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Abstract

We explore the links between weather variables and residential electricity consump-

tion using high-resolution smart metering data. While weather factors have been used for

grid-level electricity de-mand estimations, the impact of different weather conditions on in-

dividual households has not been fully addressed. The deployment of smart meters enables

us to analyse weather effects in different periods of the day using hourly panel datasets,

which would previously have been impossible. To conduct the analysis, fixed-effects mod-

els are employed on half-hourly electricity consumption data from 3827 Irish household

meters. We demonstrate that temperature has robust and relatively flat effects on electricity

demand across all periods, whereas rain and sunshine duration show greater potential to

affect individual behaviour and daily routines. The models show that the most sensitive

periods differ for each weather variable. We also test the responses to weather factors for

weekends and workdays. Weather sensitivities vary with the day of the week, which might

be caused by different household patterns over the course of the week. The methodology

*To whom correspondence should be addressed: E-mail: jieyi.kang@hotmail.com
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employed in this study could be instructive for improving understanding behavioural re-

sponse in household energy consumption. By using only weather indicators, this approach

can be quicker and simpler than traditional methods —such as surveys or questionnaires —

in identifying the periods when households are more responsive.

1 Introduction

In recent years, there has been an increase in residential smart meter installations in many ju-

risdictions as they move to modernise their electricity networks (Eid, Hakvoort and De Jong,

2016). The old mechanical metering systems usually record monthly energy consumptions of

households, which limit the possibility of understanding residential electricity consumptions

in depth. Besides, dynamic pricing of electricity is impossible using current metering infras-

tructures, due to the technical constraints of having no real-time usage data. In light of these

concerns, the deployment of Advanced Metering Systems can potentially be part of the solution

to achieve greater energy efficiency. There is one significant advantage of smart metering that is

widely accepted — The new technologies record high-resolution data of household electricity

usage and increase the visibility of energy consumption. As a consequence, the availability of

high volumes of data enables more fine-grained studies of residential behaviour and consump-

tion patterns (Razavi et al., 2019).

Thus, one area that particularly benefits from the installation of smart meters is the study of

the effects of pricing structures on electricity consumption. Previous studies in this area have

focused either on longer-time frames, such as monthly household usage, or relatively shorter

periods (daily consumption) but at the regional level (Pardo, Meneu and Valor, 2002; Davies,

2010; Atalla and Hunt, 2016; Trotter et al., 2016). High-frequency individual usage data makes

it possible to examine the price effects during a specific short period during a day rather than

using daily or monthly time steps. Although the results of the efficiency of different price
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schemes can be contradictory, increasingly studies have been done in the field to examine the

effects from different perspectives.

However, the influence of weather in residential electricity consumption is one area that

has not been extensively studied, although it has been widely accepted as an important factor

affecting energy demand. The exploration of the relationship between energy consumption and

weather is often seen in two sets of studies: weather as control variables in models focusing on

price or on socio-economic effects (Wangpattarapong et al., 2008; Newsham and Bowker, 2010;

Di Cosmo and O ’hora, 2017). Alternatively weather has been used as the main independent

variables but only when investigating the relationship between daily or even monthly regional

demand and weather variables (Moral-Carcedo and Vicéns-Otero, 2005; Costa and Kahn, 2010;

Blázquez, Boogen and Filippini, 2013). Weather variables such as temperature, precipitation,

relative humidity, wind speed, cloud cover, and sun duration are the most common variables

used in both types of research. In spite of interest in the relationship between electricity con-

sumption and weather, few studies have studied the possible association during different periods

of the day due to limitations on the frequency of energy use data (Davies, 2010). Would specific

findings hold in every period? For example, will residential customers reduce their consump-

tion in every period of a sunny day? Are the weather responses, in fact, period-dependent? A

better understanding of the weather impact on electricity can assist researchers, policymakers

and energy companies. A study of how residential customers respond to weather in different pe-

riods can provide insights into daily patterns of household behaviour, e.g during which periods

a family is more likely to be active or often go out.

We examine here the weather response at different times of day using fixed-effects mod-

els on high-frequency usage data from Ireland’s Smart Metering Electricity Behavioural Trial

(CER, 2012a) combined with weighted weather data from five weather stations in Ireland. Due

to the half-hourly data available from smart meters, we are able to investigate the household re-

3



sponse to weather during different periods. We aim to provide evidence that the weather sensi-

tivities are indeed period-dependent and that weather factors may be good proxies for household

behaviour patterns in different periods of a day. In addition, this chapter explores the impact

of weather on the differences in electricity demand between weekends and workdays, thereby

demonstrating that the relationships between weather and energy demand are not universal.

The chapter continues by reviewing the related literature of weather effects in Section 2 and

the details of the dataset used are specified in Section 3. The two main models used and the

explanation of variable selection are described in Section 4. Results of the models are presented

in two parts in Section 5, and Section 6 provides a discussion of potential implications and

offers some conclusion.

2 Literature review

2.1 Weather effects on demand in general

The discussion of weather variables often appears in two sets of studies in this field: one is

model establishments for electricity consumption forecasting and usually at an aggregated re-

gional/national level. For example, Mirasgedis et al. (2006) summarise the studies paying

particular attention to short-term forecasting and the role of weather variability. They claim that

based on the experience of utilities, the main weather factors affecting electricity consumption

are temperature, humidity, wind, and precipitation in decreasing order of importance, while

wind speed and solar radiation is not significant for the Greek mainland. Therefore, they only

include the two weather variables (temperatures and relative humidity) in the models predicting

the mid-term electricity consumption in Greece. Instead of using outdoor temperatures directly,

heating degree days (HDD) and cooling degree days (CDD) are used to reflect the non-linear

relationship between temperature and demand, which is particularly common in electricity de-

mand studies (Bessec and Fouquau, 2008; Alberini and Filippini, 2011; Boogen et.al, 2017).
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However, in these studies the effects of weather are based on total consumption including all

sectors, not just on residential consumption specifically. Thus, the importance of these factors

still needs to be examined with a particular focus on residential electricity demand. The second

type of research where weather variables are often included is in studies of the determinants of

regional electricity consumption. Such studies rarely focus solely on residential electricity de-

mand but rather on total regional consumption. Trotter et al. (2016) examined the relationship

between climate and daily electricity demand in Brazil where the only weather factors used are

CDD, HDD, and the lag effects of CDD and HDD. One compelling argument they make is that

the effect of temperature on the weekend is slightly different than on working days. Further-

more, a model based on aggregated monthly or annual data might not be able to reveal differ-

ences between the two cases. In addition to temperature, rainfall is another common variable

examined. Hor et al. (2005) investigated monthly electricity demand from 1983 to 1995 in the

UK and found a very weak negative relationship between rainfall and monthly demand. How-

ever, they argued that the correlation between demand and rainfall should be stronger but that

the weak unexpected negative coefficient is mainly because they used only national-level data,

while rainfall is very location-specific. Davies (1958)’s work considered aggregated country-

level electricity demand in England and Wales arguing that five meteorological elements affect

demand: temperature, wind speed, cloudiness, visibility, and precipitation. Temperature allied

with wind speed determines the need for heat, while the remaining variables determine the level

of daylight illumination, affecting lighting demand. The study divides daily demand into eight

three-hour periods of demand to verify whether the effect of weather is the same across differ-

ent periods of a day. The results show that temperature has a peak influence on demand around

9:00 and a lower coefficient during the 17:00 period. However, the direct effects of rainfall are

only evident at 17:00. The findings indicate that the effect of a weather variable is not constant

through a day, and it could be interesting to examine the differences in the residential sector
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specifically. Many researchers (Pardo, Meneu and Valor, 2002; Räsänen et al., 2010; Albert

and Rajagopal, 2013) agree with Davies (1958) that weather indices such as humidity, wind

speed, cloudiness, and barometric pressure are suitable explanatory factors for weather sensi-

tivity, although those variables may have less significant influence on electricity demand than

temperature, rainfall and sun duration.

As discussed above, studies involving weather effects have paid more attention to total elec-

tricity consumption in a region. There has been a lack of panel data to support deeper studies

of the residential electricity sector – current panel studies concerning weather and residen-

tial electricity are primarily based on aggregated regional panel data. Atalla and Hunt (2016)

looked at the residential electricity demand in six Gulf Cooperation Council countries using

a panel dataset of annual demand in slightly different periods from country-to-country. CDD

and HDD are the only weather indicators used but do not necessarily have significant impacts

on demand. It depends on geographic locations and whether there is variation in the weather

variable. Blázquez et al. (2013) used aggregate monthly panel data at the province level for

47 Spanish provinces from 2000 to 2008. The authors acknowledge that in panel data analy-

sis, fixed-effects models (FE) or random-effects models could be helpful to control unobserved

heterogeneity, however, neither of these was appropriate for their study since they include a

lagged dependent variable in their model. Again, CDD and HDD are also the only weather

conditions considered, which is common in panel studies of regional residential electricity con-

sumption. Due to the lack of data at household level, very little research has been done based

on non-aggregate residential consumption. Henley and Peirson (1998) studied residential en-

ergy demand and the interaction of price and temperature based on a Time-of-Use (TOU) trial

with 150 households between April 1989 and March 1990. Through a fixed-effects model, they

found that the effect of temperature is negative and non-linear, and the magnitudes vary for

different periods. Alberini and Towe (2015) attempted to estimate residential electricity usage
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savings from energy efficiency programs. They assembled a panel dataset of monthly electric-

ity usage and bills for a sample of about 17,000 households in Maryland from 2008 to 2012.

They used Difference-in-Difference” and fixed-effects models to capture annual and seasonal

household effects, and season-by-year effects. Weather effects are not the focus of the study,

but CDD and HDD were included for monthly consumption control.

2.2 Weather effects in studies using smart metering data

In light of the trend of smart meter installation around the world, availability of household-level

consumption data has begun to change. One of the main innovations brought by smart meters is

that electric utilities can obtain huge volumes of high-resolution household usage data. A daily

load profile of a household that depicts daily consumption trends from midnight to 11:59 p.m

can now be easily drawn. High sampling frequencies provide operators with the opportunity to

better understand consumption patterns of their residential customers. The availability of house-

hold consumption data enables researchers to identify the determinants of residential demand

and the difference of effects on the demand of different periods of a day in more depth. One

main strand of the literature using smart meter data investigates the effects of socio-economic

and house-specific variables on load profiles. Anderson et al. (2016) summarised the existing

evidence of household characteristics linked to load profiles and categorisd those variables into

three subgroups: 1) household features, such as number of persons, number of children, and age

distribution (Yohanis et al., 2008; Beckel et al., 2015); 2) dwelling status: e.g. dwelling type,

household tenure, number of rooms (Firth et al., 2008; McLoughlin, Duffy and Conlon, 2012);

and 3) householder characteristics: employment status, social status, age and gender. Other

Householder variables, such as education level, ethnic group, marital status and household in-

come are also found to have significant impact on demand and load profiles (McLoughlin,

Duffy and Conlon, 2012; Carroll, Lyons and Denny, 2014). Nevertheless, research in5o elec-
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tricity demand and household features have rarely paid attention to weather variables. There is

little evidence of weather effects on residential demand from household-level data. Kavousian,

Rajagopal and Fischer (2013) examine structural and behavioural determinants of residential

consumption using a dataset of 10-minute interval smart meter readings from 1628 households

in California. They prove that weather and location are among the most immportant determi-

nants of residential electricity use. However, the only weather variables, they include in their

models are outdoor temperature and climate zone.

Another set of studies use smart metering data and consider weather variables to identify

the effectiveness of time-of-use tariffs. Torriti (2012) took advantage of data from a TOU and

smart metering trial in Northern Italy involving quarter-hourly readings from 1446 households

from 1 July 2009 to 30 June 2011. The findings show that peak load shifting took place for

morning peaks and created a split into two peaks for evening periods, while total consumption

increased by 13.69%. The only weather variable, temperature, is used to control for the effect

of weather variation, but the effect is not discussed in details. Other studies have used data from

the large-scale trial smart metering experiment or Consumer Behavioural Trial (CBT) carried

out by the Irish Commission for Energy Regulation (CER). Di Cosmo et al. (2014) utilise the

CBT panel data of over 4000 households to explore whether the designed TOU is efficient in

reducing peak demand. Two weather variables – sunshine duration and heating degree days –

are included. Their results show that HDD are positively associated with consumption, while the

opposite relationship is found for sunshine duration for the three periods considered (day, peak,

and night). They only used the weather data from Dublin Airport weather station, as detailed

information on household location is not available. However, considering that the selected

households were drawn from across the country, a population-weighted weather dataset from

different weather stations would be more accurate for a study of weather effects. In addition, the

time periods may be too long since weather effects could change dramatically over the course
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of a period lasting as long as 10 hours.

From the review above It can be easily seen that little research has focused on weather effects

and weather influences are usually introduced as control variables for other research objectives.

Generally, temperature is the main weather factor considered and other variables, such as pre-

cipitation, wind speed, and sun duration, have not been explored extensively. Furthermore,

weather impacts are commonly discussed at an aggregate level, e.g., daily or monthly level.

However, as proposed in some studies (Davies, 1958; Henley and Peirson, 1998), the impact of

weather indices might differ depending on the time of a day. The lack of research could be due

to the limited availability of high-frequency household-level data. Even with greater access to

detailed household usage data, the focus of studies using smart meter data has been on time-of-

use tariffs, rather than weather effects. Therefore, a comprehensive study of the weather effects

on residential electricity demand and household behaviour patterns during different periods of

the day would be helpful to filling the gap.

3 Data

3.1 Residential electricity consumption data

The smart meter dataset used in this chapter was collected as part of Ireland’s Electricity

Smart Metering Consumer Behavioural Trial, which includes 4000 residential customers (CER,

2012a).

Half-hourly readings of usage were recorded by meters installed in the trial from 15 July

2009 to 31 December 2010. During the benchmark period (July 2009 to Dec 2009) all house-

holds were charged a fixed tariff. From 1 January 2010, those who were selected into treat-

ment groups were charged time-of-use (TOU) tariffs. There were 4 TOU tariff periods: peak

(17:00–18:59 Monday-Friday, excluding public holidays), day (08:00–16:59; 19:00–22:59 Monday-

Friday, plus 17:00–18:59 public holidays, Saturday and Sunday) and night (23:00–07:59) pe-
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riods. The tariff structure is shown in Table 1. In order to control the effects caused by the

price incentives, our research only includes data recorded from 1 January 2010 onward, where

tariffs are constant across all households during that period. In addition, homes with average

daily consumption of more than 54 kWh are also removed because these outliers may not be

residential consumers, but are more likely to be small enterprises or home-based enterprises 1

Table 1 Residential Time-of-Use tariffs 1st January to 31st December 2010

3.2 Weather data

To generate daily weather observations at specific times of day, hourly weather data provided by

the Irish Meteorology Office (Met Éireann) are matched with household electricity consump-

tion data. Recorded hourly observations are dry-bulb (air) temperature (°C), relative humidity

(%), wind speed (kph), and fraction of sunshine per hour (%). Since location information is

not provided by CER due to privacy concerns, a population-weighted weather dataset should

be considered to reflect consumption response to weather from families living across Ireland

(Valor et al., 2001; Auffhammer and Aroonruengsawat, 2012). As a result, four weather sta-

1Furthermore, the impacts of daylight saving time (31st October 2010 and 25th March 2010) are taken into
account. The data from the second 2 am (end of DST) is deleted from the dataset to avoid double counting.
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tions, Dublin Airport, Valentia Observatory, Belmullet and Cork Airport, were chosen. The

first three synoptic stations are the choices of Met Éireann for regular Irish weather statements

(Met Éireann, 2018) and Cork was selected to ensure enough sufficient regional representation

because a significant number of participating households live in Cork (See Figure 1). Since the

distribution of the final acceptances onto the trial was similar to the total population at county-

level (Figure 1), the population ratios around the four stations are aggregated and calculated as

weights to create a new dataset to match with the consumption data.

Fig. 1 Comparison of county level distribution between acceptances and total population

The weights of the population ratios used are 0.535 for Dublin, 0.175 for Cork, 0.16 for

Belmullet and 0.11 for Valentia. The method of how to draw the boundaries of each station is

not ideal due to the absence of household location information. For example, County Clare (CE

in Figure 1) can be associated with Cork station or Belmullet station. However, as the weather

in Ireland is relatively similar, the boundaries/weights hardly change the final results as we tried

different weights for the analysis. The datasets from different observatory stations have similar

correlations between weather variables and household consumptions (see Appendix 1) and the

Dublin and weighted weather data have a higher and better correlation with the residential
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demand. The descriptive statistics for the weather variables are described in Table 2.

Table 2 Descriptive Statistics for the weather variables

3.3 Time Use Study data

In order to help divide hourly data into several discrete periods, the Irish National Time-Use

Survey 2005 (Economic and Social Research Institute, 2005) is used. It collected detailed

national time-use statistics on over 1000 adult participants’ daily activities, which includes two

complete diaries of their activities over a 24-hour period — one for a weekday and another for

a weekend day. It provides a comprehensive view of daily life in Ireland and possible behaviour

during every 15-minute slot of a day. As a result, the findings of the survey can be particularly

helpful in two ways: 1) to divide hourly data more accurately and avoid splitting one major

daily activity into two periods, which may distort the actual response by either exaggerating
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or underestimating the effects. For instance, separating 12:00-14:00 into two different periods

may cancel out part of the impacts of lunchtime; 2) to better understand how people respond

to weather changes. For example, if people are less sensitive to rainfall during 12.00-14.00,

it could be a lunchtime effect. Therefore, this survey data provides a supplementary tool to

explain and confirm the results obtained from the proposed models.

4 Methodology

As seen in the literature review in Section 2, studies of the effects of weather variables have

mainly focused on relationships between daily electricity consumption and daily weather change.

It is not clear that how households respond to weather change at different times of day. To in-

vestigate the weather sensitivities in different periods of a day, it is reasonable to assume that

households will not change their behaviour immediately when the weather changes. In order

to capture the lagged effects, the hourly data is aggregated and divided into periods based on

patterns of daily activities, rather than using raw hourly data directly. Although autoregressive

models can be used on hourly data to control lagged effects, it might complicate the situation

and the lag lengths suitable for weather effects are not clear and there is no agreed lag time in

the literature.

Two rules are employed in separating the time periods: 1) To control for possible price

effects caused by the TOU tariffs, the time periods chosen should not cross over two different

tariffs (i.e., the tariff structure shown in Table 1); and 2) A period does not split major activities.

On the basis of these rules, the tariffs provides natural breaks at the early morning, peak and

night periods. However, the day price period (see Table 1) is much longer than the other periods,

which may obscure the real response, and so needs to be sub-divided. In the end, 9 periods are

set as follow with the help of the time use study: early morning (6:00-8:00), day 1 (8:00-10:00),

day 2 (10:00-12:00), day 3 (12:00-15:00), afternoon/day 4 (15:00-17:00), peak (17:00-19:00),
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early evening/evening 1 (19:00-21:00), evening 2 (21:00-23:00) and night (23:00-3:00). The

period from 3:00 to 6:00 is not included in the night period, since no major activities occur

during that period and that could bias the analysis. The descriptions of the four main activities

with the highest proportions of people doing on workdays and weekends are shown in Table 3.

The numbers in each cell represent the minimum and maximum percentages of people doing

the activities during each period of a day.

As panel data allows for the exploitation of both time and cross-section dimensions, it has

the potential to eliminate unobserved heterogeneity in the data (Asteriou and Hall, 2011). As

a result, given the nature of the panel dataset, two fixed-effect models are employed. Although

random-effects (RE) models are also used in the related literature, fixed effects (FE) models

better suit the purposes of this study.

With FE models, the focus is given to weather variables, while the effects of variables whose

values are consistent across time (Wooldridge, 2013), such as demographics, housing condi-

tions, and electric appliance ownership, are captured in a single fixed-effects estimator since the

focus of the study is not on household characteristics. In addition, the results of the Hausman

test imply that FE models are more suitable, since the null hypotheses of RE models is rejected

(p-values of 0.0000).
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The first model (Model 1) explores the effects of selected weather variables on electricity

consumption and is as follows:

log (qhi,t) = αh
i +

5∑
p=1

δhpWp,t +
12∑

m=2

λhmMm,t +
7∑

j=2

θhjDj,t + ζhyHy + εhi,t (1)

where h = 1 − 9 for each of the 9 periods. log (qhi,t) denotes the logarithm of household

i’s daily electricity consumption in kilowatt-hours during one period of day t. As discussed

above, there are 9 periods in a day. The model therefore is run for each period separately;

Wp,t are the five weather variables; Mm,t are dummies of month indicators, and January is

selected as the baseline (when m=1) ; Dj,t indicate day of week and the reference category is

Monday (where j=1); the coefficient δ represents the expected weather effect on consumption,

while the coefficients λ and θ quantify the consumption differences between the expected effect

(the month i and the day j) and the baseline (January and Monday); Hy is the public holiday

dummy; αh
i are household fixed effects and εhi,t is a stochastic disturbance term. There may also

be unobserved household-specific differences in consumer demand, for example, presence of

electric dryers or other appliances. The fixed-effects estimator used can handle it well as this

household-level heterogeneity is constant over time.

Although weather has been identified in many studies as an essential factor, no agreement

has been reached on which weather variables and in what form they should be added into the

modeling. However, heating/cooling degree days, hours of sunshine, rainfall, wind speed and

relative humidity are five leading variables that have been used in the relevant research. Model

1 employs all these variables, apart from heating degree days (HDD) and cooling degree days

(CDD), which are replaced by air temperature in the equation. The reason for this substitution

is that HDD and CDD are used to reflect the non-linear relationship between daily electricity

demand and daily temperature. However, although a non-linear response is found in other

studies (Woods and Fuller, 2014; Auffhammer and Mansur, 2014), there is no clear non-linear
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Fig. 2 Average daily electricity consumption per household

relationship, but rather a linear correlation in Irish houses (Figure 2). One reason may be that

the temperature range in Ireland is relatively flat and air conditioning uncommon in Ireland. In

addition, Model 1 examines the weather during different periods of the day, rather than daily

changes, so the using CDD and HDD would not suit the case.

The second model (Model 2) is based on Model 1 but streamlined to focus on estimating how

differently households respond to weather changes on weekends and weekdays. The different

consumption patterns can be seen in Figure 3.

To estimate the differences, the following model is tested:

log (qhi,t) = αh
i + ϑhDx + ζhyHy +

3∑
p=1

δhpWp,t +
3∑

p=1

βh
i Wp,t ×Dx +

12∑
i=2

λhiMi,t + εhi,t (2)

The model is similar to Model 1, apart from the following changes:

1. Day of week dummies are replaced by a workday dummy Dx to estimate the difference

between workdays and weekends. It should be highlighted that the definition of working

days varies depending on the period of the day. Before 19:00 (peak period), the definition
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Fig. 3 Average daily electricity consumption per household

remains the same as the typical sense that Monday to Friday are working days. However,

the definitions of working days from 19:00-03:00 are slightly different. For the evening 1

and evening 2, periods workdays are defined as Monday to Thursday, which means 3

days for each weekend because it is sensible to treat Friday evening as the start of a week-

end. Additionally, before 23:00 on a Sunday can also be regarded as part of a weekend.

However, it may be logical to assume that the behaviour/life pattern for the night period

(23:00-3:00) on a Sunday is more similar to a workday. During late evenings/evening 2

on weekends eating out is still the second most common activity (Table 3) and so Sunday

evenings should not be treated as workdays. Therefore, the definition of workdays for the

night period is Sunday to Thursday. The analysis for holidays/public holidays applies the

same rule.

2. Only three weather variables are included in this model. Wind speed and relative humidity

are excluded as they have less impact on demand. In addition, the objectives of this

model are to examine the differences in response in the main weather factors between
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weekdays and weekends. Adding variables that have limited effect can overfit the model

and may lead to biased results. As a result, Model 2 only keeps three weather variables.

It is because: a) the results shown in Model 1 prove that humidity and wind speed have

the least and almost negligible effects on demand. A model including the two variables

would weaken the model 2) we tested the model with all five weather variables and their

interactions, which shows that with or without relative humidity and wind speed included,

the results for the other three variables remain almost the same. Therefore, the more

concise model with better explanatory power is employed.

In Model 2, the main coefficients of concern are βh
i and δhp . βh

i represents the difference

in demand between workdays and weekends/holidays caused by weather variable Wp,t. δhp in-

dicates the possible effects of weather variable Wp,t on weekends/holidays. Note that together

holidays plus weekends act as the reference category and that holidays are not separated from

weekends because less than 10 days in a year are treated as holidays. Results from the interac-

tion between the holiday dummy and weather factors may be biased due to the limited sample

size.

5 Results

5.1 General relationships between weather factors and demands

Analysing the weather sensitivities on periods of day basis will allow us to answer different

questions. First, do consumers change their behaviour alongside changes in weather and the sea-

sons? And if so, which weather variables affect the consumption behaviour most significantly?

Is there any particular period in which the effect of one specific weather factor dominates? The

weather effects on electricity consumption in Ireland do not reflect behaviour change related

to heating demand since natural gas is the main heating source in Ireland and electric heating
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appliance ownership is low, around 10% (CER, 2012a). Instead, the changes in demand reflect

how weather factors will affect households’ daily behaviour for electricity-intensive activities

such as lighting, cooking, and other household appliances (washing machines, dishwashers,

dryers, televisions, etc) and so will reflect both variation in household chores and activities as

well as whether people are at home or whether have gone outside or away from home.

As the models employ log-linear form, the coefficients describe the percentage change in

demand for a one unit increase in that variable. The table presents the estimated coefficients

from the models for the nine periods (Table 4).

5.1.1 Temperature

Temperature always has a negative effect on household electricity consumption. This is in line

with many previous research findings (Blázquez, Boogen and Filippini, 2013; Cosmo et al.,

2014) that daily electricity demand decreases when the daily temperature rises. This result holds

across all periods, not just for average daily consumption. The reduction in demand with rising

temperature could be caused by various drivers including enaging in more outdoor activities and

lower heating demand. Considering that the Irish heating system largely depends on natural gas

(CER, 2012b), with a higher possibility that the reduction from temperature is from spending

more time outside. By contrast, the reason for the negative effect on mornings (6:00-8:00)

may be different, since most households should be still asleep or in the bed. The negative sign

indicates that people tend to get up slightly later or spend less time on personal care and cooking

on warmer days. The response to temperature can be seen as the sensitivity of the activities in

this period to temperature change (warm/cold weather. Hence, a higher sensitivity represents

the activities/behaviour in that period are more likely to be outdoor activities. From Table 4,

it can be seen that night (23:00-03:00), and especially early morning (6:00-8:00) are far less

sensitive than other periods with less than a 2% reduction. The highest coefficient is in the early
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afternoon (12:00-15:00), which indicates that the activities in that period can be most sensitive

to warmer weather.

5.1.2 Rain

In terms of rainfall, our prior expectations were that higher rainfall could be associated with

an increase in electricity demand for all periods. It seems reasonable that the heavier it rains

the less likely that people would go outside. As expected, all periods show a negative rela-

tionship between rainfall and consumption, except for mornings (6:00-10:00) and late nights.

The reversed sign in the early mornings (6:00-8:00) may indicate that the households wake up

later when it is raining outside. Moreover, the electricity usage in mornings (8:00-10:00) and

late nights are rarely affected by rain. By the time many people have left home to work, while

those who stay at home may not be ready to go out immediately for shopping or exercises after

breakfasts. Relatively few households are awake after 23:00, most households tend to go to bed

earlier on workdays and even on weekends many households won’t stay up beyond midnight.

This assumption can be verified by the Time-Use Survey in Ireland (Economic and Social Re-

search Institute, 2005), which showed that more than 50% percent of people are sleeping at

23:00-23:59. The figure soars to 85% for 0:00-1:00.
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5.1.3 Sun

The results of sun duration suggest two clear patterns over the course of a day. The turning

point seems to be 15:00, which is consistent with the findings of Harold, Lyons and Cullinan

(2015) and Di Cosmo and O ’hora (2017). The more sunshine observed In that period, the

less electricity consumed by households. Before 1500 it has an opposite effect with the model

producing a positive coefficient. The positive effect may be due to the different nature of the

activities during the two periods. Since, as discussed, electricity consumption does not reflect

heating demand, the results would indicate that more indoor activities (e.g chores, DIY, garden-

ing) tend to occur over 6:00-15:00 whereas there was greater chance of outdoor activities (e.g.,

shopping, sports) occurring in the late afternoon and early evening. Furthermore, the larger co-

efficients in the early evening (17:00-21:00) reveal that for the half year that has sunshine in the

early evening (mainly late Spring and summer), willingness to go out is particularly sensitive to

sunshine during that period.

5.1.4 Humidity and wind speed

Relative humidity and wind speed show similar patterns in affecting residential electricity de-

mand. They increase demand for electricity for all periods after 10:00. In terms of wind speed,

it has limited impact on electricity demand in the early mornings (6:00-10:00) with less than

a 0.005% reduction in demand during 6:00-8:00 and with an insignificant coefficient at 8:00-

10:00. On the other hand, relative humidity has a negative relationship with consumption during

the same period. Humidity have a compounding effect with temperature, where air tempera-

ture with higher humidity may give a colder apparent temperature. However, all the impacts

from humidity and wind speed are of negligible magnitude with under 0.5% change in demand.

Therefore, these two variables will be removed in the following model where the focus is to

identify the differences between weekdays and weekends for each of the main weather factors.
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5.2 Behaviour difference between weekends and workdays

Based on the overview of the effects of the weather factors, this section attempts to identify

and answer the following questions: are there differences in demand between weekends and

workdays in weather sensitivities? What differences in daily routine between weekends and

workdays can cause any discrepancies? Estimated results are shown in Table 5.

5.2.1 Temperature

As expected, the results suggest that temperature have a negative effect on the demand among

both weekends and workdays of all periods. However, the exception is weekend early mornings.

The reason for this unexpected impact of temperature is not particularly clear. However, it may

be that while most families are asleep during that period, early birds are willing to get up earlier

on warmer weekend days. Of all periods, early weekend mornings (6:00-10:00) have the least

impact, which suggests that the early morning is the most insensitive period. The behaviour

during that period is robust and less likely to be changed by temperature.

Furthermore, weekends are in general more sensitive to temperature change than weekdays.

This difference can be explained by more activities occurring indoors. However, the difference

in the early evening (19:00-21:00) seems negligible. It could be explained by that limited ac-

tivities would occur during the post-dinner time on both weekends and workdays, since many

would enjoy an indoor relaxing time after dinner. The largest difference appears at night (23:00-

3:00), which is in line with expectations. People would be more likely to go out later and stay

out later on weekends/holidays, especially on warmer days, whereas people tend to go to sleep

earlier on workdays even on warmer days.
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5.2.2 Rainfall

The effects of rain represent to what percentage the electricity demand would change by the

rainfall. From the results it is possible to infer how flexible plans or activities are in a given

period. A period with higher sensitivity to rain that there may be more outdoor activities or

households prefer to go out during that period.

The midday (10:00-15:00) and early evening (19:00-21:00) periods on workdays are the

only time slots with greater sensitivities than their counterparts on weekends. It is noteworthy

that the sensitivities during the midday period (10:00-15:00) on weekdays are exceptionally

higher than any other period in either weekends or workdays. It indicates that stay-at-home

family members tend to go out during that period on weekdays. While on weekends, the house-

holds may not be able to go out early due to more chores and family care. This period actually

shows the largest gap between weekends and workdays, which indicates the large underlying

difference in daily routines between weekends and workdays are in the midday period. For

example, people might regularly go out on workdays while stay at home on weekends during

this period. Likewise, the significant high coefficients of over 0.1 are also found on weekend

mornings (8:00-10:00) and nights (23:00-3:00). The unusually high sensitivities on weekend

mornings may be due to more chores done or sports activities.

Interestingly, in spite of a smaller difference compared to the 10:00-15:00 period, workdays

in the early evening (19:00-21:00) are surprisingly more sensitive than on weekends, whereas

a plausible hypothesis would be that evenings should be more sensitive on weekends. It could

be a result of the timing of outdoor activities on weekdays since people would only be able to

go out during that period on weekdays while they could choose other time periods on weeknds.

In addition, households may have dinner at a slightly later period on weekends. For many,

this period may be post-dinner on workdays (19:00-21:00) but may actually be dinner time for

weekends. Therefore, whether there is rain or not may have a greater effect on workdays, due
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to the lower probability of going out in the evenings on workdays.

The only negative effects are for early mornings (6:00-10:00) on workdays. It is possible

that the heavier it rains, the earlier people may feel to leave houses to avoid the traffic jam,

although the effect significantly drops from -3.3% to -0.8% at 8:00-10:00. It is a solid proof

that the negative effect mainly comes from the behaviour of workers in the house since the effect

falls to nearly zero when it reaches the start of work hours.
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5.2.3 Sun

The prior expectation was that longer sun duration should be associated with decreased elec-

tricity demand, as people are more likely to go out on a sunny day. However, contrary to this

expectation, the opposite findings are found in the weekend mornings (6:00-12:00) and the

early mornings on workdays (6:00-8:00). The increased consumption in sunny early morn-

ings for both weekends and workdays could be partly explained by a relatively early wake-up

times. It may be that sunshine gives individuals the feeling of being energetic and increases the

possibility of going out later. This effect is especially clear on weekends since on workdays

people are more likely to maintain their routines in the early evenings and may not change their

behaviour easily in response to greater sunlight.

In the mornings, from 8:00 until 12:00, interesting and unusual differences between week-

ends and workdays appear. While sunshine hours now have a negative effect on workdays, the

positive effects continue on weekends during this period. The increased demand reverse the

common idea that families or individuals are more willing to spend time outside, especially on

a sunny weekend. However, this may be capturing an effect of preferences of specific activi-

ties/routines on weekend mornings. The positive results could be due to the fact that households

have propensities to carry out housework on weekend mornings, before heading out in the after-

noons. Additionally, some types of chores are more likely to give a rise to electricity consump-

tion on a sunny day. For example, roughly 30% of households do not own a dryer (Leahy, Lyons

and Walsh, 2012), so they would choose to do laundry on a sunny day and even households with

dryers might choose to reduce their bills and dry their clothes outside. Thus, the positive ef-

fects may reflect the behavioural habits on weekend mornings. It should be highlighted that the

positive impacts are decreasing from the 8:00-10:00 morning period and becomes insignificant

by mid-afternoon (12:00-15:00), which is the only insignificant period. The reason may be that

on weekends, family meals are common at lunchtime and sun duration does not affect these be-
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haviour patterns. After that point, sun sensitivities on weekends gradually increase from -7.6%

to -9% during the 15:00—21:00 period. This may indicates more sun-related outdoor activities

later on weekend days, compared to “housework mornings”.

On the other hand, negative effects are seen during almost every weekday period. However,

it is still important to note that compared to a relatively constant sensitivity of -1.8% in the

period 8:00-15:00 on workdays, a clear increasing pattern is shown for the period after 15:00.

The sensitivities are much higher than during the first half of day, with values over 5%. This

provides strong evidence that similar to behavioural patterns on weekends, afternoons are gen-

erally more flexible on workdays. Higher negative coefficients imply that the households have

more free or flexible time and are more likely to go out. Nevertheless, it should be pointed out

that a weaker sensitivity to sunshine duration does not necessarily mean that people are less

likely to go out during that period. Unlike for rain, whether or not there is sunshine would

generally not affect people’s movements or activities. For instance, if one is used to shopping

for groceries for the family in the morning, he/she would not cancel or delay the shopping just

because of cloudy weather. Therefore, a relatively smaller sensitivity should be interpreted as

a higher possibility that one’s time is occupied by regularly scheduled plans, which could be

either indoors or outdoors.

Similar to the results shown in the rain effects above, early evening (19:00-21:00) is the only

period when workdays are more sensitive than holidays. It should be kept in mind that only half

of a year (mainly late spring and summer) has sunshine during the period. The findings in

this period therefore largely limit and reflect the behaviour in summer. As suggested in the rain

section, only in this evening period are people still able and more willing to go out on workdays,

compared to late evenings and nights. Another interesting finding is that sun duration in this

period (19:00-21:00) of workdays has the largest effect among all other sunshine effects on

encouraging people to go out. Note that as no sunshine exists after 21:00, no sun effect can be
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tested for those periods.

6 Discussion and conclusion

This study set out to examine the behaviour of residential customers exposed to different weather

conditions in different periods of a day using unbalanced panel data from the Irish Smart Meter-

ing Electricity Consumer Behavioural Trial (CER, 2012a). To conduct the analysis, half-hourly

electricity consumption data from 3827 household meters over one year were aggregated into

daily usage for every period of a day. Together with the weather variables, fixed-effects models

with robust standard errors clustered at the household level were used to control for unob-

served household-specific factors, which gives a better understanding of households’ response

to weather factors at different times of the day.

Overall, this chapter has demonstrated from the first model that in general although tem-

perature has robust and relatively flat effects on electricity demand across all periods, rain and

sunshine duration show greater potential to affect individual behaviour and daily routines. The

demand response to temperature could be interpreted as warm/cold sensitivities of the activi-

ties in that period. As expected, the periods from 10:00-21:00 present higher sensitivities than

early mornings and nights, since more activities occur in those periods. Although night time

periods (21:00-3:00) have smaller sensitivities than daytime, they are still much more sensitive

than early mornings. Not many activities occur over 6:00-10:00 when most people are getting

up and going off to work. The rainfall sensitivity may act as an indicator of whether outdoor

activities occur more often in that period. It should be noted that the results mainly reflect the

behaviour of the households who are in the house during day-time, and the proportion of these

households account for over 68% of the sample. One of the lowest rainfall sensitivities appears

at 12:00-15:00 which is cooking and lunchtime that the possibility of going outdoor would be

relatively small. This finding is consistent with the Irish Time Use Survey (Table 3) that for
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those who are not working (61 82%), eating is one of the main activities. Apart from the similar

pattern of lower sensitivities at the start and end of a day, the relatively high coefficients at two

periods 10:00-12:00 and 15:00-17:00 reveal that individuals could be more used to or prefer

going out during these periods. On the other hand, the impact of sunshine on households’ be-

haviour differs from rainfall, although both affect the chances of going out. Negative sunshine

sensitivities represent the time availability and willingness to go out of households, in other

words, how flexible the period so that one can response to good weather. The results strongly

support the interpretation that the sensitivity gradually increases from late afternoon (15:00) and

peaks in early evening (19:00-21:00), compared to the small and positive sensitivities shown in

the mornings.

The responses to weather factors for weekends and workdays are tested in the second model.

The differences are caused by different household patterns between weekends and workdays. In

terms of temperature sensitivities, weekends are more sensitive than workdays because house-

holds have more available time to spend, while the sensitivity difference is minimal. The biggest

difference is seen on the night period (23:00-3:00), where people would care less about the cold

weather and be more likely to go out on weekends. Moreover, the rainfall results suggest two

clear patterns: before 15:00 workdays are more sensitive than weekends, although the effects

of workday mornings are insignificant; after 15:00, weekends show higher sensitivities than

workdays, apart from 19:00-21:00. The findings imply that more rain-sensitive activities occur

before mid-afternoon during weekdays, while these activities (e.g. outdoor activities) occur at

15:00 afterward in general. The difference in life patterns between workdays and weekends are

also revealed by sun duration. In the mornings (6:00-12:00), while sunlight has positive effects

on weekends: the longer the duration of sunshine, the greater the consumption during those

periods on the weekend. It could be associated with more sun-sensitive chores on the weekend

mornings. The pattern changes after 15:00 – households seem more flexible at this time on
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weekends. And both weekends and workdays reveal increasing sensitivities during that period,

especially workdays, which soars after 15:00 from -1.6% to a maximum of 13%. One espe-

cially interesting finding is that early evening (19:00-21:00) is the one period when weekends

are less sensitive to all weather factors than workdays. This may be unexpected but could be

explained by the fact: Compared to weekends, early evenings on weekdays might be the most

flexible time where outdoor activities are possible, especially for those employed households,

so the period is more sensitive to weather.

The study could be instructive for understanding household energy consumption behaviour.

First, the weather sensitivity analysis provides an overview of households’ behaviour/life pat-

tern without the assistance of a survey. Especially, sunshine and rain sensitivities may be con-

sidered as proxies of whether a period is with more flexibility and whether people tend to leave

home (or use less) at certain periods respectively. Furthermore, analysing the differences in

patterns between weekdays and weekends can help identify which periods on weekends or

workdays are more sensitive and flexible. With more knowledge of people’s life pattern among

different periods the tariff structure design could be more efficient in shifting energy demand.

Secondly, with deeper analysis on individual level, for example, combing the attitude and be-

haviour data in the survey with the weather sensitivity patterns, it could create an initial profile

of a family’s daily activities. For instance, if a family displays relatively higher weather sensi-

tivities, this may reflect greater flexibility in their living patterns. A target tariff aimed at those

families may help shift peak electricity demand. These potential implications lead to possible

future research in improving residential customers’ consumption profiles. It would be interest-

ing to categorise the households by their weather sensitivities and to examine if the weather

sensitivities are associated with certain demographic factors, which may provide a cheaper and

faster means of understanding a household’s social-economic profile. Data mining tools are

helpful in this case to cluster and classify the residential customers, which offers a new angle
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to summarise and depict customers’ activity patterns by using only weather and consumption

data. By using only weather indicators this approach can be faster and simpler than traditional

methods —such as surveys or questionnaires — in identifying which period are more flexible

at the household level.
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Appendix

Weather dataset comparison

We investigated which datasets could better reflect the consumption responses to weather changes

through correlation analysis. First, we calculated the correlation coefficients of each house-

hold to the weather variables separately. Secondly, the average correlation coefficients for the

weather factors were obtained for each weather dataset and shown in Figure 1. The weighted

method seems the most balanced dataset that is with higher correlations across different weather

variables.

Fig. 1 Average correlations between weather variables and household demands
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