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Abstract

State-of-the-art formulations of the Shape from Polarisation problem consist of sev-
eral steps based on merging physical principles that prevent this problem being described
by a single mathematical framework. In addition, specular and diffuse reflections need to
be separately considered, making the three-dimensional shape reconstruction not easily
applicable to heterogeneous scenes consisting of different materials.

In this work we derive a unified specular/diffuse reflection parametrisation of the
Shape from Polarisation problem based on a linear partial differential equation capable
of recovering the level-set of the surface. The inherent ambiguity of the Shape from Po-
larization problem becomes evident through the impossibility of reconstructing the whole
surface with this differential approach. To overcome this limitation, we consider shad-
ing information elegantly embedding this new formulation into a two-lights calibrated
photometric stereo approach. Thus we derive an albedo independent and well-posed
differential model based on a system of hyperbolic PDEs capable of reconstructing the
shape with no ambiguity.

We validate the geometrical properties of the new differential model for the Shape
from Polarisation problem using synthetic and real data by computing the isocontours
of the shape under observation. Lastly, we show the suitability of this new model to
elegantly fit into a variational solver that is able to provide 3D shape reconstructions
from synthetic and real data.
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1 Introduction
Retrieving 3D shape features from polarisation cues acquired from a single point of view is
a concept introduced by Koshikawa [14] to constrain the surface normals of objects made
out of dielectric materials. Together with the increasing impact of the Computer Vision for
3D scanning techniques, the so-called Shape from Polarisation problem (SfP) became one of
the most physically based approaches in the Shape from X family. It is based on the physical
property that unpolarised light becomes partially polarized once it reflects off an object. The
acquisition process consists of taking images of a static object under the same illumination
conditions, with a linear polariser in front of a camera. Each image differs from the others by
the fact that the polariser has been rotated by a known angle from its initial position. What
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makes the SfP approach very interesting, at least in theory, is that polarised image formation
is albedo and lighting independent. However, despite the theoretical and practical progress
achieved over almost forty years of research, the SfP still provides limited constraints of the
surface preventing the shape recovery (due to the periodicity of the polarisation information).
Indeed, most existing SfP approaches usually combine other cues coming from multi-view
[3, 4, 35], shading [5, 11, 12, 28, 30, 37] and recently RGBD data [13] to increase the
information of the 3D shape and fully reconstruct the surface under observation.

Furthermore, another important limitation of the SfP is its mathematical formulation.
Instead of being expressed within a single framework, it is fragmented into several steps
derived from physical models that describe the behaviour of light when it propagates be-
tween media of differing refractive indices [17]. This makes the SfP less straightforward to
understand and less practical to solve than other Shape from X approaches.

Contribution The main contribution of this paper is to introduce the first differential for-
mulation of the SfP through a linear PDE.

The importance of this formulation is threefold:

• It is albedo and reflection type (diffuse/specular) independent;

• It elegantly circumvents the SfP impossibility to recover the shape by providing iso-
contours of the surface;

• It can be easily used for merging SfP with other techniques having a differential for-
mulation. In this work we enhance the SfP with two-lights shading information.

2 Previous Works
Polarimetric cues have been used in Computer Vision for a number of different tasks mostly
related to the difficulty of dealing with specular highlights. In addition to using polarised
image formation to separate diffuse from specular reflection [29, 40, 41, 44], the poten-
tial of polarimetric approaches has been demonstrated by its use in determining the normal
orientation of glossy surfaces [14, 42, 43, 44]. For the same reason, particular attention
has been given to the SfP problem attempting to recover the shape of transparent objects
[9, 23, 24, 25, 26, 36]. However, polarimetric analysis provides geometrical information for
dielectric surfaces, which has allowed the SfP to be adopted to reconstruct surfaces reflecting
light diffusively too [2].

In any case, the features of the surface provided by the polarization reflectance model
are limited and this results to ambiguous shape recovery. To disambiguate polarisation nor-
mals, most of the approaches enhance the SfP with supplementary cues to make the overall
methodology well-posed. Several works use multiple views of the object together with po-
larisation imaging [1, 27]. Other approaches are more related to what we propose here,
where shading cues are merged with polarisation imaging. For example, Drbohlav and Sara
[11] employed polarisation imaging to recover the zenith angle of the surface normal adding
integrability constraints to reduce the ambiguity of the uncalibrated photometric stereo to
concave/convex case. Morel et al. [28] used a lighting system in a diffuse dome composed
of a ring with numerous LEDs. It provides a uniform and unpolarized light onto the object
to be digitalized. The object is placed inside the dome and the light reflected by its surface
is analysed by the camera and the liquid crystal polariser. The ring of LEDs is split into four
parts that can be independently electrically controlled. Huynh et al. [12] proposed an itera-
tive method where diffuse polarisation modelling is considered together with two additional
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constraints of the problem, including the surface integrability and the material dispersion
equation using a hyperspectral imaging system. They adopted a preliminary disambiguation
proposed by Zhu and Shi [45] extended by the use of fast marching and patch stitching.
Atkinson and Hancock [5] disambiguated the polarisation normal using the shading infor-
mation of three distant light sources. They are placed in a strategic position, such that the
angles subtended by the camera and the light sources from the object are equal and that the
distances between the object and the light sources are equal, too. Ngo et al. [30] proposed
a very interesting approach based on the ratio of both lambertian irradiance equations (with
uniform light direction) and polarisation image formation equations to compute the surface
orientation and the refractive index using at least 3 light sources. By increasing the number
of input images (i.e. light sources), they eventually extended the approach to the uncalibrated
case, also computing the light directions.

Lastly, Smith et al. [37] proposed a SfP approach aided by shading information provided
by a distant light source with orthographic viewing geometry. Besides estimating the shape
up to a global concave/convex ambiguity, an important limitation for real applications is the
assumption of uniform albedo.

Differently from all previous works, we present the first attempt of describing the SfP
through a differential formulation, where specular and diffuse reflection in polarisation imag-
ing are unified into a unique mathematical framework consisting of a homogeneous liner
PDE. This brings a twofold advantage: to conceive the expected ambiguity of the SfP prob-
lem by extracting the level-set of the surface, and to embed such PDE into a differential
formulation, modelling the Photometric Stereo problem using image ratios [8, 15, 16, 18,
21, 22, 31].

Indeed, our approach considers shading information coming from a minimum of two
point light sources of known position. The ratio of the respective irradiance equations leads
to an albedo invariant PDE that ambiguously describes the surface [20]. The combination of
the two into a differential system makes the problem solvable.

3 Shape from Polarization: a differential approach

In this section, we describe the mathematical derivation of a novel framework for the SfP
problem consisting of a homogeneous linear partial differential equation. To do so, before
recalling the theoretical principles for polarised imaging, we firstly consider an important
aspect of the surface normal parametrisation as a function of the depth.

3.1 Camera parametrisation

The pinhole camera modeling is an important aspect to consider while carefully taking into
account image based shape reconstruction algorithms. When perspective viewing geome-
try comes into play, there have been several works proposing different parameterisations
[6, 32, 33, 38]. However, to mathematically describe the SfP, we do not use any specific
parameterization of the camera since we only consider a general aspect occurring when sur-
face normal deforms due to perspective viewing geometry. For this purpose, let us call as
χ(x) ∈ Σ, z(x) and ∇z(x) = (zx(x),zy(x)) the point belonging to the surface, the depth and
the gradient of the surface at pixel x = (x,y). Then, the first two components of the non-unit
normal vector to the surface n(x) = (n1(x),n2(x),n3(x)) are proportional to ∇z(x) up to a
factor depending on the focal length f .
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This means that, if we take the unit surface normal n = n
‖n‖ into account, we have

n1(x) = g( f )
zx(x)
‖n‖

and n2(x) = g( f )
zy(x)
‖n‖

. (1)

For completeness, let us mention that for the orthographic viewing geometry, (1) is still
preserved as g( f ) = 1. In the following part, we use this fact to derive our new model
independently from the camera viewing geometry.

3.2 Polarization Imaging
When a linear polariser filter is imposed front of the camera, the intensity of the light ac-
quired by the sensor depends on the rotation angle of the polariser θpol . This makes the
image formation model being per pixel as follows

I(θpol) =
Imax + Imin

2
+

Imax− Imin

2
cos(2θpol−2θ) (2)

where θ is the phase angle. It is the angle that the linear polariser has to have in order to
obtain the highest intensity Imax = I(θpol = θ). Instead, Imin is the minimum intensity value
obtainable while rotating the polariser. To simplify the notation, in the following we refer as
I+ = Imax+Imin

2 and I− = Imax−Imin
2 .

Now, to introduce the depth parameter z(x) in the polarisation image formation (2), we
consider the parameterisation with spherical coordinates for the normalised version of the
surface normal as

n(x) =
n(x)
‖n(x)‖

= (cos(θ)sin(φ),sin(θ)sin(φ),cos(φ)) (3)

where θ ∈ [0,2π] is the azimuth angle and φ ∈
[
0, π

2

]
is the zenith angle. Let us recall that

the phase angle θ in (2) contains geometrical information regarding the shape since θ = θ

or θ = θ +π that resumes the ambiguity of the SfP problem.
With the aim of deriving a differential formulation of the SfP, we introduce the depth

parameters zx(x) and zy(x) in the image formation (2) by substituting (1) in the first two
coordinates of (3), so we can get respectively the following equalities

cos(θ) = g( f )
zx

‖n(x)‖sin(φ)
and sin(θ) = g( f )

zy

‖n(x)‖sin(φ)
. (4)

3.3 The differential model for the Shape from Polarisation
Let us rearrange the image formation model (2) using the following trigonometric formula

cos(2θpol−2θ) = cos(2θpol)cos(2θ)+ sin(2θpol)sin(2θ) (5)

and the duplication formulas which lead to the following equality

cos(2θpol−2θ) = cos(2θpol)
(
2cos2(θ)−1

)
+2sin(2θpol)sin(θ)cos(θ). (6)

We proceed by considering two angles of polarization 0 and π

4 that make (6) into the
following equations

cos(−2θ) = 2cos2(θ)−1 and cos
(

π

2
−2θ

)
= 2sin(θ)cos(θ) (7)
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which lead to the following image formation equations{
I0 = I++ I−

(
2cos2(θ)−1

)
Iπ

4
= I++ I−

(
2sin(θ)cos(θ)

) by substituting (4)
=========⇒

I0 = I++ I−
(

2g2( f ) z2
x

‖n‖2 sin2(φ)
−1
)

Iπ
4
= I++ I−

(
2g2( f ) zxzy

‖n‖2 sin2(φ)

)
(8)

where we used the consistency of shape information from the polarisation image formation
angle θ with respect to the surface normal. After some algebra we get

2I−g2( f )
z2

x

‖n‖2 sin2(φ)
= I0− I++ I− (9)

2I−g2( f )
zxzy

‖n‖2 sin2(φ)
= Iπ

4
− I+. (10)

With the aim of eliminating the dependency on the zenith angle φ and the non-linear
part due to ‖n‖, we consider the ratio between (9) and (10) getting the following linear
homogeneous PDE

zx
(
− Iπ

4
+ I+

)
+ zy

(
I0− I++ I−

)
= 0. (11)

As a first remark, we notice that (11) is invariant with respect to lighting and albedo. Most
importantly, it describes the geometry of the surface through its isocontours circumventing
the ambiguity of the SfP problem.

In the next section we describe how (11) elegantly fits into a well-posed differential
system of hyperbolic PDEs completing the ill posed Shape from Photometric Stereo with
only two light sources [34].

4 Enhancing SfP with two-lights Photometric Stereo
In this section we describe how to exploit the new differential formulation for the SfP (11)
into a well-posed framework where shading information is provided.

In order to take advantage of the fact that SfP is albedo independent, we consider a fully
calibrated Photometric Stereo (SfPS) approach having the same specific feature by basing
the derivation on the irradiance equations ratio [10]. Unlike polarisation theory, in order
to parametrize the SfPS approach, we require some additional information to be know: the
camera parameters, the lighting and the type of reflection (i.e. diffuse or specular).

Let us consider the approach proposed by Mecca et al. [20] which uses the camera mod-
eling introduced by Papadhimitri and Favaro [32]

n(x) =
1
f

(
f ∇z(x),− f−z(x)−x·∇z(x)

)
(12)

and it is based on the following irradiance equation

Ii(x) = ρ(x)ai(x,z)(n(x) ·hi(li(x,z),v(x,z)))
1

c(x) where i = 1,2. (13)

Although (13) is not physically based, it describes the mixture of reflections in a single
equation instead of considering the linear combination of diffuse and specular reflection
[39]. Indeed, the single reflection lobe changes size dynamically, depending on the specular
parameter c(x) and the half vector between the light li(x,z) and the viewer direction v(x,z)
defined as follows
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hi(x,z) = (h1
i (x,z),h

2
i (x,z),h

3
i (x,z)) = li(x,z)+min

{
1,
|1− c(x)|

ε

}
v(x,z) (14)

where ε (assumed equal to 0.01 for the experiments) defines a transition phase that averages
diffuse and specular reflection.

We assume that the light spreads according to the point light source parametrisation at
point Pi(x) and attenuation ai(x,z) as follows

li(x,z) = χ(x)−Pi(x) and ai(x,y,z) =
φi(li(x,z) ·pi)

ν

|li(x,y,z)|2
(15)

where pi is the main direction of illumination that we assume equal to (0,0,1), ν is the
coefficient of radial attenuation and φi is the intensity of the ith point light source. For our
experiments, we consider all these quantities as known.

Finally, the unknown albedo ρ(x) cancels out by considering the ratio I1(x)
I2(x)

that yields
the following quasi-linear PDE

bps(x,z) ·∇z(x) = sps(x,z) (16)

where, by dropping the dependency on x and z, we have

bps =

(
(φ1a2I1)

c
(

f h1
2− xh3

2

)
− (φ1a1I2)

c
(

f h1
1− xh3

1

)
,(φ2a2I1)

c
(

f h2
2− yh3

2

)
− (φ1a1I2)

c
(

f h2
1− yh3

1

))
(17)

sps = ( f + z)
(
(φ2a2I1)

c h3
2− (φ1a1I2)

c h3
1

)
. (18)

Resuming, the system of PDEs consisting of (11) and (16) counts the minimum amount
of equations to have the SfP and SfPS problem unified under a single and well-posed differ-
ential framework. Due to lack of space we do not provide mathematical details about that.
We resume the basic idea for which the solvability of this system is given by the fact that
the characteristic lines of each hyperbolic equation are not parallel. This allows to propagate
the information starting from a single point towards the whole image domain by linearly
combining the two linearly independent characteristic fields [19].

4.1 Numerical approach to the SfP + SfPS

In this section, to make the new differential model for the SfP more consistent with the SfPS
one (16), we consider (11) in the form bpol(x) ·∇z(x) = 0.

For computing the sinusoid given by the parameters (I+, I−, θ ), we avoid the standard
procedure taking only the images I0, Iπ

4
and Iπ

2
[43] since it performs poorly in practice, as

differences between different polarisation images are very small and hence sensitive to noise.
With the aim to maximise robustness to noise, we capture several images I1 . . . In at po-

larisation angles θ1 . . .θn. By re-arranging (2) as I(θpol) = I+ + I− cos(2θpol)cos(2θ) +

I− sin(2θpol)sin(2θ), we obtain the following (over-constrained) linear system1 cos(2θ1) sin(2θ1)
...
1 cos(2θn) sin(2θn)

X =

I(θ1)
...

I(θn)

 . (19)
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Figure 1: Photometric stereo pair images. left Lambertian, right Cook & Torrance Specular.

With X = [X1,X2,X3]
t
= [I+, I− cos(2θ), I− sin(2θ)]

t
. We solve (19) using L1 relaxation

[7] and calculate I− = ‖(X2 +X3)‖2 and θ = atan2(X2,X3). Finally, I0, and Iπ
4

are recalcu-
lated using (2) with the robustly estimated sinusoidal parameters and used to find the level-set
with (11).

The polarisation equation (11) is stacked along equation (16) giving the following varia-
tional problem

min
z

∥∥∥∥[bps
bpol

]
·∇z−

[
sps
0

]∥∥∥∥
L2
+λ ‖z− z0‖L2 (20)

where λ = 10−5 in the experiments.
Note that the term λ ‖z− z0‖L2 is a zero-order Tikhonov regularizer that constraints the

mean depth and ensures that the differential problem has a unique solution.
Equation (20) is discretized with finite differences and solved with simple least squares.

Furthermore, since bps and sps (but not bpol) implicitly depend on z, the solution of Equa-
tion (20) is embedded in an iterative process that calculates all relevant quantities (a, h, bps
and sps) by using the current estimates of the depth values in a similar manner with [22]. The
optimisation is initialised with a flat plane at the mean distance (measured with a ruler).

Figure 2: Top row: Bimba level sets for diffuse (left) and specular (right). The ground truth
is shown in green, the calculated in red. Bottom row: respective errormaps (for level sets
and final normals) and reconstructions. The mean errors are 8.7o and 12.0o for the diffuse
and 2.4o and 14.5o for the specular cases respectively.
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Figure 3: Real data photometric stereo pairs.

5 Experimental Results
The proposed approach was evaluated with a range of synthetic and real data sets. In ad-
dition, we calculated the level set of the head dataset from [13]. The algorithm was imple-
mented in matlab with a total running time of about two minutes (for the 7x3MPixel images)
on a laptop with a quad, core-i7, 2.6GHz CPU.

It is worth mentioning that this experimental section is conceived to validate the theo-
retical concepts of Section 3, where isocontours of the surface have been described through
the proposed differential model (11). Furthermore, 3D reconstruction using SfP and SfPS as
described in Section 4 are provided as proof of concept using the minimal amount of data,
i.e. without aiming at reconstructing highly accurate shapes.

5.1 Synthetic Data
First of all, we generated 800x600 pixel synthetic data using the "bimba" from the AIM@Shape
Repository. The data were rendered with realistic effects including non-uniform albedo, per-
spective viewing geometry, and near point light sources. We generated a Lambertian and a
specular dataset, the latter rendered with the Cook & Torrance (C&T) BRDF (see Figure 1).

We rendered the minimum required polarisation images I0, Iπ
4

and Iπ
2

generated from (2)
and assuming index of refraction µ = 1.6. Finally, to make the experiments realistic, we
limited the precision of the data to 3 decimal digits 1 and added 0.5% Gaussian noise.

The level sets obtained are evaluated quantitatively by calculating the angle at each pixel
of the computed level set with the ground truth. For reconstructing the specular dataset, we
used c = 0.25 (see (13)). The results are shown in Figure 2. We note that the specular dataset
outperforms the diffuse one on the level-set accuracy (2.4o vs 8.7o mean error), due to the
much higher polarisation effects for specular materials. The reconstruction is marginally
worse (14.5o vs 12.0o mean error) 2 as equation 13 only approximates the C&T BRDF.

Figure 4: Real data level-sets overlaid on I0. Left and middle our data, right [13].

1standard cameras offer 10bit precision raw data.
2Reconstructions are evaluated by finding the normals (by differentiation) and comparing to ground truth.
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5.2 Real Data
The setup we used for acquiring data suitable for SfP and SfPS consists of a Point Grey cam-
era FL3-U3-32S2C-CS having maximum resolution 2080 x 1552 mounting a TECHSPEC
8mm UC series fixed focal length lens, OSRAM Platinum Dragon high power LEDs white
and a linear polariser mounted on a rotary mount with post. We captured 7 polarisation
images at angles

[
−90 −60 −30 0 30 60 90

]o.
Our real data sets include a porcelain cup, a plastic ball and ceramic statue as shown

in Figure 3. The obtained isocontorus and reconstructions are shown in Figures 4 and 5
respectively. We note that real data experiments confirm the fact that the level sets are more
accurately calculated on specular than diffuse materials which is a clear advantage of the SfP
approach compared to SfPS.

Figure 5: Several views of the reconstructions obtained by fusing the Photometric stereo
pairs of Figure 3 and the isocontours of Figure 4.

6 Conclusion and Perspective
In this work we presented a first attempt at describing the Shape from Polarisation problem
with an albedo and diffuse/specular reflection independent differential formulation. By com-
bining surface depth related parameters into the polarisation image formation, we derived an
homogeneous linear PDE that describes the geometry of the surface through its isocontours.

With the aim of providing full 3D shape recovery, we added shading cues using accurate
Photometric Stereo model describing sharing information from a point light source with
perspective deformation and diffuse/specular reflection. We showed that the new Shape from
Polarisation differential formulation merges very elegantly into a system of hyperbolic PDEs
which is albedo independent and well-posed by considering two lights sources at least.

This new Shape from Polarisation modelling is open to a number of interesting exten-
sions of the method including merging with multi-view or Shape from Defocusing data.
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