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LOCAL ASYMPTOTIC NORMALITY OF THE SPECTRUM

OF HIGH-DIMENSIONAL SPIKED F-RATIOS

By Prathapasinghe Dharmawansa, Iain M. Johnstone

and Alexei Onatski

We consider two types of spiked multivariate F distributions: a

scaled distribution with the scale matrix equal to a rank- perturba-
tion of the identity, and a distribution with trivial scale, but rank-
non-centrality. The eigenvalues of the rank- matrix (spikes) parame-
terize the joint distribution of the eigenvalues of the corresponding

F matrix. We show that, for the spikes located above a phase transi-

tion threshold, the asymptotic behavior of the log ratio of the joint

density of the eigenvalues of the F matrix to their joint density un-

der a local deviation from these values depends only on the  of the
largest eigenvalues 1  . Furthermore, we show that 1  
are asymptotically jointly normal, and the statistical experiment of

observing all the eigenvalues of the F matrix converges in the Le Cam

sense to a Gaussian shift experiment that depends on the asymptotic

means and variances of 1  . In particular, the best statistical in-
ference about sufficiently large spikes in the local asymptotic regime

is based on the  of the largest eigenvalues only.

Key words: Spiked F-ratio, Local Asymptotic Normality, multivari-

ate F distribution, phase transition, super-critical regime, asymptotic

normality of eigenvalues, limits of statistical experiments.

1. Introduction. The roots of the equation

(1) det (H− E) = 0

or equivalently the eigenvalues of the F-ratio E−1H, where matrices H
and E are the ‘hypothesis’ and ‘error’ sums of squares, are fundamental for
the multivariate statistics. They form the basis for many invariant tests,

including the classical tests of the equality of two covariance matrices and of

the linear hypotheses in the multivariate regression. In this paper, we study

the behavior of these roots when the F-ratio matrix is high dimensional as
is often the case in the contemporaneous statistical applications.

We assume that under the null, both H and E are central Wisharts,

whereas under the alternative, the ‘hypothesis’ sum of squares matrix H
contains a low-rank structure. This structure is revealed either in a low-

rank difference between the covariance parameters of H and E, or in a low-
rank non-centrality in H. The former corresponds to testing the equality

1
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2 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

of two covariance matrices, whereas the latter corresponds to testing linear

hypotheses in multivariate regression.

We call the eigenvalues of the low-rank difference between the parameters

of H and E the spikes. Spiked models have attracted much recent research
attention. They were introduced in Johnstone (2001) as a useful abstraction

capturing the fact that the high-dimensional sample variation often concen-

trates along a small number of distinct directions.

In the case of testing the equality of two covariance matrices, these di-

rections may correspond to a few signals that are present only in one of the

two samples. We will refer to this as the signal detection case (SigD). In the

regression context (REG), an example of a low-rank alternative would be a

one-way MANOVA with unequal group means that belong to the same low

dimensional hyperplane. Another regression example is the structural break

in the number of factors in mean, with a small number of additional factors

potentially born by a break event which splits the sample.

The focus of this paper is on the F-ratios of high dimensionality . We

consider the asymptotic regime where  goes to infinity proportionally to

the ‘sample sizes’ represented by the ‘hypothesis’ (matrix H) and ‘error’
(matrix E) degrees of freedom (d.f.). Our main results can be summarized

as follows.

First, we establish a phase transition threshold such that if the spikes are

below it, or sub-critical, then any finite number of the largest eigenvalues

of the F-ratio almost surely (a.s.) converge to the upper boundary of the
support of the limiting spectral distribution of E−1H, derived by Wachter
(1980). In contrast, when  of the spikes are super-critical, the  of the

largest eigenvalues of the F-ratio a.s. converge to locations strictly above
the upper boundary of the Wachter distribution. The threshold turns out to

be the same for SigD and REG cases.

Second, we prove the joint asymptotic normality of the  of the largest

eigenvalues of the F-ratio that correspond to the super-critical spikes. We
derive explicit formulas for the asymptotic means and variances. In both

SigD and REG cases, the asymptotic variance is highly sensitive to the ratio

of the dimensionality to the ‘error d.f.’. Even small non-zero values of this

ratio lead to very substantial variance increases.

Third, and most important, we establish quadratic asymptotic approx-

imations to the likelihood ratios corresponding to local alternatives for 

super-critical spikes. We find that the approximations depend only on the

 largest eigenvalues of the F-ratio, and that the statistical experiment of
observing all the eigenvalues is Locally Asymptotically Normal (LAN). The

limiting experiment is a simple -dimensional Gaussian shift. This result im-
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LAN PROPERTY OF SPIKED F-RATIOS 3

plies that the asymptotically optimal inference on the  super-critical spikes

can be based exclusively on the  largest eigenvalues of the F-ratio.
We conduct a small-scale Monte Carlo experiment to assess the quality

of the LAN confidence sets for super-critical spikes. The experiment shows

that the coverage rate of the sets is very close to the nominal one. Moreover,

surprisingly, the coverage rate remains good even for low dimensional data.

Iain: I thought it would be nice to add the Monte Carlo results

from your second to the last Lumini slide. I have added some

experiments and removed reference on bootstrap intervals because

I thought that the consensus is that they do not work.

The previous literature on the eigenvalues of F-ratios is vast and old. The
finite sample null distribution of the eigenvalues was independently derived

by Fisher, Girshick, Hsu, Roy, and Mood in 1939 (see Wilks (1962) for ci-

tations). The non-null distributions were classified in James (1964). There

have been many subsequent finite sample research papers. These papers are

typically motivated by the fact that the power of various tests in MANOVA

context depend on the population non-centrality of an F-ratio. To choose
between the available tests, one can use the eigenvalues of the F-ratio con-
structed from a preliminary sample to estimate the non-centrality (see Leung

and Muirhead (1987)). As another motivation, Sheena et al (2004) cite the

need for estimating the non-centrality of an F-ratio in constructing modified
model selection criteria.

In the context of high dimensional data, much recent research focuses

on the eigenvalues of sample covariance matrices, which can be viewed as

degenerate F-ratios with E = . Baik et al (2005) derive the asymptotic

distributions of a few of the largest eigenvalues of complex Wisharts. Paul

(2007) establishes the asymptotic normality of the fluctuations of a few of

the largest eigenvalues of real Wisharts in the super-critical case. Féral and

Péché (2009), Benaych-Georges et al (2011) and Bao et al (2014) show that

the fluctuations in the sub-critical real case have the Tracy-Widom distri-

bution, while Mo (2012) and Bloemendal and Viràg (2011, 2013) establish

the asymptotic distribution of a different type in the critical regime.

In a setting of two independent and not necessarily normal samples with

different covariances (SigD case), the phase transition phenomenon has been

studied in Nadakuditi and Silverstein (2010). They obtain a formula for the

threshold and establish the a.s. limits of the largest eigenvalues correspond-

ing to the super-critical spikes. The asymptotic distribution of the eigenval-

ues is described in their paper as an open problem. Our paper solves this

problem for the case of two normal samples, including the REG case, which

was not covered by Nadakuditi and Silverstein (2010).

imsart-aos ver. 2012/04/10 file: supercritical.tex date: January 28, 2017



4 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

We expect that our asymptotic normality results can be extended to the

F-ratios constructed from non-normal samples. In the one-sample case, an

extension of Paul’s (2007) asymptotic normality results has been done in

Bai and Yao (2008). For non-degenerate F-ratios, our asymptotic normality
result for SigD case has been recently extended by Wang and Yao (2015).

Iain: Bai and Yao’s theorem is incorrect, Wang and Yao’s proofs

are incomplete. How should we handle this?

The focus of this paper on normal data is dictated by our main goal:

establishing the LAN property for the eigenvalues of the F-ratio. To reach
this goal, we derive an asymptotic approximation to a log likelihood process

by representing it in the form of a multiple contour integral, and applying the

Laplace approximation method. The explicit form of the joint distribution

of the eigenvalues of E−1H is known only in the normal case, and we need

such an explicit form for our analysis.

A decision-theoretic approach to the finite sample estimation of the eigen-

values of the “ratio” of the population covariances of H and E, or the eigen-
values of the non-centrality parameter of H was taken in many previous

studies (see Sheena et al (2004), Bilodeau and Srivastava (1992), and refer-

ences therein). In one of the first such studies, Muirhead and Verathaworn

(1985) explain that the ideal decision-theoretic approach that directly ana-

lyzes expected loss with respect to the joint distribution of the eigenvalues

of E−1H “does not seem feasible due primarily to the complexity of the

distribution of the ordered latent roots...” Instead, they focus on deriving

an optimal estimator from a particular class.

The proportional asymptotics used in this paper preserves a salient feature

of the finite sample, by making the dimensionality of the data non-negligible

relative to the sample size. From this perspective, our LAN result can be

viewed as an asymptotic implementation of the ideal decision-theoretic ap-

proach to the finite sample estimation. We overcome the complexity of the

joint distribution of the eigenvalues by using a tractable multiple contour

integral representation of the log likelihood process, which follows from the

multiple contour integral representation of hypergeometric functions of two

matrix arguments, established in Onatski (2013), Dharmawansa and John-

stone (2014), and Passemier et al (2014).

The LAN result of this paper stays in sharp contrast to the asymptotic

behavior of the likelihood ratio in the sub-critical regime. In a separate pa-

per, we show that the statistical experiment of observing the eigenvalues

of an F-ratio with a single sub-critical spike is not LAN. The correspond-
ing likelihood ratio depends only on a smooth functional of the empirical

distribution of all the eigenvalues of E−1H, so that asymptotically optimal
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LAN PROPERTY OF SPIKED F-RATIOS 5

inference about the spike may ignore information contained in the largest

eigenvalue. This is totally different from what happens in the super-critical

regime, as our LAN result implies that the asymptotically optimal infer-

ence about super-critical spikes can be based on the corresponding largest

eigenvalues only.

The rest of the paper is structured as follows. In the next section, we de-

scribe our setting. In Section 3, we explore the phase transition and derive

the a.s. limits of the super-critical eigenvalues. In Section 4, we establish

the asymptotic normality of the super-critical eigenvalues. In Section 5, we

derive an asymptotic approximation to the joint distribution of all the eigen-

values of E−1H for the case of  super-critical spikes. In Section 6, we show

that the likelihood ratio in the local parameter space is asymptotically equiv-

alent to a linear combination of  of the largest eigenvalues, and establish

the LAN property. Section 7 concludes.

2. Setup. Suppose that

(1 + )H ∼ (1 + Σ1Ω1) and 2E ∼ (2Σ2)

are independent non-central and central Wishart matrices respectively. For

the non-centrality parameter Ω1, we use a symmetric version of the definition
in Muirhead (1982, p. 442). That is, if  is an  ×  matrix distributed as

 ( ⊗Σ)  then  0 ∼ (ΣΩ) with the non-centrality parameter
Ω = Σ−12 0Σ−12. We are interested in the eigenvalues 1 ≥  ≥ 
of F ≡ E−1H.
In what follows, we will assume that Σ2 = . This assumption is without

loss of generality because the eigenvalues of F do not change under the

transformation H 7→ Σ
−12
2 HΣ

−12
2  E 7→ Σ

−12
2 EΣ

−12
2 . We will consider

two different settings for the parameters Σ1 and Ω1.

1. Spiked covariance (SigD): Σ1 =  + 0 and Ω1 = 0, where
 = diag {1  } with 1      0 is the diagonal matrix of
the covariance spikes, and  is a × matrix with orthogonal columns,
which consists of nuisance parameters.

2. Spiked non-centrality (REG): Σ1 =  and Ω1 = 
0 with

 = 1 + , where  and  are as defined above, but the diagonal

elements of  are interpreted as non-centrality spikes.

Is is convenient to think of H as the sample covariance matrix XX0
of a sample X having the factor structure

(2) X =  0 + 

imsart-aos ver. 2012/04/10 file: supercritical.tex date: January 28, 2017



6 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

with ,  , and  playing the roles of the normalized factor loadings, fac-

tors, and idiosyncratic terms, respectively. Matrices  and  are mutually

independent, and independent from E. The entries of  are i.i.d. stan-
dard normals, and the distribution of  depends on the setting. For SigD,

 ∼  (0  ⊗ )  whereas for REG,  is a deterministic matrix such that
 0 = . With this interpretation, SigD and REG describe, respectively,

distributions of H which are unconditional and conditional on the factors.

In both cases the spike parameters  measure the -th factor’s variability

or ‘strength’.

Let us introduce a convenient representation for the eigenvalues of F.
First, note that these eigenvalues are invariant with respect to the simulta-

neous transformations

(3) X 7→ X ≡  and E 7→ E 0 ≡ 

where  is a random matrix uniformly distributed over the orthogonal group

O (), and  ∈ O () is such that the submatrix of its first  columns equals
 ( 0 )−12.
Note that  can be represented as

 = (0)−12 ≡ −12
 

where  is a  ×  matrix with i.i.d. standard normal entries, and  ∼
 ( ). Furthermore,

 = [−12
 12

12
  0] + 

where , , and  are mutually independent, the entries of  are i.i.d.

standard normals, and the distribution of  depends on the setting. For

SigD,  ∼ (  )  whereas for REG,  = .

Let us denote the submatrix of the first  columns of  as . Then

(4)  0 = 0 + 1

where 1 ∼  (1 ),  and 0 are mutually independent, and inde-
pendent from  and

(5)  = −12
 12

12
 + 

Using (3) and (4), we obtain the following convenient representation for

the eigenvalues 1 ≥  ≥  of F. Let ̂1 ≥  ≥ ̂ be the roots of the

equation

(6) det
¡
01 + − 

¢
= 0
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LAN PROPERTY OF SPIKED F-RATIOS 7

Then

(7)  = 1̂ (1 + ) 

This representation is convenient because the roots of (6) can be viewed

and analyzed as perturbations of the roots of equation det ( − ) = 0
caused by adding the low-rank matrix 01 to . Here , , and  are

independent and

1 ∼(1 ) 2 ∼(2 )

If  ∈ R is such that  −  is invertible, then¡
01 + − 

¢−1
= −

¡
 + 01

¢−1
01

where  ≡ ( − )−1. Therefore, if  is a root of the equation

(8) det
³
 + 0 ( − )−1 1

´
= 0

then it also solves (6), and hence, behavior of the roots of (6) can be inferred

from that of the random matrix-valued function

(9)  () = 0 ( − )−1 1

This is the main idea of the analysis in the next section.

3. Phase transition and almost sure limits. We will consider the

proportional asymptotic regime where 1 2 and  diverge to infinity so

that

1 ≡ 1 → 1 and 2 ≡ 2 → 2 with  ∈ (0 1) 
Let  = (1 2) and  = (1 2). We will abbreviate the above asymptotics
as  → ∞.
As follows from Wachter’s (1980) work (see also Yin et al. (1983) and Sil-

verstein (1985)), as  → ∞, the empirical distribution of the eigenvalues
of −1 converges in probability to the distribution with density

(10)
1− 2

2

p
(+ − ) (− −)
 (1 + 2)

1 {− ≤  ≤ +} 

The upper and the lower boundaries of the support of this density are

± =
µ
1± 

1− 2

¶2
 where  =

√
1 + 2 − 12.
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8 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

The results of Silverstein and Bai (1995) and Silverstein (1995) show

that the empirical distribution converges not only in probability, but also

a.s. Furthermore, a simple extension of Theorem 1.1 of Bai and Silverstein

(1998) that covers random  (Lemma SM1 in the Supplementary Material)

implies that the largest eigenvalue of −1 a.s. converges to +.

The latter convergence, together with (7) and Weyl’s inequalities for the

eigenvalues of a sum of two Hermitian matrices (see Theorem 4.3.7 in Horn

and Johnson (1985)), imply that the +1-th largest eigenvalue of F +1,
a.s. converges to +. Those of the  largest eigenvalues that remain separated

from + as  → ∞, must correspond to solutions of (8). Below, we study
these solutions in detail. The Supplementary Material (SM) contains proofs

of the following three auxiliary lemmas.

Lemma 1. For any   + as  → ∞,
tr ( − )−1  → (0;) and(11)

d

d
tr ( − )−1  → d

d
(0;)(12)

where (0;) = lim→0(;) and  ≡ (;) ∈ C+ is an analytic

function of  ∈ C+ that satisfies equation

(13)  − 1

1 + 1
= − 1


− 

1− 2


Lemma 2. For any   +, as  → ∞,°°° ()− (+ 1) tr ( − )−1 
°°° → 0 and°°°° dd ()− (+ 1)

d

d
tr ( − )−1 

°°°° → 0

where k·k denotes the spectral norm.

In the next lemma, and throughout this paper, the statement “for suffi-

ciently large ” abbreviates “for sufficiently large  and  along the sequence

 → ∞”.

Lemma 3. (i) For any   0 the eigenvalues of  () are strictly in-
creasing functions of  ∈ (+ + ∞) for sufficiently large , a.s.;
(ii) (0;) is a strictly increasing, continuous function of  ∈ (+∞);
(iii) lim→∞(0;) = 0, and lim↓+ (0;) ( + 1)  −1 if and only if
  ̄ where

̄ = (2 + )(1− 2)
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LAN PROPERTY OF SPIKED F-RATIOS 9

Let ̂1 ≥  ≥ ̂ be the  largest solutions of equation (8). By Lemmas

1—3, if

(14) 1      ̄  +1    

then ̂
→  where   = 1   are such that

(15) 1 + ( + 1)(0;) = 0

and (0;) satisfies (13) with  replaced by  In particular,

(16)
1

1 + 1(0;)
− 1

(0;)
− 

1− 2(0;)
= 0

Combining (15) and (16), we obtain

1


+ 1− 

 + 1 + 2
= 0

which implies that

(17)  =
( + 1) ( + 1)

 − 2 ( + 1)


By (7), 1̂ (1 + )   = 1  , must be the  largest eigenvalues of

F and thus,   = 1   describe their a.s. limits. Since there are only
 roots of (8) that are asymptotically separated from + and are located

above + the other −  of the largest eigenvalues of F must a.s. converge
to +. To summarize, the following theorem holds.

Theorem 4. Suppose that 1      ̄  +1    , and let

 be the -th largest eigenvalue of F. Then for  ≤ 


→ ( + 1) ( + 1)

 − 2 ( + 1)

as  → ∞. For    ≤  
→ +.

As follows from Theorem 4, ̄ = (2 + )  (1− 2) is the phase transition
threshold for the eigenvalues of the spiked F-ratio. The value of this thresh-
old diverges to infinity when 2 → 1. Note that when 2 is close to one, the

smallest eigenvalue of  is close to zero, which makes −1 a particularly bad
estimator of the inverse of the population covariance Σ−12 . When 2 → 0
the threshold converges to

√
1 which is the phase transition threshold for
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10 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

the eigenvalues of one spiked Wishart matrix. In such a case,  converges

to ( + 1) ( + 1)  which is the a.s. limit of the -th largest eigenvalue
of the spiked Wishart when the -th spike  is above

√
1.

When both 1 and 2 converge to zero,  converges to +1, which is the
population analogue of . For positive 1 and 2,  is an upward biased

estimator of  + 1. The relative bias ( + 1) converges to 1(1 − 2)
when the spike  diverges to infinity. The sizes of the relative and absolute

biases are very senistive to the value of 2. They quickly increase when 2
rises above zero. Such a behavior is illustrated in Figure 1.

0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

4.5

5

Fig 1. The a.s. limits of  as functions of  for   ̄. The top line corresponds to
1 = 12 2 = 110. The dashed line corresponds to the same 1, but 2 = 0. The straight
line is the population analogue of ,  + 1.

4. Asymptotic normality. In this section, we will assume that (14)

holds, so that only  eigenvalues of F separate from the bulk asymptotically.
We would like to study their fluctuations around the corresponding a.s.

limits. Theorem 4 shows that the limits  depend on 1 and 2. Because of

this dependence, the rate of the convergence has to depend on the rates of

the convergences 1 → 1 and 2 → 2. However, as will be shown below,

the latter rates do not affect the fluctuations of  around

 =
( + 1) ( + 1)

 − 2 ( + 1)
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LAN PROPERTY OF SPIKED F-RATIOS 11

which are obtained from  by replacing 1 and 2 by 1 ≡ 1 and 2 ≡
2 in equation (17).

Similar to , which are linked to the Stieltjes transform of the limiting

spectral distribution of  −  via (15),  also can be linked to the limit-

ing Stieltjes transform, albeit under a slightly different asymptotic regime.

Precisely, let  (;) be the Stieltjes transform of the limiting spectral dis-
tribution of  −  as 1 2 and  diverge to infinity so that 1 and

2 remain fixed. Then, similarly to (15), we have

(18) 1 + ( + 1)(0; ) = 0

This equation will be useful in our analysis below, where we maintain the

assumption that 1 and 2 are not necessarily fixed, but converge to 1
and 2 respectively.

Recall that, by (7),  = 1̂ (1 + )  where ̂  = 1   satisfy

(8). Clearly, the asymptotic distributions of
√
 ( − ) and

√

³
̂ − 

´


 = 1   coincide. Therefore, below we will study the asymptotic behavior
of the latter. By the standard Taylor expansion argument,

(19)
√

³
̂ − 

´
= −

√
detM ()

d
d detM () +

1
2

³
̂ − 

´
d2

d2 detM
³
̃

´ 
 = 1  , whereM () =  + ()  and ̃ ∈

h
 ̂

i


We have (see, for example, Magnus and Neudecker (1999) pp. 149—150)

d

d
detM () = detM () tr ()  and

d2

d2
detM () = detM ()

n
tr () + (tr ())

2 − tr2 ()
o


where

() =M ()−1
d

d
() and () =M ()−1

d2

d2
()

Since the event

detM () = 0 or 1 +() = 0 for some  = 1  

happens with probability zero, we can simultaneously multiply the numera-

tor and denominator of (19) by (1 +()) detM () to obtain

(20)
√

³
̂ − 

´
= −

√
 (1 +())

() +
1
2

³
̂ − 

´
()



imsart-aos ver. 2012/04/10 file: supercritical.tex date: January 28, 2017



12 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

where

() = (1 +()) tr ()  and

() = (1 +())
n
tr () + (tr ())

2 − tr2 ()
o


A proof of the following lemma is given in the SM.

Lemma 5. For any  = 1   we have: (i) ()
P→ ( + 1)

d
d(0;);

(ii) () = (1) a.s.

Equation (20), Lemma 5, and the Slutsky theorem imply that, for the

purpose of establishing convergence in distribution of
√

³
̂ − 

´
,  =

1  , we may focus on the numerator of (20)

() ≡ √ (1 +()) =
√
 [()− ( + 1)(0; )] 

where the last equality follows from (18).

The random variable  is the entry of the matrix

() =
√
 [()− (+ 1)(0; )]

that belongs to the -th row and the -th column. Let us now introduce new

notations. Let

 = (1)
12 12 ()

−12 

 = ( − )
−1 

∆ =
√
1

³
(1)

12 − 

´
 and

∆ =
√
 (− ) 

Then, using equations (9) and (5), we obtain the following decomposition.

() =
X7

=1
()

where

(1) = 
√

¡
0 −  tr

¢
0

(2) = (tr) ()
−12 12

√
1∆ 

(3) = tr
√
1∆ 

12 ()
−1 12

(4) = − (tr) 12∆ ()
−1 12

(5) =
√
1
√

¡
0+ 00¢ 

(6) = 1
√

¡
0−  tr

¢
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LAN PROPERTY OF SPIKED F-RATIOS 13

and

(7) = (+ 1)
√
 (tr−(0; )) 

For the last term, (7) we have the following lemma.

Lemma 6. (7)
→ 0

A proof of this lemma is given in the SM. Had  been negative,  − 

would have been having the form   0 with  ∼  (0  ⊗ 1+2) and
a positive definite diagonal  with converging spectral distribution. Then

Lemma 6 would have been following from the results of Bai and Silverstein

(2004). Our proof extends Bai and Silverstein’s (2004) arguments to the case

of negative .

Further, the asymptotic behavior of the terms (2) and (3) differ de-

pending on the setting. Recall that for SigD,  ∼  (  ). Then,
since

∆ =
√
1 (1 − ) 2 + P (1) 

a standard CLT together with Lemma 1 imply that

(21) diag
³
(2) + (3)

´
→ 

³
0 21

2(0;)
2
´


The latter limit is independent from the limits of ()  6= 2 3 because 

is independent from  and .

In contrast, for REG, we have  =  and ∆ = (1) Therefore,

(22) diag
³
(2) + (3)

´
P→ 0

Let us now establish the convergence of the remaining components ().

Let  and be such that [ ] includes the support of the limiting spectral
distribution,  (;), of  − . Moreover, let [ ] be such that none of
the eigenvalues 1 ≥  ≥  of −  lies outside [ ] for sufficiently
large , a.s. Further, let  with  = 1   where  is an arbitrary positive
integer, be functions which are continuous on [ ] and let  denote a ×

matrix with i.i.d. (0 1) entries, independent from  and . Finally, let

Θ = {(  ) :  = 1   ; 1 ≤  ≤  ≤ } 

The following lemma can be viewed as a special case of Theorem 5.2 in

Capitaine et al (2009) or Theorem 7.2 of Bai and Yao (2008), modified to

fit the needs of this paper. For readers’ convenience, its proof is given in the

SM.
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14 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

Lemma 7. The joint distribution of random variables(
1√


X

=1
 () ( − )  (  ) ∈ Θ

)

weakly converges to a multivariate normal. The covariance between compo-

nents (  ) and (1 1 1) of the limiting distribution is equal to 0 when
( ) 6= (1 1)  and to (1 + )

R
()1 () d (;) when ( ) = (1 1).

Note that all entries of ()  = 1 4 5 6 are linear combinations of the
terms having the form considered in Lemma 7, with weights converging in

probability to finite constants. Take for example (1). Its entries are linear

combinations of the entries of

1√

0 ( − )

−1  − 
1√

tr ( − )

−1 

which, in turn, can be represented in the form 1√


X

=1
()

−1 ( − ) 

The matrix  is obtained by multiplying [ ] from the left by the eigenvec-

tor matrix of  − .

Lemma 7 implies that vector
³

(1)
  

(4)
  

(5)
  

(6)


´
converges in distrib-

ution to a four-dimensional normal vector with zero mean and the following

covariance matrix⎛⎜⎜⎜⎝
22

0 (0;) −222 (0;) 0 0
−222 (0;) 22

2 (0;) 0 0
0 0 41

0 (0;) 0
0 0 0 221

0 (0;)

⎞⎟⎟⎟⎠ 

Combining this result with Lemma 6, and convergencies (21) and (22), we

obtain, for SigD,

(23) ()
→ 

³
0 2 ( + 1)

20 (0;)− 22 (1− 1)
2(0;)

´


and, for REG,

(24) ()
→ 

³
0 2 ( + 1)

20 (0;)− 222(0;)
´


To establish the joint convergence of ()  = 1   we need another
lemma. For each  = 1   let  with  = 1   be functions continuous
on [ ] 
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LAN PROPERTY OF SPIKED F-RATIOS 15

Lemma 8. For any set of pairs {( ) :  = 1  } such that (1  1) 6=
(2  2) for any 1 6= 2 the joint distribution of random variables(

1√


X

=1
 () ( − )   = 1  

)

weakly converges to a multivariate normal. The covariance between compo-

nents 1 and 2 of the limiting distribution is equal to 0 when 1 6= 2

A proof of this lemma is very similar to that of Lemma 7, and we do

not report it. Lemma 8 implies that ()  = 1   jointly converge
to a -dimensional normal vector with a diagonal covariance matrix. This

result, together with equations (7, 20), Lemma 5, and convergences (23, 24)

establish the following lemma.

Lemma 9. The joint asymptotic distribution of
√
 ( − )   = 1  

is normal, with diagonal covariance matrix. For SigD, the -th diagonal el-

ement of the covariance matrix equals

(25)
2 ( + 1)

20 (0;)− 22 (1− 1)
2(0;)

( + 1)
2
³
d
d(0;)

´2 

For REG, it equals

(26)
2 ( + 1)

20 (0;)− 222(0;)

( + 1)
2
³
d
d(0;)

´2 

In the SM, we establish the following explicit expressions for 2 (0;) 
0 (0;)  and d

d(0;) :

(27) 2 (0;) = ( + 1)
−2 

(28) 0 (0;) = − 2

( + 1)
2
³
1 + 2 (1 + )

2 − 2

´ 

(29) d (0;) d =
− (2 (1 + )− )

2

( + 1)
2
³
1 + 2 (1 + )

2 − 2

´ 
Using (27), (28), and (29) in (25) and (26), we obtain
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16 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

Theorem 10. Let ̄ = (2 + )  (1− 2), s = − (1 + 2)  (2 + ),
and () = (1 − 2) − 2. Then, for any 1      ̄, the joint

asymptotic distribution of
√
 ( − )   = 1   is normal with diagonal

covariance matrix. In particular,

(30)
√
 ( − )

→ 
³
0 2()

´


where 2() = ()× () with

() = (1− 2)( − s)( − ̄)2()

and

(31) () =

(
2 ((1 + )())

2 for SigD,

2 ((1 + )())
2 − 212 () for REG.

Remark 11. The () component of the asymptotic variance will play
the role of the scaling factor in our LAN result below. The fact that the as-

ymptotic variance is smaller for REG than for SigD accords with intuition.

Indeed, as discussed above, REG corresponds to the analysis conditional on

factors  whereas SigD corresponds to the unconditional analysis. The fac-

tors’ variance adds to the asymptotic variance of .

Similarly to the bias discussed in the previous section, the asymptotic

variance of  is sensitive to the size of 2. Figure 2 shows that even a small

increase in 2 may lead to a large increase in the variance.

As the value of the spike  approaches the phase transition threshold

̄ from above, the asymptotic variance converges to zero. As  → ∞, the
standard deviation increases linearly in  so that the coefficient of variation

does not approach zero for large spikes. The limit of the squared coefficient

of variation equals

lim
→∞

 2() =

(
22 (1− 2) for SigD

22 (1− 2) for REG.

Again, it is sensitive to the value of 2, approaching to infinity as 2 → 1.
For SigD, when 2 → 0 the asymptotic variance of  converges to the

correct asymptotic variance

21 ( + 1)
2
³
2 − 1

´
2

of the i-th largest eigenvalue in the spiked Wishart model as derived in

Paul (2007). For REG, it converges to the asymptotic variance of the i-th

largest eigenvalue in the Wishart model with non-centrality spikes, derived

in Onatski (2007).
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0.5 1 1.5 2 2.5
0

2

4
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8

10

12
Asymptotic variance, REG

Fig 2. The asymptotic variance of , REG case. The solid and dashed lines correspond

to 2 = 01 and 2 = 0, respectively. For both lines, 1 = 12.

5. Analysis of the joint density of eigenvalues. In the rest of the

paper we study the statistical experiment of observing the eigenvalues of F
when the  spikes are local to some fixed points 01    0 above the

phase transition threshold ̄. The asymptotics of such an experiment can be

characterized by that of the likelihood ratio corresponding to the null and

alternative hypotheses

0 : 
true = 0 and 1 : 

true =  ≡ 0 + 
√


where 0 = diag {01  0}  and  = diag {1  } is the diagonal matrix
of local parameters  ∈ R. Here we instruduce notation true for the true

values of the spikes to contrast them with the spike parameters, .

When true = , the joint density of the  eigenvalues of the multivariate

Beta matrix (H+ 2E)
−1 H has the following form ( see James (1964),

Khatri (1967), and Muirhead (1982), pp. 312—314):

(32) SigD(; ) =
SigD ()

det( + )2 1
0

³
2;( + )−10 

´


whereas for REG, we have

(33) REG(; ) =
REG ()

etr {2} 11
¡
2 2;

02 
¢
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18 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

Here the argument of the density, , is a  ×  real diagonal matrix; 10
and 11 are the hypergeometric functions of two matrix arguments;  =
 + 2;  is the  ×  matrix of nuisance parameters, or factor loadings,

as in (2); and Case () with Case = SigDREG depend on   2  and ,

but not on .

Let ̃ be the eigenvalues of (H+ 2E)
−1 H for some arbitrary

value of true, not necessarily equal to , and let Λ̃ = diag
n
̃1 · · ·  ̃

o
.

We would like to study the asymptotic behavior, under the null hypothesis,

of the likelihood ratios

Case(Λ̃; )Case(Λ̃; 0)

with Case = SigDREG as  → ∞

The eigenvalues ̃ are related to the eigenvalues  of the F-ratio as
follows

̃ =  (1 + ) , where  = 2;

For the purpose of the analysis of the likelihood ratios, we find it more

convenient to work with ̃ rather than with  .

First, we use Lemma 1 of Passemier et al (2014) to rewrite SigD(Λ̃; )
and REG(Λ̃; ) in the form of repeated contour integrals that involve hyper-
geometric functions of two matrix arguments of fixed dimension  × . Let

 be a ×  diagonal matrix with complex variables  along the diagonal,

and let

(34)  =
Y
 6=

³
1− 

−1


´12 Y
=1

"

−(−+1)2


Y
=1

³
1− ̃

−1


´−12#


where the principal branches of all the fractional powers are taken. Let

Case (Λ̃) be some real quantity that depend on ‘Case’,   2  and Λ̃ but
not on ; and let

(35) SigD () = [det( + )]
−−−1

2 [det ]−
−−1

2 

and

(36) REG () = etr {−2} [det ]−
−−1

2 

Lemma 12. Let K̃ be a counter-clockwise oriented contour in the complex
plane that encircles zero and ̃   = 1  , and intersects each of the rays
{ : arg  = }   ∈ (− ] only once. Then, for even −  + 1, we have

(37) Case(Λ̃; ) =
Case (Λ̃)Case ()

(2i)

Z
K̃


Z
K̃
FCase

Y
=1

d
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LAN PROPERTY OF SPIKED F-RATIOS 19

where i is the imaginary unit, Case = SigDREG,

(38) FSigD = 10

µ
 − +  + 1

2
; ( + )−1 

¶


and

(39) FREG = 11

µ
 − +  + 1

2

 − +  + 1

2
;


2
 

¶


The lemma is a direct corollary of Lemma 1 of Passemier et al (2014). The

requirement that K̃ intersects each of the rays emanating from  = 0 only
once ensures that the branches of the fractional powers in  are principal.

Indeed, Onatski’s (2013) Lemma 1, which Lemma 1 of Passemier et al (2014)

is based on, is proven first under the assumption that K̃ is the unit circle

and the principal branches of the fractional powers in  are used. Then the

contour is deformed without changing the value of the integrals. When K̃
is deformed so that the rays { : arg  = }   ∈ (− ] are intersected by
K̃ only once, the arguments of the fractional power functions in  never hit

the negative semi-axis (note that 
−(−+1)2
 is not a fractional power when

 −  + 1 is even), and therefore, the principal branches of the fractional
powers should still be used after the deformation of K̃.
In future work, it would be interesting to relax the technical requirement

that −  + 1 is even. In a previous version of this paper, we provide such
a relaxation for the case of a single spike,  = 1. An extension to   1
requires a separate non-trivial effort.

5.1. Contour deformation. Let us deform the contour of integration K̃
into contour K as shown on Figure 3. Parts K+ and K−   = 1  , of K
are shown non-overlaping with the real axis to enhance visibility. In fact,

these parts coincide with the axis. The position ̃0 of a kink in K is fixed so
that

+ (1 + +)  ̃0   (1 + )

with  = lim = 21, and

(40)  = lim  =
(0 + 1) (0 + 1)

0 − (0 + 1) 2   = 1  

As follows from our results in the previous sections, under the null,

(41) ̃
→  (1 + ) 

and

(42) ̃+1
→ + (1 + +) 
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20 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

so ̃0 ∈
³
̃+1 ̃

´
for sufficiently large , a.s.

The radius of the circles around ̃ with  = 1   can be chosen ar-
bitrarily small. Since, as can be seen from (34), the singularities of the in-

tegrand at ̃ are of the inverse square-root-type, the contribution of the

circles to the integral disappear in the limit when the radius tends to zero.

Below, we will consider this limiting version of K, that is, the contour with
the horizontal part given by the two differently oriented copies of [̃0 ̃1]
where the points ̃1  ̃ are excluded.

Fig 3. Deformed contour K.

Since contour K has common intervals with the ray { : arg  = 0}, some
of the arguments of the fractional power functions involved in  are real and

negative. Therefore, care should be taken to identify the branches used.

Suppose that

1    ∈ K ∩ [̃0 ̃1]
where  ≤  and 1      and let all  with  ∈ {1  } belong
to K\[̃0 ̃1]. To simplify notation, we may assume that  = . Since  is

symmetric in 1  , this assumption is without loss of generality. Then
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LAN PROPERTY OF SPIKED F-RATIOS 21

the parts of  that need the branch identification are

Y


³
1− 

−1


´12
and

³
1− ̃

−1


´−12
for ̃  

In the SM, we prove the following lemma.

Lemma 13. Suppose that 1   ∈ K∩ [̃0 ̃1] are such that 1   

 and let  = +1 if  belongs to the “upper” portion of K ∩ [̃0 ̃1],
that is, the portion oriented from ̃1 to ̃0, and  = −1 if  belongs to
the “lower” portion of K ∩ [̃0 ̃1], that is, the portion oriented from ̃0 to

̃1. Then for    we have³
1− 

−1


´12
= i× 

¯̄̄
1− 

−1


¯̄̄12


while for ̃   we have³
1− ̃

−1


´−12
= −i× 

¯̄̄
1− ̃

−1


¯̄̄−12


5.2. Decomposition of the contour integral. Let us split K into 2×(+1)
parts

K =
+1[
=1

n
K+ ∪K−

o
as shown on Figure 3, and let K = K+ ∪K− . For any  = (1  ) with
 ∈ {1   + 1}, let

I = 1

(2i)

Z
K



Z
K1

F
Y
=1

d

Since F is symmetric in the variables  we may permute them so

that 1     are in K∩
h
̃0 ̃1

i
and +1   lie in K+1 Let S

denote the simplex defined by 1     Consider a sequence  with

 ≤  ≤ 1 ≤  and +1 =  =  = +1. Consider the iterated integral

(43) I 0 =
1

(2i)

Z
K∩S

F

Y
=1

d

In the SM, we show that I 0 vanishes if there are any repeats in  on the

real axis.
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22 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

If I 0 vanishes, I vanishes too. Therefore, the components of the integral

I ≡ 1

(2i)

Z
K


Z
K
F

Y
=1

d

represented by I with repeated  ≤  equal zero. This implies the following

lemma. Let  be any subset of {1 2  }, and let  = (1    )  where

 =

(
 + 1 if  ∈ 

 if  ∈ 


Lemma 14. Let  be the set of all the subsets of {1 2  }  Then,

(44) I =
X
∈

!

| |!I 

Remark 15. The multiplier ! | |! in the latter expression counts the
number of integrals I which are different from I only by permutation of
the variables of integration, 1  .

Below, we will show that, asymptotically as   → ∞ all integrals I
are dominated by

I∅ =
1

(2i)

Z
K



Z
K1

F
Y

=1

d

so that I is asymptotically equivalent to !I∅ . Using Lemma 13, it is
straightforward to verify that

(45) I∅ =
Z ̃

̃0

Z ̃−1

̃



Z ̃1

̃2

|| F

Y
=1

d

Note that the constant (2i) in the denominator has canceled out.
To study the asymptotics of I∅  we will use Laplace approximation for

the integrals involved in the above expression. However, first, we need to

replace F, that involves the hypergeometric function 10 for SigD and

11 for REG, by tractable approximations. This requires a separate Laplace

approximation step.
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5.3. Laplace approximations for F. As follows from equation (38),

FSigD = 10

³
; ( + )−1 

´
= [det ( − )]− 10

³
;−( + )−1 ( − )−1

´


where  = ( − +  + 1) 2. Chang (1970) studies the asymptotic behav-
ior of 10(−) for fixed diagonal matrices  and  as  → ∞. The
following lemma uses a minor modification of Chang’s Theorem 1 to derive

a Laplace approximation for FSigD that is uniform over a set of diagonal

matrices  and  (see the SM for a proof).

Lemma 16. For  = diag {1  } such that 1  1      0,
and for  = diag {1  } such that 1      0 as →∞ we have

(46) FSigD = Γ (2)
−(+1)4 ³SigD

´− Y


()
−12 (1 + (1)) 

where Γ () = (−1)4
Q

=1 Γ (− (− 1) 2) is the multivariate Gamma
function,

SigD = det
³
 − ( + )−1

´
  =

( − ) ( − )

(1 +  − ) (1 +  − )


and (1)→ 0 uniformly on any compact subsets of the simplexes 1  1 

    0 and 1      0.

For REG case, we have from (39)

FREG = 11 (+ ( + 1) 2  + ( + 1) 2 2 ) 

where  =  ,  = ( − )(2), and  = ( − )(2). Note that
for sufficiently large , as   → ∞, we must have  ∈ (12∞) and
 ∈ (0 12).
The asymptotics of 11 ( ;) where  and  diverge to ∞ at the

same rate was studied in Glynn (1980). We however need the asymptotics

of this function when not only  ≡ + ( + 1) 2 and  ≡ 2, but also
 ≡ +( + 1) 2 diverge to infinity. Following Glynn’s (1980) strategy of
proof, we derive the following result. Its proof is reported in the SM.

Lemma 17. Suppose that  and  belong to compact subsets of (12∞)
and (0 12), respectively, while the diagonal entries of  = diag (1  )
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and  = diag (1  ) belong to compact subsets of the simplexes 1 

    0 and 1      0. Then, as  →∞ we have

FREG = (2)−(−1)4
Γ (2)

(+1)4
+(+1)4

+(+1)4
(47)

×REG
Y


( − )
−12 ( − )

−12 × (1 + (1))

where

REG =
Y

=1

+
(+ + )

(+ + )

Ã
+ (+ + )

2+ + 

! 1
2



+ =
1

2

½
 − +

q
(− )

2 + 4

¾
with  = 2

and (1)→ 0 uniformly over    and  that satisfy the above requirements.

5.4. Laplace approximations for I∅ . Note that the asymptotic approxi-

mations (46) and (47) do not hold for   = 1   that may approach one
another. Therefore, we shall, first, analyze a multiple integral with trimmed

integration domains

(48) I∅ =
Z ̃

̃0

Z ̃−1

̃+


Z ̃1

̃2+
|| F

Y
=1

d 

where  is a fixed small positive number. Then, we will show that I∅ is
asymptotically equivalent to I∅ .
Although the strategy of such an analysis is the same for SigD and REG,

the details are different. We start from the SigD case and then turn to the

REG case.

SigD case. First, we use Lemma 16 to obtain

(49) ISigD∅ = SigD ()

Z ̃

̃0

Z ̃−1

̃+


Z ̃1

̃2+
SigD × (1 +  (1))

Y
=1

d 

where

SigD = ||
³
SigD

´−−+2
2

Y


( − )
−12 

(50) SigD () =
Γ (2)

(+1)4(−1)4
Y


Ã
(1 + ) (1 + )

 − 

!12
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and  (1) converges to zero as   → ∞, uniformly over  = 0 + 
√


such that (1  ) belongs to a compact subset of R, and over  such

that (1  ) belongs to the trimmed domain of integration.
Consider the inner-most integral in (49),

ISigD∅  =

Z ̃1

̃2+
SigD × (1 +  (1)) d1

Using the definition of  we rewrite this integral in the following form

(51) ISigD∅  = 
SigD
−1

Z ̃1

̃2+
−1(1)1 (1) (1 +  (1)) d1

where 1 1, and 
SigD
−1 are defined in Table 1.

Table 1

Definition of 1 1, and SigD−1 used in equation (51), and of  used in Lemma 18.

Quantity Definition

1 (1) = −+2
2

ln
¡
1− 11

1+1

¢
+ 1

2

P

=+1
ln
¡
1 − ̃

¢
1 (1) =

¡
̃1 − 1

¢−12Q

=2

¡
(1 − ) 

¡
1 − ̃

¢¢12
SigD
−1 = |−1|

¡
SigD
−1

¢−−+2
2

Q
=2;

( − )
−12

SigD
−1 = det

¡
−1 − −1(−1 + −1)−1−1

¢
−1 =

Q
=2; 6=

¡
1− 

−1


¢12Q

=2

"

−(−+2)2


Y
=1

¡
1− ̃

−1


¢−12#
−1 = diag {2  }
−1 = diag {2  }
 = numden

num = (1− 2)0(1 + 2 + 20)
³
1 + 0 − 

12
+

´³
1 + 0 − 

12
−

´
den = 212 (0 − 20 − 2) (1 + 0) (1 + 0)

Using the Laplace method to approximate the integral in (51) (see the

SM for details), and then repeating the procedure for the second, third, etc.

to the inner-most integral in (49) and combining the results, we obtain the

following lemma.

Lemma 18. Under the null hypothesis 0 : 
true = 0, as  → ∞,

ISigD∅ = SigD()
Y

=1

⎡⎣ΩSigD ()
−12

Y
=+1

³
̃ − ̃

´−12⎤⎦ (1 + (1)) 
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where ΩSigD =
³
1− 

1+
̃

´−−+2
2
,  are as defined in Table 1, and

(1) → 0 uniformly over  = 0 + 
√
 with (1  ) from a compact

subset of R, a.s.

REG case. First, we use Lemma 17, to obtain

(52) IREG∅ = ()

Z ̃

̃0

Z ̃−1

̃+


Z ̃1

̃2+
REG × (1 + (1))

Y
=1

d 

where

REG = ||REG
Y


( − )
−12

with

REG =
Y

=1

+
(+ + )

(+ + )

Ã
+ (+ + )

2+ + 

! 1
2



 = ( − )(2)  = ( − )(2) and

(53) REG() =

µ


2

¶−(−1)4 Γ (2)
(+1)4

+(+1)4

+(+1)4

Y


( − )
−12 

The same uniformity properties of  (1) as in the case of (49) apply.
Consider the inner-most integrals in (52),

IREG∅  =

Z ̃1

̃2+
REG × (1 +  (1)) d1

Using the definition of  we rewrite this integral in the following form

(54) IREG∅  = REG−1
Z ̃1

̃2+
−2(1)2 (1) (1 +  (1)) d1

where 2 2, and REG−1 are defined in Table 2.

Similarly to the integral in (51), the one in (54) can be analyzed using

the Laplace approximation steps. Repeating the procedure for the second,

third, etc. to the inner-most integral in (52) and combining the results, we

obtain the following lemma. See the SM for a detailed proof.
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Lemma 19. Under the null hypothesis 0 : 
true = 0, as  → ∞,

IREG∅ = REG()
Y

=1

⎡⎣ΩREG ()
−12

Y
=+1

³
̃ − ̃

´−12⎤⎦ (1 + (1)) 

where

ΩREG =  ̄+
(̄+ + )

(̄+ + )
1 + 2 + 20

((1 + 2 + 20)2 − 21)
12

and ̄+ is the value of + that corresponds to  = ̃2. The  are

as defined in Table 1, and (1) → 0 uniformly over  = 0 + 
√
 with

(1  ) from a compact subset of R, a.s.

Now let us show that I∅ is asymptotically equivalent to I∅ . By defini-
tion,

I∅ − I∅ =
X
D

Z ̃

̃0

Z
D−1



Z
D1
|| F

Y
=1

d 

where the sum runs over all D that are represented by either [̃+1 +  ̃ ]
or [̃+1 ̃+1 + ] and at least one D   = 1   − 1, is represented by
[̃+1 ̃+1 + ]. All terms in this sum cam be analyzed similarly. Let us

explain the main idea of the analysis using the term

 ≡
Z ̃

̃0

Z ̃−1

̃+


Z ̃2

̃3+

Z ̃2+

̃2

|| F

Y
=1

d 

Since the lower integration limit of the inner-most integral coincides with

the upper integration limit of the second inner-most integral, we cannot

Table 2

Definition of 2 2, and REG−1 used in equation (54). Quantities −1, −1, and −1
are as defined in Table 1.

Quantity Definition

2 (1) = −1+ −  ln (1+ + ) +  ln (1+ + ) + 1
2

P

=+1
ln
¡
1 − ̃

¢
2 (1) =

³
1+(1++)
2
1+
+1

´ 1
2 ¡

̃1 − 1
¢−12Q

=2

³
1−
1−̃

´12
REG
−1 = |−1|REG

−1
Q

=2;
( − )

−12

REG
−1 =

Q

=2
+ (++)



(++)


³
+(++)
2
+
+

´ 1
2
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use Lemmas 16 and 17 to approximate F uniformly over the integration
domain of  . However, we can obtain an upper bound on | | that can be
analyzed using these lemmas.

The key is to observe that F viewed as a function of  ≡ diag{1  }
is positive and monotonically increasing in each of 0    1  = 1  ,
for all  = 0 + 

√
 with (1  ) from a compact subset of R and all

sufficiently large . This follows from the representation of 10 and 11 in

the series of zonal polynomials and from the monotonicity of the zonal poly-

nomials of  in each of 0    1  = 1   Such a monotonicity follows
from the fact that zonal polynomials are linear combinations of monomial

symmetric functions of  with positive coefficients (see Chattopahyay and

Pillai (1970), Lemma 2).

Let us make the dependence of F on  explicit by writing F(). The
positivity and monotonicity of F() yield the following bound

(55) | | ≤
Z ̃

̃0

Z ̃−1

̃+


Z ̃2

̃3+

Z ̃2+

̃2

|| F

³
̃1

´ Y
=1

d 

where ̃1 = diag
n
̃2 +  2  

o
.

In constrast to F (), function F

³
̃1

´
can be approximated using

Lemmas 16 and 17. Exploiting such an approximation to show that the right

hand side of (55) is asymptotically dominated by I∅ yields the following
lemma. Its proof is given in the SM.

Lemma 20. Under the null hypothesis 0 : 
true = 0, as  → ∞,

I∅ = I∅ (1 + (1)) 

where (1)→ 0 uniformly over  = 0+
√
 with (1  ) from a compact

subset of R, a.s.

5.5. Asymptotic negligibility of I with  6= ∅, and a summary. To

finish our asymptotic analysis of the joint densities of the eigenvalues, we

need to show that integrals I with  6= ∅ are asymptotically dominated

by I∅ . This can be established similarly to Lemma 20.
Consider, for example,  = {1 2  }. By definition,

I =
1

(2i)

Z
K+1



Z
K+1

F ()
Y

=1

d 
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Since K+1 is not a subset of R, we cannot use Lemmas 16 and 17 to approx-
imate F (). However, it is easy to obtain an upper bound on |F ()|
that can be approximated using those lemmas.

Indeed, the representation of 10 and 11 in the series of zonal polynomi-

als and the fact that these polynomials are linear combinations of monomial

symmetric functions with positive coefficients (see Chattopahyay and Pillai

(1970), Lemma 2) yield the following inequality

|F ()| ≤ F (||) 
where || = diag{|1|   ||}. Therefore, we have

|I | ≤
1

2

Z
K+1



Z
K+1

|| F (̃0)
Y

=1

|d | 

Further, by the monotonicity of zonal polynomials, F (̃0) ≤ F (),
where  = diag {̃0 +   ̃0 + 2 ̃0 + } and  is a fixed small positive
number. Therefore,

|I | ≤
1

2

Z
K+1



Z
K+1

|| F ()
Y

=1

|d | 

Function F () can now be approximated using Lemmas 16 and 17, which
yields the following lemma (see the SM for a proof).

Lemma 21. Under the null hypothesis 0 : 
true = 0, as   → ∞,

for any  6= ∅,
I = (1)I∅ 

where (1)→ 0 uniformly over  = 0+
√
 with (1  ) from a compact

subset of R, a.s.

In conclusion of this section, we formulate a theorem that describes the

asymptotic behavior of the joint density of the eigenvalues of the multivariate

Beta matrix (H+ 2E)
−1 H by combining results of Lemma 12 with

those of Lemmas 18—21. For the reader’s convenience, we reproduce the

definitions of the quantities used in the statement of the theorem in Table

3.

Theorem 22. Under the null hypothesis 0 : 
true = 0, as   → ∞

while −  + 1 remains even,

Case(Λ̃; ) = !Case (Λ̃)Case ()Case()

×
Y

=1

⎡⎣ΩCase ()
−12

Y
=+1

(̃ − ̃)
−12

⎤⎦ (1 + (1))
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where (1)→ 0 uniformly over  = 0+
√
 with (1  ) from a compact

subset of R, a.s.

Table 3

Definitions of Case
 (Λ̃), Case (), Case(), ΩCase , and .

Quantity Definition

Case
 (Λ̃) = A quantity that depends on ‘Case’,   2  and Λ̃ but not on 

SigD () = [det( + )]
−−−1

2 [det ]−
−−1

2 ,

REG () = etr {−2} [det ]−
−−1

2 ,

SigD () = Γ(2)

(+1)4(−1)4
Q



³
(1+)(1+)

−

´12


REG() =
¡

2

¢−(−1)4 Γ(2)

(+1)4
+(+1)4

+(+1)4

Q


( − )
−12

,

ΩSigD =
³
1− 

1+
̃

´−−+2
2



ΩREG =  ̄+ (̄++)


(̄++)


1+2+20

((1+2+20)2−21)12
,

 = numden

num = (1− 2)0(1 + 2 + 20)
³
1 + 0 − 

12
+

´³
1 + 0 − 

12
−

´
den = 212 (0 − 20 − 2) (1 + 0) (1 + 0)

6. Local Asymptotic Normality. Our goal is to understand the as-

ymptotic behavior of the likelihood ratios for the eigenvalues of the F-ratio
(or, equivalently, of the multivatiate Beta) at local alternatives to the null

of  supercritical spikes:

0 : 
true = 0 1 : 

true = 0 + 
√


Let us, first, reparametrize the alternative by considering new local parame-

ters

 = (0) for  = 1  

where (0) is the component of the asymptotic variance of  defined in
Theorem 10. That is,

(0) =

(
2 (0(1 + 0)(0))

2 for SigD,

2 (0(1 + 0)(0))
2 − 2120(0) for REG

with

(0) = (1− 2)(0 − s)(0 − ̄)2(0) and

(0) = (1− 2)0 − 2
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Let Λ = diag{1  }. Denote the likelihood ratio as

(Λ) ≡ (Λ̃; )(Λ̃; 0)

We write (Λ) instead of ( Λ̃) to emphasize the fact that the likeli-
hood ratio remains the same whether we define it as the ratio of the joint

densities of the eigenvalues of the multivariate Beta (H+ 2E)
−1 H

(the diagonal elements of Λ̃) or of the eigenvalues of the F-ratio (the diagonal
elements of Λ).
Using Theorem 22 to express ln(Λ) in terms of elementary functions

of , expanding the result in the powers of −12 up to and including terms
with 2−1, and invoking Theorem 4 yields the following theorem. Its proof

can be found in the SM.

Theorem 23. Under the null hypothesis 0 : 
true = 0, as   → ∞

while −  + 1 remains even,

ln(Λ) =
X

=1

½

√
( − )− 1

2
2 

2(0)

¾
+ P(1)

where  = (0 + 1)(0 +1)((1− 2)0 − 2), 
2(0) = (0)(0), and

P(1) → 0 in probability, uniformly in (1  ) from any compact subset

of R.

Theorem 23 together with the joint asymptotic normality of
√
 ( − ) 

 = 1   established in Theorem 10 imply, via Le Cam’s First Lemma (see
van der Vaart (1998), p.88), that the sequences of the probability measures

{P0} and {P} describing the joint distribution of the eigenvalues of F
under the null 0 : 

true = 0 and under the local alternative 1 : 
true =

0 + 
√
 where

 = diag{1  } and  = diag{(01)  (0)}

are mutually contiguous. Moreover, the experiments

E0 ≡
³
(1  ) ∼ P0+√ :  ∈ R

´
converge to the Gaussian shift experiment

E0 ≡
³
 ∼  ( ()  T ) :  ∈ R

´
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where

 =
√
(1 − 1   − )

0
() = (1

2(01)  
2(0))

0 and
T = diag{2(01)  2(0)}

In particular, these experiments are LAN.

As discussed in the introduction, the LAN property of the experiments

E0 imply that the asymptotically efficient tests of hypotheses about
super-critical spikes are based on 1  . Such tests may ignore infor-

mation contained in the other eigenvalues of the F-ratio.
Here, we will illustrate the LAN property by constructing LAN confidence

sets for . The likelihood ratio confidence set, , is the set of all  that

are not rejected by the likelihood ratio test. Asymptotically, this will coincide

with the set of all 0 such that the hypothesis0 :  = 0 is not rejected in the
limiting experiement E0 . Therefore, we find the asymptotic 100(1 − )%
 for supercritical spikes, by collecting all 0 that satisfy the inequality

X
=1

( − (0))
2

̂2(0)
≤ 2()

where 2() is the critical value of the chi-squard distribution with  degrees
of freedom and the other quantities are as defined in Table 4.

Table 4
Definitions of (), ̂() and related quantities.

Quantity Definition

() = (+ 1)(+ 1)((1− 2)− 2)

̂2() = ̂()̂(),

̂() = 2((1 + )̂())2 for SigD,

̂() = 2((1 + )̂())2 − 212̂() for REG,
̂() = (1− 2)(− ŝ)(− ˆ̄)̂2(),
̂() = (1− 2)− 2

ŝ = −(1 + 2)(2 + ),

ˆ̄ = (2 + )(1− 2)
2 = 1 + 2 − 12

Figure 4 shows the 95% asymptotic confidence sets for (1 2) when
1 = 2 = 12,  = 100, and 1 = 45 2 = 25. The outer and inner
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ovals represent the confidence sets for SigD and REG cases, respectively. It

is worth noting that the asymptotic confidence sets do not necessarily pre-

serve the ranking 1  2. Indeed, in the figure, the confidence set for the

SigD case intersects the 45-degree (dashed) line. Of course, this undesirable

phenomenon will not be observed for sufficiently large .

5 10 15 20
10

15

20

25

30

35

40

Fig 4. Confidence sets.

To assess the quality of the LAN confidence sets, we conduct a small-scale

Monte Carlo experiment. Specifically, we generate 10,000 replications of H
and E, distributed as

(1 + )H ∼ (1 + Σ1Ω1) and 2E ∼ (2 )

and compute the eigenvalues of the corresponding F-ratio, E−1H. We con-
sider various values of 1 2, and , and several different values of the spikes.
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The Monte Carlo coverage rates of the nominal 95% confidence sets are re-

ported in Table 5 for  = 1 and Table 6 for  = 2.

Table 5

Coverage probabilities, nominal 95% confidence sets. Single spike.

SigD REG

 = 1  = 3  = 5  = 10  = 3  = 5  = 10

2 = 0 1 =  = 100 ˆ̄ = 10 95.8 95.1 95.5 95.1 94.9 95.3

1 = 2 = 100  = 50 ˆ̄ = 27 79.1 94.2 94.3 79.6 94.4 94.3

1 = 2 = 100  = 5 ˆ̄ = 04 94.9 94.9 95.1 94.2 95.0 94.6

1 = 2 = 100  = 2 ˆ̄ = 02 95.0 95.3 95.3 94.9 95.1 94.5

Table 6
Coverage probabilities, nominal 95% confidence sets. Two spikes.

SigD

 = 2 1 = 4 1 = 5 1 = 10 1 = 6 1 = 20

2 = 3 2 = 3 2 = 3 2 = 5 2 = 10

2 = 0 1 =  = 100 ˆ̄ = 10 95.9 95.9 95.6 95.4 95.6

1 = 2 = 100  = 50 ˆ̄ = 27 68.1 75.4 80.8 92.3 94.9

1 = 2 = 100  = 5 ˆ̄ = 04 94.8 95.3 94.3 94.1 95.2

1 = 2 = 100  = 2 ˆ̄ = 02 94.7 95.4 95.1 94.0 94.9

REG

 = 2 1 = 4 1 = 5 1 = 10 1 = 6 1 = 20

2 = 3 2 = 3 2 = 3 2 = 5 2 = 10

2 = 0 1 =  = 100 ˆ̄ = 10 95.5 95.5 95.3 95.5 95.1

1 = 2 = 100  = 50 ˆ̄ = 27 70.4 76.1 80.5 92.2 94.2

1 = 2 = 100  = 5 ˆ̄ = 04 94.8 95.5 95.1 93.9 94.5

1 = 2 = 100  = 2 ˆ̄ = 02 95.0 95.4 94.4 94.0 94.4

Surprisingly, for  = 1, the coverage rate of the nominal 95% confidence

intervals remains good even for an extremely small dimensionality —  = 2.
The worst reported coverage corresponds to 1 = 2 = 100  = 50 and
 = 3. This is an example of a situation where the true spike is close to
the phase transition threshold, given here by ˆ̄ ≡ (2 + )(1 − 2) ≈ 27
A further analysis suggests that the reason for the poor coverage in this
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situation is that the finite sample variance of 1 is substantially larger than

its asymptotic counterpart.

For  = 2, the results are similar. Again, surprisingly, the coverage re-
mains good even when  = 2. The worst results correspond to situations
where a spike is close to the phase transition. A particularly unfavourable

situation arises when both spikes are close to the threshold — 1 = 4 2 = 3
with ˆ̄ = 27. A more detailed analysis shows that in such a case the as-

ymptotic variances are smaller than the finite sample ones. In addition, the

smallest of the spikes tends to lie below the corresponding a.s. limit, whereas

the largest one tends to lie above the corresponding a.s. limit. These devi-

ations become smaller when at least one of the spikes is moved away from

the phase transition threshold.

7. Conclusion. In this paper, we establish the Local Asymptotic Nor-

mality of the experiments of observing the eigenvalues of the F-ratio F ≡
E−1H of two large-dimensional Wishart matrices. The experiments are pa-

rameterized by the values of a finite number  of spikes that describe the

“ratio” of the covariance parameters of H and E, or, in the case of equal
covariance parameters, the non-centrality parameter of H.
We find that the asymptotic behavior of the log ratio of the joint density

of the eigenvalues of F which corresponds to super-critical spikes, to their
joint density under a local deviation from these values depends only on the

 of the largest eigenvalues 1  . This implies, in particular, that the

best statistical inference about  super-critical spikes in the local asymptotic

regime is based on the  largest eigenvalue only. A small-scale Monte Carlo

analysis shows that LAN confidence sets for super-critical spikes have good

coverage properties even for extremely small values of the dimensionality .

As a by-product of our analysis, we establish the joint asymptotic nor-

mality of a few of the largest eigenvalues of F that correspond to the super-
critical spikes. We derive explicit formulas for the phase transition threshold,

for the almost sure limits of the super-critical eigenvalues, and for the as-

ymptotic variances of their fluctuations around these limits.
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This note contains supplementary material for Dharmawansa et

al (2016) (DJO in what follows). It is lined up with sections in the

main text to make it relatively easy to see how and where the proof
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1. Introduction. There is no supplementary material for the Introduction section of DJO.

2. Setup. There is no supplementary material for the Setup section of DJO.

3. Phase transition and almost sure limits.

3.1. An extension of Bai and Silverstein’s (1998) Theorem 1.1. In this subsection, we will use

notations from Bai and Silverstein (1998). Their Theorem 1.1 covers only nonrandom . Remark

6.5 on page 125 of Bai and Silverstein (2010) points out that the theorem is easily extendable to

the cases of random , as long as it is independent from , its limiting spectral distribution is

nonrandom, and condition (f) of the theorem that “interval [ ] with   0 lies outside the suport

1
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2 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

of   and   for all large ” holds a.s. (here Bai and Silverstein’s  and  correspond to our

1 and 1, respectively.)

This still assumes that kk is bounded (assumption (d) of the theorem). Unfortunately, if
 = −2, where  is a sample covariance matrix, as in DJO, kk can be larger than any positive
number with a small probability. Note however, that as long as 2 ∈ (0 1),

°°−2°° a.s. converges
to a finite number. This helps because, as the following lemma shows, Theorem 1.1 remains valid

if assumption (d) is replaced by

(d*) There exists   0, such that lim sup
→∞

kk  , a.s.

Lemma 1. Assumption (d) of Theorem 1.1 can be replaced by (d*) without changing the validity

of the theorem.

Proof: Define event

Ω =
n°°°−1°°°   for all   0

o


By (d*), Pr(Ω) → 1 as 0 → ∞. On the other hand, Theorem 1.1 holds conditionally on Ω. That
is, the conditional probability Pr(Ω1|Ω) = 1, where Ω1 is the event that there exists 1 s.t. for any
  1, all the eigenvalues of 

−1 do not belong to [ ]. Therefore, Pr(Ω1 ∩Ω) = Pr(Ω)→ 1 as
0 →∞. But Pr(Ω1) ≥ Pr(Ω1 ∩ Ω). Hence, we must have Pr(Ω1) = 1. ¤
Lemma 1 implies that the largest eigenvalue of −1 a.s. converges to +.

3.2. Proof of Lemma DJO1 about the convergence of tr( − )−1. Let  ∈ R be such that
  + and let ̂ (;) be the empirical distribution function of the eigenvalues of  − . For

any  ∈ C+ let
̂ (;) =

Z
(− )−1 d̂ (;)

be the Stieltjes transform of ̂ (;). Note that matrix  −  can be represented in the form

  0 where  is a × (1 + 2) matrix with i.i.d. standard normal entries and  is a diagonal

matrix with the first 1 and the last 2 diagonal elements equal to 1 and −2 respectively.
Therefore, by Theorem 1.1 of Silverstein and Bai (1995), for any  ∈ C+ ̂ (;) a.s. converges
to  (;) ∈ C+ which is an analytic function in the domain  ∈ C+ that solves the functional
equation (DJO13).

By Lemma 1, the largest eigenvalue of −1 a.s. converges to +. Therefore, for any   +

the largest eigenvalue of  −  is a.s. asymptotically bounded away from the positive semi-axis.

Hence, ̂ (;) is analytic and bounded in a small disc  around  = 0 for all sufficiently large 
and  a.s. By Vitali’s theorem (see Titchmarsh (1939), p. 168), ̂ (;) is a.s. converging to an
analytic function in . Since, in  ∩C+, the limiting function is  (;)  we have

tr ( − )−1  = ̂ (0;)
→  (0;) 

where (0;) = lim→0(;). Further, tr ( − )−1  is an analytic bounded function of  in
a small disk  around  for all sufficiently large  and  a.s. Therefore, by Vitali’s theorem its

a.s. limit () is analytic in  and

d

d
tr ( − )−1  → d

d
()

in On the other hand, we know that () = (0; ) for  ∈ R∩. Therefore, we have (DJO12).
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3.3. Proof of Lemma DJO2 about the asymptotic proportionality of () and  + 1. The

convergences stated in Lemma DJO2 follow from (DJO5), (DJO9), and Lemma 11 stated below. ¤

Lemma 2. Let  be a random ×  matrix, independent from  and , which are as defined in

Section DJO2, and such that  kk is bounded for all sufficiently large  a.s. Then, as →∞,°°0 − (tr) °° → 0 and
°°0°° → 0

Proof: This lemma follows from the Borel-Cantelli lemma, and the upper bounds on the fourth

moments of the entries 0 − (tr)  and 0 established by Lemma 2.7 of Bai and Silverstein
(1998). ¤

3.4. Proof of Lemma DJO3 about properties of functions () and (0;). Let 1 ∈ (0∞)
be the largest eigenvalue of −1 For any 1  2  1 matrix ( − 1)

−1 − ( − 2)
−1 is

positive definite, a.s. Part (i) follows from this, from the definition (DJO9) of (), and from the

fact that 1
→ + Part (i) together with Lemmas DJO1 and DJO2 imply that(0;) is increasing

on (+∞)  It is strictly increasing because, otherwise, equation (DJO13) would not be satisfied
for some  ∈ C+ that are sufficiently close to zero. The continuity follows from the analyticity of

(0;) established in the proof of Lemma DJO1. Finally, lim→∞(0;) = 0 is implied by (ii)
and (DJO11). Equation (DJO13) implies that

lim
↓+

(0;) = (2 − 1)[(+ 1)]

which, in its turn, implies the second statement of (iii).

4. Asymptotic normality.

4.1. Proof of Lemma DJO5 about () and (). By Lemmas DJO1 and DJO2,

(1)
d

d
()

→ (+ 1)
d

d
(0;)

Further,

(2) (1 +()) ( +())
−1 → diag {0  0 1 0  0}

with 1 at the -th place on the diagonal. The latter convergence follows from the fact that +()
can be viewed as a small perturbation of a diagonal matrix

 + (+ 1)(0;)

which has non-zero diagonal elements, except at the -th position. The eigenvalue perturbation

formulae (see, for example, (2.33) on p.79 of Kato (1980)) will then lead to (2). Combining (10)

and (2), and using the definition of () we obtain (i).
To establish (ii), we note that (1 +()) tr () = P(1) by an argument similar to that

used to establish (i). Further, (tr ())
2 − tr2 () is a linear function of the only eigenvalue of

 () that diverges to infinity. By the eigenvalue perturbation formulae, such an eigenvalue equals
(1 +())

−1(1) a.s. Therefore,

(1 +())
³
(tr ())

2 − tr2 ()
´
= (1)

which concludes the proof of (ii).
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4.2. Proof of Lemma DJO6 that (7) a.s. converges to zero. Recall that

(3) (7) = (+ 1)
√
 (tr−(0; )) 

where

 = ( − )
−1 ,  =

( + 1)( + 1)

 − 2( + 1)

and (; ) is the Stieltjes transform of the limiting spectral distribution of  −  as 1, 2,

and  diverge to infinity so that 1 and 2 (and thus  too) remain fixed.

Let ̂ (;) be the empirical distribution of the eigenvalues of − and ̂(;) be its Stieltjes
transform. That is,

̂(;) ≡
Z
(− )−1d̂ (;) ≡ tr( −  − )

−1

Then, to establish Lemma DJO6, it is sufficient to prove that

(4)
√
(̂(0; )−(0; ))

→ 0

Remark 3. By definition,  → , where  is the a.s. limit of the i-th largest super-critical

eigenvalue of F. Therefore,   + for sufficiently large , where + is the a.s. limit of the largest

eigenvalue of −1 as   → ∞. This fact implies that,  −  is a.s. negative definite for

sufficiently large , and ̂ (; ) amd  (; ) are well defined for  = 0 by analytic continuation
form the upper half of the complex plane.

Equations for . By the definition of  and ,

 −  =   0

where  ∼ (0  ⊗ 1+2) and  = diag (1  1+2) with

 =

(
1 for  ≤ 1

−2 for 1   ≤ 1 + 2


Denote the empirical distribution of {1  1+2} as T̂ ().
Results of Silverstein and Bai (1995) imply that, as   → ∞, ̂ (; ) a.s. weakly converges

to a distribution  T (), whose Stieltjes transform () satisfies equation (compare to equation
DJO13)

(5) () = −
µ
 − 1 + 2

12

Z
dT ()
1 + ()

¶−1


where T () is the limit of T̂ () More explicitly, () satisfies

(6) () = −
µ
 − 1

1 + 1()
+



1− 2()

¶−1


Function () ≡ (; ) is the analogue of () uner the fixed 1 ≡ 1 and 2 ≡ 2
asymptotics. That is, it satisfies equation

(7) () = −
Ã
 − 1 + 2

12

Z
dT̂ ()

1 + ()

!−1


imsart-aos ver. 2012/04/10 file: supercriticalsm1.tex date: January 28, 2017



SUPPLEMENTARY MATERIAL 5

For future reference, notice that

(8) ()− 1 + 2

12

Z
()dT̂ ()
1 + ()

+ 1 = 0

Remark 4. Had matrix  = diag (1  ) been positive semi-definite, our ‘target’ equation
(4) would have been following from results of Bai and Silverstein (2004). Our strategy of the proof

of (4) will be to extend some of Bai and Silverstein’s (2004) analysis to cover  that are not positive

semi-definite.

An upper bound on
¯̄√

 (̂ (0; )− (0; ))
¯̄
. Suppose that K is a contour in the complex

plane that does not encircle zero, but encircles all the eigenvalues of  −  and the support of

the limiting (under fixed 1 2 asymptotics) spectral distribution  T̂ of  − . Then, we haveI
K
̂(; )−(; )


d =

I
K

Z
d̂ (; )− d T̂ ()

(− )
d

Intechanging the order of the integrals, multiplying by −12i, and using Cauchy’s residue theorem,
we obtain

(9) − 1

2i

I
K
̂(; )−(; )


d = ̂(0; )−(0; )

To prove the a.s. convergence of
√
(̂(0; ) −(0; )) to zero, we will analyze the behavior of√

(̂(; )−(; )) along K. But first, let us explicitly construct such a contour.
Since  converges to , which lies above +, we will assume without loss of generality that

 ∈ [−+], where + and − are fixed real numbers satisfying the inequality +  −  +.

Let − be the lower bound of the support of the limiting spectral distribution (LSD) of  − +

and let + be the upper bound of the support of the LSD of  − −. Note that, almost surely,
 − +   − −  0 for sufficiently large , and thus, − ≤ + ≤ 0. In fact, it easy to see
that +  0.

Lemma 5. +  0

Proof: Let () =  − . Consider the following decomposition

() =

µ
 − + +

2


¶
− − +

2
 ≡ 1() +2()

For the largest eigenvalue of 2(−), we have

(10) max (2(−))
→ −− − +

2
(1−√2)2 ≡ ̄+  0

On the other hand, since + is the a.s. limit of the largest eigenvalue of −1, 1(−) is a.s.
negative semi-definite for sufficiently large . Hence, max ((−))  ̄+ for sufficiently large , a.s.,

which implies that +  ̄+  0.¤
We say that a sequence of events  occurs with overwhelming probability (w.o.p.) if Pr

³



´
=


¡
−

¢
for each fixed   0. Often, we will simply say that  occurs w.o.p. omitting the words

“the sequence of events”.
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6 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

Lemma 6. The sequence of events

 = {max (())  ̄+ min (())  −4+}

occurs w.o.p.

Proof: Consider the sequene of events

̂ = {max ((−))  ̄+ min ((+))  −4+} 

Since  ∈ [− +], ̂ ⊆  and it is sufficient to prove that ̂ occurs w.o.p.

The decomposition

() =

µ
 − + 3+

4


¶
− 3 (− +)

4


and the definition () =  −  show that event ̂
 implies ∪4=1 where

1 =

½
max

µ
−3 (− − +)

4


¶
≥ ̄+

¾
=

½
min () ≤ 2

3
(1−√2)2

¾


2 =

½
 − − + 3+

4
  0

¾
=

½
max

³
−1

´
≥ − + 3+

4

¾


3 = {min (−+) ≤ 4+} = {max () ≥ 4} 
4 = {  0} = {min () ≤ 0} 

The Gaussian concentration inequalities for the largest and smallest singular values of Wishart

matrices imply that 
1 


3 and 


4 occur w.o.p. Further, as follows, for example, from the proof

of Theorem 11.3.2 in Muirhead (1982), the largest root of the equation

(11) det {1 −  (1 + 2)} = 0

is distributed as the first squared sample canonical correlation coefficient 21 between columns of 1
and 2 where 1 and 2 are independent ×(1+2) and 1×(1+2) matrices with independent
(0 1) entries. In the next subsection of this note, we show that such a squared sample canonical
correlation coefficient satisfies the following concentration inequality

(12) Pr
n
21  E21 + 

o
≤ 2 exp

(
−(1 + 2)

2

2× 162
)
   0

This probability bound is not the best possible, but sufficient for our purposes. Indeed, note that

the largest root of (11) equals

max

³
−1

´

³
21 + max

³
−1

´´


This equality, the fact that max
¡
−1

¢
a.s. converges to + and the concentration inequality

(12) imply that 
2 occurs w.o.p. Since ̂ is implied by ∩4=1

 ̂ also occurs w.o.p.¤

Remark 7. The bounds −4+ and ̄+ on the smallest and the largest eigenvalues of () are
rough, but they are sufficient for our purposes.
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Now we are ready to construct contour K. It is the rectangle shown in Figure 1. The contour
intersects the real axis at −5+ and ̄+2, so that the bounds −4+ and ̄+ remain inside the

contour, but zero lies outside the contour. It is symmetric around the real axis.

Separate, but related, arguments for bounding
√
(̂(; ) −(; )) are needed for the hor-

izontal and vertical segments of the contour, K and K respectively. Small vertical intervals

K0 =
©
 ∈ K : |Im | ≤ −2

ª
about the real axis will be excluded from many bounds and handled

separately. Accordingly, we write K for K\K0 and K for K \K0Without loss of generality, we
set |Im | = min {−̄+2 +} ≡  for  ∈ K . The purpose of such a setting is to have a distance

between [−4+ ̄+] and  be bounded from below by .

u

v

Fig 1. Contour K in + i plane

Define ‘deterministic’ and ‘stochastic’ terms by

() =

I
K
√
 |Ê(; )−(; )|d and

() =

I
K
√
 |̂(; )− Ê(; )|d

and an exceptional term near the real axis by

() =

I
K0
√
 |̂(; )−(; )|d

Write
°°−1°°∞K = sup

©
−1 :  ∈ Kª. From (9), we have on event 

(13) |√ (̂ (0; )− (0; ))| ≤ (2)−1
°°°−1°°°∞K

n
() + () + ()

o


First reduction. Let us show that the proof of the convergence (4) can be reduced to verifying

the stochastic bounds

(14) sup
∈K

E |̂ (; )− Ê (; )|2 ≤ 
−2  = 1 2
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and the deterministic convergence

(15) sup
∈K

√
 |Ê (; )− (; )|→ 0

Note that (15) implies that 
()
 → 0

For the stochastic bounds, write |K| for the length of K and make use of Hölder’s inequality

for
³

()


´4
and then (14) to bound

Pr
³
()  

´
≤ −4E

³
()

´4
≤ −4 |K|3

I
K

2E |̂(; )− Ê (; )|4 |d|

≤ −4 |K|4 2 sup
∈K

E |̂(; )− Ê (; )|4

≤ −4 |K|42−2

Since this sequence is summable in , we have 
()
 → 0 a.s.

We turn to the exceptional term 
()
 . When  ∈ K0 and event  occurs, we may bound

̂ (; ) =
1


P
=1 ( − )−1 (where  with  = 1   are the eigenvalues of () ≡  − )

using

max

| − |−1 ≤ max {−2̄+ 1+} ≡ −1

so that |̂ (; )| ≤ −1 Further, for sufficiently large  we have | (; )| ≤ −1 for  ∈ K0.
Consequently,

Pr
n
()  

o
≤ −1E

³
() 1

´
≤ −1 |K0| sup

∈K0

©√
 (|̂ (; )|+ | (; )|)1

ª
≤ −14−22−112 = −1−32

where  denotes a constant. Again this is summable in , and since  occurs w.o.p., it follows

that 
()


→ 0 also. In summary, referring to (13), we see that in order to show a.s. convergence in
(4), it remains to establish (14) and (15).

We begin with some preliminary results. Two tools for handling fluctuations are then introduced:

first, moment bounds for deviations of quadratic forms, and then, the martingale difference struc-

ture. Then we proceed to bound the deterministic term in (13). After all this, we are ready to

attack the stochastic bounds (14).

Preliminary results. The approach consists in careful analysis of the perturbations induced in

the resolvent of () =   0 by deletion of a single column from  . Thus, let  = ·
√
 (the

-th column of  divided by
√
) and  = ()− 

0
 Consider events

 = {max ()  ̄+ min ()  −4+} 

Similar to  events  occur w.o.p.

Let

 =  ∩1 ∩  ∩
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Then,  occur w.o.p. This follows from the equality max=1 Pr
n



o
= 

¡
−

¢
for each

fixed   0 The equality is true because, first, each    = 1   occurs w.o.p., and, second,

Pr
n



o
takes on only two possible values, depending on whether  = 1 or  = −2. In

particular, although there is a proliferation of the number of events involved in the construction of

 as →∞ the probabilities of these events approach one uniformly.

Let

 = (()− )
−1 and  = ( − )

−1 

and let

 = 1 + 
0
 ( − )−1 

An important identity to be used later is

(16) 0 = 0

The following lemma establishes a useful bound on .

Lemma 8. Suppose that event  holds. Then, there exists a constant  that depends only

on ̄+ +, and K, such that, for any  = +  ∈ K,

|| ≥
s

2

2 + 2


Proof: Let  be a normalized eigenvector corresponding to the -th largest eigenvalue, , of

 Then, we have

(17)  = 1 + 
0
 ( − )−1  = 1 + 

X
=1

(0)
2

 − 


Consider the case where   0. When  holds,  ∈ [−4+ ̄+]  and
arg ( − ) ∈ [arg (−4+ − )  arg (̄+ − )] 

where arg belongs to (− ), and arg (−4+ − )  arg (̄+ − )  0 Let us denote arg (−4+ − )
as − and arg (̄+ − ) as − Note that

arg
n
( − )−1

o
∈ [ ] 

and thus,

 ≤ arg
X

=1

¡
0

¢2
( − ) ≤ 

These inequalities and equation (17) imply that, when  holds, || cannot be smaller than the
distance from the origin to the cone

©
1 +  :  ∈ R  ≤  ≤ 

ª
, which equalsmin {sin sin} 

On the other hand,

sin = sin arctan


|−4+ − | and sin = sin arctan


|̄+ − | 

so that there exists  that depends only on ̄+ +, and K, such that, when  holds,

|| ≥ sin arctan 

=

s
2

2 + 2


The case where   0 leads to the same conclusion in a similar way. ¤
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Remark 9. In the case where all  are non-negative (which was studied by Bai and Silverstein

(2004)), || is always bounded by ||. In contrast, when some  are negative, the corresponding
|| can be arbitrarily close to zero with small, but positive, probability. This is why the bound in
Lemma 8 is conditioned on the event .

For the analysis of the deterministic term 
()
  we will need the following preliminary convergence

result.

Lemma 10. Ê(; )−() → 0 and (; )−() → 0, uniformly in  ∈ K. Here ()
is the Stieltjes transform of the LSD of () ≡  −  as  → ∞.

Proof: For (; ) such a convergence is a consequence of the fact that 
T̂ , that is, the

LSD of () under the fixed 1 2 asymptotic regime converges to 
T as 1 → 1 and 2 → 2

Moreover, the supports of  T̂ and  T coinside asymptotically, and lie at a positive distance

from contour K.
For Ê(; ) note that, since the spectral distribution ̂ of () a.s. converges to  T (we

denote this as ̂
→  T  a.s.), we have, by the dominated convergence theorem,

(18) Ê
→  T 

Further, since
n
(− )−1 :  ∈ K

o
is a family of bounded equicontinuous functions of  ∈ R, (18)

implies that Ê→  uniformly in  ∈ K  Next,

Ê− =

Z
(− )−1 1[−4+̄+] () d

³
Ê −  T ´

+

Z
(− )−1 1[−4+̄+] () dÊ

The first integral converges to zero uniformly in  ∈ K becausen
(− )−1 1[−4+̄+] () :  ∈ K

o
is a family of bounded equicontinuous functions of  ∈ R. For the second integral, we have

sup
∈K

¯̄̄̄Z
(− )−1 1[−4+̄+] () dE

¯̄̄̄
≤ 2 Pr

n



o
→ 0 ¤

Deviations of quadratic forms and the martingale difference structure.

Lemma 11. Let  be a  ×  non-random matrix, and  ≥ 1 Suppose that ,  = 1   are
independent mean zero random variables with E | |2 = 1 and E | | =  for  ≤ 2. Then

E |∗ − | ≤ 

³
[4 (

∗)]2 + 2 (
∗)2

´
This is Lemma 2.7 in Bai and Silverstein (1998).

Introduce increasing -fields F =  { :  ≤ } and let E denote E (·|F)  For  = tr write

 − E =
1+2X
=1

E − E−1
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Now introduce  = tr and observe that E = E−1 Therefore,

 (̂ (; )− Ê (; )) =  − E =
1+2X
=1



(19)  = (E − E−1) ( − ) 

We have E−1 = 0 for  = 1  1+2 and so the  form a martingale difference sequence. The

differences are orthogonal, so

E ( − E)2 =
1+2X
=1

E2

Let us establish some bounds on  − . We have

 =
¡
 −  + 

0


¢−1
=  − 

¡
1 + 

0


¢−1
0(20)

Therefore,

(21)  −  = tr ( −) = − 

1 + 
0


0
2


Let  be a normalized eigenvector of  corresponding to its -th largest eigenvalue  We

have ¯̄
1 + 

0


¯̄ ≥ || ¯̄Im 0
¯̄
= ||

X
=1

(0)
2

| − |2 ||

and ¯̄̄


0


2


¯̄̄
≤ ||

X
=1

(0)
2

| − |2

Therefore,

(22) | − | ≤ 1 || 

This bound can be very large when  is small. Therefore, for  ∈ K , we will need another

bound. Denote the eigenvalues of () as 1 ≥ 2 ≥  ≥  We would like to show that if 

holds and  ∈ K , we have

| − |  

for some constant . There are two vertical sections of K  Let us denote the “left” vertical section

K  Consider  ∈ K , let  = −5+ denote the intercection of K  with real axis.

Recall that the eigenvalues of  are denoted as 1 ≥ 2 ≥  ≥ . By interlacing inequality,

if   0 then

(23) 1 ≥ 1 ≥  ≥  ≥ 

If   0 then

(24) 1 ≥ 1 ≥  ≥  ≥ 
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12 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

Now,

 −  = Re [tr − tr] + i Im [tr − tr] ≡ 1 + i2

For 1 and  ∈ K  we have

1 =
X

=1

 − 

( − )
2 + 2

−
X

=1

 − 

( − )
2 + 2



Since || ≤  ≡ min {−̄+2 +}  the ratios in the above displayed expression are strictly
decreasing functions of    ≥ −4+ Therefore, by interlacing inequalities (23, 24), if   0
then

(25) −  − 

( − )
2 + 2

 1  0

If   0 then

(26) 0  1 
 − 

( − )
2 + 2



Similarly,

2 =
X

=1



( − )
2 + 2

−
X

=1



( − )
2 + 2

and the ratios in the above displayed expression are strictly decreasing (increasing) functions of

   ≥ −4+ when   0 (  0). Therefore, by (23, 24), we have, if   0

(27) − 

( − )
2 + 2

 2  0

If   0 then

(28) 0  2 


( − )
2 + 2



From (25-28), we see that, if  holds, then, for  ∈ K  with  ≤ 

| − | ≤ ||
2 + 2

+


2 + 2
(29)

≤ 

22
+



2
=
3

2
−1

Similarly, we can show that the same inequality holds for  ∈ K  (the “right” portion of K ).

Another bound on . The bound on  obtained in Lemma 8 will be sufficient for our analysis

in cases where  ∈ K  However, for  ∈ K  it may be too close to zero, and we need another

bound.

As follows from (6), for any  from the support of T (in our case there are only two such : 1
and −2), 1 + () 6= 0 for  ∈ K. Therefore,

 ≡ min
∈{1−2}

inf
∈K

|1 + ()|  0
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SUPPLEMENTARY MATERIAL 13

Since Ê (; )−()→ 0 uniformly in  ∈ K and since 1 2  → 1 2 , we have

min
∈{1−2}

inf
∈K

|1 + Ê (; )|  23

for sufficiently large .

Consider the event || ≤ 3 If this event holds, then | − 1− Ê (; )|  3 for suffi-
ciently large  and any  ∈ K Recalling the definition of  we obtain

||
¯̄
0 − Ê (; )

¯̄ ≡ || ||  3

Let us show that the sequence of events || || ≤ 3 occurs w.o.p. Note that this would imply
that the sequence of events ||  3 also occurs w.o.p.
We have

|| ≤
¯̄̄̄
0 − 1


tr

¯̄̄̄
+

¯̄̄̄
1


(tr − tr)

¯̄̄̄
+

¯̄̄̄
1


(tr − E tr)

¯̄̄̄
Bound on 1


(tr − E tr).

By the Burkholder inequality (see Burkholder, 1973, and Theorem 2.10 of Hall and Heyde, 1980),

we have, for any 1   ∞

E |tr − E tr| = E | − E|

≤ E
¯̄̄X1+2

=1
[(E − E−1) ( − )]

2
¯̄̄2



Therefore,

Pr

µ ||

|tr − E tr|  

9

¶
≤
µ
9 ||


¶
E |tr − E tr|

≤
µ
9 ||


¶
E

¯̄̄̄
¯
1+2X
=1

[(E − E−1) ( − )]
2

¯̄̄̄
¯
2



For  ∈ K  using (22), we obtain

Pr

µ ||

|tr − E tr|  

9

¶
≤
µ
9 ||


¶
−2

µ
2



¶ µ1 + 2



¶2
Since  is an arbitrary number larger than one, the sequence of events

||

|tr − E tr| ≤ 

9
 = 1 2  occurs w.o.p.
For  ∈ K  we need another estimate. We have

Pr

µ ||

|tr − E tr|  

9
 

¶
≤ Pr

µ ||


¯̄̄
tr1

− E
h
tr

³
1

+ 1


´i¯̄̄




9

¶

But, for  ∈ K , |tr| ≤ 3 and therefore, E
h
tr1



i
≤ 3 Pr

³



´
→ 0 as  → ∞ In

particular, for sufficiently large 
||


¯̄̄
E
h
tr1



i¯̄̄
 

9 − 
10  and we can write, for sufficiently
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14 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

large  and any   1,

Pr

µ ||

|tr − E tr|  

9
 

¶
≤ Pr

µ ||


¯̄̄
tr1

− E
h
tr1

i¯̄̄




10

¶
≤

µ
10 ||


¶
E
¯̄̄
tr1

− E
h
tr1

i¯̄̄
≤

µ
10 ||


¶
E

¯̄̄̄
¯
1+2X
=1

h
(E − E−1)

³
1

− 1

´i2 ¯̄̄̄¯
2

≤
µ
10 ||


¶
−2

µ
1 + 2



¶2 ³
3−1

´


The last inequality follows from (29). Since  occur w.o.p., the obtained upper bound on

Pr
³ ||


|tr − E tr|  

9  

´
implies that

||

|tr − E tr| ≤ 

9 occur w.o.p. too.

Bound on 0 − 1

tr.

By Chebyshev’s inequality, for any  ≥ 1,

Pr

µ
||

¯̄̄̄
0 − 1


tr

¯̄̄̄




9

¶
≤
µ

9

 ||
¶
E
¯̄̄̄
0 − 1


tr

¯̄̄̄


Now, by Lemma 11, we have

E
µ¯̄̄̄
0 − 1


tr

¯̄̄̄
|

¶
≤ −

³
[4 (

∗
)]

2 + 2 (
∗
)

2
´


Since kk ≤ 1 we have, for  ∈ K 

E
µ¯̄̄̄
0 − 1


tr

¯̄̄̄
|

¶
≤ −

³
4

−2 + 2
−´ 

Therefore,

Pr

µ
||

¯̄̄̄
0 − 1


tr

¯̄̄̄




9

¶
≤
µ

9

 ||
¶

−

³
4

−2 + 2
−´ 

and ||
¯̄̄
0 − 1


tr

¯̄̄
≤ 

9 occur w.o.p.

For  ∈ K  we have

Pr

µ
||

¯̄̄̄
0 − 1


tr

¯̄̄̄




9
 

¶
= Pr

µ
||

¯̄̄̄
01

− 1

tr1

¯̄̄̄




9

¶
and since the eigenvalues of 1

are bounded by −1 we get, using the above line of arguments,

Pr

µ
||

¯̄̄̄
0 − 1


tr

¯̄̄̄




9
 

¶
≤
µ

9

 ||
¶

−

³
4

−2 + 2
−´ 

Since  occur w.o.p., ||
¯̄̄
0 − 1


tr

¯̄̄
≤ 

9 occur w.o.p. too.
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SUPPLEMENTARY MATERIAL 15

Bound on 1

(tr − tr).

Inequalities (22) and (29) imply that¯̄̄̄
1


(tr − tr)

¯̄̄̄
≤ 1



for  ∈ K  and ¯̄̄̄
1



³
tr1

− tr1

´¯̄̄̄

1



3

2
−1

for  ∈ K  Therefore, events ¯̄̄̄ ||

(tr − tr)

¯̄̄̄
≤ 

9

occur w.o.p.

To summarize, we have shown that || || ≤ 3 occur w.o.p. This implies that

||  3

occur w.o.p. for any  ∈ K

The deterministic term.

Let

 = ∩1+2=1 {||  3} ∩

Note that  occur w.o.p. This implies that
√
 (Ê(; )−(; )) → 0 uniformly in  ∈ K

if and only if
√

¡
E
£
̂(; )1

¤−(; )
¢ → 0 uniformly in  ∈ K. Indeed, for  ∈ K,

|̂ (; )| ≤ 1 |Im | ≤ −2 and

√
E
¯̄̄
̂(; )1 



¯̄̄
≤ −2

√
Pr

n
 



o
→ 0

Let us denote ̂(; )1 as ̄(; ) ≡ ̄() for brevity. Note that Lemma 10 implies that Ē()−
()→ 0 uniformly in  ∈ K

Consider

() = Ē()− 1 + 2

12

Z
Ē()dT̂ ()
1 + Ē()

+ 1

which is the left hand side of (8) where () is replaced by Ē() We have

Ē() = −
Ã
 − 1 + 2

12

Z
dT̂ ()

1 + Ē()
− ()

Ē()

!−1


Subtracting (7) and rearranging, we obtain

Ē()− () = −

"
1−Ē

1 + 2

12

Z
2dT̂ ()

(1 + Ē) (1 + )

#−1


where we omit the dependence of   and ̄ on  and to make the displayed formula easier to

read. We will omit this dependence in what follows to make notations more compact.

To establish that
√
 |Ē−|→ 0 uniformly in  ∈ K it is sufficient to show that

(a) for sufficiently large  || is bounded, uniformly in  ∈ K,
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16 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

(b) for sufficiently large , the absolute value of the square bracket in (30) is bounded away from

zero, uniformly in  ∈ K

(c)
√
 ||→ 0 uniformly in  ∈ K

(a) follows from the fact that  converges to , uniformly in  ∈ K, which was established in

Lemma 10.

To establish (b), it is sufficient to show that there exists  ∈ (0 1) such that, for sufficiently large


(30) |Ē|2 1 + 2

12

Z
2dT̂ ()
|1 + Ē|2  

and

(31) ||2 1 + 2

12

Z
2dT̂ ()
|1 + |2

 

uniformly in  ∈ K. Indeed, then (b) follows by the Cauchy—Schwarz inequality.

In fact, since  and Ē converge to  uniformly in  ∈ K, it is sufficient to prove that there

exists  ∈ (0 1)

(32) ||2 1 + 2

12

Z
2dT ()
|1 + |2  

uniformly in  ∈ K. Using (5), we obtain

||2 1 + 2

12

Z
2dT ()
|1 + |2 =

1 + 2

12

Z
2dT ()
|1 + |2

×
¯̄̄̄
 − 1 + 2

12

Z
dT ()
1 + 

¯̄̄̄−2
(33)

Using (5) again, we obtain for  = + ,

Im =

Ã
 + Im

1 + 2

12

Z
2dT ()
|1 + |2

! ¯̄̄̄
 − 1 + 2

12

Z
dT ()
1 + 

¯̄̄̄−2


Combining this with (33), we obtain

||2 1 + 2

12

Z
2dT ()
|1 + |2 = Im

1 + 2

12

Z
2dT ()
|1 + |2

×
Ã
 + Im

1 + 2

12

Z
2dT ()
|1 + |2

!−1


On the other hand, Im =
R
 d

T
|−|2  Therefore,

||2 1 + 2

12

Z
2dT ()
|1 + |2 =

Z
d T

|− |2
1 + 2

12

Z
2dT ()
|1 + |2

×
Ã
1 +

Z
d T

|− |2
1 + 2

12

Z
2dT ()
|1 + |2

!−1
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SUPPLEMENTARY MATERIAL 17

The right hand side of the above equality is smaller than one for any  ∈ K Since it is continuous
on  ∈ K, there exists  ∈ (0 1) such that (32) holds, uniformly in  ∈ K.
It remains to establish (c). It is sufficient to show that

√

¯̄
̄
¯̄→ 0 where

̄ =  − Pr
n
 



o


Define

 =
1 + 2

12

Z
dT̂ ()
1 + Ē

=
1



1+2X
=1



1 + Ē


We have

̄ = Pr {}− (− )Ē =
1


trE

h
(()− ) (()− )−1 1

i
=

1


trE

"
1+2X
=1


0
1 − 1

#

Using the identity (16), we obtain

̄ =
1



1+2X
=1

E
∙


0



1

¸
− Ē

Using the definition of  we can continue

̄ =
1



1+2X
=1



1 + Ē
E
∙


0



1

1 + Ē


− Ē
¸


The term in the square brackets equals

0


1 +

∙


0



1 − 1

¸
Ē

=
0


1 −

1


1Ē− 1 


Ē

=



1 +

Ê− Ē


1 − 1 

Ē

where

 = 0 − Ê

Therefore, to establish (c), it is sufficient to show that

(34)

¯̄̄̄
E



1

¯̄̄̄
= 

³
−12

´


(35)

¯̄̄̄
E
Ê− Ē


1

¯̄̄̄
= 

³
−12

´


and

(36) E
¯̄̄
1 


Ē

¯̄̄
= 

³
−12

´
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18 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

uniformly in  ∈ K. It is because max
¯̄̄


1+Ē

¯̄̄
is bounded uniformly in  ∈ K which follows

from the uniform in  ∈ K convergence of Ê (and thus, of Ē) to  established by Lemma 10.

Equality (36) immediately follows from the fact that  occur w.o.p. and from the boundedness

of Ē (it converges to () which is bounded on  ∈ K). For (35), we have

E
Ê− Ē


1 = E

³
̂1 



´
E
³
−1 1

´


But

(37) E
³
−1 1

´
≤ 3




Further, |̂| ≤ 1 || ≤ 2 for  ∈ K and therefore,

(38) E
³
̂1 



´
≤ 2 Pr

n
 



o


Inequalities (37), (38), and the fact that  occur w.o.p. imply (35).

The following lemma subsumes (34) by proving a stronger statement.

Lemma 12. There exists a constant  such that, for sufficiently large  for any  ∈ K,¯̄̄̄
E



1

¯̄̄̄
≤ −1

Proof: We need the following decomposition of 1 :

1


=
1


− 1



1




where

 = 1 +
1


E tr

and

 = 

∙
0 − 1


E tr

¸
=  + 

1


E [tr − tr] 

Using the decomposition, we obtain¯̄̄̄
E



1

¯̄̄̄
≤
¯̄̄̄
E



1

¯̄̄̄
+

¯̄̄̄
¯E 2

1

¯̄̄̄
¯+

¯̄̄̄
1


E [tr − tr]

¯̄̄̄ ¯̄̄̄
E



1

¯̄̄̄


Bound on
¯̄̄
E

1

¯̄̄
.

We have

E
∙



1

¸
=
1


E − 1


E
h
1 



i


Since

E (|) =
1


(tr − E tr) 
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we have

(39) E () =
1


E (tr − tr) = −1


E ( − )

By (22), we have

(40)
1


|E ( − )|  1


for  ∈ K 

and by (29), we have

1


|E ( − )| 

1



3

2
 +

1



¯̄̄
E
³
tr1 


− tr1 



´¯̄̄
(41)

≤ 1



3

2
 +

1



³
23

´
Pr
³
 



´
≤ 1


2−1

for sufficiently large  and  ∈ K  Using (40) and (41) in (39), we obtain

(42) |E ()| ≤ 1


3



for any  ∈ K

Further, since the eigenvalues of  are no larger than 1 || by absolute value, and since 1 || ≤
2 for  ∈ K we have

¯̄̄
E
h
1 



i¯̄̄
≤ 2

¯̄̄
E
h
01 



i¯̄̄
+ ÊPr

³
 



´
≤ 2

³
E
h¡
0

¢2i´12
Pr
³
 



´12
+ ÊPr

³
 



´


Therefore,

(43)
¯̄̄
E
h
1 



i¯̄̄
≤ −1

for sufficiently large  and some .

Next, by Lemma 10,  = 1 +
1

E tr → 1 + () and hence,

(44) ||  2

for sufficiently large . Combining (42), (43), and (44), we obtain

(45)

¯̄̄̄
E



1

¯̄̄̄
≤ −1

for sufficiently large  and some .

Bound on

¯̄̄̄
E 

2



1

¯̄̄̄
.

By (44), for sufficiently large , we have

(46)

¯̄̄̄
¯E 2

1

¯̄̄̄
¯ ≤ 62 E

³
21

´
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20 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

Consider the decomposition

(47)  =

µ
0 − 1


tr

¶
+
1


(tr − E tr)

By Lemma 11,

E
Ãµ

0 − 1

tr

¶2
|

!
≤ 1

2
2

³
[4 tr (

∗
)]

12 + 4 tr (
∗
)
´

Since the eigenvalues of  are bounded by absolute value by

 ≡ min
½
1

||  
−11

1∈K
¾


we have

E
Ãµ

0 − 1

tr

¶2
|

!
≤ 1

2
2

µh
4

2


i12
+ 4

2


¶
and

E
µ
0 − 1


tr

¶2
≤ 1

2
2 (4)

12 2 Pr
n



o
+
1

2
2 (4)

12 −1

+
1

2
24

4 Pr
n



o
+
1

2
24

−2

Therefore, for sufficiently large ,

(48) E
µ
0 − 1


tr

¶2
≤ −1

for some .

For the second part of the decomposition (47), we have

(49) E
1

2
(tr − E tr)2 ≤ E 2

2

h
(tr − E tr)

2 + (E tr − E tr)2
i

Note that (E [tr − tr])2 is bounded by (40) and (41). Let us now prove that

E (tr − E tr)
2 ≤ 

for some  We will prove this inequality for  replaced by  to ease notation. The proof for 

is very similar.

Recall that

tr − E tr =
1+2X
=1

(E − E−1) ( − )

and

E (tr − E tr)2 =
1+2X
=1

E2

where  = (E − E−1) ( − ).
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Using (22) and (29), we obtain

E2 = E [E ( − )− E−1 ( − )]
2 ≤

2E [E ( − )]
2 + 2E [E−1 ( − )]

2

≤ 2EE ( − )
2 + 2EE−1 ( − )

2

= 4E ( − )
2

≤ 44 Pr
n



o
+ 4

(
1

2
+

µ
3

2

¶2)


Hence, E (tr − E tr)2 ≤  (and E (tr − E tr)
2 ≤ ) for some  and, from (49), we

have

(50) E
1

2
(tr − E tr)2 ≤ −1

for some  Now, (47), (48), and (50) imply that

(51) E
³
2

´
≤ −1

for some  Therefore, by (46),

(52)

¯̄̄̄
¯E 2

1

¯̄̄̄
¯ ≤ −1

for some .

Bound on
¯̄̄
1

E [tr − tr]

¯̄̄ ¯̄̄
E 


1

¯̄̄
.

By (40) and (41),

(53)

¯̄̄̄
1


E [tr − tr]

¯̄̄̄
≤ −1

3




Further, by the Cauchy-Schwarz inequality,¯̄̄̄
E



1

¯̄̄̄2
≤ E2E

Ã
2

2
2


1

!


Inequality (51) and the boundedness of 2
2
 away from zero on  imply that the right hand side

of the above inequality is bounded. From this and (53) we see that

(54)

¯̄̄̄
1


E [tr − tr]

¯̄̄̄ ¯̄̄̄
E



1

¯̄̄̄
≤ −1

for some .

The Lemma follows from (45), (52), and (54). ¤
The validity of (36) is implied by the validity of the Lemma, and thus,

√

¯̄
̄
¯̄→ 0 This concludes

our proof of the deterministic term’s convergence (15).

The stochastic term.

To get the correct order of magnitude for the fluctuations of

 = (E − E−1) ( − ) 

imsart-aos ver. 2012/04/10 file: supercriticalsm1.tex date: January 28, 2017



22 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

we need a finer decomposition. First, define some conditional means and residuals:

0 = E (|) = 1 +
1


 tr

0 = E (|) = −1

 tr

2


1 =  − 0 = 

µ
0 − 1


tr

¶


2 =  − 0 = −
µ
0

2
 −

1


tr2



¶


Rewrite  −  in terms of these means and residulas

 −  =



=

0
0
− 1

0
+

2

0
= 0 + 1 + 2

The integrable terms1 0 do not contain any variables from F\F−1 Therefore,

(E − E−1) 0 = 0
Thus, they disappear from the martingale differences and

 = (E − E−1) ( − ) = (E − E−1) (1 + 2)

Bounds on .

Crude bounds. By (22),

|| ≤ 1 || 
Further ¯̄̄̄

¯00
¯̄̄̄
¯ ≤

1

||

P
=1 | − |−2¯̄
Im0

¯̄
=

1

||

P
=1 | − |−2

1

|| ||

P
=1 | − |−2 =

1

||

Next, ¯̄̄
0

¯̄̄

1


|| |Im| = 1


||

X
=1



| − |2 

whereas

|2| ≤ ||
X

=1

(0)
2 + 1

| − |2 ≤ ||
¡
0 + 1

¢ X
=1

1

| − |2

1
¯̄
0

0


¯̄
≤ 1



P

=1
| − |−2  ¡¯̄Im0

¯̄¢
 but

Im0 =
1




X
=1

| − |−2

therefore,
¯̄
0

0


¯̄
≤ 1 and thus, 00 is integrable.
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Therefore,

|2| ≤
|| (0 + 1)

P
=1

1

|−|2
1

||

P
=1



|−|2
=
1



¡
0 + 1

¢
Finally,

|1| ≤
¯̄̄̄




¯̄̄̄
+ |0|+ |2| ≤ 1



¡
0 + 3

¢


Fine bounds.

Consider the event

 =
n
||  3

¯̄̄
0

¯̄̄
 3 0 ≤ 2

o
∩

On this event, which occurs w.o.p. (a proof of the fact that
¯̄
0
¯̄
 3 occur w.o.p. is actually

contained in the above proof of the fact that ||  3 occur w.o.p.), we have

|| ≤ || 2

for  ∈ K (note that the distance from any  to K is bounded by  on ). Therefore, on ,

we have

|1| ≤ |1| 9 || 2
2

and

|2| ≤ |1| 3

Bounds on 1 and 2.

We have

E−1
h
|1|2 1

i
= −2E−1

h
1

E
³¯̄
0 − tr

¯̄2 |

´i
Using Lemma 11, we continue, for  ≥ 1

E−1
h
|1|2 1

i
≤ −2E−1

h
1

2

³
4

−2 + 4
−2´i

≤ ̃
−−2

Similarly,

E−1
h
|2|2 1

i
≤ ̃

−−4

Let us prove the following lemma.

Lemma 13. For any  ≥ 1, E ||2 ≤ − uniformly in  ∈ K.

Proof: Set  = 1 + 2 and observe that

E−1 ||2 = E−1 |E − E−1 |2 ≤ 2

³
E−1 |E |2 + E−1 |E−1 |2

´
≤ 2

³
E−1E | |2 + E−1E−1 | |2

´
= 22E−1 | |2

≤ 0
³
E−1 |1|2 + E−1 |2|2

´
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using (+ ) ≤  (
 + ) for  = 2

−1 and  ≥ 2.
Further

E−1 |1|2 = E−1
³
|1|2 1

´
+ E−1

³
|1|2 1



´
≤

µ
9 || 2
2

¶2
E−1

³
|1|2 1

´
+ E−1

³
|1|2 1



´
≤

µ
9 || 2
2

¶2
E−1

³
|1|2 1

´
+ E−1

³
|1|2 1



´
Taking unconditional expectations, we get

E |1|2 ≤
µ
9 || 2
2

¶2
E
³
|1|2 1

´
+ E

³
|1|2 1



´
≤

µ
9 || 2
2

¶2
̃

−−2 + E
µ
1

2

¯̄
0 + 3

¯̄2
1



¶
≤

µ
9 || 2
2

¶2
̃

−−2 +
1

2
E
³¯̄
0 + 3

¯̄4´12
[Pr (

)]
12

≤ −

A similar argument shows that

E |2|2 ≤ −

¤
To establish the stochastic bounds (14), we need to show that E | − E|2 ≤  uniformly in

 ∈ K. By Rosenthal’s inequality (see Theorem 2.12 of Hall and Heyde), we have for any  ≥ 1

E | − E|2 ≤ E

⎡⎣Ã1+2X
=1

E−12

!
⎤⎦+ 

1+2X
=1

E ||2

That the second sum on the right is uniformly bounded follows immediately from Lemma 13.

Turn to the first sum. First, obtain the boundÃ
1+2X
=1

E−12

!

≤ 

³

1 +

2

´


where

 =
1+2X
=1

E−1 ||2

Recall that

E−1 |1|2 ≤
µ
9 || 2
2

¶2
E−1

³
|1|2 1

´
+ E−1

³
|1|2 1



´
≤

µ
9 || 2
2

¶2
̃1

−1−2 + E−1
³
|1|2 1



´
Therefore,

1 ≤  +
1+2X
=1

E−1
³
|1|2 1



´
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and


1 ≤ 

⎡⎣ +

(
1+2X
=1

E−1
³
|1|2 1



´)
⎤⎦

On the other hand, for  ≥ 2(
1+2X
=1

E−1
³
|1|2 1



´)

≤ (1 + 2)
−1

1+2X
=1

h
E−1

³
|1|2 1



´i
≤ (1 + 2)

−1
1+2X
=1

E−1
³
|1|2

´
E−11



≤ (1 + 2)
−1

1+2X
=1

E−1

Ã¯̄̄̄
1



¡
0 + 3

¢¯̄̄̄2!
E−11



≤ 
1+2X
=1

E−11


for some. Taking unconditional expectations, we obtain the boundedness of
1 The boundedness

of 
2 is established similarly. This completes the proof of (14) and hence, of Lemma DJO6.

4.3. Proof of Lemma DJO7 (a CLT for quadratic forms). We will need the following two lem-

mas.

Lemma 14. (McLeish 1974) Let {G  = 1  } be a martingale difference array on the
probability triple (ΩG  ). If the following conditions are satisfied: a) Lindeberg’s condition: for all
  0,

X


R
||

2
d → 0 as →∞; b)

X

2


P→ 1 then
X




→  (0 1).

Proof: This is a consequence of Theorem (2.3) of McLeish (1974). Two conditions of the theorem:

i) max≤ || is uniformly bounded in 2 norm, and ii) max≤ || P→ 0, are replaced here by
the Lindeberg condition. ¤

Lemma 15. (Hall and Heyde) Let {G  = 1  } be a martingale difference array, and
define  2 =

X

=1

³
2
|G−1

´
and 2 =

X

=1
2
 for  = 1  . Suppose that the con-

ditional variances  2 are tight, that is sup 
³
 2  

´
→ 0 as  → ∞, and that the condi-

tional Lindeberg condition holds, that is, for all   0,
X



h
2
1 {||  } |G−1

i
P→ 0. Then

max
¯̄̄
2 −  2

¯̄̄
P→ 0

Proof: This is a shortened version of Theorem 2.23 in Hall and Heyde (1980). ¤
Let  ()   = 1   be such that () =  () for  ∈ [ ] and () = 0 otherwise.

Consider random variables

 =
1√


X
()∈Θ () ( − ) 

where  are some constants. Let G be the -algebra generated by 1   and  with

 = 1  ;  = 1  . Clearly, {G  = 1  } form a martingale difference array. Let
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 be the number of different triples (  ) ∈ Θ Consider an arbitrary order in Θ. In Hölder’s
inequality X

=1
 ≤

µX

=1
()



¶1 µX

=1
()



¶1


which holds for   0   0,   1   1 and 1+ 1 = 1 take

 =

¯̄̄̄
¯ 1√ () ( − )

¯̄̄̄
¯ 

where (  ) is the -th triple in Θ  = 1 and  = 2 +  for some   0. Then, the inequality
implies that

(55) ||2+ ≤ 1+2+

X
()∈Θ

¯̄̄̄
¯ 1√ ( − )

¯̄̄̄
¯
2+



where

 = max
=1

sup
∈[]

| ()| 

Since  are i.i.d. (0 1) (55) implies that
X

=1
 ||2+ → 0 as  → ∞ which means that

the Lyapunov condition holds for . As is well known, Lyapunov’s condition implies Lindeberg’s

condition. Hence, condition a) of Lemma 14 is satisfied for .

Let us consider
X

=1
2
. Since the convergence in mean implies the convergence in probabil-

ity, the conditional Lindeberg condition is satisfied for  because the unconditional Lindeberg

condition is satisfied as checked above. Further, in notations of Lemma 15, it is easy to see that

 2 =
X

1

∙µX
1≤≤≤1 (1 + )

¶
1



X

=1
 () 1 ()

¸


The convergence of the empirical distribution of 1   to  (;) and the equality of  and
 on the support of  (;) implies that

 2
P→ Σ ≡

X
1

∙µX
1≤≤≤1 (1 + )

¶Z
 () 1 () d (;)

¸


In particular,  2 is tight and Lemma 15 applies. Therefore,
X

=1
2
 converges to the same limit

as  2. Thus, by Lemma 14, we get
X

=1


→ (0Σ)
Finally, let

 =
1√


X
()∈Θ () ( − ) 

Since

Pr
³X

=1
 6=

X

=1


´
→ 0

as  → ∞, we have
X

=1


→ (0Σ). Lemma DJO7 follows from this convergence via the

Cramer-Wold device.
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4.4. Derivation of equations (DJO27-29). Expression (DJO27) immediately follows from (DJO15).

For (DJO28), differentiating identity (DJO13) with respect to , we obtain

1 +
1

0 (;)
(1 + 1 (;))

2 =
0 (;)
2 (;)

+
−220 (;)
(1− 2 (;))

2 

Setting  = 0 and  =  and using the fact that

(56)  (0;) = − ( + 1)
−1 

which follows from (DJO15), we obtain

1 +
1

0 (0;)³
1− 1 ( + 1)

−1´2 = 0 (0;)
( + 1)

−2 +
−2 20 (0;)³

1 + 2 ( + 1)
−1´2 

Using the definition (DJO17) of , we obtain

1 +
1

0 (0;)³
1− 1 ( + 1)

−1´2 = 0 (0;)
( + 1)

−2 −
( + 1)

2 ( + 1)
2 2

0 (0;)
2



which implies (DJO28).

Finally, differentiating identity (DJO13) with respect to , we obtain

1d (;) d

(1 + 1 (;))
2 =

d (;) d

( (;))2
+
−1 + 2 (;)−  (2 (;) + 2d (;) d)

(1− 2 (;))
2 

Setting  = 0 and  =  we obtain

1d (0;) d

(1 + 1 (0;))
2 =

d (0;) d

( (0;))
2 +

−1− 2
2
d (0;) d

(1− 2 (0;))
2 

This equality, the definition (DJO17) of  and equation (56) imply (DJO29).

5. Analysis of the joint density of eigenvalues.

5.1. Proof of Lemma DJO13 about branch determination on the horizontal part of K. To de-

termine the branches, we will view the part of K on the real axis as the limit of a wedge-like

contour

W = (̃0 + i ̃1) ∪ (̃0 − i ̃1)
as  ↓ 0, where i is the imaginary unit. Contour W intersects with each of the rays { : arg  = } 
 ∈ (− ] no more than once, and therefore, the branches of all the fractional powers in  must

be principal as discussed in DJO. As  ↓ 0, we identify the branches by continuity as follows.
The situation will depend on which of 1   belong to the “upper” and which of them belong

to the “lower” parts of K ∩ [̃0 ̃1] that is the parts that are oriented from ̃1 to ̃0 and from

̃0 to ̃1, respectively.

There are 2 possible scenarios: (1 = ±1   = ±1)  where  = +1 means that
 belongs to the “upper” part, and  = −1 means that  belongs to the “lower” part of
K∩ [̃0 ̃1]. Consider a particular scenario (1   ). Deforming K∩ [̃0 ̃1] to the wedge-
like contour W, we move  to

 =  + i× 
̃1 − 

̃1 − ̃0
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Since on W, the principal branches of fractional powers are taken, the sign of the imaginary part
of
³
1− 

−1


´12
for    must be equal to  . Therefore, for   ,

sgn Im
³
1− 

−1


´12
= lim

↓0
sgn Im

³
1− 

−1


´12
=  

Similarly, for ̃ and  such that ̃   we have

sgn Im
³
1− ̃

−1


´−12
= lim

↓0
sgn Im

³
1− ̃

−1


´−12
= − 

5.2. Proof of the fact that I 0 vanishes if there are any repeats in . Suppose, specifically, that

+1 =  = + = 0 ≤  for some  ≥ 2 so that the variables +1  + lie within the same
segment. Because of the branch effects described in Lemma DJO13, it helps the bookkeeping to first

factor out from  the terms that depend on  ,  = 1   To this end, let  = #
n
 : ̃  

o
and + =

X
=1

 Then we factorize  = ̃ so that ̃ does not depend on {   = 1  } while
from Lemma DJO13 we have

 = i(−1)2 (−i)+
Y

=1

−+


It will be enough to show that the inner integral within (DJO43) given by

(57) I 0 =

Z
K0∩S

̃F

+Y
=+1

d = 0

where S denotes the region +1    +. To this end, we factorize  = 01 where 0
has all the terms that do not involve +1  + and, if we let  denote the common value of

+1 =  = + we have

1 =
+Y

=+1

−+


Write [ ] for the interval [̃0+1 ̃0 ] Recall that each of the  copies of K0 is the union of

two contour segments, namely K−0  which traverses [ ] left-to-right, and on which  = −1 and
K+0  which traverses [ ] right-to-left, and on which  = 1 Let  = + and decompose

the inner integral (57) over all combinations of these contour segments to get

I 0 = 0
X
1


X


Z
[]∩S

12̃F

+Y
=+1

d

where each sum is over  = ±1 and the term 2 =
Y

=1

(−) counts whether + traverses

K−0 or K+0  Now we can evaluateX
1


X


12 = (−1)
Y

=1

X



−−++1
 = 0

when  ≥ 2 Indeed, each sum on the right is of the form 1 + (−1)  which vanishes when  is odd,

and this must occur for at least one term if  ≥ 2
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5.3. Proof of Lemma DJO16 about the Laplace approximation for FSigD . Let = diag {1  }
with 0  1     and  = diag {1  } with 1      0 We have the following
lemma.

Lemma 16. Let  = ( − ) ( − )  {(1 + ) (1 + )}  Then, as  →∞

(58) 10 (2;−) = Γ (2)−(+1)4
Y
=1

(1 + )
−2

Y


(2)
−12 (1 + (1)) 

where (1)→ 0 uniforms on any compact subsects of the simplexes 0  1     and 1   

  0

This lemma is a minor extension of Chang’s (1970) Theorem 1, which establishes (58) for fixed 

and  (with both sides of (58) divided by the volume of the orthogonal group O()). To show that
the (1) is uniform on the set of  and  described in the lemma, it is sufficient to replace Hsu’s

(1948) Lemma 1 by Glynn’s (1980) Theorem 2.1 in the proof of Chang (1970). Lemma DJO16 is a

corollary to Lemma 16.

5.4. Proof of Lemma DJO17 about the Laplace approximation for FREG . The proof below uses

many ideas from Glynn (1980). First, let us represent FREG in terms of 01 . Using the identities

(see James’ (1964) equations (30-31) or Glynn’s equations (5.1-5.2))

FREG =

Z
O()

11

µ
 ;



2
12 012

¶
(d) 

where  = + +1
2 ,  = + +1

2 and (d) is the normalized invariant measure on the orthogonal
group O(), and

11

µ
 ;



2
12 012

¶
= (Γ ())

−1
Z
Σ0

etr (−Σ) |Σ| 01
µ
;



2
12 012Σ

¶
(dΣ) 

where Σ  0 is a positive deifinite  ×  matrix, we obtain

FREG = (Γ ())
−1
Z
O()

Z
Σ0

etr (−Σ) |Σ| 01
µ
;



2
12 012Σ

¶
(dΣ) (d)

Next, let us change variables of integration Σ 7→  where Σ = 
2

02

 = diag (1  )

with 1 ≥  ≥  ≥ 0, and  ∈ O (). For this transformation, we have (see, for example, Herz
(1955), p. 479)

(dΣ) = V
µ


2

¶2+
2

2 ||
Y


³
2 − 2

´
(d) (d) 

where

V = 222Γ (2)
is the volume of O ()  and (d) is the normalized invariant measure on O () 

imsart-aos ver. 2012/04/10 file: supercriticalsm1.tex date: January 28, 2017



30 P. DHARMAWANSA, I. M. JOHNSTONE AND A. ONATSKI

The transformation is one-to-2 becase  is only determined up to a left-multiplication by a

diagonal matrix with ±1 coefficients along the diagonal. Therefore, we have

FREG = 

Z
O()×()×O()

etr
³
−22

´
||2−

Y


³
2 − 2

´

× 01

Ã
;

 2

4
12 0120

!
(d) (d) (d) (59)

where

 = V (2) Γ ()  and () = { : 1      0} 
Consider Herz’ integral representation for 01 (see Butler and Wood (2003), equation (12))

(60) 01

µ

1

4
ΘΘ0

¶
= 

Z
U
etr {Θ } ¯̄ −   0

¯̄(2−2−1)2
(d ) 

where Θ is a ×  matrix, U = { :   0  } and  = −22Γ () Γ ( − 2). This represen-
tation is valid when  ≥ , which holds for sufficiently large  . Using (60) in (59), we obtain

FREG = ̃

Z
O()×()×O()×U

etr
h
−22 + 1212

i
×||2+1

Y


³
2 − 2

´ ¯̄
 −   0

¯̄−2
d

where

d = (d) (d) (d) (d )  and ̃ =
2 (2) Γ ()

Γ ()Γ (2)Γ ( − 2)


Now let us make the change of variables  7→   , where  =  is a singular value

decomposition of  with

 = diag (1  )  with 1 ≥  ≥  ≥ 0

For such a change of variables, we have

(d ) = V2
Y


³
2 − 2

´
(d) (d ) (d) 

where (d) and (d ) are the normalized invariant measures on O.

The transformation  7→   is one-to-2. Therefore, we obtain

FREG = ̂

Z
Λ
etr

h

³
−22 +1212

´i
× ||2+1

Y


³
2 − 2

´³
2 − 2

´ ¯̄̄
 − 2

¯̄̄−2
d(61)

where

Λ = O()×()×O()× ̄ ()×O ()×O ()
with ̄ () = { : 1 ≥ 1 ≥  ≥  ≥ 0} 

d = (d) (d) (d) (d) (d) (d )  and ̂ =
22

2
(2) Γ ()

Γ () (Γ (2))
3 Γ ( − 2)
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Equation (61) can be rewritten in the form amenable to the Laplace approximation method as

follows

(62) FREG = ̂

Z
Λ
d

where

 = etr
n
−22 +1212

o ¯̄̄
 − 2

¯̄̄ ||2 
and

 =
¯̄̄
 − 2

¯̄̄−2 ||Y


³
2 − 2

´ ³
2 − 2

´


By Lemma 4.2 of Glynn (1980), the maximum of etr
n
1212

o
over (  ) ∈

O ()4 is achieved at 23 points, where  and  are diagonal with values ±1 along the
diagonal, and such that  =  The value of etr

n
1212Σ

o
at the maximum is

etr
nP

=1 
p
2
o
 where

 = 2

We introduce this notation because it simplifies some expressions later on.

This implies that the maximum of  over Λ is achieved at 23 points with   as above,

and with  and  satisfying the following first order conditions for maximisation with respect to

 and    = 1  

(63) − + 

q
2 + 2 = 0

and

(64) 

q
2 − 2

1− 2
= 0

From (63) we obtain

 =
2 − 2

p
2
.

Using this in (64) we obatin³
2 − 2

´2
+ 2 (− )

³
2 − 2

´
− 4 = 0

Let

+ =
1

2

½
 − +

q
(− )

2 + 4

¾
be the positive solution of the quadratic equation 2 + (− )  −  = 0. Then, 

2
 − 2 = 2+

and thus

2 = 2 (+ + )  and(65)

2 =
1



2+

+ + 
(66)

We have introduced the notation + here for compatibility with the previous version of DJO, that

studied the one dimensional case  = 1.
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Let us verify the second order conditions for the maximum at the above 2 and 2  The matrix

of the second derivatives of ln  with respect to  and  is⎛⎝ −1− 22 p
2p

2 −2
³
1 + 2

´

³
1− 2

´2
⎞⎠ 

Its value at the critical point isÃ − (+ + 2)  (+ + )
p
2p

2 −2 (+ + ) − 22 (+ + )2 
³
2+

´ ! 

By inspection, the diagonal elements of this matrix are negative, whereas the determinant

4 (+ +)
³
 + 2+

´

³
2+

´
 0

so that the second order condition for the maximum is satisfied.

Note that the value of ln  at the maximum is

max ln  =
X

=1

n
−22 + 

q
2 +  ln

³
1− 2

´
+ 2 ln 

o


where   0 and   0 are given by (65) and (66). Expressing max ln  in terms of    and
+ we obtain

max ln  =
X

=1

{+ −  ln (+ + ) +  ln (+ + ) +  ln 2 +  ln − } 

Since the maximum is achieved at the 23 points, the integral over Λ in (62) can be replaced, for
the purpose of the asymptotic analysis, by 23 times the integral over

Λ+ = O+()×()×O+()× ̄ ()×O+ ()×O+ () 

where O+ () denotes the set of -dimensional orthogonal matrices with positive diagonal elements.
Since  , and  are proper in O+ (), they can be parameterized as

 = exp {} ,  = exp {}   = exp {}  and  = exp {} 

where  and  are  ×  skew symmetric.

Anderson (1965) shows that the Jacobian of the transfomation  7→  equals

1 =  ( 7→ ) = Γ (2) 2
−−

22
³
1 +

³
2

´´


where 
³
2

´
denotes the terms that are at least quadratic in the elements of  Similar expres-

sions hold for the Jacobians 2 3 and 4 of the transformations  7→   7→  and  7→ ,

respectively. By making this change of variables, we arrive at the following asymptotic representa-

tion

(67) FREG ∼ 

Z
Ξ


³
d̃
´
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where

 = 2
3̂ =

25
2
(2) Γ ()

Γ () (Γ (2))
3 Γ ( − 2)



Ξ is the image of Λ+ under the transformation   7→ 

 = 1234

¯̄̄
 − 2

¯̄̄−2 ||Y


³
2 − 2

´ ³
2 − 2

´
 and

 = etr
n
−22 +1212

o ¯̄̄
 − 2

¯̄̄ ||2 
Expanding     and  into powers of  and  we have tr

h
1212

i
equals

X
=1


12
 

12
  − 1

2

X


³


12
 

12
  + 

12
 

12
 

´ ³
2 +  2 +2 +2

´

−
X


³


12
 

12
  + 

12
 

12
 

´
 −

X


³


12
 

12
  + 

12
 

12
 

´


−
X


³


12
 

12
  + 

12
 

12
 

´
 −

X


³


12
 

12
  + 

12
 

12
 

´


−
X


³


12
 

12
  + 

12
 

12
 

´
 −

X


³


12
 

12
  + 

12
 

12
 

´


+hot

where hot stands for higher order terms (in    and ).

The maximum value of  is obtained at a single point ̃ in the interior of Ξ The Hessian of − ln 
∆ reduces to a product of determinants of matrices which are at most 4× 4. A direct calculation
(using MAPLE symbolic algebra) gives

∆ =
Y

=1

4 (+ +)
³
 + 2+

´
2+

Y


n
( − ) ( − )

³
2 − 2

´
³
2 − 2

´ ³

12
 

12
  − 

12
 

12
 

´2¾


Further, using Stirling’s formula, we have, at  =  =  =  = 0

1234 ∼ Γ (2)


2+(+1)4

 (3+1)4

2+22


22

+(+1)4


The statement of Lemma DJO17 now follows by applying Glynn’s (1980) Theorem 2.1 to (67).

We obtain

FREG ∼
µ


2

¶−(−1)4 Γ (2)
(+1)4

+(+1)4

+(+1)4

×
Y

=1

+
(+ + )

(+ + )

Ã
+ (+ + )

2+ + 

! 1
2

×
Y


( − )
−12 ( − )

−12 
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By Glynn’s theorem, this asymptotic approximation is uniform over  and  that belong to compact

subsets of (12∞) and (0 12), respectively, and over  and , such that their diagonal entries

belong to compact subsets of the simplexes 1      0 and 1      0.

5.5. Proof of Lemma DJO18 about the Laplace approximation for ISigD∅ . As shown in DJO, the

inner-most integral in the multiple integral representation (DJO49) of ISigD∅ equals

(68) ISigD∅  = 
SigD
−1

Z ̃1

̃2+
−1(1)1 (1) (1 +  (1)) d1

First, we will apply the Laplace method (see Olver (1997), p. 81—82) to the integral

() ≡
Z ̃1

̃2+
−1(1)1 (1) d1

To line up our analysis with that on pages 81—82 of Olver (1997) and to simplify notations, let

us rewrite () as

() =

Z −̃2−
−̃1

−()()d

where  = −1,

 () =
 − + 2

2
ln

µ
1 +

1

1 + 1

¶
+
1

2

X
=+1

ln
³
−− ̃

´
 and

 () =
³
̃1 + 

´−12 Y
=2

³
(−− ) 

³
−− ̃

´´12


Let us show that under the null hypothesis, () has positive continuous derivative for  from
the interval [−̃1−̃2− ] for sufficiently large , a.s. All statements made in this section should
be understood as holding for sufficiently large , almost surely, and we will omit this qualification

to avoid frequent repetitions. We have

(69)  0() =
 − + 2

2

1

1 + 1 + 1
+
1

2

X
=+1

³
+ ̃

´−1


Clearly,  0() is continuous and strictly decreasing for all  ∈ [−̃1−̃2 − ]. Under the null, the
minimum of  0() on  ∈ [−̃1−̃2 − ] converges to

(70)
201

212(1 + 01 − 01(lim ̃2 + ))
+
1

2
̃(lim ̃2 + )

uniformly over  = 0 + 
√
 with (1  ) from a compact subset of R, a.s. Here ̃() is the

Stieltjes transform (or rather its analytic continuation to a point on the real line) of the limiting

spectral distribution of the multivariate Beta matrix (H+ 2E)
−1 H and

lim ̃2 ≡ (02 + 1) (02 + 1) 2
02 (1 + 022 + 2)

is the a.s. limit of ̃2 (see equation (DJO41)).
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Consider the following function of two real variables

Ψ ( 01) ≡ 201

212(1 + 01 − 01)
+
1

2
̃()

From the above discussion, we see that this is the value of the a.s. limit of  0() as  → −. The
function is well defined for all  ≤ 1 that lie above the upper boundary of the support of the limiting
spectral distribution of the multivariate Beta matrix, and for all 01  ̄. It is also well defined for

positive 01 and all, but one, values   1, but we focus on the supercritical spikes (hence 01  ̄)

and on  that may be equal to a limit of an eigenvalue of a multivariate Beta matrix (hence  ≤ 1).
Recall that ̃ =  (1 + ), where  = 2 and  is the -th largest eigenvalue of

F = E−1H. This implies that the upper boundary of the support of the limiting spectral distribution
of the multivariate Beta matrix (H+ 2E)

−1 H equals

̃+ ≡ +(1 + +) where  = 21

and that

(71) ̃() = + 1 + −1(+ 1)2()

where  =  (1 + ) and () is the Stieltjes transform of the limiting spectral distribution of

F. It is well known (see, for example, p. 79 of Bai and Silverstein’s (2010) book), that

(72) () =
1

1
− 1


− 1 ((1− 2) + 1− 1) + 22 − 1

q
((1− 1) + (1− 2))

2 − 4
21(1 + 2)



Now returning to function Ψ, note that this function is increasing in both  and 01 on  ∈ (̃+ 1]
and 01  ̄. Let us compute its limit as  → ̃+ and 01 → ̄. Then  ≡ ( − ) → + ≡
((1 + )(1− 2))

2, the square root in the above definition of  converges to zero, and after some

algebra, we obtain
1

2
̃()→ −((1 + )22 + 1(1− 2)

2)

212(1− 2)(1 + )


On the other hand, as 01 → ̄ ≡ (2 + )(1− 2) and  → ̃+,

201

212(1 + 01 − 01)
→ ((1 + )22 + 1(1− 2)

2)

212(1− 2)(1 + )


so thatΨ( 01)→ 0. SinceΨ( 01) is increasing, the limit (70) of 
0()must be positive. Moreover,

there exists a small positive number such that  0() is above this number for all  ∈ [−̃1−̃2−]
and all  = 0 + 

√
 with (1  ) from a compact subset of R, for sufficiently large , almost

surely.

Since () is strictly increasing on [−̃1−̃2 − ], the main contribution to the integral ()
comes from the vicinity of −̃1. From (69), we see that

(73)  0(−̃1) → 201

212(1 + 01 − 01 lim ̃1)
+
1

2
̃(lim ̃1)

where

lim ̃1 ≡ (01 + 1) (01 + 1) 2
01 (1 + 012 + 2)
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Using (71) and (72), we obtain, after some algebra

(74) ̃(lim ̃1) =
2

12

01(1 + 2 + 201)

(1 + 01)(2 + 201 − 01)


Further,
201

12(1 + 01 − 01 lim ̃1)
=

01 (1 + 2 + 201)

12 (1 + 01)


These equations together with (73) yield

(75)  0(−̃1) → 1 ≡
(1− 2)01(1 + 2 + 201)(1 + 01 − 

12
+ )(1 + 01 − 

12
− )

212(1 + 01)(1 + 01)(01 − 201 − 2)


The rest of our proof of Lemma DJO18 closely follows Olver (1997), p. 81—82. Consider a new

variable of integration

 = ()− (−̃1)
and let  be a fixed number that belongs to the a.s. limit of (−̃1−̃2 − ) as  → ∞, under
the null hypothesis. We have

(76) (−̃1)
Z 

−̃1
−()()d =

Z 

0
−()d

where

 = ()− (−̃1) and () = () (dd) = () 0()

Note that there exist fixed non-random 0  1  2 ∞, such that  ∈ [12].
By definition of () and (), as → −̃1,³

()− (−̃1)
´

³
+ ̃1

´
→  and ()(+ ̃1)

−12 → 

where

 ≡  0(−̃1) and  ≡
Y

=2

³³
̃1 − 

´

³
̃1 − ̃

´´12


These convergences, together with the above definitions of  and () imply that

(77) () ∼ −12 12 as  → 0 + 

This means that the ratio of the left hand side of (77) to its right hand side converges to 1 as

 → 0+. This convergece is uniform in  = 0+ 
√
 with (1  ) from a compact subset of R.

Now, closely following Olver, rearrange the integral (76) in the form

(78)

Z 

0
−()d = −12

½Z ∞
0

−−12d − 1()

¾
+ 2()

where

1 =

Z ∞


−−12d and 2 =

Z 

0
−

n
()−−12−12

o
d

Since  ∈ [12] for all sufficiently large ,Z ∞
0

−−12d − 1() ∼ Γ(12)−12 =
q
 as →∞
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Further, the above results on the derivative of  yield

 ∼ 1 ≡
(1− 2)01(1 + 2 + 201)(1 + 01 − 

12
+ )(1 + 01 − 

12
− )

212(1 + 01)(1 + 01)(01 − 201 − 2)


Therefore, for the first term on the right hand side of (78), we have

(79) −12
½Z ∞

0
−−12d − 1()

¾
∼ (1)

−12
Y

=2

³³
̃1 − 

´

³
̃1 − ̃

´´12


That is, the ratio of the left to the right hand sides of the above display converges to one as

 → ∞, uniformly in  = 0+ 
√
 with (1  ) from a compact subset of R, almost surely.

Next, by (77), for an arbitrarily small positive  , we can choose  so that¯̄̄
()−−12−12

¯̄̄
  ||−12−12

for all  ∈ (0 ] and all  = 0 + 
√
 with (1  ) from a compact subset of R. Therefore, 2

is asymptotically dominated by the first term on the right hand side of (78).

Finally, let

 = inf
[−̃2−)

n
()− (−̃1)

o


Since () is strictly increasing on [−̃1−̃2 − ],  is larger than some positive number for any
 = 0+

√
 with (1  ) from a compact subset of R, for all sufficiently large , a.s. Therefore,¯̄̄̄

¯(−̃1)
Z −̃2−


−()()d

¯̄̄̄
¯ ≤ −

Z −̃2−


|()|d

which is dominated by the right hand side of (79).

Summing up, we have established the following lemma.

Lemma 17. As  → ∞,

ISigD∅  = 
SigD
−1 −1(̃1)(1)

−12
Y

=2

³³
̃1 − 

´

³
̃1 − ̃

´´12
(1 + (1))

where (1) → 0 uniformly over  = 0 + 
√
 with (1  ) from a compact subset of R and

over 2   that belong to the (trimmed) domain of integration in (DJO49), a.s.

Repeating the above analysis for the second, third, etc. to the inner-most integral in (DJO49)

and combining the results, we obtain Lemma DJO18.

5.6. Proof of Lemma DJO19 about the Laplace approximation for IREG∅ . The proof is very

similar to that of Lemma DJO18. As shown in DJO, the inner-most integral in the multiple integral

representation (DJO52) of IREG∅ equals

(80) IREG∅  = REG−1
Z ̃1

̃2+
−2(1)2 (1) (1 +  (1)) d1
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First, we will apply the Laplace method to the integral

() ≡
Z ̃1

̃2+
−2(1)2 (1) d1

To line up our analysis with that on pages 81—82 of Olver (1997) and to simplify notations, let

us rewrite () as

() =

Z −̃2−
−̃1

−()()d

where  = −1,

 () = −1+ −  ln (1+ + ) +  ln (1+ + ) +
1

2

X
=+1

ln
³
−− ̃

´
 and

 () =

Ã
1+ (1+ + )

21+ + 1

! 1
2 ³

̃1 + 
´−12 Y

=2

Ã
−− 

−− ̃

!12


Here

+ =
1

2

½
 − +

q
(− )2 + 4

¾
with  = −2

 = ( − )(2) ≡ ( + 2 − )(2) and  = ( − )(2)

Let us show that under the null hypothesis, () has positive continuous derivative for  from
the interval [−̃1−̃2 − ] for sufficiently large , a.s. Express  0() as

 0() = 0() + 0()

where

() ≡ −1+ −  ln(1+ + ) +  ln(1+ + ) and () ≡ 1

2

X
=+1

ln(−− ̃)

Clearly, function () is decreasing and concave on  ∈ [−̃1−̃2 − ]. We will now show that
() is increasing and convex.
Since

21+ + (− 1)1+ − 1 = 0

we have

(81) 1 = 1+(1+ + )(1+ + )

Therefore, 1+  1  0. Further,

d

d
1+ =

1+

1

d1
d

=
1

2

(
1 +

1 − + 2p
(− 1)2 + 41

)
−1
2

=
1+ + 

21+ + − 1

−1
2
=

(+ 1+)
2

+ 21+ + 21+

−1
2

 0(82)

On the other hand,

(83)


1+
 = − + 21+ + 21+

(+ 1+) (+ 1+)
 0
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Therefore, 0() is positive on  ∈ [−̃1−̃2 − ]. Further,

2

21+
 = − 

(1+ + )2
+



(1+ + )2
=

(− )
¡
21+ − 

¢
(1+ + )2 (1+ + )2



and using (82), we also have

d2

d2
+1 = −

2
1

2

 (+ 1+)
3 (− )¡

+ 21+ + 21+
¢3 

Hence,

00 () =
2

21+

µ
d1+
d

¶2
+



1+

d21+
d2

=
21
4

(+ 1+)
2 (− )

(+ 1+)
2 ¡+ 21+ + 21+

¢  0
The concavity of () and the convexity of () imply that

(84) min
∈[−̃1−̃2−]

 0 ()  0
³
−̃1

´
+ 0

³
−̃2 − 

´


On the other hand, using, first, (82) and (83), and then (81) and the definition of 1, we obtain

0() =
1(+ 1+)

2(+ 1+)
= −1+

This and the fact that

̃1
→ (01 + 1)(01 + 1)2

01(1 + 012 + 2)

yield, after some algebra,

(85) 0(−̃1) → 01(1 + 012 + 2)

2(1 + 01)2


For 0(−̃2 − ), we have

0(−̃2 − )
→ 1

2
̃(lim ̃2 + )

Hence, the right hand side of (84) a.s. converges to

Π(lim ̃2 +  01) ≡ 01(1 + 012 + 2)

2(1 + 01)2
+

1

2
̃(lim ̃2 + )

This convergence is uniform in  = 0 + 
√
 with (1  ) from a compact subset of R.

Now note that Π( 01) is strictly increasing function of  and 01 on  ∈ (̃+ 1] and 01  ̄.

Using the same tools as in the above proof of Lemma DJO18 (more specifically, those used for the

analysis of Ψ( 01)), we find that the limit of Π( 01) as  → ̃+ and 01 → ̄ is zero. Therefore,

Π(lim ̃2+  01) is positive, and thus, by (84), 
0() is positive on  ∈ [−̃1−̃2− ]. Moreover,

there exists a small positive number that is smaller than  0() for all  ∈ [−̃1−̃2 − ], all
 = 0 + 

√
 with (1  ) from a compact subset of R, and all sufficiently large , a.s.

Since () is strictly increasing on [−̃1−̃2 − ], the main contribution to the integral ()
comes from the vicinity of −̃1. Using (85) and (74), we obtain

 0(−̃1) → 11
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The rest of the proof is almost identical to that of Lemma DJO18. The only notable difference

is that function () has an additional multiplicative term

µ
1+(1++)
21++1

¶ 1
2

. It is straightforward to

verify that, at  = −̃1, this term a.s. converges to

1 + 2 + 201

((1 + 2 + 201)2 − 21)12


which explains the presence of the last term in the definition of ΩREG given in Lemma DJO19.

5.7. Proof of Lemma DJO20 about the asymptotic equivalence of I∅ and I∅ . By definition,

(86) I∅ − I∅ =
X
D

Z ̃

̃0

Z
D−1



Z
D1
|| F

Y
=1

d 

where the sum runs over all D that are represented by either [̃+1+  ̃ ] or [̃+1 ̃+1+ ] and
at least one D   = 1   − 1, is represented by [̃+1 ̃+1 + ]. All terms in the above sum can

be analyzed symilarly, and here we will focus on the term

 ≡
Z ̃

̃0

Z ̃−1

̃+


Z ̃2

̃3+

Z ̃2+

̃2

|| F

Y
=1

d 

As is explained in DJO, we have

(87) | | ≤ ̄ ≡
Z ̃

̃0

Z ̃−1

̃+


Z ̃2

̃3+

Z ̃2+

̃2

|| F

³
̃1

´ Y
=1

d 

where ̃1 = diag
n
̃2 +  2  

o
.

Case SigD. Using Lemma DJO16 to approximate F
³
̃1

´
, we obtain

(88) ̄ = SigD(1 + (1))

Z ̃

̃0

Z ̃−1

̃+


Z ̃2

̃3+

Z ̃2+

̃2

−1(̃1)̃1d1
Y

=2

n
−()d

o


where (1)→ 0 uniformly in  = 0 + 
√
 with (1  ) from a compact subset of R, and the

definitions of  ,  , ̃1, and ̃1 are summarized in Table 1.

Table 1

Definition of , , ̃1, and ̃1 used in equation (88).

Quantity Definition

() = −+2
2 ln

³
1− 

1+

´
+ 1

2

P

=+1
ln
¡
 − ̃

¢
  = 1  

 =
Q

=1

¡
̃ − 

¢−12Q

=+1

¡
( − ) 

¡
 − ̃

¢¢12
  = 2  

̃1 = ̃2 + 

̃1 =
¡
̃1 − ̃1

¢−12Q

=2

½³
̃1−
̃1−̃

´12
1−
̃1−

¾Q

=1

¯̄̄
1−̃
̃1−̃

¯̄̄−12
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As follows from the proof of Lemma DJO18, ()  = 1   are strictly decreasing functions
for  from the integration domain of  . Therefore, we have

̄ ≤ SigD(1 + (1))

Z ̃

̃0

Z ̃−1

̃+


Z ̃2

̃3+

Z ̃2+

̃2

−1(̃1)̃1d1
Y

=2

n
−(̃)d

o

≤ SigD−1(̃2+)
Y

=2

−(̃)

where SigD is a positive quantity that depends only on 01  0.

In the proof of Lemma DJO18, we have seen that not only 1() is strictly decreasing in  on

 ∈ [̃2 ̃1], but also there exists a fixed negative number such that the derivative of 1() is
smaller than that number. Therefore, there exists   0, such that 1(̃2 + )  1(̃1) +  and

̄ ≤ SigD−
Y

=1

−(̃)

On the other hand, by Lemma DJO18, the right hand side of the displayed inequality is asymptot-

ically dominated by I∅ . Repeating the above arguments for the other components of I∅ − I∅
(that is, the components of the sum in (86) other than ), we establish Lemma DJO20 for the SigD

case.

Case REG. A proof of this case is similar to that for SigD. Using Lemma DJO17 to approximate

F

³
̃1

´
, we obtain

(89) ̄ = REG(1 + (1))

Z ̃

̃0

Z ̃−1

̃+


Z ̃2

̃3+

Z ̃2+

̃2

−1(̃1)̃1d1

Y
=2

n
−()d

o


where (1)→ 0 uniformly in  = 0 + 
√
 with (1  ) from a compact subset of R, and the

definitions of  ,  , ̃1, and ̃1 are summarized in Table 2.

Proceeding exactly as in SigD case, we obtain inequality

̄ ≤ REG−
Y

=1

−(̃)

so Lemma DJO20 follows by a similar argument.

Table 2

Definition of , , ̃1, and ̃1 used in equation (89).

Quantity Definition

() = −+ −  ln(+ + ) +  ln(+ + ) + 1
2

P

=+1
ln( − ̃)  = 2  

 =
³
+(++)

2
+
+

´12Q

=1

¡
̃ − 

¢−12Q

=+1

³
−
−̃

´12
  = 2  

̃1 = ̃2 + 

1(̃1) = −̃1+ −  ln(̃1+ + ) +  ln(̃1+ + ) + 1
2

P

=+1
ln(̃1 − ̃)

̃1 =
³
̃1+(̃1++)

̃2
1+
+̃1

´12 ¡
̃1 − ̃1

¢−12Q

=2

½³
̃1−
̃1−̃

´12
1−
̃1−

¾Q

=1

¯̄̄
1−̃
̃1−̃

¯̄̄−12


̃1+ = 1
2

½
̃1 − +

q¡
− ̃1

¢2
+ 4̃1

¾


̃1 = ̃112
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5.8. Proof of Lemma DJO21 about the asymptotic negligibility of I with  6= ∅. We consider

here only the case of  = 1 2  . The analysis for the other subsets  ⊆ 1 2   is very similar.
As shown in DJO,

|I | ≤
1

2

Z
K+1



Z
K+1

|| F ()
Y

=1

|d | 

where  = diag {̃0 +   ̃0 + 2 ̃0 + } and  is a fixed small positive number. Function

F () can now be approximated using Lemmas DJO16 and DJO17.

Case SigD. Using Lemma DJO16, we obtain

(90) |I | ≤ 

Y
=1

Ã
1− (̃0 + )

1 + 

!−−+2
2 Z

K+1


Z
K+1

||
Y

=1

|d | 

where  is some positive constant. The above inequality holds uniformly in  = 0 + 
√
 with

(1  ) from a compact subset of R, for sufficiently large , a.s.

Using the definitions of  and K+1, we obtain

(91)

Z
K+1



Z
K+1

||
Y

=1

|d | ≤ 1

Y
=1

Y
=+1

(̃0 − ̃)
−12

where 1 is a positive constant. Combining this inequality with (90), we obtain

|I | ≤ 2

Y
=1

⎡⎣Ã1− (̃0 + )

1 + 

!−−+2
2 Y

=+1

(̃0 − ̃)
−12

⎤⎦ 
Now recall (from the proof of Lemma DJO18) that functions

() =
 − + 2

2
ln

Ã
1− 

1 + 

!
+
1

2

X
=+1

ln
³
 − ̃

´
  = 1  

are decreasing on  ∈ [̃0 1] and have there derivatives that are bounded away from zero, for

sufficiently large , a.s. This implies that there exists a small positive 1 such that

|I | ≤ 3
−1

Y
=1

−(̃)

and therefore, by Lemma DJO18, I is asymptotically dominated by I∅ .
Case REG. Using Lemma DJO17, we obtain

(92) |I | ≤ 

Y
=1

−(̃0+)
Z
K+1



Z
K+1

||
Y

=1

|d | 

where  is some positive constant and

() = −+ −  ln(+ + ) +  ln(+ + )

+ =
1

2

½
 − +

q
(− )2 + 4

¾
with  = 2
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Using (91) in (92), we obtain

|I | ≤ 2

Y
=1

⎡⎣−(̃0+)
Y

=+1

(̃0 − ̃)
−12

⎤⎦ 
Now recall (from the proof of Lemma DJO19) that functions

() = () +
1

2

X
=+1

ln
³
 − ̃

´
  = 1  

are decreasing on  ∈ [̃0 1] and have there derivatives that are bounded away from zero, for

sufficiently large , a.s. This implies that there exists a small positive 1 such that

|I | ≤ 3
−1

Y
=1

−(̃)

and therefore, by Lemma DJO19, I is asymptotically dominated by I∅ .

6. Local Asymptotic Normality.

6.1. Proof of Theorem DJO23 about the quadratic approximation of the log likelihood ratio.

Case SigD. Theorem DJO22 yields

(93) SigD (Λ) = (1 + (1))
SigD ()


SigD
 (0)

Y
=1

⎛⎝ 1− 
1+

̃

1− 0
1+0

̃

⎞⎠
−−2

2



The right hand side does not depend on SigD()SigD(0) because the latter ratio is asymptotically
equivalent to one. Taking logarithm of both sides of (93) and simplifying, we obtain

(94) lnSigD (Λ) =
X

=1

(
2

2
ln
1 + 

1 + 0
− 

2
ln



0
−  − 

2
ln
1 +  − ̃

1 + 0 − 0̃

)
+ (1)

Using the identity

(95) ̃ =


1 + 
with  = 2

we rewrite (94) as

(96) lnSigD (Λ) =
X

=1

(
2

2
ln
1 + 

1 + 0
− 

2
ln



0
−  − 

2
ln
1 +  + 

1 + 0 + 

)
+ (1)

Expanding the logarithms in (96) in the powers of −12 up to and including terms 2−1, we
obtain

lnSigD (Λ) =
X

=1

(
2

2

Ã


−12 (0)
1 + 0

− 1
2
2

−1 2(0)

(1 + 0)2
+ (−1)

!

−
2

Ã


−12(0)
0

− 1
2
2

−12(0)
20

+ (−1)
!

− − 

2

Ã


−12 (0)

1 + 0 + 
− 1
2
2

−1 2(0)

(1 + 0 + )2
+ (−1)

!)
+(1)
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Consider, first, the terms linear in  . They can be rewritten as

 ≡
1

2


12(0)

Ã
1

2

1

1 + 0
− 1

0
− 2

12

1

1 + 0 + 

!


Expanding the last term in the brackets around  =  and using the fact that, by Theorem

DJO10,
√
( − ) = P(1), we get

 =
1

2


12(0)

Ã
1

2

1

1 + 0
− 1

0
− 2

12

1

1 + 0 + 
+

2

21

 − 

(1 + 0 + )2

!
+ P(1)

Simplifying this using identities

 = 21

2 = 1 + 2 − 12 and(97)

 = (0 + 1)(0 + 1)((1− 2)0 − 2)

we obtain

 = 
√
( − )(0)

((1− 2)0 − 2)
2

22(1 + 0)220
+ P(1)

On the other hand, for SigD,

(98) (0) = 2(0(1 + 0)((1− 2)0 − 2))
2

which yields

(99)  = 
√
( − ) + P(1)

Now, for the quadratic terms in  , we have

2
≡ 1
4
2

2(0)

Ã
− 1

2(1 + 0)2
+
1

20
+

2

12(1 + 0 + )2

!


Using identities (97) and the fact that  −  = P(1), we obtain

(100) 2
= −1

4
2

2(0)
(1− 2)

2
0 − 220 − 1 − 2

(1 + 0)220
2

+ P(1)

Recall that the asymptotic variance of  equals 
2(0) = (0)(0), (see Theorem DJO10),

where

(0) ≡ (1− 2)(0 − s)(0 − ̄)2(0) =
(1− 2)

2
0 + 220 − 1 − 2

((1− 2)0 − 2)2


Using this with (98) in (100), we obtain

(101) 2
= −1

2
2 

2(0) + P(1)

Combining (99) and (101) yields

lnSigD (Λ) =
X

=1

½

√
( − )− 1

2
2 

2(0)

¾
+ P(1)
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It remains to note that, by construction, the above P(1) term is uniform in (1  ) from any

compact subset of R.

Case REG. Theorem DJO22 yields

(102) REG (Λ) = (1 + (1))
REG ()

REG (0)

Y
=1

−((̄+)−(̄0+))

where

̄+ =
1

2

½
̃2− +

q
(− ̃2)2 + 2̃

¾


̄0+ =
1

2

½
̃02− +

q
(− ̃02)2 + 2̃0

¾


and

() = − −  ln( + ) +  ln( + )

Taking logarithm of both sides of (102) and simplifying, we obtain

(103) lnREG (Λ) =
X

=1

(
−
2
( − 0)− 

2
ln



0
− ((̄+)− (̄0+))

)
+ (1)

Expanding the difference ̄+ − ̄0+ in the powers of 
−12 up to and including terms 2−1,

we obtain

̄+ − ̄0+ =
1

2
−10 ̃(̄0+ + )

−12(0) +
(− )

4
−30 ̃2

2

−12(0) + P(

−1)

where

0 =
q
(− ̃02)2 + 2̃0 

On the other hand,

ln
̄+ + 

̄0+ + 
=

̄+ − ̄0+

̄0+ + 
− (̄+ − ̄0+)

2

2(̄0+ + )2
+ P(

−1)

and

ln
̄+ + 

̄0+ + 
=

̄+ − ̄0+

̄0+ + 
− (̄+ − ̄0+)

2

2(̄0+ + )2
+ P(

−1)

Therefore,

(̄0+)− (̄+) =
1

2
−10 ̃

−12(0)
̄20+ + 2̄0+ + 

̄0+ + 

+
(− )

4
−30 ̃2

2

−12(0)

̄20+ + 2̄0+ + 

(̄0+ + )(̄0+ + )
(104)

+
− 

8
−20 ̃2

2

−12(0)

̄20+ − 

(̄0+ + )2
+ P(

−1)

By Theorem DJO4, as  → ∞,

̃
→ 2(0 + 1)(0 + 1)

0((1 + 2(1 + 0))
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Further, by definition, → 1
2(1− 1) and → 1

2(1 + 12 − 1). These convergences imply that

0
→ 1

2

2
2
0 + 20(1 + 2) + 21 + 1 + 2

1 + 2(1 + 0)
 and

̄0+
→ 1

2
(0 + 1)

Using these results, we can simplify the last two lines of (104) to obtain

(̄0+)− (̄+) =
1

2
−10 ̃

−12(0)
̄20+ + 2̄0+ + 

̄0+ + 

− 1(0 + 1)
22

−12(0)
420(2

2
0 + 20(1 + 2) + 21 + 1 + 2)

(105)

+P(
−1)

For the first two terms in the figure brackets in (103), we have

(106) −1
2
( − 0)− 1

2
ln



0
= −0 + 1

20


−12(0) +
1

4

2
−12(0)
20

+ (−1)

Using (105) and (106) in (103) yields

lnREG (Λ) =
X

=1

(
− 0 + 1

20


−12(0)

+
1

2
−10 ̃

−12(0)
̄20+ + 2̄0+ + 

̄0+ + 
(107)

−1
2
2 

2(0)

¾
+ P(1)

Finally, expand the second line of (107) in the powers of −  up to and including linear terms.
To derive such an expansion, note that

̃ =
2(0 + 1)(0 + 1)

0(1 + 2 + 02)
+

12(−0 + 2 + 02)
2

20(1 + 2 + 02)2
( − ) + ( − )

̄0+ =
0 + 1

2
+

1(2 + 02 − 0)
2

20(1 + 2 + 21 + 20(1 + 2) + 202)
( − ) + ( − )

and

0 = 2̄0+ +
1

2
(1− 1)− 0

2
̃ 

Using these equations, we obtain, after some algebra,

−10 ̃
̄20+ + 2̄0+ + 

̄0+ + 
=

0 + 1

0
+

1(2 + 02 − 0)
2

20(1 + 2 + 21 + 20(1 + 2) + 202)
( − )

+( − )

=
0 + 1

0
+

21
(0)

( − ) + P(
−12)
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Using this equality in the second line of (107) and simplifying, we obtain

lnREG (Λ) =
X

=1

½

√
( − )− 1

2
2 

2(0)

¾
+ P(1)

Similarly to the SigD case, the above P(1) term is uniform in (1  ) from any compact subset

of R by construction.
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