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Abstract
Unsteady Aerodynamics of Wing-Gust Encounters

Simon James Corkery

Wind gusts can be highly detrimental to the performance of fixed wing aircraft. At low flight speeds,
gusts transverse to the lifting surfaces can cause massive changes to the angle of incidence, fluctua-
tions in lift and drag, and result in flight instability. This may be catastrophic for small drones, and
hazardous for larger aircraft during take-off and landing. Onboard gust sensing and counter-control
is a promising solution, but requires a model of the wing-gust interaction. The problem is that only
simple linear models such as Küssner’s theory exist, and the physics of large amplitude wing-gust
encounters is unknown. This work is a fundamental study into the physics of such interaction. The
aims are to uncover the phenomenon which contribute toward the force response of the wing. In
particular, the role of free vortices and added mass are investigated and compared with the conditions
modelled within Küssner’s transverse gust theory.

Two sets of experiments were conducted using flat plate wing models in a water towing tank.
Data was acquired using a combination of Particle Image Velocimetry (PIV), dye flow visualisation,
and force measurements. A novel methodology was also developed to isolate added mass effects
from standard resolution PIV. The first experiment involved accelerating the plate in translation and
angular directions to validate the added mass extraction methodology, and investigate viscous effects
on added mass. The experiments successfully demonstrated both the technique, and that the potential
flow added mass solution is valid even for viscous and separated flows.

For the second experiment, equipment was constructed to facilitate the generation of a ‘sharp
edged’ top-hat shaped gust velocity profile in the towing tank. The wing models were towed through
this, thereby replicating a wing-gust encounter. Test cases with gust ratios of 0.2, 0.5 and 1.0, as well
as Reynolds numbers from 5,000 to 40,000 were conducted. The results showed that Küssner’s model
predicted the force response for each encounter surprisingly well, albeit discrepancies emerged at
the higher gust ratios. This was attributed to significant leading edge separation as well as deflection
and subsequent roll-up of the gust shear layers. For wing-gust encounters it was shown that the force
component attributed to added mass in Küssner’s model is not equivalent to that of an accelerating
body, rather it can be attributed to the relative advection of gust shear layer vortices. We call this
a ‘non-circulatory vortex force’. A second non-circulatory vortex force was additionally proposed,
attributed to the generation of free vortices. This was shown to be responsible for the buoyancy and
added mass like force, for cases where a flow field is accelerated past a stationary body.
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Chapter 1

Introduction

Over a century ago the Wright brothers made history, when for 12 seconds, the Flyer lifted from the
ground in mankind’s first controlled powered flight. From these humble beginnings, aviation has since
become essential for transport, geographical surveying, surveillance, search and rescue operations
and for military purposes. Historically, the majority of aerodynamic research was directed toward
pushing the boundaries of manned flight. The aim was to fly faster, higher, with increased payload,
reliability, safety, as well as at a lower cost. Steady, high Reynolds number (Re) aerodynamics was
key to flight, and consequently was extensively studied.

Now, attention is shifting to very small and low speed aircraft. The rapid technological de-
velopment of Micro Electro-Mechanical Sensor (MEMS), and actuator systems, has enabled the
development of autonomous aircraft at similar sizes to biological fliers (Petricca et al., 2011). Vehicles
such as those shown in figure 1.1 may be categorised as Micro Air Vehicles (MAV), Unmanned Aerial
Vehicles (UAVs), or drones. Micro air vehicles have a wing span of order 15 cm and weigh less than
200 grams (Davis et al., 1996; Grasmeyer and Keennon, 2001).

(a) Flapping wing (b) Fixed wing

Fig. 1.1 Examples of flapping and fixed wing Micro Air Vehicles. After Keennon et al. (2012) and Grasmeyer
and Keennon (2001).



2 Introduction

As shown in figure 1.2, with reducing vehicle mass the optimal flight speed is also reduced. MAVs
operate within the range of 10-20 m/s. The small size, portability, manoeuvrability and potentially
low cost mean the devices would find significant application complementing, or even replacing,
some of the services currently provided by manned aircraft. However, with reducing size comes
increasing aerodynamic problems. According to Lissaman (1983), below a Reynolds number of
70,000, conventional aerofoils see a marked drop in performance due to an increasing prevalence of
viscous effects. Drag is increased, the peak lift coefficient drops, and importantly, the flow is prone to
separation because the boundary-layer over the suction side of the aerofoil remains laminar beyond
the point at which pressure recovery commences. MAVs operate at a Reynolds number in the range
of 104 (Petricca et al., 2011), and as a consequence, suffer from comparatively poor aerodynamic
performance even in ideal or low atmospheric turbulence conditions.
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Fig. 1.2 Maximum flight speeds with mass for biological fliers, UAVs and aircraft (Bejan (2005) and references
therein).

While aerofoil performance is relatively poor in ideal, steady conditions, most flight conditions
are not ideal. MAVs are expected to operate at altitudes well within the atmospheric boundary-layer
and fly across high shear and wake regions behind local obstructions (Watkins et al., 2006). Normal
flight is anything but steady. As shown in figure 1.3, in this domain the wind turbulence intensity can
exceed 50% (Mohamed et al., 2015; Walshe, 1972). Watkins et al. (2006) showed that for a typical
radio aircraft sized fixed wing UAV there can be rapid changes in angle of incidence in excess of 25◦,
as well as spanwise variations in incidence of up to 15◦. Given both poor resistance to separation,
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and wild fluctuations in angle of incidence, the authors showed that MAVs are plagued by problems
with attitude control. The devices consequently have poor ability to maintain a desired flight path and
may experience complete loss of control (Mohamed et al., 2015, 2014; Ol et al., 2008). Reducing
the MAV mass and flight speed increases the susceptibility to atmospheric disturbances (Mohamed
et al., 2015; Spedding and Lissaman, 1998; Watkins et al., 2006, 2010; White et al., 2012). We will
characterise the relative flow unsteadiness by the Gust Ratio (GR) parameter, defined as

GR =V/U, (1.1)

which is proportional to V , the gust velocity, and inversely proportional to U , the free stream velocity
or flight speed.

Fig. 1.3 Typical turbulence intensity of city, residential, and open terrain environments. After (Mohamed et al.,
2015; Walshe, 1972).

One potential means to improve the gust performance of MAVs, is through onboard wind sensors
and ‘counter control’ actuation. A low-order model of the fluid-dynamic response of the lifting
surfaces would be invaluable, as it enables the correct control authority of actuators to be determined
within millisecond timescales. The onboard sensor systems could then be utilised for gust disturbance
rejection using closed loop control, and the operating wind envelope of MAVs may therefore be
extended. The development of such a model requires a sound understanding of the dynamics of a
wing-gust encounter.

1.1 Motivations for the present research

The motivations for this thesis, as preluded in the introductory section, stems from our desire to
improve the performance of MAVs. This directs our attention to ‘gusts’ and the low Reynolds number
regime. The aims of this work, as described later in section 2.7, are not to directly design a single
model for the MAV application. Rather, we seek to learn from existing theories, modelling methods,
as well as experiments, to broaden our understanding, and abilities to experimentally characterise
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the flows typical of the MAV scenario. The findings described within this thesis, may therefore find
application to any situation where MAV-like physics apply, namely those with strong ‘added mass’
and vortex dynamics effects. This incorporates the majority of unsteady aerodynamic situations,
including high performance yachts, and submarines within the marine industry. The findings are
relevant to the energy sector, in the design of wind and water turbines, which are subjected to turbulent
flows. The general aviation industry may be a further application, particularly during take-off and
landing scenarios, where low flight speeds and highly transient loads are common.



Chapter 2

Literature Review

2.1 Definition of a ‘gust’, and gust interaction

In the context of this thesis, a ‘gust’ is defined as a flow velocity perturbation, relative to a quiescent
fluid, which is caused by some mechanism external to a body of interest. A gust interaction, is simply
an interaction between a body with the velocity perturbation.

2.2 Origin and impact of different gust types

In this section the literature on common gust encounters is reviewed to ascertain the type, source,
impact and modelling methods used to quantify the response to such interaction.

2.2.1 Gust types

Depending on the local geographical topology, time and date, the atmospheric boundary layer extends
up to an altitude ranging from approximately 500 to 2,000 metres above ground level (Davies et al.,
2007). Above this, there are two main gust types (or ‘atmospheric turbulence’) which aircraft experi-
ence in flight. ‘Convective’ turbulence is attributed to disturbances around thunderstorms and clouds,
while ‘clear air’ turbulence is attributed to buoyant convection from localised heating, or gradients
in wind velocity with altitude (Turner, 1977). General atmospheric turbulence is often described by
the von Karman spectrum (Leahy, 2008; Turner, 1977) and velocity perturbations occur in directions
both tangential to the aircraft path, normal to the wing planform (transverse), or spanwise (see figure
2.1). For manned fixed wing aircraft, Rhode and Lundquist (1931) argued that velocity perturbations
in the direction tangential to the flight path have only a small effect on wing loading. Leishman
(1996) explained that tangential velocity perturbations can usually be ignored as they produce mostly
quasi-steady loading effects, and attributes the majority of the unsteady disturbances to vertical
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(transverse) velocity perturbations. Spanwise velocity variations are relatively insignificant as they do
not invoke a change to the aerofoil section lift (perhaps with the exception of aircraft with significantly
swept wings). At the lower levels of the atmosphere, well within the atmospheric boundary-layer
we find flows typical of urban and city environments. These are characterised by low mean wind
speeds, but high turbulent fluctuations (Watkins et al., 2006). The flow can experience sudden changes
in wind speed and direction due to high surface roughness, instabilities and interactions with local
obstructions (Evans et al., 2017). A static measurement probe situated somewhere in this environment
will record significant random fluctuations in velocity, but there can additionally be coherent structures
shed from an object within the flow field. It is in this region which biological fliers and MAVs reside.
Many authors have attributed the transverse gust component, acting asymmetrically across the wing
span, to the roll instability of MAVs (Mohamed et al., 2015, 2014; Ol et al., 2008; Watkins et al., 2006).

tangential

spanwise

transverse

Fig. 2.1 Schematic showing the potential directions of a gust velocity perturbation relative to an aircraft.

A wind gust need not be the result of atmospheric turbulence at all. An aircraft flying through
a second aircraft’s wake, can also experience changes in velocity due to trailing vortices. During
forward flight of helicopters or tilt-rotor aircraft, the tip vortices from the upstream blades are advected
downstream and can interact with the following blades (Leishman, 2000). A military aircraft landing
on an aircraft carrier can experience large-scale vortical structures shed from the ship body and
superstructure. It is apparent that there is no one gust type or shape applicable to all situations. Little
emphasis is therefore placed on the source of the wind gust. Transverse gusts, however, appear to be
the most problematic from the perspective of flight stability, given they induce a change to the angle
of incidence, and may incite separation. They will therefore be the focus of this work. Note, however,
that it is later argued in section 8.1, that a ‘gust’ is must always be accompanied by a free vorticity
field. The analytical treatment of a body, in response to this vorticity field, is identical regardless of
whether the gust flow velocities acts in the ‘longitudinal’ or ‘transverse’ directions relative to the
body.

2.2.2 Transverse gust models for aircraft design

The response of aircraft to transverse wind gusts have been studied since the 1930s, with the objective
of determining peak structural loads for design purposes. While gusts attributed to atmospheric
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turbulence have a random structure, early models used simple geometrically shaped ‘discrete’ gust
velocity profiles. Each discrete model requires knowledge of the gust magnitude, shape, period and
frequency of occurrence (Donely, 1950; Frost and Turner, 1982). One of the first adopted by Rhode
and Lundquist (1931) was ‘sharp edged’. The profile was decided upon because “abrupt bumps are
frequently encountered wherever bumps are found”, thereby indicating that the true velocity gradient
was somewhat steep. At the time little was known about the structure of the atmosphere. Later a
linear ramp gust velocity profile was defined, while from the 1950s to today a 1-minus-cosine gust
shape is used (Flomenhoft, 1994). From Noback (1986), the velocity (V ) of the 1-minus-cosine gust
shape is defined by

V (t) =
Vp

2

(
1− cos

2πUt
H

)
. (2.1)

The term, H, is equal to the distance of 25 geometric wing chords*, Vp is a prescribed, altitude
dependent gust magnitude, U is the (true) flight speed, and t is the time since entry into the gust
disturbance. It should be noted that the intent of the 1-minus-cosine gust profile is not to provide a
‘true’ description of gust velocities, rather, the profile serves as an idealised description of a gust for
which the gust design loads on aircraft may be approximated based on acceleration measurements
from existing aircraft. New aircraft are designed to withstand the peak loads experienced during entry
into this 1-minus-cosine gust. From Pratt (1953) and Noback (1986), the peak lift force on an aircraft
constrained to motion only in the vertical direction, is

peak lift increment︷ ︸︸ ︷
∆Lmax =

reference lift︷ ︸︸ ︷
∆CL

1
2

ρ0U2
e SKg. (2.2)

The ρ0 term is the air density at sea level, S is the wing planform area, and Ue is the equivalent aircraft
velocity†. The three-dimensional lift coefficient is defined as, CL = L/(1

2 ρ0U2
e S). Assuming small

gust ratios, the change in this lift coefficient is ∆CL = dCL
dα

Vp
Ue

, where α is the angle of incidence.
Of primary interest is Kg, the gust alleviation factor. This variable scales the reference lift term to
account for both the geometry of the gust profile, aircraft mass and wing section characteristics. Most
importantly, it additionally accounts for the delay in the lift response of the aircraft due to unsteady
aerodynamic effects. These unsteady effects are based on the solution for a wing of infinite aspect
ratio encountering a ‘sharp edged’ gust of infinite extent (Pratt, 1953). This is Küssner’s model, a
classical theory described further in section 2.3.4.3.

Since the mid 1950s, a second method for determining gust loading was developed using power
spectra techniques. For the implementation described by Noback (1986), atmospheric turbulence
is modelled as a quasi-stationary Gaussian process, while the aircraft is modelled as a linear spring

*According to Noback (1986), this gust length was set arbitrarily.
†The aircraft velocity at sea level for which the aircraft will experience the same dynamic pressure as the actual aircraft

velocity at altitude (Anderson, 2011).
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mass system. Force and structural loads on the aircraft are calculated by superimposing aerodynamic
forces with those attributed to structural vibration. Aerodynamic loads are often calculated using
panel code implementations (Turner, 1977). The loading on each panel is regulated by the classical
Wagner, Küssner or Theodorsen unsteady aerodynamic functions. Today both the 1-minus-cosine
and power spectra methods are used for aircraft certification (Federal Aviation Administration, 2014).
The classical unsteady theories are therefore still highly relevant for modern aircraft design.

2.3 Classical aerodynamics

The previous section highlighted the use of classical unsteady aerodynamic models for the design of
modern aircraft. Next, in section 2.3.1 fundamental fluid-mechanic concepts are outlined to ease the
reader into some of the more difficult problems. These are referred to heavily throughout this thesis.
Afterward, classical steady and later unsteady models are reviewed to highlight key lift production
mechanisms, simplifying assumptions, as well as the more general ‘mathematical tools’ used to
acquire a solution to each kinematic problem. This knowledge is essential to understand the flow
physics of the relatively complicated high amplitude wing-gust encounters.

2.3.1 Fundamental concepts

2.3.1.1 Continuity and the momentum equations

Given the intended applications for this work (MAVs and landing aircraft), only low speed flows are
considered. Below a Mach number of 0.30 in air, variations in density are less than 5% and may be
considered as incompressible Lighthill (1986). Pressure waves travel at sufficient speed that they can
be considered to propagate instantaneously relative to the velocities of the fluid. For such a case, the
continuity equation is

∇ ·u = 0, (2.3)

where u is the velocity vector field. For an infinitesimally small element of an incompressible
Newtonian fluid, the equations of motion are given by the momentum or Navier-Stokes equations
(Anderson, 2011). In vector form and ignoring body forces, the momentum equation may be written
as

ρ
Du
Dt

=

pressure︷︸︸︷
−∇p +

shear stress︷ ︸︸ ︷
µ∇

2u , (2.4)

where p is the scalar pressure field and µ is the dynamic viscosity. The term on the left-hand side
is the product of the fluid density and the material derivative of velocity, or acceleration of a fluid
‘particle’ moving with the flow field (mass per unit volume × acceleration). The terms on the right
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hand side make up the net force on the fluid element due to pressure and shear stresses. For an inviscid
fluid µ = 0, and the momentum equation is known as the Euler equation,

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p. (2.5)

2.3.1.2 Vorticity and the vorticity transport equation

While the Navier-Stokes equations define the dynamics of a fluid element in a linear sense, the
vorticity transport equation defines the angular motion. Vorticity, defined as ω = ∇×u is a measure
of the rotation of a fluid element. If a spherical element of fluid is rotating with angular velocity Ω

in a rigid body manner, then the vorticity is defined as twice the angular velocity ω = 2Ω (Lighthill,
1986).

From Wu (1981), the vorticity transport equation may be found by taking the curl of each term in
the Navier-Stokes equation

Dω

Dt
= (ω ·∇)u+ν∇

2
ω, (2.6)

where ν = µ/ρ , the kinematic viscosity. The first term on the right hand side describes the effect of
the vortex stretching and tilting. The second term describes diffusion of vorticity because of viscosity.
For an inviscid fluid, the diffusion term vanishes, and vorticity may only be transported by advection
(it is ‘carried’ with the flow). Importantly there is no vorticity ‘source’ term in the transport equation
(Wu, 1981). Vorticity may only enter the flow field through diffusion at a boundary (as there may be no
advective transport through a surface). Saffman (1992) also describes a process whereby a topological
change is imposed to a region of an inviscid flow field, resulting in the creation of distributions of
sheets of vorticity. This mechanism is described for an inviscid fluid, but it is presumably equally
valid for a viscous fluid, albeit the vorticity is free to diffuse into the surrounding flow. Durand (1935)
describes a similar mechanism whereby impulsive, and continuous pressures are applied to a circular
region of flow. This results in the formation of a singular, or series of ring vortices away from physical
boundaries.

2.3.1.3 Potential flow

From Anderson (2011), a potential flow is one that is defined as inviscid, incompressible and
irrotational. For an irrotational flow the vorticity is

ω = ∇×u = 0. (2.7)
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The velocity field is often expressed as the gradient of the potential function Φ

u = ∇Φ, (2.8)

which substitued into the continuity equation, (2.3), yields

∇
2
Φ = 0. (2.9)

The stream function, ψ , is orthogonal to the potential function. It is constant along a streamline,
and is defined such that the difference between the stream function at any two given points ∆ψ =

ψ2 −ψ1 is equal to the volume flow rate passing across a line drawn between each point. If this line is
given by the elemental, two-dimensional vector dl, the incremental change to the stream function is

dψ = u×dl

= udy− vdx. (2.10)

Since the total derivative is dψ = ∂ψ

∂x dx+ ∂ψ

∂y dy, we have

∂ψ

∂y
= u,

∂ψ

∂x
=−v. (2.11)

Substituting equations (2.11) into (2.7) gives

∇
2
ψ = 0. (2.12)

Both equations (2.9) and (2.12) are in the form of Laplace’s equation, a second order, linear,
partial differential equation. The solutions to Laplace’s equation may be linearly superimposed as a
result. This point will be utilised to construct (and deconstruct) complex flow fields.

2.3.1.4 The steady and unsteady Bernoulli equations

In potential theory the unsteady Bernoulli equation relates a distribution of ‘excess’ pressure in terms
of a dynamic and transient contribution (Lighthill, 1986). Starting with the Euler equation

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p,

for an irrotational flow, u ·∇u = 1
2 ∇|u|2 (Lighthill (1986)). With the definition for the potential

function, equation (2.8), the Euler equation can be written in the form

∇

(
ρ

∂Φ

∂ t
+

1
2

ρ|u|2 + p
)
= 0. (2.13)
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Since the spatial gradients of the term within the brackets is zero, everywhere through the flow field

transient︷ ︸︸ ︷
ρ

∂Φ

∂ t
+

dynamic︷ ︸︸ ︷
1
2

ρ|u|2+
static︷︸︸︷

p = f (t), (2.14)

where f (t) is an arbitrary function of time. For flow fields that are time independent, i.e. steady, the
transient potential term is zero. The steady Bernoulli equation is

1
2

ρ|u|2 + p = f . (2.15)

This shows that an increase in the flow velocity will result in a corresponding decrease in the
static pressure. For symmetric flows about, say, a circular cylinder, the flow velocities either side
are equal. On the upstream and downstream surfaces the static pressures balance, therefore there
will be zero drag. The equivalent flow about a cylinder in a real (viscous) fluid will, however, have a
drag force. This is famously known as d’Alembert’s paradox, which illustrates that viscous stresses
are responsible for steady state drag (Anderson, 2011). We note that in unsteady cases the transient
term of the unsteady Bernoulli equation adds an additional pressure contribution. This means the net
pressure drag on a body in unsteady inviscid fluid may not necessarily be zero. This gives rise to a
phenomenon known as added mass, which will be discussed further in section 2.3.4.1.

2.3.1.5 Circulation and the Kutta-Joukowski theorem

Kelvin (1869) showed that if a closed curve is taken around a region of an inviscid fluid, and
constrained to move with the same fluid particles such that the geometry of the curve may change
with time, a quantity called circulation (Γ), is conserved. Circulation is defined by

Γ =
∮

u ·dl, (2.16)

where dl is a vector segment of the curve. Physically the circulation is a measure of the sum of
vortex strengths on and within the closed curve (Anderson, 2011). For viscous fluids, circulation
is approximately conserved if the closed curve avoids crossing over regions where shear stresses
are important (Lighthill, 1986). Wu (2018) explains that the circulation may only change due to
vorticity transport through diffusion between fluid inside, and outside the curve. This is simply
because there may be no advective vorticity transport across the dividing curve, as it moves with the
fluid. Furthermore, if the curve is drawn large enough, circulation will always be conserved after
a finite time as vorticity may advect and diffuse only a finite distance in the flow field. The closed
curve may therefore be taken around this rotational region, through fluid that is entirely irrotational.
Circulation is therefore conserved even in a viscous fluid.
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The circulation about a body within a steady flow field is famously related to the lift force acting
on the body. This is known as the Kutta-Joukowski theorem (Anderson, 2011; Durand, 1935),

l =−ρUΓ (2.17)

where l is the lift per unit length. Given that this work is directed at investigating the gust response of
an aerofoil, as an example we will next consider the relationship between circulation and the lift force
for the aerofoil geometry in a viscous fluid.

In steady state conditions the aerofoil must travel at a constant velocity. Furthermore, for rea-
sons discussed later in section 2.3.4.2, at a very large distance behind the wing there must be a
starting vortex. This is illustrated in figure 2.2. On the surface of the aerofoil the no-slip condition
means there is a shear stress acting on the fluid adjacent to the aerofoil surfaces (aside from at the
stagnation points, and assuming no flow separation). The shear stress ‘rotates’ the fluid, thereby
generating vorticity on the surface. This vorticity diffuses into the surrounding flow at such a rate
that it balances that advected from the surface. This results in a finite thickness, time invariant
vorticity layer ‘bound’ to the surface (Lighthill, 1986). The net circulation of the aerofoil is the
result of an imbalance of positive and negative vorticity contained within this boundary-layer. This is
referred to as ‘bound circulation’ (Durand, 1935). While usually used to describe only steady flows,
in the context of this thesis the term bound vorticity and circulation will be used even in unsteady cases.

U

boundary-layer

-Γ-Γ Γ

starting vortex

Fig. 2.2 Schematic of the starting vortex formed behind a lifting aerofoil section, at an angle of incidence.

The lift force may be calculated from the bound circulation and equation (2.17). This is equivalent
to the force that would be obtained from the surface pressure and shear stress. For high Reynolds
number flows, the pressure may be approximated as that from potential flow theory, determined from
the steady Bernoulli equation ‡.

‡For a viscous fluid, the Bernoulli equation applies exactly in the irrotational flow outside the viscous boundary-layer. If
the Reynolds number is high, the thickness of the boundary-layer is small, has little effect on the curvature of the inviscid
outer flow, and the pressure outside the boundary-layer is close to that on the surface of the aerofoil.
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2.3.1.6 Vortex force

The aerofoil example demonstrates a link between a force on the flow field and circulation. As was
shown by the Navier-Stokes equations, a force can only be applied to an element of fluid by a pressure
or shear stress§. The circulation provides a convenient ‘shortcut’ to enable the net force on the fluid to
be determined. For an inviscid fluid the Biot-Savart law provides a link between circulation and flow
velocity (Saffman, 1992). This is defined as

du =
Γ

4π

dl× r
|r|3

, (2.18)

where du is a vector increment in velocity at some point (say j) in the flow field, dl is an element
of a vortex filament, while r is a vector from the vortex element to j. In two dimensions, the Biot-
Savart law reduces to uθ = Γ/(2π|r|), where uθ is orthogonal to the vector r. With the velocity, the
momentum and kinetic energy of the flow is known, therefore force and work may be calculated.
Lamb (1895) derived the net momentum (J) for a flow field with two equal and opposite point vortices,
separated by the distance d, as illustrated in figure 2.3. Per unit length,

J = ρΓd. (2.19)

U
Γ-Γ

Fig. 2.3 Streamlines between a pair of complementary point vortices. At steady state a wing may be approxi-
mated by a point vortex.

This acts vertically downward. Since a force is equal to the time rate of change of momentum
F = dJ/dt, the net force on a flow field with two equal and opposite point vortices is

F = ρ(Γ̇d +Γḋ), (2.20)

where (̇)≡ d/dt, as per Newton’s notation. From equation (2.20) it can be seen that a force must be
applied to the flow field if the pair of vortices are to either grow in strength (Γ̇ ̸= 0), or have finite
circulation and advect away from one another ḋ ̸= 0. This is referred to as a ‘vortex force’ (Li and Wu,

§Ignoring body forces.
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2016). Now if the aerofoil example is reconsidered. At steady state, the aerofoil and starting vortices
may be approximated by the point vortices illustrated in figure 2.3. The lift force experienced by the
wing must be equal and opposite to the vortex force. Since the rate of change of distance between
each vortex is the velocity of the wing (ḋ =U)¶, and circulation is time invariant (Γ̇ = 0), the lift force
on the aerofoil may be calculated from equation (2.20). This gives

l =−F =−ρUΓ. (2.21)

The Kutta-Joukowski result is therefore recovered. This is referred to as the ‘vortex lift’ (Stevens,
2013) or ‘circulatory lift’ (Pitt Ford, 2013).

2.3.1.7 General impulse methods

Lamb’s result is but one specific case of a general vortical flow. Wu (1981) showed that a solution for
any general incompressible flow problem may be found entirely from the circulatory flow region. He
subsequently derived a general theory that relates forces, whether that be lift, drag or moments on an
arbitrary number of bodies within a viscous, or inviscid, flow field to the rate of change of vorticity
moments. Here we briefly review some of the key concepts of his theorem.

Wu considers the problem of an infinite flow field in two-dimensions||, with an arbitrary number
(N) of bodies (each indexed j), of cross sectional area A j, at finite locations. Initially the flow field
and bodies are at rest. In his theorem, each body is treated as a continuum with the surrounding fluid.
Translation of a body creates a distribution of vorticity, initially confined to a boundary-layer on the
surface of the body; rotation results in the interior acquiring a vorticity with magnitude equal to twice
the rigid-body angular velocity, as well as boundary-layer vorticity. Since each body is represented by
a region of fluid with externally prescribed rigid-body kinematics, they do not follow Helmholtz’s
second law of motion, which requires vortex lines to move with the fluid (Saffman, 1992). Wu showed
that with increasing distance from each body, the strength of any vorticity in the flow field decays
toward zero. The vorticity must therefore be confined to a finite spatial region after a finite time period.

For such a flow field the impulse in the x and y directions is defined as the first moment of vorticity

Ix =
∫

A
yωzdA, Iy =−

∫
A

xωzdA. (2.22)

The net aerodynamic force on the bodies is related to the impulse by

Fx =−ρ
dIx

dt
+ρ

N

∑
j=1

d
dt

∫
A j

u jdA, Fy =−ρ
dIy

dt
+ρ

N

∑
j=1

d
dt

∫
A j

v jdA, (2.23)

¶After a long time period, flows induced by the wing onto the starting vortex will diminish to zero. It will therefore
advect relative to the wing at the free stream velocity.

||Expressions for three-dimensional flows are also derived, but are not considered here.
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where u j and v j are the x and y rigid-body components of velocity**. The integral term in equations
(2.23) represent an inertial ‘correction’ force. This is equal to the mass of the volume of fluid displaced
by the body, accelerating at a rate equal to the body. The term arises because the fluid and each body
were considered a continuum, with constant density. To accelerate the fluid represented within each
body, a force must be applied, which is included in the −ρdI/dt terms. The integrals therefore correct
for this fictitious force.

A similar expression was derived for the net moment acting on the bodies. The second moment of
vorticity, υz, for a continuous vorticity field is

υz =
∫

A
(x2 + y2)ωzdA. (2.24)

This is related to the first moment of impulse (Jz) by

Jz =−1
2

υz. (2.25)

The net moment, per unit length, on the bodies is

Mz =−ρ
dJz

dt
+ρ

N

∑
j=1

d
dt

∫
A j

(xv j −u jy)dA. (2.26)

Once again the second term accounts for the fluid displaced by the body. Equations (2.23) and
(2.26) are useful as, provided that the vorticity field and body kinematics are quantifiable, the net
aerodynamic force and moment can be determined for any unsteady, two-dimensional flow. The
formulation incorporates forces attributed to both surface shear stresses and pressure. The equations
do not, however, indicate where this vorticity should be generated, or at what rate (except for the rigid
body vorticity). To predict the forces on a flow field, the dynamics of vorticity must therefore be
determined, such that Wu’s impulse relations can be applied.

2.3.2 Steady thin airfoil theory

In the 1920s, Munk, Birnbaum and Glauert derived the thin airfoil theory to predict the performance
of aerofoils in steady flow (Anderson, 1997, 2011). Here the fundamental principles of the theory
are briefly reviewed, before approaching the more complex unsteady problems. In thin airfoil theory
it is assumed that an aerofoil of finite thickness, in a viscous fluid, may be replaced with a single
distribution of vorticity at the camber line. Physically this vortex sheet is a representation of vorticity
that would be contained within the boundary-layers either side of the aerofoil (Durand, 1935), as
illustrated in figure 2.4a. This bound vorticity (γb, with the superscript b reading ‘bound’), is equal to

**In the original paper the fluid density ρ before the dIx,y/dt term appears to be absent. Dimensional checks indicate this
to be in error.
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the difference in the velocity either side of the plate

γ
b = u2 −u1. (2.27)

(a) Boundary layers (b) Vortex sheet

Fig. 2.4 Representation of boundary-layers as a vortex sheet.

Two boundary conditions determine the strength of this bound vortex sheet. The first condition:
flow induced by the vortex sheet, as given by the Biot-Savart law, must be such that there is no-net
flow through the vortex sheet. This is the no-penetration condition, which requires the camber line
of the thin airfoil, or in this thesis a flat plate wing, to be a streamline of the flow. The second
condition: at the sharp (or cusped) trailing edge, the steady Kutta condition requires flow to leave
tangential to the edge (Xia and Mohseni, 2016). In a viscous fluid, the flow is unable to travel
around a sharp corner as doing so would require the boundary-layer to withstand an infinitely strong
adverse pressure gradient. Instead the flow separates. In the inviscid representation of the flow, the
velocities (and pressure) either side of the sharp edge are finite and equal, and the strength of the vortex
sheet (γb) is zero. There is therefore no shedding of vorticity into the wake (Poling and Telionis, 1986).

From Anderson (2011), for an un-cambered flat plate wing at a small angle of incidence, the
bound vortex sheet is

γ
b(x) =−2αU

√ c
2 − x√ c
2 + x

for − c
2
≤ x ≤ c

2
, (2.28)

where c is the chord length, and x is the distance from the mid-chord (x =−c/2 at the leading edge
and x = c/2 at the trailing edge). The bound circulation is

Γ
b =

∫ c/2

−c/2
γ

bdx

=−παcU. (2.29)
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From the Kutta-Joukowski theorem (equation 2.17), the lift force and coefficient are

l = πραcU2, (2.30)

Cl =
l

1
2 ρU2c

= 2πα. (2.31)

From equation (2.30), it can be seen that in steady flow conditions, lift is dependent only on
the angle of incidence and the free stream velocity. This result is only because of the steady flow
assumption inherent in the Kutta-Joukowski theorem; the wing (or free stream) velocity U and angle
of incidence are constant, and the wing is a large distance from the starting vortex.

2.3.3 Quasi-steady thin airfoil theory

In ‘quasi-steady’ thin airfoil theory, the ‘steady’ assumptions are partially relaxed. Pitt Ford (2013)
describes the forces derived from quasi-steady thin airfoil theory as those equivalent to steady motion
adjusted to the same instantaneous velocity and angle of incidence. When the wing changes circulation,
vorticity must be shed into the flow field to conserve circulation. It is assumed that downwash induced
onto the wing from vorticity in the wake is negligible compared to the flow component resulting
from the free stream and kinematic motion. It is additionally assumed that added mass effects
are insignificant. In the formulation described by Leishman (2000), the motion of the airfoil is
decomposed into two contributions. For the first kinematic motion, the airfoil is ‘plunged’ in the
negative y-direction with a velocity V , thereby changing the angle of incidence uniformly across
the chord. For the second motion, the airfoil is pitched about an arbitrary pivot point, resulting in a
non-uniform change in the angle of incidence across the wing. This is often called ‘virtual camber’,
as the change in incidence is equivalent to that of a cambered aerofoil travelling at constant velocity.
The lift coefficient is

Cl = 2π

[
α +

plunge︷︸︸︷
V
U

+

pitch︷ ︸︸ ︷
c
2

(1
2
− 2xm

c

)
α̇

U

]
, (2.32)

where xm is the distance to the pitch axis from the mid-chord, and V , in this context is the plunge
velocity.

2.3.4 Unsteady models

The classical unsteady models incorporate the velocities induced onto the aerofoil by vorticity in the
wake, as well as added mass effects. From Leishman (2000), closed form solutions were derived by:

• Wagner: Impulsively accelerated wing at small incidence;

• Theodorsen: Harmonically pitching and plunging wing with steady free steam;
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• Küssner: Wing at zero incidence entering a sharp edged transverse gust of infinite extent;

• Sears: Wing at zero angle of incidence moving through a sinusoidal transverse gust field.

Küssner’s sharp edged gust model is most representative of the large amplitude wing-gust encoun-
ters considered in this work, however, the wake effects of Küssner’s model originate from Wagner’s
theory. Both theories include added mass effects. First the literature on added mass will be reviewed,
followed by the Wagner and Küssner models.

2.3.4.1 Added mass (a non-circulatory force)

Added or virtual mass is an unsteady fluid dynamic effect that has been discussed in the literature for
over a century (see Benjamin (1986); Brennen (1982); Darwin (1953); Lamb (1895); Saffman (1992)).
It describes an increase in the force required to accelerate a body at a given rate when immersed in a
fluid compared to the equivalent kinematics in a vacuum. While the mass of the body is unchanged
whether surrounded by fluid (or not), Darwin (1953) showed that a physical volume of fluid is ‘carried’
by a body during its motion in potential flow. This is called the ‘drift volume’, the mass of which
corresponds to the added mass.
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Fig. 2.5 Comparison of the potential flow stream function for flows past a circular cylinder in the cylinder fixed,
and moving reference frames.

The flow about a circular cylinder is the canonical added mass case. For a cylinder of radius a,
moving from right to left with a velocity of magnitude U , the potential function is equal to that of a
source-sink doublet with a strength κ = 2πUa2. This case is illustrated in figure 2.5a. The potential
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function and its time derivative on the surface of the cylinder are

Φ|r=a =Uacosθ (2.33)

∂Φ

∂ t

∣∣∣∣
r=a

=
dU
dt

acosθ , (2.34)

respectively, where θ is measured anticlockwise from the positive x-axis. Taking the unsteady
Bernoulli equation, (2.14), and rearranging for the static pressure gives

p =−ρ
∂Φ

∂ t
− 1

2
ρ|u|2 + f (t). (2.35)

The net force on a body may be found from the surface pressures,

F =−
∮

a
pndl, (2.36)

where F is the pressure force vector, n is a complex, surface normal unit vector (n = cosθ + isinθ

for a cylinder). The force is therefore,

F = ρ

∮
a

(
∂Φ

∂ t
+

1
2
|u|2 − 1

ρ
f (t)
)

ndl. (2.37)

Note that an elemental length about the circumference is dl = adθ , and due to symmetry the |u| and
f (t) terms, as well as all forces in the y-direction integrate to zero. The net force in the x-direction is

Fx = ρa
∫ 2π

0

∂Φ

∂ t
cosθdθ . (2.38)

Substituting equation (2.34) into (2.38), and evaluating the integral gives

Fx = ρπa2 dU
dt

. (2.39)

A force is therefore applied to the cylinder that is proportional to the acceleration††. The terms
preceding dU/dt are the fluid ‘added’ or ‘virtual’ mass. The phenomenon may be explained as
follows. If the fluid and cylinder are both initially at rest, and the cylinder is accelerated, then the
surrounding fluid must also accelerate to accomodate the changing velocity of the cylinder. This
gives rise to the flow fields shown in figure 2.5a. The acceleration is actioned by pressure waves that
propagate from the cylinder surface, at infinite speed for an incompressible fluid. A difference in
surface pressures across the upstream and downstream sides of the cylinder generates a net force. The
flow field experiences a net change in momentum to match the impulse (in the classical mechanics
sense) applied to the cylinder; equivalently the kinetic energy of the flow is changed to match the

††Here it is a ‘coincidence’ that the added mass term is equal to the displaced volume of the cylinder. For other geometries
this will not necessarily be the case.
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work done. This change only occurs when the velocity of the body is altered.

Equation (2.39) was derived for a cylinder accelerating in an otherwise quiescent fluid. In
figure 2.5b the cylinder is at rest, and the flow field is accelerated from left to right. Here the forces
on the flow field are not equivalent to the accelerating cylinder case. The potential function is equal to
the sum of a doublet, again with strength κ = 2πUa2, plus an additional uniform free stream term
(Anderson, 2011). On the surface of the cylinder,

Φ|r=a = 2Uacosθ , (2.40)

which is twice the magnitude for the accelerating cylinder case. The force is therefore

Fx = 2ρπa2 dU
dt

. (2.41)

Brennen (1982) and Granlund et al. (2014) explain that the difference is attributed to a buoyancy
force. Taking the x-component of the Euler equation (2.5),

ρ
∂U
∂ t

=−∂ p
∂x

, (2.42)

there must be a pressure gradient through the flow field in order to accelerate the free stream.
Integrating (2.42) with respect to x gives

p =−ρ
∂U
∂ t

x+C, (2.43)

where C is the constant of integration. Substituting (2.43) into (2.36), noting that along the surface of
the cylinder x = acosθ , and evaluating the integral gives

Fbuoy.
x = ρπa2 dU

dt
. (2.44)

This is of course equal to the mass of the volume (per unit length) of the fluid displaced by the
cylinder, scaled by the acceleration of the flow field. The origin of the force is analogous to buoyancy
in hydrostatics. In addition, the term is coincidently equal in magnitude to the added mass force,
thereby accounting for the doubling of the force between the accelerating cylinder and accelerating
flow field cases.
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α

Fig. 2.6 Flow streaming past a flat plate wing at an angle of incidence of α .

Added mass effects can arise for a body with any (and variable) geometry. Within the Wagner and
Küssner models, the added mass component is calculated for a flat plate. Using the unsteady surface
pressures, Pitt Ford (2013) derived the added mass component of the lift and drag forces for flow
streaming past a plate at a fixed angle of incidence. This is illustrated in figure 2.6. The result is

Fx = ρπ
c2

8
dU
dt

(1− cos2α) (2.45)

Fy = ρπ
c2

8
dU
dt

sin(2α). (2.46)

Since the plate has zero thickness, the net force must act perpendicular to the chord and have a
magnitude proportional to the relative acceleration of the fluid in the plate normal direction. Resolving
Fx, Fy and the velocity U , into the plate normal direction (Un) gives

Fn =

added mass︷ ︸︸ ︷
ρ

πc2

4
dUn

dt
. (2.47)

The corresponding flow topology is shown in figure 2.7a. The added mass is equal to the mass per
unit length of a cylindrical volume of fluid with a diameter equal to the chord. Pitt Ford (2013) further
explains that, unlike the cylinder flows, the forces on the plate are equivalent for the accelerating flow
field and accelerating body cases. This is because the volume displaced by a plate of infinitesimal
thickness is zero, therefore there is no buoyancy force. The argument further suggests that the
added mass force on a stationary body in an accelerating flow is indeed the same as that of a body
accelerating. If the body has volume one simply needs to add the buoyancy term. We will challenge
this later in Chapter 8. In figure 2.7b, the streamlines about a flat plate wing rotating about the
mid-chord are shown. This illustrates that the fluid must further be accelerated when a body undergoes
rotational motion, therefore added mass effects can be expected here also. This is discussed in more
detail in Chapter 3.
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Fig. 2.7 Streamlines for a flat plate in potential flow undergoing translation and rotation about the mid-chord.
Streamlines are shown for the moving body reference frame.

2.3.4.2 Wagner’s model

In steady thin airfoil theory (section 2.3.2) it was shown that the bound circulation of an aerofoil
changes if either the angle of incidence, or the free stream velocity, is modified (see equation 2.29).
This, however, does not occur instantaneously. Because circulation is conserved in the flow field, a
change in bound circulation requires vorticity with equal and opposite sign to be shed at the trailing
edge. This is the mechanism responsible for the formation of the starting vortex shown in sec-
tion 2.3.1.6. When in close proximity to the wing, this vorticity can induce downwash which reduces
the effective angle of incidence, and delays the growth rate of both lift and circulation. Wagner (1925)
modelled the effect the shed vorticity has on the transient response of a flat plate wing, impulsively
started from rest to a finite velocity at low incidence. A schematic of this model is shown in figure 2.8.
At the trailing edge the steady Kutta condition is applied, and vorticity is shed at such a rate that the
strength of the bound vortex sheet at the trailing edge is zero. Despite the plate having an angle of
incidence α , the small angle assumption is applied and all vorticity is assumed to be confined to the
horizontal axis.

For Wagner’s impulsively started wing, the lift coefficient may be written as

Cl(s/c) =

added mass︷ ︸︸ ︷
πc

2U2 δ (s/c)α +

bound circ.︷ ︸︸ ︷
2παχ(s/c), (2.48)

where s = Ut, the distance the wing has travelled since the start of motion. The first term on the
right hand side of equation (2.48) describes the added mass lift due to the impulsive acceleration (the
Dirac delta function δ (s/c)). The second term is lift due to bound circulation, delayed by χ(s/c), the
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Fig. 2.8 Schematic of Wagner’s model. The plate is moving with a velocity U , and angle of incidence α ,
through an initially quiescent fluid. The vorticity shed into the wake is represented by the vortex sheet γw, while
γb represents bound vorticity.

Wagner lift response function (Leishman, 2000). While no exact analytical function for χ(s/c) exists,
an approximate fit to the numerically acquired lift delay solution are given by von Karman and Sears
(1938), and Garrick (1938). The function given by Garrick (1938) is within approximately 2% of the
exact Wagner solution for 0 < s/c < ∞. Garrick’s function is

χ(s/c) = 1− 1
2+ s/c

, (2.49)

which is plotted in figure 2.9a. At s/c = 0 the circulatory lift coefficient is 50% of the steady state,
while the function asymptotes toward 1 as s/c → ∞. The asymptotic behaviour arises because as
the distance (∆s) between each elemental length of the shed vortex sheet and the aerofoil increases,
the downwash induced by the elements scales with 1/∆s. Bound circulation, as shown in figure
2.9b, is zero at the start of motion. Thereafter it rapidly increases, and after long time periods the
circulation eventually asymptotes to the steady state value (|Γb

∞|= παcU) (Durand, 1935; Saffman,
1992). Babinsky et al. (2016) explains that despite circulation starting from zero, giving zero lift
from the Kutta-Joukowski theorem (L = ρUΓ), the finite lift at the start of motion is a result of the
initial finite growth rate of bound and shed vorticity (see the vortex growth term in equation 2.20).
Pitt Ford and Babinsky (2013) additionally provide an approximate function for bound circulation
with position. This is given by equation (2.50), which is plotted in figure 2.9b. The function provides
a good approximation of the exact solution, but is valid for only relatively short time periods as it
does not asymptote to the steady state circulation.

Γb

Γb
∞

= 0.9140−0.3151e
−s/c

0.1824 −0.5986e
(

−s/c
2.0282

)
(2.50)

A few years following Wagner publishing his theorem, Walker (1931, 1932) and Francis and
Cohen (1933), developed an early towing tank apparatus, and measured the circulation of an R.A.F.
30 aerofoil section during starting motion. For the experiment, an early form of Particle Image
Velocimetry was developed to acquire quantitative flow field measurements. Walker (1932) concluded
that Wagner’s theory can be used to predict the unsteady flow about a symmetrical aerofoil (at moderate
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Fig. 2.9 Lift and circulation delay functions, describing the unsteady response of a flat plate wing subjected to
an instantaneous change in velocity.

Reynolds numbers and low angle of incidence) with a “fair degree of accuracy". Interestingly, the
author further reasoned that the apparatus used “may become a standard instrument for certain classes
of work, which cannot be done in the wind tunnel. In particular, it appears to provide the most suitable
means of investigating the flow around a wing (or cylinder), before the motion has reached steady
state”. The prediction has since been proven to be remarkably accurate. Walker’s result was more
recently confirmed by Beckwith and Babinsky (2009) for aerofoils at low angles of incidence below
stall, again with a towing tank and Particle Image Velocimetry (PIV) system.

2.3.4.3 Küssner’s model

It was shown in section 2.2.2 that Küssner’s model finds application in the design of modern aircraft.
Provided that principles of linear superposition hold, the response to gusts of arbitrary ‘shape’ may
be found from Duhamel’s integral (see Appendix A for details) and the Küssner function. Küssner
(Küssner, 1930; Kussner, 1932) modelled the response of a flat plate wing encountering a sharp edged
transverse gust of infinite extent. This is illustrated in figure 2.10a. Inherent in Küssner’s model are
a number of simplifying assumptions. The wing has zero initial angle of incidence, therefore only
perturbations due to the gust velocity are considered. The gust is assumed to have very low amplitude
such that linearised thin airfoil theory applies. The advancing gust edge, or shear layer is assumed to
be ‘rigid’. This means that the strength and position of the gust is unchanged by the wing on entry; it
will always have a velocity V , and advect relative to the wing with a velocity U . Finally, vorticity shed
into the wake is assumed to be planar, and also advect relative to the wing at the free stream velocity.
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(a) Physical configuration

(b) Broken line aerofoil

Fig. 2.10 Schematic of Küssner’s sharp edged gust model. The gust extends from 0 ≤ X ≤ ∞, and all vorticity
is assumed to be confined to the horizontal axis. The strength of the bound vortex sheet is zero at the trailing
edge to satisfy the steady Kutta condition. It is assumed that the change in angle of incidence due to the gust is
small, such that δα =V/U .

The position of the wing, relative to the gust is defined as s =Ut, being zero when the leading edge
first reaches the gust step change in velocity at X = 0. The response of the wing may be characterised
by two main zones. In the entry zone, defined as 0 ≤ s/c ≤ 1, there is a progressive change in the
angle of incidence that moves from the leading to trailing edges. Von Karman and Sears (von Karman
and Sears, 1938) and Jones (1940) equate the change in incidence to a broken line aerofoil with a
dynamically moving camber point at the gust front. This broken line aerofoil moves with constant
velocity in an otherwise irrotational flow, as shown schematically in figure 2.10b. With both a change
in camber, and angle of incidence, the circulation of the wing will change. In a manner similar to
Wagner’s problem, vorticity must be shed into the flow field to conserve circulation, which again
induces downwash back onto the wing and reduces the growth rate of both bound circulation and
the lift force. In the derivation by von Karman and Sears (1938), the authors indeed use Wagner’s
function directly to calculate the effects of the wake. The corresponding force breakdown for a
unit gust is shown in figure 2.11. The quasi-steady term is the change in lift attributed to bound
circulation, assuming wake vorticity has no effect on the wing; it may be calculated directly from
steady thin-airfoil theory using the broken line representation of the wing. In the range 0 ≤ s/c ≤ 1,
this is highly non-linear due to the varying angle of incidence and camber. The wake term represents
a lift ‘deficit’ due to downwash induced by shed vorticity. This has no known analytical solution, and
was calculated using a convolution of Wagner’s model. Within the entry region a significant portion
of the force response is attributed to added mass (called ‘apparent mass’ by von Karman and Sears
(1938)). In the range s/c ≥ 1 the only forces on the wing are attributed to bound circulation, the
growth rate of which is still delayed by wake vorticity.
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Fig. 2.11 Deconstruction of the lift force coefficient, according to von Karman and Sears (1938).

If the quasi-steady, wake, and added mass force contributions are summed, one reaches the net lift
force on the wing. From Leishman (2000), the net force is

Cl = 2π
V
U

G(s/c), (2.51)

where G(s/c) is Küssner’s response function. Bisplinghoff et al. (1955) gives the following approxi-
mation for the Kussner response function,

G(s/c) =
4(s/c)2 +2(s/c)

4(s/c)2 +5.64(s/c)+0.80
. (2.52)

Unlike the Wagner function, the lift force starts from zero because the growth rate of bound circulation
at gust entry is zero. At long time periods, however, the response is similar to the Wagner function as
lift asymptotes to the steady state.

Since its inception, Küssner’s model has been extended to include a travelling gust component
(Miles, 1956), account for finite aspect ratio wings (Jones, 1940), and subsonic compressible flows
(Drischler and Diederich, 1957). It has been extensively validated by Leishman (1996, 1997);
Parameswaran (1995); Parameswaran and Baeder (1997); Zaide and Raveh (2006), who demonstrated
excellent agreement between Küssner’s model and CFD calculations for wings entering gusts at small
angles of incidence. It is apparent that the theory correctly captures the net force of a wing entering
a low amplitude sharp edged gust. Despite this, the presence of an added mass force constituent is
conceptually problematic because the wing and flow field are both at constant velocities. In section
2.3.4.1 it was discussed that added mass describes an increase in the force required to accelerate a
body at a given rate when immersed in a fluid compared to the equivalent kinematics in a vacuum.
The effect is even described by von Karman and Sears (1938) as “the force and moment which the
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airfoil would encounter in a flow without circulation, due to the reaction of the accelerated fluid
masses”. Given that the wing and flow field do not accelerate, the force von Karman and Sears (1938)
describe as added mass within Küssner’s model appears to conflict with the more generally accepted
consensus of the added mass phenomenon. The cause of this force is therefore not conceptually clear.

2.4 Transverse wing-gust interaction studies

The classical unsteady aerodynamic theories can provide significant insight into the mechanics of a
wing-gust encounter. The problem is that the models are inherently limited to simple geometries and
kinematic cases. In Küssner’s case the model is limited to gusts of small amplitude, the flow field is
assumed to be irrotational and the velocity perturbation due to the gust is rigidly advected past the
wing. For real wing-gust encounters, the flow field will not (necessarily) be irrotational, there could
be coupling between the wing and gust velocities, and for large gust ratios, there may be leading
edge flow separation. In this section, experimental and computational studies on the response to large
amplitude transverse gusts are described.

2.4.1 Experimental studies

There are many experimental wing-gust interaction studies for manned rotorcraft applications. During
the forward flight of a rotorcraft, each aerofoil experiences a periodic velocity perturbation in the
streamwise and transverse direction. This arises from an interaction with a tip vortex shed previously
in the rotor’s cycle. The resulting wing vortex interaction may be considered as one example of a
general wing-gust encounter. The experimental studies conducted by Homer et al. (1993); Leishman
(1996); Mai et al. (2011); Peng and Gregory (2015); Rival et al. (2010) are but a small sample of the
literature on this type of interaction. The main parameters, for each study, are summarised in table
2.1. The strength of the ‘gust’ is characterised by the non-dimensional circulation of the incident
vortex, Γ∗ = Γvortex/Uc. The non-dimensional circulation may, in theory, be related to the gust ratio,
however, this requires exact knowledge of the vorticity distribution relative to the wing. If an inviscid
point vortex is assumed to directly advected toward the leading edge of an aerofoil, the gust ratio
may be approximated as GR = Γ∗c/(2πs), where s, in this case, is the distance between the vortex
and leading edge. For s/c = 1, Γ∗ = 1 would correspond to a gust ratio of GR = 1/2π ≈ 0.159. We
note that in the instance of Leishman (1996) and Peng and Gregory (2015), the gust ratio is relatively
small, and the aerofoils would generally operate within the attached flow regime. These studies are
likely not applicable to the MAV gust interaction problem. For MAVs, gust velocities are of the
same order of magnitude as the free stream, the Reynolds number is of order 104, and separated flow
conditions are expected. The study by Rival et al. (2010) is more representative of our problem. The
authors showed, that at a Reynolds number of 30,000, and Γ∗ ≈ 3, the flows induced are sufficient to
induce dynamic-stall like separation on a SD7003 aerofoil at an angle of incidence of 8◦ (pre vortex
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interaction).

While the majority of the literature appears to be directed toward rotorcraft applications, only
one experimental study was found which directly investigates large amplitude transverse wing-gust
encounters. Perrotta and Jones (2017), conducted a series of towing tank experiments where a flat
plate wing was towed through a free jet described by a “sine-squared” velocity profile. Force and
PIV measurements were taken at angles of incidence ranging from -4◦ to 45◦. The gust ratios, based
on the peak gust velocity, were 0.42, 0.84 and 1.68. The PIV measurements showed significant flow
separation and the authors argued that both steady thin airfoil theory and Küssner’s response are likely
inapplicable due to the deviation from the modelled flow conditions, albeit a direct comparison of
force or circulation histories with Küssner’s model were not provided.

2.4.2 Computational studies

From the search of the literature, few directly applicable computational studies were found. Many
authors, including Leishman (1996, 1997); Parameswaran and Baeder (1997) and Raveh (2007) inves-
tigated gusts of low amplitude in compressible flow. The aims, generally speaking, were to determine
the linear step response functions for a unit gust in transonic flows. This cannot readily be obtained
experimentally or analytically. The acquired response functions could then be applied to a general
gust using Duhamel’s integral, allowing the calculation of unsteady loads at little computational cost
(Parameswaran and Baeder, 1997).

For the computational simulations, a commonly utilised gust modelling technique is the ‘grid
velocity’ method. At each time step, the travelling gust velocity field is superimposed onto each grid
element, thereby fixing the gust edges, as was assumed within the Küssner model. For an incom-
pressible flow, the results are, perhaps, unsurprisingly consistent with Küssner’s theory, provided the
gust amplitude is small. The grid velocity method may however, suffer significant problems for large
amplitude gusts, if there is coupling between the gust velocity and wing, i.e. movement of the gust
shear layers. Simple prescription of the gust velocity would not capture this. Perhaps, as a result, this
is why there were no identified computational studies which test how well Küssner’s model predicts
the response of a large amplitude wing gust encounter.
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Table 2.1 Summary of experimental and computational gust studies from the literature.
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2.5 Surging, pitching and plunging wings

The work by Perrotta and Jones (2017) indicated that the dynamics of vortices shed into the flow
may play a significant role toward the force produced through a large amplitude wing-gust encounter.
We found, however, little further literature which described the physics of this process in detail. In
this section we investigate the literature within a more developed field, that of rapidly accelerating
‘surging’, ‘pitching’ and ‘plunging’ aerofoils at low Reynolds numbers, as similar separated flow
physics to those found by Perrotta and Jones (2017) are commonplace.

The NATO Applied Vehicle Technology (AVT-202) report (Ol and Babinsky, 2016) collates much
of the research in the area. It was recognised by the authors that during the manoeuvring of MAVs,
the lifting surfaces may experience high frequency and amplitude changes to the angle of incidence
that far exceed that for transport aircraft, missiles and fighter aircraft. The aim of the AVT-202
task group, in a similar fashion to this study, was to develop understanding of the physics of this
highly unsteady problem, which led to the development of a simple low-order model that would
be useful for engineers. The approach taken was to conduct a series of simple abstract kinematic
problems, from which flow field phenomena could be linked to the unsteady force history. Generally,
the experiments or simulations were conducted using simple flat plate wing geometries (Granlund
et al., 2013; Hartloper et al., 2013; Manar et al., 2016; Ol and Babinsky, 2016; Ol, 2009; Stevens,
2013). Despite being a "gross simplification" of a real wing (Stevens, 2013), the flow topology
and force histories were shown to be similar, regardless of wing geometry (Ol and Babinsky, 2016;
Ol, 2009). Given the low Reynolds number, and exceeding high angles of incidence, the flow will
almost certainly separate, and wing leading edge geometry has only minor effect on the resulting flow.
Furthermore, at angles of incidence post stall, Reynolds number effects in the range 10,000 to 60,000
have been demonstrated to have little influence on resulting flow topology and force histories (Ol and
Babinsky, 2016; Ol et al., 2010; Pitt Ford, 2013; Stevens, 2013).

2.5.1 Lift production mechanisms

For high angle of incidence surging wing motions, such as that shown for the sharp edged plate at 45◦

incidence in figure 2.12, it is common for the flow to separate at the leading edge of an aerofoil, roll
up, and form a coherent vortex that forms a low pressure zone on the suction surface (Beem et al.,
2012; Chen et al., 2010; Ellington et al., 1996; Jones and Babinsky, 2011; Lentink and Dickinson,
2009; Maxworthy, 2007). Except in some particular combinations of kinematics and geometry, the
vortex grows quickly and is generally shed into the flow field (Beem et al., 2012; Jones and Babinsky,
2011).

For short time periods, however, it can be seen that the leading and trailing edge vortices dominate
the flow topology. Both the vortices appear approximately equal and opposite in strength. To conserve
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Fig. 2.12 Flow topology about a flat plate wing, surging from rest (in the negative x-direction) at 45◦ incidence.
The wing has travelled 1 chord length, and shows Leading and Trailing Edge Vortices. These are fed by vorticity
shed at the Leading Edge (LE) and Trailing Edge (TE) of the plate. Figure adapted from Pitt Ford (2013).

circulation, this indicates that bound circulation is small. Pitt Ford and Babinsky (2013) confirmed
this using a combination of experimental data and a potential flow model. In section 2.3.4.2 it
was discussed that for an impulsively started wing at low incidence, the Wagner model describes
the growth in bound circulation and lift force due to the regulating effect of vorticity shed at the
trailing edge. At high angles of incidence the shedding of vorticity at the leading edge disrupts
this process by preventing the growth of bound circulation. By application of impulse methods,
lift may be explained by a combination of vortex growth and advection of the leading and trailing
shed vorticity (see section 2.3.1.5), as well as added mass effects (Babinsky et al., 2016; Eldredge
and Wang, 2010; Ol and Babinsky, 2016; Pitt Ford, 2013; Stevens, 2013; Stevens and Babinsky, 2017).

In the case of aerofoils undergoing periodic surging oscillations, Granlund et al. (2014) and Choi
et al. (2015) showed that the strength of the shed leading and trailing edge vortices are dependent on
the reduced frequency, defined as

k∗ = π fHzc/U, (2.53)

where fHz is the oscillation frequency. According to Choi et al. (2015), at angles of incidence above
stall, there exists a critical Reynolds number at which laminar vortex shedding naturally commences,
with its own natural frequency. When the reduced and natural frequencies are close, a lock-in
phenomenon occurs, where the growth and detachment of the leading edge vortex synchronises with
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the plate oscillation. Here there is an enhancement of the average force normal to the plate. Further
increase in the reduced frequency beyond the natural frequency, results in the strength of the shed
vortices to diminish, as well as a delay in the phase of LEV detachment. Similar behaviour has
been shown for harmonic plunging kinematics Gursul and Cleaver (2018), albeit with additional lift
amplification zones at harmonics of the shedding frequency. On the applicability of the classical
models for such flows, McGowan et al. (2011) showed that the prediction by Theodorsen’s method
is resilient to conditions which its mathematical assumptions are violated (post stall conditions),
provided that the pitch and plunge perturbations are small. Similar resilience was not found for
harmonically surging flows, where the lift amplitude and phase experienced strong reduced frequency
dependence (Granlund et al., 2014).

2.5.2 Low-order modelling

To understand why the classical models, may, or may not, be applicable to large amplitude kinematic,
and post stall cases, we must understand the role of both vortex dynamics, and added mass effects
on force production. To study force production roles, numerous techniques including CFD (Minotti,
2011; Nakata and Liu, 2012; Ramesh et al., 2018), high fidelity discrete point and vortex sheet
methods (Eldredge and Wang, 2010; Jones, 2003; Pullin, 1978; Shukla and Eldredge, 2007; Xia and
Mohseni, 2013), as well as low-order models (Babinsky et al., 2016; Eldredge and Wang, 2010; Pitt
Ford, 2013; Stevens, 2013; Stevens and Babinsky, 2017) have been employed. Here we review on the
latter, in particular the model developed by Babinsky et al. (2016), and Stevens and Babinsky (2017),
as the fundamental lift production mechanisms are presented in a forthright manner.

The author’s model assumes that bound circulation and the Leading Edge Vortex (LEV) can be
approximated as a single vortex, located at the effective ‘centre of mass’ point. This point is free to
move from the wing surface due to the advective motion of the leading edge vortex. The shed shear
layer at the trailing edge is assumed to be in the form of a single Trailing Edge Vortex (TEV). For a
pitching or surging wing, the total lift coefficient, per unit length is

Cl =
m

∑
i=1

Cnc
l,i +

n

∑
j=1

Cc
l, j, (2.54)

where m and n are the number of constituent non-circulatory and circulatory terms. The non-circulatory
terms may be identified by the superscript (.)nc, while the circulatory terms may be identified by the
superscript (.)c. For the case of a surging wing, the non-circulatory lift comprises a single added mass
component (Cnc

l,1). This is calculated from the velocity normal to the wing, at the mid-chord location.
The circulatory lift (Cc

l,1), is calculated from the rate of change of momentum caused by the growth
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and advection of the vortex pair. These are

Cnc
l,1 =

πcU̇
4U2

∞

sin2α (2.55)

Cc
l,1 =− 2

U2
∞c

(
(uLEV −uT EV )Γ+(xLEV − xT EV )Γ̇

)
, (2.56)

where U∞ is the steady state velocity of the wing. The terms uT EV,LEV and xLEV,T EV are the horizontal
velocities and positions of the LEV and TEV. Each have a time dependent circulation of magnitude Γ.
Babinsky et al. (2016) suggested that the circulation may be approximated by the Wagner function,
scaled by the instantaneous velocity of the wing to correct for acceleration over a finite period. For a
flat plate wing at 45◦ incidence, undergoing constant acceleration over a distance of 1 chord length,
this corrected Wagner function is shown in figure 2.13. The function is compared with experimental
measurements of the circulation of the leading edge vortex, which clearly agree.

Fig. 2.13 Wagner and corrected Wagner functions for a surging flat plate at 45◦ incidence. Re = 10,000. Figure
adapted from Stevens (2013) and Pitt Ford (2013). According to Pitt Ford (2013), the oscillations in the
measured circulation are not the result of experimental apparatus vibration, and is instead likely the result of
intermittent, non-vibration induced shedding of leading edge vorticity.

While the modified Wagner function fits the measurement data relatively well, there is a disconti-
nuity in the growth rate of circulation at both the start and end of the acceleration region (s/c = 0
and s/c = 1). The circulatory force predicted by the model, with a component proportional Γ̇ will
therefore experience a discontinuous change. Manar and Jones (2017) found that the rate vorticity
is shed at the leading and trailing edges is directly correlated with the edge velocity, which suggest
that the discontinuities imposed by scaling the Wagner function are unphysical. The uncorrected
Wagner function, used with Duhamel’s integral may therefore be a better method for correcting for
finite acceleration effects. For a continuous velocity profile the gradients in circulation will also be
continuous. We also note that at long time periods, the circulation predicted by the Wagner function
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will asymptote to a constant value, which will not capture the continual shedding of vorticity if the
plate is at an angle of incidence of 45◦. The use of the modified Wagner function, is thus a simple
approximation. The relative advection rate of the LEV and TEV was found to be approximately half
the steady state free stream velocity, (uLEV −uT EV = 0.5U∞). New vorticity was assumed to be shed
at the leading and trailing wing edges, so xLEV − xT EV = ccosα .

Fig. 2.14 Comparison of the lift force coefficient predicted using the low-order model, described by equation
(2.54), with experimental measurement. The tested wings were all rectangular flat plates, with Aspect Ratios
(AR) ranging from 2 to 8. Each plate underwent a surging kinematic motion, with a constant acceleration over 1
chord length. The an angle of incidence was α = 45◦, and Reynolds Number was Re = 10,000. After Babinsky
et al. (2016).

For the flat plate at an angle of incidence of α = 45◦, the lift force coefficient when accelerating
over a distance of one chord length is shown in figure 2.14. The steady state lift force is attributed
to the relative advection of the vortices, as well as initial vortex growth. The large rise and drop in
lift coefficient, at the start and end of the acceleration regions (s/c = 0 and 1), is attributed to added
mass. Note that the magnitude of the drop in force at s/c = 1, is greater than the initial rise in force at
s/c = 0. This is the result of the discontinuous gradient of the corrected Wagner function. Overall,
however, the low-order model captures the dynamics, and underlying flows for a surging wing well.
This suggests that the low-order approach has significant merit.

For the pitching case, the authors suggest three additional force components. The first component
is non-circulatory

Cnc
l,2 = cosα

πc2

4U2

(
1−2

xle

c

)
α̈. (2.57)

This term is caused by a linear acceleration at the wing mid-chord, that arises when the pitch axis is
offset from this point (note, xLE is defined as the distance between the leading edge and pivot point, as
illustrated in figure 2.15).
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Fig. 2.15 Schematic showing the position of the pitch axis relative to the leading edge of the wing.

The other two force components are circulatory. Cc
l,2, given by equation (2.58), is caused by an

effective change in incidence at mid-chord, due to pitch axis offset. The final contribution, Cc
l,3, is

attributed to the Magnus effect, or virtual camber. This is caused by a non-uniform change in the local
angle of incidence across the wing chord, due to the rotation. The sum of the additional circulatory
components is equivalent to the rotation term given in quasi-steady thin airfoil theory (equation 2.32).
The circulatory terms are

Cc
l,2 =

2π

U∞

( c
2
− xle

)
α̇, (2.58)

Cc
l,3 =

πc
2U∞

α̇. (2.59)

Vortex Motion 
Vortex Growth 
Magnus/Virtual Camber 
Non-Circulatory 
Total Theory (Smoothed) 
Experimental (Smoothed)

(a) Pitch about the leading edge

Vortex Motion 
Vortex Growth 
Magnus/Virtual Camber 
Non-Circulatory 
Total Theory (Smoothed) 
Experimental (Smoothed)

(b) Pitch about the mid-chord

Fig. 2.16 Comparison of the low-order model with experiment. The pitch motion occurs over 1 chord length
between s/c = 0 to s/c = 1. After Stevens and Babinsky (2017).

The deconstruction of the lift force coefficient for a flat plate wing, pitching about the leading edge
and mid-chord is shown in figure 2.16‡‡. There is relatively good agreement between the experimental
measurements and the low-order model after the wing has stopped rotation for both cases. During
rotation the low-order model over-predicts the force, almost consistently by an amount equal to the
Magnus term. It is interesting to note that the circulatory components of the low-order model for
the pitch case, less the vortex lift term (equation 2.56), are equivalent to the circulatory terms in the

‡‡The Cc
l,2 term is assumed to be incorporated with the vortex growth term.
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classical Theodorsen function for a harmonically oscillating aerofoil (for Theodorsen’s function see
Leishman (2000)). The non-circulatory terms, however, are not equivalent. Theodorsen includes
an additional non-circulatory term caused by relative acceleration of the flow in the plate normal
direction, due to a change in incidence.

Fig. 2.17 Schematic of the un-accounted for non-circulatory force.

As illustrated in figure 2.17, the plate normal velocity Un and acceleration U̇n are

Un =U∞ sin(α) (2.60)

U̇n =U∞ cos(α)α̇. (2.61)

Substituting equation (2.61) into equation (2.47) and resolving into the lift direction

l =
ρπc2

4
U∞ cos2(α)α̇. (2.62)

This may be given in the non-dimensional form

Cnc
l,3 =

l
1
2 ρU2c

=
πc

2U∞

cos2(α)α̇, (2.63)

which linearised gives Theodorsen’s additional term

Cnc
l,3 =

πc
2U∞

α̇. (2.64)

This additional non-circulatory term will increase the discrepancies between the low-order model
and experiment, as it introduces yet a further lift component during the pitching motion period.
The work on surging and pitching wings provides an insight into the sort of flows that might be
expected for a large amplitude wing-gust encounter. Separation at the leading edge is the norm,
bound circulation appears to be small, and added mass effects feature prominently. However, we
have encountered some problems with the phenomenological modelling of such flows, in particular,
during rotation where substantial error arises. It is this author’s belief that the pitch error arises
because the quasi-steady terms Cc

l,2 and Cc
l,3 are incorrectly added. For there to be bound circu-

lation, vorticity must be shed into the flow field to conserve circulation. This circulation will be
accounted for by the measurement of the leading and trailing edge vortices. The terms Cc

l,2 and Cc
l,3

would therefore already be accounted for by the vortex growth term in Cc
l,1. While this model will
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not be pursued further in this work, it is noted that there is a need to develop a means to directly
check, measure, or isolate the effect of each of the modelled lift production mechanisms independently.

The review of the low-order modelling methods has demonstrated that relatively complex flows
may be represented in a simple, phenomenological based manner. The models provide a unique
perspective on the force contributions for the physical problem, often hidden by more complex models
or simulations. Despite the simplicity, the methods may demonstrate remarkable accuracy at little
computational cost, which is critical for mobile and time precious applications. Based on the present
model for surging and pitching plates, the added mass component, despite being derived for an inviscid
fluid, appears representative of the sharp force transients present at the start and end of acceleration
motions in a real viscous flow. Furthermore, the classical analytical models, such as the Wagner
function, appear to reasonably capture growth rates of vorticity, despite many of the underlying
mathematical assumptions not holding. It has further been shown by Ol et al. (2010) and McGowan
et al. (2011) that in some high acceleration pitching and plunging plate cases, forces predicted using
the Theodorsen function are surprisingly consistent with measurement, even in cases with significant
leading edge separation. Despite the difference in problem kinematics, each of these lessons finds
relevance for approaching the wing-gust interaction model desired in this work.

2.6 Literature summary

The review of the literature showed that at present, gust loading for aircraft is determined directly, or
from a variation of the Küssner theory. This linear model describes the response of a flat plate wing
to a sharp edged gust. Convolution methods are generally applied to determine aerodynamic loads
for arbitrary gust profiles, including the 1-minus-cosine gust. Küssner’s model has been extensively
validated for gusts of low amplitude. Little, however, is known about the flow physics of high
amplitude wing-gust encounters experienced by MAVs. It is currently unknown whether Küssner’s
model is representative of such interactions.

Because of the absence of directly relevant gust literature, the physics of surging and pitching flat
plate aerofoils at high angles of incidence was investigated. The literature indicated that separation at
the leading edge of the aerofoil is the norm, bound circulation is small (if not negligible), and the flow
field is dominated by vortices. An existing low-order model, as well as experimental measurements
indicated that added or virtual mass plays a significant role toward the unsteady aerodynamic response.
Circulatory forces were attributed to the growth and relative advection of vortices in the bulk flow field.

Our brief exposition of Küssner’s model also revealed that added mass contributes significantly
toward the unsteady response of wing-gust interactions. It is therefore likely that similar effects will
be prominent for a large amplitude gust, so the origins of the force were investigated in detail. Added
mass describes the increase in force required to accelerate a body when immersed in an ideal fluid. It



38 Literature Review

originates from an asymmetric change to the body surrounding pressure field to satisfy the no through
flow condition. It is perhaps surprising that the added mass effect features in Küssner’s model, given
that both the wing and gust are at a constant velocity. At present we have no explanation for this
discrepancy. From the review of the literature there are clearly a number of fundamental problems
that require further investigation.

2.7 Approach and aims

It is recognised that for a wing-gust encounter there are a number of variables including aerofoil
profile, gust ratio, gust distribution, Reynolds number, wing aspect ratio, angle of incidence, sweep
and so on, which will ultimately influence the force response and flow field. No attempt will be made
to characterise all of these. Instead, the effort will be directed toward developing a deep understanding
of the flow physics of a select few cases.

For large amplitude wing-gust encounters we have the following unanswered questions:

1. What is the role of vorticity shed into the flow field on force production, and how does it differ
with Küssner’s model?

2. What is the role of added mass or the non-circulatory forces for a wing-gust encounter, and
why are they at odds with the general consensus on the effect?

3. Are the assumptions inherent in Küssner’s model sufficiently limiting that it is an unreasonable
approximation of a large amplitude wing-gust encounter?

The aim of this thesis is to understand the role of the circulatory and non-circulatory force pro-
duction mechanisms for a large amplitude wing-gust encounter. Such understanding will enable the
limitations of Küssner’s model for such flows to be assessed, and may form an integral part of future
low-order modelling endeavours.

An experimental approach was taken to circumvent the difficulties of simulating gust encounters
with CFD. This also enables general flow features of real wing-gust encounters to be characterised.
The test cases were conducted in a similar manner to the studies on surging and pitching wings.
Only a simple flat plate wing model geometry was considered, as the flow field will likely be similar
regardless of model geometry. The many analytical models for flat plate flows may also be utilised.
Furthermore, the experiments conducted will additionally be a ‘gross simplification’ of a real gust
encounter. For a wing-gust encounter, the simplest interaction is that of a wing encountering a gust
with a sharp edge. We therefore seek to replicate Küssner’s problem as close as experimentally
possible, so that deviations from the modelled conditions may be identified, and not obscured by
differences such as gust profile. The hardware, and techniques, that were developed to experimentally
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replicate Küssner’s gust are described in Chapter 4.

In the following Chapter, however, we revisit the fundamentals of the added mass phenomenon.
The purpose of this revisit, is to challenge a common misconception about the effect, and present
an alternative view on how it may be represented in inviscid and viscous flows. This is necessary to
understand the role of the non-circulatory force in Kussner’s model, and ultimately spurs insight into
how it may be quantified experimentally. In Chapter 5, a potential flow model and techniques used
to isolate added mass effects from experimental PIV measurements are described. In Chapter 6 the
methods are applied to the cases of a flat plate undergoing acceleration in a translation and rotational
sense. The experiments are used to validate the added mass isolation technique, and determine
whether the potential flow added mass solution is valid for cases with significant flow separation.
Finally, wing-gust encounters with gust ratios of 0.2, 0.5 and 1.0 are presented in Chapter 7. These
cases are used to both characterise the flow for a high amplitude wing-gust encounter, and isolate and
understand role of the circulatory and non-circulatory force components.





Chapter 3

Added Mass Revisited

In the review of the literature, it was discussed that added mass is a constituent force production term
within the Wagner and Küssner theories. The effect is also prominent for rapidly accelerating aerofoils
at high incidence. The origin of this force, as discussed in section 2.3.4.1, is an asymmetric change to
the body surface pressure, as required to accelerate the surrounding flow field. For the cylinder and
flat plate geometries the pressure change, and thus force was calculated using the unsteady Bernoulli
equation. There is an alternative, but lesser known and accepted interpretation for the added mass
effect. Despite being derived for a potential flow, the force can be explained entirely (and perhaps
surprisingly) from the production of vorticity. Recall Wu’s impulse equations from section 2.3.1.7,
where it was argued that any force on a flow may be determined from the change to the vorticity field.
This includes added mass in a potential flow, as will be shown in this Chapter.

While seemingly illogical, the connection between added mass, and vorticity, arises because any
body immersed in a flow may be represented by a vortex sheet on its surface, with a magnitude equal
to the surface tangent slip in velocity (Lighthill, 1986; Saffman, 1992) (see section 2.3.2). The vortex
sheet attributed to added mass, however, must have zero net circulation to satisfy Kelvin’s theorem.
The idea that added mass forces are linked to a vortex sheet is not new. Von Karman and Sears
(von Karman and Sears, 1938) used such an interpretation for their derivation of the Theodorsen and
Küssner functions. Eldredge (2010), Leonard and Roshko (2001) and Graham et al. (2017) have all
utilised a similar interpretation for their respective calculations of added mass quantities.

In this Chapter, we seek to derive the distributions of this ‘added mass vortex sheet’. This will
prove to be a critical step toward developing a means for isolating the circulatory and non-circulatory
force contributing effects from gust measurements, and identify why the added mass in Küssner’s
model is at odds with the general theory on the effect. It is at this point where we divide our efforts
into two parallel paths. Along the first path we will investigate the ‘baseline’ added mass effect, that
is investigate in detail how the phenomenon behaves for accelerating bodies (and flow fields). Along
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the second path we investigate gust flows.

In the following section, we first derive the added mass vortex sheets and force for a simple
cylinder flow, given that the geometry is the typical canonical case. In section 3.2 the parameters are
derived for general translating and rotating flat plate flows, and Küssner’s gust in section 3.3. Finally,
we acknowledge that real flows are not inviscid or generally irrotational, so the effects of viscosity on
our interpretation of added mass are addressed in section 3.4.

3.1 Cylinder flows

3.1.1 Accelerating cylinder case

To calculate the added mass force using impulse methods, we require the vortex sheet distribution
about the body. Physically the flow field only incorporates fluid elements exterior to the body surface.
However, in potential flow theory we generally assume that the interior of a body is also contained
by fluid, with a somewhat arbitrary velocity that depends on the mathematical construction of the
problem. Here we approach the problem differently. We assume the potential flow solution is valid
only for the body exterior flow. For the body interior flow the velocity is prescribed a magnitude and
direction equal to the rigid body kinematics. The slip between the interior (rigid body) and exterior
flows can then be calculated, giving the desired added mass vortex sheets.

For a cylinder the surface exterior flow can be calculated from the potential function, given in
section 2.3.4.1. The cylinder, with radius a, moving in the direction from right to left with a velocity
of magnitude U , has the surface potential function

Φ|r=a =Uacosθ ,

with x = acosθ (see figure 3.1a). The circumferential component of the flow velocity, uθ , is given
by the gradient of the potential function in the surface circumferential direction, uθ = 1

a
dΦ

dθ
. The

circumferential flow velocity is therefore

uθ |r=a =−U sinθ . (3.1)

Since the cylinder has a velocity with magnitude U , the interior velocity at the cylinder surface, in the
circumferential direction is ucyl.

θ
=U sinθ . The strength of the vortex sheet, given the superscript nc

for ‘non-circulatory’, is equal to the slip in velocity between the cylinder surface and flow,

γ
nc = uθ −ucyl.

θ

=−2U sinθ . (3.2)
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(a) Vortex sheet schematic
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Fig. 3.1 Vortex sheet about a translating cylinder.

Equation (3.2) is plotted in figure 3.1b. The positive and negative vorticity is spatially separated, thus
the flow field can have net momentum and require a force if the vortex sheet changes strength. The
x-component of the flow field impulse, equation (2.22), may be written as the line integral

Ix =
∮

yγ(x,y)dl, (3.3)

where dl is an elemental length of the vortex sheet. On the cylinder surface, y = asinθ and dl = adθ ,
this becomes

Ix = a2
∫ 2π

0
sinθγdθ . (3.4)

Substituting equation (3.2), for γ in equation (3.4), and evaluating the integral gives

Ix =−2πUa2. (3.5)

The force on the cylinder, given by equation (2.23) is

Fx =−ρ
dIx

dt
+ρ

d
dt

∫
A
−UdA

= ρπa2 dU
dt

, (3.6)

which is equal to the added mass force calculated using the surface pressure (see equation (2.39))*.

*The integral term in equation (3.6) corrects for the inertia of cylinder encapsulated fluid.
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3.1.2 Accelerating flow field case

For the case where the cylinder is at rest, and flow field is accelerated (see figure 3.2a), the surface
potential function was given by equation (2.40),

Φ = 2Uacosθ .

The flow velocity is therefore twice that for the accelerating cylinder case, given by equation (3.1),

uθ =−2U sinθ . (3.7)

Since the cylinder is at rest,

γ
nc = uθ

=−2U sinθ , (3.8)

which is plotted in figure 3.2b. The vortex sheet is equal to that for the accelerating cylinder case
because the flow velocity, relative to the cylinder is equivalent. The impulse is therefore,

Ix =−2πUa2. (3.9)

(a) Vortex sheet schematic
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(b) Vortex sheet distribution

Fig. 3.2 Vortex sheet about a fixed cylinder and moving flow field.

The force on the cylinder, given by equation (2.23) is

Fx =−ρ
dIx

dt

= 2ρπa2 dU
dt

, (3.10)
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which is twice that for the accelerating cylinder case due to the buoyancy-like force.

For both the accelerating cylinder, and accelerating flow field cases we see that a vortex sheet is
created on the surface of the body, at a rate proportional to the relative acceleration of the free stream.
This is the same regardless of the frame of reference. The vortex sheet that forms, will persist with
constant strength and distribution for any given relative velocity. This sheet can be interpreted as a
physical manifestation of the change in momentum of the flow (assuming the body is also constructed
of fluid). A change in strength of this sheet, must result in a change in momentum of the flow,
requiring a force proportional to the magnitude of acceleration.

3.2 Translating and rotating flat plate

To derive the added mass vortex sheet distributions, impulse and forces on a flat plate that is undergoing
translation and rotation motions, we utilise the potential flow about an ellipse. This is given in various
forms by Milne-Thomson (1986) and Lamb (1895). The flow about a flat plate is equivalent to that
of an ellipse, by taking the limit case where the thickness of the ellipse about the minor axis is zero.
The derivation utilises the complex potential, and conformal mapping methods. Stream and potential
functions are derived about a circle geometry (in the ‘circle plane’), which is then mapped using a
coordinate transformation to the ‘plate frame’, giving the ellipse (or plate) geometry and flow field.

3.2.1 Problem geometry

The physical geometry, in the plate frame, is shown in figure 3.3. The flow field is assumed to be
unbounded and at rest at an infinite distance from the globally ‘fixed’ XY coordinate system origin.
The global coordinate frame will herein be identified by capital lettering. Positions in the flow field
are given in complex vector notation, Z = X + iY . The plate, with chord length c, has the position
Zmc = Xmc + iYmc, defined at the mid-chord. It has a complex velocity U = dZmc/dt. For many
calculations it is simpler to work in a plate reference frame xy. As shown in figure 3.3b, this is centred
at the mid-chord with x in the plate tangential direction and y in the plate normal direction, oriented
at an angle β to the XY coordinate frame. Herein coordinates in the plate reference plane can be
identified by the lower case lettering. In complex notation, positions in the plate frame are given by
z = x+ iy, related to the global frame by,

z = eiβ (Z −Zmc). (3.11)

The plate velocity vector U can be resolved into a component normal to the plate Un (y-direction)
and a tangential component Utn (x-direction). Only the plate normal velocity Un is of importance, as
the tangential component does not contribute to the velocity difference across the plate. The angular
velocity of the plate is Ω =−dβ/dt.
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(a) Position of the plate in the global ‘fixed’ coor-
dinate frame. A position in the global coordinate
frame is given by Z = X + iY

(b) Plate coordinate frame. A position in the plate
frame is given by z = x+ iy

Fig. 3.3 Problem geometry and coordinates frames.

Positions in the circle plane are assigned the complex position ζ = ε + iη . As illustrated in
figure 3.4, the transform

z =
c
4
(ζ +1/ζ ) , (3.12)

maps a circle with unit radius to the flat plate with chord c.
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Fig. 3.4 Transform from the circle to plate frames.
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3.2.2 Complex potential and velocity

The complex potential is defined as F(ζ ) = Φ+ iΨ, where Φ and Ψ are the potential- and stream-
functions. For the flat plate geometry, this is

F(ζ ) =−Aζ
−1 −Bζ

−2, (3.13)

with

A = iUn
c
2
, B =

Ω

4

( c
2

)2
. (3.14)

Iso-contours of the stream-functions for each of the constituent terms are given in figure 2.7. The flow
velocities are given by the spatial derivative of the complex potential u− iv = dF/dz. Using the chain
rule,

dF
dz

=
dF
dζ

( dz
dζ

)−1
. (3.15)

Taking the derivative of equation (3.13) yields,

dF
dζ

= Aζ
−2 +2Bζ

−3. (3.16)

Differentiating equation (3.12) with respect to ζ gives,

dz
dζ

=
c
4
(1− 1

ζ 2 ). (3.17)

Substituting equations (3.16) and (3.17) into (3.15) results in the complex velocity

dF
dz

=
Aζ +2B

c
4 ζ (ζ 2 −1)

. (3.18)

3.2.3 Surface velocity and bound vortex sheet

The surface of the plate corresponds with the circumference of the circle, defined by

ζ = eiθ

= cosθ + isinθ . (3.19)

Substituting equations (3.19) and (3.14) into (3.18) gives the velocity on the surface of the plate as a
function of the angle θ , angular velocity Ω and the plate normal velocity Un. Separating into real and
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imaginary terms and simplifying yields

dF
dz

=

u︷ ︸︸ ︷
Un

cosθ

sinθ
+Ω

c
4

cos2θ

sinθ
−i

v︷ ︸︸ ︷
(Un +Ω

c
2

cosθ) . (3.20)

Since the plate is oriented on the x-axis, the vertical component, v, is equal to the plate velocity, while
the horizontal component u is equal to the instantaneous surface ‘slip’ velocity. The bound vortex
sheet, defined in section 2.3.2, is equal to the difference in the horizontal velocity component either
side of the plate

γ
nc(θ) = u(−θ)−u(θ)

=−2Un
cosθ

sinθ︸ ︷︷ ︸
translation

−Ω
c
2

cos2θ

sinθ︸ ︷︷ ︸
rotation

. (3.21)

This expression is valid for the range 0 ≤ θ ≤ π . The sinθ terms in the denominator of both the terms
indicates that at the plate edges the magnitude of the vortex sheet is infinite.

To relate the polar-coordinates back to cartesian, we will use the mapping relation given by
equation (3.12). Substituting ζ = eiθ gives,

z = x =
c
2

cosθ . (3.22)

With application of the identities sin2
θ +cos2 θ = 1 and cos(2θ) = 1−2sin2

θ , the vortex sheet may
be written with respect to the cartesian coordinate x,

γ
nc(x) =−2Un

x√
(c/2)2 − x2︸ ︷︷ ︸

translation: γnc
t

−Ω
2x2 − (c/2)2√
(c/2)2 − x2︸ ︷︷ ︸

rotation: γnc
r

. (3.23)

The sheet comprises a component due to translation in the direction normal to the chord (γnc
t )

and a component due to rotation about the mid-chord point (γnc
r ). As shown in figure 3.5, these scale

with the respective kinematic velocities and are independent of the magnitude of the acceleration.
For later analysis of experimental data, the vortex sheets are given in non-dimensional form to allow
for comparison between data sets with different kinematics. From equation (3.21), we see that the
translation term may be given in a non-dimensional form by dividing by Un, and Ωc for the rotation
term. Each of these non-dimensional sheets are plotted in figure 3.6.
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Fig. 3.5 Theoretical added mass vortex sheets at various velocities. c = 1 m.
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Fig. 3.6 Non-dimensional, theoretical added mass vortex sheet components for a translating and rotating flat
plate.
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3.2.4 Linear impulse and force

From the bound vortex sheet the flow field impulse (or ‘first moment of vorticity’) and force may be
found using the relations given in section 2.3.1.7. For a vortex sheet the impulse components become
the line integrals

Ix =
∫

yγ(x,y)dl, Iy =−
∫

xγ(x,y)dl, (3.24)

where l represents the distance along the sheet. Here the sheet is restricted to the x-axis, dl = dx and
Ix = 0. The integral Iy may be evaluated in polar form. Differentiating equation (3.22) with respect
to θ gives dx = − c

2 sinθdθ . Substituting in x and dx, and noting the limits of integration, −c/2
corresponds to θ = π and c/2 corresponds to θ = 0, equation (3.24) becomes

Iy =−
( c

2
)2
∫

π

0
cosθ sinθγ(θ)dθ . (3.25)

Substituting the polar equation for the bound vortex sheet (equation 3.21) and integrating gives

Iy = 2Un
( c

2
)2
∫

π

0
cos2

θdθ +ω(
c
2
)3
∫

π

0
cosθ cos(2θ)dθ

= π
c2

4
Un. (3.26)

From equation (3.26) it can be seen that the flow field impulse is both independent of the angular
velocity of the plate and is proportional to the plate normal velocity Un. Since the volume of the plate
is zero, the force acting on the plate is

Fy =−ρ
dIy

dt

=−ρπ
c2

4
dUn

dt
. (3.27)

Equation (3.27), is equal to the added mass force as calculated from the pressure field (equation 2.47).

3.2.5 First moment of impulse and mid-chord moment

In a similar manner, the first moment of impulse and mid-chord pitching moment can be found. The
second moment of vorticity, defined in section 2.3.1.7, may be written as

υz =
∫ c/2

−c/2
x2

γdl

= (
c
2
)3
∫

π

0
cos2

θ sinθγdθ . (3.28)
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Substituting equation (3.21) into (3.28), and integrating gives

υz =−2Un(
c
2
)3
∫

π

0
cos3

θdθ −Ω(
c
2
)4
∫

π

0
cos2

θ cos(2θ)dθ

=−π

4
(

c
2
)4

Ω. (3.29)

The second moment of vorticity, (υz), is related to the first moment of impulse (Jz) by

Jz =−1
2

υz

=
π

8
(

c
2
)4

Ω, (3.30)

and the moment on the plate is

Mz =−ρ
dJz

dt

=−ρ
π

8
(

c
2
)4 dΩ

dt
. (3.31)

3.2.6 Point vortex approximation

For the translation case, illustrated by figure 3.5a, positive and negative vorticity is distributed toward
opposite edges of the plate. This could be approximated by a pair of equal and opposite point vortices.
The circulation of each point vortex may be approximated by the half-plate circulation

Γ =
∫ 0

−0.5c
γ

nc
t dx

= cUn. (3.32)

The separation distance of the point vortices may be found by equating the flow field momentum
for the vortex pair, with that of the translating plate. Since the linear momentum is related to flow
field impulse by Jy = ρIy, from equation (3.26) the plate flow field momentum is

Jy = ρπ
c2

4
Un. (3.33)

Substituting equation (3.32) into (2.19) gives

Jpoint = ρcUnd. (3.34)

Equating equation (3.33) with (3.34), gives the distance between each point vortex (d)

d =
π

4
c. (3.35)
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3.3 Added mass in Küssner’s sharp edged gust

Having derived the added mass vortex sheets for a flat plate in general planar motion, we now proceed
to the term in Küssner’s gust model. The workings given by von Karman and Sears (1938) is followed,
but with minor changes to incorporate a plate of arbitrary chord length, and the gust entry direction is
reversed for consistency with the experiments in this thesis.

3.3.1 Geometry

Figure 3.7 illustrates the geometry of the problem. The plate has a velocity U , the gust velocity is
V , and the chord length is c. Positions along the plate surface are defined by x. In polar form, the
position x is related to the coordinate θ by x = c

2 cosθ . The position of the gust front in polar form is
τ = cos−1(1−2s/c), where as defined in section 2.3.4.3, s =Ut, the distance from the leading edge
of the wing to the gust edge. The primary difference between the gust problem, and that modelled for
a translating plate in section 3.2, is that the plate does not experience a uniform change to the velocity.
Instead, in the range 0 ≤ τ ≤ π , the wing gradually progresses into the cross flow, therefore the gust
edge moves from the leading to trailing edge of the plate.

Fig. 3.7 Küssner model schematic.

3.3.2 Non-circulatory vortex sheet

To satisfy the no-penetration condition, a non-circulatory vortex sheet must form. The Kutta condition
is not enforced, therefore no vorticity is shed into the flow field. Fluid is free to pass around the sharp
leading and trailing edges, and bound circulation is zero. This vortex sheet, given by von Karman and
Sears (1938) is

γ
nc(θ , t) =

∞

∑
k=1

ak
cos(kθ)

sinθ
, (3.36)
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with

ak(t) =
4V
π

∫
τ

0
sinθ sin(kθ)dθ . (3.37)

The sheet is found from the results of thin airfoil theory, given by Durand (1935), using the broken
line aerofoil gust representation described in section 2.3.4.3. The vortex sheet, equation (3.36), is
plotted in figure 3.8 for entry positions from s/c = 0.25 to s/c = 1.
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Fig. 3.8 The non-circulatory vortex sheet component of Küssner’s model.

During the entry region, we note that the vortex sheet is significantly more complex than that for
the translating plate case. The sheet changes magnitude and distribution as the plate enters the gust
cross flow. When the plate is fully submerged in the gust (s/c ≥ 1), the non-circulatory vortex sheet is
equivalent to that at s/c = 1, because it experiences a uniform, time independent gust velocity across
the full chord. It can be noted, that the vortex sheet for s/c = 1 is exactly equal to that of a translating
plate at 90◦ incidence, with a velocity equal to that of the gust (it is equal to the translation term of
equation 3.23).

3.3.3 Impulse and force

With the non-circulatory vortex sheet, we may now calculate the contribution to the impulse and lift
force for the gust entry. Substituting the vortex sheet, equation (3.36), into (3.25), and evaluating the
integral gives the flow impulse in the y-direction,

Iy =−π

2

( c
2

)2
a1. (3.38)

From equation (3.38) it can be seen that only the first term (k = 1) of the infinite series given by
equation (3.36) contributes toward the net vertical impulse of the flow field (and thus the lift force).
Furthermore, von Karman and Sears (1938) show that only the second term (k = 2) of the series
contributes toward the pitching moment of the plate. Each of these vortex sheet components are
shown in figure 3.9. The first mode, or lift contributing vortex sheet has an identical distribution to
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that of a plate undergoing translation in the chord normal direction, while the second is equivalent in
distribution to that of a plate rotating about the mid-chord, albeit with different scaling (see figure
3.6).
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Fig. 3.9 Components of the non-circulatory vortex sheet that contribute to force generation.

From equation (2.22), the force on the plate can be found from the impulse,

Fy =−ρdIy/dt

=
π

2
ρ

( c
2

)2 da1

dt
. (3.39)

Evaluating the derivative yields

Fy = ρcUV sinτ

= 2ρUV
√

s(c− s), (3.40)

which is plotted in figure 3.10. We have seen that on entry of the plate into the gust cross flow, a
non-circulatory vortex sheet forms, resulting in a force contribution that von Karman and Sears (1938)
attribute toward added mass. When the plate is fully immersed within the gust the vortex sheet has
an identical distribution to that of a translating plate. This suggests that the two components are
equivalent. However, given that both the wing and gust are at a constant velocity, while the added
mass vortex sheet for a flat plate only arises due to acceleration, we still have no explanation as to
why there is a conceptual discrepancy.
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Fig. 3.10 The non-circulatory force component of Küssner’s model.

3.4 Added mass in viscous separated flows

In this Chapter, it has been argued that added mass effects in potential flow theory may be explained
by a change in impulse due to the formation of a non-circulatory vortex sheet. The force was shown to
be equivalent to that calculated with the unsteady Bernoulli equation, an equation that is only valid in
irrotational flow (or along a streamline). For applications of practical interest, however, the working
fluid is not inviscid and as shown in figure 3.11, the flow field can be significantly different to that
of potential flow. The boundary condition between a body and fluid changes from free slip, to no
slip, and the aforementioned vortex sheets will no longer persist as they would in an inviscid fluid.
Instead, diffusion causes vorticity to be transported from the surface of a body and into the adjacent
fluid (forming a boundary-layer). When subjected to a strong adverse pressure gradient, such as that
about sharp edges, the resulting boundary-layer can separate. Vorticity is thus shed into the bulk flow,
giving a rotational, non-potential, field. We must therefore question whether the potential flow added
mass derivations are applicable, or how they may differ in a viscous, separated flow.

(a) Potential flow field, arrows indicate the sur-
face slip velocities

(b) Real, viscous flow field with boundary-layers
and flow separation

Fig. 3.11 Schematic comparing the vorticity distributions between a potential and viscous flow.

In the literature, it has been suggested that added mass effects are largely unchanged in a viscous
fluid. Leonard and Roshko (2001) and Eldredge (2010) have argued that the added mass force on
a body is proportional to the rate new vorticity is generated on the body surface, with an identical
singular distribution to that given by inviscid theory. This is regardless of viscous effects and the
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consequential changes to the flow topology. Graham et al. (2017) assumed a similar process to identify
the added-mass contribution to forces derived from experimental data. This ‘added mass vorticity’
diffuses from the surface and into the surrounding flow over time periods of order Reynolds number
greater than the advective time scale. Thus, in practice, the vorticity is confined to an intensely
spatially concentrated region. If the added mass attributed vorticity is confined to a very thin wall
bound layer, that is superimposed onto the existing rotational flow, then it suggests that outside of
this newly created layer there will be a potential (inviscid, incompressible, irrotational) change to the
existing velocity field (Leonard and Roshko, 2001). This implies that the unsteady Bernoulli equation,
given by (2.14), applies exactly in this superimposed potential field. Despite the body being immersed
in a viscous and rotational flow, the change in pressures, and thus force, on the body will therefore be
equal to that of a potential flow. The same conclusion can be reached by considering the change in
impulse of the flow field from the production of the wall bound vorticity, which is superimposed onto
the existing vortical field.

While the existence of the added mass vorticity has been theorised, surprisingly there appear to be
no experimental flow field measurements confirming its presence and demonstrating its independence
of the bulk rotational flow. Nor has it been experimentally demonstrated that a flow field may be
deconstructed into the sum of a viscous and potential component. The wealth of measurements taken
in the literature utilising PIV to resolve the flow field around an accelerating body, such as that about
pitching, plunging, or rotating aerofoils, has spatial resolutions of order of a boundary-layer thickness
(see Buchner et al., 2012; Pitt Ford and Babinsky, 2013; Poelma et al., 2006; Polet et al., 2015; Rival
et al., 2009). The intention of such experimental setups, is to capture wide regions of the flow field
to include starting vortices, which reduces spatial resolution. It is questionable, whether with such
measurements, the distribution of added mass attributed vorticity can be resolved, and isolated, from
changes made to the flow field resulting from other viscous effects.

3.4.1 Further objectives

Given the aims of this thesis, to understand the role of the circulatory and non-circulatory force
production mechanisms for a large amplitude wing-gust encounter, establishing whether added mass
effects are influenced by viscosity is a critical step. It is therefore argued that the challenges with
measuring added mass experimentally must be overcome. This would enable a measure of added mass
attributed vorticity to be compared with the theoretical result, thus allowing the effects of viscosity to
be assessed. The non-circulatory force components in a physical gust encounter experiment could be
isolated, and questions as to how the effect arises may be addressed.

To meet the wider aims of this study we set the following additional objectives:
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• Develop a methodology from which non-circulatory and circulatory effects can be quantified
from an experimentally acquired flow field.

• Determine whether added mass vorticity is fully, or partly, included in PIV derived flow
field vorticity measurements. This will influence impulse and force quantities subsequently
calculated. It will also determine whether the circulation of vortices in close proximity to a
body may be ‘contaminated’ by vorticity attributed to added mass. This may potentially lead
to double counting of added mass quantities in models that have some empirically derived
components.

• Prove or disprove whether fluid viscosity or flow separation influences the added mass quantities,
compared with inviscid theory.

3.5 Summary

Despite added mass having been discussed in the literature for over a century, there is still a surprising
amount unknown about the phenomenon. In this Chapter it was shown that added mass can be
attributed to the time dependence of a non-circulatory bound vortex sheet in potential flow, and
wall bound vorticity in a viscous flow. This idea is not entirely new, having shown roots perhaps
preceding von Karman and Sears (1938), but it is not generally known or accepted today. Non-
circulatory, added mass attributed vortex sheets and force quantities were derived for a cylinder, a
translating and rotating plate, and for Küssner’s sharp edged gust. It is still unknown why there appears
to be an added mass like force in Küssner’s model when the wing and flow field are at constant velocity.

A review of the literature discussing the applicability of the inviscid added mass result for viscous
and separated flow was conducted. It has been theorised that the inviscid added mass formulation
is valid even for viscous separated flows, however, this has never been experimentally proven. We
conclude that in order to understand force production mechanisms for a wing-gust encounter, it is
imperative that the many basic questions still surrounding the added mass phenomenon in viscous
flows are answered first. We must develop the tools to isolate the added mass phenomenon, address
questions as to when the effect will and will not be captured experimentally. Following this we can
approach the questions as to the origins of added mass in Küssner’s gust problem, and how it, along
with the circulatory force contributions change when moving from gusts of low to high amplitude. In
the next Chapter the experimental equipment and main data acquisition techniques utilised for this
study are described.





Chapter 4

Experimental Methodology

Equipment and techniques were developed specifically for this work to facilitate the generation, and
measurement of a sharp edged wing-gust interaction. The main equipment used was the Cambridge
University Engineering Department (CUED) towing tank, described in section 4.1. The wing models
are described in section 4.2. Force and PIV were the primary quantitative data acquisition methods
utilised. To acquire force measurements, a new balance and inertial system were developed to ensure
the data was free of inertial contamination. These are described in sections 4.3 and 4.4. For PIV, it
was necessary to resolve the full flow field to enable quantities of added mass to be determined (for
reasons described in Chapter 5). The configurations, and error sources are described in section 4.6.
Finally, the apparatus designed to replicate Küssner’s sharp edged gust is described in section 4.7.

4.1 Towing tank

As illustrated in figure 4.1, the CUED towing tank is 9 metres in length, has a width of 1 metre, and
the water depth is approximately 0.80 metres. The working premise is simple, a model is mounted
to an actuated carriage that traverses the length of the tank, therefore the fluid moves relative to the
model. The test section is 2 metres in length and has glass side walls and floor for optical access. The
carriage is belt-driven by a single 1.47 kW digital servo motor, and has a maximum velocity of 4.75
m/s (Pitt Ford, 2013).

The towing tank is used for a number of reasons. For unsteady aerodynamic experiments it is
easiest to accelerate the model, rather than the fluid. The mass that must be accelerated is lower and
there are no buoyancy-like forces on the model, due to the pressure gradient required to accelerate the
flow field. The use of water as a working fluid is also beneficial because of Reynolds number scaling
effects. It can be shown that by equating the Reynolds number for air as the working fluid, with water,
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9.00 m 1.00 m

belt driven carriage

0.80 m0.480 m

Fig. 4.1 Schematic of the CUED towing tank.

Rewater = Reair

Uwater

Uair
=

νwater

νair
=

1.1386×10−6

1.4657×10−5 = 0.077, (4.1)

we find that for a given model size, flow velocities in water are only approximately 7.7% that of
air*. In addition, fluid-dynamic forces on a model are approximately 3.7 times greater in water
(Pitt Ford, 2013). The longer timescales, plus ease of suspension of tracer particles makes water an
ideal fluid for PIV data acquisition. Turbulence levels within the tank are additionally exceedingly
low, pre-acceleration of the test model. After being left to settle for 15 minutes, turbulent velocity
perturbations within the tank decay to below the measurement noise of the PIV system (Jones and
Babinsky, 2011) (when taken with a large field of view). For the experiments conducted in this
work, the generation of gust perturbations is significantly simpler in a towing tank compared to a
wind-tunnel based apparatus (see section 4.7).

Carriage kinematics were measured using an on-carriage linear quadrature encoder with 1 mm step
resolution, as well as an accelerometer. The velocity and position of the carriage was calculated by
numerically integrating the acceleration measured using the carriage mounted accelerometer. Gradual
‘drift’ in velocity and position due to cumulative sensor error was corrected using the absolute position
given by the encoder. Combined position accuracy is estimated to be of order of 0.01 mm, albeit for
the experiments in this thesis, position accuracy of this order is not necessary. Analogue signals from
all carriage mounted sensors was recorded using LabView and a National Instruments 14 bit data
acquisition card at a sampling frequency of 5 kHz.

*Fluid properties taken from Cengel et al. (2008).
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4.2 Wing models

Two wing models were manufactured for the experiments. Both models have 120 mm chord, 480
mm span and 4 mm thickness. One model was made from toughened glass and was used for PIV
measurements that require the gust rig (described in section 4.7). The gust rig limits laser optical
access into the tank. The glass wing allowed for PIV measurements to be acquired in the usual
‘shadow’ region. The second model, shown in figure 4.2a, was carbon fibre, and had a 3-component
MEMS accelerometer embedded within. This wing was used for force measurements. The purpose
of the accelerometer will be discussed in section 4.4. The wiring to the accelerometer ran internally
through the wing for minimal flow disturbance. The sensor can measure accelerations up to ±29.43
ms−2, has a nonlinearity of less than ±0.3% and cross-axis sensitivity of ±1%. As shown in figure
4.2b, the carbon wing had square cut edges, while the toughened glass was square cut with 1 mm
chamfers on each corner. For pitching and surging wing kinematic cases, Ol and Babinsky (2016)
showed that edge shape has little effect on the resulting flow topology and force, presumably because
the separation point and rate circulation is shed at the edge is unchanged by the geometric shape. Both
wings have a tensile modulus of elasticity of approximately 70 GPa in the spanwise direction.

flat plate wing 
(carbon fibre)

skim plate
end plate

force balance

internal  
accelerometer wiring 
channel

(a) Overview

480

120

units:  
(mm)

180

5

4

1
glass

carbon

(not to scale)

(b) Wing detail

Fig. 4.2 Schematic of the wing, force balance and skim plate configuration.

The mounting configurations, shown in figure 4.2b, are identical for each model. A 180 mm
diameter end plate was located at the top wing tip, which was set flush into the skim plate spanning
the width of the tank. The skim plate was attached rigidly to the carriage just below the water line,
and suppresses surface wave effects in the vicinity of the wing. There was a 5 mm radial gap between
the end- and skim-plates to circumvent the transmission of forces from the skim plate to the force
balance. The arrangement produces a mirror image of the flow and wing, thus giving the wing an
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effective aspect ratio of 8. The design additionally avoids the requirement for a tip clearance gap
between the wing and skim plate, which has been suspected of introducing three-dimensional effects
that are detrimental to spanwise coherence of a leading edge vortex (Ol and Babinsky, 2016; Son
et al., 2016). For all experiments the balance was mounted directly to the tank carriage, such that the
balance sensors are in fixed alignment with the lift and drag directions. The angle of incidence of the
wing was adjusted relative to the balance.

4.3 Force balance

Lift and drag forces on the wing were measured using the two-component 50 N strain-gauge force
balance shown in figure 4.2. This balance was designed specially to react lift and drag forces through
the sensed balance elements, while bending moment loads due to the cantilever loading of the wing
model are reacted by stiff, non-sensed members. This configuration increases stiffness, and reduces
vibration that often contaminates towing tank based low Reynolds number force measurements.

horizontal pillar 
(  -dir.)

vertical pillar

load cell sensor

horizontal pillar 
(  -dir.)

wing clamp

base plate

(a) Top view (upper plate removed)

pillar neck

(b) Side view

Fig. 4.3 Inner workings of the force balance.

The basic balance operation is as follows. Three pillars, visible in figure 4.3, connect the top and
bottom plates of the balance. The neck at the end of each pillar was designed such that the pillars have
a combined shear stiffness of order 1/1000 times that of the load cell, but have high stiffness in tension
and compression. With just the three vertical pillars the plates are constrained to planar motion relative
to one another. A pair of horizontal pillars constrains relative motion of the lower plate in the X- and
pitching-moment directions, with the net X-direction force routed through a Flow-Dynamics shear
web load cell sensor. This pair of flexures additionally have low shear stiffness, therefore the two
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parallel plates can still move in the X-direction. A third horizontal pillar constrains this motion, with
the forces additionally routed through a sensing element. The top and bottom plates of the balance are
now constrained to each other in all 6 degrees of freedom, with only forces in the X- and Y -directions
sensed. Each of the load cell sensor elements has a maximum resolution of 0.01 N.

4.3.1 Calibration

Due to the non-zero shear stiffness of each pillar, not all force applied to the balance will be routed
through the sensor (the percentage is dependent on the combined stiffness of the pillars relative to
the balance). The load cell sensor was therefore calibrated in situ of the balance. Calibration curves
are shown in figure 4.4. Each is calculated by incrementally loading the balance in a single channel
direction using fixed weights and a pulley system. The linear fit in the X-direction is Fx = 19.780V dc

x

and in the Y -direction Fy = 28.477V dc
y . The linear fits for both of the calibration data sets have a

coefficient of determination (R2) value greater than 0.999999, therefore indicating excellent agreement.
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Fig. 4.4 Calibration of the force balance.

4.3.2 Error

During the calibration, both the voltages in the X- and Y -directions were simultaneously recorded
to quantify the cross talk between each channel. Error can arise due to both structural deformation
of the balance and misalignment error of the load applied to each channel. The voltages of the
unloaded channel are shown in figure 4.4. Some very slight variation from zero is visible. Using
the calibration fits for each channel, this cross talk in the X-direction is quantified as a percentage
of the load applied to the Y -direction. The same was repeated for the Y -direction cross talk. The er-
ror is plotted in figure 4.5a. There is measured cross talk up to a maximum of 0.8% of the applied load.

A second source of error arises due to the offset loading of the wing relative to the balance. Offset
loading applies a large bending moment to the bottom and top plates of the balance, resulting in slight
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Fig. 4.5 Sources of force balance measurement error.

deflection and loading of the sensor elements. This error source was quantified by applying a 1 kg
load separately in the X- and Y -directions at varying offsets (Z) from bottom plate of the balance. If
the no-load voltage is V dc

nl , and the voltage with the load applied at position Z is V dc
z , then the error

(er) is

er =
V dc

z −V dc
z=0

V dc
z=0 −V dc

nl
. (4.2)

This is plotted in figure 4.5b. The error increases approximately linearly with load offset position.
Since the wing is 0.480 metres in length, and the wing is uniformly loaded, the error is at maximum
approximately 1%. For the experiments described in this thesis, an error of order 1% is deemed to be
negligible.

4.4 Inertial force decomposition

Section 4.3 described the design and calibration of a force balance capable of accurately measuring
lift and drag force components on a wing model, whilst ensuring the model is mounted in a stiff
structure. This minimises force balance flexibility as a potential source of vibration contamination.
However, other sources of vibration include sting and model flexibility, which can add significant
detrimental noise to force measurements taken at low Reynolds numbers. Low pass filtering is often
employed reduce vibration effects (Granlund et al., 2011; Jones and Babinsky, 2010, 2011; Pitt Ford,
2013; Stevens, 2013), however, this distorts transient forces by reducing their peak and increasing
bandwidth (Pitt Ford, 2013). The necessity for filtering can therefore limit the usable frequency range
of force measurements to below the lowest mode of vibration of the system. This is problematic for
the relatively sharp edged gust experiment conducted here. It is possible that there will be transient
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fluctuations in force at higher than resonant frequencies.

An additional source of measurement error results from the model and force balance self-mass.
During carriage acceleration, an inertial force is applied though the load cell to accelerate the wing
and balance mass. This force component is often quantified by taking the average of a series of ‘tare’
results from identical kinematic test runs conducted in air. The tare experiment takes advantage of
the approximately 850 times difference in density between air and water, thus isolating the inertial
component as fluid dynamic forces are comparatively negligible. This method is not, however, without
fault. Direct subtraction of the inertial force from each ‘wet’ run introduces additional noise due
to a mismatch in resonant vibration frequencies between the dry and wet tests. The mismatch is a
result of the increase in apparent mass of the model in water and subsequent reduction in natural
frequency. For high Reynolds number testing of large models (such as those utilised for the study of
vehicle aerodynamics), further error in kinematics can be introduced as the carriage actuator responds
differently due to increased model loading when in water. It is therefore desirable to improve the
means by which both model vibration and the self mass force are rejected.

In the following sections the equations of motion for the wing are derived. By quantifying
kinematics, including vibration, the inertial and non-inertial forces measured by the balance may be
isolated with increased accuracy.

4.4.1 General equations of motion

First we will consider the equations of motion for a flat plate wing undergoing arbitrary planar
translation. The idea is that through deriving the equations of motion, the components contributing
toward the balance measured force can be isolated at any instance. Since the masses of the wing
model and balance are easily quantifiable, their inertial contribution to the force may be calculated
directly from rates of acceleration (measured through sensors, or the prescribed model kinematics).
Added mass is also an inertial force. Assuming that the inviscid derived result is valid in a viscous
flow, this force contribution may additionally be calculated. Most importantly, however, is the inertial
load attributed to vibration. If rates of acceleration due to vibration are quantified, then vibration
loads may be isolated and removed without requiring filtering techniques.

As shown in figure 4.6, a wing coordinate frame is defined xy, set at an angle β to a global XY
coordinate. The fluid is assumed to be stationary at infinite distance from the XY coordinate origin.
If the wing and balance system have a mass mw, the forces (F) applied by the balance and onto the
wing are

Fx = mwawx −Fother,x, (4.3)

Fy = (mw +mvt)awy −Fother,y, (4.4)
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Fig. 4.6 Coordinate systems.

where aw is an acceleration, and the subscripts x and y, define values in the x and y directions,
respectively. The Fother terms represent any force that is not attributable to an inertial load. This
incorporates all viscous fluid-dynamic effects. The term mvt is the fluid added mass in the plate normal
direction. This was given by equation (2.47). Resolving the components of force on the balance in
the XY coordinate frame gives equations (4.5) and (4.6). Note that the forces that the wing applies to
the balance, act in an equal and opposite direction to the force the balance applies to the wing. The
terms Fother,X and Fother,Y are the transformed equivalent of Fother,x and Fother,y. Thus

Fb,X =−(mw +mvt)awy sinβ −mwawx cosβ +Fother,X (4.5)

Fb,Y =−(mw +mvt)awy cosβ +mwawx sinβ +Fother,Y . (4.6)

For the experiments at hand the wing is constrained in the Y direction by the rails of the tank,
therefore the wing can only experience accelerations in the X direction. The X direction acceleration,
aX , is directly measured with a carriage mounted accelerometer. Provided the carriage is stiff, the
difference in measured acceleration and that physically experienced by the balance will be negligible
regardless of the accelerometer position. Any high frequency vibrations relative to the two can be
later filtered. It is best, however, to fix this accelerometer to the non-sensing side of the force balance.
The latter was done for the present experiments. Resolving aX into the wing coordinate system gives

awx = aX cosβ , (4.7)

awy = aX sinβ . (4.8)

Substituting equations (4.7), (4.8) into (4.5), (4.6), gives the balance applied force in terms of the
inertial and non-inertial loads

Fb,X =−aX(mvt sin2
β +mw)+Fother,X , (4.9)

Fb,Y =−mvtaX sinβ cosβ +Fother,Y . (4.10)

These are conveniently given with respect to the prescribed carriage acceleration and wing angle of
incidence.
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4.4.2 Modal vibration

Here we derive the force component due to structural vibration. The strategy is to quantify rates of
acceleration relative to the prescribed model kinematics, and use this to determine the force applied
to the balance that is responsible for this acceleration. Of course it is desirable to make the model,
carriage and balance system as stiff as possible to keep vibration forces to a minimum (this indeed
spurred the design of the force balance in section 4.3). The aim of the proposed vibration correction
technique is not to be perfect in all scenarios, but simply to make good, or acceptable data better.
In the instance of structural vibration, such as that of the relatively thin cantilever design flat plate
wing utilised in this study, for any given forcing disturbance applied there are an infinite number of
resonant frequencies and vibration mode shapes that may be excited. The first three of which are
shown in figure 4.7.
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Fig. 4.7 Mode shapes and approximate resonant frequencies for the carbon wing immersed in water. Calculated
assuming the wing behaves as a simply supported beam, with an added mass determined from the two-
dimensional potential flow solution given by equation (3.27).

Typically low pass filtering is utilised to remove all vibration frequency content. Here it is
proposed that the three axis accelerometer shown previously in figure 4.2 may be utilised to quantify
forces on the balance associated with the first mode vibration, such that subsequent low pass filtering
can be applied at a higher frequency to preserve transient fluid-dynamic forces. For the wing
model, submerged in water, the resonant frequencies of the first and second vibration modes are
approximately 5 and 34 Hz respectively, thus the frequency response may be significantly improved
if forces attributed to the first mode are quantified. Assuming that the body has only one mode of
vibration, or all frequency modes higher than the first are filtered, then the acceleration due to vibration
(av), is the difference between the carriage and wing accelerations

av,wx = awx −aX cosβ , (4.11)

av,wy = awy −aX sinβ . (4.12)
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The vibration accelerations av,wx and av,wy are dependent on the position of each accelerometer
on the body. They must therefore be located such that they are away from the nodal points for the
vibration mode to be compensated for. The accelerometer in the wing model shown in figure 4.2 is
located toward the wing tip where it will have high acceleration associated with the first mode (at
z/zmax = 0.78 in figure 4.7). Assuming the body is vibrating with simple harmonic motion, the force
applied by the balance to the wing in order to accelerate the sensor in the x and y directions is

Fv,wx = mvxav,wx, (4.13)

Fv,wy = mvyav,wy. (4.14)

The mass terms (mvx and mvy) are modal or effective masses as the entirety of the model will not
experience the same accelerations as that measured with the wing embedded accelerometer. It is
important to note that the modal masses are in essence a scaling factor that converts an acceleration
measured at a single point on the model, to a force applied to the model by the balance. It need not be
equal to the sum of the physical and virtual masses of the body, but will scale proportionally with
these terms. The modal masses can be found through an initial calibration as described in section
4.4.4. Resolving the vibration forces into the X- and Y -directions gives

Fv,X =−mvy sinβ (awy −aX sinβ )−mvx cosβ (awx −aX cosβ ), (4.15)

Fv,Y =−mvy cosβ (awy −aX sinβ )+mvx sinβ (awx −aX cosβ ). (4.16)

4.4.3 Combined force

The total force applied to the load cell is the sum of the mean acceleration and vibration components

FX = Fb,X +Fv,X

=−aX mvt sin2
β︸ ︷︷ ︸

virtual mass

− aX mw︸ ︷︷ ︸
self mass

+ Fother,X︸ ︷︷ ︸
remainder

−mvy sinβ (awy −aX sinβ )−mvx cosβ (awx −aX cosβ )︸ ︷︷ ︸
vibration

, (4.17)

FY = Fb,Y +Fv,Y

=−mvtaX sinβ cosβ︸ ︷︷ ︸
virtual mass

+ Fother,Y︸ ︷︷ ︸
remainder

−mvy cosβ (awy −aX sinβ )+mvx sinβ (awx −aX cosβ )︸ ︷︷ ︸
vibration

. (4.18)

Equations (4.17) and (4.18) show that through application of potential theory and select placement
of inertial sensors, the measured force can be deconstructed into virtual mass, self mass and vibration



4.4 Inertial force decomposition 69

components. The remaining component encompasses forces arising from vorticity in the flow field.
As we are uninterested in force contributions due to the model self mass and vibration, we can simply
subtract these components to leave the virtual mass and viscous forces of interest.

4.4.4 Calibration

The mass components mw, mvt , mvx and mvy can be readily found. Calibration of mw was performed
simply through turning the balance on the side such that the wing and balance self weight force acts in
the direction of the balance sensors (mw = ∆F/∆a). The virtual mass mvt is calculated assuming the
two-dimensional potential flow solution. The modal masses mvx and mvy may be determined from a
vibration calibration experiment. For this the wing is subjected to an impulse load in water, resulting
in free vibration. From the resulting acceleration and force measurements the modal masses may be
calculated if it is assumed that all viscous forces are negligible in comparison to the inertial loads.
Here the wing was set at an angle β = −45◦, and the towing tank carriage displaced 10 mm with
high acceleration and deceleration rates. The angle of −45◦ is similar to the change in incidence
for the gust ratio of 1.0 experiment presented in Chapter 7, and will induce vibration in both the x
and y directions. The velocity profile is shown in figure 4.8a, and accelerations in figure 4.8b. After
the impulse (from 20 seconds and onward) the tank carriage is at rest with negligible acceleration
(aX = 0) and the wing freely vibrates (av,wx = awx ̸= 0 and av,wy = awy ̸= 0). The masses mvy and mvx

are found by solving equations (4.13) and (4.14). The vibration forces in the wing coordinate frame
are Fv,wx =−(FX cosβ −FY sinβ ) and Fv,wy =−(FX sinβ +FY cosβ ), thus can be determined from
the forces FX and FY measured by the balance. These are given by figure 4.8c. Here the modal mass
terms were averaged between the time of 20 to 21 seconds (5,000 data points). Given the balance and
accelerometer error is of order 1%, post averaging the mass error is a negligible 0.015%. Each mass
parameter for the calibration is given in table 4.1.

After calibrating each of the masses, the force across the range of the calibration run (and any
other kinematic motion) may be deconstructed. For the calibration run the force deconstruction is
shown in figure 4.8d. During the free vibration region the force due to vibration (dashed green line,
given by equation 4.15) closely follows the transient force fluctuations measured using the balance
(Fx, solid blue line). The virtual and self mass terms attributable to the prescribed carriage motion
can be calculated from equation (4.17) using the measure of instantaneous carriage acceleration aX .
Subtraction of the vibration, virtual mass and self mass components from Fx leaves the remainder force
contribution (solid black line). There is only minor variation in the remainder force component after
the velocity impulse. As we expect inertial force contributions to be dominant during free vibration,
this indicates that the decomposition technique was successful. While some low pass filtering was
still required to remove high frequency vibration and electrical noise, it was possible to increase the
cut-off frequency to approximately 5 times the first mode resonant frequency.
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Fig. 4.8 Calibration of inertial force system. A moving average with a period of 0.05 seconds is applied to
smooth high frequency noise.
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Table 4.1 Mass parameters (kg)

mw mvx mvy mvt

3.75 1.685 3.85 5.43

4.4.5 Note on wing vibration

If we assume that the wing, after encountering the calibration impulse, vibrates with an acceleration
of constant amplitude, we may simply quantify the displacement of vibration. Figure 4.9a shows a
Fast Fourier Transform (FFT), of the av,wy vibration signal shown in figure 4.8b. This was taken over
the range 20 ≤ t ≤ 22 seconds. The FFT shows that accelerometer embedded within the wing, is
recording an average amplitude of 1 m/s2 at the first mode resonant frequency of 5.0 Hz.
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Fig. 4.9 Fast Fourier Transform (FFT) of the av,wy signal over the range 20 ≤ t ≤ 22 seconds.

The position of the wing, y(t), is equal to the sum of each of the frequency modes ( fHz,n). If all
phase information is omitted,

y(t) =
∞

∑
n=1

|yn|ei2π fHz,nt . (4.19)

The acceleration, equal to the second derivative of the position with respect to time is

av,wy(t) =
∞

∑
n=1

−(2π fHz,n)
2|yn|ei2π fHz,nt (4.20)

=
∞

∑
n=1

|av,wy,n|ei2π fHz,nt . (4.21)

Omitting the negative, we therefore can approximate the displacement amplitude, resulting from the
vibration,

|yn|=
|av,wy,n|

(2π fHz,n)2 . (4.22)
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Equation (4.22) is plotted in figure 4.9b. We see that the first mode resonant frequency, at fhz = 5.0
Hz, oscillates with an amplitude of approximately 1 mm. Given the impulse applied to the wing
is an extreme loading case, we therefore expect wing vibrations for the subsequent surge and gust
encounter experiments to be of order 1 mm for the carbon fibre wing. While we have quantified the
vibration characteristics for the carbon fibre wing, those of the glass wing are similar. This is because
both wings have similar stiffness properties, while the fluid added mass is an order of magnitude
greater than the physical mass of each wing model.

4.5 Dye flow visualisation

For each experiment, dye was injected into the flow field to visualise features such as vortices. The
dye used was a mixture of soy-milk and methylated spirits. Milk based dye retards diffusion, thereby
forming coherent filaments and has good reflective properties (Clayton and Massey, 1967; Stevens,
2013). The soy-variety has the additional benefit of a significantly longer shelf life. Methylated spirits
was added to the milk to account for the slight difference in densities between the milk and water
(approximately 1030 and 999 kg/m3 respectively (Wong, 1988)), thereby causing slight spanwise
drift. The required mass fraction of methylated spirits (me) to milk (mm) is

me

mm
=

ρe

ρm

ρw −ρm

ρe −ρc

= 0.121, (4.23)

where ρe is the density of methylated spirits, ρm is the density of milk and ρw is the desired density
(999 kg/m3). For each test case the dye mixture was injected using a syringe pump at points where
flow is entrained into the shear layers leaving the edges of the plate. For the translating wing case, the
injection locations were approximately 4 mm from each plate edge, mid span, on the leeward face.
For the rotation case dye was injected on the advancing faces at an equivalent location. For the gust
cases the dye was injected directly at the leading and trailing wing edges. The flow rate was selected
nominally to match the fluid, albeit this was not always possible given the unsteady nature of the
experiments. The dye was illuminated using the same laser configuration as for the PIV (described in
section 4.6), although the beam was defocussed to a width of approximately 20 mm to illuminate dye
that has advected in the spanwise direction. All photographs are taken using Phantom M310 high
speed cameras to facilitate synchronisation with the PIV image frames.

4.6 Particle Image Velocimetry

PIV was the primary tool used to obtain quantitative flow field measurements. A schematic of a typical
PIV configuration is shown in figure 4.10 and the basic principle of operation is as follows. Small
tracer particles are suspended within the working fluid, which closely follow its motion. A plane of
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particles is illuminated using a light source, which is photographed using a high speed camera. Each
image frame is subdivided into interrogation windows containing a group of particles. For planar PIV,
the average particle displacement in pixels within each interrogation area is calculated by means of
a two-dimensional cross-correlation between two consecutive image frames, separated by the time
period δ t. The displacement of particles in pixels is related to a physical distance δx(x,y, t) by an
initial calibration to a planar object with markers of known offset at the particle plane. With this
information, the velocity is

u(x,y, t) =
δx(x,y, t)

δ t
. (4.24)
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Fig. 4.10 Schematic showing the principles of operation, and alignment, of a basic PIV configuration.

4.6.1 Implementation

A commercial LaVision high speed planar PIV system and the DaVis processing software was used for
this study. Within DaVis, velocity vectors are computed in Fourier space for computational efficiency.
For each interrogation window a two-dimensional Fast Fourier Transform (FFT) is performed. The
Fourier cross-correlation function is the product of the Fourier conjugates of the window at time t = t0,
and t = t0+δ t, which is then related back to the real frame using an inverse transform. The correlation
is performed using an iterative procedure. In this study, first a large interrogation window of 32×32
pixels was used. This gives a high reliability velocity measurement as numerous particles are included
within each interrogation window, thereby improving the signal to noise ratio. To improve spatial
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resolution this is followed by two passes of a 16×16 pixel window for the surge and gust cases, while
12× 12 pixels was used for the rotation case. The final passes have a 50% interrogation window
overlap, giving vector densities of approximately 50 vectors per chord for the surge and rotation cases,
and 40 for the gust. The time period between consecutive frames was selected such that particles
within regions of maximum local velocity, travel up to approximately 3-4 pixels.

The light source is a dual cavity Litron PIV300 series Nd:YLF pulsed laser with a wavelength of
527 nm. The pulse frequency per laser cavity can be varied from 0.2 to 10 kHz, the maximum energy
output per pulse is 20 mJ and the pulse width is nominally 150 ns. For seeding, titanium dioxide
particles with a maximum diameter of 45 µm are used as the particles have a high reflectivity and low
settling rate in water. Since the density of TiO2 does not match that of water, a fluid tracking error
can arise due to each particle having a different acceleration rate to the local fluid when subjected
to a pressure gradient. Pitt Ford (2013) showed that the particles are sufficiently small and the flow
velocities low such that this following error is negligible.
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Fig. 4.11 Schematic of towing tank, PIV and flow visualisation configurations, showing the laser overlap plane
and camera setup. Adapted from Stevens and Babinsky (2017).

The laser configuration used for the surge and rotation test cases is shown in figure 4.11. The dual
light sheet method developed by Stevens and Babinsky (2017) is utilised to enable illumination of
particles on both sides of the wing model. This setup is essential for the quantification of distributions
of boundary-layer vorticity, as described in Chapter 5. Alignment was performed by placing three
dual sided photo-luminescent markers on the glass sides of the tank. The markers are illustrated
in figure 4.10. Two markers were placed on one side of the tank and the third on the other. The
purpose of the markers is to provide three nodal points in space that define the desired laser plane.
The initial position of each marker was established by casting a horizontal laser plane at the mid-
span height of the wing, using a low-powered auto-levelling laser. Each of the PIV laser beams is
subsequently aligned to the markers. The final laser alignment is best performed with the tank filled
with water. Air has a refractive index of approximately 1.0, whereas water at 20◦C is approximately
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1.3 (Fowles, 1989). Filling the tank changes the refractive index of the bulk fluid volume, resulting
in the deflection of the laser beams entering the tank if the incident angle is not perpendicular to
the glass. The focal point of each laser sheet was for all cases set at the wing centre axis, giving a
maximum laser thickness of approximately 1 mm at the edge of each observation window. The dual
camera configuration illustrated in figure 4.11b, was used to increase the spatial field of view and
resolve optically obstructed regions. These are caused by the section of wing below the particle plane.
Obstructed vectors from each camera were first individually masked (set to nan) and subsequently
stitched. The stitching was performed by laying a new vector grid across both frames, with vectors
determined using two-dimensional linear interpolation. Vectors within the view overlap region were
averaged.

4.6.2 Measurement error estimation

A major source of PIV measurement error is attributed to an effect called ‘peak-locking’. This arises
due to the digitisation of photographic images. If the light from a single particle is only detected
with a single image sensor pixel, then the particle position within the pixel is unknown. It is thus
desirable to smear light from a single particle over multiple pixels, thereby the sub-pixel position may
be resolved by taking the centre of a Gaussian function fit to the light distributed across pixels. Prior
to data recording, images were manually checked to ensure the particle size is 2-3 pixels, deemed the
optimum by Raffel et al. (2007). For configurations whereby light was notably isolated to a single
pixel the cameras were manually defocussed. A typical image frame prior to processing is shown in
figure 4.12.

Wing

LETE

gust outlet

Fig. 4.12 Typical PIV raw image, glass wing for the gust rig configuration. The leading and trailing wing edges
are indicated.

Final peak-locking checks were performed after the first test run. Figure 4.13a shows a sample
auto-correlation for an interrogation window of 32×32 pixels. The base of the autocorrelation peak is
approximately 6 pixels, thus indicating a particle size of 3 pixels. Statistics were additionally gathered
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across the whole measurement plane. Figure 4.13b shows the cumulative sum (count) of particle
images, binned into displacement ranges in pixels (for example the sum of all particle pairs within
the range of 2 to 2.1 pixels). There is little bias of the particle displacements toward integer values.
The peak locking effect is therefore small. During the cross-correlation process, particles of higher
light intensity bias the measure of particle displacement. To mitigate this effect the light intensities
within a moving window of 10×10 pixels were normalised and a background subtraction performed
to minimise surface reflections and ambient variations in laser intensity.
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Fig. 4.13 Measures used to check for peak-locking.

Other sources of measurement error were estimated based on the work of Raffel et al. (2007) and
Nobach and Bodenschatz (2009), who simulated the PIV technique using synthetically generated
particles. The error (in pixels) for each cross-correlated interrogation window may be expressed as,

∑εPIV = εbias + εrms0 + εrmsδ
+ εrmsρ

+ εrmsi . (4.25)

The root mean square (rms) error εrms0 is due to random variation in particle image diameter, εrmsδ

is attributed to image displacement, εrmsρ
results from particle density in each interrogation window

and εrmsi from variation in particle intensity due to particle motion in the direction perpendicular
to the laser plane. The consistent bias error, εbias, is attributed to loss of particle pairs from each
cross-correlation window due to the in-plane motion of the fluid. An estimate for each parameter is
given in table 4.2. Assuming a particle displacement of approximately 4 pixels, and total random error
of 0.145 pixel, the error is 3.6%. To reduce random errors a batch average of 5 test runs was taken for
each test case. Following averaging, the sum of random errors reduces to 1.6% since standard error
scales with 1/

√
N, where N is the number of samples (Adrian and Westerweel, 2011). The bias error

is 0.25%, therefore the total error is estimated to be less than 2%.
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εbias εrms0 εrmsδ
εrmsρ

εrmsi

-0.01 0.01 0.01 0.025 0.10
Table 4.2 Estimation of PIV error from Raffel et al. (2007) and Nobach and Bodenschatz (2009), (pixels).

4.7 Gust rig

The reader is reminded of the main aims of this work; to develop understanding of the mechanisms
which contribute toward force generation in a large amplitude transverse wing-gust encounter, and
identify how they may differ compared to Küssner’s linear theory. To achieve these aims, it is
therefore desirable to experimentally replicate Küssner’s modelled conditions as closely as possible,
such that gust ratio variation effects may be quantified in isolation. This necessitates the experimental
reproduction of a ‘sharp edged’ transverse gust with variable amplitude. Next, in section 4.7.1 the
advantages and disadvantages of existing gust generator systems from the literature are reviewed. The
objective of the section is to identify features of existing designs that may be adapted to facilitate the
practical generation of the desired gust profile. This is followed by a description of the gust generator
designed for this work, in section 4.7.2. Here the particular challenges of developing a towing-tank
based gust generator, primarily, fitting the system in the confines of a glass walled tank are also
described. Finally, an assessment of the performance of the gust rig is given in sections 4.7.3 to 4.7.8.

4.7.1 Review of gust generators

In the literature, gust generator system may be categorised into fixed and moving model designs. The
examples of fixed model gust apparatus typically operate by pitching a pair or cascade of actuated
aerofoils upstream of the model in a wind tunnel. This method, illustrated in figure 4.14a, has been
adopted by Brion et al. (2015); Ham et al. (1974); Patel and Hancock (1977); Saddington et al. (2014);
Tang and Dowell (2010); Tang et al. (1996) and Patel (1982). To create a transverse velocity com-
ponent, the vanes are periodically pitched in phase with each other, thereby shedding an alternating
sequence of positive and negative vortices. Each vortex pair induces upwash or downwash as they
advect past the test model. Axial velocity perturbations may be generated by pitching the aerofoils
out of phase. Gust ratios can, however, be limited to approximately 0.3 due to flow separation on the
vanes, coupling of the free stream velocity with vane deflection angle and increased turbulence levels
due to the vane wakes.

Another method, proposed by Ryan and Dominy (2000) and adapted by Volpe et al. (2013) for
the study of road vehicles in cross wind, utilises two intersecting wind tunnel sections separated by
actuated shutter vanes. This design is illustrated in figure 4.14b. The main tunnel is operated in a
steady manner, while shutters are sequentially opened at a rate equal to the main tunnel free stream
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pivoting aerofoils model

shed vortices

(a) Turning vane/free-vortex type

main tunnel

cross-wind  
tunnel

shutters

advecting 
vorticity 
front

model

(b) Shutter type

model wind tunnel

(c) Towed model type

Fig. 4.14 Comparison of wind tunnel based gust apparatus.

to allow air from the cross flow wind tunnel to enter the working section. The horizontal velocity
component of the cross wind tunnel is matched to the streamwise velocity of the main tunnel. The
mismatch in vertical components results in the formation of a vorticity front that grows in size and
advects over the test model. Following this the model experiences a uniform change in the angle
of incidence. In the experiments conducted by Ryan and Dominy (2000), sharp edged gusts were
achieved, however, significant velocity under- and over-shoots from the intended top-hat profile were
observed. The advantage of this system is that in the model frame of reference a gust of infinite length
can be generated. The shutter system is, however, complex. Furthermore, the gust tunnel appears to
be optimised for a single gust ratio.†

Humphreys (1995) developed a towed model gust facility for the study of railway vehicles, shown
schematically in figure 4.14c. A test model is propelled along rails through an opening in the test
section of an open return wind tunnel. This system facilitates the use of flow conditioning within
the wind tunnel, generating both a sharp edged gust and boundary-layer profiles for their study. By
varying the model to wind tunnel velocity, practically any gust ratio may be generated. A water
towing tank based gust generator was developed by Perrotta and Jones (2017), which works using
a similar principle. The gust outlet comprised of 30 adjacent cylindrical nozzles. The conical jets
from each nozzle merge into an approximately planar free jet. This is then passed through a wire
mesh flow straightener to remove streamwise ‘waving’ of the jet. Away from the screen the jet has
a ‘sine-squared’ time averaged velocity profile. It is here that a wing model is towed through. The

†It is possible that the system can be run at multiple gust ratios, however, the angle of the vorticity front will not be
normal to the free stream of the main tunnel. It is unknown whether this is intended.
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advantage of the system is that it is simple and gives full variation in the jet velocity. If the jet outlet
manifold has sufficient length, then uniform flow may be induced across the full span of the test
model. The disadvantages for our intended application, is that the velocity profile is not ‘sharp edged’.
The gust shear layers are not clearly defined, and the jetting of high momentum fluid into the tank
results in high levels of entrainment and turbulent mixing. This will consequently act to obscure flow
features of interest and means that the bulk of the gust flow is rotational.

From the review of the gust apparatus in the literature, summarised in table 4.3, it is apparent that
a towed model based design is most suited for the present work. By incorporating the design features
of both Humphreys (1995) and Perrotta and Jones (2017), a sharp edged gust profile with variable
gust ratios in excess of GR = 1 may be generated. In the following section, we outline the apparatus
that was developed to achieve the ideal gust profile for our application, and the additional ‘pressures’
which influenced it.
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Table 4.3 Comparison of gust generators from the literature, with the system developed to replicate Küssner’s
gust (CUED gust generator).
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4.7.2 Design of the towing tank gust generator

Assuming it is possible to generate a sharp edged velocity profile, the primary design consideration
is the gust size. This necessarily impacts the ducting geometry, pump, and power requirements of
the system. It is clearly not possible to generate a gust of infinite length. It was further decided that
all gust apparatus must reside within the towing tank, as the glass walls of the test section cannot
be modified. This further requires the gust apparatus to be modular, such that the equipment may
be removed for other test configurations. The necessary gust width may be estimated based on the
ideal Küssner response shown in figure 4.15. At s/c = 2, the force reaches approximately 70% of the
steady state. Thereafter unsteady effects rapidly diminish. For a wing of 120 mm chord length, a gust
outlet of 2 chords also approaches the limit of that practical within the confines of the towing tank.
A width of 240 mm was therefore selected as the desired gust width‡. Thereafter, the challenge is
designing the ducting and pump hardware such that a steady ‘sharp edged’ velocity profile can be
achieved practically.

-2 0 2 4 6 8

X/c
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V
/U

infinite

2 chords

(a) Gust velocity with position
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0
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C
l infinite
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(b) Lift coefficient with position

Fig. 4.15 Küssner response to a unit gust of infinite extent and a finite width of 2 chord lengths.

The setup constructed for this work is shown in figure 4.16. At the end of the towing tank resides a
2.2 kW 3-phase motor, driving a submerged axial flow pump through a reduction pulley configuration.
This has a 2.25:1 gear ratio. The motor is combined with frequency inverter to enable continuous
variation of pump speed, and therefore gust cross flow velocity. The pump is connected by flexible
hosing to the gust outlet, situated within the glass test section toward the centre of the tank. To
create a ‘sharp edged’ velocity profile, flow conditioning is utilised within the ducting. Details are
shown in figure 4.17. Flow from the pump is passed through a series of constant cross-sectional area
sections that transition from the circular geometry of the pump hose (250 mm diameter) to a rectangle
geometry the height of the gust (600 mm or 1.25 times the wing span, by 80 mm). This height was
selected to ensure that the free shear layer at the base of the gust does not intersect the wing tip
(at 480 mm). Prior to the geometry transition there is a pair of vanes to remove any swirl from the
pump. A fine mesh screen with a pressure drop coefficient of K = ∆P/1

2 ρU2 = 2.0 (at 0.5 m/s) is
located directly following the transition section to reduce axial velocity perturbations. Following the

‡larger gust lengths are possible with a smaller chord length wing
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Fig. 4.16 Schematic of the gust rig inside the tank.
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Fig. 4.17 Detail of the gust outlet and collector. View from below the tank.
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transition sections the flow must both be turned 90◦ such that it can exit the outlet ducting in the di-
rection perpendicular to the carriage path, and it must additionally be diffused to the desired gust width.

Within the confines of the tank there is insufficient space to diffuse the flow prior or after the
turning vanes. To overcome this constraint diffusing turning vanes are utilised. Without boundary-
layer control diffusing turning vanes have been shown to have total pressure losses similar to that of
standard turning vanes without diffusion (Friedman and Westphal, 1952), although the maximum
expansion ratio tested in the literature is 1.45. The behaviour of a cascade of diffusing turning
vanes with area ratio of 3 is unknown, but as shown in figure 4.18a, flow separation leading to
non-uniformities and unsteadiness is likely due to the severely adverse pressure gradients imposed on
boundary-layer over the vanes.

separation 

(a) Without screen

screen 

(b) With screen

Fig. 4.18 Hypothesised flow from diffusing turning vanes with and without outlet screen.

To reduce detrimental effects due to separation, flow control similar to that discussed by Mehta
and Bradshaw (1979) for wide angle diffusers is utilised. A wire mesh screen is stationed in the
diffuser to encourage flow reattachment and uniformity. According to the guidelines by Mehta and
Bradshaw (1979), a pressure drop coefficient of K = 2.0 will suffice for an expansion ratio of 3. It is
desirable to use multiple lower K screens distributed through the diffuser, however, this is impractical
given the geometric constraints here. A single high K screen was instead placed at the vane outlet
plane (figure 4.18b). According to Mehta (1985), flow passing through wire mesh screens is ‘refracted’
toward the screen normal direction. Since the screen behind the turning vanes is on an angle relative
to the desired flow path, refraction toward one side of the outlet is expected. This may lead to a
non-uniform outlet velocity profile. Straightening vanes are therefore placed directly behind the
screen. Following the vanes the velocity profile is ‘conditioned’ using an aluminium honeycomb (3.2
mm cell width) and two high K mesh screens (K = 8.6 at 0.5 m/s) to reduce turbulent perturbations
and non-uniformities due to vane boundary-layers. On the outlet, spatially variable resistance screens
could be installed to generate non top-hat outlet profiles, but these are not used here.

Downstream of the outlet, the return circuit of the pump is used to ‘collect’ the gust. A set of
turning vanes identical to the outlet are utilised. For this section no screens are required as the flow is
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entering a gradual contraction. The jet was collected to minimise the turbulence in the ‘still’ regions
of the tank. The collector prevents the majority of the jet from mixing with the still fluid, and prevents
the bulk transport of fluid toward the pump inlet which would be located elsewhere in the tank. It
is shown later in section 4.7.3 that unsteady shear layers are developed on the edges of the jet, but
there is comparatively little disturbance to the ideally quiescent flow regions either side of the gust§.
The gust outlet and collector are mounted to an adjustable frame that allows the relative spacing to be
varied between 240 to 600 mm in 120 mm increments. This is to enable the wing to be moved closer
to the outlet to adjust the ‘sharpness’ of the gust shear layers at the wing entry point, as well as enable
the study of blockage effects on the response of the wing.

Laser

Camera

outlet
transition section

from pump

to pump

collector

adjustable frame

Fig. 4.19 Schematic showing the split collector module for PIV laser access.

Finally, the gust rig system severely reduces optical access from the sides of the towing tank,
but laser access is required for PIV. The gust collector module is therefore split into two sections, as
shown in figure 4.19. The gap in the collector is at the mid-span height of the wing, enabling a laser
sheet to be cast horizontally across the towing tank. The gust outlet was not divided to reduce flow
disruption at the measurement plane. This prevents the dual light sheet setup described in section 4.6
from being used. Both sides of the wing must be resolved to employ the methods for extracting added
mass effects (described in Chapter 5). The glass wing described in section 4.2 is therefore used for all
PIV measurements of wing-gust interactions.

4.7.3 Streamwise velocity profile

A time average of the flow field, taken over a 10 second period is shown in figure 4.20. This
is normalised by the mean gust velocity V , defined as the average gust velocity across the range
0 ≤ X/c ≤ 2. Generally, the velocity profile matches the ideal top-hat distribution well, however,
the edges of the velocity profile spread due to the growth of the shear layer with increasing distance

§This was measured over time periods typical to that of test run, approximately 30 seconds from startup.
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from the gust outlet (Y/c)¶. Diffusion of vorticity in the shear layers either side of the gust is visible
in figure 4.20a. The streaks of vorticity and corresponding fluctuations in the mean velocity profile
inside the gust (from 0 < X/c < 2) are due to the wakes of the turning vanes upstream of the gust rig
outlet (see figure 4.17). This suggests that the flow through some of the diffusing turning vanes may
have separated, or it may be attributed to thickening of the boundary-layers as a consequence of the
adverse pressure gradient.

4.7.4 Flow unsteadiness

The unsteadiness of the cross flow region is quantified by the parameters Iu =

√
(u′)2

V and Iv =

√
(v′)2

V ,
which is the ratio of the average u- and v-component perturbation velocities (u′ and v′ respectively)
relative to the average gust velocity

(
V
)
. In figure 4.21, Iu and Iv shown are calculated from 1000

consecutive PIV frames (10 seconds) taken once the gust flow has reached steady state. This parameter
is analogous to a turbulence intensity, however, represents a spatial average due to the size of each PIV
interrogation window (Westerweel, 1999). For the present setup the side length of each processing
interrogation window is 5.6 mm (4.6 % chord), thus turbulent eddies with smaller length scales are
not resolved. The error associated with this discretisation of the flow field is considered in section 5.3.

Perturbations in the u and v velocities have a standard deviation of approximately 15 to 20 % of
the mean gust velocity within the gust shear layers. The unsteadiness peaks reduce in magnitude
and width closer toward the gust outlet. At the centreline of the gust the perturbations are typically
between 2 and 3 %, which is similar to the ‘undisturbed’ regions outside the gust.

¶An analytical expression of the gust shear layer velocity profile may be found in the text by Pope (2000), the plane
mixing layer in Chapter 5.
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Fig. 4.20 Mean flow and vorticity with position. Motor speed: 700 Revolutions Per Minute (RPM).
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Fig. 4.21 Flow unsteadiness with position. Motor speed: 700 RPM.
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4.7.5 Theoretical response between the real and ideal velocity profiles

With the current configuration, the gust rig generated a velocity profile that deviates from the ideal
top-hat, particularly at the shear layers. Here the importance of the variations to the response of
the wing are estimated. First, it is assumed that the Küssner function is valid. Keeping in mind
that this is likely only correct for gusts of low amplitude, the lift response to each velocity profile
shown prior in figure 4.20b was calculated by a convolution of the Küssner function. The change
in lift coefficient, normalised by the gust ratio, is shown in figure 4.22. With the small gust ratio
assumption, the velocity deviations from the ideal top-hat shaped profile have only a minor effect on
the predicted force history. The agreement is deemed to be satisfactory at all y/c locations. Other
variations between the experimental and modelled configuration, such as three-dimensionality of the
velocity profile, may play a more significant role toward the force response.
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Fig. 4.22 Küssner response for each velocity profile given in figure 4.20b.

4.7.6 Spanwise velocity profile

So far, no consideration has been paid to the three-dimensionality of the gust velocity profile. The
spanwise setup of the gust rig and skim plate are shown in figure 4.23. For clearance there is a 25 mm
(5% span) gap between the upper edge of the gust outlet and the underside of the skim plate. As the
skim plate passes over the gust rig, the boundary condition at the top of the gust will transition from
approximately free-slip, due to the water-air interface, to no-slip. At the bottom of the gust rig there is
no boundary, instead a free-shear layer will develop.

To quantify the three-dimensionality of the velocity profile, PIV measurements of the gust were
taken using a vertical laser sheet at the mid-plane (X/c = 1), and Y offset locations from Y/c = 0.5 to
Y/c = 1.5. The velocity profiles, and vorticity distributions are shown in figure 4.24. Aside from at
the shear layers, the variation in the spanwise velocity profile is minor. There is a slight reduction
in velocity for Z/c ≥ 4, however, this is similar to the streamwise velocity perturbations which are
of order ±15%. This reduction may be caused by the difference in the top and bottom shear layer
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boundary conditions. The addition of a bottom plate between the outlet and collector may therefore
improve the velocity profile, but would impede PIV optical access. This has not been pursued here,
but given that the wing tip is located at Z/c = 4, it is unlikely to have any significant effect on the
present results.

wing

. . .
. . .

outlet collector

skim plate

(a) Front

outlet

wing

(b) Side

Fig. 4.23 Schematic of the PIV laser configuration for measuring the spanwise velocity profile. For scale the
wing is shown in the schematic, but this was not present in the physical setup.
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Fig. 4.24 Average flow velocity in the spanwise direction. Taken with the skim plate above the outlet.
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4.7.7 Pump operating range

To assess the operating range of the gust rig, the mean gust velocity V was measured using PIV across
a range of pump speeds. This is shown in figure 4.25.
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Fig. 4.25 Gust velocity with motor RPM.

The gust velocity increases linearly with RPM, up until 800 RPM where there is a sharp variation
from the linear gradient. A linear velocity profile with RPM is expected if the pump is operating
within its design pressure and volume flow rate range. Here the lift and drag forces on the pump
blades, therefore pressure rise prise across the pump scales with RPM2. The scaling for the pressure
drop within the ducting, attributed to the wire mesh screens and turning vanes is, pdrop ∼V 2. Since
the pressure rise from the pump equals the pressure drop within the gust rig, V ∼ RPM. The outlier at
900 RPM corresponds to a sharp degradation in the velocity profile, and corresponding increase in
unsteadiness. This is shown in figure 4.26. It is likely that the pump stalls between 800-900 RPM. The
maximum velocity of approximately 0.40 m/s corresponds with a Reynolds number of approximately
40,000, based on wing chord. It is possible that higher velocities can be reached by re-pitching the
pump blades, but this was not necessary for the present study. A linear fit through the pre-stalled
points is given by V = 4.611×10−4RPM−7.831×10−3.
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Fig. 4.26 Flow velocity and unsteadiness at 900 RPM. Calculated from 2000 samples over 10 seconds.

4.7.8 Assumption of two-dimensional flow

For the presentation of all PIV and force measurement data herein, it is assumed that the flow field
is two-dimensional. PIV data was, as described in section 4.6.1, taken at the mid-span of the wing
(measured from the skim plate to wing tip), which has an effective aspect ratio of 8. Meanwhile,
physical force measurements are an integral quantity across the full three-dimensional model. There
is therefore a potential source of discrepancy between force balance, PIV, and theoretically calculated
quantities. Stevens (2013) showed that for short pitching motions with an identical wing model, up to
Xc/c = 2, measures of vortex dynamics are similar, whether taken at the midspan or three quarter span
locations. This indicates that, provided PIV measurements are taken at less than the (physical) three
quarter span location, the data will be independent of measurement location and may be assumed to
be two-dimensional. This assumption is further supported by Pitt Ford (2013), who demonstrated that
for an impulsively started flat plate wing, at an angle of incidence of α = 25◦, the shed leading edge
vortex remains parallel to the leading edge well beyond the 7/8 span, and also concludes that the flow
is highly two-dimensional. The influence of aspect ratio on the transient forces may be quantified
from the experiments conducted by Ringuette et al. (2007). The authors measured the force on an
aspect ratio 6 wing, undergoing acceleration over a distance of 0.25 chords. The wing was set at a
constant angle of incidence of α = 90◦, and the force was compared with and without end-plating.
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The difference in force between each configuration after two chords travel was approximately 5%. We
therefore estimate, that for the highly transient test cases considered in our work, the error attributed
to three-dimensional effects present in direct force measurement, and PIV derived quantities, will
have an error of order 5-10%, compared to the true two-dimensional quantity.

4.8 Summary

This Chapter describes the equipment and measurement techniques utilised in this study. Experiments
were performed in a towing tank to take advantage of favourable Reynolds number scaling effects.
Forces were acquired using a custom designed wing balance rig, with inertial compensation to
minimise contamination due to vibration. The flow field was characterised using both dye-flow
visualisation and PIV, for which a simple dual light sheet alignment procedure was developed. A gust
apparatus was constructed for the towing tank, that facilitates the generation of sharp edged transverse
gusts. This has demonstrated relatively uniform and steady flow. Each experiment has been designed
such that the entirety of the immediate flow field about the wing may be resolved, without camera
field of view obstruction or laser light sheet shadow. A complete field of view was essential to identify
the added mass phenomenon using PIV. This process is described in the following Chapter.





Chapter 5

Isolating Added Mass with 2D PIV

To experimentally demonstrate that the inviscid added mass solution is applicable to a viscous sep-
arated flow field, both the inviscid analytical added mass prediction, and an experimental measure
of the quantity is required. Given that added mass is an effect that ultimately gives rise to a force
on a body, force is generally the quantity used for such comparison. It is both simple to calculate
analytically, and straightforward to measure. The problem is that force alone provides no information
on the underlying cause. In this Chapter we develop methods to isolate the added mass mechanism
directly from PIV measurements, by determining the trace that the phenomenon leaves in the vorticity
field.

In section 5.1 an unsteady potential flow model is described that deconstructs the boundary-layer
vorticity on a flat plate into two components, a non-circulatory vortex sheet attributed to added mass,
and another circulatory sheet due to velocities induced by free vorticity in the flow field. This potential
flow model will be utilised to quantify the circulatory component of an experimentally measured
boundary-layer distribution. The approach is based on the work of Graham et al. (2017), who de-
rived quantities for an unsteady flat plate wing translating with constant angle of incidence. Here
the methods are extended to compensate for ‘missing’ circulation, and also incorporate rotation effects.

In section 5.2 a technique is described that enables the quantification of distributions of boundary-
layer vorticity using PIV measurements of limited resolution. It will be shown that when coupled
with measurements of free vorticity, and the potential flow model, vorticity attributable to added mass
may be directly isolated. The errors attributed to the implementation of the technique are summarised
in section 5.3, while a more extensive description of the methods used to quantify the errors are given
in Appendix B.
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5.1 Inviscid flow field model

5.1.1 Vortex sheet components

In Chapter 3 it was argued that a body in a potential flow field may be represented by a vortex sheet on
the surface. This sheet has zero circulation, and is attributed to the added mass effect. The problem we
now face is that real flows are generally rotational. As a consequence, the vortex sheet representation
of a body will not necessarily always have zero net circulation (see the vortex sheet representation of
a plate in the thin airfoil theory, section 2.3.2). Eldredge (2010) and Graham et al. (2017) argued that
the vortex sheet has two constituent parts, as given by equation (5.1)

γ
b(x) = u2(x)−u1(x)

= γ
nc + γ

c. (5.1)

= +

Fig. 5.1 Deconstruction of boundary-layer vorticity into non-circulatory and circulatory components for a
translating flat plate. Arrows on the surface of the plate represent flow velocities above the boundary-layer.
Shaded regions indicate diffuse vorticity residing in the bulk flow field, while the red and blue colouring
represents positive and negative vorticity, respectively.

As illustrated in figure 5.1, the first component, γnc, is attributed to body motion in an otherwise
irrotational flow. This is the vortex sheet associated with added mass, as described in Chapter 3. It
will always have the defining characteristic of zero net circulation, and has the superscript nc for
‘non-circulatory’. The second constituent part, γc, is attributed to vorticity located away from the
body, and residing in the ‘bulk’ flow field. Here the term bulk flow is defined as flow outside the
boundary-layer on the body. For this component it is assumed that γc is of such strength that self
induced velocities (in the body surface normal direction) are equal and opposite to those induced by
the free vorticity, so that the no-penetration condition is satisfied. For the calculation it is assumed
that the body is at rest, as the body kinematic motion is accounted for by the non-circulatory sheet.
The vortex sheet attributed to the free vorticity is allocated the superscript c for ‘circulatory’ as it
may often (but not necessarily) have net circulation. Given that we have calculated theoretically the
non-circulatory component in Chapter 3, we only need to find the circulatory part, γc, to completely
determine the bound vortex sheet γb.
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5.1.1.1 Circulatory ‘shed vorticity’ vortex sheet

The circulatory vortex sheet constituent, γc, is found from the bulk flow vorticity using the potential
flow model described by Graham et al. (2017). This model is ‘data-driven’, as the position and
circulation of each external vortex will be determined using PIV measurements of a physical flow
field. For complex geometries, a panel code may be used to find the equivalent γc for a body subject
to flow induced by external vortices Graham et al. (2017), however, for a simple flat plate the mapping
method allows an exact analytical expression to be derived.

Fig. 5.2 Mapped circle frame.

The plate is mapped to a circle with radius a = c/4 using the relation,

z = ζ +
(c/4)2

ζ
, (5.2)

where ζ = ε + iη is a position vector in the mapped frame. The mapped frame is illustrated in
figure 5.2. In the mapped frame the circle is subject to the same condition as the plate (flow cannot
pass through its surface and circulation is unchanged). As illustrated, a single vortex with circulation
Γk is located in the flow field at the position ζk. This represents a single element from a field of
vorticity. To satisfy the no-penetration condition, ‘mirror’ vortices must be placed inside the circle.
This ensures that the circle perimeter is a streamline of the flow by balancing the radial velocity
component that the free vortex induces on the circle boundary. According to Saffman (1992) there are
an infinite number of mirror vortex combinations which satisfy this condition. The solution given by
Graham et al. (2017) satisfies conservation of global circulation and the circle boundary condition
with just a single mirror vortex of circulation −Γk at a location ζk,mir =

a2

|ζk|e
iφk , where φk is the angle

between the ε axis and the free vortex element k. The free vortex and mirror may be used to find γc by
calculating the surface slip velocities in the plate frame. These are obtained here using the complex
potential method. The complex potential (Fk(ζ ) = Φk + iΨk, where Φk and Ψk are the potential and
streamfunctions for the vortex pair) is

Fk(ζ ) =−i
Γk

2π
ln
(

ζ −ζk

ζ −ζk,mir

)
. (5.3)
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The flow velocity (uk,vk) in the plate frame is given by

uk − ivk =
dFk

dz
=

dFk

dζ

( dz
dζ

)−1
. (5.4)

Evaluating the derivatives yields

uk − ivk =
iΓk

2π

ζ 2(ζk,mir −ζk)

(ζ 2 − (c/4)2)(ζ −ζk,mir)(ζ −ζk)
. (5.5)

To calculate the strength of the vortex sheet, the velocity tangential to the surface of the plate
(uk) is required. The plate surface corresponds to the cylinder surface in the complex frame, given by
ζ = aeiθ . Therefore, at the plate surface, equation (5.5) gives:

uk(θ) =
−Γk

πcsinθ

(c/4)2 −|ζk|2

|ζk|2 − 1
2 |ζk|ccos(θ −φk)+(c/4)2

. (5.6)

Here θ , the angle from the ε axis to a position on the cylinder surface (anticlockwise positive), is
related to the plate frame by x = (c/2)cosθ . The vortex sheet attributable to the vortex pair is equal
to the velocity difference either side of the plate,

γ
c
k (θ) = uk(−θ)−uk(θ), (5.7)

with 0 ≤ θ ≤ π . Finally, an unknown a-priori number of vortices (n) will be measured in the flow
field. The total circulatory vortex sheet is, however, simply found by linear superposition of the
contributions from each measured vortex,

γ
c =

n

∑
k=1

γ
c
k . (5.8)

The location of each vortex is to come from PIV measurements in the plate frame, a conversion
from the real to mapped frame is needed. Solving for the roots of equation (5.2) gives the inverse
mapping,

ζ =
z±
√

z2 −4(c/4)2

2
. (5.9)

As there are two solutions to equation (5.9), one inside the mapped circle and the other outside, only
the outer solution (|ζ | ≥ a) is used.

5.1.1.2 Systematic error compensation (lost circulation)

The methodology for determining γc described in section 5.1.1.1, is based on the premise that the
position and circulation of each bulk flow vortex element can be measured. The circulatory vortex
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sheet γc has a net circulation equal and opposite to that of all the bulk flow vorticity. Error arises when
a vortex element leaves the measurable field of view, which causes the circulation of γb to change
by the circulation ‘lost’. Fortunately it is possible to partially compensate for this effect. Consider
a flow field comprising of just the plate and a free vortex of circulation Γk, both within an area A
that represents a measurable field of view. This is illustrated in figure 5.3a. The plate must have a
circulation of −Γk. If the total circulation within A (Γin) is found using a closed contour of integration

Γin =
∮

A
u ·dl, (5.10)

then Γin will be zero.
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Fig. 5.3 Example flow field for correcting for the circulation lost from the PIV measurement field of view.

Now if the free vortex moves outside of A, calculation of Γin will return a non-zero result (the
circulation of the plate). This is illustrated in figure 5.3b. The net circulation outside of the observable
area A (Γout), must be equal and opposite to that measured within A to conserve circulation across the
whole flow field:

Γout =−Γin (5.11)

=−
∮

A
u ·dl. (5.12)

The circulation lost outside the measurement window is therefore determinable, however, its location
is unknown*. As described in section 5.1.1.1, the position of each external vortex and the mirror
vortices within the mapped circle must be known to calculate the distribution of γc. However, it could

*The lost circulation could be in the form of a single point vortex outside the observation window, or arbitrarily
distributed vorticity throughout the surrounding flow field.
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be assumed that the vorticity outside the measurement window is sufficiently far from the plate that it
is effectively at infinity. A single mirror vortex of circulation −Γout would therefore be placed at the
circle origin. This may not be unreasonable if there is a relatively large measurement field of view
either side of the plate. The vortex sheet, γc

out , that arises due to the missing circulation can be found
from equation (5.7) with the condition that the position of the external vortex ζk → ∞ and replacing
Γk with Γout . Equation (5.7) becomes

γ
c
out =

−Γout

π

√
( c

2)
2 − x2

. (5.13)

The contribution to the circulatory vortex sheet due to vortices outside the measurement window, can
therefore be approximated. More sophisticated corrections might also be possible in specific cases, if
the location of the lost vorticity is approximately known. We note that this analysis strictly assumes
that the flow is two-dimensional. Further error could be introduced if this assumption is incorrect.
Simpson et al. (2018), however, showed that the measure of circulation for a vortex tilted at 40◦

from a PIV laser plane, has an almost negligible effect on the measured circulation. Meanwhile, flow
induced by a vortex ring, not intersection the measurement plane, cannot introduce net circulation to
the measured flow field. Three-dimensional effects are therefore likely to have negligible effect on the
analysis of the circulatory vortex sheet.

5.1.2 Potential flow model summary

A potential model has been derived to obtain the distribution of boundary-layer vorticity for a flat
plate wing undergoing arbitrary translation and rotation kinematic motions through a viscous and
separated flow. The boundary-layer is represented by a vortex sheet of strength γb = γnc + γc. The
non-circulatory term, γnc, comprises a component attributed to translation, γnc

t , and a component
due to rotation, γnc

r . The circulatory term, γc, is due to vorticity in the bulk flow field. Using PIV
data, it is possible to determine γc experimentally. It is apparent that, if the vortex sheet γb can also
be quantified experimentally, then the component directly attributable to added mass (γnc) may be
isolated from flow field measurements. Further limiting the kinematic motion to just translation
or rotation enables independent measurements of γnc

t and γnc
r to be obtained. These may then be

compared to the theoretical distributions given in Chapter 3, (see equation (3.23) for a translating
and rotating flat plate, and equation (3.36) for a sharp edged gust), thereby testing the validity of the
potential flow solution for added mass in separated viscous flows.

5.2 Quantification of γb from PIV measurements

In the review of the literature on the added mass effect in section 3.4, it was discussed that the difficulty
with directly resolving the vorticity in the boundary-layer using PIV (to obtain a measure of γb), stems
from the requirement that typically large regions of the flow field must be captured to include starting



5.2 Quantification of γb from PIV measurements 99

vortices. There is a compromise between field of view and spatial resolution, the former often taking
priority. Furthermore, the added mass attributed vorticity is generated in an ‘intensely concentrated’
region of the boundary-layer adjacent to the wall. In this region the scattering of laser light from
the surface results in a loss of measurements due to saturation of the camera sensor. With such an
experimental setup it is unlikely that velocity gradients within the boundary-layer, and the added
mass attributed vorticity in particular can be resolved directly. It is, however, possible to infer the
boundary-layer vorticity by application of Stokes’ theorem (equation 5.14). The surface integral of
vorticity over an area A (circulation) is equal to the closed line integral of the velocities about the
circumference. Even for a near-singular and unmeasurable distribution of vorticity, the circulation can
be determined by the entirely measurable flow field velocities nearby

Γ =
∫

A
ωzdA =

∮
u ·dl. (5.14)

With the present problem the ‘singularity’ is not a point vortex free in the flow field, but rather
is in the form of a boundary-layer over the surface of a plate. The question is, what happens to the
integration contour that crosses over the plate’s perimeter? In this case, a body of finite cross-sectional
area can be treated as an area of fluid with equivalent kinematic and geometric properties. Thus, in
pure translation the ‘body fluid’ is irrotational, and when in pure rotation it has uniform vorticity with
magnitude twice the rate of angular rotation (Wu, 1981). Applying this condition allows an integration
contour to cross over the body surface as if the flow field and body geometry were a continuum. The
circulation of a segment of the boundary-layer can therefore be measured. For the plate geometry,
elements of circulation (δΓn) are calculated using the contours of integration shown in figure 5.4a.
It is assumed here that the plate used for experiments is infinitely thin and no correction for finite
thickness has been made†. The circulation of vorticity contained in the boundary-layer may then be
equated to that of the vortex sheet,

∫
A ωzdA =

∫
γdx, and thus a local estimate of a boundary-layer

equivalent vortex sheet can be found by dividing the circulation of each element by the element width,

γ
b
n ≈ δΓn/δxn. (5.15)

For the boundary-layers shown in figure 5.4b, application of this method returns a vortex sheet of
strength γb

n = u2 −u1. A measure of the integral boundary-layer vorticity can therefore be acquired
without needing measurements of velocity gradients within the boundary-layer. The spatial resolution
(in the plate direction, x) is, however, limited by the underlying PIV grid resolution. For the current
experiment the plate was discretised into 50 area elements, over a distance of 1.0c in the x-direction
(δx = 0.02c). This was similar to the PIV resolution. Unless otherwise specified, each element had
a height of δy = 0.20c. This was selected as it is sufficiently large to include the boundary-layer,
while largely avoiding ‘free’ vorticity in the bulk flow field (shown later in figures 6.3 and 6.5). If the
free vorticity is encompassed by the contours of integration, it will be excluded from the circulatory

†The mechanical vorticity of the plate, which is 4 mm thickness, was calculated and is comparatively negligible.
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(a) Overview of elements spanning the
wing chord

(b) Schematic of the boundary-layers en-
compassed within a single integration
contour

Fig. 5.4 Elements (red rectangles) used for the calculation of the boundary-layer distribution of circulation.

vortex sheet calculation γc, and is instead assigned as local boundary-layer vorticity. This is to be
avoided where possible. It is reiterated that, while the measurement window is of a finite height (δy),
provided that the measurement area incorporates the boundary-layer vorticity over a body, there is
no introduced error compared to the comparable result if δy = ∞. For each test case, the selection
of δy, and its position relative to the boundary-layer, and similarly, vorticity which is allocated as
‘free’ in the flow field is identified by a boundary box. The value of δy = 0.20c, is approximately the
smallest this dimension may be, whilst still encompassing the boundary-layers. This is consistent
with our current theoretical understanding of the location of the vorticity attributed to the added mass
phenomenon, which is intensely concentrated in the lower portion of the boundary-layer. Since we
are attempting to isolate the added mass vorticity, and validate our theoretical understanding of added
mass, we refrain from ‘tuning’ δy until our measure of the vorticity matches, as closely as possible,
the theoretical result that we seek.

We now have a method for quantifying the distribution of boundary-layer vorticity. Also available
from the PIV measurements, is a means for determining the circulation of all free vortices within the
bulk flow field. With this, the component of boundary-layer vorticity required to react the velocities
induced by the free vortices, may be determined using the potential flow model described in section
5.1.1.1. This has two primary uses. Firstly, with the impulse relations given in section 2.3.1.7,
and the measure of free vortices, the circulatory forces attributable to the creation and advection
of such vortices may be calculated entirely from PIV measurements. Secondly, we know that any
boundary-layer vorticity not attributable to the free vortices must instead result from the added mass
effect. We can therefore isolate the added mass effect from the trace it leaves within the vorticity
field, and therefore have a means for directly comparing the strength and distribution of vorticity with
potential flow theory (the theoretical added mass vortex sheet). Such a comparison will allow us to
prove whether the added mass effect is dependent, or independent of the fluid viscosity. Furthermore,
we may go as far as directly calculating the added mass force from the rate, and distribution of created
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vorticity directly from PIV. These techniques will be applied to wing-gust encounters to investigate
the role of circulatory and non-circulatory force components.

5.3 Error

The discretisation of a continuous flow field into measurement points, inherent with the PIV method,
can be a source of error when it comes to extracting distributions of boundary-layer vorticity, impulse
and force quantities. This error was quantified by generating an artificial flow field, from which the
non-circulatory vortex sheet γnc was ‘measured’ using the prior described methodology. Here only the
results of the analysis are given, but full details are provided in Appendix B. For a flat plate wing in a
discretised flow field with 50 vectors per chord, and equivalent resolution vortex sheet discretisation,
the analysis yields the following errors:

• Each measure of the flow field impulse, first moment of impulse and subsequent forces as
calculated from vorticity in the entire flow field (that is the sum of the vorticity in the boundary-
layer and that shed into the bulk flow field), are shown to have an error due to discretisation of
less than 1%.

• Measures of the impulse, first moment of impulse and forces attributed to added mass (from the
non-circulatory vortex sheet γnc), have an error of approximately 5%.

Our selection of the vortex sheet discretisation resolution of 50 elements per chord is the maximum
our measurements allow, as a higher resolution will simply result in measures which are a linear
interpolation between adjacent PIV vector elements. No additional information is gained, while there
is additional computational cost associated with higher resolutions. Lowering the resolution has the
advantage of reducing the influence of random PIV vector noise, as the circulation for each vortex
sheet discretisation element is the area integral of the elemental vorticity. We will, however, address
random errors by using a sequential averaging process, described in further detail in section 6.4. For
transparency, both the directly acquired, and averaged measures of the non-circulatory vortex sheet are
subsequently presented. This, along with the analysis of systematic error due to PIV vector resolution
in Appendix B, completes our analysis of foreseeable errors associated with the measures of the added
mass attributed vortex sheet.

5.4 Summary

This Chapter describes a methodology developed by the author, to facilitate the extraction of added
mass attributed boundary-layer vorticity from PIV measurements of a real flow. To quantify this
distribution of previously ‘unresolvable’ vorticity, using only low resolution PIV, the body is treated
as a region of fluid with a velocity equal to the rigid body kinematics. Circulation is calculated using
a series of closed integration contours that cross the body, and the vorticity is determined by applying
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Stokes’ theorem. This distribution of vorticity has two components, a non-circulatory component
attributed to added mass, and a circulatory component that is generated to satisfy the no-through
flow condition, due to velocities induced by the free vorticity. This component may be found from
PIV measurements of free vorticity, using the conformal mapping and vortex mirror image method.
Subtraction of the circulatory component from the measured boundary-layer vorticity distribution,
enables the added mass component to be isolated.

By experimentally measuring the added mass attributed vorticity, and comparing it with the theo-
retical result, we have a direct experimental means for proving whether the added mass phenomenon
is influenced by viscous effects and subsequent changes to flow topology. Added mass contributions
to impulse and force may also be extracted, with an error of approximately 5% for a PIV resolution of
50 vectors per chord, and an equivalent resolution vortex sheet.



Chapter 6

Translating and Rotating Plate
Experiments

In this Chapter, experiments on a flat plate wing undergoing acceleration in the direction perpendicular
to the chord (surge), and impulsive rotation about the mid-chord are described. These experimental
cases are illustrated in figure 6.1. The aims each case is to validate the methodology for extracting
added mass quantities from PIV flow measurements, and to demonstrate the applicability of the poten-
tial flow result for a viscous and highly separated flow. This may be achieved by showing consistency
between the potential flow derived added mass quantities with those obtained experimentally. The
surge and rotation test cases are used, because any planar kinematics may be decomposed into a
combination of such motions.

(a) Surge experiment (b) Rotation experiment

Fig. 6.1 Schematics of the surge and rotating flat plate experiments.

First, the kinematic motion is described in section 6.1. Qualitative analysis of the flow topology is
given in section 6.2, which is followed with the quantitative measures of the added mass attributed
vortex sheets, impulse, and force quantities.
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6.1 Kinematics

General kinematic parameters for the surge and rotation cases are given in tables 6.1 and 6.2,
respectively. For the surging profile the plate underwent nominally constant acceleration over a
distance of 0.25 chord lengths, travelled at constant velocity for 1.5 chord lengths and decelerated over
a distance of 0.25 chords. The total travel distance is therefore 2 chords. A Reynolds number of 10,000
is used for dye flow visualisation and PIV. For the rotation case, the plate was nominally ‘impulsively’
rotated in the clockwise direction from rest to a constant angular velocity (Ω =−dβ/dt ≈−π/4 rad
s−1) about an axis at the mid-chord. Based on the plate chord and edge velocity the Reynolds number
is Re = 4,600. After rotating 180◦, the plate is impulsively decelerated to rest. It is recognised that a
perfectly impulsive motion is impossible due to both finite plate stiffness and torque limitations. For
the calculations of pitching moment using potential theory it is assumed that the angular acceleration is
constant over a time equal to the PIV sample period (0.02 s). Based on the stepping motor commanded
motion, the actual acceleration period is likely shorter than 0.02 seconds, but PIV based measures of
impulse are limited by the camera frame rate. The same limitation is therefore placed on the potential
theory based estimate.

Table 6.1 Prescribed kinematics for the surge case.

Reynolds number 10,000

Acceleration distance (c) 0.25
Deceleration distance (c) 0.25
Total travel (c) 2.00
Peak velocity U0 (m/s) 0.104

Table 6.2 Prescribed kinematics for the rotation case.

Reynolds number (edge vel.) 4,600

Acceleration distance (rad) π/200
Deceleration distance (rad) π/200
Maximum rotation angle β (rad) π

Peak angular velocity Ω0 (rad/s) −π/4

6.2 Flow topology

Dye flow visualisation and PIV measurements for the surging case are shown in figures 6.2 and
6.3, while figures 6.4 and 6.5 give the corresponding measurements for the rotation case. The PIV
measurements show normalised flow vorticity (red, anticlockwise positive; blue, negative) and arrows
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with flow direction. For each data element, the vorticity was calculated by taking the trapezoidal
closed line integral of velocity through the centroid of each adjacent element (size 2∆l ×2∆l, where
∆l is the data point element width). This gives a circulation, which divided by the area inclosed by the
integration contour (4∆l2) gives the vorticity.

In the surge case, the following can be observed:

• At Xc/c =−0.02: the plate undergoes maximum acceleration but still has low velocity. The
start of two vortices is visible in the flow field. PIV measurements show a (faint) region of
negative vorticity at the top half of the plate and positive vorticity on the lower half.

• At Xc/c =−1.00: the plate is translating at constant velocity. A pair of counterrotating vortices
behind the upper and lower plate edges is visible in both the dye flow and PIV measurement.
Clear regions of boundary-layer vorticity are visible in the PIV measurements, but cannot be
seen in the flow visualisation.

• At Xc/c =−1.98: the plate has decelerated to almost a complete stop. The pair of vortices has
moved downstream relative to the plate, and the shear layers feeding each vortex can be seen.
Discrete blobs of dye are visible in the shear layer; these are the result of the Kelvin-Helmholtz
instability, and show the accumulation of vorticity from the shear layer into discrete rollers.
Again there is a clear region of boundary-layer vorticity. This vorticity appears to shed off the
plate edges, which is caused by flow induced in the negative X-direction by the primary vortices.

For the rotation case, the following can be observed:

• At β ≈ 1◦: the plate has started motion and is rotating at constant angular velocity. The dye
flow visualisation does not show any vortices in the flow field. The PIV measurements, however,
show a strong distribution of positive vorticity at the plate edges and negative vorticity toward
the centre.

• At β ≈ 90◦: the plate is mid-way through the rotation and is moving at constant angular velocity.
A positive vortex, fed by a visible shear layer, has shed at each plate edge. Again a Kelvin-
Helmholtz instability is seen. There are clearly defined regions of negative boundary-layer
vorticity visible in the PIV measurements which are not seen in the dye flow visualisation.

• At β ≈ 179◦: the plate is travelling at constant angular velocity, but is about to encounter the
deceleration impulse. The pair of vortices have moved further ‘downstream’ relative to the
circumferential path of the plate edges. The Kelvin-Helmholtz instability is less coherent. This
appears to be a result of secondary flow separation interacting with the primary shear layer. The
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secondary separation can be seen by the thickening of the negative boundary-layer vorticity
toward the plate edges. Since this secondary separation occurs at opposite edges of the plate, it
results in the ‘cross’ shaped vorticity distribution close to the plate surface, as seen in figure 6.5c.

Both the surge and rotation test cases have shown distributions of boundary-layer vorticity during
their motions. It is this vorticity that is expected to have a component attributable to the added mass
effect. In the following sections this component is quantified and compared with potential theory.
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Fig. 6.2 Dye flow visualisation for the surge case.
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Fig. 6.3 PIV measurements for the surge case.
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Fig. 6.4 Dye visualisation for the rotation case.
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Fig. 6.5 PIV for the rotation case.
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6.3 Flow field circulation

Separate sums of positive and negative circulation elements are plotted in figure 6.6. The circulation
elements are categorised as those that are ‘attached’, which means they are included in the boundary-
layer areas of integration described in section 5.2; and those that are ‘free’, i.e. in the bulk flow
field. Both test cases show zero total circulation throughout the measurement period, as expected.
This suggests that no vorticity has escaped the measurement field of view, and that there are few
three-dimensional effects. Note the presence of circulation discontinuities at the start and end of
motion for the rotation case. This suggests that added mass attributable vorticity is captured by the
PIV measurements bracketing each acceleration period. In inviscid theory, the added mass vorticity
grows at a rate proportional to the acceleration of the body. An impulsive, or near infinite acceleration
means the growth rate of circulation is also near infinite. This causes the circulation discontinuities.
Similar added mass effects are captured for the surge case shown in figure 6.6a, but these are visible
only as subtle gradient changes before and after each acceleration region.
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Fig. 6.6 Sums of the boundary-layer and bulk flow circulation elements.

In figure 6.7 the sum of the positive and negative components is shown. This gives the net
attached circulation, and the net free circulation. For the surge case, given by figure 6.7a, both the
attached and free circulation are approximately zero for the measured range. Equal rates of positive
and negative circulation are shed at each of the plate, as shown in figure 6.3. For the rotation case,
positive circulation is shed at each of the plate edges for |Ω0t|< π . When rotation ceases, negative
net circulation is shed into the flow field. The attached circulation follows an equal and opposite
trend, as it comprises the mirror images of the free vortices. The discontinuities at the start and end
of motion (at |Ω0t| ≈ 0 and |Ω0t| ≈ π), are believed to result from incorrectly allocated added mass
generated vorticity. It was shown in Appendix B that this may be smeared past the edges of the plate
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due to the discretisation of the flow field. Consequently, during acceleration motions some of the
added mass attributed vorticity is incorrectly allocated as ‘free’.
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Fig. 6.7 Net attached and free circulation.

6.4 Non-circulatory vortex sheets

From the general measurements of flow field circulation, we now know that some added mass effects
are being captured with PIV. Next we seek to isolate the added mass vortex sheet, γnc. As described
in section 5.2, γnc is obtained by taking direct measurements of the boundary-layer vorticity, γb

and subtracting the component attributed to free vorticity in the flow field γc. For the surge case,
the instantaneous breakdown of the boundary-layer vorticity is given in figure 6.8. The line γc

in is
the circulatory vortex sheet, attributed to free vorticity within the measurement window; γc

out is the
sheet that compensates for net circulation outside the measurable window; and γnc is the added
mass vortex sheet obtained experimentally. Since circulation was shown to be conserved within the
measurement window, γc

out ≈ 0 across the entirety of the run. Figures 6.8a to 6.8c show three instances
of the acceleration zone, at Xc/c =−0.02, Xc/c =−0.12 and Xc/c =−0.25. Across the acceleration
region, it can be seen that γnc grows in magnitude. For Xc/c = −0.02 and Xc/c = −0.12 the total
boundary-layer vorticity γb is exclusively attributed to γnc. Figures 6.8d to 6.8f show three instances
of the deceleration zone, at Xc/c = −1.75, Xc/c = −1.88 and Xc/c = −1.98. We note that for the
pair of figures (a)-(f), (b)-(e) and (c)-(d) the plate has equal velocity, but different flow topologies. For
each of the instance pairs the added mass attributed vortex sheet, γnc, is equivalent in magnitude. This
suggests that the change in flow topology does not influence the added mass attributed vortex sheet,
rather it is just scaled by velocity.



6.4 Non-circulatory vortex sheets 111

-0.5 -0.25 0 0.25 0.5

x/c

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

γ
(m

/s
)

γ
b

γ
c

in

γ
c

out

γ
nc

(a) Xc/c =−0.02

-0.5 -0.25 0 0.25 0.5

x/c

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

γ
(m

/s
)

γ
b

γ
c

in

γ
c

out

γ
nc

(b) Xc/c =−0.12

-0.5 -0.25 0 0.25 0.5

x/c

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

γ
(m

/s
)

γ
b

γ
c

in

γ
c

out

γ
nc

(c) Xc/c =−0.25

-0.5 -0.25 0 0.25 0.5

x/c

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

γ
(m

/s
)

γ
b

γ
c

in

γ
c

out

γ
nc

(d) Xc/c =−1.75

-0.5 -0.25 0 0.25 0.5

x/c

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

γ
(m

/s
)

γ
b

γ
c

in

γ
c

out

γ
nc

(e) Xc/c =−1.88

-0.5 -0.25 0 0.25 0.5

x/c

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

γ
(m

/s
)

γ
b

γ
c

in

γ
c

out

γ
nc

(f) Xc/c =−1.98

Fig. 6.8 Surge case: Instantaneous deconstruction of boundary-layer vorticity into vortex sheet constituents.
The γc

in term is ‘clean’ because the local distribution is calculated from the free vorticity field. Measurement
noise averages toward zero because many thousands of data samples are used in each calculation of γc

in. The γb

and γnc terms are noisy as they are calculated from a few near plate velocity vectors.
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For the rotation case, the instantaneous deconstruction of the boundary-layer vorticity is given
by figure 6.9. At β ≈ 1◦ almost all boundary-layer vorticity is attributed to added mass, while only
a small quantity is attributed to free vorticity toward the plate edges. At β ≈ 90◦ and β ≈ 179◦, γb

shows there is considerable negative attached circulation. This is attributed to γc
in. For these later

times, γb is approximately zero at the plate edges. This is surprisingly consistent with the steady
Kutta condition. Comparing all three instances, we note that the component of the attached vorticity
attributed to added mass is similar in distribution and magnitude, albeit the measure is slightly noisy.
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Fig. 6.9 Rotation: Instantaneous deconstruction of boundary-layer vorticity into vortex sheet constituents.

Before comparing the measures of the added mass vortex sheet with potential flow theory, errors
attributed to the random noise need to be addressed. It was shown in section 3.2.3 that γnc

t may be
scaled by Un to give a velocity (and acceleration) independent distribution. The equivalent scaling for
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γnc
r was Ωc. Here we make use of this scaling, to facilitate the reduction of experimental noise.

In figure 6.10 the theoretical, non-dimensional added mass vortex sheets given by equation (3.23)
are plotted. If, as expected, the experimental measurements of the added mass vortex sheets are inde-
pendent of viscous effects such as separation, then they should be equal to the theoretical distribution,
albeit with additional random experimental noise. We make use of the multiple measurement sets of
the scaled added mass vortex sheets, and take a sequential average of the multiple samples at each
chord-wise data point to reduce the random errors. For the surge case the average of frames between
Xc/c =−0.02 and Xc/c =−1.98 is taken (530 measurements). The very start (−0.02 ≤ Xc/c ≤ 0.00)
and end of motion (−2.00 ≤ Xc/c ≤−1.98) is avoided to prevent normalising the measured added
mass vortex sheet by vanishingly small velocity values. For the rotating case, frames between β = 1◦

to β = 179◦ are used (approximately 100 measurements). The instantaneous and averaged experi-
mental added mass vortex sheets are included in figure 6.10. There is striking agreement with the
theoretical distribution.
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Fig. 6.10 Comparison of measured and potential flow vortex sheets.

The agreement between measurement and theory shows that vorticity is generated in the physical
flow field when the plate is accelerated, with a distribution close (if not identical) to that predicted with
inviscid theory. It can further be deduced that the distribution of this non-circulatory vortex sheet is
unchanged by viscous effects and the corresponding changes to flow topology. This is because most of
the measurements utilised in the averaging process were taken when the flow was in a state of severe
separation. This can be shown more clearly by considering the instantaneous PIV measurements.
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6.5 Instantaneous non-circulatory vortex sheet

To demonstrate further that the inviscid added mass vortex sheet is correct for a fully developed vis-
cous flow, the rotation case flow fields are compared over the acceleration and deceleration impulses.
Figure 6.11 shows (a repeat of) the flow field and added mass attributed vortex sheet at the start of
motion. Here the flow is effectively a potential one, given that the bulk of the fluid is irrotational. It
is perhaps unsurprising that here the experimental measure of the added mass vortex sheet matches
potential theory.

Next the deceleration impulse is considered. Figure 6.12a shows the flow field before the decelera-
tion impulse (β ≈ 179) and figure 6.12b shows the flow field immediately after (β = 180). Both flow
fields show significant free rotational regions, and are therefore un-potential. Why should the added
mass vortex sheet match potential theory here? First we note that across the deceleration impulse the
flow fields are very similar, with the strengths and position of each shed vortex practically unchanged.
There is, however, a slight difference in the vorticity near the surface of the plate.

In order to satisfy the no-penetration condition, clearly there must be some change to the flow
topology when the plate is suddenly brought to rest. This can be identified by taking the difference in
the flow field before and after the impulse, as shown in figure 6.12c. The corresponding variation to
the attached vortex sheet is shown in figure 6.12d. The change in flow field is, strikingly, equal and
opposite to the starting flow shown in figure 6.11. It can therefore be concluded that, even in a highly
separated viscous flow field, changes due to acceleration are equivalent to those of potential flow.
The evidence thus confirms that the added mass force on the plate (or flow field), is equivalent to the
potential solution for all flows, whether inviscid and attached, or viscous with significant separation.

The rotation case has also revealed an alternative method for quantifying the added mass vorticity.
Taking the difference between consecutive PIV frames isolates differences in vorticity including those
attributable to diffusion, advection, experimental noise and added mass effects. For bodies undergoing
high rates of acceleration the latter source is dominant. The distribution of added mass attributed
vorticity, generated due to a change in velocity between consecutive measurement frames, may then
be quantified directly using the methodology described in section 5.2. This approach is less rigorous
than the potential flow based model described in section 5.1, but is significantly simpler to implement
and may be useful in situations where there are large accelerations.
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Fig. 6.11 PIV measurements over the acceleration impulse of the rotation case. β ≈ 1◦.
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Fig. 6.12 PIV measurements over the deceleration impulse of the rotation case. β ≈ 180◦.
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6.6 Impulse and forces from PIV

Since it is possible to extract the added mass attributable vortex sheets for each PIV measurement
frame, the added mass contribution to the flow field impulse and forces can be quantified and compared
with potential theory. As detailed in Appendix B, added mass impulse and force are found by first
performing an analytical fit to the data to minimise discretisation errors. Impulse for the ‘full’ flow
field, that is the sum of the contributions of attached and free vorticity, is found directly from the
elemental vorticity as discretisation errors are comparatively negligible. Theoretical impulse and
force values are calculated using the potential flow solution derived in section 3.2. For the surge case,
the kinematics for the theoretical added mass impulse and force are based on speed sensor data. For
the rotation case the kinematics are presumed to match the prescribed plate motion, as a measure of
actual kinematics is unavailable.

The impulse for the surge case is shown in figure 6.13a. Here the theoretical (theory) added
mass impulse is calculated from equation (3.26), all elements of vorticity in the flow field (full flow
field - PIV), and the measured added mass vortex sheet (γnc

t -PIV). During the initial acceleration
period 0.00 ≤−Xc/c ≤ 0.20, the impulse calculated from theory, the full flow field, and the added
mass vortex sheets are almost equal. This suggests that added mass is the dominant force production
mechanism. The impulse derived from the PIV data shows some oscillations. This is caused by
vibration of the wing, detected by the PIV setup, but is not measured by the carriage velocity sensor. In
figure 6.14, the acceleration measured using the wing-embedded accelerometer is shown. The sensor
detected acceleration oscillations with the same period as that present in the PIV-derived impulse data.
The corresponding flow topology, in the range 0.00 ≤ −Xc/c ≤ 0.50 is shown in figure 6.15. The
first frame, (figure 6.15a) is for −Xc/c = 0.10. It shows that little vorticity has shed into the ‘free’
flow field, therefore most measured vorticity is allocated as ‘attached’ and contributing to the added
mass impulse, γnc

t -PIV. This is consistent with our previous observation in section 6.4, that during the
initial acceleration range the total boundary-layer vortex sheet γb was almost exclusively attributed
to added mass, γnc

t . For 0.20 ≤−Xc/c ≤ 0.40, a small amount of shed vorticity passes through the
‘attached’ flow boundary at the leeward corners, meaning it will be incorrectly attributed to the added
mass vortex sheet. For −Xc/c ≥ 0.30, shed vorticity has a significant presence, but is mostly correctly
allocated as ‘free’. During the constant velocity region 0.25 ≤−Xc/c ≤ 1.75, impulse determined
from the PIV measurement of the non-circulatory vortex sheet (γnc

t -PIV) fits theory relatively well,
albeit being slightly lower in magnitude. The cause of this discrepancy is likely attributed to the
misallocation of ‘attached’ and ‘free’ vorticity. Over the deceleration region, the agreement between
γnc

t -PIV and theory is reasonable. The drag force coefficient, attributed to added mass, is given in
figure 6.13b. For clarity, this data set was filtered using a bi-directional windowed average (period of
0.15 seconds) to reduce noise introduced by from taking the derivative of the vibration contaminated
impulse signal. There is relatively good agreement between the theoretical (given by equation 3.27),
and experimental PIV extracted added mass force, across the range of the experiment. The deviation
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between the PIV derived measurements and potential theory between 0.10 ≤−Xc/c ≤ 0.40, is the
result of the shed vorticity passing through the region of the flow field allocated as ‘attached’. This
could perhaps be improved with a more sophisticated boundary definition for determining vorticity
that is attached or free, but is not pursued here.
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Fig. 6.13 Surge case: (a) Impulse compared between potential theory, the experimentally measured full flow
field and the measured non-circulatory vortex sheet; (b) Comparison of the added mass attributed drag force
coefficient between theory and the measured non-circulatory vortex sheet. For clarity, drag force coefficients
are filtered using a bi-directional moving window average, with a window period of 0.15 seconds.
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Fig. 6.14 Acceleration from the wing-embedded accelerometer.
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Fig. 6.15 PIV measurements over the acceleration region of the surge case. The black rectangle divides the
flow field into the ‘attached’ and ‘free’ regions. The dividing rectangle has a geometry of 0.18c×1.00c.



6.6 Impulse and forces from PIV 119

For the rotation case, the first moment of impulse is given by figure 6.16a. Considering the full
flow field, the regions of high angular acceleration at the start (|Ω0t|= 0) and end of plate kinematic
motion (|Ω0t| ≈ π) are clearly evident as discontinuities in the first moment of impulse. During the
constant angular rotation phase, the evolution of first the moment of impulse is remarkably linear.
After the plate stops (|Ω0t| > π), the first moment of impulse does not immediately return back
to zero. This is likely because viscous effects have resulted in the shedding of free vortices (see
figure 6.5), that persist even after the plate has ceased motion. The value of the first moment of
impulse would be determined by the strength of the free vortices, and γc. Now considering the
added mass only components, there is excellent agreement between the theoretical first moment
of impulse and that derived from the measure of the non-circulatory vortex sheet (γnc

r -PIV). The
magnitude of the discontinuities at the start and end of kinematic motion are relatively accurately
captured by the measured vortex sheet. Furthermore, γnc

r -PIV deviates little from theory over the
constant angular velocity region. Further agreement between theory and experiment, for the added
mass attributable pitching moment, is shown in figure 6.16b. As predicted, the measured moment
(γnc

r -PIV) is approximately zero for the entirety of the motion, except during the acceleration impulses.
The scattering of the pitching moment derived from PIV (γnc

r -PIV) after each acceleration impulse
decays asymptotically, which suggests that it is caused by damped torsional vibration of the plate.
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Fig. 6.16 Rotation case: (a) First moment of impulse compared between potential theory, the experimentally
measured full flow field and the measured non-circulatory vortex sheet; (b) Comparison of the added mass
attributed pitching moment between theory and the measured non-circulatory vortex sheet. No filtering is
employed.



120 Translating and Rotating Plate Experiments

6.7 Summary of findings

Added mass is an unsteady fluid dynamic effect that has been discussed in the literature for over
a century. Despite being derived for an inviscid fluid, this solution was described as being equally
applicable for viscous and separated flows; a point which had never been experimentally demonstrated.
This Chapter presented experiments on a flat plate wing undergoing translation in the surface normal
direction and rotation about the mid-chord. The methodology described in Chapter 5 for isolating the
added mass component was applied. This enabled a substantial conclusion to be made: the potential
flow added mass solution is valid for a fully viscous, highly separated flow field, as suggested in the
literature. We came to this conclusion because qualitative analysis of the flow showed:

• For a flat plate undergoing high angle of incidence surge and rotational motions, a distribution
of attached vorticity is generated in the flow field at the start of motion.

• Subsequent motion of the body results in the shedding of vorticity at each plate edge, which
coalesces into free vortices that significantly alter the flow topology compared to inviscid theory.
Both the distribution of attached vorticity and surrounding flow field are altered. There is further
minor secondary separation on the leeward edge of the plate for the rotating case.

• On stopping the plate, new boundary-layer vorticity is generated, with an equal and opposite
distribution to that generated during the starting motion.

Meanwhile, quantitative analysis of the measurements demonstrated:

• Distributions of boundary-layer vorticity may be readily quantified from PIV measurements
with a resolution incapable of directly resolving velocity gradients within the boundary-layer.
The vector density for the present experiments is only 50 vectors per chord.

• The distribution of boundary-layer vorticity generated at the start of motion has similar, if not
identical distribution to that of a plate in potential flow undergoing the same kinematic motion.

• For the separated flow field, the measured distribution of boundary-layer vorticity can suc-
cessfully be deconstructed into components attributable to circulatory and non-circulatory
components.

• The non-circulatory component has a distribution similar to the potential flow result, regardless
of the state of separation.

• Flow field impulse, force and moments thereof, all derived from the non-circulatory vortex
sheet, fit well with that predicted by inviscid theory.

These points indicate both the success of the methodologies used for isolating the added mass
experimentally, and provides evidence pointing toward our primary conclusion. We may also conclude
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(albeit somewhat lesser in importance), that the close fit between the experimental and potential theory
derived added mass quantities, suggests that 3-dimensional flow effects about an (effective) aspect
ratio 8 wing, undergoing rapid acceleration motions are small. The measures showing that circulation
is conserved provides further evidence of this.

While the main experimental finding is a simple confirmation of existing theories, the analysis
techniques developed represent an advance in our understanding of the capabilities of PIV to quantify
unsteady external flows. In particular, the work shows that with careful experimental design, the added
mass effect may be intentionally captured; or, equivalently, that vorticity or circulation attributable to
the added mass phenomenon may be a source of ‘contamination’ when determining the circulation
of vortices shed into a flow field. For the calculation of the circulation of a vortex close to the
surface of a body using closed contours of integration, contours that cross-over, or are interpolated
over the boundaries of a body will include added mass effects regardless of body-containing vector
treatment. We have therefore met the ‘further objectives’ described in section 3.4.1, and can now
progress to investigate the role of the circulatory and non-circulatory force production mechanisms
for a wing-gust encounter.





Chapter 7

Gust-Encounter Results

The reader is reminded that the aims of the wing-gust encounter test cases are to develop an under-
standing of the underlying physics of such interactions, and investigate the applicability of Küssner’s
linear model through a comparison of force and flow topologies. Particular emphasis is placed on
investigating the added mass phenomenon. The theoretical inviscid added mass description was shown
to also apply to a viscous separated flow field in Chapter 6. However, in a wing-gust encounter neither
the wing, nor the flow field undergo general acceleration, which raises a conceptual problem. We
therefore seek an explanation for the cause of this discrepancy.

7.1 Gust kinematics and configurations

For each test case, the gust generation apparatus described in section 4.7 was utilised. The flow
topology and forces were measured for gust ratios of 0.2, 0.5 and 1.0. In each case, only a single angle
of incidence (prior to gust entry) of 0 degrees was tested. The GR = 0.2 case represents conditions
within the expected validity of Küssner’s model. The change to the angle of incidence is comparatively
low (11 degrees), and the small angle assumption (sinα ≈ α) is a reasonable approximation. The
GR = 1.0 case is the opposite extreme. Here the change in angle of incidence is 45◦, therefore the
Küssner model should be invalid. It is this test case that is representative of MAVs in free flight, and
where flow phenomena, such as significant leading edge separation, are anticipated. Unless otherwise
specified, the offset distance between the wing and the gust outlet was 100 mm, whereas the distance
between the collector and outlet was 400 mm (see figure 7.17a). The effect of the spacing between
the wing and outlet is discussed in section 7.6. To reduce disturbance to the surrounding flow field,
the gust rig was started 60 seconds prior to each GR = 0.2 test run, and 30 seconds prior to each
GR = 0.5 and GR = 1.0 run. This enabled sufficient time for the gust starting vortices to advect from
the measurement window, and the velocity profile to settle. Dye flow visualisation was performed at a
Reynolds number of 5000, while a Reynolds number of 20,000 was used for PIV and force acquisition.
Reynolds number dependence is investigated in section 7.7. Finally, an attempt to extract added mass
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quantities from the vorticity field is made in section 7.8.

7.2 Gust off

The flow in the wake behind the wing is briefly characterised to aid the later analysis of dye flow
visualisation of the more complex gust-on cases. At zero degrees incidence the flow field should
be largely symmetric. However, along the upper and lower surface of the wing, boundary layers of
opposite strengths are generated. These are shed from the wing at the square trailing edge. Dye flow
visualisation for this case is shown in figure 7.1. The pair of shear layers is unstable, resulting in a von
Karman vortex street. The Reynolds number based on the plate thickness is Re = 166, thus a laminar
vortex street is expected.

Fig. 7.1 Dye flow visualisation depicting the wake behind the plate. Re = 5000 (wing chord), Re = 166 (wing
thickness). The plate is moving from left to right and is depicted by the white rectangle at the right side of the
photograph.

7.3 Gust ratio 0.2

PIV measurements for a gust ratio of 0.2 are shown in figure 7.2. The first frame, figure 7.2a, shows
the plate at s/c = 0. The leading edge has just reached the left hand shear layer of the gust, which
extends over the range of X/c = 0 to X/c = 2. On the upper and lower surface of the plate, regions of
positive (red) and negative (blue) vorticity, contained within the boundary-layers are visible. Spurious
bands of bad measurement vectors and associated vorticity emanate downward from the leading and
trailing edges. These are the result of laser light refraction from the edges of the glass wing. In the
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wake, the alternating ‘blobs’ of positive and negative vorticity are the result of the von Karman vortex
street.

On entry of the plate into the gust the following may be observed:

• Thickening of the positive vorticity on the upper surface is indicative of flow separation at
the leading edge. Up until s/c = 2.5, the flow appears to re-attach before the trailing edge.
Afterward, however, the vorticity is shed into the wake.

• From 1.5 ≤ s/c ≤ 2.5, the wake appears to change from the alternate vortex shedding to discrete
blobs of negative vorticity (with a little positive vorticity shed from the upper boundary-layer).
The discrete blobs may be the result of a Kelvin-Helmholtz instability. Since net negative
vorticity is shed at the trailing edge, the bound circulation of the plate must be non-zero.

• The wake is slightly deflected upward behind the aerofoil, but remains planar.

Dye flow visualisation of the gust shear layers is shown in figure 7.3a. At s/c = 3.0 it can be seen
that the left hand gust shear layer, below the wing, was deflected mildly away from the gust centre.
The left hand gust shear layer, above the wing, was deflected slightly inward toward the centre of
the gust. For the right hand gust shear layer this process appears to occur in a reverse manner as the
plate exits the gust. It appears as though the plate ‘splits’ each of the gust shear layers when passing
through. Also visible in figure 7.3a, is slight roll up of the gust shear layers at the outlet edges. This is
shown by the presence of two very small vortices at each corner of the outlet, labelled A and B. After
long periods of time, (s/c = 6.0) as shown in figure 7.3b, the gust shear layer vortices have grown
substantially.
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Fig. 7.2 PIV measurements of the gust entry for GR = 0.2. Red contours indicate positive vorticity (anticlock-
wise). Blue contours indicate negative vorticity (clockwise).
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Fig. 7.3 Dye flow visualisation of gust shear layers. Arrows indicate the gust shear layer movement. Labels A
and B show the start of roll-up and progression of the gust shear layers. GR = 0.2.

Now we will consider the more quantitative measures of the interaction. Separate sums of positive
and negative elements of the PIV derived circulation are plotted in figure 7.4. Prior to the wing entering
the measurement window, the finite positive and negative circulation is the result of vorticity contained
by the gust shear layers, as well as elemental vector noise. From −2.0 ≤ s/c ≤ 0.0 the plate enters
the measurement frame. This results in a rapid increase in elemental circulation due to boundary-layer
and wake shed vorticity. From s/c = 0.0 and onward, the plate has entered the gust and there is a
noticeable increase in the circulation until the plate starts to exit the gust (s/c = 2.0), after which the
circulation begins to drop. At s/c = 6.0, despite the plate long having left the observation window,
the circulation has not yet recovered to the pre-wing interaction state. This is likely the result of the
lingering rolled up shear layer vortices. Looking at the total circulation, this is largely zero, except for
some slight deviations which are likely the result of spurious error and perhaps three-dimensional
effects, or an imbalance of vorticity exiting the observation window.
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Fig. 7.4 Sum of all positive and all negative circulation ‘elements’ in the flow field. GR = 0.2.
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In figure 7.5, the experimentally measured lift force coefficient is compared with that of Küssner’s
model. For 0 ≤ s/c ≤ 2 the measured force reasonably closely fits the ideal top-hat Küssner response.
On exit, from 2 ≤ s/c ≤ 3.5 the measured lift coefficient overestimates the Küssner prediction. This,
as illustrated schematically in figure 7.6, may be the result of increased pressure on the underside of
the plate from turning gust flow, as well as a reduction in pressure on the upper surface due to ambient
fluid accelerating toward the trailing edge to fill the ‘void’ left by the diverted gust flow.
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Fig. 7.5 Comparison of the measured and Küssner lift coefficient, GR = 0.2.
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Fig. 7.6 Schematic of the flow at s/c = 3.0. GR = 0.2.

In summary, for the GR = 0.2 test case the wing wake, while planar, was deflected from horizontal
and there was minor leading edge separation. The gust shear layers were deflected on wing entry,
and subsequently rolled up into coherent vortical structures. Each of these observations represents a
deviation from the idealised conditions modelled in Küssner’s sharp edged gust theory. On the whole,
however, the effect of each of the discrepancies appears to have only a small effect on the lift force
coefficient of the wing. Küssner’s model fits the measured lift history relatively well.
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7.4 Gust ratio 0.5

For a gust ratio of GR = 0.5, the effective change in angle of incidence of the wing is 26◦. Significant
separation at the leading edge is expected. PIV measurements of the flow field are shown in figure 7.7.

From the measurements the following topological changes can be observed:

• At s/c = 0.5, some positive vorticity is shed at the leading edge. The region of vorticity is
relatively localised to the leading edge and flow appears to reattach at approximately the quarter
chord point. This is the beginning of a LEV. Some slight deflection of the left (positive) gust
shear layer can be observed.

• From s/c = 0.5 to s/c = 1.5, the LEV grows in size due to accumulation of vorticity shed from
the leading edge, and perhaps vorticity from the left gust shear layer. The centroid of the LEV
appears to move toward the trailing edge. Significant deflection of the left gust shear layer
is visible. Negative vorticity is shed into the wake at the trailing edge of the aerofoil. This
vorticity is distributed in the wake in an approximately linear way, albeit the ‘line’ of vorticity
is deflected from horizontal by an angle of approximately 11◦.

• At s/c = 2.0, the leading edge of the wing has reached the original location of the back shear
layer, however, it can be seen that the exit shear layer has been deflected away from the wing.
The LEV is approximately the same size as the wing chord. At the mid-chord of the wing,
negative vorticity in the upper surface boundary-layer appears to leave the surface. This is
indicative of secondary separation.

• At s/c = 3.0, the wing has fully exited the gust. The leading edge vortex has moved behind the
wing. A relatively small negative vortex appears to have been shed at the trailing edge of the
plate. The gust shear layers have rolled up.

• At s/c = 3.5, the leading edge vortex and trailing edge vorticity appear to be merging and the
flow field looks quite turbulent. There may be substantial three-dimensional effects.

On the whole, the flow field for the GR = 0.5 case appears representative of a deep dynamic
stall-like process. From McCroskey et al. (1982), the dynamic stall process is characterised by an
initial breakdown of the flow from steady state conditions, with the formation of a strong vortex at
the leading edge. This advects downstream over the suction surface of the aerofoil, with a viscous
core of order a chord length. We note, however, that the dynamics between a typical dynamic stall
process, and the gust encounter will likely differ. The former is associated with a rapid pitching
motion, which will have an associated production of vorticity, similar to that measured in the rotating
plate experiment described in Chapter 6. There is therefore a rotational added mass effect associated
with the pitching motion, which is not present in the gust case due to lack of rotational kinematic
motion.
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Fig. 7.7 PIV measurements of the gust entry for GR = 0.5. Red contours indicate positive vorticity (anticlock-
wise). Blue contours indicate negative vorticity (clockwise).
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Fig. 7.8 Sum of all positive and all negative circulation ‘elements’ in the flow field. GR = 0.5.

Next we consider the separate sums of elemental circulation, as given by figure 7.8. For the
gust ratio of 0.2 case it was observed that the net circulation measured in the flow field remains
approximately zero throughout the entire run. This observation does not hold for the gust ratio of
0.5 case. From s/c ≈ 1 to s/c ≈ 4 there is an excess of positive circulation measured within the flow
field. From s/c ≈ 4 to s/c ≈ 7 there is excess of negative circulation. Since vorticity shed by the wing
largely remains within the measurement window, the variation in net circulation is likely caused by
the gust shear layers. In steady state operation there is an approximately constant, equal and opposite
flux of positive and negative circulation both entering the measurement window from the gust rig
outlet and exiting at the top of the window. When the wing enters the gust, the positive vorticity in the
left hand gust shear layer is physically blocked by the wing. This leads to an accumulation of positive
gust shear layer vorticity within the measurement window. Since the right hand shear layer is initially
unaffected (on the most part) by the wing, there will be an excess of positive circulation. On exit of
the wing from the gust the reverse process occurs, causing the negative dip in the total circulation.

For the gust ratio of 0.5 there are significant topological differences between the measured flow
field and that assumed by the linear Küssner model. In figure 7.9 the measured and predicted force
coefficients are compared. During entry into the gust the measured force matches the Küssner model
surprisingly well. The peak lift coefficient of CL ≈ 2.25 matches, albeit the the peak occurs slightly
earlier than predicted by Küssner’s theory. On exit of the gust between 2.0 ≤ s/c ≤ 2.5 agreement is
excellent, however, afterward the measured lift decays to approximately zero significantly quicker
than the Küssner model. The cause of this dip will be discussed in the GR = 1.0 case.
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Fig. 7.9 Comparison of the measured and Küssner lift coefficient for GR = 0.5.

7.5 Gust ratio 1.0

For the GR = 1.0 case it is anticipated that the flow will deviate significantly from Küssner’s model.
The effective change to the angle of incidence is 45◦, which will certainly compound the growth
rate of the LEV compared to the GR = 0.5 case. Once again, we will first describe the qualitative
observations of the flow field, before considering the measures of circulation and force.

PIV measurements of the gust encounter are shown in figure 7.10, while dye flow visualisation
at s/c = 1.0 is shown in figure 7.11. In figure 7.11a, dye was injected into the flow at the leading
and trailing edges of the wing, to ensure it was entrained into the shear layers feeding the leading
and trailing edge vortices. In figure 7.11b dye was injected into the gust shear layers. From the
measurements the following may be observed:

• At s/c = 0.5, a LEV has started to form above the surface of the wing. This is fed primarily by
flow separating at the sharp leading edge. The LEV advects away from the surface of the plate.
At s/c = 2.0 the LEV starts to exit the measurement window.

• The LEV appears to induce reversed flow along the upper surface of the wing, with a flow
direction moving from the trailing to leading edges. At s/c = 1.0 and onward, secondary
separation on the upper surface of the wing is visible. The secondary flow appears to be
entrained into the leading edge vortex. The secondary separation can be clearly seen in the dye
flow visualisation given by figure 7.11a

• Negative vorticity is shed at the trailing edge. Up to s/c = 1.5 the wake vorticity is oriented in
a relatively linear manner, albeit at an angle deflected by approximately 20◦ from horizontal.

• As the wing enters the gust, the left gust shear layer below the wing is diverted away from
the gust centreline. The left gust shear layer located above the wing is shifted toward the gust
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centre. This can be seen from the dye flow visualisation shown in figure 7.11b. Some of the
gust shear layer vorticity has additionally been entrained into the LEV.

• At s/c = 1.5, the right gust shear layer shows relatively significant deflection away from the
leading edge of the plate.

• At s/c = 3.5, roll-up of both the gust shear layers can be seen. The vortex formed from
the right shear layer appears directly below the trailing edge of the wing. The measure of
trailing edge vorticity additionally becomes incoherent. These spurious data points suggests
that three-dimensional effects are resulting in the loss of particle image pairs.

It was assumed in the Küssner model that the wing has bound circulation, the wake is planar and
the position of the gust shear layers is ‘rigidly’ held in space. For the GR = 1.0 case we see that
the flow field is dominated by the leading edge vortex, which indicates that the bound circulation is
comparatively reduced. Vorticity shed into the wake at the trailing edge is reasonably planar, but is
deflected, and both gust edges are significantly disturbed.
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Fig. 7.10 PIV measurements of the gust entry for GR = 1.0. Red contours indicate positive vorticity (anticlock-
wise). Blue contours indicate negative vorticity (clockwise).
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Fig. 7.11 Dye flow visualisation for GR = 1.0, at s/c = 1.0. For 7.11a, the dye injection points are located at
the leading and trailing wing edges. For 7.11b, dye injection points are located at the left and right edges of the
gust outlet. Re = 5000.
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Moving onto the quantitative analysis, the measured circulation is given by figure 7.12. Similar to
the GR = 0.5 case, we see that the total positive and negative circulation measured in the flow field is
zero up until s/c = 1.0. The initial difference is again attributed to a discrepancy in the flux of gust
shear layer vorticity entering and exiting the measurement window. From s/c = 2.0, however, there
is a very sharp drop in the total circulation. This sharp drop corresponds to the leading edge vortex
exiting the measurement window, as visible in figures 7.10e to 7.10g. At approximately s/c = 4.0,
the negative circulation also drops, and the total circulation in measured flow field recovers closer to
zero. This is the result of the vorticity shed at the trailing edge leaving the measurement window.
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Fig. 7.12 Sum of all positive and all negative circulation ‘elements’ in the flow field. GR = 1.0.

Forces for the wing-gust interaction are given in figure 7.13. The peak lift coefficient exceeds
that of the Küssner model by approximately 27% and occurs slightly earlier, at s/c ≈ 1.5 rather than
s/c = 2.0. Again there is good agreement between measurement and theory between s/c = 2.0 to
s/c = 2.5 and a significant undershoot thereafter. Interestingly, negative lift is measured onward from
s/c ≈ 3.0, whereas Küssner’s model predicts a decaying positive value. To investigate the mechanism
responsible for this negative lift measurement, dye flow visualisation of the gust shear layers from
s/c = 3.0 and onward is shown in figure 7.15. Corresponding dye flow visualisation of wing shed
vorticity is shown in figure 7.16. Considering first the gust shear layers, across figures 7.15a to 7.15b,
part of the highly distorted gust shear layer is ‘pinched’ off. This forms a coherent vortex structure
initially directly underneath the wing. From 7.15c to 7.15d, the wing moves past the vortex, such that
it now resides behind the trailing edge. Since a vortex has a low pressure core, when it resides directly
under the wing, like in figure 7.15b, it will result in a low pressure zone on the underside of the wing
and contribute toward downforce. When the vortex is behind the trailing edge, such as in figures
7.15c and 7.15d, the vortex will induce downwash back onto the wing. Furthermore, it can be seen in
figures 7.16a and 7.16b that following the wing leaving the gust, there is significant residual leading
and trailing edge shed vorticity located above the wing. This will further act to induce downwash
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back onto the wing. Both of these mechanisms are therefore likely to cause the negative lift observed
in the force history, and are summarised in the schematic given by figure 7.14.
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Fig. 7.13 Comparison of the measured and Küssner lift coefficient for GR = 1.0.
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Fig. 7.14 Flow schematic: GR = 1.0, s/c = 4.0.
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Fig. 7.15 Dye visualisation of the gust shear layers.
Re = 5,000; GR = 1.0.
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Fig. 7.16 Dye visualisation of wing shed vorticity.
Re = 5,000; GR = 1.0.
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7.6 Influence of the gust outlet position on the unsteady response

So far the flow topology and force has been considered for just a single wing to gust outlet offset
distance of 100 mm, as shown in figure 7.17a. The relative proximity of the outlet and collector
units may, however, change the unsteady response. Each unit imposes a no-through flow condition
that would otherwise not be present in a completely free flow field. The forces arising from each
force production mechanism may therefore be modified. For steady wind tunnel experiments, this
phenomenon is known as blockage (Cooper et al., 1986; Maskell, 1965; Ramamurthy and Balachandar,
1989). Mercker and Wiedemann (1996) described interference effects relevant to open jet wind tunnels.
These include:

• Expansion of the open jet.

• Deflection of the jet due to proximity of a body to the wind tunnel nozzle outlet.

• Far field interference on the flow due to the nozzle outlet and collector geometries.

• Buoyancy forces due to a static pressure gradient between the nozzle outlet and collector.

Given the highly unsteady nature of the present experimental configuration, it is doubtful that
standard blockage correction factors can be applied to correct for these effects (buoyancy-like forces
are, however, negligible due to the the low model volume). It is further debatable as to what the
‘correct’ response is. A ‘natural’ gust may be affected by the presence of a wing, the degree of which
will depend on the circumstances (e.g. whether there are any solid surfaces nearby). In this section
we therefore seek to simply quantify whether there is a non-negligible difference on the response
depending on the relative gust outlet position.

(a) Close configuration (b) Far configuration

Fig. 7.17 Comparison of the close and far gust outlet configurations.

The GR = 1.0 test case was repeated with the wing to outlet offset distance increased from 100
to 220 mm. A comparison of the flow topologies at s/c = 2.0 for each outlet position is shown in
figure 7.18.
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(b) Far outlet (220 mm offset)

Fig. 7.18 Comparison of flow topology between outlet distances of 100 and 220 mm for a gust ratio of 1.0.
s/c = 2.

It can be seen that the leading edge vortex and trailing edge vorticity are almost identical for both
test cases. The main difference is the gust shear layers. The closer outlet case shows significantly
increased gust shear layer curvature and subsequent roll up, compared to the far outlet case. The
increase curvature indicates a higher pressure on the underside of the plate, and thus a higher lift
force. The measured forces for each outlet position are given in figure 7.19. The closer outlet position,
does indeed have a higher peak lift force on gust entry, by approximately 25%. The peak lift for
the far outlet case is surprisingly similar to that predicted by the Küssner model*. It may therefore
be concluded that for high gust ratios the proximity of the outlet can have significant effect on both
flow topology and the force response. The ‘correct’ response is, however, likely dependent on the
application of interest. The close outlet case is most representative of a vehicle encountering, say, a
gust emanating from a local topological obstruction, while the far outlet case is most representative of
a gust in the free atmosphere.
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Fig. 7.19 Comparison of the lift coefficient with outlet position for a gust ratio of 1.0.

*See section 4.7.5 for evidence showing that Küssner’s ideal gust is influenced only a minor amount by different gust
outlet positions. Diffusion of the shear layers is not responsible for the observed force or flow topology variation.
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7.7 Reynolds number effects

In the introductory section is was discussed that the performance of conventional aerofoils can be
greatly dependent on Reynolds number, because it may influence the onset of flow separation. For
flows about a flat plate wing at high incidence, however, the separation points are clearly defined
at the leading and trailing edges. Consequently Reynolds number has only minor influence on the
resulting force and flow topology (Graham et al., 2017; Ol and Babinsky, 2016; Stevens, 2013). The
gust experiments appear to be no different. All the dye flow visualisation was taken at a Reynolds
number of 5,000, however, the main features agreed well with the PIV taken at Re = 20,000. A
further comparison of flow topologies between Reynolds numbers of 20,000 and 40,000 is shown in
figure 7.20. In both frames the leading edge vortex appears centred at an equivalent location above
the wing and is a similar size. The vorticity shed at the trailing edge is additionally deflected at
approximately the same angle. There is little qualitative difference in the flow topologies, suggesting
that Reynolds number effects are indeed small. Force histories for both Reynolds numbers are shown
in figure 7.21. Aside from minor differences, mostly attributable to different levels of measurement
noise, the forces are very similar.
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Fig. 7.20 Comparison of flow topologies between Reynolds numbers of 20,000 and 40,000; GR= 1.0, s/c= 1.0.
Each image is an average of 5 test runs. Data below the wing is masked due to wing shadow.

7.8 Isolating the boundary-layer vorticity components

For each of the gust ratio cases, the force histories were surprisingly similar to Küssner’s model,
exceptionally so for the GR = 0.2 case. This result strongly suggests that the circulatory and non-
circulatory force components modelled in Küssner’s theory occur in a real gust encounter (see section
2.3.4.3). If not, such similarity between theory and experiment would be unlikely. The problem is that
we still do not know why the non-circulatory force, attributed to added mass, does not fit with our
conceptual understanding of the effect. This is because neither the wing, or the flow field, accelerates.
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Fig. 7.21 Comparison of the lift coefficient for GR = 1.0, at Re = 40,000 and Re = 20,000. Outlet 220 mm.

7.8.1 Approach

In this section, the first direct steps are taken toward understanding the cause of this discrepancy. We
aim first to simply prove whether there is, or is not, an added mass force by isolating the component
from the vorticity field. This will be attempted using the ‘added mass isolation’ methodology de-
scribed in Chapter 5. The technique was successfully demonstrated for the surge and rotating plate
test cases in Chapter 6, and can be applied to the gust cases without modification. It is expected that
the ‘experimentally acquired’ circulatory sheet will differ from Küssner’s theory for high gust ratios.
In the experiments, the flow separates at the leading edge of the wing, whereas in Küssner’s theory
the flow remains attached. The component attributed to added mass, however, may be similar, if not
identical to Küssner’s model. This is because added mass effects are independent of changes to the
flow topology, as was demonstrated in Chapter 6.

In Küssner’s theory, the non-circulatory vortex sheet component is described by the Fourier series
given by equation (3.36), and shown in figure 3.8. This vortex sheet changes in strength during the
entry zone 0.0 ≤ s/c ≤ 1.0, but, for our experimental setup, theoretically has a constant strength in the
zone 1.0 ≤ s/c ≤ 2.0, when the plate is fully submerged in the gust. This is because there is uniform
gust upwash across the chord. We will make use of this fact, as it enables multiple measurements of
the same ‘strength’ vortex sheet, which facilitates the use of sequential averaging processes to reduce
the effects of random measurement noise. This was successfully implemented for the surge and
rotating plate cases in section 6.4. The result of this averaging process is a single, accurate, measure
of the non-circulatory vortex sheet. While insufficient to calculate the added mass force (as the time
history is required), the presence of a non-circulatory vortex sheet will indicate that the momentum
of the flow field changed on entry of the plate into the gust. This change in momentum cannot be
attributed to the shedding of free vortices, as they are accounted for by the circulatory terms of the
analysis, and must therefore be attributed to added mass effects. We can therefore prove, or disprove
whether there was an added mass force for a wing-gust encounter, simply by proving the existence of
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a non-circulatory vortex sheet in fully submerged zone.

7.8.2 Vortex sheets: GR = 1.0

The measurements are taken for the GR = 1.0 case, with the outlet position at 100 mm. For this
case, the attached vortex sheets have the greatest intensity, and the leading edge vortex additionally
advects significantly from the surface of the plate. This enables each area of integration used for
the calculation of the attached vortex sheet to primarily incorporate boundary-layer vorticity, while
excluding the leading edge vortex, trailing edge vorticity, and the gust shear layers. Each integration
region is shown in figure 7.22 (black dashed rectangle). All vorticity outside the rectangle is allocated
as ‘free vorticity’, from which the circulatory component of the attached vortex sheet is computed.
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Fig. 7.22 Interrogation window for calculation of the non-circulatory attached vortex sheet.

In figure 7.23, the breakdown of the attached vortex sheet is given for a single frame at s/c = 2.0.
The reader is reminded that the line, γb, is the attached vortex sheet as directly measured within
the integration area shown in figure 7.22. The γc

in term is the circulatory vortex sheet calculated
from vorticity outside the integration area, but within the observable measurement window. The
γc

out term is the circulatory vortex sheet that is calculated from vorticity that we know must have
drifted outside the measurement window (see section 5.1.1.2). Here, this component of the vortex
sheet is significant. Large errors would arise if circulation outside the measurement window were
ignored when determining the non-circulatory attached vortex sheet. As described in section 5.1.2,
the non-circulatory vortex sheet is γnc = γb − γc

in − γc
out . This is given by the red crosses in figure 7.23.

Next a sequential average of the non-circulatory vortex sheet is taken over the range 1.0 ≤
s/c ≤ 2.0. This gives 121 independent measurement frames. On averaging the measures of the
non-circulatory vortex sheet across these frames, the standard deviation of random errors is reduced
by 1/

√
121 = 0.09. Since PIV elemental vector measurement error, for an average of 5 runs, is

of order 2%, random errors associated with the averaged vortex sheet are negligible. The sheet
is compared with the equivalent added mass attributed sheet from Küssner’s theory in figure 7.24.
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Fig. 7.23 Instantaneous breakdown of attached vorticity at s/c = 2.0.

Each instantaneous measurement is additionally plotted, which shows that over the 121 separate
measurements the margin of error is small, except at the plate edges. The averaged non-circulatory
vortex sheet is similar in ‘shape’ to that of Küssner’s theory, however, the magnitude is incorrect
by approximately 50%. This cannot be explained by measurement error. The force component von
Karman and Sears (1938) attribute to added mass is described as, “the force and moment which the
airfoil would encounter in a flow without circulation, due to the reaction of the accelerated fluid
masses. These contributions in both cases are called the apparent mass contribution". This suggests
that the force is due to the formation of a non-circulatory attached vortex sheet, one that arises once
the contribution of all free vorticity is accounted for. This is equivalent to our definition of added
mass. The results, however, suggest otherwise.

It is therefore proposed that the discrepancies may arise because: there is vorticity outside the
measurement window that is unaccounted for by the present measurements; or, the non-circulatory
vortex sheet arises from an entirely different mechanism to that described by von Karman and Sears
(1938). This is investigated in the following Chapter.

7.9 Summary

In this Chapter, PIV, flow visualisation and force measurements of a flat plate wing entering a trans-
verse gust at ratios of GR = 0.2, 0.5 and 1.0 were presented. Each test case was conducted at an initial
angle of incidence of 0◦. The response at Reynolds numbers of 20,000 and 40,000 were compared
and the effect of gust outlet location was investigated. The main findings are:
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Fig. 7.24 Comparison of the average non-circulatory vortex sheet between measurement and Küssner’s theory.

• For a flat plate wing-gust interaction, Reynolds number in the range from Re = 20,000 to
Re = 40,000 appears to have little effect on the flow topology and force. The flow topologies at
these Reynolds numbers was also consistent with the dye flow visualisation taken at Re = 5,000.

• For each gust ratio, deflection and subsequent roll-up of the gust shear layers was shown. This
appears to result in a decrease in lift of the wing on exit from the gust due to induced downwash.
The gust shear layer roll-up is influenced by the proximity of the wing to the gust outlet.

• All gust ratios demonstrated some form of leading edge separation. For GR = 0.5 and 1.0 the
vorticity coalesced into prominent leading edge vortices.

• Vorticity shed into the wake was approximately planar for all gust ratios, albeit the plane shortly
after entry was deflected up to 20 degrees for a gust ratio of 1.0.

• For each gust ratio there was relatively good agreement between the measured forces on the
wing and the Küssner model. For a gust ratio of 1.0 the peak lift coefficient exceeded Küssner
by approximately 27%. Increasing the distance between the gust outlet and the wing results in
a change in peak lift coefficient so that it is comparable to Küssner’s model, indicating that the
test apparatus may introduce blockage effects for high gust ratios.

• For short period, high amplitude gusts the Küssner model therefore could be used to give a
surprisingly reasonable estimate of the force response of the wing, despite significant differences
between the modelled and physical flows.

• The measured non-circulatory vortex sheet is only approximately 50% that of the Küssner
model, a discrepancy that cannot be explained by experimental error. The difference may be
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attributed to vorticity outside the measurement window, or the non-circulatory vortex sheet
arises from a different mechanism to that described by von Karman and Sears (1938).



Chapter 8

Added Mass and Wing-Gust Encounters

In the previous Chapter, reasonable agreement between forces predicted with Küssner’s theory and
experiment were demonstrated. However, the magnitude of the non-circulatory vortex sheet extracted
from measurement was not comparable with theory. In this Chapter the causes and implications for
the discrepancy are discussed.

8.1 General non-circulatory vortex flows

Inherent in the formulation of Küssner’s model is the assumption that thin airfoil theory may be used
to determine quantities of attached circulation. The gust flow itself is, in fact, not modelled in this
theory. Rather, the change in incidence the gust causes is assumed to be comparable to that of a flat
plate, that progressively and non-physically changes camber. For the real case, the wing geometry is
unchanged, and the gust is enclosed by two shear layers containing vorticity. This vorticity can be
measured, and its effect on the wing would therefore be included in the calculation of the circulatory
vortex sheet contribution γc. We must therefore ask: what is the correct method for dealing with the
gust shear-layer vorticity? Should gust shear layer vorticity be treated equivalently to that shed by
the wing? Or, should it be excluded from calculations of attached circulation (as implemented in the
Küssner model)? Here it is proposed that all vorticity must be treated equivalently*. The hypothesis is
that all vorticity residing in the flow field will contribute equally to the circulatory component of the
attached vortex sheet, regardless of whether it was originally shed from the wing or is present in the
flow for other reasons.

To help answer how this influences our analysis of the gust results, consider an initially quiescent
two-dimensional flow field of infinite extent, as illustrated in figure 8.1. To generate a velocity
disturbance in the flow field (such as a gust), some force would have to be applied to an arbitrary
region of the fluid. It is known from the impulse relations given by Wu (1981), that any force on a
flow field may be determined uniquely from the resulting vorticity field. In other words, any force

*This includes the mechanical vorticity of a body, equal to twice the kinematic angular velocity.
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applied to a flow generates a vorticity field. This may be in the form of either pairs of point vortices,
vortex sheets, or distributed in a diffuse manner. Since circulation must be conserved, each element of
positive circulation generated has a negative counterpart elsewhere in the flow field.

external vorticity

wing

Fig. 8.1 Flow field with an arbitrary vorticity distribution generated by a mechanism external to the wing.

Now consider a flat plate wing residing somewhere in this flow field. The wing has a ‘circulatory’
vortex sheet constituent, with a circulation equal and opposite to all free vorticity. On creation of the
external vorticity, a circulatory vortex sheet γc must therefore also form to satisfy the no-penetration
condition. This, critically, must have zero net circulation because the total circulation of all the
externally created vorticity is zero.

The circulatory component of the attached vortex sheet may therefore be broken into components
depending on the origin of the free vorticity:

γ
c = γ

nc
ext.+ γ

c
wing. (8.1)

The γnc
ext. term is the sheet arising from mechanisms external to the wing (the gust). This necessarily

has zero net circulation. The γc
wing term is due to vorticity shed by the wing. This vortex sheet may

have finite circulation if there is an imbalance of circulation shed by the wing, such as a starting
vortex created by an impulsively started, lift generating aerofoil; equivalently it may have zero net
circulation if an equal positive and negative circulation is shed by the wing, such as when a flat plate
wing translates at α = 90◦ incidence.

Repeating equation 5.1, the total attached circulation of the wing was equal to:

γ
b = γ

nc + γ
c.

Substituting equation (8.1) into (5.1) and re-arranging for the non-circulatory terms gives:

γ
nc + γ

nc
ext. = γ

b − γ
c
wing. (8.2)
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Both the terms on the left hand side are ‘non-circulatory’, in the sense that they form to satisfy the
no-through flow condition and have zero net circulation. The difference is that γnc, the vortex sheet
classically associated with the added mass effect, forms because of kinematic motion of the body in
an otherwise irrotational fluid. The γnc

ext. vortex sheet component forms because the net circulation of
gust shear layer vorticity must necessarily be zero, but this is unrelated to the added mass effect. It is
instead the result of vortices generated in the flow field by some mechanism external to the wing.

8.1.1 Force

If we know the strength and relative motion of the free vorticity, we can readily determine the force
acting on a body within the flow field. The attached vortex sheet due to n external elements of vorticity
(including external bodies), with circulation Γi, may be written as

γ
nc
ext. =

n

∑
i=1

f1,i(zb,zi)Γi, (8.3)

where f1,i(zb,zi) is an arbitrary function that depends on the position on the surface of the body
(zb = xb + iyb) and the location of each free vortex (zi = xi + iyi). This may be determined analytically
using the complex potential method, a panel code, or some other technique. Repeating equation
(3.24), the y-direction impulse due to an attached vortex sheet is

Iy =−
∮

xγdl.

Substituting equation (8.3) into (3.24), gives the impulse due to the free vortices

Iy =−
n

∑
i=1

f2,iΓi, (8.4)

where

f2,i =
∮

x f1,i(zb,zi)dl. (8.5)

The force on the plate is

Fy =−ρ
dIy

dt
,

=
n

∑
i=1

(d f2,i

dt
Γi︸ ︷︷ ︸

advection

+ f2,i
dΓi

dt︸ ︷︷ ︸
growth

)
. (8.6)

From equation (8.6), it can be seen that there is a non-circulatory vortex force on the body when
the free vortices either advect relative to the body ( d f2,i

dt ̸= 0), or when the free vorticity is stationary
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relative to the body, but changes in strength ( dΓi
dt ̸= 0). In the following section, we investigate how

this might apply to Küssner’s model and the wing-gust encounter experiments.

8.2 On the role of gust shear layer vorticity for a wing-gust encounter

8.2.1 Küssner’s model

If we try to apply the concept of a non-circulatory vortex force to interpret Küssner’s model, we
immediately encounter a problem. As illustrated in figure 8.2a, in Küssner’s idealised gust there is
only a single sharp rising gust edge, or shear layer, of some very large (infinite) length, i.e. the gust
shear layer extends from Y =−∞ to Y = ∞. This shear layer therefore approaches infinite circulation,
which means the wing would have infinite negative circulation, if the overall flow field circulation
were to add up to zero. Clearly this is not the case. If a large contour is taken about the wing and gust
shear layer, we know that prior to the wing entering the gust region, circulation of the wing is zero,
therefore, circulation in the full flow field would not be conserved. It is therefore reasoned that the
flow field described by Küssner’s model is only a partial representation of a much larger field. In
Küssner’s model there must actually be two shear layers, as illustrated in figure 8.2b. The first is the
rising velocity edge that the travelling wing enters, and the second is a falling gust edge located some
arbitrarily large distance from the first. After including the falling gust edge, the total contribution to
the circulation of γb from the gust shear layers is now zero. As preluded in section 8.1, the two gust
shear layers arise because at some stage a force has been applied to an otherwise stationary flow field
to ‘create’ the gust in the first place.

gust shear  
layer

(a) Original Küssner model

gust shear  
layer

(b) Modified Küssner model

Fig. 8.2 Schematics comparing the original Küssner model, which has a single rising gust edge, with the
proposed modification that has both a rising and falling gust edges. The falling gust edge is required to conserve
circulation in the flow field.
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8.2.1.1 Isolation of γnc
ext.

Given that there should be a gust shear layer vortex sheet component γnc
ext., it is suspected that this may

be responsible for the force von Karman and Sears (1938) have attributed to the added mass effect. We
therefore test whether γnc

ext. is equivalent to the non-circulatory vortex sheet described in the Küssner
model. As shown in figure 8.3, an artificial flow field replicating Küssner’s model was generated by
defining two shear layers of length h, and separated by the distance w. Each shear layer is specified a
strength γgust =V . Both the gust shear layers and plate were discretised with a spatial resolution of
200 vortex elements per chord. The simulated gust shear layers were used to calculate the attached
vortex sheet γc for the wing, using the methodology given in section 5.2. This is compared with
Küssner’s non-circulatory vortex sheet in figure 8.4b for gust lengths of h/c = 1, 10, and 1000. The
latter is representative of gust shear layers that are of infinite length. The corresponding flow field for
the h/c = 1000 case is shown in figure 8.4a. It can be seen that with increasing gust shear layer length,
the non-circulatory, gust shear layer attributed vortex sheet γnc

ext. converges to Küssner’s theoretical
distribution.

Fig. 8.3 Schematic showing the dimensions of the artificial shear layers. The variable s is the distance from the
leading edge of the wing to the left gust shear layer (at X = 0).
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(a) Modelled flow field with h/c = 1000
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Fig. 8.4 Change to the flow field for a flat plate wing entering a gust with rigid shear layers and no flow
separation. s/c = 0.5, and w/c = 2.
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In Küssner’s model, von Karman and Sears (1938) excluded all gust shear layer vorticity from
the calculation of the circulatory component of the wing’s attached vortex sheet (γc). This, in effect,
forces the γnc

ext. term in equation 8.2 to be zero. Consequently the authors attributed the non-circulatory
vortex sheet to γnc, that responsible for the added mass effect of an accelerating body. The above
analysis shows this to be incorrect. The vortex sheet, and associated forces, may be directly attributed
to the relative advection of the gust shear layer vortices.

Next, the effect of the proximity of the downstream gust shear layer is considered. In figure
8.6, the velocity induced onto the plate by the gust shear layers is plotted for gust widths varying
from w/c = 2, 5 and 10, and gust shear layer lengths of h/c = 10 and h/c = 1000 respectively. For
h/c = 10, the net velocity induced by the gust shear layers onto the wing varys considerably with the
position of the back gust shear layer, while for h/c = 1000 the variation is comparatively negligible.
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Fig. 8.5 Velocity induced onto the plate, located at s/c = 0.5, by gust shear layer vorticity of lengths h/c = 10
and h/c = 1000, with varying shear layer spacing of w/c = 2,5 and 10.

The effect that the varying induced velocities has on the resulting vortex sheet distributions is
shown in figure 8.6a. It can be seen that for h/c = 10, with increasing distance between the gust
shear layers, the non-circulatory vortex sheet deviates from the Küssner distribution. For h/c = 1000,
however, no such variation from Küssner’s theory can be observed. This is because the variation in
velocity induced by the shear layers onto the plate is largely independent of the shear layer spacing.
Provided the downstream gust shear layer does not intersect the wing, for a gust of infinite height,
uniform velocity is induced onto the plate regardless of the position of the downstream shear layer.
The vortex sheet will therefore be unchanged.
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Fig. 8.6 Vortex sheets at varying gust shear layer spacing (w/c). s/c = 0.5.

While it seems counterintuitive that the actual position of the downstream gust shear layer has no
effect, this is true as long as the gust stretches to infinity in the vertical (Y ) direction. If the wing is
on either side, or fully within the gust shear layers, the relative position of both shear layers do not
matter. The vortex sheet γnc

ext. will only change when the plate crosses through a gust shear layer.

8.2.2 Experimental wing-gust encounter

With the improved understanding of the origin of the non-circulatory vortex sheet, the experimental
measurements of the wing-gust interaction may be reprocessed. The aims are to further demonstrate
experimentally that the non-circulatory vortex sheet originates from the gust shear layer vorticity, and
to isolate the force associated with this component. For the real gust case, the rigid gust shear layer
assumption inherent in Küssner’s model is not correct, because the experiments have shown that the
gust edges are considerably affected by the presence of the wing. As a consequence, the experimental
formation of γnc

ext., and therefore the force on the wing may differ from theory.

With the PIV measurements of a wing-gust interaction presented in Chapter 7, it is not possible to
directly extract the gust shear layer component of the circulatory attached vortex (γnc

ext.) in the same
manner as demonstrated using the artificial flow field. To calculate γnc

ext. using the mirror image method
described in section 5.1.1.1, the position and strength of each element of gust shear layer vorticity
within the flow field must be known. The PIV measurements, however, encompass only the flow field
within a few chord lengths either side of the wing. The method for correcting for circulation outside
the field of view described in section 5.1.1.2, will not correct for the gust shear layer vorticity outside
the measurement window, because it will typically have zero net circulation. The following section
describes a workaround for the problem.
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8.2.2.1 Extracting γnc
ext. using a finite measurement window

A schematic of the ‘missing’ quantity of externally generated vorticity is shown in figure 8.7. To find
the contribution of this vorticity, we utilise equation (8.2). The sum of the non-circulatory added mass
vortex sheet (γnc), and the quantity we are interested in (γnc

ext.), is equal to the difference between the
directly measured attached vortex sheet γb, less the component attributed to vorticity the wing shed
into the flow field.

external vorticity

measurement window

wing shed vorticity

Fig. 8.7 Schematic of missing gust vorticity.

For the wing-gust interaction cases, the plate has no velocity component normal to the chord,
therefore γnc = 0 (see equation 3.23). The non-circulatory vortex sheet for the gust case, given by
equation (8.2) is therefore

γ
nc
ext. = γ

b − γ
c
wing. (8.7)

Since γb and γc
wing are both quantities which can quantified from data within the measurement window,

we can calculate γnc
ext., itself attributed to externally generated vorticity both inside, and outside the

measurement window. The limitation is that from the measured vorticity field, we must isolate wing
shed vorticity from externally generated vorticity.

To isolate the wing shed and gust shear layer vorticity, the GR = 1.0 PIV measurements, described
initially in section 7.5 were reprocessed using a manual vector mask. Regions of the flow field
containing only gust shear layer vorticity were removed, and as shown in figure 8.8, the remaining
flow field contains (mostly) only vorticity shed by the wing. We may therefore calculate γc

wing, and γb

from the masked flow field, and therefore γnc
ext. can be calculated from equation (8.7).

Since the gust shear layers have zero total circulation, the circulation in the masked flow field
should add up to zero. Separate sums of post-masking elemental circulation are given in figure 8.9.
There is a slight imbalance of circulation between 0 ≤ s/c ≤ 1. This is likely due to some of the left,
positive gust shear layer entering the unmasked zone of the flow field. Recall the dye flow visualisation
of the encounter, given by figure 7.11. Gust shear layer vorticity was shown to be entrained into the
leading edge vortex, therefore an imbalance of the total circulation within the unmasked region of the
flow field is unavoidable. The ‘lost circulation’ method described in section 5.1.1.2 is used to correct
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Fig. 8.8 Masking of the gust shear layers used to isolate vorticity shed by the plate. GR = 1.0.

for this. For s/c > 2, there is a significant circulation imbalance. This, as described in section 7.5, is
caused by the LEV leaving the PIV camera field of view (see figure 8.8d). PIV derived quantities of
force will therefore be truncated after s/c = 2.

8.2.2.2 Measurements of γnc
ext.: GR = 1.0

With a means of accounting for vorticity that is outside the measurement field of view, the vortex sheet
attributed to the gust shear layers was extracted for the gust ratio of 1.0 case. The non-circulatory
attached vortex sheet as given by Küssner’s theory (equation 3.36) is shown in figure 8.10. Once
again, this is for the region where the wing is fully submerged in the gust (1.0 ≤ s/c ≤ 2.0) and
the vortex sheet distribution is independent of wing position relative to the gust. To calculate γb,
the height of the integration contours (black rectangle on figure 8.11) that defines the regions of the
flow that are considered ‘attached’ and ‘free’ is set to 0.15c. The required height of this contour is
relatively ambiguous, but it is set such that it approximately extends just beyond the boundary-layer.
This is to try and avoid the misallocation of LEV vorticity. In figure 8.10, Küssner’s non-circulatory
vorticity distribution is compared with γnc

ext., calculated from the masked flow field and equation (8.7).
The scatter across the 121 instantaneous measurements between the range of (1.0 ≤ s/c ≤ 2.0) is
extremely small. The average of γnc

ext. is close to Küssner’s added mass attributed vortex sheet γnc.
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Fig. 8.9 Sum of all positive and all negative circulation ‘elements’ in the masked flow field. GR = 1.0. Shaded
regions indicate the position of the wing within the measurement window.
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Fig. 8.10 Comparison of the theoretical and measured non-circulatory vortex sheet for 1.0 ≤ s/c ≤ 2.0.

This tells us:

• It is certain that the added mass attributed force in the Küssner model is instead a non-circulatory
vortex force resulting from the presence of the shear layers bordering the gust velocity field.

• Despite the different physical force production mechanism, the change in momentum attributed
to the non-circulatory vortex force, and therefore the lift impulse over the entry region for the
GR = 1.0 case is very close to the added mass attributed component predicted by Küssner’s
model. Since the GR = 1.0 case is an extreme deviation from the small angle assumption
inherent in Küssner’s model, this finding is likely valid in the entire range from 0.0 ≤ GR ≤ 1.0,
and perhaps higher gust ratios still.
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• The distortion of the gust shear layers appears to have only minor effect on the formation of the
non-circulatory vortex sheet.

8.2.2.3 Force breakdown: GR = 1.0

As a further check of the hypothesis that Küssner’s added mass force is in fact the result of the gust
shear layers, we now attempt isolate the force associated with the formation of γnc

ext. and compare this
with Küssner’s model. To extract the force a measure of the time history of γnc

ext. is required, such that
the impulse methods described in section 2.3.1.7 may be applied. As shown in figure 8.11, early in
the gust encounter (from 0 ≤ s/c ≤ 0.75), some LEV vorticity is included in the ‘attached’ region of
the flow field, and will therefore be misallocated as the vortex sheet γb, instead of γc

wing. Keeping this
in mind, we will still proceed and calculate the force history from the PIV measurements.
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Fig. 8.11 Detailed view of the masking used for the gust entry zone, GR = 1.0. The black rectangle indicates
the boundary between flow regions considered attached and free.

In figure 8.12 the forces as predicted by Küssner’s model, measured by the force balance, and
calculated from PIV vorticity are compared. The force calculated from PIV vorticity across the ‘full’
flow only includes vorticity that is within the unmasked zone (the gust shear layers are excluded).
This component shows relatively good agreement with the direct force balance lift measurement. The
magnitude of the PIV derived force does, however, slightly exceed the force balance values. This
may be attributed to the miscounting of the gust shear layer vorticity (that was entrained into the
LEV), or perhaps finite wing aspect ratio effects. It can be seen that during the gust entry region, there
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is clearly a component of the PIV derived force attributed to the formation of the non-circulatory
vortex sheet (labelled PIV - γnc

ext.)
†. This roughly has a magnitude and distribution similar to Küssner’s

non-circulatory component. The initial force transients are clearly attributed to γnc
ext., while the

non-circulatory force drops toward zero as the wing approaches s/c = 1.0.
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Force balance
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PIV - nc

ext.

Fig. 8.12 Comparison of the measured and Küssner lift coefficient for GR = 1.0. PIV derived forces have are
filtered with a bi-directional moving average with a window size of 0.06 seconds, or 12 data points.

The resemblance of the non-circulatory force between PIV and Küssner is surprisingly good
considering the ambiguity between vorticity that is considered as ‘attached’ or ‘free’, the non-rigidity
of the gust shear layers, approximate masking of the gust, and noise attributed to differentiation of the
flow field impulse. The gust shear layer attributed vortex sheet γnc

ext., and Küssner’s non-circulatory
vortex sheet (equation 3.36), were additionally shown in section 8.2.2.2 to be equivalent in magnitude
for the GR = 1.0 case. This indicates that the force impulse over the gust entry is equivalent. The
evidence therefore suggests that the non-circulatory force predicted by Küssner’s theory, despite
being incorrectly attributed to added mass, is relatively accurate for even large amplitude wing-gust
encounters.

†The force derived from γnc
ext. has been corrected by a factor of 1/0.875 to account for the discretisation error, as described

in Appendix B.
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8.2.3 The non-circulatory vortex growth force

In section 8.1 it was shown that there are two inviscid force contributions on a body that may be
attributed to vorticity generated by ‘external’ methods in the flow field. Both of these force contribu-
tions are ‘circulatory’, in the sense that they are caused by free vorticity, but where the sum of the
strengths of the external vortex elements is zero. The wing-gust encounters were shown to arise from
the ‘advection’ term in equation (8.6). Here we investigate the ‘growth’ term. In particular, we seek to
show that this particular force exists, and furthermore, is attributable to the added mass and buoyancy
like force components present when a flow field is accelerated uniformly past a stationary body.

In the review of the literature it was explained that for accelerating flows the added mass term
is said to be equivalent to that of an accelerating body in quiescent flow. The buoyancy force arises
because to accelerate an inviscid flow field there must be a pressure gradient, giving rise to a net force
on the body. Here it is argued that this explanation of the mechanism responsible for the presence of
these force components is not strictly correct.

We argue that it is not possible to uniformly accelerate a flow field of infinite extent, as to do so
would require both infinite force and power. We are instead constrained and may only apply a finite
force over a finite area of fluid. As described in section 8.1 the application of any force on an initially
quiescent flow will result in the production of vorticity, but with zero net circulation. This vorticity
would be located some arbitrarily large distance from a body within this flow field. The added mass
and buoyancy like force components experienced when a flow field is accelerated relative to a body,
may therefore be directly attributed to this free and distant vorticity.

For the proof, we will once again return to the flow about a circular cylinder, given that we derived
the accelerating flow field forces in section 3.1.2. To generate a uniform velocity on the cylinder, two
infinite vortex sheets, such as that shown in section 8.2.1.1 may be used. For simplicity, however,
we assume here that each vortex sheet may be represented by a single ‘free stream’ point vortex. As
shown in figure 8.13 these are labelled Γ1 and Γ2, are located at z1 = 0+ iyp and z2 = 0− iyp, and
have a circulation of magnitude Γ.

By application of the Biot-Savart law, the u-component of velocity induced by the two external
vortices, along the y-axis is

U(y) =
Γ

π

(
yp

y2
p − y2

)
. (8.8)

Two mirror vortices are placed at the positions zm1 = a2z1/|z1|2 and zm2 = a2z2/|z2|2. These
mirror vortices have a circulation equal and opposite to the external vortices, and make the surface of
the cylinder (with radius a) a streamline. The complex potentials for the external and mirror vortices
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Fig. 8.13 Schematic of the four point vortex model.

are:

F1(z) =−i
Γ

2π
ln(z− iyp) (8.9)

Fm1(z) = i
Γ

2π
ln(z− i

a2

yp
) (8.10)

F2(z) = i
Γ

2π
ln(z+ iyp) (8.11)

Fm2(z) =−i
Γ

2π
ln(z+ i

a2

yp
). (8.12)

The total complex potential for the flow is the sum of each point vortex,

Ft(z) = F1 +Fm1 +F2 +F2m

=−i
Γ

2π
ln
(
(z− iyp)(zyp + ia2)

(z+ iyp)(zyp − ia2)

)
. (8.13)

The potential (Φt) and stream functions (Ψt) for the flow field are given by the real and imaginary
terms of equation (8.13), (Ft = Φt + iΨt).
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To model a ‘uniform’ incident flow onto the cylinder, we will ‘move’ the two vortices to an infinite
distance from the origin. From equation (8.8), the circulation required to induce a velocity of U at
y = 0 is

Γ = πypU. (8.14)

Substituting equation (8.14) into (8.13) gives the complex potential

Ft(z) =−iU
yp

2
ln
(
(z− iyp)(zyp + ia2)

(z+ iyp)(zyp − ia2)

)
. (8.15)

Taking the limit of equation (8.13) as yp → ∞, returns an infinite result because the magnitude of the
circulation of each of the free stream point vortices tends toward infinity. While the magnitude of the
complex potential is infinite, there is a finite change to the complex potential around the surface of the
cylinder. We are interested only in local gradients of the complex potential, as this determines the
fluid velocity. A reference, or complex potential ‘zero’ point at z = a is therefore defined. Here the
complex potential is

Fre f =−iU
yp

2
ln
(
(a− iyp)(ayp + ia2)

(a+ iyp)(ayp − ia2)

)
. (8.16)

Taking the difference between equations (8.13) and (8.16) gives the new complex potential, which is
zero at z = a

F(z) = Ft −Fre f

=−iU
yp

2
ln
(
(z− iyp)(zyp + ia2)

(z+ iyp)(zyp − ia2)

)
+ iU

yp

2
ln
(
(a− iyp)(ayp + ia2)

(a+ iyp)(ayp − ia2)

)
=−iU

yp

2
ln
(
(z− iyp)(zyp + ia2)(a+ iyp)(ayp − ia2)

(z+ iyp)(zyp − ia2)(a− iyp)(ayp + ia2)

)
. (8.17)

Taking the limit as yp → ∞, equation (8.17) eventually reduces to

lim
yp→∞

F(z) =U
a2

z
+Uz−2a. (8.18)

Dropping the constant (−2a), gives the result

F(z) =U
a2

z
+Uz. (8.19)

The first term on the right hand side is the complex potential resulting from the mirror vortex doublet,
while the second term is the flow induced by the external vortex pair. The stream and potential
functions are plotted in figure 8.14.
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Fig. 8.14 Contour lines of the stream (−) and potential (..) functions for a pair of equal and opposite vortices at
y =±∞, and the corresponding mirror images at y = 0+ and y = 0−.

From equation (8.19) and figure 8.14 it is clear that the flow about a cylinder due to vorticity a
very large distance away is equivalent to that of a cylinder in a uniform free stream. The equivalent
flow field, given in section 2.3.4.1, was derived using a source-sink doublet in a free stream. The
forces are also identical. From equation (8.19), the potential function and time rate of change on the
surface of the cylinder are

Φ = 2Uacosθ , (8.20)

∂Φ

∂ t
= 2

∂U
∂ t

acosθ . (8.21)

In section 2.3.4.1, the net force in the x-direction was shown to be

Fx = ρa
∫ 2π

0

∂Φt

∂ t
cosθdθ . (8.22)

Substituting equation (8.21) into (8.22), and evaluating the integral gives

Fx = 2ρπa2 ∂U
∂ t

. (8.23)

We have just shown that the flow about a cylinder, subjected to an accelerating flow induced
by a pair of vortices at a sufficiently far distance from the body, is identical to that of a uniform
accelerating free stream. The pressure force is equivalent in magnitude also. The cause of these forces,
however, is not the same. An added mass force arises due to surface pressures on an accelerating
body. It is independent of vorticity in the bulk flow field. A hydrostatic buoyancy force arises due
to a pressure gradient, created to react a body force on the fluid. It too is independent of vorticity
in the bulk flow field. Here it is shown that, for a body immersed in an accelerating flow, both of
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these force components can be attributed to the production of vorticity elsewhere in the flow field.
They are therefore both non-circulatory vortex forces and not added mass or buoyancy effects. The
non-circulatory vortex forces can be quantified by measurement of the free vortices which were
necessary to create the accelerating flow, while added mass and hydrostatic buoyancy forces cannot.

8.2.4 Application to unsteady wind and water tunnels

In the previous section it was shown that in cases where a flow field is accelerated relative to a body,
the forces on the body are directly attributable to free vortices. This finding has a direct application
to unsteady wind (or water) tunnels. For such devices, a force is applied to a flow field by a fan and
the wind tunnel walls. A pressure gradient through the tunnel results in the acceleration of the fluid,
which simultaneously creates boundary-layers along each surface. This is illustrated in figure 8.15a.
If the fluid were inviscid, the boundary-layers would be in the form of infinitely thin vortex sheets,
each rigidly constrained to the wind tunnel walls. At the fan face there is effectively a discontinuous
pressure change where work is being done to the fluid.

boundary layers

model field of view

(a) Wide field of view

model

field of view

(b) Narrow field of view

Fig. 8.15 Schematic of a model in a wind tunnel. Geometry adapted from Mehta and Bradshaw (1979).

Now consider a model fixed within this wind tunnel and subjected to the inviscid, time dependent
free stream velocity. If we constrained our ‘field of view’ to that only immediately about the model
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and forgot that the wind tunnel existed, then one would assume that the flow outside the field of
view is without circulation. This is illustrated in figure 8.15b. In absence of further information the
forces on the model look identical to the classical added mass and hydrostatic buoyancy components.
However, this conclusion is only drawn because of the assumption that the flow outside the field of
view has no circulation. Upon increasing our field of view such that it encompasses the walls of the
wind tunnel (figure 8.15a), we would note that as the flow is accelerated, the increase in velocity
will result in the growth in the strength of wall boundary-layer vorticity, and therefore circulation.
With this growing circulation, from equation (8.6) there is a non-circulatory vortex force that exactly
accounts for the unsteady forces.

It may be argued that the origin of the unsteady forces is inconsequential for most practical
purposes. If one were interested only in measuring the unsteady forces on a body then this may be
true. With, however, the more sophisticated measurement techniques such as PIV, as well as CFD
modelling, more in depth analysis linking forces on a model to flow structures can be in error if free
and wall boundary-layer vorticity is dealt with incorrectly. Furthermore, for gust interaction studies,
real gust velocity perturbations are inherently coupled with free vorticity fields which cannot always
be decoupled from vorticity shed by a body. As we saw, the incorrect treatment of the gust shear layer
vorticity can lead to the misallocation of forces. This will impact any subsequent models based on
empirical data of such flows.

8.3 Summary

In this Chapter we investigated the origin of the non-circulatory vortex sheet within the Küssner
model. The formation of this sheet was attributed to added mass by von Karman and Sears (1938).
Here it is argued that the component is instead a ‘non-circulatory vortex force’, and that in Küssner’s
model there must be a second shear layer an infinite distance from the first. This is necessary to
ensure that the net circulation contained by the gust shear layers is zero. The mechanism whereby
this force arises is due to the relative advection of free vortices; it therefore fundamentally differs
to the classical added mass result for an accelerating body in potential flow. The existence of such
force production mechanism was demonstrated using both a simple potential flow model, and the
experimental gust measurements. For a gust encounter with a gust ratio equal to one, the measured
magnitude of the non-circulatory vortex force is remarkably consistent with the added mass force
predicted using Küssner’s model.

It was additionally argued that the mechanisms attributed to the generation of unsteady forces for
body acceleration and flow field acceleration cases in potential (and non-potential) flows, fundamen-
tally differ. The former gives rise to the classical added mass force, whereas the latter is conventionally
attributed to an added mass and buoyancy term. Here it is argued that it is not possible to uniformly
accelerate a flow field of infinite extent, only a finite portion. In doing so, free external vortices
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are created. This gives rise to another non-circulatory vortex force, that is exactly equivalent to the
buoyancy and added mass terms derived for a body in a uniformly accelerating free stream. This was
confirmed using a simple potential flow calculation of a cylinder, subjected to flow induced by free
vortices. The finding has direct application toward explaining the mechanisms which forces arise for
unsteady wind and water tunnel experiments. For such experiments the external vortices are contained
within the boundary-layers over the tunnel and fan surfaces.

In the broader context, this work was motivated by a desire to develop predictive low-order
models for large wind gusts, as well as surging and rotating wings. Any vorticity generated by a
mechanism external to the wing will create a non-circulatory distribution of attached vorticity. The
non-circulatory vortex advection and growth forces can be found relatively simply. They are inviscid
force production mechanisms, but differ to added mass. Added mass effects arise only when a body
accelerates, changes shape, or rotates relative to the free stream. Each of these motions can create
a non-circulatory distribution of attached vorticity, that cannot be attributed to other free vortices
in the flow field. The advantage of this definition, is that it can prevent the accidental double- or
miscounting of force components in complex scenarios, such as wing-gusts encounters. Each of the
force components, be that the non-circulatory vortex forces, added mass, and conventional circulatory
terms due to self shed vorticity may find their place in a new model describing unsteady aerodynamic
flows.





Chapter 9

Conclusions and Future Work

9.1 General comments

This thesis was a fundamental study into the mechanisms which contribute toward force production
in unsteady aerodynamic flows. The review of the literature revealed that little is known about the
flow physics of large amplitude transverse wing-gust encounters. This is where the assumptions of
classical linear theories, in particular Küssner’s model, start to breakdown. While motivated toward
improving the gust performance of Micro Air Vehicles, the main findings of this thesis, which clarify
the role of vorticity and added mass toward force production, have application in any unsteady case.

9.2 Isolating added mass effects with PIV

The added mass phenomenon can result in large transient changes in force, in flows that have high
accelerations. This was therefore expected to play an important role in a wing-gust encounter. The
review of the literature revealed that the added mass result, derived for a potential flow, had not been
shown experimentally to be applicable to a viscous, non-potential, flow. Furthermore, there was no
known experimental method for doing so with direct flow field measurements such as PIV. In Chapter
3, it was shown that the classical added mass force may be described by the formation of a non-
circulatory vortex sheet. By assuming a body in a flow field may be represented by a region of fluid,
with a velocity equal to the rigid body motion, we proposed in Chapter 5 a methodology to measure,
and isolate, the added mass attributed vorticity from PIV derived flow data, about any arbitrary
two-dimensional body. The technique was applied to a flat plate wing, undergoing translation and
rotation accelerations in Chapter 6. From the experiments we drew the following primary conclusions:

• The potential added mass result is applicable to a non-potential flow.

• The proposed methodology for quantifying added mass attributed vorticity within the boundary-
layer, using low resolution PIV was successful.



168 Conclusions and Future Work

It was possible to draw these main conclusions because:

• Prescribing PIV vector elements contained within a body, a velocity equal to the local rigid body
kinematics, forces the circulation of wall bound vector elements to incorporate boundary-layer
vorticity. This results from the application of Stokes’ theorem about a single PIV vector element.
This allows the measurement of the vortex sheet attached to an object in a flow. This vortex
sheet has two components, one being ‘circulatory’, and the other ‘non-circulatory’.

• The ‘circulatory’ part of the attached vortex sheet is attributed to velocities induced by free
vorticity in the flow field. For a flat plate, it may be quantified by measurement of the free
vorticity and the conformal mapping and mirror vortex method described by Graham et al.
(2017), or panel method codes.

• The ‘non-circulatory’ component is attributed to the kinematic motion of the body, and is
the distribution of vorticity attributed to the added mass effect. Subtracting the circulatory
component from the total measured vortex sheet on the surface of a body, isolates the non-
circulatory vortex sheet. This was shown to be equivalent to the theoretical added mass vortex
sheet, even for viscous, separated flows. The added mass attributed distribution of attached
vorticity was therefore quantified from PIV measurements.

9.3 Gust encounters

Having proven the validity of the potential flow added mass results to viscous flows, and validated the
methodology for isolating the circulatory and non-circulatory vortex sheet components, we sought
to analyse a wing-gust encounter in a similar manner, to meet the primary aims of this thesis. Once
again, the aims were to characterise and understand of the underlying physics of large amplitude
wing-gust encounters, and investigate the applicability of Küssner’s linear model. In Chapter 7, PIV,
force and dye flow visualisation measurements of wing-gust encounters were described. The gust
ratios tested were GR = 0.2, 0.5 and 1.0. Initial experiments were conducted with a gust outlet offset
distance of 0.83c from the plate. These measurements were compared to the Küssner model for a
gust of 2 chords, which was calculated by application of Duhamel’s integral. The primary conclusion
from this Chapter, was:

• The non-circulatory vorticity distribution, attributed to added mass within Küssner’s model,
must arise from a different phenomenon to added mass.

We drew this conclusion from the attempt to isolate the non-circulatory vortex sheet for the
GR = 1.0 test case. To minimise random errors, an average of this vortex sheet was taken over the
range 1.0 ≤ s/c ≤ 2.0, where it is theoretically constant. The measured non-circulatory vortex sheet
had a magnitude approximately half that predicted by Küssner’s theory. The difference was not due to
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experimental uncertainty.

Meanwhile, characterisation of the flow field and forces for the encounter showed:

• For the GR = 0.2 encounter, the flow topology reasonably followed the approximations of
the Küssner model. Flow separated at the leading edge but appeared to re-attach. The wake
remained planar. There was some deflection of each gust shear layer during the immediate entry
and exit of the wing. The force measurements relatively closely followed Küssner’s model, but
deviated mildly from s/c = 2.

• For the GR = 0.5 encounter, there was significant leading edge separation, and the shedding of
vorticity at the trailing edge of the wing. The trailing edge vorticity remained relatively planar,
but was deflected by approximately 11◦. There was still relatively good agreement between the
measured force and Küssner’s model up to s/c = 2.5. For s/c ≥ 2.5, the lift force dropped to
zero significantly faster than that predicted by Küssner’s model. This was partly attributed to a
vortex formed from gust shear layer vorticity, inducing downwash onto the wing.

• For the GR = 1.0 encounter, there was significant leading edge separation, shedding of vorticity
at the trailing edge, and deflection of gust shear layers. The measured peak lift force exceeded
Küssner’s theory by 27%, and generated negative lift for s/c ≥ 3. This was also caused by
a vortex formed from gust shear layer vorticity, inducing downwash onto the wing. Force
and flow topologies were influenced by the offset distance between the wing and gust outlet.
Increasing the distance between the wing and outlet to 1.83c reduced the peak lift force, such
that it was closer to Küssner’s prediction. Reynolds number, in the range of 20,000 to 40,000,
had little effect on the flow topology and force for a gust ratio of 1.0.

9.4 Subsequent discussion on added mass and wing-gust encounters

Chapter 8 was a discussion on added mass, and its role (or lack thereof) in wing-gust encounters. The
reason behind, and implications of, the discrepancy between the measured non-circulatory vortex
sheet in the gust experiments, and Küssner’s model, was explored. From this work the following can
be concluded:

• An inviscid force may act on a body if externally generated vortices grow, or advect relative
to a body. These vortices must have zero net circulation. The forces are therefore called
‘non-circulatory’ vortex forces.

• Added mass forces are attributed to the growth of a non-circulatory vortex sheet, attached to
the surface. This is determined only by the body kinematics. This differs to the non-circulatory
vortex force, which may be attributed to free vorticity in the flow field.
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• The advective non-circulatory vortex force is responsible for the added mass-like force in
Küssner’s model.

• For a gust ratio of 1.0, the force impulse attributable to the formation of the non-circulatory
vortex sheet is close, if not equivalent, to Küssner’s added mass force (despite arising from a
different mechanism). The finding implies that this force component is accurate for all gust
amplitudes.

• The non-circulatory vortex growth force is responsible for the buoyancy and added mass-like
forces experienced by any object immersed in flows with an accelerating free stream.

9.5 Recommendations and future work

With the availability of complete PIV velocity field information of unsteady aerodynamic experiments,
such as that described in this work, it is suggested that velocity vectors within a body in the flow field
be prescribed a velocity equal to the rigid body kinematics instead of simple masking. Vorticity subse-
quently calculated will include a distribution attributable to the added mass mechanism. Measures
of integral quantities such as impulse and force derived from the flow field vorticity will therefore
incorporate added mass effects, and have surprisingly little error for reasonable PIV vector resolutions.
For many PIV measurements there is incomplete or spurious velocity field information near a body
due to shadow effects and surface reflections. Since added mass is an effect that may be quantified
by attached vorticity, the masking of vectors close to a body will remove such vorticity and thus the
impulse and forces subsequently derived. Often added mass forces are added analytically without this
near wall vorticity masking. This study suggests the approach is incorrect and that added mass effects
will be duplicated.

There are a number of suggested avenues for further work. Many of the fundamental ideas
discussed in this thesis can start to be incorporated into a low-order model. The non-circulatory
vortex forces can be calculated based on vortex location, strength, Helmholtz laws of vortex motion
and the body kinematics. However, the vortex kinematics will likely be influenced by vorticity shed
into the flow field by a body. This is particularly relevant for flat plate geometries due to the sharp
leading and trailing edges. Unfortunately this is quite difficult to calculate, and is a continuing topic
of research (see Pullin and Wang (2004); Ramesh et al. (2014, 2018); Wang and Eldredge (2012); Xia
and Mohseni (2016)). To create a fully predictive model, the rate at which vorticity is shed and its
subsequent motion must be determinable.

Secondly, a much larger gust-encounter parametric study would be useful for the validation of any
low-order model. Parametric variations, including angle of incidence, aspect and gust ratios would be
a good start. Further development of the towing tank based gust generator are also required. In the
methodology section it was discussed that some of the variations in the gust velocity profile may be
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caused by either flow separation of the vanes, or thickening of the boundary-layers. A more detailed
investigation into the cause of this variation, and perhaps a redesign of the vanes may significantly
improve the flow quality.

Finally, much of the early inspiration for this work came from surging and pitching wing experi-
ments as similar flow features were expected. As discussed in the review of the literature, a low-order
model was derived by Babinsky et al. (2016), and Stevens and Babinsky (2017) for the surge and pitch
cases. This was based on a combination of force components including added mass, vortex growth,
advection and a Magnus or virtual camber term. This thesis has shown that vorticity attributable to
added mass can be quantified with PIV, thus is a potential source of contamination when determining
the growth rate of vortices during starting motion. It is additionally believed that the Magnus term is
incorrect, given that any change in attached circulation will result in the shedding of net vorticity into
the flow. This would be incorporated in measures of the trailing edge vortex. The low-order model
should therefore be revisited.





Appendix A

Duhamel’s Integral

The Wagner and Küssner functions were derived for an impulsively started wing, and sharp edge gust,
respectively. Duhamel superposition allows the response to an arbitrary acceleration, or gust profile to
be constructed (Anderson, 2011). If b(s) is the principle response to a unit step of a forcing function
e(s), then by linear superposition, the response to an arbitrary forcing function at any position s can
be found by summing the response of incremental elements in the history (each occurring at position
σ ). The Duhamel integral is thus a means of computing and applying the effect of past changes of the
forcing function. For a continuous system the effective response function be(s) is:

be(s) = e(0)b(s)+
∫ s

0

de
ds

b(s−σ)dσ . (A.1)

In discretised form, equation (A.1) may be written as:

be =e0b(s)+δe1b(s−σ1)+δe2b(s−σ2)+ ...+δeib(s−σi). (A.2)

Here δei is the incremental change to the forcing function between two consecutive time steps,
δei = ei − ei−1.





Appendix B

Extracting added mass with PIV -
validation with an artificial flow field

PIV measurements are a discretised representation of a continuous flow field. Consequently, the
discretisation can be a source of error when it comes to extracting distributions of bound vorticity,
impulse and force quantities. Here this error is quantified by generating an artificial flow field,
from which the non-circulatory bound vortex sheet γnc is ‘measured’ using the methods described
in Chapter 5. Separate flow fields were generated for both the translation and rotation flat plate
motions using the potential flow solution given in section 3.2. As shown in figure B.1, velocity vectors
were calculated at points given by a high resolution structured mesh with approximately 600 vectors
per chord (c/∆l, where ∆l is the distance between adjacent vector elements). Secondary variable
resolution vector grids were used to represent PIV measurements. These had vector densities of
c/∆l = 25, 50 and 100 vectors per chord. For each secondary grid point, the velocity was found by
averaging the velocities at the high resolution grid points over an area of 2∆l×2∆l, thereby replicating
the spatial average which arises during the calculation of PIV vectors using a cross-correlation of
particle images*. For the calculation of bound circulation the plate was divided into 50 integration
contours, with a height of 0.25 chord lengths.

The flow field for the 25 element case is shown in figure B.2a. The red boxes are the first and
last contours used for the calculation of bound circulation, whereas the shaded background indicates
vorticity calculated from the discretised curl of the secondary (low resolution) vector field. The
averaging process spreads vorticity past the left and right boundaries of the integration contours; thus
some of the vorticity will be allocated as ‘free’ in the flow field. Measurements of the non-circulatory
bound vortex sheet, γnc

r , for each grid resolution are given in figure B.2b. Each measure of the bound
vortex sheet approximately follows the theoretical value, albeit the lower resolutions show significant

*The PIV measurements were processed with a 50% interrogation window overlap, thus the cross-correlation area is
four times that with no overlap.
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high resolution 
grid

secondary 
grid

averaging 
window

Fig. B.1 Schematic of the spatial averaging window for replicating a PIV interrogation area.

deviation from theory at the plate edges where there are large gradients in vorticity.

The first moment of impulse, Jz, was calculated in three ways. One method uses all of the vorticity
in the flow field, as determined from the secondary vector field. In discretised form, the second
moment of vorticity, given by equation (2.24) is

υz =
n

∑
k=1

(x2
k + y2

k)ωz,k(∆l)2, (B.1)

where the subscript k is the index for each vortex element in the discretised flow field. With equation
(2.25), Jz can therefore be found from the measured vorticity elements. This is the line identified by
blue square markers shown in figure B.2c, scaled by the theoretical potential flow value given by
equation (2.25). Despite the significant smoothing of vorticity around the plate surface, the resolution
of the secondary grid has negligible effect on the first moment of impulse. Given reasonable vector
resolution, the result suggests that, if vector elements contained by an arbitrary body are prescribed
velocities equal to the rigid body kinematics, subsequent calculation of vorticity from the velocity field
will result in surface vortex sheets being represented in a spatially averaged form in the discretised
vector field. Impulse and force quantities derived from such a discretised flow field will therefore
include added mass effects.

The problem with directly calculating impulse (and moments thereof) from flow field vorticity is
that the added mass contribution is superimposed with other vorticity sources. To isolate the added
mass component, impulse is calculated from the measure of γnc acquired from the procedure outlined
in section 5.1.2. For the rotation case, this is given by the line identified by black triangles in figure
B.2c. The significant error may in part be attributed to relatively high measurement error at the plate
edges.
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Fig. B.2 Quantification of discretisation errors using an artificially generated flow field for the rotating plate
case. In the case of (c): blue squares - first moment of impulse calculated from vorticity in the full flow field.
Black triangles - non-circulatory vortex sheet as directly measured. Red crosses - analytical function fit to the
measured non-circulatory vortex sheet.

For the purpose of extracting the portion of impulse (and moments thereof) attributed to the non-
circulatory vortex sheet, it is proposed that some of the discretisation error may be corrected by fitting
the analytical non-circulatory vortex sheet function given by equation (3.23) to the measurements.
For each kinematic case, rotation or translation, the analytical function is a geometrical ‘mode shape’
that is scaled by the instantaneous velocity. Provided the measures of the non-circulatory vortex sheet
follow the geometric shape (this was demonstrated in section 6.4), a measure of the plate kinematics
Un or Ω may be obtained by using a least squares fit or similar. Then impulse and forces may be
directly calculated from the analytical solutions given in Chapter 3. This is the line identified by
red-cross markers in figure B.2c. For the lowest vector resolution case the error is halved to 20%,
whereas it is within ±5% for c/∆l = 50 and 100. Each of the impulse measures for the translation
case are given in figure B.3. Once again errors are negligible when impulse is calculated using all
elemental vorticity. The error is approximately half that of the rotation case for impulse calculated
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from the measured non-circulatory vortex sheet, and is comparable to the rotation case for the fitted
vortex sheet.
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