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Electron bilayers in a strong magnetic field exhibit insulating behavior for a wide range interlayer
separation of d for total fillings ν ≤ 1/2. We show that there are many nearly degenerate competing
liquid and crystal states, and obtain the phase diagram as a function of ν and d, while also including
finite width corrections. We predict that three crystal structures can occur: (i) Triangular Ising
AntiFerromagnetic (TIAF) crystal is stabilized at small d in which composite fermions form a
triangular crystal, with half of the composite fermions in one layer and half in the other in such a
manner that no minimal triangle has all three particles in the same layer. (ii) Correlated Square
(CS) crystal is stabilized at intermediate d, in which composite fermions in each layer form a square
lattice, with the particles in one lattice located directly across the centers of the squares of the
other. (iii) Bilayer Graphene (BG) is stabilized at yet larger d, in which the A and B sites of the
graphene lattice lie in different layers. As a function of parameters, the flavor of composite fermions
forming the lattice can change, as can the interlayer correlation factor. Interestingly, all crystals we
find are crystals of composite fermions; electron crystals are not stabilized for any parameters we
have studied. The appearance of several exotic crystal phases adds to the enormous richness of the
physics of electron bilayers in a strong magnetic field, and also provides insight into experimentally
observed transitions within the insulating part of the phase diagram.

I. INTRODUCTION

The rich physics of the fractional quantum Hall effect
(FQHE) has been entangled with the search for a collec-
tive electron solid. For a two dimensional electron gas
(2DEG), a high magnetic field quenches the kinetic en-
ergy, suggesting that an electron crystal state ought to
be realizable for filling factor ν < 1[1, 2]. However, ex-
periments reveal a liquid state, which manifests through
the FQHE[3]. The FQHE has a rich phenomenology:
A large number of fractions have been observed so far,
most of which have the form ν = n/(2pn ± 1) and
ν = 1 − n/(2pn ± 1). Calculations incorporating the
physics of the FQHE predicted that the crystal should oc-
cur at filling factors ν <1/6[4–13]. Indeed, a large body
of experimental work has shown a transition from the
FQH liquid to an insulator at around ν = 1/6, with the
insulating phase naturally interpreted as a crystal pinned
by disorder [14–24]. Subsequent theoretical work clarified
that the crystal is not an ordinary electron crystal but
rather a crystal of composite fermions, which provides
an excellent representation of the crystal phase [25–31].
Recent experiments provide some evidence for the com-
posite fermion (CF) nature of the crystal[32–34].

In this article we study the nature of the crystal phase
in bilayer systems. Bilayer systems can be realized ei-
ther by fabricating two nearby quantum wells, or through
a single wide quantum well (WQW) that behaves as
a bilayer system in the appropriate parameter regime.
Previous theoretical investigations of bilayer states have
focused primarily on the nature of two component liq-
uid states, ignoring the electron crystal phases[35–39].
Many new FQH states become available as a function
of the layer separation d. Such states have been consid-

ered in detailed theoretical calculations and also studied
experimentally. A striking example is the appearance
of FQHE at total filling ν = 1/2[40–42], which is un-
derstood in terms of the Halperin 331 state[43]. Many
phase transitions between various compressible and in-
compressible states have been predicted at each filling
factor as a function of d/l, where l =

√
~c/eB is the

magnetic length[39, 44].

Multicomponent systems appear in many different con-
texts, where the components can be either the electron
spin, relevant at low Zeeman energies, or the valley in-
dex in multivalley systems such as silicon, AlAs quantum
wells or graphene[45–48], or layer index, as in bilayer sys-
tems. The bilayer systems in the limit of zero layer sep-
aration, when the interaction is independent of the layer
index, are formally equivalent to the spin system at zero
Zeeman energy. However, for nonzero layer separations
the bilayer systems provide a way of tuning the inter-
component interactions relative to the intra-component
interactions, thus allowing realization of new physics not
available to other multi-component systems.

One of the primary motivations for our study is the
expectation that the crystal will also show a rich phase
diagram in bilayer systems, with many competing liq-
uid and crystal states appearing as a function of the in-
terlayer separation and the filling factor. An interest-
ing question is regarding the nature of the crystal phase,
and whether crystals other than a triangular crystal may
be stabilized. This issue has been addressed theoreti-
cally in the past[9, 44], but without allowing for CF
crystals[25, 26, 29, 31]. The CF crystals are energeti-
cally more favorable than electron crystals, and some-
times necessary for explaining phase transitions even in
a single layer system. For example, it is only with the CF
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crystal that theory can explain[31] the re-entrant phase
transitions observed [14–16, 18] in the vicinity of ν = 1/5,
where the system is insulating at ν < 1/5 and for a range
of ν between 1/5 and 2/9, but exhibits FQHE at ν = 1/5
and ν = 2/9. Indeed, modeling the crystal as a crystal of
composite fermions will be crucial for identifying bilayer
crystal states in this work as well.

Another motivation comes from experiments. Much
experimental work has been done toward studying the
crystal phase in bilayer systems. Mangetotransport ex-
periments in WQWs carried out by Manoharan et al.[49]
explored a large region of parameter space in terms of the
areal density and filling factors. They found that the in-
sulating phase dominates for a large range of parameters
for ν ≤ 1/2. Microwave spectroscopy has also been used
to characterize the insulating states in the WQW sys-
tems, helping to reveal some of the structure that is in-
accessible in DC magnetotransport experiments[50–52].
The crystal phase manifests in these experiments through
a sharp resonance which is ascribed to the frequency of
the pinned crystal oscillations. One of the interesting
findings has been shifts in the resonant frequency inside
the crystal part of the phase diagram, which the authors
have taken as evidence that there may be a reordering of
the crystal configuration[50–52]. It is therefore of interest
to identify what kinds of crystals are feasible in bilayer
systems.

We consider in this work electron and composite
fermion crystals (CFCs) in addition to the FQH liquid
states. We determine the energies of a large class of vari-
ational wave functions for the liquid and crystal phases
to determine the lowest energy state as a function of the
layer separation d/l. We predict three new crystal phases
in bilayer systems, shown in Fig. 1:

• Triangular Ising antiferromagnetic (TIAF) crystal:
This crystal is akin to a single layer triangular crys-
tal, but the layer-index pseudospin forms a frus-
trated lattice, with the property that no triangle
has all particles in the same layer.

• Correlated square (CS) crystal: This crystal con-
sists of two interpenetrating square lattices such
that the sites in one layer lie across the centers of
the squares in the opposite layer.

• Binary graphene (BG) crystal: This crystal, when
viewed from above, looks like a graphene lattice,
with the A and B lattice sites residing in different
layers.

Before we come to the calculational details, we show
in Fig. 2 the phase diagrams for several total filling fac-
tors as a function of the quantum well width and d/l for
a system with electron density of 1011 cm−2. This cap-
tures the general behavior found for other parameters,
although the details of the phase boundary vary. The
appearance of the three crystal states as a function of
d/l can be understood intuitively. For small d/l, the in-
ter and intralayer interactions are approximately equal.

FIG. 1. Two dimensional lattices considered in our work. The
blue and red colors denote different layer indices. Triangular
Ising AntiFerromagnetic (TIAF) crystal is a triangular lattice
with half of the particles in one layer and half in the other,
such that each triangle contains two particles in one layer
and one in the other. In the Correlated Square (CS) lattice
each layer forms a square lattice whose sites are aligned with
the centers of the squares in the opposite layer. Finally, the
Binary Graphene (BG) crystal has the overall structure of
graphene, but with the A and B sublattices lying in different
layers. We have chosen these configurations because they are
the lowest energy solutions to the classical bilayer Thomson
problem for different ranges of layer separation.

A triangular crystal forms as though the system were a
single layer, but frustration due to layer offset creates
a TIAF crystal. At intermediate separations, when the
intra-layer correlations become relatively weak, the CS
crystal appears. Finally, for large separations, the lay-
ers act almost independently and form two triangular
crystals within their respective layers, but the weak in-
terlayer interaction stabilizes the BG lattice. Results for
filling factors at several densities are presented in detail
later in section V.

We stress that the TIAF, CS and BG crystals can each
come in several varieties, with different flavors of compos-
ite fermions and different interlayer correlations. Their
full identification will require two other integers (which
have been suppressed in Fig. 2 to avoid clutter). All of
the bilayer crystals we find are CF crystals.

The paper is structured as follows. In section II, we
present a general background for the theory used to con-
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ν = 2/5

ν = 1/5ν = 1/3

ν = 1/2

FIG. 2. Phase diagram of liquid and crystal phases as a function of the quantum well width and the interlayer separation d/l.
To avoid clutter, we have suppressed states that occur in very narrow ranges of parameters, and also omitted the nature of
interlayer correlations in this figure. These finer details can be found in what follows. This phase diagram corresponds to the
density of 1 × 1011cm−2, and assumes parameters appropriate for GaAs quantum wells. The shaded region above the dashed
line is unphysical since here the quantum well width exceeds the interlayer separation.

struct the wave functions. We then describe the method
for obtaining the crystal coordinates in a spherical geom-
etry in section III. Section IV outlines our computational
method. In section V, we present results for a quantita-
tive study of FQH systems in a bilayer, focusing on zero
width and double quantum well systems. In section VI,
we conclude with a comparison with existing experiments
as well as predictions for future experiments.

II. MODEL STATES

For our study, we will consider several liquid and crys-
tal wave functions from CF theory. These wave functions
have been demonstrated to be very accurate in describing
the physics, in single layers, of both liquids[53, 54] and
crystals[29]. We begin each section by describing the con-
struction of the single layer wave functions, followed by
bilayer wave functions. Unlike the single layer crystals

where the triangular lattice is the only (known) energet-
ically favorable configuration, multiple lattice structures
can be realized in bilayer systems depending on the layer
separation and the filling factor.

A. CF theory of the FQH liquid

Composite fermions are bound states of electrons and
an even number (2p) of vortices[53–56]. Composite
fermions are weakly interacting, and experience an ef-
fective magnetic field B∗ = B − 2pρφ0, where φ0 = hc/e
is a flux quantum and ρ is the 2D electron or CF den-
sity. They form form LL-like levels referred to as Λ levels
(ΛLs), and fill ν∗ of them, where ν = ν∗/(2pν∗±1). The
FQHE at ν = n/(2pn ± 1) is a manifestation of the in-
teger quantum Hall effect (IQHE) of weakly interacting
composite fermions at CF filling ν∗ = n. The composite
fermions with 2p vortices bound to them are denoted as
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Liquid states and wave functions
ν State wave function

1
2

(4 4| 0) Ψ 1
4
({zi})Ψ 1

4
({wi})

(3 3| 1) Ψ 1
3
({zi})Ψ 1

3
({wi})Πi,j(zi − wj)

(2 2| 2) Ψ 1
2
({zi})Ψ 1

2
({wi})Πi,j(zi − wj)2

2
5

(5 5| 0) Ψ 1
5
({zi})Ψ 1

5
({wi})

(4 4| 1) Ψ 1
4
({zi})Ψ 1

4
({wi})Πi,j(zi − wj)

(3 3| 2) Ψ 1
3
({zi})Ψ 1

3
({wi})Πi,j(zi − wj)2

1
3

(6 6| 0) Ψ 1
6
({zi})Ψ 1

6
({wi})

(5 5| 1) Ψ 1
5
({zi})Ψ 1

5
({wi})Πi,j(zi − wj)

(4 4| 2) Ψ 1
4
({zi})Ψ 1

4
({wi})Πi,j(zi − wj)2

(3 3| 3) Ψ 1
3
({zi})Ψ 1

3
({wi})Πi,j(zi − wj)3

1
5

(10 10| 0) Ψ 1
10

({zi})Ψ 1
10

({wi})
(9 9| 1) Ψ 1

9
({zi})Ψ 1

9
({wi})Πi,j(zi − wj)

(8 8| 2) Ψ 1
8
({zi})Ψ 1

8
({wi})Πi,j(zi − wj)2

(7 7| 3) Ψ 1
7
({zi})Ψ 1

7
({wi})Πi,j(zi − wj)3

(6 6| 4) Ψ 1
6
({zi})Ψ 1

6
({wi})Πi,j(zi − wj)4

(5 5| 5) Ψ 1
5
({zi})Ψ 1

5
({wi})Πi,j(zi − wj)5

TABLE I. CF liquid wave functions. This table lists all filling
factors and liquid states considered in this study. The wave
function Ψν̄({zi}) at ν̄ = n

2pn+1
is defined in the text, and m

is the number of interlayer zeros. Wave functions are labeled
(ν̄−1 ν̄−1| m).

2pCFs.
For fully spin polarized electrons in a single layer,

the Jain CF wave function for the ground state at ν =
n/(2pn+ 1) is given by

Ψ n
2np+1

= PLLLΦnΠi<l(zi − zj)2p (1)

where Φn is the wave function for electrons at ν∗ = n
and zi = xi − iyi are the coordinates of the ith electron.
PLLL denotes LLL projection, which will be evaluated
numerically via the Jain-Kamilla method[57]. For the
ground state at ν = 1/(2p+ 1), i.e. for ν∗ = 1, this wave
function reproduces the Laughlin wave function.

The above construction can be generalized straight-
forwardly to a system of spinful electrons in a single
layer[58–60]. Here we have n = n↑ + n↓, where n↑ and
n↓ are the numbers of occupied spin up and spin down
Λ levels. Since the interaction is spin independent, the
ground state wave function is an eigenstate of the total
spin operator S2 = (ΣNtot

i Si)2, where Si is the spin op-
erator acting on the ith particle and Ntot is the total
number of particles. The Jain wave functions for spinful
composite fermions at ν = n/(2pn+ 1) are given by

Ψ(n↑,n↓)
n

2np+1
= A[PLLLΠi<j(zi−zj)2pΦn↑Φn↓α1...αN1β1...βN2 ]

(2)
where A is the antisymmetrization operator, N1 and N2

are the numbers of composite fermions with up and down
spins, and α and β are up and down spinors. This wave
function satisfies the Fock cyclic conditions with total

spin quantum number S = Sz = (N1 −N2)/2[61]. Spin-
ful electrons in general have several states at any given
filling factor due to the freedom to choose different combi-
nations of n↑ and n↓. At zero Zeeman energy, the ground
state corresponds to n↑ = n↓ = n/2 for even n, while for
odd n we have n↑ = (n + 1)/2 and n↓ = (n − 1)/2. In
the special case of n = 1, a fully spin polarized state is
obtained with n↑ = 1 and n↓ = 0.

We now come to bilayer systems. A bilayer system
with zero layer separation (d/l = 0) is formally equivalent
to the spin degree of freedom in a single layer system
with Zeeman energy set to zero[53, 54], with the two
layers representing spin up and spin down. This follows
because the interaction is independent of the layer index
in this limit, so the Hamiltonian satisfies the exact SU(2)
symmetry. The bilayer degree of freedom is sometimes
referred to as the pseudospin.

The layer pseudospin degree of freedom can create fur-
ther new structures for d/l 6= 0 because the interaction
becomes pseudospin dependent, and the wave function
no longer needs to satisfy the Fock conditions. Following
Scarola and Jain[39], we consider here the following class
of wave functions

Ψ(ν̄−1ν̄−1|m)
ν = Πi,j(zi − wj)mΨν̄({zi})Ψν̄({wi}) (3)

where {zi} and {wi} are the coordinates of particles
in different layers, and we have assumed equal carrier
densities in each layer. We take for the single layer
wave function Ψν̄({zi}) = PLLL

∏
j<k(zj − zk)2pΦn with

ν̄ = n/(2pn + 1). The factor Πi,j(zi − wj)m introduces
correlation between the layers through interlayer vortices.
The total filling factor ν is given by[39]

ν =
2ν̄

1 +mν̄
(4)

We can now enumerate all the candidate states for a given
total filling factor. We consider m ≤ 2p + 1 because
m > 2p + 1 would represent stronger interlayer corre-
lations than intralayer correlations, which is physically
unreasonable. The limiting form for d/l = 0 is known
from the spin problem described previously.

In this article we will consider total filling factors ν =
1/2, 2/5, 1/3, and 1/5. Table 1 enumerates all of the
liquid states of the form given in Eq. 3 at these filling
factors. For ν̄ = 1/(2p + 1) these wave function reduce
to the Halperin wave functions[43].

The above wave functions are written for the planar
geometry. For our calculations, we work in the spheri-
cal geometry to avoid potential problems resulting from
edge effects on disks[25, 62]. We confine our particles to
a spherical shell with a magnetic monopole of strength Q
placed at the center generating a radial magnetic field.
The value of 2Q is restricted to be an integer, equal to
the number of flux quanta penetrating the surface of the
sphere. The radius of the sphere is 2

√
Ql. When consid-

ering the FQHE in spherical geometry, we follow Haldane



5

Crystal notation and wave functions
Notation Name wave function

BG(2p,m)
Binary Graphene

CF crystal
Ψ

BG(2p)
ν̄ ({zi})ΨBG(2p)

ν̄ ({wi})Πi,j(zi − wj)m

CS(2p,m)
Correlated Square

CF crystal
Ψ

CS(2p)
ν̄ ({zi})ΨCS(2p)

ν̄ ({wi})Πi,j(zi − wi)m

TIAF(2p,m)
Triangular Ising

Antiferromagnetic
CF crystal

Ψ
TIAF(2p)
ν̄ ({zi})ΨTIAF(2p)

ν̄ ({wi})Πi,j(zi − wi)m

TABLE II. This table lists the form for all crystal wave functions considered in the article. Ψ
X(2p)
ν̄ is the wave function of the

LLL crystal of 2pCFs at filling ν̄, and the integer m represents the strength of the interlayer correlations. Superscripts BG, CS,
and TIAF correspond to Binary Graphene, Correlated Square and Triangular Ising Antiferromagnet. The representations of
these crystals on a bilayer sphere are obtained through the bilayer Thomson problem.

[62] to define spinor coordinates ui and vi

ui = cos(θi/2)eiφi/2

vi = sin(θi/2)e−iφi/2
(5)

where θ and φ are the angular coordinates. The wave
function is then written as

Ψ(ν̄−1ν̄−1|m)
ν = Πi,j(uivj − ujvi)mΨν̄(zi)Ψν̄(wi) (6)

The single particle states in Ψν̄ are the monopole
harmonics YQ∗,l,m where Q∗ is the effective magnetic
monopole strength and l = |Q∗|+n with n the number of
the current ΛL. The index m is restricted to be between
±l[57]. The above bilayer wave functions correspond to
the total flux [39]

2Q =
(2pn+mn+ 1)N − (2pn+ n2)

n
(7)

We assume here and below the notation in which the
total number of particles in a bilayer is Ntot = 2N , so
that each layer individually has N particles.

B. CF crystal states

We begin with the CF crystal (CFC) wave function for
a single layer system. Because it is not possible to fit a
triangular crystal perfectly on the surface of a sphere, we
consider a “Thomson crystal,” where the lattice positions
are determined by finding the lowest energy configuration
of classical point charges on a sphere. More details on the
Thomson problem are given in the following section. We
denote the Thomson crystal positions as

(Ui, Vi) = (cos(γi/2)eiδi/2, sin(γi/2)e−iδi/2) (8)

In a spherical geometry, the wave function for a Gaus-
sian wave packet localized at (U, V ) is given by (U∗u +
V ∗v)2Q∗ for a system at flux 2Q∗. The CFC wave func-
tion is then given by[31]

ΨX(2p)
ν ({ui, vi}) = det(U∗i uj+V

∗
i vj)

2Q∗Πi<j(uivj−ujvi)2p

(9)

where Ui and Vi are the spinors corresponding to each
lattice site at coordinates (γi, δi). These wave functions
are by construction in the LLL. The symbol X(2p) de-
notes different possible crystal structures of composite
fermions carrying 2p vortices.

We now form bilayer crystal wave functions:

ΨX(2p,m)
ν = ΨX(2p)

ν̄ ({u1,i, v1,i})ΨX(2p)
ν̄ ({u2,i, v2,i})

Πi,j(u1,iv2,j − u2,jv1,i)m (10)

In this notation, X(2p,m) refers to a bilayer crystal of
type X (which can be “TIAF,” “CS” or “BG”) of com-
posite fermions carrying 2p vortices, with m interlayer
zeros. The filling factor ν̄ is given by ν̄ = N/(2Q∗ +
2p(N − 1)). The positions of the crystal lattice sites are
determined by the solving the bilayer Thomson problem
(see next section for further details).

We will determine the lowest energy state out of all
candidate states as a function of various parameters. For
bilayer systems, we consider the effective interaction

V↑↑(ri, rj) = V↓↓(ri, rj) =
1

|ri − rj|
(11)

V↑↓(ri, rj) =
1√

|ri − rj |2 + d2
(12)

where d is the distance between the layers and the ar-
rows label the pseudospin corresponding to left and right
layers. We denote all lengths in units of the magnetic
length l and energies in units of e2/εl.

For a proper comparison, the crystal state must cor-
respond to the same filling factor as the liquid state.
We accomplish this by using the same number of par-
ticles as well as the same value for the physical mag-
netic flux 2Q. We construct multiple states at filling
factor ν by considering all values of 2p and m such that
2Q∗ = 2Q−2p(N −1)−mN is nonnegative and 2p ≥ m.
For a full summary of the states we have studied, see Ta-
bles 1 and 2. We stress that we confine our search to the
crystal structures that appear prominently in the bilayer
Thomson problem.
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III. THOMSON CRYSTAL FOR A BILAYER
SYSTEM

A crucial task is to determine what are the most
promising crystal configurations for the bilayer problem,
and also the best representations of these crystals on a
sphere. For this purpose, we seek guidance from a clas-
sical problem of point charges on the surface of a bilayer
sphere. We develop a method analogous to the old Thom-
son problem wherein we find the locations of the lattice
sites by placing classical point charges on a bilayer sphere
and minimizing a layer dependent interaction without a
magnetic field. We note that we only use the classical
problem to determine the most stable crystal configura-
tions, which is the only input into the variational calcu-
lation for our real bilayer system in a strong magnetic
field.

Finding the lowest energy arrangement of N classi-
cal point charges confined to the surface of a sphere is
known as the Thomson problem[63]. For N = 2–6 and
12, analytical solutions are known. These values are sig-
nificant as the structures are invariant if the Coulombic
potential is replaced with a limiting potential of the form
V (r̃) = limn→∞ r̃−n, or a logarithmic interaction[64]
where r̃ is the position of the charged particle. Solving
the problem with the first of these potentials corresponds
to the Tammes problem[65] of packing N particles on the
surface of a sphere whilst maximising all particle-particle
arc lengths. This potential invariance reveals the power
of symmetry as a structural determinant for small N ,
though computational methods must be used for larger
N as the symmetry between charges is lost[64].

In previous work, the Thomson problem has been
used as an approximate basis for designing carbon cages
larger than the stable truncated icosahedron form of C60.
In this method, 860 and 1160 particle Thomson prob-
lem minima were used as starting points for structure
prediction for C860 and C1160 using density functional
theory[66]. This work highlights the utility of the Thom-
son problem minima as starting points for more detailed
calculations.

The process of finding energy minima for different sys-
tems is known as optimisation. For a given configuration
of particles and an arbitrary potential between them, lo-
cal optimisation refers to the process of finding the near-
est minimum in the potential energy surface (PES). The
global minimum is then defined as the minimum with
the lowest energy. Even small systems, such as a clus-
ter of 38 Lennard-Jones atoms[67], have a large number
of minima[68, 69], and enumerating all of them is usu-
ally either not possible or an extremely inefficient way of
locating the global minimum.

Global optimisation for Thomson systems is compli-
cated by the fact that there are many metastable states
separated by only small energy differences, with the num-
ber of minima rising exponentially with N [64, 70]. How-
ever, basin-hopping global optimisation [71] has been ef-
fective for selected N up to 4352[66]. In this approach,

steps are taken between local minima, and are accepted
or rejected based on a Metropolis condition with a ficti-
tious temperature parameter.

Perfect 2D hexagonal close-packed structures cannot
be bent to exist on the surface of a sphere, and so defects
must be introduced in the Thomson problem minima.
The reason for this is that it is not possible to transform
a 2D surface into a spherical form without cuts or distor-
tions, which here manifest as different coordination sites.
If the number of nearest-neighbours of a particle is C,
then a disclination charge, Q, can be defined as Q = 6 -
C. Euler’s theorem[72] states that the total disclination
charge must be equal to 12 for close-packed structures on
the surface of a sphere, and must be rigorously obeyed.
There are many ways in which Euler’s theorem can be
satisfied, and for the Thomson problem global minima,
defect patterns have been studied up to N = 4352[66].
The presence and nature of these defect motifs is central
to determining system properties in the presence of ex-
ternal forces, and can aid understanding of macroscopic
systems[73].

Here, the binary, or bilayer, Thomson problem is con-
sidered, in which two types of charged particles are con-
fined to the surface of a sphere. The interactions within
each group are Coulombic, but the interactions between
particles in different groups have a damped form, with
the damping strength determined by an adjustable pa-
rameter, δ, the interlayer separation. We note that this
δ is not the same as our d/l. The pairwise potential for
N particles on a sphere of radius R is:

V binij =



1

(
r̃ij
R

)
, for i, j in the same group.

1√
(
r̃ij
R

)2 + (
δ

N
)2

, for i, j in different groups.

(13)
In the potential, r̃ij/R is used as r̃ij is measured in units
of the sphere radius R. The ratio δ/N can be considered
as the separation between two infinite bilayers, which is
the limit for a sphere of infinite radius. The adjustable
parameter δ is scaled by N as behaviour is expected to
change on a length-scale comparable to the inter-particle
length. The aim of this scaling was to align similar
regimes of behaviour to similar values of δ for different
system sizes.

Following the success of basin-hopping global optimi-
sation for the regular Thomson problem[74], the same ap-
proach was used here to locate the global minima for a va-
riety of different compositions. The GMIN program[75]
was employed for the basin-hopping calculations, using
the L-BFGS (Limited-memory BFGS) algorithm[76] for
energy minimisation. The energies of the minima are
not changed by the basin-hopping algorithm, but down-
hill transition state barriers are removed, which allows
for rapid sampling of the energy landscape. The use of
the basin-hopping algorithm in combination with com-
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binatorial searching[77] allows for efficient relaxation to
the global minimum in multicomponent systems[78].

For 45 particles of each type, around 50,000 basin-
hopping steps were required to achieve convergence to
the same minimum from 10 random starting points. The
number of steps required decreases as the systems are
made smaller, since there are fewer minima on the en-
ergy landscape. The proposed global minima for differ-
ent compositions were used as seeds for the calculations
in section IV. Tuning the interlayer separation has given
us three sets of coordinates to consider corresponding to
our BG, CS, and TIAF crystals.

IV. TECHNICAL DETAILS

We determine the best variational ground state for the
pseudospin dependent interaction in Eqs. 11 and 12 by
calculating the energies for a series of trial wave functions
of the of the form presented in Tables 1 and 2. We com-
pute the energy expectation value, which is a 4N dimen-
sional integral (recall we have Ntot = 2N particles), by
the Monte-Carlo method, which allows us to determine
the energy with up to 0.01% accuracy with 107 iterations.
Using this method, we have calculated energies for total
particle numbers up to 2N = 98. We calculate the energy
for several system sizes and use a linear extrapolation
to obtain the thermodynamic energy for every candidate
state. The errors quoted below originate primarily from
the uncertainty in the linear fit; the Monte-Carlo simula-
tion error for each energy is typically smaller by an order
of magnitude. The fitting error is particularly significant
for crystals as they necessarily have some defects due to
the curvature.

To obtain an energy value that is intensive, it is
necessary to consider the total energy, including the
background-background and electron-background inter-
actions. In our case, since we are interested in comparing
states, we measure the electron-electron coulomb inter-
action relative to one of the candidate states.

Some of our wave functions will involve compressible
composite fermion Fermi sea, for which we will use total
particle numbers 2N = 18, 32, 50, 72, and 98, so that
the effective magnetic field vanishes in each layer.

The total filling factor in spherical coordinates is de-
fined to be ν = limN→∞

2N
2Q where N is the number of

particles in a single layer. Due to the finite size shift
in the spherical geometry, the density for a finite N is
not the same as that in the thermodynamic limit, which
provides an N dependent correction the energy. To com-
pensate for this we multiply the energy by the ratio of
the interparticle separation in the thermodynamic limit

to that in the finite system, i.e.
√

ρ∞
ρN

=
√

2Qν
2N . This

density correction reduces the dependence of the energy
on the particle number, thus facilitating the comparison
between the different candidate states[54].

To connect with experimental systems, we also con-

sider 2DEGs with finite width. We consider a double
quantum well geometry, consisting of two wells of equal
width. The effective intra-layer and interlayer Coulomb
interactions are of the form

V↑,↑ eff(r) =
e2

ε

∫
dζ1

∫
dζ2

|ξ(ζ1)|2|ξ(ζ2)|2√
r2 + (ζ1 − ζ2)2

(14)

V↑,↓ eff(r) =
e2

ε

∫
dζ1

∫
dζ2

|ξ(ζ1)|2|ξ(ζ2)|2√
r2 + (ζ1 − ζ2 + d)2

(15)

where ζi is the distance perpendicular to the 2DEG and
r is the coordinate in the plane of the 2DEG. The trans-
verse component of the wave function, ξ, is obtained
via self-consistently solving the Schrödinger and Poisson
equations and applying the local density approximation
(LDA). To carry out these calculations, we only need
to know the shape of the confinement potential and the
density of electrons. We have calculated the energies in
the zero width limit and for double quantum well widths,
180Å, 300Å, 400Å, and 500Å. For further details on how
the finite width calculation is carried out we refer the
reader to Ref. [79].

V. RESULTS

We now present our results for total filling factors
ν =1/3, 2/5, 1/2 and 1/5. As defined in section II, our
notation is (ν̄−1 ν̄−1| m) for liquid states, and X(2p,m)
for crystal states. X = CS, BG, and TIAF represent
correlated square, binary graphene, and triangular anti-
ferromagnetic lattices, respectively. The integers 2p and
m correspond to the CF vorticity and the number of in-
terlayer correlation zeros.

A. Zero Width

We first consider a bilayer system with each layer of
zero width. Figure 3 shows energies of various states at
ν = 1/3, 2/5, 1/2 and 1/5 as a function of layer separa-
tion. At each filling, the energies are quoted relative to
the energy of a reference state, which itself shows up as
the zero energy state in our plots. Level crossing transi-
tions occur at interlayer separations d/l marked by ver-
tical dashed lines. The ground state in each region is
indicated on the figures. (We note that due to the high
number of possible crystal states at ν = 1/5, 39 in total,
we have only plotted those with the most competitive
energies.)

The richness of the bilayer phase diagram is evident.
At ν = 2/5, the states that we find to be realized are
(3, 3| 2), CS(2,1), (4, 4| 1), BG(2,0), and (5, 5| 0). At
ν = 1/3, (3, 3| 3), CS(2,2), CS(2,1), (5, 5| 1), and BG(4,0)
are realized. At ν = 1/2 the phase diagram is the same
as that found by Scarola and Jain[39] with no crystal
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FIG. 3. Energies of bilayer liquid and crystal states for zero width layers as a function of the interlayer separation. The energy
of each state is measured relative to a chosen reference incompressible liquid state (which itself appears as the zero energy
state). All energy differences represent the thermodynamic limits, obtained as described in section IV. The vertical dashed
lines separate different ground state phases labeled on the plot. Here black corresponds to liquid states, while red, blue and
green denote CS, BG and TIAF crystals.
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states. At ν = 1/5, we see the polarized FQH liquid
(5, 5| 5), followed by a series of crystals with different
symmetries, flavors of composite fermions and number of
interlayer zeroes.

Many features of the phase diagram are consistent with
our expectation.

• In the limit of d/l = 0, we obtain (3, 3| 2), (3, 3| 3),
(2, 2| 2) and (5, 5| 5) states at ν = 2/5, 1/3, 1/2,
and 1/5. With mapping to the single layer spinful
system, these correspond to spin singlet 2/5, fully
spin polarized 1/3, spin singlet 1/2, and fully spin
polarized 1/5, which are known to be the lowest
energy states.

• As expected, the integer m, which represents the
strength of the interlayer correlations, decreases
with increasing d/l.

• The state in the limit of large d/l is also consis-
tent with our expectation. For ν = 2/5 we get
two uncorrelated 1/5 states, and at ν = 1/2 two
uncorrelated 1/4 CF Fermi seas. At ν = 1/3 and
ν = 1/5, each layer has a triangular CF crystal, as
expected for the individual layer fillings of ν = 1/6
and ν = 1/10, but these crystals are correlated into
a BG crystal. The former is a 4CF crystal and
the latter a 6CF crystal, as expected from previous
calculations[29, 31].

• For the total filling ν = 1/2, no crystal is stabilized
according to our calculations. However, it is noted
that the energy of the crystal BG(2, 0) is very close
(within 0.002e2/εl) to that of the independent layer
state (4 4| 0) in the limit of large separation.

• At total filling ν = 1/5 we see that a crystal
state appears quickly as we increase d/l. We see a
large number of crystal-to-crystal transitions, and
achieve each of the three crystal lattices that we
have considered. We note here that for states at
this filling factor, the estimated error in our ther-
modynamic limit increases significantly, making it
difficult to precisely ascertain the value of d/l where
the transition into the BG(6,0) crystal takes place.

We thus find is a rich phase diagram of liquids and
crystals resulting from tuning the the relative strengths
of the intra-layer and interlayer interactions. Each filling
factor considered here has its own complex evolution as
the interlayer interaction is weakened.

B. Finite Width

We next consider the effects of finite width by looking
at the same set of parameters for an effective Coulomb
potential in several double well geometries.

In our finite width calculations, we consider double
quantum well geometries with well widths of 18nm,

CS(2,1)

(3
 3
| 2
)

(5 5| 0)

(4
 4
| 1
)

18nm 30nm

40nm 50nm

FIG. 4. Finite width phase diagram for ν = 2
5
. We plot the

phases expected in DQWs with individual well widths 18nm,
30nm, 40nm, and 50nm as a function of carrier density in
units of 1010 cm−2 and layer separation in units of magnetic
length. The shaded area is unphysical, as here the quantum
well width exceeds the layer separation. The phase diagram is
similar to that for zero width, except that the binary graphene
phase is suppressed.

30nm, 40nm, and 50nm. The bilayer separation d is taken
as the center to center distance. The finite width effects
serve to alter the values of the separation at which the
phase transitions occur, typically not changing the order-
ing of the states. Figures 4-7 show the phase diagrams
for various widths for each filling in the ρ - d/l plane,
where ρ is the electron density. It is important to note
that the region with w > d is unphysical (two wells over-
lap) and has been shaded red. For each filling factor, the
states are labeled only in the case of 18nm well width be-
cause the ordering of states for larger well widths is the
same. We have not considered tunneling between layers,
which may be important for small d/l or for the bilayer
interpretation with wide quantum wells.

We find that the ordering of states at each filling factor
does not drastically change from that found for d = 0.
At filling factors 1/2, 1/3, and 1/5, we obtain the same
states with the same ordering as for zero width bilayer
in the physical (unshaded) region. (Any differences from
the zero width phase diagrams occur in the red shaded
unphysical region.) For filling factor 2/5, we find that
the binary graphene phase is present in a narrow range
for zero width but is suppressed when we consider the
finite width interaction.
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CS(2,2)
(3 3| 3)

(4 4| 2)

18nm 30nm

40nm 50nm

BG(4,0)

(5 5| 1)

CS
(2
,1
)

FIG. 5. Same as in Fig. 4 but for ν = 1
3
.

(2 2| 2)

18nm 30nm

40nm 50nm

(4 4| 0)

(3
 3
| 1
)

FIG. 6. Same as in Fig. 4 but for ν = 1
2
.

VI. CONCLUSION

We have performed a comprehensive study of both
crystal and liquid phases in a bilayer system and made de-
tailed predictions for the phase diagram at several filling
factors. We find a rich phase diagram including incom-
pressible and compressible liquids and correlated crys-

CS(4,3)
CS(4,1)
CS(6,1)
BG(4,1)

(5
 5
| 5
)

BG(6,0)BG
(6
, 1
)

TIAF(4,3)

CS
(4
,2
)

18nm 30nm

40nm 50nm

FIG. 7. Same as in Fig. 4 but for ν = 1
5
. Here various crystal

phases dominate the phase diagram.

tals. We find that in addition to liquid-to-liquid transi-
tions and liquid-to-crystal transitions, there are several
crystal-to-crystal transitions in which the electron lattice
reorders itself. The results presented in this work apply
to double quantum wells.

A direct comparison of our studies with the experimen-
tal results of Manoharan et al. and Hatke et al. [49, 50]
is not possible, as they use a WQW. In a WQW, the
two “layers” correspond to even and odd combinations
of the lowest symmetric and antisymmetric subbands,
which are separated by a gap ∆SAS. We have not in-
cluded that physics in our paper. However, we can hope
for a qualitative comparison because, in WQWs the in-
terlayer interaction is tuned by changing ∆SAS, lowering
which is qualitatively similar to increasing the separation
between the layers of a bilayer system. We list some sim-
ilarities and differences between their WQW results and
our predictions.

• At ν = 2/5, we do not see a strong insulating phase
that is present in WQW. We find a large region
in which the bilayer composite fermion Fermi sea
(4 4| 1) is the ground state. In addition, we only
find one crystal state when we consider finite width
interactions as opposed to the two observed in mi-
crowave spectroscopy measurements.

• At ν = 1/3, we predict a reentrant incompressible
FQH phase at intermediate separations, not seen
in WQWs. We do find two separate crystals, corre-
lated square and binary graphene, consistent with
the transitions seen in microwave spectroscopy.
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• At ν = 1/5, we find the crystal phase to dominate
the phase diagram, in qualitative agreement with
the WQW experiment which finds a crystal phase
upon transition into a bilayer phase.

• For filling ν = 1/2, we do not find any crystal states
to be stabilized. The ground state is always a liquid
with interlayer correlations decreasing as the sep-
aration increases. This is at odds with insulating

behavior seen in WQW experiments.

We finally note that we have not included disorder in
our study. The presence of disorder is expected to favor
the crystal phase, which can accommodate disorder more
readily than an incompressible liquid phase.
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