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Genetic architecture of host proteins involved
in SARS-CoV-2 infection
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Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or med-

iating the maladaptive host response to COVID-19 can help to identify new or repurpose existing

drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins

among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA

sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of

97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL)

and 38 encoding current drug targets. Systematic characterization of pQTLs across the phe-

nome identified protein-drug-disease links and evidence that putative viral interaction partners

such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization

of new drug development programmes and repurposing of trials to prevent, treat or reduce

adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an

interactive webserver (https://omicscience.org/apps/covidpgwas/).
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The pandemic of the novel coronavirus SARS-CoV-2
infection, the cause of COVID-19, is causing severe glo-
bal disruption and excess mortality1,2. While ultimately

strategies are required that create vaccine-derived population
immunity, in the medium term there is a need to develop new
therapies or to repurpose existing drugs that are effective in
treating patients with severe complications of COVID-19, and
also to identify agents that might protect vulnerable individuals
from becoming infected. The experimental characterization of
332 SARS-CoV-2-human protein–protein interactions and their
mapping to 69 existing FDA-approved drugs, drugs in clinical
trials, and/or preclinical compounds3 points to new therapeutic
strategies, some of which are currently being tested. The mea-
surement of circulating host proteins that associate with COVID-
19 severity or mortality also provides insight into potentially
targetable maladaptive host responses with current interest being
focused on the innate immune response4, coagulation5,6, and
novel candidate proteins7.

Naturally occurring sequence variation in or near a human
gene that is encoding a drug target and affecting its expression or
activity can be used to provide direct support for drug mechan-
isms and safety in humans. This approach is now used by major
pharmaceutical companies for drug target identification and
validation for a wide range of non-communicable diseases, and to
guide drug repurposing8,9. Genetic evidence linking molecular
targets to diseases relies on our understanding of the genetic
architecture of drug targets. Proteins are the most common
biological class of drug targets and advances in high-throughput
proteomic technologies have enabled systematic analysis of the
“human druggable proteome” and genetic target validation to
rapidly accelerate the prioritization (or de-prioritization) of
therapeutic targets for new drug development or repurposing
trials.

Identification and in-depth genetic characterization of proteins
utilized by SARS-CoV-2 for entry and replication as well as those
proteins involved in the maladaptive host response will help to
understand the systemic consequences of COVID-19. For

example, if confirmed, the reported protective effect of blood
group O on COVID-19-induced respiratory failure10 might well
be mediated by the effect of genetically reduced activity of an
ubiquitously expressed glycosyltransferase on a diverse range of
proteins.

In this study, we integrate large-scale genomic and aptamer-
based plasma proteomic data from a population-based study of
10,708 individuals prior to any SARS-CoV-2 infection or
COVID-19 to characterize the genetic architecture of 179 host
proteins relevant to COVID-19. We identify genetic variants that
regulate host proteins interacting with SARS-CoV-2, or which
may contribute to the maladaptive host response. We deeply
characterize protein quantitative trait loci (pQTLs) in close
proximity to protein-encoding genes (±500 kb window around
the gene body), cis-pQTLs, and use genetic score analysis and
phenome-wide scans to interrogate potential consequences for
targeting those proteins by drugs. Our results enable the use of
genetic variants as instruments for drug target validation in
emerging genome-wide association studies (GWAS) of SARS-
CoV-2 infection and COVID-1910,11.

Results
Coverage of COVID-19-relevant proteins. We identified
COVID-19-relevant candidate proteins based on different layers
of evidence to be involved in the pathology of COVID-19: (1) two
human proteins related to viral entry12, (2) 332 human proteins
shown to interact with viral proteins3, (3) 26 proteomic markers
of disease severity7, and (4) 54 protein biomarkers of adverse
prognosis, complications, and disease deterioration4–6,13 (Fig. 1
and Supplementary Data 1). Of the 409 proteins prioritized, 179
were detectable by the currently most-comprehensive proteomic
assay using an aptamer-based technology (SomaScan©), including
28 recognized by more than one aptamer (i.e., 179 proteins
recognized by 190 aptamers). We further included com-
plementary data from proximity extensions assays (Olink©) for
32 out of the 179 candidate proteins in a subset of 485 Fenland

332 Proteins identified as interaction
partners withSARS-CoV-2 4,775 Proteins measured

using SOMAscan v4
409 Candidate

proteins
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Fig. 1 Flowchart of the identification of candidate proteins and coverage by the SomaScan v4 platform within the Fenland cohort.More details for each
protein targeted are given in Supplementary Data 1.
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study individuals (Supplementary Data 1). Of these 179 proteins,
111 (Supplementary Data 1) were classified as druggable proteins,
including 32 by existing or developmental drugs14, and another
22 highlighted by Gordon et al. as interacting with SARS-CoV-2
proteins3. To simplify the presentation of results we introduce the
following terminology: we define a protein as a unique combi-
nation of UniProt entries, i.e., including single proteins and
protein complexes. We further define a protein target as the gene
product recognized by a specific aptamer, and, finally, an aptamer
as a specific DNA-oligomer designed to bind to a specific protein
target.

Local genetic architecture of protein targets. We successfully
identified 220 DNA sequence variants acting in cis for 97 proteins
recognized by 106 aptamers (Fig. 2 and Supplementary Fig. 1
and Data 2). For 45 of these proteins, no pQTLs had previously
been reported. Of the nine proteins recognized by more than one
aptamer, sentinel sequence variants were concordant (identical or
in high linkage disequilibrium (LD) r² > 0.8) between aptamer
pairs or triplets for seven proteins. Minor allele frequencies
ranged from 0.01% to 49.9%, and the variance explained ranged
from 0.3% to 70.1% for all cis-acting sentinel variants and 0.3% to
70.9% for cis-acting variants including 2–9 identified secondary
signals at 57 targets, similar to what was observed considering all
cis- and an additional 369 trans-acting variants identified for 98
aptamers (0.4–70.9%). Among the 97 proteins, 38 are targets of
existing drugs, including 15 proteins (PLOD2, COMT, DCTPP1,
GLA, ERO1LB, SDF2, MARK3, ERLEC1, FKBP7, PTGES2,
EIF4E2, MFGE8, IL17RA, COL6A1, and PLAT) (eight with no
known pQTL) that were previously identified3 as interacting with
structural or non-structural proteins encoded in the SARS-CoV-2
genome and 16 proteins (CD14, F2, F5, F8, F9, F10, FGB, IL1R1,
IL2RA, IL2RB, IL6R, IL6ST, PLG, SERPINC1, SERPINE1, and
VWF) (seven with no known pQTL) that encode biomarkers
related to COVID-19 severity7, prognosis, or outcome.

Drug targets are predicted to act specifically within a clearly
defined pathway, i.e., being at most part of a known protein
cascade. To classify such “vertical” pleiotropy and distinguish
from “horizontal” pleiotropy, i.e., pQTLs associated with proteins
across distinct pathways, we investigated associations of identified
lead cis-pQTLs with all measured aptamers while mapping those
to specific pathways using GO-terms (N= 4776 unique protein
targets, see Methods). For 38 cis-pQTLs mapping to druggable

targets, we found evidence for (a) protein-specific effects for 23
regions, (b) possible vertical pleiotropy for six, and (c) horizontal
pleiotropy for nine lead cis-pQTLs. A similar distribution across
those categories was seen for the remaining cis-pQTLs (Fishers
exact test p-value= 0.49).

To investigate dependencies between host proteins predicted to
interact with SARS-CoV-2 and those related to the maladaptive
host response we computed genetic correlations for all proteins
with at least one cis-pQTL and reliable heritability estimates (see
Methods). Among 86 considered proteins, we identified a highly
connected subgroup of 24 proteins including 19 SARS-CoV-2-
human protein interaction partners (e.g., RAB1A, RAB2A,
AP2A2, PLD3, KDEL2, GDP/GTP exchange protein, PPT1,
GT251, or PKP2) and five proteins related to cytokine storm (IL-
1Rrp2 and IL-1Ra), fibrinolysis (PAI-1), coagulation (coagulation
factor X(a)), and severity of COVID-19 (GSN (gelsolin)) (Fig. 3).
The cluster persisted in different sensitivity analyses, such as
omitting highly pleiotropic genomic regions (associated with >20
aptamers) or lead cis-pQTLs (Supplementary Fig. 2). Manual
curation highlighted protein modification and vesicle trafficking
involving the endoplasmic reticulum as highly represented
biological processes related to this cluster. Among these proteins,
nine are the targets of known drugs (e.g., COMT, PGES2,
PLOD2, ERO1B, XTP3B, FKBP7, or MARK3). The high genetic
correlation between these proteins indicates shared polygenic
architecture acting in trans, which is unlikely to be driven by
selected pleiotropic loci identified in the present study.

We further identified strong genetic correlations (|r| > 0.5)
between smaller sets of proteins related to COVID-19 severity,
and host proteins relevant to viral replication such as between IL-
6-induced proteins (SAA1, SAA2, and CD14) and fibulin 5
(FBLN5).

A tiered system for trans-pQTLs. We created a pragmatic, tiered
system to guide selection of trans-pQTLs for downstream ana-
lyses. We defined as (a) “specific” trans-pQTLs those solely
associated with a single protein or protein targets creating a
protein complex, (b) “vertically” pleiotropic trans-pQTLs those
associated only with aptamers belonging to the same common
biological process (GO-term), and (c) as “horizontally” pleio-
tropic trans-pQTLs all remaining ones, i.e., those associated with
aptamers across diverse biological processes. We used the entire
set of aptamers available on the SomaScan v4 platform, N= 4979,
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to establish those tiers. Among 451 SNPs acting solely as trans-
pQTLs, 114 (25.3%) were specific for a protein target, 29 (6.4%)
showed evidence of vertical pleiotropy, and 308 (68.3%) evidence
of horizontal pleiotropy, indicating that trans-pQTLs exert their
effects on the circulating proteome through diverse mechanisms.

An apparent source of horizontal pleiotropy included possible
artifacts of the measurement procedure. The most pleiotropic
trans-pQTL (rs4658046, minor allele frequency (MAF)= 0.39)
showed associations with over 2000 aptamers and is in high LD
(r2= 0.99) with a known missense variant at CFH (rs1061170).
This missense variant was shown, among others, to increase
DNA-binding affinity of complement factor H15, which may
introduce unspecific binding of complement factor H to a variety
of aptamers, being small DNA-fragments, and may therefore
interfere with the method of measurement more generally, rather
than presenting a biological effect on these proteins. A similar
example is the trans-pQTL rs71674639 (MAF= 0.21) associated
with 789 aptamers and in high LD (r²=0.99) with a missense
variant in BCHE (rs1803274).

Sample handling is an important contributor to the identifica-
tion of non-specific trans-pQTL associations. Blood cells secrete a

wide variety of biomolecules, including proteins, following
activation or release such as consequence of stress-induced
apoptosis or lysis. Interindividual genetic differences in blood cell
composition can hence result in genetic differences in protein
profiles depending on sample handling or delays in time-to-spin.
A prominent example seen in our results and reported in a
previous study16 is variant rs1354034 in ARHGEF3, associated
with over 1000 aptamers (on the full SomaScan platform).
ARHGEF3 is a known locus associated with platelet counts17 and
a master regulator of megakaryopoiesis18, either genetically
determined higher platelet counts or higher susceptibility to
platelet activation may result in the secretion of proteins into
plasma during sample preparation. While we report such
examples, the extremely standardized and well controlled sample
handling of the contemporary and large Fenland cohort has
minimized the effects of delayed sample handling on proteomic
assessment, as compared to historical cohorts or convenience
samples such as from blood donors, evidenced by the fact
that previously reported and established sample handling related
loci, such as rs62143194 in NLRP1216 are not significant in
our study.
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We identified a few variants with evidence for vertical
pleiotropic effects, including rs2289252 a cis-pQTL for coagula-
tion factor XI, which was specifically associated (p < 5 × 10−8)
with members of the coagulation cascade such as Kinigon 1,
alpha-2-macroglobulin, kallikrein B, plasma (Fletcher factor) 1,
and thrombin.

Finally, for 27 out of 98 aptamers with at least one cis- and
trans-pQTL, we identified no or only very weak evidence for
horizontal pleiotropy, i.e., associations in trans for no more than
one aptamer, suggesting that those might be used as additional
instruments to genetically predict protein levels in independent
cohorts for causal assessment.

Host factors related to candidate proteins. We investigated host
factors that may explain variance in the plasma abundances of
aptamers targeting high-priority candidate proteins using a var-
iance decomposition approach (see Methods). Genetic factors
explained more variance compared to any other tested host fac-
tors for 63 out of 106 aptamers with IL-6 sRa, collagen a1(VI), or
QSOX2 being the strongest genetically determined examples
(Fig. 4). The composition of non-genetic host factors contributing
most to the variance explained appeared to be protein-specific
(Fig. 4). For SMOC1 and Interleukin-1 receptor-like 1, for
example, sex explained 23.8% and 17.9% of their variance,
respectively, indicating different distributions in men and women.
Other examples for single factors with large contributions
included plasma alanine aminotransferase (15.4% in the variance
of NADPH-P450 oxidoreductase) or age (14.2% in the variance of
GDF-15/MIC-1). We observed a strong and diverse contribution
from different non-genetic factors for proteins such as LG3BP,
SAA, IL-1Ra, or HO-1 implicating multiple, in part modifiable,
factors with independent contributions to plasma levels of those
proteins.

Patients with multiple chronic conditions are at higher risk of
getting severe COVID-19 disease2,19,20 and we investigated the
influence of disease susceptibility on protein targets of interest
using genetic risk scores (GRS) for major metabolic (e.g., type 2
diabetes, body mass index (BMI), and waist-to-hip ratio (WHR)),

respiratory (e.g., asthma), and cardiovascular (e.g., coronary
artery disease (CAD)) phenotypes (Supplementary Fig. 3).

We identified positive associations between the GRS for lung
function and CAD with plasma abundances of the viral
interaction partner QSOX2. However, as described below, these
disease score to protein associations were likely driven by genetic
confounding. Specifically, (cis) variants in proximity (±500 kb) to
the protein-encoding gene (QSOX2) were genome-wide signifi-
cant for forced expiratory volume (FEV1) and forced vital
capacity (FVC), and exclusion of this region from the lung
function genetic score abolished the score to QSOX2 association.
None of the three lead cis-pQTLs were in strong LD with the lead
lung function variant (r² < 0.4) and genetic colocalization of
QSOX2 plasma levels and lung function21 showed strong
evidence for distinct genetic signals (posterior probability of near
100%). The association with the CAD-GRS was attributed to the
large contribution of the ABO locus to plasma levels of QSOX2,
and exclusion of this locus from the CAD score led to the loss of
association with QSOX2.

The GRSs for WHR (N= 11), estimated glomerular filtration
rate (eGFR; N= 7), and CAD (N= 4) were associated with higher
as well as lower abundance of different aptamers, and the asthma-
GRS was specifically and positively associated with IL1RL1.
Individuals with genetic susceptibility to a higher WHR had
higher abundances of four putative viral interaction partners
(LMAN2, ETFA, TBCA, and SELENOS), and lower levels of
albumin, GSN, and ITIH3. Lower plasma abundances of GSN
have been repeatedly associated with severity of COVID-197,22.
The association with plasma abundances of LMAN2 (or VIP36)
was shared with the eGFR-GRS but in opposing direction
(inversely). VIP36 is shed from the plasma membrane upon
inflammatory stimuli and has been shown to enhance phagocy-
tosis by macrophages23. The higher plasma levels of VIP36,
suggesting an enhanced immune response, among individuals
with genetically higher WHR and lower kidney function appear
contradictive as a higher WHR, indicating abdominal adiposity,
and lower kidney function are considered as risk factors for
COVID-19.
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Integration of gene expression data. Plasma abundances of
proteins are influenced by multiple processes, including expres-
sion of the encoding gene in diverse tissues. To test whether
pQTLs are also gene expression QTLs, we integrated predicted
gene expression data across five tissues of direct or indirect
relevance to SARS-CoV-2 infection and COVID-19 (lung, whole
blood, heart - left ventricle, heart - atrial appendage, and liver)
from the GTEx project24,25 (version 8) using PrediXcan26. For
100 out of 102 high-priority protein targets we could establish
genetically anchored gene prediction models, the protein-
encoding gene was the strongest model in 31 (31%) cases in at
least one tissue. Nevertheless, at 65 loci predicted gene expression
of the protein-encoding gene and protein abundance were sig-
nificantly associated (p < 0.05) with varying tissue specificity
(Fig. 5), similar to previous reports16,27. Predicted gene expres-
sion of IL17RA, EIF4E2, FKBP7, SERPINC1, EROLB1 (all drug-
gable targets), POR, RAB2A, KDELC2, C1RL, AES, and ACADM,
for example, was consistently associated with corresponding
protein levels in plasma across at least three tissues, whereas gene

expression in lung-only was associated with plasma levels of
SAA1, SAA2, and SERPINA10.

For the majority of protein targets PrediXcan selected genes
other than the protein-encoding gene as most strongly associated
with pQTL data. Testing for enriched biological terms28 across all
significantly associated predicted gene expression models (p <
10−6, to account for multiple testing) in lung highlighted “signal
peptide” (false discovery rate (FDR)= 2.5 × 10−5), “glycopro-
teins” (FDR= 1.7 × 10−4), or “disulfide bonds” (FDR= 2.8 ×
10−4) as relevant processes. These are involved in the transport
and post-translational modification of proteins before secretion
and highlight the complexity of plasma proteins beyond a linear
dose–response relationship with tissue abundance of the
corresponding mRNA.

Cross-platform comparison. Protein measurements can be
affected by the presence of protein altering variants (PAVs)
changing binding epitopes and we tested cross-platform
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association with the aptamer listed on the x-axis. Red indicates nominally significant (p < 0.05) positive z-scores (y-axis) and blue, nominally significant
inverse z-scores for associated aptamers. Protein-encoding genes are highlighted by larger black circles. Orange background indicates all examples of
significant associations between the protein-encoding gene and protein abundance in plasma regardless if this was the most significant one. Top genes
were annotated if those differed from the protein-encoding gene.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19996-z

6 NATURE COMMUNICATIONS |         (2020) 11:6397 | https://doi.org/10.1038/s41467-020-19996-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


consistency of identified pQTLs using data on 33 protein targets
measured across 12 panels using Olink’s proximity extension
assays, which rely on polyclonal antibodies, among 485 partici-
pants of the Fenland study. PAVs can be expected to affect only a
subset, if any, of the binding epitopes targeted by the different
antibody populations.

We compared effect estimates for 29 cis- and 96 trans-pQTLs
based on a reciprocal look-up across both platforms (see Methods
and Supplementary Data 5). We observed a strong correlation of
effect estimates among 29 cis-pQTLs (r= 0.75, Supplementary
Fig. 4) and slightly lower correlation for trans-pQTLs (r= 0.54)
indicating good agreement between platforms for this specific
subset of proteins. In detail, 36 pQTLs (30%) discovered using the
far larger SOMAscan-based effort were replicated (p < 0.05 and
directionally consistent) in the smaller subset of participants with
overlapping measurements.

We identified evidence for inconsistent lead cis-pQTLs for two
of these 33 protein targets. The lead cis-pQTL for GDF-15 from
SomaScan (rs75347775) was not significantly associated with
GDF-15 levels measured using the Olink assay despite a clear and
established signal in cis for the Olink measure29 (rs1227731,
beta=0.59, p < 6.5 × 10−16). However, rs1227731 was a secondary
signal for the SomaScan assay (beta=0.29, p < 5.8 × 10−66)
highlighting the value of conditional analyses to recover true
signals for cases where these are “overshadowed” by potential
false positive lead signals caused by epitope effects. Another
protein, the poliovirus receptor (PVR), did not have a cis-pQTL
in the SomaScan but in the Olink-based discovery (rs10419829,
beta= -0.84, p < 2.9 × 10−33), which in the context of an
observational correlation of r= 0.02 suggests that the two
technologies target different protein targets or isoforms. A similar
example is ACE2, the entry receptor for SARS-CoV-2, with a
correlation of r= 0.05 between assays and for which we identified
only trans-pQTLs with evidence for horizontal pleiotropy
(Supplementary Data 3).

The SCALLOP consortium investigates genetic association data
focused on Olink protein measures, and can be a useful and
complementary resource for the subset of proteins of interest that
are captured (https://www.olink.com/scallop/).

Drug target analysis. We identified pQTLs for 105 COVID-19-
relevant proteins, including 75 with at least one cis-pQTL, already
the target of existing drugs or known to be druggable14. These cis-
pQTLs can be used to try and emulate targeting of those proteins
as treatment for COVID-19, once large and robust GWAS results
on COVID-19 related outcomes become available, e.g., to care-
fully test whether patients requiring hospitalization differ from
mild cases by the frequency of protein-increasing/decreasing
alleles. Since (risk) alleles are randomly allocated during meiosis
and inherited independent of virus exposure, they represent the
effects of life-long lower or higher plasma protein levels, which
may confer protection from or higher susceptibility to severe
COVID-19. For example, one target identified through analysis of
host–virus protein interactions is prostaglandin E synthase 2
(PGES2) involved in prostaglandin biosynthesis. Non-steroidal
anti-inflammatory drugs (NSAIDs) are also known to suppress
synthesis of prostaglandins and although the evidence is currently
weak, concerns have been raised that NSAIDs may worsen out-
look in patients with COVID-1930. The cis-pQTLs we identified
for PGES2 might be useful to explore this further.

Among the 105 proteins, 18 are targets of licensed or clinical
phase compounds in the ChEMBL database. Thirteen of these were
targets of drugs affecting coagulation or fibrinolytic pathways and
five were targets of drugs influencing the inflammatory response.
Drugs mapping to targets in the coagulation system included

inhibitors of factor 2 (e.g., dabigatran and bivalirudin), factor 5
(drotrecogin alfa), factor 10 (e.g., apixaban, rivaroxaban), von
Willebrand factor (caplacizumab), plasminogen activator inhibitor
1 (aleplasinin), and tissue plasminogen activator. Drugs mapping to
inflammation targets included toclizumab and satralizumab
(targeting the interleukin-6 receptor), brodalumab (targeting the
soluble interleukin-17 receptor), and anakinra (targeting
interleukin-1 receptor type 1). Two targets with pQTLs (catechol
O-methyltransferase and alpha-galactosidase-A) were identified as
potential virus–host interacting proteins. The former is the target
for a drug for Parkinson’s disease (entacapone) and the latter is
deficient in Fabry’s disease, a lysosomal disorder for which
migalastat (a drug that stabilizes certain mutant forms of alpha-
galactosidase-A) is a treatment.

Another 24 protein targets have no current licensed medicines
but are deemed to be druggable including multiple additional
targets related to the inflammatory response, prioritized by
untargeted proteomics analysis of COVID-19 patient plasma
samples. These included multiple components of the complement
cascade (e.g., Complement C2, Complement component C8,
Complement component C8 gamma chain, and Complement
factor H). A number of inhibitors of the complement cascade are
licensed (e.g., the C5 inhibitor eculizumab) or in development,
although none target the specific complement components
prioritized in the current analysis.

Linking cis-pQTLs to clinical outcomes. To systematically assess
phenotypic consequences, including possible adverse effects, of
the identified cis-pQTLs we used three different strategies.

We first tested whether any of the 220 cis-pQTLs or proxies in
high LD (r² > 0.8) have been reported in the GWAS Catalog and
identified links between genetically verified drug targets and
corresponding indications for lead cis-pQTLs at F2 (rs1799963
associated with venous thrombosis31), IL6R (rs2228145 with
rheumatoid arthritis32), and PLG (rs4252185 associated with
CAD33).

To systematically evaluate whether higher plasma levels of
candidate proteins are associated with disease risk, we tested GRS
(cis-GRS) for all 106 aptamers for their associations with 633
ICD-10 coded outcomes in the UK Biobank. We identified nine
significant associations (false discovery rate <10%), including the
druggable example of a thrombin-cis-GRS (2 cis-pQTLs as
instruments) and increased risk of pulmonary embolism (ICD-
10 code: I26) as well as phlebitis and thrombophlebitis (ICD-10
code: I80) (Supplementary Data 6).

To maximize power for disease outcomes, include clinically
relevant risk factors, and allow for variant-specific effects, we
complemented the phenome-wide strategy with a comprehensive
look-up for genome-wide significant associations in the MR-Base
platform34.

Out of the 220 variants queried, 74 showed at least one
genome-wide significant association (Fig. 6), 20 of which were cis-
pQTLs for established drug targets. We obtained high posterior
probabilities (PP > 75%) for a shared genetic signals between 25
cis-pQTLs and at least one phenotypic trait using statistical
(conditional) colocalization (Fig. 6 and Supplementary Data 7).
Among these was rs8022179, a novel cis-pQTL for microtubule
affinity-regulating kinase 3 (MARK3), a regional lead signal for
monocyte count and granulocyte percentage of myeloid white
cells17. The variant showed associations with higher plasma levels
of MARK3 and monocyte count and therefore suppression of
MARK3 expression with protein kinase inhibitors such as
midostaurin may affect the protein host response to the virus.
The important role of monocytes and macrophages in the
pathology of COVID-19 has been recognized4, and a range of
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immunomodulatory agents are currently evaluated in clinical
trials, with a particular focus on the blockade of IL-6 and IL-1β.
Our findings indicate that proteins utilized by the virus itself,
such as MARK3, SMOC1, or IL-6 receptor, may increase the
number of innate immune cells circulating in the blood and
thereby contribute to a hyperinflammatory or hypercoagulable
state. Stratification of large COVID-19 patient populations by cis-
pQTL genotypes that contribute to stimulation/repression of a
specific immune signaling pathway is one potential application of
our results. However, such investigations would need to be large,
i.e., include thousands of patients, and results need to be
interpreted with caution as targeting those proteins can have
effects not anticipated by the genetic analysis, which cannot
mimic short term and dose-dependent “drug” exposure.

We observed general consistency among phenotypic traits
colocalizing with cis-pQTLs, i.e., traits were closely related and
effect estimates were consistent with phenotypic presentations
(Supplementary Data 7 and Fig. 6). For instance, rs165656, a lead
cis-pQTL increasing catechol o-methyltransferase plasma abun-
dances, is a regional lead variant for BMI35 and specifically
colocalised with adiposity related traits, i.e., inversely associated
with overall measures of body size such as BMI, weight, and fat-
free mass. In general, phenotypic characterization of potential
genetic instruments to simulate targeting abundances or activities
of proteins can help to distinguish those with narrow and well-
defined or target-specific from those with undesirable or broad
phenotypic effects. Notable exceptions included the IL-6 receptor
variant rs2228145, for which the protein increasing C allele was

A
P

2A
2

C
at

ec
ho

l O
−m

et
hy

ltr
an

sf
er

as
e

C
ol

la
ge

n 
a1

(V
I)

F
K

B
P

7

G
lu

ta
th

io
ne

 p
er

ox
id

as
e

G
R

PE
1

IF
4E

2

KDEL2

MARK3

MFGM

MIC−1

NADPH−P450 Oxidoreductase

NPTX1

OFUT1PLOD2

QSOX2
RAB1ARAB2ASDF2SMOC1XTP3B

IT
IH

3

pr
ot

ei
n 

Z 
in

hi
bi

to
r

Tra
ns

fer
rin

Apo A−I
C1rC1sCO8G

Factor B

G
elsolin

H
aptoglobin, M

ixed Type

H
P

T

IgGIT
I heavy chain H

4

CRP

Coagulatio
n Facto

r V

Coagulatio
n Facto

r X
I

Coagulation factor X
III

Coagulation factor XIII BSVEP1SVEP1VWA1

Angiostatin

D−dimer
Fibrinogen

Fibrinogen g−chain dimer
PAI−1

Plasminogen

Protein C

Prothrombin

Thrombin

IL−1 R4

IL−1 sRI
IL−1 sR

II
IL−1R

a
IL−1R

rp2
IL−2 sR

a
IL−2 sR

b
IL−6 sR

a

IL−7 R
a

0

0.5

1

P
P

 s
ha

re
d

si
gn

al

−40

−20

0

20

40

si
gn

(β
)  x  −

lo
g 1

0(p
−

va
lu

e)

SARS-CoV
-2

- H
um

an
P

P
I

ytirevesesaesiD
no

it
al

ug
ao

C

F
ib

rin
o l

ys
is

Cyto
kin

e sto
rm

Respiratory
Inflammatory
Cardiovascular
Hematological
Anthropometry
Bone
Endocrine
Eye

GIT
Cancer
Medication
Biomarker
Psychosocial
Lifestyle
Misc
No coloc. pos.

Fig. 6 Circos plot summarizing genome-wide significant associations between 74 cis-pQTLs and 239 traits34 in the inner ring and results from
statistical colocalization in the outer ring. The dashed line in the outer ring indicates a posterior probability of 75% of shared genetic signal between the
protein and a phenotypic trait. Protein targets are classified on the basis of their reported relation to SARS-CoV-2 and COVID-19. Each slice contains any
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inversely associated with the risk of coronary heart disease and
rheumatoid arthritis but positively with the risk for allergic
disease, such as asthma.

Coagulation factors and the ABO locus. A recent GWAS
identified two independent genomic loci to be associated with an
increased risk of respiratory failure in COVID-19 patients com-
pared to healthy blood donors10. We observed six proteins to be
associated positively with the lead signal (rs657152) at the ABO
locus (coagulation factor VIII, sulfhydryl oxidase 2 (QSOX2), von
Willebrand factor, SVEP1, and heme oxygenase 1) and one
inverse association (interleukin-6 receptor subunit beta), but did
not observe significantly associated proteins with the lead variant
(rs11385942) at 3p21.31. We identified a cluster of 10 aptamers
(targeting SVEP1, coagulation factor VIII, ferritin, heme oxyge-
nase 1, van Willebrand factor, plasminogen, PLOD2, and CD14)
sharing a genetic signal (regional probability: 0.88; rs941137;
Supplementary Fig. 5), which was in high LD (r²=0.85) with the
lead ABO signal associated with a higher risk for respiratory
failure among COVID-19 patients.

Webserver. To facilitate in-depth exploration of candidate pro-
teins, i.e., those with at least one cis-pQTL, we created an online
resource (https://omicscience.org/apps/covidpgwas/). The web-
server provides an intuitive representation of genetic findings,
including the opportunity of customized look-ups and downloads
of the summary statistics for specific genomic regions and protein
targets of interest (Fig. 7). We further provide detailed informa-
tion for each protein target, including links to relevant databases,
such as UniProt or Reactome, information on currently available
drugs or those in development as well as characterization of
associated SNPs. The webserver further enables the query of SNPs
across proteins to assess specificity and to find co-associated
protein targets.

Discussion
We present a systematic genetic investigation of host proteins
reported to interact with SARS-CoV-2 proteins, be related to
virus entry, host hyperimmune or procoagulant responses, or be
associated with the severity of COVID-19. The integration of
large-scale genomic and aptamer-based plasma proteomic data
from 10,708 individuals improves our understanding of the
genetic architecture of 97 of 179 investigated host proteins by
identifying 220 cis-acting variants that explain up to 70% of the
variance in these proteins, including 45 with no previously known
pQTL and 38 encoding current drug targets. Our findings, shared
in an interactive webserver (https://omicscience.org/apps/
covidpgwas/), enable rapid “in silico” follow-up of these var-
iants and assessment of their causal relevance as molecular targets
for new or repurposed drugs in human genetic studies of SARS-
CoV-2 and COVID-19, such as the COVID-19 Host Genetics
Initiative (https://www.covid19hg.org/).

The contribution of identified genetic variants outweighed the
variance explained by most of the tested host factors for the
majority of protein targets. Protein expression in plasma was also
frequently associated with expression of protein-encoding genes
in relevant tissues. We demonstrate that a large number of genetic
variants acting in trans are non-specific and show evidence of
substantial horizontal pleiotropy. Findings for these variants
should be treated with caution in follow-up studies focused on
protein-specific genetic effects.

The successful identification of candidate druggable targets for
COVID-19 provides an insight both on potential therapies and on
medications that might worsen outlook, depending on the direction
of the genetic effect, and whether any associated compound inhibits

or activates the target. We also found genetic evidence that selected
protein targets, such as for MARK3 and monocyte count, have
potential for adverse effects on other health outcomes, but note that
this was not a general characteristic of all tested “druggable” targets.
Further, in-depth characterization of the targets identified will be
required as a first step in gauging the likely success of any new or
repurposed drugs identified via this analysis36.

We exemplify the value of the data resource generated by
linking a putative genomic risk variant for poor prognosis among
COVID-19 patients, i.e., respiratory failure, at the ABO locus10 to
proteins related to the maladaptive response of the host, namely
hypercoagulation, as well as two putative viral interaction part-
ners (heme oxygenase 1 and PLOD2). The risk increasing A allele
of rs657152 was consistently associated with higher plasma levels
of coagulation factor VIII and von Willebrand factor. Antic-
oagulation is associated with a better outcome in patients with
severe COVID-1937, and randomized controlled trials are
underway to evaluate the benefit or harms of anticoagulant
therapies. We note that while there is some evidence38–40 of an
increased risk for individuals of blood group A (tagged by
rs657152) to experience more severe COVID-19 based on
observational studies, results are not entirely consistent41. Sup-
port for the reported genetic findings also warrants further
investigation, since early data releases from the COVID-19 Host
Genetics Initiative did not replicate the published GWAS results
for the ABO locus (https://www.covid19hg.org/, release 3, June
2020). This might be explained by a biased control group, i.e.,
healthy blood donors, who tend to be blood group O more often
compared to the general population. From a drug-discovery
perspective, GWAS among COVID-19 patients testing whether
or not those require hospitalization would be the most promising
application of our results.

Affinity-based proteomics techniques rely on conserved bind-
ing epitopes. Changes in the 3D-conformational structure of
target proteins introduced by PAVs might change the binding
affinity to the target, and hence measurements, without affecting
biological activity of the protein. We identified 52 cis-pQTLs
which were in LD (r² > 0.1) with a PAV. However, 27 of those cis-
pQTLs or a proxy in high LD (r² > 0.8) have been previously
identified as genome-wide significant signals for at least one trait
in the GWAS Catalog (excluding any entries of platforms used in
the present study) and might therefore carry biologically mean-
ingful information.

This study was designed to provide a rapid open access plat-
form to help prioritize drug discovery and repurposing efforts for
the current COVID-19 pandemic. However, important limita-
tions apply. Firstly, protein abundances have been measured in
plasma, which may differ from the intracellular role of proteins,
and include purposefully secreted as well as leaked proteins.
Secondly, while aptamer-based techniques provide the broadest
coverage of the plasma proteome, specificity can be compromised
for specific protein targets and evidence using complementary
techniques such as Olink or mass spectrometry efforts is useful
for validation of signals. Thirdly, in-depth phenotypic char-
acterization of the high-priority cis-pQTLs requires appropriate
formal and statistical follow-up, such as colocalization, which
needs further methodological development to allow for partially
shared causal variants (and preferably across multiple traits), and
cis-GRS evaluation in independent and adequately powered stu-
dies for the trait of interest.

Methods
Study participants. The Fenland study is a population-based cohort of 12,435
participants of Caucasian-ancestry born between 1950 and 1975 who underwent
detailed phenotyping at the baseline visit from 2005 to 2015. Participants were
recruited from general practice surgeries in the Cambridgeshire region in the UK.
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Exclusion criteria were: clinically diagnosed diabetes mellitus, inability to walk
unaided, terminal illness, clinically diagnosed psychotic disorder, pregnancy, or lac-
tation. The study was approved by the Cambridge Local Research Ethics Committee
(NRES Committee - East of England, Cambridge Central, ref. 04/Q0108/19) and all
participants provided written informed consent. Fenland participants were on average
48.6 years old (standard deviation: 7.5 years) and 53.4% were female.

Mapping of protein targets across platforms. We mapped each candidate
protein to its UniProt-ID42 and used those to select mapping aptamers and Olink
measures based on annotation files provided by the vendors.

Proteomic profiling. Proteomic profiling of fasted EDTA plasma samples from
12,084 Fenland Study participants collected at baseline was performed by Soma-
Logic Inc. (Boulder, CO, USA) using an aptamer-based technology (SomaScan
proteomic assay). Relative protein abundances of 4775 human protein targets were
evaluated by 4979 aptamers (SomaLogic V4), and a detailed description can be
found elsehwere43. Briefly, the SomaScan assay utilizes a library of short single-
stranded DNA molecules that are chemically modified to specifically bind to
protein targets, and the relative amount of aptamers binding to protein targets is
determined using DNA microarrays. To account for variation in hybridization
within runs, hybridization control probes are used to generate a hybridization scale
factor for each sample. To control for total signal differences between samples due

Fig. 7 Screenshots from the webserver. Upper panel: The matrix shows p-values and beta estimates from linear regression models for independently
associated single nucleotide polymorphisms (SNPs) at a given locus across protein targets. The matrix can be customized to include only targets of interest
or based on statistical criteria. Hovering above filled boxes shows information about the SNP and the associated target. The right-hand side shows
information about the target, including associated SNPs in cis and trans, and includes regional associations (RA) plots as well as boxplots for plasma levels
of the protein target across each SNP. We chose MAP/microtubule affinity-regulating kinase 3 (MARK3) as an example. Lower panel: Query options for
variant-, gene-, or region-based queries of SNP associations across all targets.
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to variation in overall protein concentration or technical factors such as reagent
concentration, pipetting, or assay timing; a ratio between each aptamer’s measured
value and a reference value is computed, and the median of these ratios is com-
puted for each of the three dilution sets (40%, 1%, and 0.005%) and applied to each
dilution set. Samples were removed if they were deemed by SomaLogic to have
failed or did not meet our acceptance criteria of 0.25–4 for all scaling factors. In
addition to passing SomaLogic QC, only human protein targets were taken forward
for subsequent analysis (4979 out of the 5284 aptamers). Aptamers’ target anno-
tation and mapping to UniProt accession numbers as well as Entrez gene identifiers
were provided by SomaLogic.

Plasma samples for a subset of 500 Fenland participants were additionally
measured using 12 Olink 92-protein panels using proximity extension assays44. Of
the 1104 Olink proteins, 1069 were unique (n= 35 on >1 panel, average correlation
coefficient 0.90). We imputed values below the detection limit of the assay using
raw fluorescence values. Protein levels were normalized (“NPX”) and subsequently
log2-transformed for statistical analysis. A total of 15 samples were excluded based
on quality thresholds recommended by Olink, leaving 485 samples for analysis.

Genotyping and imputation. Fenland participants were genotyped using three
genotyping arrays: the Affymetrix UK Biobank Axiom array (OMICs, N= 8994),
Illumina Infinium Core Exome 24v1 (Core-Exome, N= 1060), and Affymetrix
SNP5.0 (GWAS, N= 1402). Samples were excluded for the following reasons: (1)
failed channel contrast (DishQC <0.82), (2) low call rate (<95%), (3) gender
mismatch between reported and genetic sex, (4) heterozygosity outlier, (5) unu-
sually high number of singleton genotypes, or (6) impossible identity-by-descent
values. Single nucleotide polymorphisms (SNPs) were removed if: (1) call rate
<95%, (2) clusters failed Affymetrix SNPolisher standard tests and thresholds, (3)
MAF was significantly affected by plate, (4) SNP was a duplicate based on chro-
mosome, position and alleles (selecting the best probeset according to Affymetrix
SNPolisher), (5) Hardy-Weinberg equilibrium p < 10−6, (6) did not match the
reference, or (7) MAF= 0.

Autosomes for the OMICS and GWAS subsets were imputed to the HRC (r1)
panel using IMPUTE445, and the Core-Exome subset and the X-chromosome (for
all subsets) were imputed to HRC.r1.1 using the Sanger imputation server46. All
three arrays subsets were also imputed to the UK10K+ 1000Gphase347 panel using
the Sanger imputation server in order to obtain additional variants that do not exist
in the HRC reference panel. Variants with MAF < 0.001, imputation quality (info)
<0.4, or Hardy-Weinberg equilibrium p < 10−7 in any of the genotyping subsets
were excluded from further analyses.

GWAS and meta-analysis. After excluding ancestry outliers and related indivi-
duals, 10,708 Fenland participants had both phenotypes and genetic data for the
GWAS (OMICS= 8350, Core-Exome=1026, and GWAS= 1332). Within each
genotyping subset, aptamer abundances were transformed to follow a normal
distribution using the rank-based inverse normal transformation. Transformed
aptamer abundances were then adjusted for age, sex, sample collection site, and 10
principal components in STATA v14, and the residuals used as input for the
genetic association analyses. Test site was omitted for protein abundances mea-
sured by Olink as those were all selected from the same test site. Genome-wide
association was performed under an additive model using BGENIE (v1.3)45.
Results for the three genotyping arrays were combined in a fixed-effects meta-
analysis in METAL48. Following the meta-analysis, 17,652,797 genetic variants, also
present in the largest subset of the Fenland data (Fenland-OMICS), were taken
forward for further analysis.

Definition of genomic regions (including cis/trans). For each aptamer, we used
a genome-wide significance threshold of 5 × 10−8 and defined non-overlapping
regions by merging overlapping or adjoining 1Mb intervals around all genome-
wide significant variants (500 kb either side), considering the extended MHC
region (chr6:25.5–34.0 Mb) as one region. For each region we defined a regional
sentinel variant as the most significant variant in the region. We defined genomic
regions shared across aptamers if regional sentinels of overlapping regions were in
strong LD (r² > 0.8). We classified pQTLs as cis-acting instruments if the variant
was less than 500 kb away from the gene body of the protein-encoding gene.

Conditional analysis. We performed conditional analysis as implemented in the
GCTA software using the slct option for each genomic region–aptamer pair
identified. We used a collinear cut-off of 0.1 and a p-value below 5 × 10−8 to
identify secondary signals in a given region. As a quality control step, we fitted a
final model including all identified variants for a given genomic region using
individual level data in the largest available data set (“Fenland-OMICs”) and dis-
carded all variants no longer meeting genome-wide significance.

We performed a forward stepwise selection procedure to identify secondary
signals at each locus on the X-chromosome using SNPTEST v.2.5.2 to compute
conditional GWAS based on individual level data in the largest subset. Briefly, we
defined conditionally independent signals as those emerging after conditioning on
all previously selected signals in the locus until no signal was genome-wide
significant.

Explained variance. To compute the explained variance for plasma abundancies of
protein targets we fitted linear regression models with residual protein abundancies
(see GWAS section) as outcome and (1) only the lead cis-pQTL, (2) all cis-pQTLs,
or (3) all identified pQTLs as exposure. We report the R² from those models as
explained variance.

Annotation of pQTLs. For each identified pQTL we first obtained all SNPs in at
least moderate LD (r² > 0.1) using PLINK (version 2.0) and queried comprehensive
annotations using the variant effect predictor software49 (version 98.3) using the
pick option. For each cis-pQTL we checked whether either the variant itself or a
proxy in the encoding gene (r² > 0.1) is predicted to induce a change in the amino
acid sequence of the associated protein, so-called protein altering variants (PAVs).

Mapping of cis-pQTLs to drug targets. To annotate druggable targets we merged
the list of proteins targeted by the SomaScan V4 platform with the list of druggable
genes from Finan at al.14 based on common gene entries. We further added
protein–drug combinations as recommended by Gordon et al.3.

Identification of relevant GWAS traits. To enable linkage to reported GWAS-
variants we downloaded all SNPs reported in the GWAS Catalog50 (19/12/2019)
and pruned the list of variant–outcome associations manually to omit previous
protein-wide GWAS. For each SNP identified in the present study (N= 671) we
tested whether the variant or a proxy in LD (r² > 0.8) has been reported to be
associated with other outcomes previously.

Definition of novel pQTLs. To test whether any of the identified regional sentinel
pQTLs has been reported previously, we obtained a list of published
pQTLs16,27,29,51,52 and defined novel pQTLs as those not in LD (r² < 0.1) with any
previously identified variant. We note that this approach is rather conservative,
since it only asks whether or not any of the reported SNPs has ever been reported
to be associated with any protein measured with multiplex methods.

Assessment of pleiotropy. To evaluate possible protein-specific pleiotropy of
pQTLs we computed association statistics for each of the 671 unique SNPs across
4979 aptamers (N= 4775 unique protein targets) with the same adjustment set as
in the GWAS. This resulted in a protein profile for each variant defined as all
aptamers significantly associated (p < 5 × 10−8). For all aptamers we retrieved all
GO-terms referring to biological processes from the UniProt database using all
possible UniProt-IDs as a query. GO-term annotation within the UniProt database
has the advantage of being manually curated while aiming to omit unspecific
parent terms. We tested for each pQTL if the associated aptamers fall into one of
the following criteria: (1) solely associated with a specific protein, (2) all associated
aptamers belong to a single GO-term, (3) the majority (>50%) of associated
aptamers but at least two belong to a single GO-term, and (4) no single GO-term
covers more than 50% of the associated aptamers. We refer to category 1 as
protein-specific association, categories 2 and 3 as vertical pleiotropy, and category 4
as horizontal pleiotropy.

Heritability estimates and genetic correlation. We used genome-wide genotype
data from 8350 Fenland participants (Fenland-OMICs) to determine SNP-based
heritability and genetic correlation estimates among the 102 protein targets with at
least one cis-pQTL and excluding proteins encoded in the X-chromosome. We
generated a genetic relationship matrix (GRM) using GCTA v.1.9053 from all
variants with MAF > 1% to calculate SNP-based heritability as implemented by
biMM54. Genetic correlations were computed between all 4273 possible pairs
among 93 protein targets with heritability estimates larger than 1.5 times its
standard error, using the generated GRM by a bivariate linear mixed model as
implemented by biMM. We further conducted two sensitivity analyses to evaluate
whether the estimated genetic correlation could be largely attributable to the top
cis-pQTL or to shared pleiotropic trans regions. To evaluate contribution of the top
cis variant, each protein target was regressed against its sentinel cis variant in
addition to age, sex, sample collection site, and 10 principal components, and the
residuals were used as phenotypes to compute heritability and genetic correlation
estimates. To assess the contribution of 29 pleiotropic trans regions, we excluded
2Mb genomic regions around pleiotropic trans-pQTLs (associated with >20
aptamers) from the GRM to compute heritability and genetic correlation estimates.
Genetic correlations could not be computed for pairs involving IL1RL1 in the main
analysis and were therefore excluded. However, upon regressing out the sentinel
cis-variant, genetic correlations with this protein could be computed probably due
to its large contribution to heritability.

Variance decomposition. We used linear mixed models as implemented in the R
package variancePartition to decompose inverse rank-normal transformed plasma
abundances of 106 aptamers with at least one cis-pQTL. To this end, we computed
weighted genetic scores for each aptamer separating SNPs acting in cis (cis-GRS)
and trans (trans-GRS). In addition to the GRS, we used participants’ age, sex, BMI,
WHR, systolic and diastolic blood pressure, reported alcohol intake, smoking
consumption, fasting plasma levels of glucose, insulin, high-density lipoprotein
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cholesterol, low-density lipoprotein cholesterol, alanine aminotransaminase, as well
as a creatinine-based estimated glomerular filtration rate as explanatory factors. We
implemented this analysis in the Fenland-OMICs data set leaving 8004 participants
without any missing values in the factors considered.

Genetic risk scores associations. We computed weighted GRS for metabolic
(Insulin resistance55, type 2 diabetes56, WHR, and BMI57), respiratory (FEV1,
FVC21, and asthma58), and cardiovascular traits (eGFR59, systolic blood pressure60,
diastolic blood pressure60, and CAD33) for Fenland-OMICs participants (N=
8,350) to evaluate their association with plasma protein abundances. GRSs were
computed from previously reported genome-wide significant variants and weighted
by their reported beta coefficients for continuous outcomes or log(OR) for binary
outcomes. Variants not available among Fenland genotypes, strand ambiguous or
with low imputation quality (INFO < 0.6) were excluded from the GRSs. Asso-
ciations between each scaled GRS and log10-transformed and scaled protein levels
were computed by linear regressions adjusted by age, sex, 10 genetic principal
components, and sample collection site. We implemented this analysis for the 186
aptamers with at least one associated cis- or trans-pQTL. Associations with p-
values < 0.05/186 were deemed significant according to Bonferroni correction for
multiple comparisons.

Incorporation of GTEx v8 data. We leveraged gene expression data in five human
tissues (lung, whole blood, heart - left ventricle, heart - atrial appendage, and liver),
of relevance to COVID-19 and its potential adverse effects and complications, from
the Genotype-Tissue Expression (GTEx) project24,25. For the 102 SOMAmers with
at least one cis-pQTL located on the autosomes and available gene expression
models trained in GTEx v861, we performed summary-statistics-based PrediXcan26

analysis to identify tissue-dependent genetically determined gene expression traits
that significantly predict plasma protein levels. We used the standardized effect size
(z-score) to investigate the tissue specificity or the consistency of the association
across the tissues between the genetic component of the expression of the encoding
gene and the corresponding protein. We performed DAVID functional enrichment
analyses on all the genes significantly associated (Bonferroni-adjusted p < 0.05)
with plasma levels of the proteins to identify biological processes (Benjamini-
Hochberg adjusted p < 0.05) that may explain the associations found beyond the
protein-encoding genes.

Cross-platform comparison. We selected 24 cis- and 101 trans-pQTLs mapping
to 33 protein targets overlapping with Olink from the SomaScan-based discovery
and obtained summary statistics from in-house genome-wide association studies
(GWAS) based on corresponding Olink measures. To enable a more systematic
reciprocal comparison, we further compared 13 pQTLs (for 11 proteins) only
apparent in an in-house Olink-based pGWAS (p < 4.5 × 10−11) effort and obtained
GWAS-summary statistics from corresponding aptamer measurements. We
pruned the list for variants in high LD (r² > 0.8) and discarded SNPs not passing
QC for both efforts (n= 6).

Phenome-wide scan among UK Biobank and look-up. We obtained all ICD-10
codes-related genome-wide summary statistics from the most recent release of the
Neale lab (http://www.nealelab.is/uk-biobank) with at least 100 cases resulting in
633 distinct ICD-10 codes. Among the 220 cis-pQTLs identified in the present
study, 215 were included in the UK Biobank summary statistics (three aptamers
had to be excluded due to unavailable lead cis-pQTLs or proxies in LD). We next
aligned effect estimates between cis-pQTLs and UK Biobank statistics and used the
grs.summary function from the “gtx” R package to compute the effect of a weighted
cis-GRS for an aptamer across all 633 ICD-codes. We applied a global testing
correction across all cis-GRS – ICD-10 code combinations using the Benjamini-
Hochberg procedure and declared a false discovery rate of 10% as a significance
threshold.

We queried all 220 cis-pQTLs for genome-wide association results using the
PheWAS function of the R package “ieugwasr” linked to the IEU GWAS database.
We selected all variants in strong LD (r² > 0.8) with any of the cis-pQTLs to
incorporate information on proxies. We restricted the search in the ieugwar tool to
the batches “ebi-a”, “ieu-a”, and “ukb-b” to minimize redundant phenotypes.

Colocalization analysis. We used statistical colocalization62 to test for a shared
genetic signal between a protein target and a phenotype with evidence of a sig-
nificant effect of the cis-pQTL (see above, Fig. 6). We obtained posterior prob-
abilities (PP) of: H0, no signal; H1, signal unique to the protein target; H2, signal
unique to the trait; H3, two distinct causal variants in the same locus, and; H4,
presence of a shared causal variant between a protein target and a given trait. PPs
above 75% were considered highly likely. In case the cis-pQTL was a secondary
signal we computed conditional association statistics using the cond option from
GCTA-cojo to align with the identification of secondary signals. We conditioned
on all other secondary signals in the locus. We note that conditioning on all other
secondary variants in the locus failed to produce the desired conditional association
statistics in a few cases probably due to moderate LD (r² > 0.1) between selected
secondary variants and other putative secondary variants.

Multi-trait colocalization at the ABO locus. We used hypothesis prioritization in
multi-trait colocalization (HyPrColoc)63 at the ABO locus (±200 kb) (1) to identify
protein targets sharing a common causal variant over and above what could be
identified in the meta-analysis to increase statistical power, and (2) to identify
possible multiple causal variants with distinct associated protein clusters. Briefly,
HyPrColoc aims to test the global hypothesis that multiple traits share a common
genetic signal at a genomic location and further uses a clustering algorithm to
partition possible clusters of traits with distinct causal variants within the same
genomic region. HyPrColoc provides for each cluster three different types of
output: (1) a posterior probability (PP) that all traits in the cluster share a common
genetic signal, (2) a regional association probability, i.e., that all the aptamers share
an association with one or more variants in the region, and (3) the proportion of
the PP explained by the candidate variant. We considered a highly likely alignment
of a genetic signal across various traits if the regional association probability >80%.
This criterion takes, to some extent, into account that apatamers may share mul-
tiple causal variants at the same locus and provides some robustness against vio-
lation of the single causal variant assumption. We note that several protein targets
had multiple independent signals at the ABO locus (Supplementary Data 4). We
further filtered protein targets with no evidence of a likely genetic signal (p > 10−5)
in the region before performing HyPrColoc, which improved clustering across
traits due to minimizing noise.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All genome-wide summary statistics are made available through an interactive webserver
(https://omicscience.org/apps/covidpgwas/). Data from the Fenland cohort can be requested
by bona fide researchers for specified scientific purposes via the study website (https://www.
mrc-epid.cam.ac.uk/research/studies/fenland/information-for-researchers/). Data will either
be shared through an institutional data sharing agreement or arrangements will be made for
analyses to be conducted remotely without the necessity for data transfer. Publicly available
summary statistics for look-up and colocalization of pQTLs were obtained from https://
gwas.mrcieu.ac.uk/, https://www.ebi.ac.uk/gwas/, and http://www.nealelab.is/uk-biobank.
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