
 

Riparian buffers act as microclimatic refugia in oil palm 1 

landscapes 2 

 3 
Joseph Williamsona* 0000-0003-4916-5386  4 
Eleanor M. Sladeb   0000-0002-6108-1196 5 
Sarah H. Lukec,d  0000-0002-8335-5960  6 
Tom Swinfielde   0000-0001-9354-5090 7 
Arthur Y. C. Chungf 0000-0002-9529-4114 8 
David A. Coomese   0000-0002-8261-2582 9 
Herry Heroing 10 
Tommaso Juckerh   0000-0002-0751-6312  11 
Owen T. Lewisi 0000-0001-7935-6111 12 
Charles S. Vairappang 0000-0001-7453-1718 13 
Stephen J. Rossitera* 0000-0002-3881-4515 14 
Matthew J. Struebigc 0000-0003-2058-8502 15 
*corresponding authors joseph.williamson@qmul.ac.uk, s.j.rossiter@qmul.ac.uk 16 

aSchool of Biological and Chemical Sciences, Queen Mary University of London, Mile End 17 
Road, London, E14NS, UK 18 

bAsian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 19 
Singapore City, 639798, Singapore 20 

cDurrell Institute of Conservation and Ecology (DICE), School of Anthropology and 21 
Conservation, University of Kent, Canterbury, UK 22 

dDepartment of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK 23 

eDepartment of Plant Sciences, University of Cambridge Conservation Research Institute, 24 
Downing Street, Cambridge, CB2 3EA, UK 25 

fForest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715 Sandakan, Sabah, 26 
Malaysia 27 

gInstitute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu 28 
88440, Sabah, Malaysia 29 

hSchool of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK 30 

iDepartment of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK  31 



 

Abstract 32 
1. There is growing interest in the ecological value of set-aside habitats around rivers in 33 

tropical agriculture. These riparian buffers typically comprise forest or other non-34 
production habitat, and are established to maintain water quality and hydrological 35 
processes, whilst also supporting biodiversity, ecosystem function and landscape 36 
connectivity.  37 

2. We investigated the capacity for riparian buffers to act as microclimatic refugia by 38 
combining field-based measurements of temperature, humidity, and dung beetle 39 
communities with remotely-sensed data from LiDAR across an oil palm dominated 40 
landscape in Borneo.  41 

3. Riparian buffers offer a cool and humid habitat relative to surrounding oil palm 42 
plantations, with wider buffers characterised by conditions comparable to riparian sites 43 
in continuous logged forest. 44 

4. High vegetation quality and topographic sheltering were strongly associated with cooler 45 
and more humid microclimates in riparian habitats across the landscape. Variance in 46 
beetle diversity was also predicted by both proximity-to-edge and microclimatic 47 
conditions within the buffer, suggesting that narrow buffers amplify the negative 48 
impacts that high temperatures have on biodiversity. 49 

5. Synthesis and applications. Widely-legislated riparian buffer widths of 20-30 m each 50 
side of a river may provide drier and less humid microclimatic conditions than 51 
continuous forest. Adopting wider buffers and maintaining high vegetation quality will 52 
ensure set-asides established for hydrological reasons bring co-benefits for terrestrial 53 
biodiversity, both now, and in the face of anthropogenic climate change. 54 
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1. Introduction 58 

 59 
Microclimate determines how organisms interact with their surroundings, from development 60 
and physiology, to behaviour, ecology, function and distribution (Jucker et al., 2020). The need 61 
to understand how microclimate varies across land-use mosaics is acute in the wet tropics, 62 
where high biodiversity is threatened by the combined impacts of rapid land-use change and 63 
climatic warming (Travis, 2003). Fine-scale microclimate is shaped by multiple environmental 64 
factors, including solar radiation, wind, topography and vegetation structure (Helmuth, 2009). 65 
As such, microclimatic gradients are particularly pronounced across tropical agriculture-forest 66 
mosaics, where vegetation structure can vary dramatically (Blonder et al., 2018; Jucker et al., 67 
2018). Degraded forests have higher temperatures and lower humidities than undisturbed 68 
forests (Hardwick et al., 2015), although both are cooler than farmland (Hardwick et al., 2015; 69 
Silvério et al., 2015; Meijide et al., 2018). 70 
 71 
Riparian buffers, or riparian reserves, are areas of non-production habitat (often forest) retained 72 
around rivers in agricultural landscapes, primarily as a means of protecting water quality by 73 
reducing run-off (Tabacchi et al. 2000). In many tropical nations, riparian buffers of a 74 
designated width are required by law, often based on the size of the river in question (Luke et 75 
al., 2019a). In addition, policies on riparian buffer width have been adopted by groups such as 76 
the Roundtable on Sustainable Palm Oil (RSPO) as part of their certification criteria for 77 
mitigating the detrimental impacts of oil palm development on the environment and local 78 
communities (Luke et al., 2019a). In addition to their primary role in protecting water quality, 79 
riparian buffers provide a range of other ecosystem services, such as carbon storage (Mitchell 80 
et al., 2018), flood protection (Tabacchi et al., 2000) and subsidising water courses with 81 
terrestrially-derived organic matter (Allan, 2004). Buffers can also provide co-benefits for a 82 
variety of terrestrial (Barlow et al., 2010; Keir et al., 2015; Zimbres et al., 2017) and aquatic 83 
taxa (Cunha & Juen, 2017; Giam et al., 2015). There are also examples of these habitat 84 
remnants serving as corridors between other forest areas, promoting connectivity for various 85 
taxa (Gray et al., 2019; Keuroghlian & Eaton, 2008).  86 
 87 
In common with all habitat fragments, the efficacy of riparian buffers for safeguarding 88 
biodiversity and promoting connectivity will depend on habitat area and quality, the level of 89 
contrast with the surrounding matrix, and the biology of the taxa in question (Lees & Peres, 90 
2008). In general, the attributes of riparian buffers that support terrestrial biodiversity remain 91 
poorly understood. Recent studies have demonstrated the role of buffer width for birds (Lees 92 
& Peres, 2008; Keir et al., 2015; Mitchell et al., 2018), mammals (Zimbres et al., 2017) and 93 
dung beetles (Barlow et al., 2010; Gray et al., 2017), with several subsequently linking 94 
observed biodiversity patterns to habitat quality (Lees & Peres, 2008; Mitchell et al., 2018). 95 
However, studies investigating riparian buffer microclimates and the features that shape them 96 
are scarce (e.g. Nagy et al., 2015). 97 
 98 
Insights into the effects of microclimate on tropical biodiversity are often limited by issues of 99 
scale and accuracy (Jucker et al., 2018; Schulze et al., 2001), with most studies relying on 100 
coarse-resolution mapping databases such as WorldClim (Fick & Hijmans, 2017). Advances 101 
in technologies such as Light Detection And Ranging (LiDAR) make it possible to map 102 
landscapes and vegetation with unprecedented levels of accuracy and precision (Zellweger et 103 
al., 2019), allowing studies to better quantify and link physical habitat structure to microclimate 104 
(Lefsky et al., 2002). The decreasing costs of microclimatic dataloggers have also catalysed an 105 



 

increase in research investigating fine-scale microclimatic conditions (e.g. Hardwick et al., 106 
2015; Law et al. 2019). 107 
 108 
Here we combine information from airborne LiDAR with field-based microclimatic 109 
measurements to investigate the efficacy of forested riparian buffers of different widths and 110 
habitat composition for providing microrefugia within oil palm plantations. We deployed 111 
dataloggers across three riparian habitats: oil palm, riparian buffers, and continuous logged-112 
forest, in Sabah, Malaysian Borneo. First, we examine if riparian buffers in otherwise 113 
microclimatically-extreme plantations maintain conditions similar to those found in continuous 114 
riparian forest. We then demonstrate how vegetation conditions and topography shape the 115 
microclimate within riparian buffers, and across human-modified landscapes as a whole, before 116 
evaluating how edge effects influence buffer microclimate and the implications this has for 117 
policy pertaining to buffer width. Finally, to assess the capacity of tropical riparian buffers to 118 
act as microrefugia for a key invertebrate indicator group (Scarabaeinae), we couple the 119 
microclimatic data with dung beetle community data across the modified landscape.  120 



 

2. Material and Methods 121 
 122 
2.1 Study Site 123 
Fieldwork was conducted in and around the Stability of Altered Forest Ecosystems project 124 
(www.safeproject.net; 4°81’N 117°25’E - 4°43’N 117°64’E, plot elevation ranged from 125-125 
450 m a.s.l) in Sabah, Malaysia (Northern Borneo, Figure 1A). This region is characterised by 126 
a tropical climate, with annual rainfall ~2,700 mm and a mean annual temperature of 26.7°C 127 
(Walsh & Newbery, 1999), although a recent study shows the region has become hotter and 128 
drier in recent years (Chapman et al., 2020). The area was formerly continuous lowland 129 
dipterocarp forest with much of the remaining forest having been selectively logged in the 130 
1970s and 2000s, and subsequently salvage logged in 2013 and 2015 in preparation for oil palm 131 
(Struebig et al., 2013). At the time of fieldwork, this forest was highly fragmented, bounded to 132 
the north by continuous forest, and surrounded by oil palm plantations (planted 8-12 years 133 
previously) elsewhere (Figure 1).  134 
 135 
Between December 2016 and May 2018, we deployed dataloggers (EasyLog USB, Lascar 136 
Electronics) in 300 locations across 60 transects (5 dataloggers per transect) on 20 rivers (3 137 
transects per river) in the landscape: in oil palm plantations (OP: n=2 rivers, 6 transects), 138 
riparian forest buffers within oil palm plantations (RB: n=16 rivers, 48 transects) and 139 
continuous logged forest (CF: n=2 rivers, 6 transects). Distances between adjacent transects 140 
on a river were 342-591 m, with rivers varying from 0.5 - 48 km apart (median 18km). In oil 141 
palm and continuous forest, dataloggers were deployed in transects perpendicular to the 142 
riverbank at distances of 5 m, 15 m, 25 m, 35 m and 45 m. In riparian buffer transects, 143 
dataloggers were deployed at 5 m and 15 m from the riverbank and at ~5 m from the buffer-144 
oil-palm edge, and at 5 m and 25 m into the oil palm Figure 1D). A range of buffer widths (0-145 
324 m) were investigated to investigate the effect of proximity-to-edge on microclimate. All 146 
units were suspended at 3 m above the ground with a polystyrene plate rain-cover and left to 147 
record temperature (T, °C) and relative humidity (RH, %) for 3-7 weeks at intervals of 30 148 
minutes. 149 
 150 
2.2 Microclimate Data 151 
Datalogger data were collated to calculate maximum (Tmax) and mean (Tmean) daily 152 
temperatures for each sampling day. RH was used to calculate vapour pressure deficit (VPD, 153 
hPa) - the difference in the partial pressure of water vapour in the air compared with saturated 154 
air at a given temperature (T): 155 

𝑉𝑃𝐷	 = 100	"	#$
100

𝑒%, where 𝑒% = 6.112𝑒
17.67𝑇

𝑇+243.5 156 

VPD represents the evaporative demand of the air, pulling water up through the soil-root-stem-157 
leaf continuum. Thus, it is a critical determinant of plant ecology, strongly influencing potential 158 
evapotranspiration and the ability of plants to supply their leaves with sufficient water during 159 
the driest parts of the day, and thereby regulating seedling growth and mortality (Williams et 160 
al., 2013). Maximum (VPDmax) and mean (VPDmean) daily VPD were generated for each 161 
sampling day.  162 
 163 
2.3 Vegetation Quality, Topography and Distance from Buffer-Oil-Palm Edge 164 
To understand how vegetation quality and topography influence microclimate in riparian 165 
habitats we used airborne LiDAR data collected over part of the landscape (see Jucker et al., 166 
2018). For the 35 transects coinciding with the 2014 LiDAR information we extracted a set of 167 



 

vegetation and topographic metrics from the canopy height, digital terrain and plant area index 168 
model rasters, using a 12.5 m radius extraction. LiDAR-derived metrics were mean plant area 169 
index (PAI, log-transformed), maximum canopy height (Hmax), topographic position index 170 
(TPI), elevation, aspect and slope. PAI was calculated empirically from the raw LiDAR data 171 
as an integrated measure of canopy density (m2 m-2; Holst et al., 2004). Hmax (m) was calculated 172 
as the maximum canopy height value (after ground-normalising the LiDAR point cloud) within 173 
12.5 m of the logger. Four topographic covariates were calculated using the terrain function in 174 
the raster package (Hijmans, 2016) in R 3.6.1 (R Development Core Team, 2008): elevation 175 
in (m.a.s.l.), slope (in degrees), aspect (in radians) and TPI - the difference between the 176 
elevation of a point and the average of its surroundings (positive values on ridges and negative 177 
values in depressions). Aspect was sinewave transformed so that east- and west-facing slopes 178 
had positive and negative values respectively. Our metrics were selected a priori following 179 
Jucker et al. (2018), who chose them due to their weak correlation (Supplementary Figure 1), 180 
and known effects on microclimate in tropical rainforests. The distance into riparian buffers 181 
from the buffer-oil-palm edge was measured on the canopy height model in QGIS 3.10.4 using 182 
the ruler tool (QGIS Development Team, 2020), as a proxy for examining the effects of 183 
manipulating buffer width on microclimate. For dataloggers associated with riparian buffers 184 
outside the LiDAR area (n=22 transects), distances from the buffer-oil-palm edge were 185 
measured manually for buffer edge sites. River width was subtracted from total buffer width 186 
(as calculated from Google Earth imagery) and halved to give an estimate of buffer width for 187 
each transect. Distance from river was then subtracted from buffer width to give estimates of 188 
distance from edge for buffer core sites. 189 
 190 
2.4 Dung Beetle Diversity Sampling 191 
To understand how microclimate impacts the efficacy of riparian buffers as a means of 192 
supporting biodiversity, we carried out two dung beetle (Scarabaeinae) sampling campaigns, 193 
in January 2015 and from September 2017 to March 2018. The climate in our study landscape 194 
is relatively aseasonal (Walsh & Newbery, 1999), although sampling dates broadly correspond 195 
to the marginally wetter season (Marsh & Greer, 1992), where dung beetle activity is highest. 196 
Dung beetles are a useful indicator group due to their sensitivity to disturbance, high diversity, 197 
well-established taxonomy, ease of sampling, and importance for a range of ecosystem 198 
functions (Nichols & Gardner, 2013). Like most tropical ectotherms, dung beetles are thought 199 
to be operating close to their thermal maxima, putting them at a greater risk of extinction due 200 
to climatic shifts (Deutsch et al., 2008). Dung beetle assemblages were sampled using human-201 
dung-baited pitfall traps (following Slade et al., 2011). For each datalogger transect in a buffer 202 
(n=48), one trap was deployed for two trapping nights ~10 m from the river. The minimum 203 
distance between transects with traps was 381 m. Beetles were collected into 90% ethanol and 204 
identified to species or morpho-species using reference collections housed at the Universiti 205 
Malaysia Sabah. 206 
 207 
2.5 Statistical Analyses 208 
2.5.1 Riparian Buffers as Microclimatic Refugia 209 
To examine whether riparian buffers and plantations maintain microclimatic conditions similar 210 
to those found in continuous riparian forest, we ran a mixed-effects model of each of our four 211 
microclimatic response variables (Tmax, Tmean, VPDmax and VPDmean) against a fixed effect of 212 



 

four habitat types: continuous forest, riparian buffer core (buffer interior >10 m from the buffer-213 
oil-palm edge, hereafter referred to as buffer core), riparian buffer edge (buffer interior ≤10 m 214 
of the buffer-oil-palm edge, hereafter referred to as buffer edge) and oil palm. Sampling 215 
transect was fitted as a random effect, and models were run in the lme4 package in R (Bates et 216 
al., 2015) with a Gaussian error distribution. Habitat-type models were compared against the 217 
null model (only containing the random-effect) by comparing AIC, where a difference of -4 218 
supports one nested model over another (Bolker, 2008). 219 
 220 
2.5.2 Effects of Vegetation Quality and Topography on Microclimate 221 
To analyse the effects of vegetation quality and topography on microclimate, we took a subset 222 
of our data from 36 transects that coincided with LiDAR information. We defined separate 223 
maximal linear mixed-effects models for each of our four microclimatic response variables 224 
(Tmax, Tmean, VPDmax and VPDmean) with all of our seven explanatory variables ( PAI, Hmax, TPI, 225 
elevation, aspect, slope and habitat) fitted as fixed effects, and with one interaction term (Hmax 226 
: aspect) following Jucker et al. (2018), with sampling transect as a random effect and a 227 
Gaussian error distribution. By sequential removal of terms, every possible subset of each 228 
maximal model was generated (159 for each response variable) and ranked by AIC weight in 229 
the bbmle package in R (Bolker & R Development Core Team, 2017). Models were then 230 
subsetted to retain the fewest possible models that cumulatively accounted for 0.95 or more of 231 
the total AIC weight. The AIC weighted proportion of explanatory variable retention in the 232 
final models is reported. 233 
 234 
2.5.3 Edge Effects on Buffer Microclimate 235 
We examined the impact of edge effects on microclimatic conditions using distance from 236 
buffer-oil-palm edge. We analysed a subset of the full data that only included dataloggers 237 
deployed within riparian buffers (both buffer edge and core habitat types). Similar to the 238 
aforementioned habitat type analyses, each of the four microclimatic response variables (Tmax, 239 
Tmean, VPDmax and VPDmean) were entered into mixed-effects models with distance into buffer 240 
from edge fitted as a fixed effect, sampling transect as a random effect and a Gaussian error 241 
distribution. Models were then compared to respective null models using AIC. 242 
 243 
2.5.4 Buffer Microclimate Impacts on Dung Beetle Diversity 244 
To analyse how riparian buffer microclimate impacts biodiversity, we matched our dung beetle 245 
assemblage samples to buffer core dataloggers. Microclimate data from sites 5 m from the river 246 
were used, unless data were only available from points 15 m from the river. Dung beetle 247 
diversity, calculated as Shannon diversity in the vegan package in R (Oksanen et al., 2010), 248 
was fitted as the response variable in four maximal linear models (for each of Tmax, Tmean, 249 
VPDmax and VPDmean) with a Gaussian error distribution. Each maximal model had distance 250 
from buffer edge (log-transformed), the microclimate variable of interest and an interaction 251 
term between the two, as explanatory variables. For each microclimatic explanatory variable, 252 
all possible combinations of explanatory variables were compared to the maximal model using 253 
dAIC. Similar analyses were conducted for species richness (see Supplementary Methods).  254 



 

3. Results 255 

 256 
Of the 300 dataloggers deployed in riparian transects, 198 were recovered fully-functioning, 257 
resulting in 5,438 days of microclimatic recordings. Of the 198 units, 110 were recovered 258 
within the LiDAR area, whilst 79 were located in riparian buffer core or edge and had width 259 
data available (Supplementary Table 1). All microclimatic variables (Tmax, Tmean, VPDmax and 260 
VPDmean) were strongly correlated (Pearson’s r > 0.6, Supplementary Table 2). 261 
 262 
3.1 Riparian Buffers as Microclimatic Refugia 263 
We found strong support for the impact of habitat type on Tmax, Tmean, VPDmax and VPDmean, 264 
when compared to a null-model (fitted with only a random effect of transect) (dAICs : Tmax  = 265 
-53.5; Tmean= -100.9; VPDmax = -40.8; VPDmean. = -91.6). All microclimatic variables showed 266 
similar responses to habitat type (Figure 2), with the coolest and wettest conditions in 267 
continuous riparian forest (Table 1).  Buffer core microclimates were intermediate between 268 
continuous forest and the hotter and drier oil palm, whereas buffer edge sites had maximum 269 
daily values greater than those of oil palm, and mean daily values similar to, or slightly less 270 
than, those of oil palm (Table 1). 271 
  272 
3.2 Effects of Vegetation Quality and Topography on Microclimate 273 
Data from units within the LiDAR area were used to model the impacts of vegetation quality 274 
and topography on microclimate across the study landscape, encompassing the riparian buffers 275 
and other habitat types. Of the best-fitting models that cumulatively accounted for an AIC 276 
weight of 0.95, the lowest-weighted models were still strongly supported when compared to 277 
the null model for each microclimatic variable (dAIC : Tmax  = -45.89; Tmean= -113.05; VPDmax 278 
= -21.21; VPDmean. = -72.29). In these best-fitting models, variables relating to both vegetation 279 
quality and topography were retained. Specifically, PAI was a strong negative predictor of all 280 
four microclimatic variables and Hmax was a negative predictor of Tmean (Figure 3, Table 2). 281 
TPI was a strong positive predictor of all four microclimatic variables (Figure 3). Elevation 282 
was a weak predictor of Tmax and Tmean, with an increase of 100 m elevation resulting in a mean 283 
drop of 0.27°C (Table 2). Aspect was a weak predictor of Tmean and VPDmean, with east-facing 284 
slopes being hotter and drier than west-facing slopes (Table 2). Slope and the interaction term 285 
between Hmax and aspect were not frequently retained in best-fitting models (Table 2). Habitat 286 
type, the only non-LiDAR derived variable, was retained in the best-fitting models for Tmax, 287 
Tmean and VPDmean (Table 2).  288 
 289 
3.3 Edge Effects on Buffer Microclimate 290 
Linear mixed-effects models of distance into the buffer from the buffer-oil-palm edge (log-291 
transformed) were strongly supported when compared to the null-models (dAIC : Tmax = -292 
15.65; Tmean= -20.75; VPDmax = -10.58; VPDmean. = -17.96). All microclimatic response 293 
variables had negative relationships with distance from edge (Tmax = -1.40 ± 0.31, Tmean= -0.24 294 
± 0.05, VPDmax = -3.39 ± 0.93, VPDmean. = -0.58 ± 0.12) (Figure 4). At approximately 80-120 295 
m from the edge, predicted curves for each microclimatic variable become relatively flat, and 296 
for Tmax, Tmean and VPDmean begin to be comparable to those of continuous riparian forest 297 
values, (Figure 4). All models had Cook’s distances < 0.5 (Supplementary Figure 2). 298 
 299 
3.4 Buffer Microclimate Impacts on Dung Beetle Diversity 300 



 

Of the 48 transects associated with riparian buffers, 31 had functioning dataloggers in the buffer 301 
core, with associated data on both dung beetle diversity and distance from edge into buffer. 302 
Dung beetle diversity was driven by an interaction between distance from buffer edge and both 303 
Tmax and Tmean (Table 3). As distance from the edge decreased, the relationship between 304 
temperature (Tmax and Tmean) and dung beetle diversity became more negative, whereas at 80 m 305 
it is relatively flat (Figure 5). Responses for the interaction between VPD and distance from 306 
edge were similar to those of temperature but with lower AIC weight, particularly for VPDmean 307 
(Table 3). Further, lower dung beetle diversity was associated with higher Tmean, VPDmax and 308 
VPDmean, (Tables 3 and 4). Note, the VPDmax model lacking an interaction term failed our 309 
leverage tests and must be regarded with caution (Supplementary Figure 3). Species richness 310 
analyses showed similar responses to Shannon diversity (see Supplementary Results).  311 



 

 4. Discussion 312 
 313 
Our results demonstrate the capacity of riparian buffers to provide microclimatic refugia in 314 
human-modified tropical landscapes. All four measures of temperature and vapour pressure 315 
deficit (Tmax, Tmean, VPDmax and VPDmean) were lower in the core area of riparian buffers than 316 
in the surrounding oil palm, although these values were still higher than those in continuous 317 
riparian forest. We reveal that buffer edge effects mediate microclimate, with the interior of 318 
the buffer being substantially cooler and more humid than edges and plantation. We 319 
subsequently demonstrate the key roles that greater vegetation complexity and topographic 320 
sheltering play in increasing the microclimatic buffering capacity of these set-asides. Finally, 321 
we elucidate the link between buffer width and microclimate, and dung beetle communities, 322 
revealing that proximity-to-edge and temperature can synergistically decrease local diversity. 323 
 324 
Consistent with our results, Nagy et al. (2015) found that microclimates in riparian buffer cores 325 
in the southern Amazon were comparable to those of continuous riparian forests. Cooler and 326 
wetter conditions here were more strongly associated with wide buffers, particularly those 80 327 
m or more in width (Table 5). Although our buffer core sites were generally cooler than oil 328 
palm, edge habitat was characterised by more extreme conditions than adjacent plantation. Oil 329 
palm is a perennial crop with a peak yield occurring at an age of 9-18 years (Alam et al., 2015), 330 
with older plantations forming tall canopies with cooler microclimates (Luskin & Potts, 2011). 331 
We postulate that high Tmax and VPDmax in buffer edges is due to gaps in vegetation associated 332 
with riparian buffer edges (JW personal observation). Such gaps are dominated by bare ground, 333 
grasses or low-lying vines, and may be due to clearing and spillover of herbicides from the 334 
plantation. The gaps could also elevate T and VPD for short periods of the day. The temperature 335 
and humidity extremes in buffer edges are consistent with well-documented microclimatic 336 
changes seen in other edge habitats, which are typically attributed to increased solar radiation 337 
and wind (see Williams-Linera, 1990).  338 
 339 
We reveal the link between several vegetation and topographic features, and microclimate, 340 
across a human-modified tropical landscape. In particular, PAI, a measure of vegetation 341 
quality, had a strong influence on microclimate. Increased PAI is associated with more complex 342 
vegetation (Holst et al., 2004), causing decreased wind and light exposure to give cool, humid 343 
conditions (Hardwick et al., 2015). Hmax (maximum canopy height) was also strongly 344 
associated with Tmean, a relationship driven by increased shading by tall trees (Jucker et al., 345 
2018). Like other edge habitats, riparian buffers are characterized by factors impacting 346 
vegetation structure, with reduced seedling abundance, tree basal area, canopy height and 347 
woody plant diversity compared with continuous riparian forest (Lees & Peres, 2007, Keir et 348 
al., 2015, Nagy et al., 2015). Topography was also a key predictor of our microclimatic 349 
variables, with TPI having strong positive correlations with temperature and VPD. Such results 350 
are indicative of the relative exposure of ridges (high TPI) and depressions (low TPI) to light 351 
and wind (Dobrowski, 2011). Aspect had a small positive effect on Tmean and VPDmean, where 352 
east-facing slopes tended to be hotter and drier, likely due to daily solar radiation and wind 353 
patterns in the region (Smith, 1977). Elevation negatively predicted Tmax and Tmean, with a 100 354 
m increase resulting in a mean drop of 0.27°C, a lower impact than we might expect given the 355 
literature (Jucker et al., 2018) and likely due to a limited range of elevations in our study. Our 356 
results highlight the importance of understanding how heterogeneous vegetation and 357 
topography must be taken into account when defining the extent of riparian buffers in 358 
environmental policies, as well as predicting landscape- or regional-level diversity responses 359 
under climate change scenarios (Elsen et al., 2020). 360 
 361 



 

The cooler, wetter microclimate of riparian buffers described here makes them likely refugia 362 
for biodiversity in a hostile agricultural matrix. Indeed, our results indicate that microclimate 363 
in buffers may be important for driving diversity patterns in dung beetles, a key invertebrate 364 
indicator group. We found that at 80 m from the edge, the response of beetle diversity to 365 
temperature was negligible. However, as proximity to the buffer-oil-palm edge increased, the 366 
negative effects of temperature on diversity were amplified, with beetle communities in 20m 367 
buffers acutely sensitive to higher temperatures. Previous research within the same landscape 368 
found riparian buffers support higher diversity than surrounding oil palm plantations, with dung 369 
beetle assemblages more similar to those of continuous riparian forests than oil palm (Gray et 370 
al., 2014). Further, Gray et al. (2016) demonstrated little spillover of dung beetle species within 371 
riparian buffers into the surrounding oil palm plantations. Combined with our findings, this 372 
suggests that riparian buffers may act as microrefugia for forest invertebrates. Note that the 373 
effects of microclimatic variables shown here could be correlative rather than causative. As we 374 
have demonstrated, topography and vegetation complexity can also drive microclimatic 375 
conditions, and it is difficult to disentangle these effects. This does not however, change the 376 
take-home message of the results - to maximise co-benefits for terrestrial biodiversity in 377 
riparian buffers, simply regulating buffer width alone is likely to be insufficient if this does not 378 
preserve the vegetation and topographic features that are needed to help maintain a buffered 379 
microclimate.  380 
 381 
In addition to microclimate, we also found that distance from edge was associated with higher 382 
local diversity, supporting a pool of literature demonstrating the positive impact of increased 383 
buffer width on terrestrial biodiversity (Gray et al., 2017; Keir et al., 2015; Zimbres et al., 384 
2018). Intriguingly, the widths recommended by these previous studies to retain terrestrial 385 
biodiversity (80 m for dung beetles and forest-specialising birds; Gray et al., 2017; Mitchell et 386 
al., 2018) are in the region where some of our proximity-to-edge microclimatic response curves 387 
intersect with the 95% confidence interval for continuous forest and where edge effects 388 
generally tail off in many systems (e.g. Didham & Lawton 1999; Laurence et al., 2002). The 389 
consequences of edge effects for biodiversity may be more pronounced in tropical landscapes 390 
with sparse open habitat where species have not experienced long-term selection pressures for 391 
avoiding edges (Betts et al., 2020). Ideally, edge effects would be investigated in the same set 392 
of models as vegetation quality, however, due to strong correlations between proximity-to-393 
edge and our LiDAR-derived variables, this was not possible.  394 
 395 
4.1 Policy Implications 396 
Our results are important to riparian buffer policies in human-modified tropical landscapes, 397 
supporting suggestions that mandatory riparian buffer widths in the tropics should be wider 398 
than they currently are, that more attention should be given to buffer habitat quality (Luke et 399 
al., 2019a), and that topography should also be considered when planning networks of buffers 400 
across landscapes. We show that buffers begin to reach microclimatic conditions comparable 401 
to those of continuous riparian forest at approximately 80 m and above, on each side of the 402 
river, a width previously suggested as adequate for maintaining representative levels of species 403 
diversity (Gray et al., 2017, Mitchell et al., 2018). At this buffer width, the negative impacts of 404 
temperature on biodiversity are far less pronounced than at 20 m, the width typically required 405 
by law in Sabah, Malaysia. These recommendations are emphasised by the finding that buffer 406 
edges, and thus narrow buffers (<10 m), may be more microclimatically extreme than no buffer 407 
at all. In addition, many tropical countries do not consider vegetation complexity in riparian 408 
management policies (Luke et al., 2019a), but doing so could help contribute to improved 409 
microclimate conditions and long-term sustainability of waterways in agricultural areas. We 410 
therefore advocate efforts to extend buffer widths, prevent further degradation and restore 411 



 

riparian buffers (Luke et al., 2019b). In addition, by determining the vegetation and topographic 412 
features that drive microclimate in tropical riparian buffers, we hope to inform the future 413 
planning of buffer locations and networks. Taken together, our results suggest that 414 
safeguarding riparian buffer microclimate may help to limit the local extinction of species by 415 
providing microrefugia. This finding is likely to become increasingly important in the face of 416 
anthropogenic climate change (Hampe & Jump, 2011), particularly if demand for agricultural 417 
land near water-bodies increases with drier climates.   418 
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 616 
 617 
Figure 1 - Study location and design. (a) Map of SouthEast Asia with panel B denoted by a 618 
white rectangle. (b) Study landscape with the green silhouette denoting the airborne LiDAR-619 
scan area, and points denoting the 20 study rivers. A black square denotes the area shown in 620 
panel c. (c) LiDAR-derived canopy height model of part of our study landscape. Yellow 621 
triangles denote sampling transects (n=60). (d) Sampling design for a riparian buffer transect. 622 
Yellow circles denote datalogger points. Positions of dataloggers are (from river outwards) 5 623 
m from the river, 15 m from the river, ~5 m from the buffer-oil-palm edge, 5 m into oil palm 624 
and 25 m into oil palm. The blue line denotes the river. 625 
 626 



 

 627 
Figure 2 - Violin plots of daily maximum (Tmax, panel A), and mean (Tmean, panel B) 628 
temperature, and daily maximum (VPDmax, panel C) and mean (VPDmean, panel D) vapour 629 
pressure deficit across habitat types. White circles are median values, the boxes are between 630 
the hinge values (25th and 75th percentiles), and the whiskers are the hinge values + or - 631 
interquartile range * 1.5. Data that lie outside of the box and whisker plots are denoted by dark 632 
circles. 633 
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 634 
 635 
Figure 3 - Scatter plots showing the effect of Plant Area Index (PAI) (A-D) and Topographic 636 
Position Index (TPI) (E-H) on Tmax , Tmean, VPDmax and VPDmean, and the effect of maximum 637 
canopy height (Hmax) on Tmean (I). Solid lines are estimated effects from linear mixed effects 638 
models where TPI or PAI were the only fixed effect, with dashed lines denoting 95% 639 
confidence intervals. PAI is back-transformed from data used in analyses. A positive TPI is 640 
associated with ridges and a negative TPI with depressions.  641 



 

 642 
 643 
Figure 4 - Scatter plots showing the effect of distance into the buffer from the buffer-oil-palm 644 
edge on Tmax, Tmean, VPDmax and VPDmean (panels A, B C and D, respectively). Black lines are 645 
back-transformed from log-transformed distance predicted from linear mixed effects models, 646 
with dashed lines denoting 95% confidence intervals. Solid green lines denote mean 647 
microclimatic values for continuous riparian forest, with 95% confidence intervals shown in 648 
green bands.   649 
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 650 
 651 
Figure 5 - Visualisations of the interaction between the effects of (A)  Tmax and (B) Tmean, and 652 
distance from edge on dung beetle diversity. Solid lines give the effect of temperature on 653 
diversity, given two set distances (20m and 80m) from the edge of the buffer, as predicted using 654 
estimates from linear models (see Table 3), with dashed lines denoting 95% confidence 655 
intervals. Grey-scaling on points and lines gives the magnitude of distance from buffer edge 656 
(grey > black).   657 
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Table 1 - Effect sizes and standard errors of habitat type on Tmax, Tmean, VPDmax and VPDmean 658 
using linear mixed-effects models.  659 
            660 

 
 
response 
variables 

Continuous 
Forest 

Riparian  
Buffer 

Buffer 
Edge 

Oil 
Palm 

estimate se estimate se estimate se estimate se 

Tmax (°C) 30.57 0.34 35.05 0.58 38.45 0.73 37.37 0.33 

Tmean (°C) 23.53 0.12 24.96 0.11 25.66 0.14 25.75 0.08 

VPDmax (hPa) 15.92 1.27 24.76 1.71 33.08 2.20 32.20 1.01 

VPDmean (hPa) 0.93 0.11 2.71 0.25 4.15 0.31 4.53 0.14 

  661 



 

Table 2 - Weighted-proportions of the retention of each fixed effect across best-fitting models 662 
for Tmax , Tmean, VPDmax and VPDmean. AIC weights were generated for all models, before 663 
models were subsetted to include only those that cumulatively made up 0.95 of the total weight. 664 
AIC w. prop. is the proportion of the 0.95 cumulative weight constituted by models containing 665 
the fixed effect of interest. Values given in bold fell above an arbitrary threshold value of 0.5. 666 
Effect sizes of models with only a single explanatory variable are given, with the exception of 667 
habitat, as it is a categorical variable (see Table 1). PAI, TPI and Hmax are abbreviations for 668 
Plant Area Index, Topographic Position Index and maximum canopy height, respectively. A 669 
positive TPI is associated with ridges and a negative TPI with depressions.  670 
                  671 

 
 
 
fixed effects 

Tmax Tmean  VPDmax VPDmean 

AIC w. 
prop. 

effect AIC w. 
prop. 

effect AIC w. 
prop. 

effect AIC w. 
prop. 

effect 

PAI 0.930 -1.980 1.000 -0.512 0.950 -5.726 1.000 -1.279 

Hmax  0.362 -0.134 0.642 -0.039 0.324 -0.384 0.410 -0.095 

TPI 0.899 0.357 1.000 0.089 0.924 1.096 0.955 0.226 

elevation 0.692 -0.0011 1.000 -0.0027 0.275 -0.0010 0.273 0.0048 

aspect 0.366 0.182 0.978 0.224 0.304 1.640 0.559 0.427 

slope 0.310 -3.024 0.463 -1.58 0.273 -9.229 0.258 -4.041 

aspect : Hmax  0.090 0.220 0.176 0.072 0.047 0.006 0.065 0.011 

habitat type 1.000 - 1.000 - 0.467 -  0.861 - 

  672 



 

Table 3 - AIC weights of all models of Shannon Diversity for each microclimatic variable 673 
(Tmax, Tmean, VPDmax and VPDmean), where ‘interaction’ denotes models containing the 674 
interaction term between buffer width and microclimate, ‘additive’ denotes a model containing 675 
microclimate and buffer width, ‘buffer width’ and ‘microclimate’ denote models containing 676 
only that term, and ‘null’ is the null model. Values given in bold make up the best-fitting 677 
models, as calculated by a cumulative ranked weight > 0.95. 678 
 679 

models Tmax Tmean  VPDmax VPDmean 

interaction 0.959 0.914 0.723 0.354 

additive 0.038 0.068 0.271 0.573 

buffer width 0.003 0.018 0.005 0.068 

microclimate <0.001 <0.001 <0.001 0.005 

null <0.001 <0.001 <0.001 0.001 

  680 



 

Table 4 - Outputs of best-fitting linear models predicting the Shannon diversity of dung beetles 681 
(H’) sampled in riparian buffers. In the model column ‘~’ means ‘as a function of’ and ‘*’ 682 
means the two terms individually and the interaction between the two are included.  683 
 684 

model term estimate SE 

H’ ~ Tmax * distance from edge intercept 7.645 2.215 

 Tmax  -0.223 0.067 

 distance from edge -1.422 0.607 

 Tmax : distance from edge 0.053 0.018 

H’ ~ Tmax + distance from edge intercept 1.355 0.532 

 Tmax  -0.032 0.012 

 distance from edge 0.333 0.073 

H’ ~ Tmean * distance from edge intercept 28.66 9.446 

 Tmean  -1.151 0.382 

 distance from edge -6.057 2.407 

 Tmean : distance from edge 0.259 0.098 

H’ ~ Tmean + distance from edge intercept 3.939 1.821 

 Tmean  -0.150 0.070 

 distance from edge 0.338 0.077 

H’ ~ VPDmax * distance from edge intercept 1.398 0.485 

 VPDmax  -0.053 0.021 



 

 distance from edge 0.903 0.129 

 VPDmax : distance from edge 0.012 0.006 

H’ ~ VPDmax + distance from edge intercept 0.668 0.315 

 VPDmax  -0.013 0.004 

 distance from edge 0.300 0.072 

H’ ~ VPDmean * distance from edge intercept 0.869 0.434 

 VPDmean  -0.216 0.142 

 distance from edge 0.214 0.109 

 VPDmean : distance from edge 0.039 0.041 

H’ ~ VPDmean + distance from edge intercept 0.617 0.345 

 VPDmean  -0.084 0.033 

 distance from edge 0.285 0.080 

H’ ~ distance from edge intercept 0.104 0.302 

 distance from edge 0.365 0.080 

  685 



 

Table 5 - Microclimate buffering with distance inward from buffer edge, as estimated from 686 
linear mixed-effects models. Values given reflect the difference relative to the microclimate in 687 
oil palm (Table 1).  688 

 
response variables 

 
5 m 

 
20 m 

 
40 m 

 
80 m 

 
300 m 

Tmax (°C) 0.36 -1.58 -2.55 -3.51 -5.36 

Tmean (°C) -0.23 -0.57 -0.73 -0.90 -1.23 

VPDmax (hPa) -0.80 -5.50 -7.85 -10.21 -14.69 

VPDmean (hPa) -0.57 -1.37 -1.77 -2.17 -2.94 

 689 


