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Biophysics of high density 
nanometer regions extracted from 
super-resolution single particle 
trajectories: application to voltage-
gated calcium channels and 
phospholipids
P. Parutto1, J. Heck2, M. Heine2 & D. Holcman1,3*

The cellular membrane is very heterogenous and enriched with high-density regions forming 
microdomains, as revealed by single particle tracking experiments. However the organization of these 
regions remain unexplained. We determine here the biophysical properties of these regions, when 
described as a basin of attraction. We develop two methods to recover the dynamics and local potential 
wells (field of force and boundary). The first method is based on the local density of points distribution 
of trajectories, which differs inside and outside the wells. The second method focuses on recovering the 
drift field that is convergent inside wells and uses the transient field to determine the boundary. Finally, 
we apply these two methods to the distribution of trajectories recorded from voltage gated calcium 
channels and phospholipid anchored GFP in the cell membrane of hippocampal neurons and obtain the 
size and energy of high-density regions with a nanometer precision.

Single Particle trajectories (SPTs) obtained from super-resolution techniques such as sptPALM or UPaint sum-
marize the history of large amount of particles that can be cytoplasmic molecules, membrane receptors or chan-
nels in live cells. Over the past decade, statistical methods based on stochastic models have been developed to 
segment1,2, interpret and extract relevant biophysical parameters such as flows and arrival time statistics between 
various subregions3–8 from these large data sets. The most striking and universal characteristic of these trajecto-
ries is that they are not homogeneously distributed in cells, but rather are concentrated in sub-regions, a phenom-
enon that is not fully understood: what are these high-densities regions? What are the underlying physical forces 
that restrict and confine trajectories? For example, AMPA receptors that traffic on the surface of neuronal cells 
accumulate specifically at the post-synaptic density (PSD) of synapses, where they are needed for proper synaptic 
transmission9,10. Similarly, at the pre-synaptic terminal, voltage-gated calcium channels (CaV) can accumulate on 
membrane subregions, with a size of hundreds of nanometers11. Retaining these channels guarantee that calcium 
ions can remain near vesicles to trigger release.

A possible mechanism to retain trajectories is a field of force caused by the presence of an extended potential 
well. These structures have been detected in a size of hundreds of nanometers3,11,12. However, the physical origin 
of these wells remains unclear because the length of classical electrostatic interactions is ten time shorter13 than 
the observed wells sizes. These high-density regions are characterized by several features: (1) a converging field of 
force, whether or not it is the gradient of a potential energy, (2) an energy depth and (3) a boundary. Finding and 
estimating these geometrical characteristics from trajectories and their statistical distribution remain challenging 
especially at tens of nanometers below the diffraction limit of light.
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Here, we present two methods to detect and reconstruct potential wells from high-density regions contained 
in SPTs. The first approach is based on estimating the density of points of a truncated Ornstein-Ulhenbeck pro-
cess (which accounts for a motion driven by a converging force and diffusion). We recover the center of the well, 
the covariance matrix and the boundary. While the second approach is based on estimating the local drift vector 
field. We insist that the first approach will clearly reveal the peak of aggregation, while the strength of the second 
method is its ability to extract a field of force. This field confirms the underlying deterministic structure that 
maintains the random trajectories together. We will first validate both approaches on stochastic simulations and 
then apply them to characterize nanodomains appearing in voltage-gated calcium channels (CAV2.2) and lipid 
anchored GFP (GPI-GFP) trajectories obtained from sptPALM or UPaint experiments.

Methods
Coarse-grained description of stochastic trajectories.  In the Smoluchowski’s limit of the Langevin 
equation14,15, the position (t) of a stochastic molecule at time t can be described by

γ
= + 

XX F t t D W( ( ), ) 2 ,
(1)

where F(X, t) is a field of force, W is a white noise and γ is the friction coefficient14 and D is the diffusion coeffi-
cient. The source of the noise is the thermal agitation of the ambient lipids and membrane molecules. However, 
due to the timescale of acquisition of trajectories, which is in general too low to follow the thermal fluctuations, 
rapid events are not resolved in data, and at this spatiotemporal scale, the motion can be coarse-grained as a 
stochastic process3,16

= + X XX a B W( ) 2 ( ) , (2)

where a(X) is the drift field and B(X) the diffusion matrix. The effective diffusion tensor is given by 
=X X XD B B( ) ( ) ( )T1

2
(.T denotes the transposition)14,17. The diffusion tensor accounts for impenetrable obstacles 

of various sizes. Note that the interpretation at the physical level of the stochastic Eq. (2) is from the Ito’s sense and 
not Stratanovich or any other sense, because a physical process has to be non-anticipating17 (the future cannot 
interfere with the past).

Potential wells characteristics.  The drift field a(X) in Eq. 2 may represent a field force acting on the dif-
fusing particle, that could be due to a potential well13. When the diffusion tensor (X) is locally constant and the 
coarse-grained drift field a(X) is a gradient of a potential

= −∇X Xa U( ) ( ), (3)

then the density of particles is given locally by the Boltzmann distribution18

ρ = −X N e( ) , (4)XU D
0

( )/

where N0 is a normalization constant. An infinite paraboloid potential well with an elliptic base has the analytical 
representation for X = (x, y)
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where the center is (μx, μy), A is the field amplitude A and a, b are the lengths of the large and small semi-axes of 
the ellipse. To account for a finite well, we restricted the influence of the well to the region

Γ = | ≤ .x y U x y{( , ) ( , ) } (6)

The truncated energy function U associated to such parabolic potential well is
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from which the drift field is the gradient of the energy, is given by
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The goal of these section is to recover, from empirical single particle trajectories that consists of few successive 
points acquired with a sampling time Δt, the center (μx, μy), the amplitude A and the size of each semi-axis a, b 
for the boundary  .
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Simulations of stochastic trajectories.  To validate our methods, we first generated synthetic single par-
ticle trajectories from the stochastic process

= −∇ +
X XU DW( ) 2 , (9)

where the potential U is defined in Eq. (5) (as presented in Fig. 1A), D is the diffusion coefficient and W is a white 
noise. To reproduce observed trajectories, we keep a fixed lapse time Δt between successive points and generated 
N trajectories (X1(0), …, XN(KΔt)) containing K points (K = 20), using the classical Euler’s scheme (Fig. 1B).

We consider two types of numerical simulations depending whether the initial points Xi(0) are uniformly dis-
tributed (1) inside the well or (2) inside a square box surrounding the well. This uniform distribution represents 
the random activation of fluorophores by a laser (Fig. 1B). To guarantee a constant number of points inside the 
wells across multiple simulations, we did not fix the number N of trajectories but instead generate new trajec-
tories until a certain quantity of displacements has happened inside the well. This resetting procedure generates 
a distribution of points which depends on the initial uniform distribution. However, in the limit of large N, the 
distribution of points converges toward the steady-state, which is Gaussian inside the well and uniform outside, 
when trajectories are restricted to a large square domain.

Empirical estimators.  The drift of the stochastic model from Eq. 2 can be recovered from SPTs acquired 
at any infinitesimal time step Δt by estimating the conditional moments of the trajectory displacements 
ΔX = X(t + Δt) − X(t)14,16,19–21


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2 (11)t

T

0

The notation  [·|X(t) = x] represents averaging over all trajectories that are passing at point x at time t. To 
estimate the local drift a(X) and diffusion coefficients D(X) at each point of the membrane and at a fixed time 
resolution Δt, we use a similar procedure as the one for the estimation of the density in section 3 based on a 
square grid. The points of trajectories are first grouped within a lattice of squared bins S(xk,Δx) centered at xk and 
of width Δx and the drift and local diffusion coefficient are estimated for each bin.

When there are N trajectories {Xi(0),…, Xi(KΔt)}, with i = 1…N acquired with a sampling time Δt, the dis-
cretization of Eq. 10 for the drift a(xk) = (ax(xk), ay(xk)) in a bin centered at position xk is
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Figure 1.  Numerical simulation scheme. (A) Model of a truncated potential well with two axes a, b and energy 
U(X) with a boundary. (B) Trajectories generated using Eq. (9) where the initial points (black dots) can either be 
located inside or outside the boundary of the well (dashed red). Parameters: D = 0.042 μm2/s, λx = 10,λy = 17.78.
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where Nk are the number of points of the trajectory falling in the square S(xk, r). Similarly, the components of the 
effective diffusion tensor D(xk) are approximated by the empirical sums
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The bin centers and size Δx are free parameters that should be optimized during the estimation procedure.

Estimators for the elliptic boundary geometry.  To identify parts of trajectories inside the well, we use 
the level line ensemble of the density distribution

ρ αΓ = >α X x{ such that ( ) }, (14)i e

where ρe is the empirical point density, estimated over the bins of the square grid constructed from the ensemble 
of trajectories (Fig. 2B). The ensemble Γα contains all trajectory points falling into a bin, with a density greater 
than the density threshold α.

To recover the center of the distribution, we consider all points Xi = (xi, yi) located in Γα (Fig. 2C) and use the 
empirical estimators
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where Np is the number of points in the ensemble Γα. To estimate the covariance two-by-two matrix C(α), defined 
as

μ μ= − −α α αXU C( ) ( ) ( ), (16)T( ) ( ) ( )

we use the empirical estimators
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where Xi,k is the ith coordinates of Xk (Fig. 2C).

Improved drift estimation.  We recall briefly here (see SI) that a correction term has to be added in order to 
recover an Ornstein-Uhlenbeck process of parameter λ and centered at μ (Eq. (9)): we derived in the SI that the 
drift term at position x and at resolution Δt

μ= −
−
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− .
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t
x( ) 1 ( ) (18)t

t

Hence, the first order moment at resolution Δt computed from the displacement X(t + Δt) − X(t) from SPTs 
deviates from the expected drift. When λΔt is small, a first order Taylor expansion leads to the approximation
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and hence to recover the drift, we have to use the correction factor λ+ Δt1 1
2

 on the estimated drift.

Processing of CaV2.2 and GPI SPTs.  For the experiments related to CaV2.2 data, we refer to22, while the 
experimental procedure of GPI-GFP data have been described for other molecules in23. We will first isolate tra-
jectories in non-overlapping time windows of 20s and apply the following procedure to each window. We will 
construct a square grid with bins size Δx around trajectories and collect the 5% highest density bins. For each of 
these selected bins, we will detect well as follows: we will first use 90% of the local point density (threshold 
α = 0.1) to detect the center of the well from Eq. (15), then we will apply the procedure described in subsection 
3.1 (elliptic case), restraining the computation of the semi-axes ratio to a maximum distance from the center 
rcov = 150 nm and using a threshold Tρ = 35% on the density of points for determining r̂e ,0. Once the center and 
semi-axes of the well are found, the diffusion coefficient will be determined using Eq. (13), estimated for all dis-
placements with an initial points falling inside the well.
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Results
Recovering a bounded potential well from the point density of trajectories.  We first reconstruct 
the characteristics of the potential wells from the distribution of trajectories. This approach ignores the temporal 
causality between successive points and relies on a truncated paraboloid model. We will first recover the center 

Figure 2.  Recovering a truncated potential well from the density of points. (A) Density maps (in 
log(points)/μm2) for two different grid sizes Δx = 10 (left) and 50 nm (right) when the initial points are located 
inside the well A1 or uniformly distributed in a square of size 1 μm A2. (B) Normalized three-dimensional 
empirical density function ρ obtained from A. We plotted the ensemble Γα = {X|ρ(X) > α} for α = 0.1 (black) 
and α = 0.4 (pink) and the projected area (red) in the well in the two cases (B1,B2) associated to (A1,A2) 
respectively. (C) Influence of the grid size Δx and threshold α on the well characteristics estimations. (C1,C3) 
(resp. C2, C4) panels are obtained by computing with the initial distribution described in A1 (resp. A2).
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and covariance matrix of the steady-state density distribution using a square grid (Fig. 2A). We recall that inside 
a well given by Eq. 5, this is a Boltzmann distribution:
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where N0 is a normalization coefficient while the other parameters are defined in subsection 2.2. Based on this 
distribution, we estimated the center using Eq. (15) and the covariance matrix from Eq. (17).

The accuracies of these estimators are analyzed by plotting the errors between the true and the estimated 
centers μ μ|| − ||αˆ  and between the covariance matrices || − ||

α
Ĉ C  (quadratic norm of the matrix) versus the 

parameter α, which represents the threshold of level line (Eq. 14, Fig. 2B,C) and various grid sizes (from Δx = 10 
to 90 nm). When α decreases from one to zero and the initial points are located inside the well, the iterative 
sequences of positions of the estimated centers converge to the true value and the fluctuations (SD computed over 
100 realizations) decreases with α (Fig. 2C1). However, when the initial points of the simulated trajectories were 
also chosen outside the well, we found that there was an optimal threshold value α ≈ 0.3 for which the error in the 
estimated and true centers is minimum (Fig. 2C2). Below this value, points of the trajectories falling outside the 
well are also contained in the ensemble Γα, thus contaminating the error of the estimation. When the initial points 
fall inside the well only (Fig. 2C3), the ensemble Γ0 contains external trajectories that perturb the estimation of 
the covariance matrix C(α). However, as α increases, these external points disappear from Γα and the error 
becomes minimal at the value αopt = 0.05. When α continues to increase, the estimators become less accurate. 
However, when the initial points are chosen also outside the well, the error starts by decreasing because trajecto-
ries that are not inside the well affects the estimation (Fig. 2C4). As α increases, the estimator converges toward 
an optimal value α0.25 (75% of the points are used), which minimizes the matrix error. When α continues to 
increase, the error increases slowly (Fig. 2C4-inset), similar to the case of Fig. 2C3.

To conclude, depending whether or not trajectories are falling inside the well or could also escape the 
high-density regions, the statistical estimators give different results: using as many points as possible increases the 
estimate of the center, but not necessarily of the covariance matrix.

Estimating the boundary of the well.  None of the estimators described above can be used to reconstruct the 
location of the well boundary. We now present a method to recover first a circular and then an elliptic boundary 
in two cases: when the initial points falls only inside the well and when they can also fall outside. The first step 
consists in discriminating between a circular and an elliptical boundary. To do so, we computed from the matrix 
(17), the covariance ratio

=Cv r
C r
C r

( )
( )
( ) (21)

1,1

2,2

estimated over the trajectories located inside the annulus (r, r + Δr) (Fig.  3A1). To compute Cv(r) 
(Fig. 3A1,A2,B1,B2), we recall that the diagonal form of covariance matrix can be found from Eqs. (20) and (16):
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, the ratio of the large to the small elliptic semi-axes 

lengths does not depend on any other parameters. In the case of a disk, Cv(r) = 1 as shown in the simulation cases 
(Fig. 3A1,A2,B1,B2).

Once the well boundary has been identified as circular, to estimate its radius r0, we plotted the density of 
points ρ(r) versus r, the radial distance with respect to the center μ̂ (see Method). Interestingly, this procedure 
reveals the location of the boundary between the Boltzmann (inside the well) and the uniform (surrounding it) 
density distributions of the trajectories (Fig. 3A3,A4). When the initial points falls inside the well, the density of 
points decays with the radius r and the boundary can be identified by plotting −logρ(r) (Fig. 3A3). Indeed, for 
points inside the well, we have logρ(r)~C0 − (αx2 + βy2), where r2 = x2 + y2, with α = 2A/a2, β = 2A/b2 and exp(C0) 
is the maximum value of the distribution. In practice, we find r0 as the first value for which the error 
∫ ρ− +C C s s ds( log ( ))r

0 0 1
2 2  starts to increase. The distribution of r̂0 for 100 simulations is shown Fig. 3A4. 

When the initial points are now also chosen outside the well, the trajectories are either attracted inside the well or 
leave, thus the distribution of points is minimal at the boundary (Fig. 3B3), which allows us to recover r̂0 as the 
minimum point of the density curve (Fig. 3B4).

In the case of an elliptic well, we modified the previous method as follows: first, the ratio of the semi-axes 
lengths a/b is recovered as the maximal value of Cv(r) (Fig. 4A1,A2,B1,B2, for a ratio a/b = 2). Second, using this 
ratio, we introduced the elliptic distance = + ⁎r x y x C r y( , ) ( )e v

2 2 , for a point P = (x, y) from which we gener-
ated the point density distribution (Fig. 4A3,B3) and used on this curve the procedure described for the disk case 
to recover the large semi-axis =ˆ ˆa re ,0 (Fig. 4A4,B4). The small-semi axis is then given by =ˆ ˆ

⁎b a
C r( )v

.
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To conclude, the present method based on the density of points allows to reconstruct the geometrical param-
eters of a bounded parabolic potential well: center, boundary, small and large semi-axes. In SI Figs. S1 and S2, we 
compare this density method with the MLE, which is classically used to recover the center and covariance, but 
not the boundary.

Figure 3.  Estimating the potential well boundary. (A) Initial trajectory points are chosen inside the well while 
in (B) initial points are chosen inside a surrounding square. (A1,B1) Covariance ratio =C r( )v

C r
C r

( )
( )

11

22
 

estimated in the annulus r, r + Δr. (A2,B2) Cumulative from A1,B1. (A3,B3) Point density (in log for A3) 
estimated from the distance r to center showing a clear inflection point at the boundary of the well (criteria of 
selection). (A4,B4) Estimation of the radius r̂0 using the inflection point for A4 (as presented in A3) or the 
minimum value of the density for B4 (as presented in B3).
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Estimating the characteristics of the well using the velocity distribution.  In this section, we describe 
a second approach to reconstruct the potential well associated to a nanodomain, using the statistics of displacements 
X(t + Δt) − X(t). They allow to recover the drift of the vector field and reconstruct the center μ and the two axes a, b 
of the well boundary. This method is based on the least square quadratic error (LSQE),

Figure 4.  Estimating the potential well boundary for an elliptic well. (A) Initial trajectory points are chosen 
inside the well while in. (B) Initial points are chosen inside a surrounding square. (A1,B1) Covariance ratio 

=C r( )v
C r
C r

( )
( )

11

22
 estimated in the annulus r, r + Δr. (A2,B2) Cumulative from A1,B1. (A3,B3) Point density  

(in log for A3) based on the modified distance = + ⁎r x y x C r y( , ) ( )e v
2 2  to the center showing a clear 

inflection point at the boundary of the well. (A4,B4) Estimation of the radius r̂e ,0 using the inflection point for 
A4 (as presented in A3) or the minimum value of the density for B4 (as presented in B3).
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between the empirical drift and the parabolic well U, defined in Eq. 8, with λ λ= − = −,x
A

a y
A

b
2 2

2 2 .

Estimating the center and the field coefficients of the potential well.  The center μ and the coefficients λ of the poten-
tial well can be obtained explicitly from Eqs. 24 and 20 (SI). We compare in Fig. 5A, the reconstructed and the true 
drift value based on Eq. (12) for various grid sizes. At this stage, we considered the boundary to be known and esti-
mated the drift only for bins that are falling inside the well. The error of the norm 〈|| − ||〉

〈|| ||〉
b b

b
 is plotted in Fig. 5B for 

multiple time steps Δt and for three grid sizes Δx = 10, 50 and 90 nm. Having both a small grid size and time step 
Δt produces a large error that quickly decreases with increasing the time step Δt. Interestingly, for a large grid size, 
we found a slow increase of the error when increasing Δt. To better understand which parts of the field contributed 
the most to the error, we plotted Err versus the distance to the center (Fig. 5C). This result shows that for small size 
Δx = 10 nm, a major contribution came from the center, while for large step Δx = 50, 90 nm, an error came also 
from the boundary. We refer to Fig. S3 for recovering a drift at a different time resolution Δt and also with some 
restrictions on the trajectories for which the end point remained inside the well (Fig. S4).

Finally, to estimate the boundary of the well from the drift distribution (Fig. 6A), we plotted the drift ampli-
tude versus the distance to the well center (Fig. 6B, blue crosses representing the drift amplitude in individual 
bins). From the distribution and the average (Fig. 6B lower panel), we could recover the location of the boundary 

Figure 5.  Vector field characteristics. (A) Recovering the local drift field inside a circular well for different grid 
sizes (10 nm, 50 nm, 90 nm) using numerical simulations with Δt = 20 ms, with the constraints that at least 10 
points falls inside a bin. (B) Error between the true and observed fields averaged over all the square bins inside 
the well vs the time step Δt. (C) Error between the true and observed fields averaged over the radial angle vs the 
distance r to the center of the well center for various timestep (see color code).

https://doi.org/10.1038/s41598-019-55124-8


1 0Scientific Reports |         (2019) 9:18818  | https://doi.org/10.1038/s41598-019-55124-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 6.  Recovery of the well depth from trajectories. (A) Vector field recovered from trajectories including 
the field generated by the Brownian dynamics outside the well. At the boundary of the well, there are mixed 
displacements (OU and Brownian), marked by the green band. (B) Upper: Drift amplitudes in each grid square 
versus the distance r to the center of the well. The expected amplitude is marked by a dashed line and the 
boundary with a narrow green band. Lower: Average and SD of the upper panel. (C,D) Same as in A-B for the 
case of an ellipse where a/b = 2. (E) Error of the center μ μ μ|| || = +x y

2 2 and the eigenvalue λ λ λ|| || = +x y
2 2 

of the reconstructed ellipse in 4 cases: (1) bins falling inside the boundary are considered, (2) the center bin has 
been omitted (3) boundary bins are omitted and (4) when the center bin plus the ones intersecting the boundary 
(green bin in C) are not considered.
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at the local maximum. Indeed, after the boundary is passed, the contribution of the deterministic field disappears 
and only fluctuations due to the Brownian motion remains in the statistics. We apply the same procedure for the 
case of an ellipse (Fig. 6C,D) and recover the boundary after we used the covariance ratio Cv (Eq. 21) to plot the 
drift amplitude versus the elliptic distance to the boundary.

To evaluate the influence of the bins located at the center or the ones near the boundary, we estimated the 
center μ, and eigenvalues λx and λy in four cases: for all bins falling inside the well, all bins except the ones at the 
center, all bins except the ones intersecting the boundary and finally removing the center and the boundary bins 
(Fig. 6E). We found that the latter case produces the best estimation.

Interpretation high-density regions for CaV and GPI-GFP as potential wells.  In this section, we 
will apply the methodology developed in the present article to characterize high-density regions found in SPTs of 
voltage-gated calcium channels and phospholipids. We recently reported that these regions could be associated 
with potential wells, as revealed from the voltage-gated calcium channels CaV2.1 isoform11. We focus here on the 
isoform CaV2.2 (N-type channel) by using the density of points, the least-square estimation (SI Section 2) and 
the maximum-likelihood method (SI section 1). For the analysis, we use only wells that contain at least 50 points 
with a minimum of 5 different trajectories.

We find that all three approaches produce reasonable values of the coefficient A and the energy (we restricted 
to wells with energies <7 kT). The values of the parameters are summarized in Table 1. We report in Fig. 7A–C  
that the high-density regions can be characterized as potential wells with the following characteristics: the two 
main axes have average lengths (±SD) of a = 104 ± 36 nm, b = 77 ± 20 nm associated with a mean energy of 

Parameter GPI dataset CaV dataset

Δt (exp) 20 ms 33 ms

Δx 40 nm 30 nm

rmin 30 nm 20 nm

rmax 300 nm 400 nm

Δr 20 (m 10 nm

Table 1.  Parameters used for CaV and GPI analysis.

Figure 7.  Reconstruction of wells associated to CaV2.2. (A) 3 examples of potential wells (left) obtained from 
the density analysis on SPTs. The boundary of the well are estimated from various level of density α (right). The 
estimated radius r̂0 is obtained using a threshold T = 4% on the density. (B) Box plots for the statistics computed 
over 353 detected wells for the two semi-axes a and b of the ellipse, the coefficient A and the energy (in kT). 
Results are obtained for the Density, LSQ and MLE methods. (C) Summary of mean and SD for the coefficient A 
and the energy.
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3.3 kT estimated for the density method. These results differ from the CaV2.1 isoform11. Note that the distri-
bution of energy varied with the statistical method (Fig. 7C), as we reported E = 3.1 ± 0.5 kT for the MLE and 
E = 1.6 ± 0.7 kT for the LSQ. To conclude, this statistical analysis suggests that to trap calcium channels, specific 
long-range molecular mechanisms should be present in the active zone of the pre-synaptic terminal, probably 
associated to vesicular release molecules such as synaptotagmin. These sites retain channels for a long time, 
enough to trigger vesicular release.

We also apply our statistical methods to the case of GFP linked to the outer leaflet of the membrane by a 
GPI-anchor (Fig. 8A–C), which are considered to be non-interacting molecules. However, we found many 
hiqh-density regions (N = 181), which are characterized as potential wells. The elliptic axes are a = 158 ± 57 nm 
and b = 118 ± 39 nm, associated with an energy of E = 3.6 ± 1.0, 1.5 ± 1.0 and 3.5 ± 1.0 kT for the density, LSQ 
and MLE methods respectively. To conclude, although it is surprising to detect high-density regions in GPI-GFP 
SPTs, we found here that they can be characterized as potential wells. Possibly they correspond to places where 
local signaling complexes or other transmembrane proteins are present. The exact nature of these regions remain 
unclear and should be further investigated. rather

Summary and Discussion
Two statistical methods to interpret high-density regions.  We presented here two methods to 
extract the biophysical characteristics of high-density regions explored by SPTs. Interestingly, these regions are 
associated with bounded potential wells. The first method exploits the density of points of the trajectories, ignor-
ing the causality between the successive points. It assumes that the nanodomain is a parabolic potential well with 
an elliptic base and a constant diffusion coefficient. In that case, the distribution of points inside the well is given 
by a Boltzmann distribution and should be uniform outside. We use this key observation to recover the main 
physical parameters and the location of the boundary. We compared also our result to the classical MLE (see 
Figs. S1, S2). The second method is based on estimating the vector field distribution at a given bin resolution Δx. 
We used an optimal estimator to recover the characteristic of the field and we found that the boundary is located 
at the discontinuity between the converging field of the well (Ornstein-Ulhenbeck) and the random field gener-
ated the surrounding Brownian motion. Finally, the present methods are based on multiple averaging over many 
trajectories21, which provide robustness, reducing the effect of tracking errors or localization noise24,25.

The two methods are complementary and provide certain advantages compared to the MLE and PCA. In all 
cases, the center of the well could be retrieved. The quality of the estimators of the covariance parameters, how-
ever, were dependent on the method: changing the time Δt and spatial Δx steps influenced the recovery process 

Figure 8.  Reconstructed wells associated to GPI-anchored GFP. (A) 3 examples of potential wells (left) 
obtained from the density analysis on SPTs. The boundary of the well are estimated from various level of density 
α (right). The estimated radius r̂0 is computed using a threshold T = 4% on the density. (B) Box plots of the two 
semi-axes a and b (of the ellipse), estimated over 181 detected wells, the coefficient A and the energy (in kT), 
compared for the Density, LSQ and MLE methods. (C) Table of mean and SD for the coefficient A and the 
energy.
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as shown in Figs. 3, 4 and 6. The advantage of the first method is that we do not need to introduce an artificial grid 
of size Δx which is a serious constraint in the second method as the bins size defines the resolution to recover the 
well and its boundary.

High-density regions contained calcium-voltage channels and GPI SPTs data.  We recall that 
high-density regions revealed by SPTs are not necessarily to due physical forces and potential wells3. However, 
for potential well, the geometry (center, curvature and boundary) can be recovered from our two methods. We 
applied them to CaV channels that mediate vesicular release at neuronal synapses and to phospholipid anchored 
GFP (GPI-GFP) moving on the cellular membrane. We found that the high-density regions for CaV (Fig. 7A) are 
characterized by two main axes with a length a = 104 ± 36 and b = 77 ± 20 nm (Fig. 7B), with a mean energy of 
3.3 ± 0.8 kT (density method, Fig. 7C). We note that hydrogen bonds between calcium channels and phospholipid 
molecules could participate in the formation of the wells26. Surprisingly, we did not expect to find high-density 
regions for GPI-GFP, but we found several (Fig. 8A) that were characterized by average semi-axes lengths 
a = 158 ± 57 and b = 118 ± 39 nm (Fig. 8B), with a mean energy E = 3.6 ± 1.0 kT (density method, Fig. 8C). 
Possibly the higher energies of GPI-GFP wells can be due to the large variance caused by the lower number of 
trajectories restricted inside the wells as compared to CaV.

Although the interpretation of high-density regions as potential wells for AMPA receptors was first anticipated in27  
and discovered in3, the nature of these wells and others, remains unclear13. Potential wells were found for mem-
brane proteins such CaV11, GAG12,28 and recently for G-protein29. They could be generated by protein clusters, 
membrane cusps at vesicle fusion points or membrane-membrane contact at location of organelle interactions30.  
In general, potential wells are characterized by long-range forces of the order of hundreds of nanometers.

The wells could have multiple roles: they could retain receptors for hundreds of milliseconds to seconds at spe-
cific locations in order to increase the probability of a robust signal transduction, such as during synaptic trans-
mission. Transient wells allow to trap proteins to create aggregates as proposed for capsid assembly12,28: once the 
energy of the well decreases, molecules are not interacting with the well anymore. Other possible roles for wells 
could be regulating the flow of receptors in micro-compartments such as dendritic spines16 or trapping proteins 
in the endoplasmic reticulum11. Finally, correlating undefined membrane geometry with an energy landscape 
remains difficult, because a physical model is needed to interpret them. Thus, the dynamics of receptors outside 
potential wells that deviates from trapped Brownian motion is still challenging to comprehend.
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