broader scope of normal tissue genomics, demonstrating comparative 

trends in clonal structure, mutational signatures, and mutational burden between the minor 

salivary glands and other normal tissues.   

 

The major goal of this study was to profile the somatic mutational landscape of salivary glands 

in primary Sjögren’s syndrome. Our cohort included biopsies of minor salivary gland tissue 

from patients with complaints of oral dryness, some of whom were subsequently diagnosed 

with PSS and others for whom PSS diagnosis was excluded upon biopsy. Therefore, we had 

biopsies from a PSS cohort histologically characterized by lymphocytic infiltration and acinar 

destruction, and a non-PSS cohort with histologically normal salivary glandular architecture. 

The non-PSS biopsies were used as a control to detect changes occurring specifically in the 

PSS cohort, but they were also used to discover normal genomic features of the salivary gland. 

I therefore considered features shared between PSS and non-PSS biopsies to be inherent to 

minor salivary gland tissue. 

 

One such feature of normal salivary gland epithelium is the clonal composition. By profiling 

discrete histological structures using laser capture microdissection, I discovered that a single 

acinus is a clonal unit, while a larger feature such as a duct is often comprised of the progeny 

of multiple stem cells. Physically proximal structures often shared somatic variants, indicating 

a shared lineage from a localized common progenitor. These findings agree with previous 

sequencing studies of glandular tissues across the body, contributing to the understanding of 
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glandular development and turnover and enabling the design of studies that maximise sample 

clonality. 

 

The occurrence of canonical cancer driver mutations across several normal tissues has been 

an unexpected and striking finding from previous normal tissue sequencing endeavours2–4. 

The accumulation of cancer drivers is intrinsically linked to tissue-specific characteristics such 

as cell turnover, mutagen exposure, and selective pressures. Driver discovery analysis of non-

PSS minor salivary glands did not reveal any overt oncogenic events, though some variants of 

uncertain significance were observed in cancer-associated genes. Though there were 39 

individual non-PSS samples sequenced, they derived from only three donors, a cohort size too 

small to detect genes under positive selection using a dN/dS approach. Therefore, future 

plans include sequencing additional acinar and ductal samples from a larger cohort of non-

PSS biopsies. This will illustrate a baseline burden of driver mutations in normal minor salivary 

glands, which could then be used to evaluate changes in the context of disease such as PSS or 

cancer.  

 

Mutational signature analysis is a potent tool for discovery of underlying mutagen exposures 

that shaped the somatic mutational landscape of a tissue. Previous normal tissue sequencing 

studies have identified tissue-specific mutagen exposures, such as ultraviolet light on skin2 or 

activation-induced cytidine deaminase in B cells44. Through our analysis, we discovered that 

pervasive APOBEC-mediated mutagenesis is a prominent feature of normal salivary 

epithelium, due to its presence in ~20% of both non-PSS and PSS samples. A recent study of 

salivary ductal carcinoma also identified the APOBEC-associated signatures SBS2 and SBS13 

in four out of ten whole-genome sequenced samples and demonstrated that the overall 

mutational burden was higher in those samples211. Taken together, these findings suggest 

that APOBEC is an important mutagen in the salivary gland that is frequently activated in 

normal tissue before the onset of malignancy and likely plays a key role in its progression.  

 

APOBEC-associated signatures have been found in numerous cancers, most notably the 

following: breast, lung, bladder, cervix, and head and neck squamous cell carcinoma10,214,218. 

The APOBEC family of enzymes has 11 members, which include AID (activation-induced 

cytidine deaminase, involved in lymphocyte receptor diversification), APOBEC1 (involved in 
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mRNA editing), and the APOBEC3 subfamily thought to be involved in viral and 

retrotransposon inhibition219. APOBEC3 signatures are found in the aforementioned cancers, 

some of which have well-known involvement of oncogenic viruses. For example, cervical 

cancers show high rates of APOBEC-driven mutagenesis, which contributes to accumulation 

of driver mutations in addition to the proliferative effect imposed by HPV infection through 

expression of viral cell cycle genes E6 and E7219. Therefore, in cervical cancer the association 

of viral infection and APOBEC3 activation is evident. Conversely, in breast cancer, it is more 

difficult to understand the trigger of APOBEC3 activation when viral infections are not a 

common occurrence. The mobilization of retroelements in the genome is thought to be a 

possible trigger for APOBEC, as is replicative stress in the context of cancer; these are ongoing 

areas of research. In the normal tissues sequenced thus far, there has been little evidence of 

APOBEC activity in lung30, oesophagus4, colon5, blood25, and endometrium3; however, 

sequencing of normal bladder tissue demonstrated a significant contribution of these 

signatures along with patterns of mutational clustering (kataegis)215. It is not understood why 

bladder urothelial cells frequently activate APOBEC, though viral infection is a possibility. 

 

In the context of head and neck cancers, viral infection remains a plausible trigger for 

APOBEC3 activation. It has long been suspected that salivary gland tumours, of which there 

are several varieties including adenoid cystic carcinoma and salivary ductal carcinoma, might 

be caused by oncogenic viruses. However, there has been no replicable evidence of this. Some 

studies reported a high prevalence of oncogenic viruses such as human beta papillomaviruses 

and herpesviruses in salivary gland tumours225, while other studies disagreed, finding very 

little human papillomavirus material226. These studies looked for evidence of directly 

oncogenic viruses, which induce epithelial cell proliferation and incite tumorigenesis by 

hijacking cellular replication machinery. What has not been addressed in the context of 

salivary gland cancers, however, is the potential of viral infections to promote tumorigenesis 

indirectly, through APOBEC activation. 

 

In addition to finding prevalent APOBEC-associated mutagenesis in our minor salivary gland 

samples, we also found that benign strains of human papillomavirus as well as Epstein-Barr 

virus are frequently present in both non-PSS and PSS biopsies. Importantly, APOBEC 

signatures and viral elements were not found in the same samples, with one sample out of 
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20 being an exception. It is possible that in the minor salivary glands APOBEC activation is not 

primarily related to viral infection but to other endogenous causes, similarly to the case of 

normal bladder urothelium. However, given the findings of viral presence in >20% samples, it 

is more likely that APOBEC activity is significantly related to viral infection. The lack of co-

occurrence of APOBEC activity and viral elements in the same samples can be explained by 

the fact that successful activation of APOBEC enzymes results in hypermutation of viral 

sequences, prevention of integration, and clearance of the virus from a cell. This would 

explain why previous studies have struggled to find evidence associating viral infection and 

salivary gland tumours. Our findings suggest that viral infections of the salivary glands do 

increase the risk of tumorigenesis, not through directly oncogenic viral mechanisms as 

previously hypothesized, but indirectly through APOBEC-mediated mutagenesis which 

increases the mutational burden of infected cells and thus also the risk of acquiring cancer 

driver mutations. 

 

II.2 Findings related to minor salivary gland epithelium in PSS 

To identify features of minor salivary gland epithelium that might be specific to PSS, we used 

non-PSS epithelium as a control. As described above, we concluded that APOBEC-mediated 

mutagenesis and viral infections are not disease-specific but rather ubiquitous, although this 

does not mean that these phenomena are unrelated to PSS pathogenesis. It has been 

hypothesized that viral infections may be a trigger for autoimmune activity in PSS, though as 

with salivary gland carcinomas, the evidence has been elusive. A mouse model study 

demonstrated that development of Sjögren’s syndrome-like sialadenitis in lupus-prone mice 

occurs three months after infection with cytomegalovirus, but by the time sialadenitis 

developed, the virus was undetectable in salivary glands117. Therefore, it is possible that long-

term autoimmune activity can be triggered by transient viral infections that are later 

successfully cleared from infected cells, likely with the help of APOBEC3 enzyme activity, 

though this remains difficult to prove. 

 

Despite the small cohort of biopsies analysed, we observed some genomic trends that are 

possibly specific to PSS. Protein-altering mutations (three missense and one nonsense) were 

found in the IGFN1 gene in four out of seven PSS biopsies. Though not statistically significant 
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by dN/dS analysis, it is a gene we will keep under close consideration in the analysis of future 

samples. Without a larger cohort of donors, it is not possible to determine with certainty the 

presence or absence of genes under positive selection. 

 

We identified chromosome 7 duplication in samples from three out of seven PSS biopsies. 

While there are numerous cell cycle and immune-related genes on chromosome 7 that could 

be functionally relevant, the observation is particularly interesting because chromosome 7 

duplication is frequent in salivary ductal carcinoma and is associated with worse outcomes222. 

Additionally, the EGFR (epidermal growth factor receptor) driver gene found on chromosome 

7 is also frequently mutated and overexpressed in salivary gland cancers (ductal carcinoma222, 

mucoepidermoid carcinoma212, adenoid cystic carcinoma227). These studies suggest that copy 

number gain of chromosome 7 likely provides a selective advantage to cells that harbour it. 

In the context of PSS, this may have emerged as an adaptation to the cytotoxic inflammatory 

environment, favouring clones with copy gain of chromosome 7 for survival and regeneration 

of damaged glands.  

 

II.3 Limitations and future directions 

A major technological limitation of this study was its reliance on microdissection of clonal 

features from minor salivary gland biopsies that have enough DNA to create sequencing 

libraries. This required Z-stacking microdissections of the same feature, typically single acini 

which are 10-15 cells in perimeter, from up to six adjacent tissue sections. For this reason, 

most dissected samples did not meet the minimum DNA requirement and were not 

sequenced. However, the successfully sequenced samples demonstrated the validity of 

dissecting small discrete structures, since the individual acini proved to be largely clonal.  

 

The most important next step for furthering the exploratory findings of this study is obtaining 

additional biopsies and dissecting more samples through the laser-capture microdissection 

approach, as described above. A larger, confirmatory cohort may reinforce the significance of 

the preliminary findings described, particularly regarding the presence of genes under 

positive selection in PSS. Secondly, the observation of chromosome 7 duplication would 

benefit from validation by RNA sequencing to determine the transcriptional effect imparted 
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by the aneuploidy. This could be done by microdissection of the same features from 

remaining sections of tissue, provided enough cells remain for the preparation of low-input 

RNA sequencing libraries. The transcriptomic profiles could validate increased expression of 

chromosome 7 genes and show whether the duplication has an effect on other genes and 

pathways transcriptome-wide that could promote growth and selection. Thirdly, the finding 

of viral DNA could be further investigated by searching for the sites of integration of the viral 

genome into the host genome of salivary epithelial cells. This would provide more definitive 

proof of viral presence in a given sample. Finally, obtaining samples from major salivary glands 

would be a useful comparison to determine whether APOBEC activation and viral presence 

vary across different salivary gland sites. 
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Chapter 6: Conclusion 

In this thesis, I have explored the somatic mutational landscape of lymphocytes and epithelial 

cells in the minor salivary glands of primary Sjögren’s syndrome (PSS) patients and controls, 

as well as the transcriptomic profiles of tissue-infiltrating lymphocytes. The approaches used 

here represent novel ways of interrogating the genetic basis and molecular pathophysiology 

of this disease. The findings highlight enrichment of disease-relevant cell types and somatic 

alterations in these cell types, which fit into the context of current knowledge and provide 

novel directions for future research into functional effects and possible therapeutics.  

I. B cells 

The primary hypothesis of this project was that somatic mutations may exist in autoreactive 

lymphocytes, driving their chronic activation and causing the autoimmune pathogenesis of 

PSS. To isolate autoreactive lymphocytes is challenging because we don’t quite know what 

defines them. Therefore, we chose to investigate tissue-infiltrating lymphocytes from minor 

salivary glands, a common site of disease-mediated damage in PSS, hoping that this tissue is 

a reservoir enriched in auto-reactive cells. Given current knowledge of PSS pathology, B 

lymphocytes are considered key players by multiple lines of evidence: activated B cells and 

plasma cells are found to infiltrate minor salivary glands in PSS, they produce disease-

associated auto-antibodies, they can organize into germinal centre-like structures in the 

salivary glands, and they are associated with transformation to B cell lymphoma76,94,100,168,201. 

For these reasons, our hypothesis was that somatic mutations were most likely to be found 

in the B cell and plasma cell compartments of lymphocytes, especially given their physiological 

ability to induce somatic hypermutation for repertoire diversification, which results in an 

excess number of somatic mutations.  

 

Given this notion of PSS as a “B cell disease”, we were surprised to discover a relative paucity 

of activating or proliferation-inducing mutations in B cells. With the exception of one patient, 

who had a demonstrable clonal expansion of CD20 B cells with multiple activating mutations, 

no recurrent trend of driver mutations was found in B cells from minor salivary glands across 

PSS patients. This may suggest then, that instead of being an early event in disease 
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development, pathogenic somatic mutations in B cells may arise in later stages of disease and 

be associated with worse outcomes, as the patient who harboured the mutated clone also 

had peripheral neuropathy and a monoclonal immunoglobulin in blood, the latter of which is 

associated with higher risk of lymphoma. To confirm this, further studies would be needed 

examining samples from patients at later stages of disease, in addition to the diagnostic 

biopsies used here, which represent a cohort at early stages of disease. 

 

Nevertheless, the significance of B cells and plasma cells in PSS is highlighted by other findings 

in this project. Single cell RNA sequencing identified a population of CD20+CD27-CD38- B cells 

that were almost entirely specific to PSS minor salivary glands, compared to non-PSS sicca 

control biopsies. This finding corresponds to the what was observed by 

immunohistochemistry, where PSS patients had discrete localized clusters of CD20+ cells 

which were not present in non-PSS controls. A proportion of these cells had an IgM+IgD+ 

unswitched phenotype by single cell RNA analysis, making them distinctly different from the 

differentiated plasma cells and plasmablasts which make up the majority of B lineage cells, in 

both PSS and non-PSS tissue. While relative numbers of plasma cells in the PSS and control 

biopsies were not significantly different, a subset of plasma cells was highly specific to the 

patient cohort. These were plasma cells which expressed IgG, as opposed to the remaining 

majority of plasma cells which expressed IgA transcripts. Since serum levels of 

immunoglobulin are commonly elevated in PSS, the finding of tissue-infiltrating IgG+ cells is 

significant and warrants further investigation of their function and antigen specificity. The 

IgG+ plasma cell population and the CD20+ B cell populations identified by this analysis are 

important targets for further functional studies and underscore the crucial role of B cells in 

PSS. 

 

II. T cells 

As mentioned, PSS is considered to be a disease heavily mediated by aberrant B cell activity, 

and correspondingly by T helper cells as well169,228, which are required for antigen-dependent 

B cell activation. However, it was not in B cells nor in CD4 helper T cells that we observed the 

most striking somatic alterations, but in the often-overlooked subset of cytotoxic T cells. By 
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bulk DNA sequencing, we identified subclonal monosomy X in CD8 T cell samples from up to 

75% of female patient biopsies. In two of those samples, we also identified three different 

truncating mutations in the X-linked tumour suppressor gene KDM6A, which encodes the 

protein UTX (Ubiquitously transcribed X chromosome tetratricopeptide repeat protein). A 

similar but less pronounced phenomenon was seen in CD4 T cells, where 33% of samples had 

evidence of subclonal monosomy X and one sample had a truncating KDM6A mutation. In 

comparison, none of the bulk sorted B cell, plasma cell, or plasmablast samples had evidence 

of either monosomy X or KDM6A mutations. In total, we observed four truncating KDM6A 

mutations in T cells in this cohort of 30 patients, a finding unlikely by chance, as assessed by 

dN/dS selection analysis (q-value = 0.00068).  

 

The KDM6A gene encode UTX, which is a tumour suppressor and histone demethylase that 

escapes X-inactivation, and it is commonly mutated in various cancers, including leukaemia 

and lymphoma172,173. If a clone has lost both copies of this gene, as would be the case if the 

mutations and monosomy X co-existed in the same clone, then these T cells would lose a 

potent tumour suppressor and would be lacking its histone demethylating activity, which 

modulates the expression of many downstream genes. Whether this leads to constitutive 

activation of T cells and promotes autoimmunity in PSS requires further studies. A caveat of 

this finding is that monosomy X (but not KDM6A mutation) was also found in non-PSS sicca 

control patients, making it difficult to define the specificity of this phenomenon to PSS. As 

discussed in previous chapters, these non-PSS patients have similar sicca symptoms as PSS 

patients, but do not fulfil the necessary diagnostic criteria, allowing for the possibility that 

they might have an early stage or ‘forme fruste’ of PSS.  

 

The fact that both of the somatic alterations observed in T cells are linked to the X 

chromosome is of particular interest given that PSS is a disease with a 90% female 

predominance78. If losing one X chromosome is the first event in a two-hit model of T cell 

activation, it is curious why loss of the Y chromosome in males does not happen with similar 

frequency and have a similar outcome. Potential differences in sex chromosome segregation 

during mitosis may be at play, as well as complex gene dosage effects of X chromosome genes 

and their Y chromosome paralogues. 
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The results of single cell RNA sequencing also underscore the role of cytotoxic T cells in PSS. 

Both CD4 and CD8 T cells were found to express significantly higher levels of activation 

markers in PSS minor salivary glands than in non-PSS controls. While CD4 T cells often 

displayed a naïve phenotype, CD8 cells had an effector-memory phenotype and expressed 

significantly higher levels of cytotoxicity-related genes in PSS patients than controls. This 

finding is complementary to other studies in the past few years which have implicated CD8 T 

cell activation in PSS. For example, a cytometry-by-time-of-flight study identified activated 

HLA-DR+ CD8 cells in minor salivary glands of PSS patients and found them to be associated 

with worse outcomes112. Additionally, a multi-omic study of immune cells in the blood of PSS 

patients identified a signature of CD8 T cell activation229. Supporting evidence also came from 

a mouse model of Sjögren’s syndrome, where depletion of CD8 T cells abrogated the 

development of Sjögren’s syndrome-like sialadenitis and other pathologic manifestations of 

the disease205. The findings of this thesis project and other recent studies underscore the 

previously underappreciated importance of cytotoxic T cells in the pathogenesis of PSS and 

point towards an immediate need for further research examining their functional role in this 

disease and their potential as a therapeutic target. 

 

III. Epithelial cells 

Recently, a potential role of salivary epithelial cells in the pathogenesis of PSS has emerged 

through evidence of epithelial cell activation by expression of immune-stimulating 

factors90,112,113. To examine whether somatic mutations might underlie the reprogramming of 

epithelial cells to become chronically immunostimulatory, we sequenced DNA from minor 

salivary gland acini and ducts from PSS patients and non-PSS controls to perform a somatic 

mutation analysis. The data showed a copy number alteration, chromosome 7 gain, specific 

to PSS samples which may be related to this activation222. Currently ongoing sequencing of 

additional samples and future plans for RNA sequencing of epithelial cell structures are in 

place to further this finding. 

 

We identified several features of salivary epithelium that were shared between PSS patients 

and controls, indicating inherent features of the tissue that have not been previously 
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described. These include identification of single acini as clonal units, demonstrating that the 

genome-wide burden of somatic mutations in salivary epithelial cells increases linearly with 

age, prevalence of APOBEC-associated mutational signatures (in ~20% of samples), and 

evidence of retroviral DNA integration (in ~20% samples). APOBEC activation is associated 

with cellular defence against viral integration216,217, complementing the observation of viral 

DNA. The finding of viral elements and APOBEC mutagenesis was not specific to PSS samples, 

instead it highlights the general susceptibility of salivary epithelial cells to viral infection and 

the prevalence of APOBEC activation as a defence mechanism.  

 

The role of viruses in PSS initiation has long been suspected but never proven, which may be 

because the virus is undetectable in tissue by the time autoimmune disease has 

developed76,117. Here we’ve found evidence of past viral activity (directly by detecting viral 

DNA and indirectly through APOBEC activity) in a significant fraction of normal and PSS 

salivary gland samples, which then also implies past activation of cytotoxic T cells as an 

immune defence against viral infection. Whether this CD8 T cell activation by viruses is an 

inciting step in PSS pathogenesis remains to be proven, however the activated phenotype and 

somatic alterations in CD8 T cells described in this thesis lend support to this idea. It is 

plausible that the CD8 T cells activated by viral infection then acquire somatic mutations and 

copy number changes during antigen-driven proliferation and expansion, and that these 

changes impart a constitutively activated phenotype that perpetuates inflammation and 

autoimmune disease. Further investigation of CD8 T cells and viral infection of salivary glands 

is needed to evaluate this novel hypothesis.
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Appendix Table A1 

Lymphoma/immune IG_genes TR_genes HLA_genes ncRNA_genes SNP_sites 

ACP5 IGHE TRAJ:3-57 HLA-A DAOA-AS1 rs10168266 

ADA IGHJ1 TRAV1-1 HLA-C HSA-MIR-4537 rs10553577 
ADRBK1 IGHJ2 TRAV1-2 HLA-DPB1 KIAA0125 rs10954213 

AFF3 IGHJ3 TRAV10 HLA-DQA1 LINC01036 rs117026326 

AGTPBP1 IGHJ4 TRAV12-1 HLA-DQB1 LINC02405-201 rs13426947 
AHR IGHJ5 TRAV12-2 HLA-DRA Lnc-EIF2AK3-4 rs17338998 

AICDA IGHJ6 TRAV12-3 HLA-DRB1 Lnc-LRRTM1-3 rs17339836 

AIRE IGHV1-18 TRAV13-1 HLA-DRB5 Lnc-NEGR1-1 rs2409781 
AKAP2 IGHV1-2 TRAV13-2 HLA-DRB6 Lnc-PLA2G4A-1 rs2729935 

ALK IGHV1-24 TRAV14DV4 HLA-G LNC13 rs2736345 

ARHGAP25 IGHV1-3 TRAV16 HLA-H MIR142 rs2856674 
ARID1A IGHV1-45 TRAV17 HLA-C MIR5011 rs3128917 

ARID1B IGHV1-46 TRAV18 HLA-DRB5 MIR875 rs3129716 

ARID2 IGHV1-58 TRAV19  RP11-44H4.1 rs3135394 
ARID5B IGHV1-69 TRAV2   rs3757387 

ASB4 IGHV1-8 TRAV20   rs4282438 

ASXL1 IGHV2-26 TRAV21   rs4680536 
ATM IGHV2-5 TRAV22   rs4728142 

ATRX IGHV2-70 TRAV23DV6   rs4840568 

B2M IGHV3-11 TRAV24   rs485497 
BACH2 IGHV3-13 TRAV25   rs4936443 

BAK1 IGHV3-15 TRAV26-1   rs5029939 

BAP1 IGHV3-20 TRAV26-2   rs583911 
BCL10 IGHV3-21 TRAV27   rs6579837 

BCL2 IGHV3-23 TRAV29DV5   rs6998387 

BCL2L11 IGHV3-30 TRAV3   rs7119038 
BCL6 IGHV3-33 TRAV30   rs73272842 

BCL7A IGHV3-43 TRAV34   rs7732451 

BCOR IGHV3-48 TRAV35   rs9260107 
BIRC2 IGHV3-49 TRAV36DV7   rs9264672 

BIRC3 IGHV3-53 TRAV38-1   rs9264672 

BLK IGHV3-64 TRAV38-2DV8   rs9271558 
BLM IGHV3-66 TRAV39   rs9271588 

BRAF IGHV3-7 TRAV4   rs9271588 

BRCA1 IGHV3-72 TRAV40   rs9271591 

BTG1 IGHV3-73 TRAV41   rs9271591 

BTG2 IGHV3-74 TRAV5    

BTK IGHV3-9 TRAV6    

BTLA IGHV4-28 TRAV7    

C7ORF50 IGHV4-31 TRAV8-1    



 
 

163 

CACNA2D1 IGHV4-34 TRAV8-2    

CADM2 IGHV4-39 TRAV8-3    

CARD11 IGHV4-4 TRAV8-4    

CARF IGHV4-59 TRAV8-6    

CASP10 IGHV4-61 TRAV9-1    

CASP8 IGHV5-51 TRAV9-2    

CBFB IGHV6-1 TRBJ2_1-7    

CCL11 IGHV7-34-1 TRBV10-1    

CCND1 IGJ TRBV10-2    

CCND3 IGKJ_1-5 TRBV11-1    

CCR3 IGKV1-12 TRBV19    

CD19 IGKV1-16 TRBV2    

CD226 IGKV1-17 TRBV20-1    

CD24 IGKV1-27 TRBV24-1    

CD27 IGKV1-33 TRBV25-1    

CD28 IGKV1-39 TRBV27    

CD38 IGKV1-5 TRBV28    

CD40 IGKV1-6 TRBV29-1    

CD47 IGKV1-8 TRBV3-1    

CD58 IGKV1-9 TRBV30    

CD70 IGKV1D-12 TRBV4-1    

CD79A IGKV1D-13 TRBV4-2    

CD79B IGKV1D-16 TRBV5-1    

CDK4 IGKV1D-17 TRBV5-4    

CDKN2A IGKV1D-33 TRBV5-5    

CDKN2B IGKV1D-39 TRBV5-6    

CDKN2C IGKV1D-43 TRBV6-1    

CHM IGKV1D-8 TRBV6-4    

CHUK IGKV2-24 TRBV6-5    

CIITA IGKV2-28 TRBV6-6    

COL11A2 IGKV2-30 TRBV6-8    

CORO1A IGKV2-40 TRBV6-9    

CR1 IGKV2D-26 TRBV7-3    

CR2 IGKV2D-28 TRBV7-4    

CREBBP IGKV2D-29 TRBV7-6    

CTLA4 IGKV2D-30 TRBV7-7    

CTPS1 IGKV2D-40 TRBV7-8    

CUX1 IGKV3-11 TRBV9    

CXCL13 IGKV3-15 TRDJ1    

CXCR4 IGKV3-20 TRDJ2    

CXCR5 IGKV3D-11 TRDJ3    

DDX3X IGKV3D-15 TRDJ4    

DDX58 IGKV3D-20 TRDV1    
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DIS3 IGKV3D-7 TRDV2    

DNMT3A IGKV4-1 TRDV3    

DTX1 IGKV5-2 TRGJ1    

EBF1 IGKV6-21 TRGJ2    

EED IGKV6D-21 TRGV2    

EEF1A1 IGLC3 TRGV3    

EGR1 IGLJ1 TRGV4    

EIF4A2 IGLJ2 TRGV5    

ELF1 IGLJ3 TRGV8    

EP300 IGLJ4 TRGV9    

ERBB2 IGLJ5     

ETS1 IGLJ6  
   

ETV1 IGLJ7  
   

ETV6 IGLL5  
   

EZH2 IGLV1-36  
   

FADD IGLV1-40  
   

FAM167A IGLV1-44  
   

FAM46C IGLV1-47  
   

FAM47C IGLV1-51  
   

FAM5C IGLV10-54  
   

FAS IGLV2-11  
   

FASLG IGLV2-14  
   

FBXW7 IGLV2-18  
   

FLT3LG IGLV2-23  
   

FNBP1 IGLV2-8  
   

FOXO1 IGLV3-1  
   

FOXO3 IGLV3-10  
   

FOXP1 IGLV3-12  
   

FOXP3 IGLV3-16  
   

GAPDH IGLV3-19  
   

GATA1 IGLV3-21  
   

GATA2 IGLV3-22  
   

GATA3 IGLV3-25  
   

GIMAP5 IGLV3-27  
   

GNAS IGLV3-9  
   

GRID2 IGLV4-3  
   

GTF2I IGLV4-60  
   

GUCY1A2 IGLV4-69  
   

H3F3A IGLV5-37  
   

H3F3B IGLV5-45  
   

HIST1H1B IGLV5-52  
   

HIST1H2AG IGLV6-57  
   

HIST1H2BD IGLV7-43  
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HIST1H2BK IGLV7-46  
   

HIST1H2BO IGLV8-61  
   

HIST1H3I IGLV9-49  
   

HIST1H4I   
   

HIST1H4K   
   

HIST2H2AB   
   

HNRNPU   
   

HRAS   
   

ICOS   
   

ICOSLG   
   

ID3   
   

IDH1   
   

IDH2   
   

IDO1   
   

IFITM1   
   

IKBKB   
   

IKBKG   
   

IKZF1   
   

IKZF3   
   

IL10   
   

IL10RA   
   

IL10RB   
   

IL12A   
   

IL18   
   

IL18RAP   
   

IL21   
   

IL21R   
   

IL22   
   

IL2RA   
   

IL7R   
   

INPP5D   
   

IRF1   
   

IRF4   
   

IRF5   
   

IRF8   
   

ITCH   
   

ITK   
   

ITPKB   
   

JAK1   
   

JAK2   
   

JAK3   
   

KDM5C   
   

KDM6A   
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KIAA0226L   
   

KLF2   
   

KLHL1   
   

KMT2A   
   

KMT2C   
   

KMT2D   
   

KRAS   
   

LAT2   
   

LCK   
   

LILRA3   
   

LILRB1   
   

LIMA1   
   

LPHN3   
   

LRBA   
   

LTA   
   

LTB   
   

LYN   
   

M3   
   

MAGT1   
   

MALT1   
   

MAP2K1   
   

MAP2K4   
   

MAP3K14   
   

MASP2   
   

MEF2B   
   

MEF2C   
   

MET   
   

MGA   
   

MLL3   
   

MLL5   
   

MNDA   
   

MPEG1   
   

MSH6   
   

MTOR   
   

MYB   
   

MYC   
   

MYD88   
   

NBEAL2   
   

NBN   
   

NCR3   
   

NEAT1   
   

NFE2L2   
   

NFKB1   
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NFKB2   
   

NFKBIA   
   

NME1   
   

NOTCH1   
   

NOTCH2   
   

NRAS   
   

ORAI1   
   

P2RX7   
   

PAX5   
   

PDGFRA   
   

PDGFRB   
   

PDL1   
   

PELI1   
   

PGM3   
   

PHF19   
   

PIK3CA   
   

PIK3CD   
   

PIK3R1   
   

PIM1   
   

PKN1   
   

PLCG1   
   

PLCG2   
   

PMS2   
   

PNN   
   

PNP   
   

POT1   
   

POU2AF1   
   

POU2F2   
   

PPM1D   
   

PRAMEL   
   

PRDM1   
   

PRKCD   
   

PRKDC   
   

PTEN   
   

PTMA   
   

PTPN1   
   

PTPN11   
   

PTPN22   
   

PYCR1   
   

RAD21   
   

RAP1A   
   

RASSF6   
   

RB1   
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RCC1   
   

RCSD1   
   

RELA   
   

RET   
   

RHOA   
   

RHOH   
   

RNF34   
   

ROBO1   
   

ROS1   
   

RUNX1   
   

S1PR1   
   

SEL1L3   
   

SERF2   
   

SETD2   
   

SF3B1   
   

SGK1   
   

SH2B3   
   

SH2D1A   
   

SOCS1   
   

SORL1   
   

SP140   
   

SPEN   
   

SRSF2   
   

SSB   
   

SSNA1   
   

SSSCA1   
   

STAG2   
   

STAT1   
   

STAT3   
   

STAT4   
   

STAT5B   
   

STAT6   
   

STIM1   
   

STK11   
   

STK4   
   

SUZ12   
   

SYK   
   

TAS1R1   
   

TBL1XR1   
   

TCF3   
   

TCL1A   
   

TERT   
   

TET1   
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TET2   
   

TET3   
   

THRAP3   
   

TLR7   
   

TLR9   
   

TMSB4X   
   

TNFAIP3   
   

TNFRSF13B   
   

TNFRSF13C   
   

TNFSF13B   
   

TNFSF4   
   

TNIP1   
   

TNPO3   
   

TP53   
   

TP53INP1   
   

TRAC   
   

TRAF2   
   

TRAF3   
   

TRAF3IP2   
   

TRAF5   
   

TRAF6   
   

TRIM21   
   

TRIP11   
   

TROVE2   
   

TXLNA   
   

TYK2   
   

U2AF1   
   

USP49   
   

VPREB1   
   

WAS   
   

WASL   
   

WEE1   
   

WHSC1   
   

WNK1   
   

WT1   
   

XBP1   
   

XIAP   
   

XPO1   
   

ZAP70   
   

ZBTB37   
   

ZFP36L1   
   

ZNF385B   
   

ZNF608   
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