
High-dimensional covariance
estimation with applications to

functional genomics

Harry Gray

MRC Biostatistics Unit
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Darwin College February 2019





Declaration

This thesis is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as declared in the Acknowledgements and specified
in the text. It is not substantially the same as any that I have submitted, or, is being
concurrently submitted for a degree or diploma or other qualification at the University
of Cambridge or any other University or similar institution except as declared in the
Acknowledgements and specified in the text. I further state that no substantial part
of my thesis has already been submitted, or, is being concurrently submitted for any
such degree, diploma or other qualification at the University of Cambridge or any
other University or similar institution except as declared in the Acknowledgements and
specified in the text. It does not exceed the prescribed word limit for the relevant Degree
Committee.

Harry Gray
February 2019





Abstract

High-dimensional covariance estimation with
applications to functional genomics

Harry Gray

Covariance matrix estimation plays a central role in statistical analyses. In molecular
biology, for instance, covariance estimation facilitates the identification of dependence
structures between molecular variables that shed light on the underlying biological pro-
cesses. However, covariance estimation is generally difficult because high-throughput
molecular experiments often generate high-dimensional and noisy data, possibly with
missing values. In such context, there is a need to develop scalable and robust estimation
methods that can improve inference by, for example, taking advantage of the many
sources of external information available in public repositories.

This thesis introduces novel methods and software for estimating covariance matri-
ces from high-dimensional data. Chapter 2 introduces a flexible and scalable Bayesian
linear shrinkage covariance estimator. This accommodates multiple shrinkage target
matrices, allowing the incorporation of external information from an arbitrary num-
ber of sources. It is also less sensitive to target misspecification and can outperform
state-of-the-art single-target linear shrinkage estimators.

Chapter 3 explores a dimensionality reduction approach — probabilistic principal
component analysis — as a model-based covariance estimation method that can handle
missing values. By assuming a low-dimensional latent structure, this is particularly
useful when the inverse covariance is required (e.g. network inference). All of our
methods are implemented as well-documented open-source R libraries.

Finally, Chapter 4 presents a case study using a dataset of cytokine expression in
patients with traumatic brain injury. Studies of this type are crucial to researching the
inflammatory response in the brain and potential patient recovery. However, due to
the difficulties in patient recruitment, they result in high-dimensional datasets with
relatively low sample sizes. We show how our methods can facilitate the multivariate
analysis of cytokines across time and different treatment regimes.





Acknowledgements

This work was funded by a very generous grant from The Wellcome Trust. I would like
to express my sincere thanks to them for having been selected for this opportunity four
years ago and for all of the life-changing events that have arisen because of it.

This thesis contains an amount of collaborative work that is to be declared here.
Firstly, all work presented in this thesis was conducted under the guidance of my
supervisors Sylvia Richardson, Gwenaël Leday, and Catalina Vallejos. The con-
tents of Chapter 2 consists of a draft manuscript that is available as a preprint at
https://arxiv.org/abs/1809.08024, in which I am listed as first author. Gwenaël Leday
and Catalina Vallejos contributed towards code to generate the figures in Sections 2.6
and 2.7. Otherwise, all work presented in this chapter is my own.

The work presented in Chapter 3 was done so under the guidance of Paul Kirk of the
MRC-Biostatistics Unit. The efforts to obtain the derivations presented in Appendices
B.1, B.2, B.5, and in developing the software package presented in Section 3.9 were
shared approximately equally. Apart from this, all other work in this chapter is my own.
This includes all results generated using the software package.

The work of Chapter 4 was done in collaboration with Adel Helmy and Eric Thelin
of the Department of Clinical Neuroscience at Addenbrooke’s Hospital. Adel and
Eric provided the dataset that is presented for analysis and consulted on biologically
motivated questions to pursue. All other work from this chapter is my own.

I am very grateful to all those listed above for their contributions towards this
academic work. Without their help and guidance, neither this thesis nor any magnitude
of my academic development would have been possible. I am particularly grateful for
the insurmountable patience and understanding shown by my supervisors throughout
the past few years.

I am also humbled by the support, love, and enjoyment that has been shared with me
by my friends and family throughout this time. I have been incredibly fortunate to be
surrounded by so many unforgettable people and lack the words to describe what you all
mean to me. I would like to express my deepest gratitude towards you all, knowing that
the most valuable discovery I have stumbled upon during my Ph.D has been learning
just how much good people can create.

https://arxiv.org/abs/1809.08024




Table of contents

1 Introduction 1
1.1 Background and context . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Covariance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Regularised covariance estimation . . . . . . . . . . . . . . . . . . . 4

1.3.1 Linear shrinkage estimators . . . . . . . . . . . . . . . . . . 4
1.3.2 Probabilistic principal component analysis . . . . . . . . . . 5
1.3.3 EM algorithm in general . . . . . . . . . . . . . . . . . . . . 7

1.4 Bayesian approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4.1 Bayesian inference for covariance matrices . . . . . . . . . . 8
1.4.2 Covariance matrix prior distribution . . . . . . . . . . . . . . 9
1.4.3 Competing models . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.4 Variational inference . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Inverse covariance matrices . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Contributions and outline . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Target-Averaged linear Shrinkage Estimation 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Single-target linear shrinkage covariance estimation . . . . . . . . . . 19
2.3 Conjugate Bayesian framework . . . . . . . . . . . . . . . . . . . . . 20
2.4 Incorporating uncertainty about α and ∆ . . . . . . . . . . . . . . . . 20
2.5 Choice of shrinkage target matrices . . . . . . . . . . . . . . . . . . 22
2.6 Model-based simulation study . . . . . . . . . . . . . . . . . . . . . 22
2.7 Predictive validation simulation . . . . . . . . . . . . . . . . . . . . 26
2.8 Application to protein expression data . . . . . . . . . . . . . . . . . 29
2.9 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Covariance estimation through Probabilistic Principal Component Analy-
sis 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



x Table of contents

3.2 The PPCA framework . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Non-Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1 Closed-form maximum likelihood inference . . . . . . . . . . 44
3.3.2 Estimation using EM . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Bayesian Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Estimation using VB . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Selection of the latent dimensionality . . . . . . . . . . . . . . . . . . 59
3.6 Inverse covariance estimation . . . . . . . . . . . . . . . . . . . . . . 59
3.7 Model-based simulation . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8 Comparison to TAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8.1 Model-based simulation . . . . . . . . . . . . . . . . . . . . 62
3.8.2 Predictive validation simulation . . . . . . . . . . . . . . . . 64

3.9 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Case study: cytokine expression in the context of traumatic brain injury 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Materials and methods . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Recruitment and treatment allocation . . . . . . . . . . . . . 72
4.2.2 Intervention and sampling . . . . . . . . . . . . . . . . . . . 73
4.2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.1 Exploratory analysis . . . . . . . . . . . . . . . . . . . . . . 74
4.3.2 Univariate analysis . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusions and further work 97

References 101

Appendix A Target-Averaged linear Shrinkage Estimation 109
A.1 Uncertainty around the empirical Bayes estimate of α . . . . . . . . . 109
A.2 Marginal likelihood of the Gaussian conjugate model . . . . . . . . . 110
A.3 Cardinality for the support of α . . . . . . . . . . . . . . . . . . . . . 112
A.4 Model-based simulation: additional results . . . . . . . . . . . . . . . 113
A.5 predictive validation simulation strategy . . . . . . . . . . . . . . . . 118
A.6 Assumption of normality . . . . . . . . . . . . . . . . . . . . . . . . 122
A.7 The PANCAN32 data set . . . . . . . . . . . . . . . . . . . . . . . . 123



Table of contents xi

Appendix B Covariance estimation through Probabilistic Principal Compo-
nent Analysis 125
B.1 EM algorithm in PPCA without missing values - derivation . . . . . . 125

B.1.1 E step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
B.1.2 M step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

B.2 EM algorithm 1 - derivation . . . . . . . . . . . . . . . . . . . . . . 128
B.2.1 Handling of missing values . . . . . . . . . . . . . . . . . . . 128
B.2.2 E step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
B.2.3 M step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

B.3 EM algorithm 2 – derivation . . . . . . . . . . . . . . . . . . . . . . 136
B.3.1 E step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
B.3.2 M step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.4 Variational algorithm 1 - derivation . . . . . . . . . . . . . . . . . . . 137
B.4.1 Handling of missing data . . . . . . . . . . . . . . . . . . . . 137
B.4.2 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
B.4.3 Joint distribution . . . . . . . . . . . . . . . . . . . . . . . . 140
B.4.4 Variational updates . . . . . . . . . . . . . . . . . . . . . . . 143
B.4.5 Computation of moments . . . . . . . . . . . . . . . . . . . . 157

B.5 Variational algorithm 2 - derivation . . . . . . . . . . . . . . . . . . . 158
B.5.1 Handling missing values . . . . . . . . . . . . . . . . . . . . 158
B.5.2 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
B.5.3 Joint distribution . . . . . . . . . . . . . . . . . . . . . . . . 159
B.5.4 Variational updates . . . . . . . . . . . . . . . . . . . . . . . 161

B.6 pcaNet vs. pcaMethods timing simulation . . . . . . . . . . . . . . 173
B.7 Model-based simulation: additional results . . . . . . . . . . . . . . . 174
B.8 Comparison with TAS: additional results . . . . . . . . . . . . . . . . 178

Appendix C Case study: cytokine expression in the context of traumatic
brain injury 181
C.1 Cytokines under study . . . . . . . . . . . . . . . . . . . . . . . . . 181
C.2 Alternative imputation values . . . . . . . . . . . . . . . . . . . . . . 183

C.2.1 k = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
C.2.2 k = 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Appendix D TAS package documentation 195

Appendix E pcaNet package documentation 207





Chapter 1

Introduction

This thesis is concerned with the estimation of high-dimensional covariance matrices
in the context of functional genomics, whose aim is to study gene regulation using
high-throughput molecular data. This Chapter introduces biological and statistical
concepts as a background for the following Chapters. It also provides some context
about the field of molecular biology that has become a data-rich discipline (both in the
amount and complexity) that poses challenges.

1.1 Background and context

Genetic information within a cell is responsible for the various functions that it can carry
out. Molecular biology aims at understanding the processes by which this information
is processed to determine cellular functions. Understanding these processes is crucial
for understanding and treating diseases.

The rapid development and decreasing cost of high-throughput technologies in
the past decades have remarkably changed the face of molecular biology. These
technologies allow the simultaneous measurement of thousands of molecular variables
(e.g. genes, proteins, metabolites, etc.) and generate large amounts of molecular data
that prove difficult to analyse.

The data generated by high-throughput experiments are diverse. For example,
sequencing experiments generate discrete count data, whilst microarrays provide con-
tinuous data. Statistical methods need to be developed for each type of data in order to
model them correctly. Statistical methods are therefore challenged by the nature of this
data.

The data generated by high-throughput experiments are high-dimensional. This
means that the number of measured molecular variables is much larger than the number
of samples. Such data are statistically more challenging to analyse because classic
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approaches, such as maximum likelihood that are based on large sample assumptions,
fail (Section 1.2).

Besides the data generated by biotechnologies, there exists a wealth of auxiliary
information, such as platform annotations, public data repositories (such as The Cancer
Genome Atlas; http://cancergenome.nih.gov/) and databases (such as gene ontology;
http://geneontology.org) that are very useful to improve model interpretation as well as
statistical power. Such auxiliary information therefore constitutes an important source
of external information that is desirable to take into account.

In this rich environment where big, high-dimensional data as well as auxiliary
information are increasingly available, there is a strong need to develop methods and
software that are computationally efficient as well as flexible to make the most out of
the available information.

1.2 Covariance estimation

Molecular entities engage in complex interactions in order to produce biological func-
tionality. Examples of this are found in signalling pathways, such as p53, in which
many proteins collaborate to regulate the cell cycle and prevent cancer. Analyses that
focus on individual variables (e.g. genes) are incapable of capturing the intricacies of
these higher-order interactions, providing the need for more complicated multivariate
statistical analysis. The covariance is a statistic that captures pairwise linear associa-
tions and univariate variances. It can be useful for exploring simple and interpretable
relationships between pairs of variables as well as characterising groups of variables
that behave similarly. The covariance matrix may also be used to perform more compli-
cated analyses. For example, in the case of principal component analysis, the observed
variables are mapped onto unobserved latent variables by decomposing information
contained within the covariance matrix.

However, estimating the covariance matrix from high-dimensional data is challeng-
ing. This is a consequence of the number of parameters that are required to estimate it
and the relatively small sample sizes with which to estimate them. In fact, the number
of parameters required to estimate the covariance matrix grows quadratically with the
number of variables under study. This means that there are not enough degrees of
freedom, which results in a sample covariance matrix whose entries are estimated with
a high amount of statistical error.

Another way of viewing this problem is to consider the eigen-decomposition of
the sample covariance matrix. Whenever the sample size is lower than the number
of measurements, the covariance matrix is rank deficient. This means that many
eigenvalues of the matrix are equal to zero. Consequently the condition number, which

http://cancergenome.nih.gov/
http://geneontology.org
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is the ratio between the largest and smallest eigenvalue and can be interpreted as a
measure of error when performing arithmetic operations, is extremely large or infinite.
Large condition numbers also arise in situations in which the sample size is only
marginally larger than the number of measurements. A large condition number severely
hampers the reliability and usefulness of the estimator. For example, it is not possible
to obtain an estimate of the inverse covariance, which is the basis for the reconstruction
of networks (conditional independence graphs).

As concrete evidence of this problem, we provide a small numerical example. For
different combinations of the number of variables p ∈ {200,400,600,800,1000} and
number of observations n ∈ {10p,2p,p,p/2,p/10}, we generate 100 data sets from a
multivariate normal distribution N(0,Σ), with identity covariance matrix Σ = I p×p. For
each generated data set X , we compute: (i) the sample covariance matrix S = XX⊤/n,
(ii) the associated (squared) Frobenius distance between S and Σ as a measure of error,
hereafter referred to as the Frobenius loss and defined as ∥Σ−S∥2

F =
∑p

i
∑p

j (Σi j − Si j)
2,

and (iii) the condition number of S. These results are summarised in Figure 1.1. As
described, we observe a higher estimation error (reflected in larger Frobenius distances)
when the ratio p/n increases. We also observe that S is singular whenever n ≤ p.
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Fig. 1.1 Properties of the sample estimator for Σ. Sub-figure (a) shows the squared
Frobenius distance between the sample covariance matrix S = XX⊤/n and Σ whereas
(b) shows the condition number of S. The grey line represents the condition number for
which matrices are declared numerically singular by the solve() function in R.

The solution to this problem is to perform regularisation, i.e. to modify the estimator
to ensure that it is well-conditioned. This is typically done by introducing a penalty
term in the likelihood and restricting the parameter space (e.g. via hard inequality
constraints). Next, we discuss such methods.
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1.3 Regularised covariance estimation

The regularisation of the sample covariance matrix is a well-studied problem [88],
for which many types of solution have been proposed, such as thresholding [12, 21],
inducing sparsity [14], and imposing a condition number constraint [111], with no one-
size-fits-all approach emerging. In this thesis, we focus on linear shrinkage estimators
[70] as well as probabilistic principal component analysis (PPCA) [102], which are the
subjects of Chapters 2 and 3, respectively. Here, we introduce these two approaches.

1.3.1 Linear shrinkage estimators

Linear shrinkage estimators represent a simple, computationally efficient, and inter-
pretable solution to the problem of covariance estimation. Originating with Stein [99]
in order to improve the estimator of the mean of a multivariate Normal distribution, the
idea is to linearly weight the sample estimator with a biased ‘target’ estimator. In the
context of covariance matrix estimation, a linear shrinkage estimator is often defined as

Σ̂ = α∆+ (1−α)S, (1.1)

where ∆ is positive definite and known as the target matrix and α ∈ (0,1) is the shrinkage
intensity. The shrinkage intensity α can, for example, be determined to minimise the
mean squared-error (MSE) E

[
∥Σ− Σ̂∥2

F

]
, which can be decomposed [95, 70] as

MSE(Σ̂) =Var(Σ̂)+Bias2(Σ̂) (1.2)

=

p∑
i=1

p∑
j=1

α2Var
(
∆i j

)
+ (1−α)2Var(Si j)+2α(1−α)Cov

(
Si j,∆i j

)
+

(
αE

[
∆i j − Si j

]
+Bias(Si j)

)2
. (1.3)

Comparing Equation (1.1) with Equation (1.2) and recalling that ∆ induces more bias
and S induces more variance, linear shrinkage represents a bias-variance trade-off in
this case. The weight α controls this trade-off in order to lower the overall MSE when
compared to that of S. The expansion in Equation (1.3) shows exactly how each element
of the shrinkage estimator contributes to the MSE. If ∆ is similar to S then that reduces
the burden of the latter terms but increases the burden of the first term and covariance
term. A ∆ with high bias might well reduce the contribution of the first term, but it
will certainly increase the contribution of the second from last term. The ideal scenario
would be a ∆ which has low variance but also retains key similarities of Σ, which in
small samples may or may not be contained within S.
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Previous work in this area has mostly focussed on optimally estimating α for a
specified target matrix ∆. In their seminal paper, Ledoit and Wolf [70] introduced a
method for estimating the optimal α that results in a closed-form computationally trivial
solution for a single-parameter diagonal target matrix under a Gaussian assumption
for the data. Since then, their methodology has been used to generate solutions for
more target matrices [95], improved α estimation [24], and relaxing the distributional
assumptions of the data [103]. Conversely, very few works have focussed onto extending
this model to use multiple shrinkage targets [64, 6, 59], despite it representing a
promising avenue for more flexible shrinkage.

1.3.2 Probabilistic principal component analysis

Principal component analysis (PCA) is a popular dimension reduction technique that
aims to find the linear projection with minimum MSE with the data [86]. It can also
be formulated as a lower-dimensional linear projection of the data onto orthogonal
axes, such that the variance of the projection is maximised [58]. For our purposes, we
focus on the latter interpretation. This is because the basis of the orthogonal projection
intuitively coincides with the eigenvectors of the sample covariance matrix S, denoted
(u1, . . . ,up), and the magnitude of variance along those vectors corresponds to the
magnitude of their associated eigenvalues (λ1, . . . ,λp). We assume from now that the
eigenvalues are arranged in descending order λ1 > . . . > λp.

For n samples of p observed variables x j , j = 1, . . . ,n, with empirical mean x =
1
n
∑n

j=1 x j , the PCA projection is defined using

x j =Wz j + x j, (1.4)

with the columns of W = (u1, . . . ,up). The matrix W in Equation (1.4) represents a
transformation of the latent variables into the observed p-dimensional space. Dimension
reduction is achieved through retaining only the eigenvectors associated with the q
largest eigenvalues (u1, . . . ,uq), q < p, e.g. reducing the number of columns of W from
p to q. The vector z j is then estimated as W⊤(x j − x j). By doing this, the equality in
Equation (1.4) is broken and the procedure becomes an approximation that retains the q
orthogonal directions with maximum variance, i.e. discarding minimal variance. Such
an approximation is clearly most beneficial in situations where the large majority of
variance is dominated by just a few eigenvectors, or equivalently when the data truly lie
in a lower-dimensional space.

PCA is a descriptive technique which is clearly useful for data compression and
visualisation. However, it offers limited inferential value and, due to its empirical nature,
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suffers from the poor sample covariance estimation that is apparent in high-dimensional
situations (Section 1.2).

PPCA extends PCA to a probabilistic model in which the observed variables may be
expressed as linear transformations of lower-dimensional independent Gaussian latent
variables plus some additional random noise. For a vector of p observed variables x j

the PPCA model has the form

x j =Wz j + µ+ ϵ (1.5)

where x j is a p-dimensional observation (column) in the data matrix X = (x1, . . . ,xn),
and z j is a column of Z = (z1, . . . , zn) containing q-dimensional latent factors z j . As-
suming Gaussian distributions for x j |z j and ϵ induces a Gaussian distribution for x j

with covariance matrix
Σ =WW⊤+σ2I p×p. (1.6)

Equation (1.6) decomposes Σ into a rank-deficient matrix of covariances WW⊤ plus a
diagonal matrix of independent variance terms for each variable. This decomposition
means that the lowest eigenvalue of the estimated covariance matrix is non-zero and
equal to σ2. That implies that the resulting estimator is never singular. The estimator
also contains fewer parameters to estimate, since the interactions of the observed
variables are determined by the projection from lower-dimensional space.

Although being noted for the form of its covariance estimator, PPCA has received
little attention in the covariance estimation literature. This is despite the attractive
property that it can model latent dependencies, is always invertible, and in fact has a
very convenient closed-form equation for the computation of its inverse that is greatly
beneficial when there are a large number of variables (Chapter 3).

Ma [73], Cai et al. [22] consider sparse estimation of the loadings matrix through
imposing constraints on the size of its entries. Fan et al. [42, 43, 41] propose a compu-
tationally simple estimator by applying adaptive thresholding to a more general model
of PPCA, known as an approximate factor model. An approximate factor model (AFM)
is obtained if the independence assumption on the columns of Z is relaxed and the
isotropic covariance matrix of ϵ is relaxed to instead have distinct diagonal elements and
very small non-diagonal elements. The exact covariance structure that AFM attempts
to approximate is one with zero elements in the off-diagonal entries, and this model is
known as a factor model.

Factor models have a more complicated overall covariance structure than PPCA:

Σ =WFW⊤+E, (1.7)
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where z j ∼ N(0,F) and E is a diagonal matrix whose entries are not necessarily equal.
This covariance structure has received more attention than PPCA in the literature
(Section 1.4.2), likely due to its more general nature. However, with more generality
comes more computational difficulty. Whereas the model parameters for PPCA have
closed-form maximum likelihood solutions [102], factor models do not. In order to
overcome this difficulty, various algorithms have been proposed, e.g [96, 5]. The basis
of these algorithms is a methodology for performing maximum likelihood inference
whilst handling latent variables, known as Expectation-Maximisation (EM) [33]. This
technique can also be used to handle missing values in the PPCA model [60]. In the
next Section, we introduce the EM algorithm in its general form.

1.3.3 EM algorithm in general

We present the theory of EM as introduced in Bishop [16], but adapted to the case of
continuous latent variables. Denote the observed and latent variables as X and Z in a
probabilistic model containing a set of parameters θ. We wish to perform inference on
θ by maximising the likelihood

p(X |θ) =

∫
p(X,Z |θ)dZ . (1.8)

Suppose in this situation that p(X |θ) is difficult to optimise and that the optimisation
of p(X,Z |θ) is significantly easier. The aim of an EM algorithm is to maximise the
difficult likelihood p(X |θ) by creating an identity involving p(X,Z |θ) and using the
property that it is easier to maximise. To derive this identity, we define a distribution
over the latent variables q(Z) and, further, a functional L that depends on both q and θ

as
L(q,θ) =

∫
q(Z) ln

p(X,Z |θ)
q(Z)

dZ . (1.9)

L is termed a functional due to the input argument q, which is itself a function (and
more specifically a probability distribution). Using the product rule of probability to
obtain p(X,Z |θ) = p(Z |X,θ)p(X |θ) and substituting this into Equation (1.9) gives

L(q,θ) =
∫
Z

q(Z) ln
p(Z |X,θ)

q(Z)
dZ +

∫
Z

q(Z) lnp(X |θ)dZ (1.10)

= −KL(q| |pZ |X,θ)+ lnp(X |θ), (1.11)

where KL(q| |pZ |X,θ) denotes the Kullback-Leibler divergence between q and pZ |X,θ

with the subscript Z |X,θ explicitly indicating the conditioning. A trivial rearrangement
shows us that

lnp(X |θ) = L(q,θ)+KL(q| |pZ |X,θ), (1.12)
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at which point we recall that KL(q| |pZ |X,θ) ≥ 0 with equality if and only if q(Z) =
p(Z |X,θ). This deduces that L(q,θ) ≤ lnp(X |θ) and so is a lower bound. Using this
framework, the EM algorithm iteratively increases this lower bound in such a way that
lnp(X |θ) also always increases.

In the first step (the E step), we keep the current parameter values θold fixed
and maximise L(q,θold) with respect to q(Z). Observing Equation (1.11) and not-
ing that lnp(X |θold) does not depend on q(Z) shows us that this maximum occurs
when KL(q| |pZ |X,θold) = 0, which can only be when q(Z) = p(Z |X,θold). Thus, the
point at which L(q,θold) is maximised with respect to q(Z) is exactly when it equals
lnp(X |θold).

The next step (the M step) consists of fixing q(Z) and then maximising L(q,θ) with
respect to θ to give new parameter estimates θnew. By definition L(q,θold) ≤ L(q,θnew)

and so lnp(X |θold) ≤ lnp(X |θnew) (unless it is already at the maximum). But, in addition
to the increase of L(q,θ) we also have that KL(q| |pZ |X,θnew) is no longer zero. The
result of this is that not only does lnp(X |θ) increase, but it increases at least as much as
the lower bound L(q,θ).

These E and M steps are then iterated until convergence, at which point θold = θnew,
L(q,θnew) = lnp(X |θnew) and therefore the value of θ that maximises p(X |θ) has been
found. Due to the assumption that p(X,Z |θ) is significantly easier to optimise than
p(X |θ), these iterative steps are much simpler to perform than the original optimisation.
One caveat however, is that the EM solution is not guaranteed to converge to the global
maximum.

Note that in the above formulation, missing values may be treated as unobserved
latent variables, being absorbed into the latent variable term Z and updated accordingly.
We present multiple implementations of this method for PPCA as a tool for covariance
matrix estimation in the presence of missing values in Chapter 3.

1.4 Bayesian approaches

Here, we introduce the Bayesian approach to covariance estimation.

1.4.1 Bayesian inference for covariance matrices

In Bayesian statistics, the model parameters of interest are treated as unobservable ran-
dom quantities with an underlying probability distribution that reflects our uncertainty
associated with them. Having observed X with covariance matrix Σ, Bayes’ Theorem
can be stated as

p(Σ |X) =
p(X |Σ)p(Σ)

p(X)
. (1.13)



1.4 Bayesian approaches 9

The term p(Σ |X) in Equation (1.13) is known as the posterior distribution of Σ. The
posterior provides us with a distribution on Σ after having observed X , which contains
all of the information about Σ. Summaries of the posterior distribution are then used as
point estimates for Σ. The posterior expectation E[Σ |X], for instance, minimises the
MSE.

1.4.2 Covariance matrix prior distribution

The term p(Σ) in Equation (1.13) is known as the prior distribution and it expresses a
belief about Σ prior to observing the data. The prior can be used to impart additional
information about Σ into the model, which may come from a variety of sources such
as expert opinion or knowledge of previous experiments. The prior introduces a term
into the posterior that is often used as a restriction for certain values of Σ. This
can take the form of a constraining parametric distributional assumption, or even
element-wise penalties on large values of Σ. This restriction plays an important role
in high-dimensional settings, in which sample sizes are low and more information is
leveraged from the prior to impact the posterior.

However, the choice of prior distribution, and therefore the regularisation that is
performed, is subjective. Selecting a prior for the covariance matrix is difficult but it
must ensure that the matrices that it generates are positive definite. A common choice
is the inverse-Wishart distribution, which can be defined as

p(Σ |ν,Ψ) = 2−
νp
2 Γ

−1
P

( ν
2

)
| Ψ |

ν
2 | Σ |−

ν+p+1
2 exp

{
−

1
2

tr
(
ΨΣ−1

)}
(1.14)

for degrees of freedom parameter ν > p−1 and (p× p) positive-definite scale matrix
Ψ. The mean of this distribution is given by E(Σ |ν,Ψ) = Ψ

ν−p−1 whenever ν > p+1, the
existence of which we assume hereafter (i.e. ν > p+1). The element-wise variances

are given by Var(Σi j |ν,Ψ) =
(ν−p+1)ψ2

i j+(ν−p−1)ψiiψi j
(ν−p)(ν−p−1)2(ν−p−3) .To aid interpretation of the hyper-

parameters of this density, we instead adopt the mean-centred parametrisation of the
Inverse-Wishart distribution used by Hannart and Naveau [52]. The new parametrisation
is obtained through the following bijective transformation:

(α,∆) =

(
ν− p−1

n+ ν− p−1
,
Ψ

ν− p−1

)
⇔ (ν,Ψ) =

(
αn

1−α
+ p+1,

αn
1−α

∆

)
, (1.15)

where α ∈ (0,1) and ∆ is positive definite. By definition, we now have E(Σ |α,∆) = ∆
and so the interpretation of ∆ as the prior mean of Σ is clear. The element-wise prior
variances are now given by Var(Σi j |α,∆) ≈

1−α
αn

(
∆2

i j +∆ii∆ j j

)
and so α can be seen to

control the element-wise prior precision.
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This choice of prior is practical because it guarantees positive definiteness and
it is conjugate to the multivariate Normal distribution, the latter being a frequent
assumption for the likelihood p(X |Σ). The term conjugate means that this pair of prior
and likelihood evoke a tractable posterior distribution of the same form as the prior.
A major benefit of the inverse-Wishart prior is therefore computational. Additional
interpretation of the hyperparameters can be extracted from the posterior distribution,
p(Σ |X,α,∆) = inv-Wishart

(
(2−α)−1,α∆+ (1−α)S

)
, so that it can be seen that the

posterior expectation is a linear shrinkage estimator E(Σ |X,α,∆) = α∆+ (1−α)S. From
this perspective, it can now be seen that α controls the degree to which we favour our
prior expectation ∆ over the sample covariance matrix S. This provides guidance on
setting these parameters — ∆ should reflect an expectation about Σ and α our confidence
in the expectation.

It is worth noting that hyperparameters which define the distributions of other
parameters (in the conjugate model above, these were α,∆) may themselves be assigned
prior distributions, referred to as hyper-priors. The extent to which this affects the
complexity of the model and the resulting difficulty of inference depends upon the
particular scenario and hyper-priors that have been assumed. In the model above,
setting prior distributions on the hyperparameters breaks the conjugacy property and the
posterior distribution is no longer available in closed-form, allowing greater flexibility
at the cost of complicating the inference.

Bayesian frameworks for factor models have also been a popular feature in the
literature for some time, e.g. [2, 51]. Priors that have been used for the parameters in
Equation (1.7) include; treating W as a vector and assuming it has a multivariate normal
distribution [4], inverse Wishart for WFW⊤ [84], inverse gamma for the non-zero
elements of E [84, 11, 90], and spike and slab priors on the elements of W [8, 76] with
Indian buffet process on an infinite-column W [90].

The flexibility that comes with the factor model and these prior distributions is
marred by the increased computational intensity that comes with performing inference.
These approaches obtain an intractable posterior distribution that requires computation-
ally intensive sampling or approximate inference in order to obtain parameter estimates.
Sampling has the drawback that it is slow and may require large amounts of compu-
tational memory as well as storage, whilst approximate inference has no guaranteed
global convergence.

Other possible choices for the covariance prior include a reference prior [112] or
a hierarchical model for the covariance matrix [30]. These approaches also require
computationally intensive sampling or approximate inference. In Section 1.4.4, we
recap the general form of an approximate inference tool that can be used to evaluate
some of these more complex models.
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1.4.3 Competing models

Suppose now that we have more than one model for Σ that leads to different posterior
inferences. In the simple conjugate case outlined above, this could be models M1 =

{α1,∆1} and M2 = {α2,∆2}. The uncertainty surrounding these models is contained
within p(M1) and p(M2), their prior probability distributions. Upon observing X ,
Bayesian inference for these models can be performed in accordance with Bayes
theorem, using p(M1 |X) ∝ p(M1)p(X |M1) and p(M2 |X) ∝ p(M2)p(X |M2). The
likelihoods p(X |M1) and p(X |M2) represent the probabilities of observing the data
assuming each of the competing models, termed the marginal likelihood. The ratio
between these quantities is known as the Bayes factor [62], which provides the relative
likelihood of the observed data if it truly were generated by each model. Selecting the
model whose Bayes factor is greatest then represents one method for model selection.

The term marginal likelihood comes from the formula to evaluate it, for M1 we
have p(X |M1) =

∫
p(X |Σ,M1)p(Σ |M1)dΣ and similarly for M2. Thus, the marginal

likelihood given M1 is obtained by integrating out the parameter of interest Σ from the
joint density p(X,Σ |M1). If we consider the full set of competing models which exhaust
the model space, then p(X |Md), d = 1, . . . ,D can be seen as a function to be maximised
over the Md , yielding the model with highest marginal likelihood and equivalently the
model whose Bayes factor exceeds 1 when compared with all other models. This type of
marginal likelihood maximisation is known as empirical Bayes [9], or type-II maximum
likelihood [7], and is another method for model selection. It is typically performed on
the log scale due to simplicity and numerical stability. This empirical Bayes approach
is applied to the conjugate model by Hannart and Naveau [52] for Σ having first fixed
∆, so that the model space to maximise over is reduced to Mα = {α ∈ (0,1)}.

Instead of selecting a particular model, we may wish to incorporate the model
uncertainty into our posterior distribution for Σ, which is obtained as

p(Σ |X) =

D∑
d=1

p(Σ |X,Md)p(Md |X). (1.16)

This marginal posterior is then a mixture distribution of each posterior for a specified
model weighted by its corresponding model posterior probability. This technique is
known as Bayesian Model Averaging [57]. We use this idea to average over hyperpa-
rameters in the conjugate distribution on Σ in Chapter 2.

1.4.4 Variational inference

Recall that when computing the marginal likelihood p(X), we had to marginalise the
parameter of interest from its joint density with X conditional on any assumed model
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parameters. In simple models, this integration is available in closed-form, but for many
more complex models, it is not. In addition, the numerical integration techniques that
lead to exact solutions of the integral may be too cumbersome in practice, e.g. by
requiring infeasible computational resources. In this situation, one might wish to be
pragmatic and obtain an approximate solution to evaluating the marginal likelihood.
Here, we introduce an approximate Bayesian inference technique akin to the EM
algorithm in Section 1.3.3 known as variational inference [17].

In contrast to the EM algorithm, the Bayesian framework allows the parameters θ
to now be viewed as a collection of random variables, each with their own associated
prior distributions, and therefore absorbed into the set of unobserved variables Z .
If we now wish to perform inference on Z , then it is first necessary to obtain their
respective posterior distributions. For models of sufficient complexity, the posterior
p(Z |X) is intractable and so this is not possible. We therefore seek to find an appropriate
approximation to it that has a tractable form to perform inference.

In a similar fashion to the EM formulation, the log-marginal likelihood lnp(X) can
be given as

lnp(X) = L(q)+KL(q| |p), (1.17)

where

L(q) =
∫

q(Z) ln
(
p(X,Z)

q(Z)

)
dZ (1.18)

KL(q| |p) = −
∫

q(Z) ln
(
p(Z |X)

q(Z)

)
dZ . (1.19)

Maximisation of L(q) with respect to q(Z) is again equivalent to minimising the KL
divergence between q(Z) and the posterior of the latent variables p(Z |X), which occurs
when the two distributions are equivalent. However, we have assumed that p(Z |X) is
intractable — rendering a standard EM approach infeasible.

One way to overcome this challenge is to restrict q(Z) to be a more convenient
family of distributions. The primary constraint is that q(Z) must be tractable. After
that, it is beneficial to choose a flexible family of distributions so as to achieve the best
approximation. We focus on a factorised distribution for q(Z) known as a mean field
approximation [85]. This takes the form

q(Z) =
L∏

l=1
ql(Z l), (1.20)

in which it is assumed that the latent variables Z may be partitioned into disjoint groups
Z l where l = 1, . . . ,L. Maximisation of Equation (1.17) is now done with respect to
each ql(Z l). The optimal solutions are found by substituting Equation (1.20) into (1.18)
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[16] and take the form

lnq∗l (Z l) = Em,l[lnp(X,Z)]+ const, (1.21)

where Em,l[·] denotes an expectation taken with respect to all indices of Zm for
m = 1, . . . ,L with m , l. The optimal ql(Z l) is thus found by marginalising all other
partitions of Z from the joint distribution p(X,Z). The exact form of the solutions are
context-specific and clearly depend on the other factors Zm,l . The VB algorithm is
completed by cycling through Equation (1.21) for each factor until convergence, which
is guaranteed but may not be global. The lower bound can be a useful quantity to check
the convergence of different estimates.

1.5 Inverse covariance matrices

A parameter related to the covariance matrix that is also of significant interest is
its inverse Ω = Σ−1, known as the precision matrix. For the purpose of this thesis,
we introduce the importance of the precision matrix through a framework known as
Gaussian Graphical Models (GGMs) [110]. GGMs are a class of graphical model
whose underlying assumption about the data generating process is a Gaussian distri-
bution. More formally, denote G = (V,E) to be the undirected graph with vertices
V = {1, . . . ,p} and edges E = (ei j), with ei j equal to 1 or 0 depending upon if vertices
i and j are adjacent in G, or not, respectively. The defining property of a GGM is
that if x = (x1, . . . ,xp) ∼ N(µ,Σ) then ωi j = 0 if and only if xi and x j are conditionally
independent given xV\{i,j}, where V\{i, j} denotes the set V excluding elements i and
j. Therefore, the edge set E is defined by variables which are not pairwise conditionally
independent given all other variables, and moreover that this dependence structure is
fully described by the elements of the inverse covariance matrix Ω.

A more interpretable quantity that can be defined using Ω is the partial correlation
coefficient

ri j = −
ωi j

√
ωiiω j j

. (1.22)

This represents the correlation between xi and x j conditional upon all other xV\{i,j}.
From Equation (1.22) it can be seen that ri j contains the dependence component of
ωi j , with the other terms ωii and ω j j being precision components. This is completely
analogous to the marginal correlation and variance decomposition of the covariance
statistic. Using this intuition, it can also be seen that ωi j = 0 can only occur whenever
ri j = 0. It is thus sufficient to check conditional independence in a GGM by inspecting
each ri j .
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Thus, when estimating precision matrices in GGMs, it is of great importance to
infer those values which are truly 0 or not in order to correctly capture the graphical
model. It is this condition that creates the biggest discriminant between covariance and
precision matrix estimation, and which significantly changes the nature of inference.
For this reason, precision matrix estimation is scarcely mentioned in this thesis. When it
is, the problem is constrained to first obtaining a dense estimate of Σ and then applying
a testing procedure to its inverse in order to find those ri j = 0, rather than estimating Ω
directly. Precision matrix estimation is a large field of literature, the reader is referred to
Dempster [32] for an introduction to the problem, including the sparse [45] and dense
[106] estimation frameworks.

1.6 Contributions and outline

This thesis provides contributions to: (i) shrinkage covariance estimation using multiple
shrinkage targets, (ii) algorithms for probabilistic principal component analysis, (iii)
computationally efficient software packages for high-dimensional covariance matrix
estimation and, (iv) the application of linear shrinkage covariance estimators with
multiple targets to time series data.

This thesis is organised as follows. In Chapter 2, we revisit linear shrinkage es-
timation and provide a novel Bayesian extension that allows for multiple targets to
be included in a computationally efficient framework, named Target-Averaged linear
Shrinkage (TAS) [50]. We demonstrate the performance of TAS in comparison to exist-
ing single-target shrinkage methods using both model-based and predictive validation
simulation protocols. Using a publicly available pan-cancer protein expression dataset,
we show how TAS can easily incorporate multiple datasets as prior information using
31 shrinkage targets. Finally, we show how the shrinkage weights for each cancer type
reflects putative similarities reported in the literature.

In Chapter 3 we turn our attention towards PPCA as a method for covariance
matrix estimation. We present some attractive properties of its induced covariance
structure that appear to not have received much attention in the literature, particularly
its ability to handle missing values. We then introduce and fully derive four different
algorithms for performing PPCA in the presence of missing values. The mathematical
derivation of these methods is not present in the current literature and thus itself is a
novel contribution. We present a numerical comparison of their performance in terms
of estimation accuracy and timing for data simulated from the PPCA model. We select
the best-performing algorithm to compare against TAS in the predictive validation
simulation protocol from Chapter 2. Finally, we demonstrate some functionality of the
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software package pcaNet and in particular how to reconstruct a network from a real
Arabidopsis thaliana dataset using PPCA.

In Chapter 4 we conduct a real data analysis on a clinical trial dataset for patients
with traumatic brain injury (TBI), in which inflammatory proteins called cytokines
have had their expression measured over time. We describe the methodology of the
trial and present an exploratory analysis. We then proceed with a multivariate analysis
by applying TAS using multiple targets from previous time points. We show that this
facilitates downstream analysis by characterising stable groups and interactions of
cytokines over time using cluster analysis and network reconstruction.

We finish with a concluding chapter that summarises the work that is presented in
this thesis and provides an outlook for future work.





Chapter 2

Target-Averaged linear Shrinkage
Estimation

2.1 Introduction

Covariance matrix estimation plays a central role in statistical analyses. In molecular
biology, for instance, covariance estimation facilitates the identification of dependence
structures between molecular variables that shed light on the underlying molecular
or cellular processes [46, 95]. Because high-throughput omics experiments typically
measure a large number of molecular variables (e.g. gene expression) on relatively few
samples, the sample covariance is generally singular or ill-conditioned. This means
that the sample covariance matrix suffers from high estimation error that can affect
subsequent numerical tasks, such as computing its useful matrix inverse (precision
matrix). This problem has been well studied [31, 88, 41, 39] and many solutions have
been proposed over the last decades. These usually modify the sample covariance so
as to stabilise estimation. Some solutions adopt sparse, lasso-type, regularisation that
enforces most entries of the estimated covariance matrix to be equal to zero [12, 21, 14],
whereas other solutions adopt non-sparse, ridge-type, regularization that does not yield
zero entries [70, 108, 111, 106]. The choice of a particular form of regularization
typically depends on the statistical goals and computational constraints [13].

Single-target linear shrinkage (STS) estimators are ridge-type estimators, which
are defined as a convex combination between the sample covariance matrix and a pre-
specified positive definite target matrix. These estimators are very popular in practice
due to their simplicity, ease of interpretation and computational efficiency [95]. For
these reasons, they have also been theoretically well studied [70, 103, 44, 59, 24].
The performance of STS estimators, however, is highly dependent on the choice of an
appropriate target matrix (see Section 2.6). Different target matrices have been proposed
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in the literature, but the choice is ultimately guided by the application and the presumed
structure of the unknown covariance matrix [39].

Despite a large literature, surprisingly little has been done to extend STS estimators
to allow shrinkage towards multiple shrinkage targets. Bartz et al. [6] and Lancewicki
and Aladjem [64] have proposed multi-target linear shrinkage estimators that represent
optimal convex combinations, in the mean square sense, between the sample covariance
matrix and multiple shrinkage targets. Ikeda et al. [59] propose a linear shrinkage
estimator with two target matrices and derive its shrinkage intensities using a decision
theoretic framework for two simple common targets under Bayesian assumptions.
Unfortunately, none of these methods are implemented in available software.

In this chapter, we introduce a linear shrinkage estimator that can accommodate
multiple general shrinkage target matrices, and thereby incorporate uncertainty about
the target choice. The proposed estimator is obtained within a conjugate Bayesian
framework which is computationally efficient, even when the number of samples,
variables or shrinkage targets is relatively large. Using both simulated and real data, we
show that the multi-target estimator is less sensitive to the misspecification of some of its
targets and can outperform state-of-the-art (non-parametric) STS estimators. Moreover,
we show that the target-specific weights can be usefully interpreted. We apply our
approach to a pan-cancer proteomic data set where we illustrate how multiple sources
of external information, obtained from different cancer types, can be incorporated
within the target set. In particular, it is shown that target-specific shrinkage weights
can provide insights into the differences and similarities between cancer types. The
method proposed in this paper is implemented as an R package and freely available at
http://github.com/HGray384/TAS.

This chapter is organised as follows. In Section 2.2, we describe STS estimators
and in Section 2.3 we introduce its Bayesian counterpart. We present an extension to
this to allow for multiple shrinkage targets in Section 2.4. Section 2.5 discusses the
potential target matrices to consider when using multiple targets. Section 2.6 and 2.7
compare the performance of the proposed estimator to state-of-the-art STS estimators
using simulated and real data, respectively. We apply our approach in Section 2.8
to a pan-cancer proteomic data set from The Cancer Proteome Atlas. In Section 2.9
we mention some details about the computational implementation of the model. Last,
Section 2.10 discusses linear shrinkage estimation by means of multiple targets and
concludes on future directions. All code used to produce the results shown in this
chapter is available at http://github.com/HGray384/TAS-paper-code.

http://github.com/HGray384/TAS
http://github.com/HGray384/TAS-paper-code
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2.2 Single-target linear shrinkage covariance estimation

Let X = (x1, . . . ,xn) be a matrix containing n independent observations drawn from a
p-variate Normal distribution with zero mean vector and positive definite covariance
matrix Σ (hereby denoted Σ ≻ 0). The log-likelihood of X is then

logp(X |Σ) ∝ log |Σ−1 | −Tr[SΣ−1], (2.1)

where S = XX⊤/n. The maximum likelihood estimator (MLE) induced by Equation
(2.1) is Σ̂ = S, which is ill-conditioned or singular whenever n is small relative to p.

This section describes the class of single-target linear shrinkage estimators as a
solution to this problem, as well as a Bayesian counterpart which we generalise to
accommodate multiple shrinkage target matrices. The latter provides a more flexible
framework while retaining computational efficiency.

Recall from Section 1.3.1, that an STS estimator is defined as a weighted average
between the MLE and a single pre-specified matrix ∆, often referred to as the shrinkage
target, i.e.:

Σ̂ = α∆+ (1−α)S, with α ∈ (0,1) and ∆ ≻ 0. (2.2)

This estimator can be thought of in terms of a bias-variance trade-off [70], which is
calibrated through the shrinkage intensity or weight α. Values of α close to one define a
low-variance but high-bias estimator (Σ̂ ≈ ∆), whilst values of α closer to zero define a
low-bias but high-variance estimator (Σ̂ ≈ S). Following this line of thought, alternative
definitions of Equation (2.2) use the unbiased estimator n

n−1S instead of the MLE. In any
case, the optimal balance for this trade-off often lies away from these limiting cases and
analytical solutions have been proposed under different assumptions [95, 24, 44, 103].

The estimator in Equation (2.2) can also be viewed as a penalised MLE under
a specific ridge-type penalty [106]. To derive this, Equation (2.1) is modified by
substituting S for (1−α)S and adding the penalty term Tr[∆Σ−1] with penalty parameter
α so that it becomes proportional to

log |Σ−1 | − (1−α)Tr[SΣ−1]−αTr[∆Σ−1]. (2.3)

The maximum of this penalised likelihood is achieved by the shrinkage estimator in
Equation (2.2) [106]. With high regularisation (α ≈ 1) the resulting log-likelihood
becomes that of jointly independent Gaussian variables with covariance matrix ∆, and
vice versa with covariance matrix S for α ≈ 0, matching the intuition of Equation (2.2).
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2.3 Conjugate Bayesian framework

In a Bayesian framework, an STS estimator of the covariance matrix can be obtained in
closed-form by placing an inverse-Wishart prior on Σ [23, 52]. Adopting the parametri-
sation of Hannart and Naveau [52] (Section 1.15), we denote Σ |α,∆ ∼ Inv-Wishart(α,∆)
with α ∈ (0,1) and ∆ ≻ 0. Under this parametrisation it follows that E(Σ |α,∆) = ∆ and

E(Σ |X,α,∆) = α∆+ (1−α)S, (2.4)

thereby making explicit that the marginal posterior expectation E(Σ |X,α,∆) of Σ is an
STS estimator with shrinkage target equal to the prior expectation of Σ.

In recent work, Hannart and Naveau [52] introduced a general framework for
empirical Bayes estimation (through marginal likelihood maximisation) of α and ∆(θ)
when the shrinkage target is parametrised in terms of a low-dimensional vector θ. In
the particular case where the shrinkage target is fully specified a priori, the problem
of estimating α reduces to the optimisation of a univariate concave objective function.
Hannart and Naveau [52] observed that the empirical Bayes estimate of α is often close
to the value that minimises the mean square error. However, the uncertainty regarding
this estimate can be large in some cases (see Appendix A.1).

2.4 Incorporating uncertainty about α and ∆

In this section, we hierarchically extend the conjugate model introduced in Section 2.3
by placing independent hyper-prior distributions on α and ∆, such that the posterior
expectation of Σ remains available in closed-form. We place a uniform discrete prior on
α over the support A = {a1, . . . ,aK}, where 0 < a1 < · · · < aK < 1 and p(α = ak) = 1/K
for k ∈ {1, . . . ,K}. Similarly, we place a uniform discrete prior on ∆ over the support
D = {D1, . . . ,DL}, hereafter referred to as the target set. We assume that Dl ≻ 0 and
p(∆=Dl)= 1/L for l ∈ {1, . . . ,L}. Under these priors, the marginal posterior expectation
of Σ is given by

E[Σ |X] =

L∑
l=1

K∑
k=1
E[Σ |X,α = ak,∆ = Dl]p(α = ak,∆ = Dl |X), (2.5)

where

p(α = ak,∆ = Dl |X) =
p(X |α = ak,∆ = Dl)p(α = ak)p(∆ = Dl)∑L

q=1
∑K

k=1 p(X |α = ak,∆ = Dq)p(α = ak)p(∆ = Dq)
. (2.6)



2.4 Incorporating uncertainty about α and ∆ 21

and

p(X |α,∆) =
Γp

{ 1
2
( n

1−α + p+1
)} �� α

1−α∆
�� αn

1−α+p+1

(nπ)
np
2 Γp

{ 1
2
(
αn

1−α + p+1
)} ��S+ α

1−α∆
�� n

1−α+p+1 . (2.7)

In fact, under the discrete uniform prior assumptions for α and ∆, Equation (2.6) simply
becomes

p(α = ak,∆ = Dl |X) =
p(X |α = ak,∆ = Dl)∑L

q=1
∑K

k=1 p(X |α = ak,∆ = Dq)
. (2.8)

Note that Equation (2.5) is akin to a model average estimator [57] (Section 1.4.3),
combining individual STS estimators obtained from the statistical models indexed by
the support of (α,∆). The estimator in Equation (2.5) can also be re-formulated as

E[Σ |X] =

L∑
l=1

K∑
k=1

[akDl + (1− ak)S]p(α = ak,∆ = Dl |X) (2.9)

=

L∑
l=1

wlDl +

(
1−

L∑
l=1

wl

)
S, (2.10)

where

wl =

K∑
k=1

akp(α = ak,∆ = Dl |X) (2.11)

is a target-specific posterior weight synthesising the contribution of the target Dl relative
to the target set D. This reformulation shows that E[Σ |X] lies within the family of
multi-target linear shrinkage estimators: it is a convex combination between the MLE
and the target matrices D1, . . . ,DL . We refer to the estimator in Equation (2.10) as the
Target-Averaged linear Shrinkage (TAS) estimator, hereafter denoted by Σ̂TAS.

The proposed estimator has several desirable properties. First, it provides a generic
framework where any positive definite target matrix can be incorporated in the target
set D. Second, it is computationally attractive since the computation of Equation (2.10)
only requires K × L evaluations of the marginal likelihood of a Gaussian conjugate
model, which is available in closed-form via Equation (2.7) (with derivation in Appendix
A.2). Also, when an additional target matrix DL+1 is added to the set D, updating (2.10)
only requires K new marginal likelihood evaluations and subsequently re-distributing
the weights. Third, the target-specific weights wl may provide valuable insights (see
Sections 2.6, 2.7, 2.8).
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2.5 Choice of shrinkage target matrices

The performance of the TAS estimator depends on the choice of the set of target matrices
D, much alike the performance of STS estimators depends on the choice of the target
matrix ∆. Here, we discuss the choice of D.

In the absence of prior information, the set D may include, for example, the nine
target matrices described in Table 2.1. Such choice may be seen as a sensible starting
point due to the popularity of these nine targets in the literature. Note, however, that
some of the targets can be nearly identical in some cases (e.g. T 2 and T 5 when r̄ ≈ 0),
so the posterior weights in (2.11) must be interpreted with care. It is also possible to
further enrich this set with any covariance structures not listed in Table 2.1. Examples
include Toeplitz, higher-order autoregressive, or latent factor structures [e.g. 23, 69].

The set D may also be used to incorporate external information about Σ, provided
this can be translated into a positive definite covariance matrix. The availability of
such information may arise in situations where the same set of molecular variables has
been measured on an independent sample that is thought to be biologically related (e.g.
similar disease). In this case, a target matrix may be constructed using the sample co-
variance matrix of the auxiliary data, or regularised versions thereof. This is illustrated
in Section 2.8 using data from The Cancer Proteome Atlas.

zero correlation constant correlation decaying correlations
(ri j = 0) (ri j = r̄) (ri j = r̄ |i−j |)

unit variance (vi = 1) T 1 T 4 T 7

common variance (vi = s̄) T 2 T 5 T 8

unequal variances (vi = sii) T 3 T 6 T 9

Table 2.1 Popular choices of shrinkage target matrices for STS estimators. A shrinkage
target T = V 1/2RV 1/2, with V = diag{v1, . . . ,vp} a diagonal variance matrix and R =
(ri j)1≤i< j≤p a correlation matrix. Here, si j denotes the (i, j)th element of the sample
covariance matrix S; s̄ and r̄ are the averages of the empirical variances and correlations,
respectively.

2.6 Model-based simulation study

In this section, we study the performance of the proposed estimator using simulated
data. We generate M = 100 data sets of size n ∈ {25,50,75} from a p-variate Gaussian
distribution with zero mean vector and covariance matrix Σ, where p = 100. Four
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distinct covariance structures are considered, yielding the following four simulation
scenarios:

• Scenario 1: common variance, zero correlation. Σ1 = 5× I p×p,

• Scenario 2: unit variance, constant correlation. Σ2 = I p×p + 0.3× (1p×p −

I p×p), where 1q×r is the q× r unit matrix with elements all equal to one.

• Scenario 3: unequal variances, decaying correlations. Σ3 =D
1/2CD1/2, where

the (i, j)th entry of C equals (−0.7)|i− j | and D = diag(d1, . . . ,dp) with di ∼U(1,5).

• Scenario 4: unit variance, block-diagonal correlation. Σ4 ∼ Inv-Wishart, such
that E[Σ4] ∝ B, where B is a block-diagonal matrix with two identical p/2× p/2
blocks, each with the same constant correlation structure that was used in scenario
2.

These scenarios have been chosen to capture distinct covariance structures that are
represented in the default target set D = {T 1, . . . ,T 9} (i.e. T 2, T 4 and T 9 for scenarios
1, 2 and 3 respectively), as well as to include a case (scenario 4) that is not captured
by the target set D. Using data simulated under these scenarios, we compare the
performance of the multi-target shrinkage estimator Σ̂TAS, with target set D and the
nine STS estimators obtained when using each of the shrinkage targets in D separately,
e.g. Equation (2.10) using just a single target. These are denoted by Σ̂ST1, ..., Σ̂ST9. We
also consider the estimators of Schäfer et al. [95] and Touloumis [103], respectively
implemented in the R packages corpcor and ShrinkCovMat. The estimator of Schäfer
et al. [95] is an STS estimator obtained via a two-step approach in which the sample
variances are shrunk towards their median and the sample correlations shrunk towards
zero. We denote this estimator by Σ̂cpc. The estimators proposed by Touloumis [103]
are three non-parametric STS estimators (i.e. they do not rely on distributional assump-
tions) with shrinkage targets T 1, T 2, and T 3. We denote these by Σ̂AT1, Σ̂AT2, and
Σ̂AT3, respectively. Additional linear shrinkage estimators that were considered for the
comparison include those of Chen et al. [24], Fisher and Sun [44], and the single target
estimator from Ikeda et al. [59]. Within a multivariate normal framework, Chen et al.
[24] employed the Rao-Blackwell theorem to improve upon the estimator in Ledoit and
Wolf [70]. Instead of using less precise data-derived estimates of the optimal shrinkage
intensity, Fisher and Sun [44] improves estimation under the multivariate normal frame-
work by exploiting the assumed Gaussian properties in order to directly compute it.
Ikeda et al. [59] constructs non-parametric estimators of the optimal shrinkage intensity
that differ only by a small term from those of Touloumis [103]. These three methods
have been shown to perform worse than or equal to those in Touloumis [103] and so
they are not included in the comparison.
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To assess the performance of these 14 estimators, we report the Percentage Relative
Improvement in Average Loss (PRIAL) [103, 59]:∑M

m=1 ∥Σ−S(m)∥2
F −

∑M
m=1 ∥Σ− Σ̂

(m)∥2
F∑M

m=1 ∥Σ−S(m)∥2
F

∗100, (2.12)

where ∥ · ∥F denotes the Frobenius norm. The PRIAL measures the relative improvement
of an estimator Σ̂ over the sample covariance matrix S, across the M simulated data
sets. A negative value indicates that the estimator Σ̂ does not improve upon S, whereas
a positive value indicates an improvement. The improvement is relatively small when
the PRIAL value is close to 0% (in which case Σ̂ is relatively closer to S) and relatively
large when the PRIAL value is close to 100% (in which case Σ̂ is relatively closer to
Σ). The PRIAL can also be interpreted as the improvement of performing shrinkage
versus no shrinkage. When considering changes in PRIAL as n gets closer to p, it is
important to keep in mind that reductions in PRIAL are not necessarily an indicator of
diminishing performance of the shrinkage estimators; it is just that the sample estimator
could be benefitting more from the increase in sample size than the shrinkage estimators
are, which is entirely reasonable e.g. when the shrinkage targets do not capture the
underlying covariance structure. This is an artefact of the PRIAL metric.

Figures 2.1 and 2.2 summarise the results obtained for n= 25 (results for n ∈ {50,75},
which are similar to that of n = 25, are provided in Appendix A.4). Overall, we observe
that the performance of STS estimators clearly varies across the different simulation
scenarios, and that it may strongly depend on the choice of shrinkage target. Large
PRIAL values are observed for STS estimators when the shrinkage target resembles
the true covariance matrix (e.g. T 4 in scenario 2), whereas negative PRIAL values
(indicating that the estimator performs worse than the sample covariance matrix) are
observed in cases where the shrinkage target is misspecified (see scenario 2). In contrast,
the TAS estimator achieves a similar performance with respect to the best STS estimator
without having to choose the correct shrinkage target, and this even when the target
set does not contain the true underlying covariance structure (see scenario 4). This
highlights a key strength of the proposed multi-target estimator, namely that it is less
sensitive to misspecification of its targets.

As illustrated in the right panels of Figures 2.1 and 2.2, target-specific posterior
weights (see Equation (2.11)) can also provide insights about the structure of the true
covariance matrix Σ. For example, in scenario 3, TAS allocates the highest posterior
weight to shrinkage targets that match the underlying covariance structure of the data
(i.e. T 9). A similar behaviour is observed in scenario 1 and 2, although this is less clear.
Indeed, the shrinkage target T 6 is assigned the largest weight in scenario 2, while it
would be expected that T 4 has the highest weight. Similarly, the shrinkage targets T 3,
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T 6 and T 9 have high posterior weights in scenario 1 whereas it would be expected that
T 2 has the highest weight. However, closer inspection of the shrinkage targets (see
Appendix Figure A.7) shows that T 6 is almost equal to T 4 in scenario 2, and that T 3,
T 6 and T 9 are almost equal to T 2 in scenario 1. It is also observed that the distances (as
measured by the Frobenius norm) between each of these targets to the true covariance
matrix are almost equal (see Appendix Figure A.7). Additionally, in scenario 4, the
highest posterior weight is assigned to the shrinkage target T 6 that is the closest to
the true covariance matrix, along with targets T 4 and T 5. Overall, these simulations
suggest that shrinkage weights are capable to exclude (i.e. the posterior weight is equal
to zero) shrinkage targets whose shape is quite distinct to the true underlying covariance
structure. These results also show that having very similar shrinkage targets in the target
set D does not harm the performance of the TAS estimator, but that it may complicate
the interpretation of the (posterior) shrinkage weights. Thus we would recommend
that Frobenius distance between targets are systematically evaluated and considered
together with the shrinkage weights.

The non-parametric estimators Σ̂AT1,Σ̂AT2 and Σ̂AT3 perform in general better than
their parametric counterparts Σ̂ST1,Σ̂ST2 and Σ̂ST3. This suggests that, when using the
same shrinkage target, improved performance can be obtained by relaxing distributional
assumptions. However, alike the behaviour observed for Σ̂T1, . . . ,Σ̂T9, the performance
of Σ̂AT1, . . . ,Σ̂AT3 can also be affected by the choice of shrinkage target (see scenarios 1
and 3). Finally, on average, we observe that the proposed multi-target TAS estimator
performs similarly to Σ̂cpc (scenarios 1 and 3) or better (scenario 2 and 4, where the true
covariance matrix has a more dense structure). However, this is not true for scenario 4
n = 75 (Figure A.6).
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(b) Scenario 1: target-specific posterior
weights
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(d) Scenario 2: target-specific posterior
weights

Fig. 2.1 Simulation results for scenarios 1 and 2 when n = 25. Barplots display the
PRIAL for each estimator and boxplots display target-specific posterior weights (see
Equation (2.11)) of the TAS estimator. ST1, . . . , ST9 refer to the nine STS estimators,
TAS to estimator (2.10), AT1, . . . , AT3 to the three estimators of Touloumis [103] and
CPC to the estimator of Schäfer et al. [95].

2.7 Predictive validation simulation

Here, we employ gene expression data from The Cancer Genome Atlas (TCGA) and
a data partitioning strategy to assess the performance of the estimator in Equation
(2.10) and evaluate the benefits of incorporating external information into the target set
D. We retrieved, using the R package cgdsr [61], all TCGA level 3 normalised gene
expression data that were measured using the Agilent 244K Custom gene Expression
G4502A_07 array. The data span 10 cancer types. However, we consider the following
two low-dimensional extracts:

• Data set 1: p53 pathway in breast cancer (p = 68 genes in N = 529 samples)
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(b) Scenario 3: target-specific posterior
weights
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(d) Scenario 4: target-specific posterior
weights

Fig. 2.2 Simulation results for scenarios 3 and 4 when n = 25. Barplots display the
PRIAL for each estimator and boxplots display target-specific posterior weights (see
Equation (2.11)) of the TAS estimator. ST1, . . . , ST9 refer to the nine STS estimators,
TAS to estimator (2.10), AT1, . . . , AT3 to the three estimators of Touloumis [103] and
CPC to the estimator of Schäfer et al. [95].

• Data set 2: apoptosis pathway in ovarian cancer (p = 86 genes in N = 558
samples)

As the true covariance structures between genes in these two data sets are un-
known, we use a data partitioning strategy [105, 68] to assess the performance of
estimators Σ̂TAS, Σ̂AT1, Σ̂AT2, Σ̂AT3 and Σ̂cpc (in light of the results shown in Section
2.6, Σ̂ST1, . . . ,Σ̂ST9 are excluded from this comparison). The strategy is illustrated in
Figure 2.3. For a given data set, the strategy consists of randomly splitting the full data
matrix (p× N) into a small sample size (p× n) and a large sample size (p× (N − n))
data matrix, for n ∈ {p/4,p/2,3p/4}. Given this partition, all estimators are computed
using the small sample size data matrix, whereas the sample covariance matrix obtained
from the large sample size data matrix is used as a proxy for the true covariance when
calculating the PRIAL (see Equation (2.12)). This procedure is repeated 1,000 times
for data sets 1 and 2, and for the three different values of n investigated.
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Fig. 2.3 Illustration of the data-partition strategy.

To illustrate the benefits of incorporating external information into the target set,
we also consider the multi-target shrinkage estimator Σ̂TAS-info with target set Dinfo =

D∪ Σ̂ext, where Σ̂ext is an estimate of the covariance between genes that is obtained
from independent data. For data sets 1 and 2, we obtain such estimates by pooling
the TCGA gene expression data from the nine other cancer types for which expression
levels were measured using the Agilent platform. To ensure that Σ̂ext is positive definite
and well-conditioned, we use a regularised estimate (obtained using Equation (2.10))
instead of the pooled sample covariance.

Figure 2.4 summarises the results for the experiment described above. Overall,
for data set 1, all estimators achieve a similar PRIAL regardless of n/p ratios (Fig-
ure 2.4(a)). For data set 2, however, we observe that Σ̂TAS-info (and to a lesser extent
Σ̂TAS) outperforms all other estimators. This highlights another key strength of the
TAS estimator: its ability to incorporate external information within the target set can
substantially improve performance.

Figure 2.5 shows the distribution of target-specific posterior weights (see Equa-
tion (2.11)) in estimators Σ̂TAS and Σ̂TAS-info across the 1,000 random data partitions
performed for data set 2 . We observe in Figure 2.5(a) that the shrinkage target T 6

(constant correlation and unequal variances) is assigned the largest weight in estimator
Σ̂TAS, among all targets. This may be due to the fact that genes within the apoptosis
pathway are expected to have high correlations between each other. Therefore, the
shrinkage estimation of the covariance matrix may benefit from a shrinkage target
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Fig. 2.4 Results of the TCGA gene expression predictive validation simulation. Barplots
display the PRIAL calculated for each estimator for (a) data set 1 (p53 pathway, breast
cancer samples) and, (b) data set 2 (apoptosis pathway, ovarian cancer samples).

whose off-diagonal elements are not equal to zero. On the other hand, we observe in
Figure 2.5(b) that the shrinkage target Σ̂ext, derived from external data, is assigned the
largest weight in estimator Σ̂TAS-info. This is in line with the results shown in Figure 2.4,
where the incorporation of external information substantially improved performance in
data set 2. Appendix Figures A.8 and A.9 show that Σ̂TAS-info also puts more weight on
the shrinkage target Σ̂ext for data set 1, which results only in a small improvement in
PRIAL (see Figure 2.4(a)). Overall, complementary results in Appendix A.5 for other
n/p ratios show, as expected, that when n increases, both Σ̂TAS and Σ̂TAS-info put more
weight on the sample covariance matrix in both data sets. Also, in Appendix Figure
A.11 are heatmaps to show the similarity between targets.

Finally, while the multivariate normal assumption does not seem to be supported
by these two gene expression data sets (see Appendix A.6), it is found that the non-
parametric estimators of Touloumis [103] do not generally outperform the TAS es-
timator, which assumes multivariate normality. In fact, the opposite can occur for
specific choices of target matrices (e.g. when external information is included). This
may suggest that accounting for multiple shrinkage target matrices may be more critical
than flexible distributional assumptions.

2.8 Application to protein expression data

In this section, we apply our method to protein expression data from The Cancer
Proteome Atlas (tcpaportal.org/tcpa). In particular, we consider the PANCAN32 data
set, focusing on level 4 normalised expression levels of 209 proteins that were measured
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(b) Σ̂TAS-info

Fig. 2.5 Target-specific posterior weights (see Equation (2.11)) obtained for estimators
Σ̂TAS and Σ̂TAS-info across the 1,000 random data partitions of the ovarian cancer data
set when n = p/2. The target “ext” in Σ̂TAS-info stands for the shrinkage target Σ̂ext
estimated from external data.

on 7,694 samples across 32 cancer types. Appendix Table A.1 provides for each cancer
type its acronym and the number of samples.

We first use the TAS estimator to estimate the covariance between the 209 pro-
teins separately for three histologically different cancers, namely cholangiocarcinoma
(CHOL), liver hepatocellular carcinoma (LIHC) and rectum adenocarcinoma (READ).
For each of these three data sets, the target set of the TAS estimator includes the nine
targets of Table 2.1 (denoted T 1, . . . , T 9), 31 targets derived from each of the other
cancer types (which we will refer to by their acronyms in Appendix Table A.1) and one
target obtained by pooling the data from the 31 cancer types (referred to as PANCAN).
To ensure that shrinkage targets derived from independent data sets are positive definite
and well-conditioned, we use the TAS estimate using the nine targets of Table 2.1
instead of the sample covariance matrix (however any other regularisation technique
may be used instead).
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(a) Cholangiocarcinoma (CHOL)
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(b) Liver hepatocellular carcinoma (LIHC)
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(c) Rectum adenocarcinoma (READ)

Fig. 2.6 Target-specific posterior weights in estimators Σ̂TAS when analysing a) the
cholangiocarcinoma, b) liver hepatocellular carcinoma and, c) rectum adenocarcinoma
proteomic data sets.

Figure 2.6 reports target-specific posterior weights (see Equation (2.11)) of the TAS
estimator obtained for each of these three data sets. This shows that the TAS estimator
assigns large weights to different types of shrinkage targets across these datasets. For
example, the PANCAN shrinkage target (that pools data from the 31 remaining cancers)
is assigned a large weight in the Cholangiocarcinoma (CHOL) data set but not in the
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other two data sets. Virtually no weight is attributed to any of the targets derived from
external data in the Liver hepatocellular carcinoma (LIHC) data set, whereas in the
Rectum adenocarcinoma (READ) data set a large weight is assigned to the shrinkage
target derived from the colon adenocarcinoma (COAD) cancer data. For the latter, it
is biologically plausible that the dependence structure between proteins in rectum and
colon adenocarcinoma samples are similar because both tumours are histologically
related. Overall, these observations support the conclusions that covariance estimation
may or may not benefit from the incorporation of external information and that, when it
does, estimation can benefit both from generic (e.g. the PANCAN shrinkage target) and
specific (e.g. the COAD shrinkage target) prior information.
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Fig. 2.7 Posterior shrinkage weights obtained by the TAS estimator. Columns represent
the shrinkage targets comprised in the target set of the TAS estimator. Elements on the
diagonal represent shrinkage weights associated with the sample covariance of the data
set. The per-row sum is equal to one.

We now illustrate that the TAS estimator can provide insights regarding the relation-
ship between the 32 cancer types shown in Table 2.1. For each of the 32 cancer data
sets, we consider the TAS estimator with target set comprising of 31 shrinkage targets
derived from the other 31 cancer types. We use the same strategy as above to make sure
the shrinkage targets are positive definite and well-conditioned. Figure 2.7 displays the



2.9 Software 33

posterior shrinkage weights obtained by the TAS estimator for each of the 32 cancer
data sets. Our results suggest that high posterior weights might indicate similarity
between cancers in terms of covariance structures. In particular, the target-specific
posterior weights suggest a relatively high similarity between cancers with known
putative biological similarity: (a) lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC), both subtypes of non-small cell lung cancer [40]; (b) COAD
and READ, both colorectal cancers [79] and (c) breast invasive carcinoma (BRCA) and
ovarian serous cystadenocarcinoma (OV), with known common susceptibility genes
[63]. These pairs of cancers have been also shown to be similar by pancancer analyses
of previous releases of the TCPA dataset [e.g. 97]. Additionally, our results suggest
a high similarity between esophageal carcinoma (ESCA) and cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC). Both of these cancers have been
found to be linked to human papillomavirus [107, 72].

Figure 2.7 also suggests that covariance estimation for cancers with small sample
size can benefit from shrinkage towards cancer types with a large number of samples.
Examples include adrenocortical carcinoma (ACC; n = 46) with kidney renal papillary
cell carcinoma (KIRP; n = 208), uterine carcinosarcoma (UCS; n = 48) with sarcoma
(SARC; n = 221), as well as cholangiocarcinoma (CHOL; n = 30) with bladder urothe-
lial carcinoma (BLCA; n = 344). Despite this, no posterior weight was allocated to
other cancer types in the case of Uveal melanoma (UVM; n = 12). This could be a
consequence of its very small sample size, or it may suggest that protein interactions
in UVM are unrelated to that of the other cancers. Future releases of TCPA, in which
more samples are available, could enable us to confirm this.

2.9 Software

The TAS method is available as an R package TAS at http://github.com/HGray384/TAS.
The main function in TAS is of course the implementation of the TAS estimator in
Equation (2.10), whose corresponding function is taShrink. The function allows
the user full flexibility over the model parameters. The input parameters targets
and alpha allow the user to specify the sets D and A. As default, D comprises the
nine shrinkage targets defined in Table 2.1 and the argument without allows the user
to conveniently exclude some of the targets from this default set without having to
manually input them.

The default support A is set as {a1 = 0.01,a2 = 0.02, . . . ,a99 = 0.99} (note that
increasing the granularity of this grid does not affect results; see Appendix A.3).
However, these choices can easily be modified when using the software. We remark that
the K × L marginal likelihood evaluations that are required to compute Equation (2.10)

http://github.com/HGray384/TAS
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can easily be parallelised to further reduce computational time. We observe, however,
that this is not critical in practice (see Table 2.2).

p = 100 p = 500 p = 1000
n = 100 0.08 4.46 33.61
n = 250 0.09 4.68 33.21
n = 500 0.10 5.14 34.14

Table 2.2 Average time in seconds (over 100 repetitions) to compute the TAS estimate
(using the nine targets in Table 2.1) as a function of the number n of samples and p of
variables. Timings were measured on a Dell OptiPlex7040 with Intel Core i7-6700CPU.

The option plots allows the user to choose whether to display the posterior weights
of Equation (2.11) as a bar chart as part of the function call to taShrink, generating
graphics similar to Figures 2.1, 2.2, and 2.6. To demonstrate the exact output, we
simulate n = 5 data vectors from N(0,I10×10) so that p = 10 and Σ = I10×10 and apply
taShrink with plots=TRUE, shown in Figure 2.8.
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Fig. 2.8 Posterior shrinkage weights obtained by the TAS estimator for n = 5 data
vectors with p = 10 generated from N(0,I10×10) so that Σ = I10×10.

The option shrink.var in taShrink is a feature currently under development that
will allow the user to only shrink correlations, i.e. disabling the shrinkage of variances.
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This is useful for shrinking correlations and variances separately, and therefore allowing
a different shrinkage parameter for each, as in Schäfer et al. [95]. Another feature that
is under development for taShrink is the option grid.corr. This input will allow the
user to specify a grid of correlation values around the estimated correlation parameter r̄
used in the target matrix (Table 2.1). This can be seen as giving the user the range of
uncertainty to be considered around the sample correlation estimate.

taShrink uses the function getTargetSet to construct the default target set and
logML to compute the log marginal-likelihood of the data given each target. Both
of these functions are implemented using a back-end interface to C++ through the
Rcpp [34] and RcppArmadillo [35] R packages. The Rcpp package presents a useful
tool for statistical software that is to be used in an applied context since it retains the
friendly surface elements for users of R whilst allowing developers to implement their
code in ways that are typically restrictive when using only base R, e.g. performing
heavy computations more quickly. The RcppArmadillo package takes this further,
by allowing the developer to access the C++ linear algebra library Armadillo [93] for
efficient implementations of many data structures and manipulations using syntax that
is not as challenging as that of C++. Although there are no heavy computations used
within getTargetSet, populating the entries of the target matrices can take some time
for large p using base R. Finally, the weights from Equation (2.11) are recovered from
the output of logML via the log-sum-exp trick [77] to avoid numerical underflow.

When only one target is provided to taShrink, then single target shrinkage is
performed via the function gcShrink with the option weighted=TRUE. This results in
single-target shrinkage performed as in Equation (2.10) with one target, i.e. averaging
the uncertainty over the shrinkage weight only. The corresponding C++ function for
single target construction getTarget is then called and logML is evaluated for that target
and grid of α. When gcShrink is called by itself with the option weighted=FALSE,
then only the value of α that maximises the log marginal-likelihood is used as the
shrinkage intensity (i.e. all of the posterior weight is assigned to this value) and the
empirical Bayes estimator of Hannart and Naveau [52] is therefore employed. The
plots option allows a graphical display of the log marginal-likelihood evaluated at
each value of α, including clear visualisation of the value with the highest marginal
likelihood. Figure 2.9 shows the output of gcShrink with plots=TRUE for n = 5 data
vectors from N(0,I10×10) so that p = 10 and Σ = I10×10 using the truth I10×10 as the
target.
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Fig. 2.9 Log marginal-likelihood values obtained by the TAS estimator for n = 5 data
vectors with p = 10 generated from N(0,I10×10) so that Σ = I10×10 and I10×10 is used
as the only target.

The output from taShrink can be used by the auxiliary functions addTarget,
targetSimilarities, and targetWeights to rerun TAS with an extra target, com-
pare the similarity of the targets in the target set, and to inspect the posterior weights
assigned to each target and the sample covariance matrix, respectively. Notably,
addTarget is much more efficient than rerunning TAS with the whole target set again
since only the log marginal-likelihood values of the new target are needed to re-weight
with those of the previous targets in order to re-estimate TAS, as highlighted in Section
2.4. The output of targetSimilarities is shown in Appendix Figure A.7 for the
model-based simulations.

2.10 Discussion

We proposed a flexible, yet computationally simple, Bayesian covariance estimator
that can accommodate an arbitrary number of shrinkage target matrices. The estimator
is particularly useful in high-dimensional settings (n << p), where shrinkage is most
important, and when external information is available. For these reasons, the present
work is particularly relevant in the context of high-throughput genomic experiments
due to (i) the central role that covariance estimation plays in multivariate data analyses,
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(ii) the high-dimensionality of the data and, (iii) the increasing availability of large
open data repositories (e.g. TCGA) which can provide relevant external information for
specific studies.

To the best of our knowledge, only Bartz et al. [6], Lancewicki and Aladjem [64] and
Ikeda et al. [59] have proposed multi-target linear shrinkage estimators for covariance
estimation. Numerical comparison with these methods has not yet been performed and,
in part because no implementations of them are provided.

Both Bartz et al. [6] and Lancewicki and Aladjem [64] independently developed
the same multi-target linear shrinkage estimator for covariance matrices. Bartz et al.
[6] focusses on the general method of multi-target linear shrinkage (e.g. not limited to
only covariance matrix estimation) and also provides the theory to establish consistency
of the estimator in high-dimensional situations. Lancewicki and Aladjem [64] instead
focusses solely on covariance matrix estimation using multi-target linear shrinkage, in
particular deriving an optimisation function to estimate the optimal shrinkage intensities
for a general form of target matrix that encompasses several of those in Table 2.1. The
function has the attractive property that it is strictly convex and so can be solved using
appropriate algorithms.

In practice, it is unclear how much computational time is needed to solve this
optimisation function (though it is strictly convex) and if it is feasible for large problems.
Lancewicki and Aladjem [64] present simulation results for p = 50 and n ≤ 30, and the
maximum that Bartz et al. [6] present is p = 500, n = 500 – neither present computing
time for the user. Additionally, for a large number of targets or targets that are very
similar, the optimisation problem is ill-posed [64].

These frequentist methods are conceptually different to the TAS estimator. They
focus on estimating the weights that produce an optimal linear combination of targets
(in the mean-square sense). This differs from the TAS approach in which multiple
shrinkage targets are weighted according to their individual model evidence. TAS is
focussed upon incorporating uncertainty rather than achieving optimality. On inspection,
it would also appear that the computational simplicity of TAS means that it will be
more scalable than these methods to large problems and many targets, though this will
require more thorough analysis. Additionally, TAS is not limited by similarity of targets
in the target set, although interpretation of the assigned weights does become less clear
in this situation.

Independent of this work, Ikeda et al. [59] have proposed a two-target shrinkage
estimator also motivated from a conjugate Bayesian perspective. Ikeda et al. [59] opt to
take a different approach to Hannart and Naveau [52] when estimating the shrinkage
weights. Instead of choosing the shrinkage intensity that maximises the marginal
likelihood as in Hannart and Naveau [52], they decide to take a decision theoretic
approach and choose the shrinkage parameter that minimises the expected MSE of
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the multi-target estimator. It is clear that in this way the estimator of Ikeda et al. [59]
also differs from TAS, which uses the marginal likelihood to weight each proposed
shrinkage intensity. Again the difference can be seen as incorporating uncertainty rather
than achieving optimality. Peer-reviewers have identified the comparison of all of these
multi-target shrinkage estimators as a necessary piece of future work for publication of
TAS.

In TAS, a uniform prior distribution is imposed on the support of the shrinkage
intensity α. This expresses a belief that, a priori, there is no reason to favour shrinkage
towards the target matrix over the sample covariance matrix. In addition to the inde-
pendence assumption between the priors on α and ∆, this belief is expressed for every
target in the target set D. In principle, the uniform assumption on the prior of α may be
relaxed. However, this might not be desirable without also relaxing the independence
assumption between the priors of α and ∆, since otherwise the belief about the shrinkage
intensity is propagated across all target matrices. Such a belief might be reasonable
with knowledge only of the ratio n/p since the higher the dimensionality then the more
shrinkage is expected and we have no other information about the data in order to
favour any single target. However, paradoxically, this requires prior information about
the data. Unfortunately though, relaxing the independence assumption means that the
computation of Equation (2.6) is greatly increased. In this situation, the computational
simplicity of linear shrinkage is violated and a more complex modelling approach
would be advised. Therefore, the simple prior assumptions that TAS adopts express an
appropriate level of uncertainty whilst remaining coherent with the methodology on
which it is based.

TAS tends to allocate more weight to the most complex target matrices in the default
target set, e.g. those with more parameters such as the unequal variance structure. This
is done even when competing simpler target matrices achieve a similar, or higher, PRIAL
— indicating that overfitting is present. The main source for this is that the parameters
that characterise each of the default targets, namely the variance and correlation, are
estimated from the data itself and the model does not penalise this. Though seemingly
arbitrary, Hannart and Naveau [52] show that these values are often MLEs after more
formally parametrising the target matrix and therefore represent another empirical
Bayes-type procedure. Because of this, the marginal likelihood is more likely to
favour the unequal variance structure that uses the sample variances as plug-in values.
Clearly, a fully Bayesian treatment of these parameters would be most desirable, yet
unsurprisingly it increases computational complexity. One heuristic approach to avoid
this in TAS is by specifying a range of values for each parameter and then constructing
target matrices that exhaust these values.

We envisage two main extensions for our work. Firstly, much like the performance
of STS estimators depends on the choice of a target matrix, the performance of the
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proposed TAS estimator depends on the choice of a target set. In the absence of
relevant prior information, we constructed a default target set using shrinkage target
matrices that are popular in the STS literature. However, further research is required to
determine a more comprehensive and generic default target set. Such a target set would
ideally cover a wide range of structures, to ensure that there is enough flexibility in the
shrinkage. The latter must also take into account that, if the chosen target set contains
shrinkage targets with overlapping shape, shrinkage weights need to be interpreted
together with the pairwise Frobenius distance between targets, and their distance to the
empirical covariance. Finally, it would be useful to extend the present work to non-
Gaussian settings to allow for example the analysis of count data obtained from RNA
sequencing experiments. These experiments provide greater specificity with higher
throughput than array-based technologies. Potential avenues include hierarchical latent
representations [3, 48] and data transformation strategies [28, 18, 113]. Nonetheless, as
normal approximations can have good performance in RNA sequencing data [e.g. 65],
we foresee that the current TAS estimator might have practical utility in such contexts.





Chapter 3

Covariance estimation through
Probabilistic Principal Component
Analysis

3.1 Introduction

In the previous chapter, we considered linear shrinkage estimators for covariance matrix
estimation. In the present chapter, we consider probabilistic principal component
analysis (PPCA) [92, 102], a model-based generalisation of conventional principal
component analysis (PCA), which is primarily used for dimension reduction. PPCA
is a specific type of factor model with isotropic Gaussian noise, where inference of
model parameters is typically performed via maximum likelihood estimation using
the expectation-maximisation (EM) algorithm or, under a Bayesian framework, using
variational Bayesian (VB) inference.

As well as putting PCA on a principled, probabilistic footing, the PPCA model
provides an estimate of the covariance matrix and its inverse. The interpretation of PPCA
as a covariance model of high-dimensional data has long been known (e.g. Section 4.3
of [102]), but it has been under-used in practice. This is despite having two substantial
benefits: (i) the generative data model allows missing values to be straightforwardly
handled and, (ii) due to its low-dimensional representation, the inverse of a PPCA
covariance matrix can be computed very efficiently.

Ma [73], Cai et al. [22] both consider the PPCA model as a means for high dimen-
sional covariance matrix estimation, focussing on sparse estimation of the columns
of the loadings matrix W via hard-threshold penalisation. This leads to estimates of
W that retain the most important latent directions of variance, and estimate the least
important directions by the zero vector. This can be seen as reducing estimation error
from variance at the cost of increasing potential bias from false zero values. Although
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this a large area of the literature for regularisation, in this thesis we do not focus on
sparse estimation and so we do not revisit these works in this Chapter.

Fan et al. [42, 43, 41] considers AFM for high dimensional covariance matrix
estimation. The basis of the method is also to apply a threshold. Instead, the threshold
is applied to the dense covariance matrix of the sample errors Ê, which is obtained
from S in the sample analogue of Equation (1.7). Again, the purpose is to reduce
error by discarding small variance, at the expense of introducing bias through sparsity.
This model has been well-studied by the authors and many theoretical properties have
been established for it using classical and high-dimensional asymptotics [42, 43, 41].
However in this Chapter, we restrict our scope to PPCA models only and so do not
revisit this either.

One thing to note about the papers mentioned above, and the factor model references
from Section 1.3.2, is that they are complex notationally, mathematically, and most are
computationally too. At the same time, it is not uncommon for the derivations of results
to not be presented and software to implement the methods to not be available. This
presents a limitation when attempting to numerically compare methods, especially for
those new to the field or unfamiliar with the technical details contained within. This is
augmented by the natural variation in notation used by different authors. This motivates
some of the contributions of the present Chapter.

In this Chapter, we (i) provide a unified overview and comparison of three existing
algorithms for performing PPCA, (ii) extend an existing PPCA method to the case of
missing values, (iii) provide detailed mathematical derivations that are missing from the
literature, (iv) provide more efficient implementations of these algorithms, (v) present
these algorithms in a well-documented open source R-package pcaNet available at
http://github.com/HGray384/pcaNet, (vi) illustrate its usefulness on synthetic as well as
real data, and (vii) discuss the use of PPCA for high-dimensional (inverse-) covariance
matrix estimation. Throughout, we focus on computational aspects, particularly on
the treatment of missing values and on how to select an appropriate number of latent
dimensions.

This chapter is organised as follows. In Section 3.2, we introduce the PPCA model
and properties of the associated covariance matrix estimator. In Section 3.3, we present
maximum likelihood estimation of the PPCA model with and without missing values
using EM algorithms. Section 3.4 presents Bayesian estimation of the PPCA model
as well as fast approximate inference using VB with and without missing values. In
Section 3.5, we discuss the selection of the latent dimension size in the context of
covariance matrix estimation. Section 3.6 highlights the attractive property of the PPCA
model for computing the inverse covariance matrix. Section 3.7 presents numerical
simulations from model-based data-generation protocols of the three PPCA algorithms
to see how they compare with varying numbers of missing values and data dimensions

http://github.com/HGray384/pcaNet
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in terms of covariance estimation accuracy and timing. In Section 3.8 we compare the
performance of three PPCA algorithms on real data. In Section 3.9 we apply our method
to the Arabidopsis thaliana dataset. Finally, Section 3.10 concludes with a discussion of
the results presented in this chapter.

3.2 The PPCA framework

Recall from Section 1.3.2 that the PPCA model is

x j =Wz j + µ+ ϵ, (3.1)

where x j is a p-dimensional observation (column) in the data matrix X = (x1, . . . ,xn),
and z j is a column of Z = (z1, . . . , zn) containing latent factors z j ∈ R

q. The p× q
projection matrix W links the two sets of variables, while µ permits the model to have
non-zero mean. Noise is incorporated into the model through ϵ . In PPCA, an isotropic
Gaussian noise model is assumed, so that ϵ ∼ N(0,σ2I p×p). This can be interpreted
as each of the p dimensions of x j having independent random variances of equal
magnitude σ2. We note that x j may possess missing values and assume throughout that
these are missing at random [71].

The latent variables are defined to be independent and identically distributed
Gaussian variables with unit variance, i.e. z j ∼ N(0,I q×q). We have that x j |z j ∼

N(Wz j + µ,σ
2I p×p), therefore marginalising over z j gives x j ∼ N(µ,Σ), where

Σ =WW⊤+σ2I p×p. (3.2)

Σ is therefore the covariance matrix for the data assuming the PPCA model. This
formulation of Σ is highly structured, with covariance information contained within
WW⊤. The extra variance information contained within the diagonal matrix σ2I p×p

can be seen as a regularising term. The rank of the matrix W is q ≪ p since it represents
a projection of the latent variables into the observed space. This means that the matrix
WW⊤ is rank deficient, also with rank q ≪ p. This equates to the smallest p− q
eigenvalues of WW⊤ being equal to zero. The addition of the term σ2I p×p effectively
sets these smallest eigenvalues to be equal to σ2 and so yields a matrix of full rank
that can be considered an acceptable covariance matrix. The result is that Σ is now
invertible, hence a solution has been found by constraining the set of possible covariance
matrices to those of the form of Equation (3.2). Note that Σ of this form may not be
well conditioned. This is the case whenever σ2 is small, or the largest eigenvalue of
WW⊤ is very large.
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Equation (3.2) indicates that estimation of the covariance matrix, Σ, can be addressed
via inference of W and σ. This can be performed via Bayesian or non-Bayesian methods
[92, 102, 15]. We first discuss the latter.

3.3 Non-Bayesian methods

In this section, we inspect non-Bayesian approaches to perform inference under the
model displayed in Equation (3.1). These estimation procedures rely upon maximum
likelihood estimation. Whilst a closed form solution for the maximum likelihood esti-
mates exists, we show that their computation can be challenging for high-dimensional
and incomplete datasets. In this situation, the EM algorithm [75] provides a way to
perform maximum likelihood estimation whilst overcoming these challenges.

3.3.1 Closed-form maximum likelihood inference

According to the PPCA model x j ∼N(µ,Σ) for each independent sample x j , j = 1, . . . ,n.
The log-likelihood is then:

lnp(X |µ,W ,σ2) = −
np
2

ln2π−
n
2

ln |Σ | −
1
2

n∑
j=1

(x j − µ)⊤Σ−1(x j − µ). (3.3)

The maximum likelihood solutions are obtained analytically [102] as

µML = x̄ =
1
n

n∑
j=1

x j, (3.4)

WML = U(Λ−σ2
MLI q×q)

1
2 R, (3.5)

σ2
ML =

1
p− q

p∑
s=q+1

λs, (3.6)

where U = (u1, . . . ,uq) is the matrix of eigenvectors of S which correspond to its q
largest eigenvalues λ1, . . . ,λq (in decreasing order or magnitude), Λ is the diagonal
matrix whose non-zero elements correspond λ1, . . . ,λq, and R is an orthogonal matrix.

Despite the convenient availability of these estimators in closed-form, they come
with notable disadvantages for our purposes. In particular, WML and σ2

ML rely upon
the eigen-decomposition of S. In high-dimensional situations, the eigenvalues and
eigenvectors are not reliable since they are biased. In addition, they are unavailable
for an incomplete data matrix, e.g. when there are missing values. Here, we focus on
two alternative implementations (based on the EM algorithm) that are able to overcome
these challenges [92, 60].
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3.3.2 Estimation using EM

The EM algorithm is a method for finding maximum likelihood solutions for models
with latent variables [75]. The general idea is to maximise a lower bound of the
logarithm of the likelihood. The EM algorithm guarantees an increase in the lower
bound at each iteration until it converges to the global solution. If the global maximum
has been found, then the parameters that are estimated to maximise the lower bound at
convergence are then equal to the maximum likelihood solutions (Section 1.3.3). We
first consider the EM application to the PPCA model without missing values. Then we
focus on the implementations of [98] and [60], who incorporate the presence of missing
values.

EM algorithm in PPCA without missing values

In this section, we present the E and M step updates for the algorithm, with the full
derivation being provided in Appendix B.1. Since the update equations are available
in the literature, the contribution of this Section is to provide the full derivations in a
consistent notation.

E step

In the E step, we update the moments of the latent variables as follows:

E
[
z j

]
= M−1W⊤(x j − µ) (3.7)

E
[
z j z

⊤
j

]
= σ2M−1+E

[
z j]E[z j

]⊤
. (3.8)

M step

In the M step, we update the model parameters using:

µnew =
1
n

n∑
j=1

(
x j −WE

[
z j

] )
. (3.9)

W new =
©­«

n∑
j=1

(x j − µ)E
[
z j

]⊤ª®¬©­«
n∑

j=1
E

[
z j z

⊤
j

]ª®¬
−1

(3.10)

σ2
new =

1
np

n∑
j=1

∥x j − µ∥2+Tr
[
E

[
z j z

⊤
j

]
W⊤

newW new

]
−2E

[
z j

]⊤
W⊤

new(x j − µ), (3.11)
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Implementation

The EM algorithm then consists of randomly initialising σ2 and W , and then iteratively
evaluating Equations (3.7), (3.8), (3.9), (3.10) and (3.11).

EM algorithm in PPCA with missing values

We now consider two adaptations of the above EM algorithm in situations when there
are missing values. Adopting the notation of Ilin and Raiko [60], we define O to be
the set of indices i, j for which xi j is observed (i.e. non-missing), Oi to be the set of
indices j for which xi j is observed for a fixed i = 1, . . . ,p, and O j to be the set of indices
i for which xi j is observed for a fixed j = 1, . . . ,n. We also denote the sub-vector of x j

that contains only its observed (i.e. non-missing) values as x
(O j )

j , noting that its length
will now be |O j |. Similarly, we denote µ(O j ) to be the corresponding mean vector of
x
(O j )

j , and use a similar notation for other vectors. Analogously, we denote W (O j ) as the
(|O j | × q) sub-matrix of W that has only retained the rows with indices i ∈ O j , and use
a similar notation with other matrices.

EM algorithm 1

We consider the algorithm of Stacklies et al. [98] that is identical to that described in
Section 3.3.2, except that (i) the empirical mean calculated using only the observed (i.e.
non-missing) values is initially subtracted from the data, and then µML is assumed to
be zero and (ii) at the start of each E step, the missing values are replaced with their
projection estimates. That is, if xi j is a missing value, it is estimated as the i-th element
of WE[z j], where W is from the latest M step, and E[z j] is from the latest E step.

The assumption that µML is equal to the empirical mean using only the observed
values is made so that it may be omitted from the estimation steps. It is important to note
that this is a heuristic step, since this empirical mean is not the maximum likelihood
estimate of µ. It is unclear whether or not this provides a reasonable approximation in
practice, and equally unclear as to the impact this has on the quality of the estimated
values for the other parameters.

Although the full derivations are not presented by the authors for this algorithm,
there is sufficient detail in Porta et al. [87] (and the accompanying technical note by
Jacob Verbeek) to be able to derive the equations independently. The contribution of this
Section is therefore in providing all of the derivations (Appendix B.2) in a consistent
(with respect to other methods) notation. The update equations are available in the
original publications.
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E step

For the E step, we have

E
z j,x

(Mj )

j

[
z j

]
=M−1W⊤ x̃ j, (3.12)

E
z j,x

(Mj )

j

[
z j z

⊤
j

]
=σ2M−1+E

z j,x
(Mj )

j

[
z j

]
E
z j,x

(Mj )

j

[
z j

]⊤ (3.13)

E
z j,x

(Mj )

j

[
x
(Mj )

j

]
=W (Mj )Ez j

[
z j

]
. (3.14)
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z j,x
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j
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x
(Mj )

j x
(Mj )⊤

j

]
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j

]
E
x
(Mj )

j ,z j

[
x
(Mj )

j

]⊤
.

(3.15)

where M =W⊤W +σ2I q×q, and x̃ j is x j for x(O j )

j and E
x
(Mj )

j

[
x
(Mj )

j

]
for x(Mj )

j , i.e. with

missing values replaced by their expectation.

M step

For the M step, we get

W new =X̃Z
⊤
(
nσ2M−1+ZZ

⊤
)−1

, (3.16)
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1
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]



2
+σ2
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(p− |O j |)
ª®¬ .

(3.17)

Implementation

The algorithm is executed by subtracting µML from the dataset and then iterating through
Equations (3.12), (3.13), (3.14), (3.15),(3.16), (3.17) until convergence. Note that these
updates depend upon the current estimate of the missing values.

EM algorithm 2

Here we consider the algorithm of Ilin and Raiko [60]. This approach differs to that of
Stacklies et al. [98] in that µ is updated at each iteration and only the observed values
are used in the expectation and parameter updates.

Again, for this algorithm the update equations are available in Ilin and Raiko
[60]. This means that the contribution of this Section is to present the full derivations
(Appendix B.3) in notation that is consistent with the other algorithms within this
Chapter.
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E step

Analogously to Equations (3.7) and (3.8), the E step updates are

E[z j] =
(
M (O j )

)−1 ∑
i∈O j

wi(xi j − µi) (3.18)

E
[
z j z

⊤
j

]
= σ2

(
M (O j )

)−1
+E[z j]E[z j]

⊤. (3.19)

M step

The M step updates are

(µi)new =
1
|Oi |

∑
j∈Oi

(
xi j −w⊤

i E[z j]
)

(3.20)

(wi)new =
©­«

n∑
j=1

(xi j − µi)E[z j]
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j∈Oi
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(3.21)

σ2
new =

1
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∑
i j∈O

(xi j − µi)
2+Tr
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E

[
z j z

⊤
j

]
(wi)new(wi)

⊤
new

]
−2(wi)

⊤
newE[z j]

⊤(xi j − µi). (3.22)

We see that Equations (3.9), (3.10), and (3.11) can be derived as special cases of those
above when there are no missing values.

Implementation

The algorithm is executed by initialising W ,µ,σ2,Z and then iterating through Equa-
tions (3.18), (3.19), (3.20), (3.21), (3.22) until convergence. Note that in this algorithm
the missing values are not estimated with each iteration, they are imputed after conver-
gence.

A crucial point noted in Ilin and Raiko [60] is that, unlike in the complete data
case when µML = x̄, Equation (3.20) depends on the current estimates of E[z j] and wi

and so must be updated at each iteration. This is in contrast to Stacklies et al. [98],
who opt to precompute and subtract the sample mean of the observed values. Another
consideration is that the computations required to perform updates (3.18) and (3.21) are
generally heavier than (3.7) and (3.10) because they must update each row (or column)
separately using only the observed values indices.
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3.4 Bayesian Methods

In this section we inspect Bayesian approaches to perform parameter estimation for
the model introduced in Equation (3.1). This involves defining a prior distribution for
the model parameters and then determining their posterior distribution using the log-
likelihood in Equation (3.3). Summaries of the posterior distribution for each parameter
can then be used as point estimates for the parameters (e.g. the posterior mean). With
this model specification, the posterior distribution is intractable and so other methods of
evaluation must be employed. Here, we employ the approximate inference procedure
of VB to this problem and present two algorithms that implement this. The latter are
computationally efficient and can handle missing values much alike the EM algorithm.
Unlike EM however, this Bayesian approach offers the opportunity to automatically
select the latent dimension q.

Denote wg to be the g-th column of W , noting that the subscript g = 1, . . . ,q has a
different domain to subscript i (used for rows of W ) and should not be confused with it.
We specify independent priors on the columns of W as follows

wg ∼ N(0,νw,gI p×p), (3.23)

so that we have column-specific prior variances, νw,g. This form of prior is known as
automatic relevance determination (ARD) [74]. For small values of νw,g, the corre-
sponding column wg is estimated as approximately the zero-vector. This results in no
influence from this dimension in the projection of W to the observed space, and so that
latent dimension is essentially removed. Initialising q = p−1 then allows the prior to
automatically consider and effectively remove each potential latent dimension.

Priors for νw,g, µ, σ, and their hyperparameters may also then be set and will be
considered in the next sections. However, Equation (3.23) alone makes the resulting
posterior distribution for the parameters intractable. This means that inference for these
parameters is not possible in closed-form and also that the EM algorithm cannot be used.
In order to still perform this inference exactly, numerical procedures such as Markov
chain Monte Carlo (MCMC) must be used. MCMC involves repeated sampling from
the target distribution in order to evaluate the desired integral. This type of approach
induces a large computational cost, which becomes infeasible for large dimensional
problems. An alternative method is to keep computational costs relatively low by
resorting to approximate inference. This can be done through the VB framework, which
we describe in the next section.
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3.4.1 Estimation using VB

In order to bypass the difficulty of an intractable posterior distribution, we may employ
VB. Recall from Section 1.4.4, that VB is an EM-like algorithm in which the desired
posterior distribution is often approximated by a specific simpler structure, e.g. fully
factored. The result is that the approximation itself is tractable and may be used to
estimate the lower bound of the true posterior, thereby proceeding in similar fashion
to EM. The challenge is thus to find an approximation that is as close to the desired
distribution, whilst retaining sufficient flexibility to represent it well. Similarly to the
EM section, we first present the application of VB to the PPCA model without missing
values, then we describe two algorithms; an extension to Agarwal and Bishop [1], and
Ilin and Raiko [60], both in the presence of missing values.

VB algorithm in PPCA without missing values

Using the VB method (Section 1.4.4) to overcome an intractable posterior distribution,
we complete the model specification for Bayesian PPCA as in Bishop [15].

Likelihood

Defining τ ≡ σ−2, the likelihood for the data is

p (X |Z,W ,µ,τ) =
n∏

j=1
p
(
x j |z j,W ,µ,τ

)
=

n∏
j=1

N
(
Wz j + µ,τI p×p

)
. (3.24)

Joint distribution

The joint distribution of the latent and observed variables has the factored form:

p(X,Z,W ,µ,τ) = p(X |Z,W ,µ,τ)p(Z)
q∏

g=1
p(wg |νw,g)p(νw,g)p(µ)p(τ). (3.25)
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Priors

The prior specification is

p (Z) =
n∏

j=1
p
(
z j

)
(3.26)

z j ∼ N(0,I q×q) (3.27)

µ ∼ N(0,νµI p×p) (3.28)

p (W ) =

q∏
g=1

p
(
wg

)
(3.29)

wg ∼ N(0,νw,gI p×p) (3.30)

νw,g ∼ Γ(aν,bν) (3.31)

τ ∼ Γ(cτ,dτ), (3.32)

where Γ(·) denotes the Gamma distribution. Broad priors are advised by setting aν =
bν = cτ = dτ = 0.001 and νµ = 1000.

Variational approximation

From Equation (1.20), the variational mean field approximation takes the form

q(Z,W ,νw,g,µ,τ) = q(Z)q(W )

q∏
g=1

q(νw,g)q(µ)q(τ). (3.33)

Optimal q∗ distributions

The optimal approximate distributions are given by

q∗(Z) =
n∏

j=1
N(z j,ΣZ ), (3.34)

q∗(µi) =N(µi, µ̃i) (3.35)

q∗(W ) =

p∏
i=1

N(wi,ΣW ) (3.36)

q∗(νw,g) = Γ(ãν, b̃νg) (3.37)

q∗(τ) = Γ(c̃τ, d̃τ), (3.38)

where the parameters are defined in the variational updates.



52 Covariance estimation through Probabilistic Principal Component Analysis

Variational updates

The variational updates are given by [15] as

z j =
c̃τ
d̃τ
ΣZ

p∑
i=1

wi(xi j − µi) (3.39)

ΣZ =
d̃τ
c̃τ

(
d̃τ
c̃τ

I q×q +

p∑
i=1

(
Σwi +wiw

⊤
i
))−1

(3.40)

µi =
c̃τ
d̃τ
µ̃i

n∑
j=1

(
xi j −w⊤

i z j
)

(3.41)

µ̃i =
νµd̃τ

d̃τ +nνµc̃τ
(3.42)

wi =
c̃τ
d̃τ
ΣW

n∑
j=1

z j(xi j − µi) (3.43)

ΣW =
d̃τ
c̃τ

©­« d̃τ
c̃τ

diag

(
ãν
b̃νg

)
+

n∑
j=1

(
ΣZ + z j z

⊤
j

)ª®¬
−1

(3.44)

ãν = aν +
p
2

(3.45)

b̃νg = bν +
∥wg∥

2

2
(3.46)

c̃τ = cτ +
np
2

(3.47)

d̃τ = dτ +
1
2

n∑
j=1

p∑
i=1

x2
i j + µ

2
i +2µiw

⊤
i z j −2xi jw

⊤
i z j −2xi j µi +Tr[ΣWΣZ ], (3.48)

where diag
(
ãν/b̃νg

)
denotes a diagonal matrix whose q non-zero elements correspond

to ãν/b̃νg. The VB algorithm is completed by cycling through these update equations
until convergence is achieved, which may be monitored by calculating L(q).

VB algorithm in PPCA with missing values

The algorithm of Bishop [15] clearly cannot handle missing values without some
adjustment. Here we consider the adjustments to the VB algorithm made by Oba et al.
[82], Agarwal and Bishop [1], and Ilin and Raiko [60].

Variational algorithm 1

This contribution of this Section is a novel algorithm that extends the work of Agarwal
and Bishop [1] to the case of missing values. The original intention was to derive the
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algorithm of Oba et al. [82], since this (including update equations) is missing in the
literature despite its popularity. Whilst attempting this derivation, it arose that the actual
model is a special case of that which is presented in Agarwal and Bishop [1], except
the resulting update equations seem to differ from those in the software provided by
Oba et al. [82]. This Section therefore extends the algorithm of Agarwal and Bishop
[1] to the case of missing values and it is ongoing work to investigate the discrepancy
between the updates and code from Oba et al. [82]. Full derivations are provided in
Appendix B.4 in consistent notation.

Likelihood

The conditional distribution for the observed values can be written as

p
(
x
(O j )

j |z j,W ,µ,τ
)
=N

(
W (O j )z j + µ

(O j ),τ−1I |O j |×|O j |

)
. (3.49)

Priors

The prior specification is as follows:

p
(
x
(Mj )

j |z j,W ,µ,τ
)
=N

(
W (Mj )z j + µ

(Mj ),τ−1I (p−|O j |)×(p−|O j |)

)
. (3.50)

p(z j) =N(0,I q×q) (3.51)

p(µ,W ,τ |α) = p(µ |τ)p(W |τ,α)p(τ), (3.52)

p(µ |τ) =N(µ0,(γµ0τ)
−1I p×p), (3.53)

p(W |τ,α) =

q∏
g=1

p(wg |τ,αg) =

q∏
g=1

N(0,(αgτ)−1I p×p), (3.54)

p(τ) = Γ(τ0,γτ0), (3.55)

p(α) =
q∏

g=1
p(αg) =

q∏
g=1
Γ(α0,γα0), (3.56)

where wg denotes the g-th column of matrix W . In Oba et al. [82], the hyperparameters
are fixed as µ0 = 0, τ0 = 1, γτ0 = γµ0 = 10−10 (although γµ0 = 10−3 in the code), α0 = 1,
and γα0 = 10−10.

Joint distribution

Using this prior and likelihood, the joint distribution for all variables factors as so:

p(x j, z j,W ,µ,τ,α) =p
(
x
(O j )

j |z j,W ,µ,τ
)

p
(
x
(Mj )

j |z j,W ,µ,τ
)

p(z j)p(µ |τ)

×p(W |τ,α)p(τ)p(α) (3.57)
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Variational approximation

From email correspondence with Shigeyuki Oba, author of Oba et al. [82], the varia-
tional approximation that is used takes the form

q
(
x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

)
=

n∏
j=1

q
(
x
(Mj )

j

)
q(z j)q(µ,W ,τ)q(α). (3.58)

Optimal q∗ distributions

q∗
(
x(M1)

1 , . . . ,x(Mn)
n

)
=

n∏
j=1

q∗
(
x
(Mj )

j

)
=

n∏
j=1

N

(
x
(Mj )

j ,Σ
x
(Mj )

j

)
(3.59)

q∗(Z) =
n∏

j=1
q∗(z j) =

n∏
j=1

N(z j,Σz) (3.60)

q∗(µ,W ,τ) = q∗(µ |W ,τ)q∗(W |τ)q∗(τ) (3.61)

q∗(µ |W ,τ) =N(Wsµ +mµ,(γµτ)
−1I p×p) (3.62)

q∗(W |τ) =

p∏
i=1

N(mw̃i
,(τΛw̃)

−1) (3.63)

q∗(τ) = Γ(τ,γτ) (3.64)

q∗(α) =
q∏

j=1
Γ(α j,γα) (3.65)
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Variational updates

Σ
x
(Mj )

j

=Eτ [τ]
−1 I (p−|O j |)×(p−|O j |) (3.66)

x
(Mj )

j =Σ
x
(Mj )

j

(
EW ,τ,z j

[
τW (Mj )z j

]
+Eµ,τ

[
τµ(Mj )

] )
(3.67)

Σz =
(
I q×q +EW ,τ

[
τW⊤W

] )−1
, (3.68)

z j =Σz
(
EW ,τ [τW ]⊤−EW ,µ,τ

[
τW⊤µ

] )
(3.69)

γµ =γµ0 +n, (3.70)

sµ =−
1
γµ

n∑
j=1
Ez j

[
z j

]
, (3.71)

mµ =
1
γµ

©­«γµ0µ0+

n∑
j=1

x̃ j
ª®¬ (3.72)

Λw̃ =

n∑
j=1
Ez j

[
z j z

⊤
j

]
−γµ sµ s

⊤
µ +diag (Eα [α]) (3.73)

mw̃i
=Λ−1

w̃

©­«
n∑

j=1
x̃i jEz j

[
z j

]
+γµmµi sµ

ª®¬ (3.74)

γτ =
np
2
+γτ0 (3.75)

τ =γτ
©­«γτ0τ

−1
0 +

1
2

n∑
j=1

x
(O j )⊤

j x
(O j )

j +
1
2

n∑
j=1
E
x
(Mj )

j

[
x
(Mj )⊤

j x
(Mj )

j

]
+
γµ0

2
µ⊤

0 µ0 −
γµ

2
m⊤

µmµ −
1
2

p∑
i=1

m⊤
w̃i
Λw̃mw̃i

)−1

(3.76)

γα =γα0 +
p
2

(3.77)

α j =γα

(
γα0α

−1
0 +

1
2
Ew j,τ

[
τw⊤

j w j

] )−1
. (3.78)

Implementation

The algorithm is not yet implemented in software, but it is executed in similar fashion
to the others. The algorithm is executed by iterating through Equations (3.66), (3.67),
(3.68), (3.69), (3.70), (3.71), (3.73), (3.74), (3.75), (3.76), (3.77), (3.78). Note that
here, the missing values are treated as latent variables and so are re-estimated with each
iteration of the algorithm. In this algorithm, the ARD prior now considers the ratio of
variance parameters νw,g and τ. In order for a latent dimension to be suppressed the
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column variance νw,g must now be outweighed by the variance of the model noise τ.
Stated alternatively, the product of νw,g and σ2 must be close to zero.

Variational algorithm 2

We now focus on the algorithm from Ilin and Raiko [60], full derivations of all equations
are given in Appendix B.5. Since the update equations are provided in the paper (without
derivation), the contribution of this Section is to present the derivations and to do so
using consistent notation.

Likelihood

The conditional distribution for the observed values can be written as

p
(
x
(O j )

j |z j,W ,µ,τ
)
=N

(
W (O j )z j + µ

(O j ),σ2I |O j |×|O j |

)
. (3.79)

Priors

The prior specification is

p (Z) =
n∏

j=1
p
(
z j

)
(3.80)

p
(
z j

)
=N(0,I q×q) (3.81)

p (µ) =N(0,νµI p×p) (3.82)

p (W ) =

q∏
g=1

p
(
wg

)
(3.83)

p
(
wg

)
=N(0,νw,gI p×p). (3.84)

In this algorithm, σ2,νw,g,νµ are treated as hyperparameters to be estimated.

Joint distribution

The full joint model is

p(X,W ,Z,µ) =
∏
i j∈O

p(xi j |wg, z j, µi)

q∏
g=1

p(wg)

n∏
j=1

p(z j)

p∏
i=1

p(µi). (3.85)
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Variational approximation

We seek to approximate the posterior distribution, p(W ,Z,µ |X), using the mean field
approximation

q(W ,Z,µ) =

p∏
i=1

q(wi)

n∏
j=1

q(z j)

p∏
i=1

q(µi), (3.86)

similarly to Bishop [15].

Optimal q∗ distributions

The optimal distributions are

q(wi) =N
(
wi,Σwi

)
, (3.87)

q(z j) =N
(
z j,Σz j

)
, (3.88)

q(µi) =N
(
µi, µ̃i

)
, (3.89)

where we note that since there are missing values, the covariance matrices Σwi and Σz j

are now specific to the rows and columns of W and Z , respectively.
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Variational updates

The variational updates are as follows

µ̃i =
νµσ

2

|Oi |(νµ+σ2/|Oi |)
, (3.90)

µi =
νµ

|Oi |(νµ+σ2/|Oi |)

∑
j∈Oi

(
xi j −w⊤

i z j
)
, (3.91)

Σz j = σ
2 ©­«σ2I q×q +

∑
i∈O j

(
Σwi +wiw

⊤
i
)ª®¬

−1

, (3.92)

z j =
1
σ2Σz j

©­«
∑
i∈O j

wi(xi j − µi)
ª®¬, (3.93)

Σwi = σ
2 ©­«σ2diag

(
ν−1
w,g

)
+

∑
j∈O j

(
Σz j + z j z

⊤
j

)ª®¬
−1

, (3.94)

wi =
1
σ2Σwi

(∑
j∈Oi

(
xi j − µ

⊤
i
)
z j

)
, (3.95)

σ2 =
1

np

∑
i j∈O

(
xi j −w⊤

i z j − µi
)2
+ µ̃i + x

⊤
j Σwi z j +w

⊤
i Σz jwi +Tr

[
Σz jΣwi

]
, (3.96)

νw,g =
1
p

p∑
i=1

w2
ig + w̃ig, (3.97)

νµ =
1
p

p∑
i=1

µ̃i + µ
2
i , (3.98)

in agreement with Ilin and Raiko [60], where diag
(
ν−1
w,g

)
indicates the (q× q) diagonal

matrix whose non-zero entries correspond to each ν−1
w,g and w̃ig is the g-th diagonal

element of Σwi .

Implementation

The variational algorithm then proceeds by cycling through the updates in Equations
(3.90), (3.91), (3.92), (3.93), (3.94), (3.95), (3.96), (3.97), and (3.98) until convergence,
which can again be assessed by inspecting the variational lower bound. Note that the
missing values are not imputed in this algorithm and so are computed after convergence.
This algorithm may also be constructed to treat σ2, νw,g, νµ as random variables with
their own prior distributions.
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3.5 Selection of the latent dimensionality

A key challenge is the choice of q, the dimension of the manifold onto which the original
data points are projected (i.e. the number of principal components). Computationally,
lower values of q require fewer parameters to be estimated and smaller matrices to be
manipulated, leading to faster estimation. However, selecting q to be too small leads to
under-fitting. It requires diligent selection, particularly when it is desirable to interpret
the underlying latent factors.

In the VB approach, the choice of q is aided by the ARD prior distribution. Instead
of directly selecting the dimensionality, q can be set to a large value (or even its
maximum) value and the so-called effective dimensionality is inferred through the
amount of shrinkage on each wg. Small values of νw,g result in values of ∥wg∥ close to
zero and effectively eliminate the influence of that dimension.

For the EM algorithms described in Section 3.3.2, no such automatic selection is
performed within the model. Instead, cross-validation is often used to maximise some
selection criteria, as in Stacklies et al. [98]. This greatly increases the computational
time required to run PPCA, since it must be run for multiple of values of q before
an optimal value is selected. In our situation, we are primarily interested in high-
dimensional datasets. Generally, this means that the statistic used for selection will
be unstable due to its high sampling error. Multiple-fold cross-validation, which is
often used to improve this stability, is also unlikely to be beneficial due to the high-
dimensional nature of the datasets.

For covariance estimation, the choice of q is less crucial since it need not be justified
by interpretation. Rather than focussing on the latent factors as with classical PPCA, the
covariance estimation perspective is primarily concerned with low estimation error. The
ARD prior using q = p−1 in the Bayesian approach therefore seems more attractive
than the non-Bayesian approach for this purpose.

3.6 Inverse covariance estimation

Recall that the inverse covariance matrix Ω = Σ−1 has an important application in net-
work reconstruction (Section 1.5). Network reconstruction aims to identify interactions
between pairs of variables under study. Significant interactions are then visualised as
edges that connect the variables, represented as nodes, in a network or graph [109]. The
edges that comprise the graph can then be analysed to explore the interactions between
variables in the dataset. Network reconstruction covers a broad range of statistical
techniques and will be treated with more detail in Chapter 4.

A great advantage of the PPCA covariance model from Equation (3.2) is that Ω
may be calculated efficiently provided q ≪ p. The calculation of inverse of a PPCA
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covariance matrix may be simplified via the Woodbury matrix identity to obtain

Ω = σ−2(I p×p −WM−1W⊤), (3.99)

where M = σ2I q×q +W
⊤W is a q× q matrix. The complexity of this computation is

therefore reduced from O(p3) to O(q3), which is extremely beneficial whenever p ≫ q.

3.7 Model-based simulation

In this section, we study the performance of the PPCA algorithms as covariance estima-
tors using simulated data. Similar to the previous chapter, we generate M = 100 datasets
of size n ∈ {p/4,p/2,3p/4} from the generative PPCA model using p ∈ {60,80,100},
q = 3, µ = 0, and σ2 = 0.25. Recall that by construction, this means that z j ∼N(0,I3×3)

and ϵ ∼ N(0,0.25I3×3). In addition, we also generate wg ∼ N(0,I3×3), g = 1,2,3. This
means that there are M covariance matrices Σ that we attempt to estimate.

We compare the algorithms in Sections 3.3 and 3.4 except for VB algorithm 1 (since
it is not yet implemented), denoting them by their corresponding function names in
pcaNet. EM algorithm 1 is ppcapM, EM algorithm 2 is pca_full and VB algorithm 2
is bpca_full. For fair comparison, we run all algorithms with the correct q = 3 and
set the maximum number of iterations to 1000. We report the familiar PRIAL metric
for performance comparison, using the sample covariance matrix as the underlying
baseline for improvement. Figure 3.1 presents the PRIAL and run-time in seconds of
each algorithm for p = 100, with p = 60,80 found in Appendix B.7.
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Fig. 3.1 PRIAL and timing of each PPCA algorithm for p = 100 with no missing values.
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In terms of PRIAL, all algorithms deliver a significant performance boost over the
sample covariance estimator. This is a good sanity check given that they represent
the data-generating model. It is also clear that the VB algorithm outperforms the EM
implementations for all values of n. The best performing algorithm is bpca_full. Its
EM counterpart pca_full also outperforms ppcapM. However, this increased perfor-
mance comes at a price in terms of computational cost, as can be seen from the timings
plot of Figure 3.1. The VB algorithm does remarkably well for the very small sample
size n = 25, attaining a PRIAL close to 100 and therefore almost recovering the true
covariance matrix. Interestingly, the performance of the VB algorithm lowers as n
increases, whilst the performance of the EM algorithms increases with n.

We now wish to see how the performance of each algorithm changes in the presence
of missing values. We repeat the previous simulation two times, randomly excluding
30% and 50% of the values from the new datasets. With the now excluded missing
values, we cannot use the PRIAL as a performance metric with the sample covariance
matrix as a baseline, because it no longer exists. Instead, we report the squared Frobenius
losses for each algorithm, which we recall is the underlying metric for the PRIAL. The
timing results follow a similar pattern to those in the previous simulation, and so are
left to Appendix B.7 along with the results for p = 60,80. The results for p = 100 are
presented in Figure 3.2.
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Fig. 3.2 PRIAL for the PPCA algorithms with p = 100 with 30% and 50% missing
values.

Again we can see that the VB algorithm outperforms the EM implementations. The
VB algorithm attains nearly zero Frobenius loss despite having 30% and 50% of the
data removed, which is a very strong performance. For 30% missing values both EM
algorithms now perform similarly. However, for 50% missing values, ppcapM now
outperforms pca_full. This suggests that the performance of pca_full diminishes
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as the percentage of missing values increases. This is somewhat surprising, since the
algorithm was derived with the intention of handling missing values in a principled way
through its update equations.

Overall, these results suggest that the VB algorithms perform better in situations
where the data-generating model is of the same form as the PPCA model with a
known number of latent dimensions with and without the presence of missing values.
The bpca_full algorithm has the highest performance but does incur a much higher
computational cost. This cost is not noticeable in these simulations since on average
each run took less than one second to complete. But for situations with a large number
of variables and larger latent dimensions, the smaller run-time of the EM algorithms
might be preferable.

3.8 Comparison to TAS

In this section, we provide a numerical comparison between PPCA and TAS. We include
the best performing PPCA algorithm from Section 3.7 to some of the TAS simulations
from Chapter 2.

3.8.1 Model-based simulation

Recall the model-based simulation from Chapter 2. To recap, we generate M = 100
datasets of size n ∈ {25,50,75} from a p-variate Gaussian distribution with zero mean
vector and covariance matrix Σ, where p = 100. Four distinct covariance structures are
considered, yielding the following four simulation scenarios:

• Scenario 1: common variance, zero correlation. Σ1 = 5× I p×p,

• Scenario 2: unit variance, constant correlation. Σ2 = I p×p + 0.3× (1p×p −

I p×p), where 1q×r is the q× r unit matrix with elements all equal to one.

• Scenario 3: unequal variances, decaying correlations. Σ3 =D
1/2CD1/2, where

the (i, j)th entry of C equals (−0.7)|i− j | and D = diag(d1, . . . ,dp) with di ∼U(1,5).

• Scenario 4: unit variance, block-diagonal correlation. Σ4 ∼ Inv-Wishart, such
that E[Σ4] ∝ B, where B is a block-diagonal matrix with two identical p/2× p/2
blocks, each with the same constant correlation structure that was used in scenario
2.

We do not include the Bayesian single-target shrinkage estimators in the results as
their performance was reported in Chapter 2. We apply PPCA using the bpca_full
algorithm with q = p−1, utilising the ARD prior for latent dimension shrinkage. This
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algorithm was selected over the EM approaches due to its selection of q, and over
bpcapM due to its superior performance in Section 3.7. We denote the estimator simply
as ‘PPCA’ in this section’s figures since it is the only PPCA candidate.

Figure 3.3 summarises the results obtained for n = 25, the results for n ∈ {50,75},
which are similar to that of n = 25, are provided in Appendix B.8. In general the PPCA
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Fig. 3.3 PRIAL for p = 100 and n = 25 for scenarios 1, 2, 3, and 4..

estimator performs similarly to the best single target shrinkage estimators. Only on
one occasion, scenario 1, does PPCA improve upon the performance of TAS for n = 25.
In Appendix B, more extreme results can be seen – PPCA performs better than all
alternatives in scenario 4 for n = 50,75. This performance suggests that PPCA (at least
using bpca_full) is not an ideal candidate for a standalone covariance estimator when
its model assumptions do not hold and there are no missing values. However, it could
provide some utility as a target within the target set of TAS, which we expand upon in
Section 3.10.
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3.8.2 Predictive validation simulation

Recall the predictive validation simulation from Chapter 2 using the following TCGA
datasets:

• Data set 1: p53 pathway in breast cancer (p = 68 genes in N = 529 samples)

• Data set 2: apoptosis pathway in ovarian cancer (p = 86 genes in N = 558
samples).

For each data set, we randomly split the full data matrix (p×N) into a small sample
size (p×n) and a large sample size (p×(N −n)) data matrix, for n ∈ {p/4,p/2,3p/4}.
The sample covariance matrix of the large sample size matrix is used to proxy for the
underlying covariance matrix, whilst the high-dimensional estimators are applied to
the high-dimensional partition. This procedure is repeated 1,000 times for data sets 1
and 2, and for the three different values of n investigated. We apply PPCA again using
bpca_full with q = p−1 to utilise the ARD prior. The results for this simulation can
be found in Figure 3.4.
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Fig. 3.4 PRIAL for the predictive validation BRCA and OV simulations.

In these simulations, PPCA fails to really achieve the same level of performance
as the other estimators across all ratios of n and p. This provides further evidence
that PPCA (with its bpca_full implementation) is simply not an effective covariance
estimator by itself when the PPCA model assumption is not necessarily true and there
are no missing values.
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3.9 Software

We provide an open source R package pcaNet http://github.com/HGray384/pcaNet,
which provides an interface to C++ code that efficiently implements the PPCA model
for EM algorithm 1 and 2 described in Section 3.3 and VB algorithm 2 from Section 3.4.
Our software provides a means for high-dimensional covariance matrix estimation from
incomplete data, and interfaces with existing R packages in order to perform network
inference. Figure 3.5 provides a graphical illustration of the software.
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Fig. 3.5 A graphical illustration of pcaNet

In pcaNet, we implement accelerated versions of existing PPCA model fitting
algorithms from the pcaMethods R package [98] (EM 1; demonstrated in Appendix
B.6) and port the equivalent functions from the PCAMV MATLAB toolbox [60] to R (EM
and VB algorithm 2). As our focus is the covariance estimator, pcaNet is designed
to report the inferred covariance matrix and not just the dimensionality reduction of
PPCA.

Here we demonstrate the output of pcaNet when applied to the Arabidopsis thaliana
dataset provided in pcaMethods [98]. The data consist of 154 observations of 54
metabolites during a cold stress experiment, with 5% of values uniformly removed for
the primary purpose of imputation assessment. Here we do not compare missing value
imputation accuracy, only demonstrating how the software may be used. We choose to
use EM algorithm 1 for our demonstration, referred to as ppcapM which is its function
name in pcaNet.

http://github.com/HGray384/pcaNet
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Applying ppcapM with q = 5 to the dataset first yields Figure 3.6, which represents
the entries of the matrix W . This display is known as a Hinton diagram. Hinton diagrams

Hinton diagram of loadings
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R
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1 2 3 4 5
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40
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Fig. 3.6 The Hinton diagram generated by ppcapM when applied to the Arabidopsis
thaliana dataset with q = 5.

can be useful for inspecting the form of the estimated W to see the transformation of
the observed and latent variables. It can also be helpful to see the effect of an ARD
prior in the VB setting.

From the output of ppcapM, it is possible to access a number of the estimated model
parameters as well as the associated log-likelihood values, which can be useful for
model comparison. Most notably, the estimated covariance matrix is available to use for
further analysis. It can be visualised as a heat map using the ppca2Covplot function.
Figure 3.7 shows the heat map for the estimated covariance matrix of the Arabidopsis
thaliana dataset using ppcapM with q = 5.

Since the objective of pcaNet is to directly estimate and use the covariance matrix
of the data, further principal component analysis functions are not provided in this
package. However, if that functionality is also desirable to the user, then the output
of pcaNet can be easily integrated with the PCA tools provided in the pcaMethods
package [98] by accessing the pcaRes object of the output.

Since the second aim of pcaNet is to use the covariance matrix estimate to perform
network reconstruction, we also provide this functionality. The function ppca2Net takes
the output of any pcaNet PPCA function and returns a network. Within this process,
the inverse covariance matrix is computed, partial correlations are extracted, partial
correlations are tested for significance, and then significant partial correlations are added
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Fig. 3.7 The covariance heat map generated by ppcapM when applied to the Arabidopsis
thaliana dataset with q = 5

as weighted edges to a conditional independence graph, which can be visualised by
specifying an optional argument. To determine whether or not each partial correlation
is significantly non-zero, pcaNet uses the empirical Bayes mixture model approach
[37, 95] as supplied in the fdrtool R package [100]. For visualisation of the resulting
network, pcaNet uses igraph [29] to display significant conditional dependencies,
represented as edges in a network whose nodes are the observed variables. Note that for
a large number of significant edges, it might not be useful to plot the resulting graph.
Figure 3.8 shows the network the Arabidopsis thaliana dataset using ppcapM with q = 5.
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Fig. 3.8 The network plot generated by ppcapM when applied to the Arabidopsis thaliana
dataset with q = 5.
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pcaNet is designed to be easy to use for those who are new to PPCA and network
reconstruction, whilst still providing sufficient functionality for those with experience
(including integration with other well-established packages). For this reason the default
values are used in the underlying functions from other packages with minimal user
control, but the statistics for the graphical output of ppca2Net are also provided. This
means that for those who wish to perform a different visualisation or analysis using
igraph, we provide the estimated network as an igraph object. In addition, for
those who would like to further investigate the partial correlation statistics (perhaps
performing their own thresholding for significance), we also provide the underlying
statistical output from the fdrtools package.

3.10 Discussion

In this Chapter, we have considered PPCA as a method for covariance estimation. We
have described the EM and VB approaches for parameter estimation and how they can
handle missing values. We also extended an existing algorithm to handle data situations
with missing values. This, in addition to the full derivations with consistent notation and
software application, represents a novel contribution to the literature. We discussed the
problem of the latent dimension q and how the ARD prior in VB implementations offers
an attractive solution, particularly for covariance estimation when the latent dimensions
do not require interpretation. By assuming a low-dimensional latent space, a large
benefit of the PPCA approach for covariance estimation is that the inverse covariance
(i.e. the precision matrix) can be calculated efficiently. This presents a very appealing
opportunity for multivariate methods that require the inverse covariance matrices of a
large number of variables, such as network reconstruction based on partial correlations.

This chapter illustrated our R package pcaNet, which implements three of the
algorithms introduced here. pcaNet provides an easy interface to perform covariance
estimation and network reconstruction using PPCA. It also interfaces with other popular
software packages such as pcaMethods for further analysis of the estimated parameters,
fdrtool for evaluating statistical significance for the inferred associations, and igraph
graphically displaying the estimated networks.

Section 3.7 provided a small comparison between the three PPCA methods imple-
mented in pcaNet. We focussed on the situation where the data-generating mechanism
was a PPCA model and the number of latent dimensions was known. In this case,
bpca_full provided the best PRIAL values and Frobenius losses, although coming
at an additional computational cost that might become obstructive for large datasets.
However, due to their row- (column-)wise nature, both ppca_full and bpca_full
using Equations (3.9), (3.18), (3.10), (3.91), (3.93), and (3.95) can easily be parallelised
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in their implementation, which would reduce computational time (especially if p is
large). This parallelisation is left as future work.

This model-based comparison is limited in its application to real data since number
of latent dimensions is mostly not known. A more realistic comparison would be to
estimate the number of latent dimensions with each method as it would be in practice;
using cross validation for frequentist methods and the ARD shrinkage for the Bayesian
ones.

Sections 3.8 provided a small comparison between bpca_full and the state-of-
the-art shrinkage methods introduced in Chapter 2. Whilst providing some evidence
for improvement in certain scenarios, the PPCA estimator was mostly bested by the
other methods. A more comprehensive comparison will be required to fully assess the
merits of each method, particularly in the presence of missing observations. PPCA
has a conceptual advantage in such case, as it does not require the use of imputation
techniques prior to covariance estimation. We expect that pcaNet will enable this
comparison.

Despite these results, PPCA does still have some potential utility as a target ma-
trix to be used within TAS, due to its good performance in certain scenarios. This
would enable the target set to capture the low-dimensional structure defined by PPCA.
Since, TAS is robust to misspecified target matrices, it would also overcome PPCA’s
otherwise mediocre performance. The main challenge would be how to construct a
PPCA covariance estimator without using the same dataset twice and overfitting. One
initial thought would be to employ a partition scheme, in which the PPCA model can
be estimated on smaller subsets of the data. This would seem promising since the VB
implementations of the model seem to perform well in high-dimensions. However, if
one is already concerned with a high-dimensional dataset then further subsetting is not
desirable. Another idea would be to utilise external datasets, in line with what we did
in Section 2.8. In such cases, PPCA could be applied to external datasets in order to
define target matrices to be used within TAS.





Chapter 4

Case study: cytokine expression in the
context of traumatic brain injury

4.1 Introduction

Traumatic brain injury (TBI) is a widespread instigator of death and disability globally.
Cytokines [49], which are signalling proteins involved in the immune system, are able
to mediate injury following TBI by acting as anti-inflammatories in some cases. They
therefore provide an interesting molecular study in the aftermath of TBI and as targets
for injury treatment.

The interleukin-1 (IL1) receptor is a cytokine receptor that binds IL1, which plays
a central role in the regulation of immune and inflammatory responses. Interleukin-1
receptor antagonist (IL1ra) is a cytokine that opposes the effects of IL1 by binding, and
therefore limiting access, to the IL1 receptor. The drug recombinant human IL1ra is a
licensed treatment for rheumatoid arthritis, has a well-defined safety profile, and has
previously been trialled in stroke [38], subarachnoid haemorrhage [47, 25], and severe
sepsis [83].

Antagonism at the interleukin-1 receptor has been reported to exhibit protective
properties in rodent studies of brain injury [26, 27, 101, 67, 89, 10, 66]. However,
little is known about how the drug penetrates the blood-brain barrier, a highly selective
semipermeable membrane that separates the circulating blood from the brain and
extracellular fluid in the human central nervous system.

Helmy et al. [55] provided the first-of-its-kind randomised clinical trial for IL1ra
in patients with TBI, monitoring not only cytokine levels in the blood, but also in the
brain to determine its efficacy at reaching the injured tissue. The overarching goal of
the study of Helmy et al. [55] was to provide a comprehensive biochemical assessment
of the treatment effect associated to the drug IL1ra in TBI patients. The data that we
analyse in this chapter is a subset of this trial.
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Applying methodology from a similar previous dataset [53], Helmy et al. [55, 56]
used principal component analysis and partial least squares (PLS) discriminant analysis
to group cytokine profiles based on the time after trauma, treatment status, and sampling
type (brain versus blood). Due to a high number of missing values, data from multiple
time points was pooled in order to reduce their burden. In addition, a liberal threshold of
50% missing values was used to exclude cytokines from the resulting statistical analysis.
Remaining missing values were automatically imputed in the PLS method but were not
discussed beyond that.

In this chapter, we seek to analyse the cytokine expression across each individual
time point in order to gain a more accurate insight into the behaviour of cytokines as
a response to TBI across time. To support this, we use a more conservative missing
value threshold. We also perform a missing value imputation for each individual time
point and therefore avoid the need to pool data and average out potentially interesting
expression information. We demonstrate how high-dimensional covariance estimation
can be useful for characterising the interactions between cytokines through cluster
analysis and network reconstruction.

The chapter is organised as follows. In Section 4.2 we describe the dataset from
Helmy et al. [55] that is used to conduct the statistical analysis. Section 4.3 then details a
short exploratory analysis of the missing values and univariate statistics present for each
cytokine, treatment status, and sample type. In Section 4.4 we describe the covariance
estimation procedure using TAS and how the resulting matrix is used for the multivariate
analysis technique cluster analysis and network reconstruction, we then present the
results. Finally, we conclude the chapter with a discussion in Section 4.5.

4.2 Materials and methods

In this section we describe the aims, methods, and study design of the randomised
control trial as outlined in Helmy et al. [55], to which we also refer the reader for further
information.

4.2.1 Recruitment and treatment allocation

Strict criteria of eligibility for and exclusion from the study were imposed [55]. Recruit-
ment resulted in a total of 20 patients with severe TBI, all of whom were recruited within
24 hours of their injury. Ten patients were allocated to the treatment arm of the study
and the remaining ten patients were allocated to the control arm of the study. Allocation
was decided by the randomisation of sealed envelopes whose contents contained the
treatment status. The resulting treatment status was revealed to both the physician and
the family of the patient. The treatment group received 100mg of IL1ra (drug named
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Anakinra; Kineret) subcutaneously (injection under the skin) once per day. The control
group received neither the drug nor a placebo.

4.2.2 Intervention and sampling

Upon admission, the time of trauma was recorded as well as measures of brain injury,
disease, trauma severity and images of brain computerised tomography scan. After
admission, patients were monitored over a period of five days. At the same time each
day, the treatment was administered to the treatment group. The cytokines’ expression
was measured before and after treatment using three sampling modes: arterial blood,
venous blood, and microdialysis fluid (microdialysate) obtained from microdialysis
catheters [54] near injured areas in the brain.

One hour before and after treatment administration (or hypothetical administration
in the case of the control group) a number of clinical variables and fluid samples were
taken. Microdialysis vials were collected and replaced from the catheters every hour
during this five day period, and so the number of microdialysis samples is greater than
the number of blood samples.

We refer to Helmy et al. [55] for more details on how samples were obtained, treated
and profiled. Importantly for our ensuing analysis, blood samples were taken at a
sufficient volume for cytokine profiling. This means that for arterial and venous samples
there were fewer samples than the microdialysate, but no pooling or dilution of the
samples was required. However, the microdialysate inherently has a low volume of
extraction. For this reason, the microdialysis samples required pooling into 6-hour time
periods in order to achieve the necessary volume for cytokine profiling. Due to this
pooling, the 5-day monitoring period can be seen as 20 microdialysis sampling time
points. For fair comparison, in our analysis we only use the time points corresponding
to the sampling times for the arterial and venous samples, which corresponds to time
points 1, 2, 5, 6, 9, 10, 13, 14, 17, and 18. We refer to these microdialysis sampling
times when mentioning specific time points.

4.2.3 Data

The samples were assayed using premixed analyte kit targeting 42 cytokines and read
on a Luminex system as described in [53, 55], with resulting concentrations calculated
with reference to a standardising logistic curve for each cytokine. A full list of the
cytokines considered can be found in Appendix Table C.1. The blood and brain samples
were run on separate plates to ensure that the control measurements were calibrated
specifically for sample type. The resulting measurements of the cytokine expression are
continuous values representing the abundance of each cytokine in the sample. Due to
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the detection limits and random error, there are also a number of missing values, which
we explore in the next section.

4.3 Statistical analysis

Our analysis focuses on the cytokine expression data generated by the above trial,
comparing between trial arms (treatment and control) as well as across sampling times
and types (e.g. arterial).

4.3.1 Exploratory analysis

The focus here is to explore the characteristics of the data before performing statisti-
cal inference. When inspecting the cytokine expression values, the most prominent
characteristic is that the dataset contains a substantial amount of missing values.

For some cytokines, there were a very large amount of missing values. Such
cytokines are problematic as most statistical models do not allow for missing data. In
such cases, one could impute the missing values but this could substantially alter the
structure of the data if there are many. For this reason, we consider setting a missing
value threshold to exclude cytokines that have a high percentage of missing values
from our analysis. There is a clear trade-off to be made when selecting a missing value
threshold in order to retain as many cytokines with observed values as possible whilst
excluding those with lots of missing values. We opt to consider a conservative threshold
of 20%.

Although arbitrary, some justification for this threshold is given by inspecting the
relationship between the average log-expression of the cytokines and their percentage of
missing values, shown by Figure 4.1. It can be seen that lowly expressed cytokines give
rise to more missing values. This is likely because of cytokines expressing themselves
close to or below the limit of detection of the assay. Using a threshold of 20% not
only removes cytokines with many missing values, but it also artificially removes
the relationship between missing value percentage and mean expression - with the
remaining missing values more evenly distributed along this domain. There are also a
number of missing values for highly expressed cytokines that do not appear to be due to
the detection limit. These have no known cause and we assume that they are missing at
random. We also note that some patients have a higher amount of missing data. For
example, there are no cytokine expression values recorded for patient 11 at time points
13, 14, 17, and 18, and patient 14 at time point 18, and so the number of samples for
these time points is less than for the others.
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Fig. 4.1 Average log-expression of cytokines as a function of the percentage of missing
values. We have log-transformed the non-missing expression values in order to reduce
them to a smaller, more stable scale.

In addition to excluding cytokines with more than 20% missing values, we also
decided to exclude all of the venous samples. This was done for three reasons (i) the
main difference of interest was between blood and brain samples, rather than oxygenated
and deoxygenated blood (ii) for biological reasons, the cytokines’ expression in arterial
samples are expected to be highly correlated with venous samples (iii) the majority of
venous cytokine expressions had missing value percentage close to our threshold and is
therefore generally considered to be of lower quality. The resulting analyses proceeded
with 28 cytokines for the arterial samples and 17 cytokines for the microdialysis samples,
with a total of 195 total observations (divided across 20 patients and 10 time points).
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4.3.2 Univariate analysis

We explored the mean and variance for each of the remaining cytokines’ expression.
Figure 4.2 shows the interquartile ranges of expression levels of IL1ra in both arterial
and microdialysis samples. As expected, there is a pronounced difference between its
expression in the treatment and control group for the arterial samples, since the blood-
stream is the primary location of administration for the cytokine. For the microdialysis
samples the difference is far less apparent. The biological mechanism restricting this
efficiency of expression is the blood-brain barrier. Nonetheless, this difference has been
reported to be substantial enough to show that subcutaneous administration of IL1ra
does lead to extra penetration of the blood-brain barrier [55].
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Fig. 4.2 The inter-quartile ranges of IL1ra for both arterial and microdialysis samples.
The values of the control group are in black whilst those of the treatment group are in
red.

Having explored the effects of IL1ra administration on the expression levels of IL1ra
in blood plasma and cerebral microdialysate, we now explore the expression of the
remaining cytokines to see if any other differences arise. As an illustration, Figure 4.3
shows the expression for two of the cytokines considered in the arterial samples, Eotaxin
and Fractalkine. It can be seen that there are negligible differences for the median
expression of these cytokines between the treatment and control groups. Any differences
between the treatment and control groups are mostly covered within their inter-quartile
range (IQR) bars. However, there does seem to be some differences between the size of
the IQR bars for some cytokines, indicating that there is some variation. As illustrated
in Figure 4.3 a similar behaviour can be observed in the microdialysis samples shown
in Figure 4.4.



4.3 Statistical analysis 77

●
●

● ● ●
●

● ● ● ●

5 10 15

−
2

0
2

4
6

8
10

Arterial Eotaxin. log−expression IQRs

Time point

Lo
g−

ex
pr

es
si

on

●
● ● ●

● ● ● ● ● ●

Control
Treatment

●
●

●

●

●
●

●

● ● ●

5 10 15

−
2

0
2

4
6

8
10

Arterial Fractalkine. log−expression IQRs

Time point

Lo
g−

ex
pr

es
si

on

●

●

●

●
●

●

●
● ●

●

Control
Treatment

Fig. 4.3 The inter-quartile ranges for Eotaxin and Fractalkine in the arterial dataset. The
values of the control group are in black whilst those of the treatment group are in red.
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Fig. 4.4 The inter-quartile ranges for Eotaxin and Fractalkine in the microdialysis
dataset. The values of the control group are in black whilst those of the treatment group
are in red.

Due to the marginal differences in the means of these cytokines, we next explored
their variances. For each patient and time point, we calculated the variance of the
observed expression values (log-scale) across all cytokines (excluding IL1ra). The
median and IQR of these variances across patients can be found in Figure 4.5. We
can see that for the arterial samples, the cytokines exhibit similar variances and inter-
quartile ranges. For the microdialysis samples there is a large difference in variability
between the treatment and control groups. This is particularly interesting because the
difference is present as of time point 1, which is before any treatment is administered.
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This suggests that this is not a cause of the treatment, but is rather a baseline difference
between the two groups. It is also not present in the arterial samples, which would
suggest that it is not caused by some fundamental difference between the patients in
each group.
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Fig. 4.5 Variance IQRs of the observed expression values (log-scale) across all cytokines
in both the arterial and microdialysis dataset. The values of the control group are in
black whilst those of the treatment group are in red.

This exploratory analysis further motivates a multivariate analysis of the cytokines,
since there does not appear to be differences between the univariate expression levels of
the cytokines, yet there does seem to be differences in variability across cytokines. Next,
we explore potential differences in the associations between the cytokines through their
covariance structure.

4.4 Results

Our aim is to obtain a covariance matrix estimate at each time point, and then extract
the resulting marginal and partial correlations to investigate the cytokine interactions
(see Figure 4.6). We then apply cluster analysis and network reconstruction (explained
in the following sections) to find groups of cytokines that frequently interact, indicated
through clusters or edges in the analyses. We summarise the resulting clusters and
networks across all time points in order to categorise changes or stabilities over time for
the treatment and control group in both arterial and microdialysis samples. Here we
describe our methodology and present the results.
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Fig. 4.6 The covariance estimate can be used to perform cluster analysis and network
reconstruction by extracting the marginal and partial correlations, respectively.

Covariance estimation using TAS

Here, we explore the use of TAS in order to infer the covariance structure among
cytokines, within treatment groups as well as across different time points. The main
motivation for using TAS instead of PPCA is because of the sequential structure of the
dataset. In this context, TAS enables the use of covariance estimates obtained for earlier
time points as prior information (in the form of target matrices) when using TAS on
later time points.

Before we can apply TAS, however, we recall that there are still a small number of
missing values in the dataset. An important point to note is that some of the missing
values are censored observations due to being below the limit of detection of the assay.
However, as lowly expressed cytokines were removed due to our stringent threshold
(>20% missingness), we assume that the remaining values are missing at random. We
choose to impute these missing values independently for each time point using the well-
established k-Nearest Neighbours (kNN) algorithm [104]. This algorithm computes
the similarity between cytokines by computing the Euclidean distance of their (non-
missing) log-expression values from each other across all patients in a chosen stratum.
The closest k cytokines are identified and then the missing values are imputed as an
average of their neighbours’ log-expression values for that patient. We use kNN with a



80 Case study: cytokine expression in the context of traumatic brain injury

small number of neighbours, k = 3. The rationale behind a small k is that the imputation
of censored values will still be governed by similarly lowly expressed cytokines and
nothing else, and therefore the imputation inaccuracy should be limited. The choice of
k = 3 is arbitrary and as such we also present all analysis results for k = 5,7 (Appendix
C.2) to assess the robustness of our analysis.

Having imputed the missing data for each time point, we centre the resulting log-
expression values by subtracting their mean. Our strategy is to use TAS to its maximum
potential, by including informative prior information. For this dataset, that manifests
as using the covariance estimates from previous time points in the target set for the
current time point. This is derived from our expectation that the covariance structure
from previous time points should have relevant information to share with that of the
current time point. Remaining loyal to the structure of the data, we treat the time points
as if they were sequential, so that at time point 5, we use information from time points 1,
2, and 4, but not of the others since they have not yet occurred. We also treat the arterial
and microdialysis samples completely separately, so that no covariance information is
shared across sample types.

For the first time point there are no previous data-derived covariance matrices to
use. In this case, we use the nine default targets from Section 2. For every time point
thereafter, we construct the target set using these nine default targets as well as all TAS
covariance estimates from previous time points. For example, for the estimation of the
arterial cytokine covariance matrix at time point 18, a total of eighteen target matrices
are used to inform its estimation. This corresponds to the nine default target matrices in
addition to the covariance estimates from the nine previous time points.

Applying TAS to each time point yields both a covariance matrix estimate and the
associated weights for each target matrix used in the target set. For example, Figure 4.7
shows the weights from TAS for the arterial samples of the treatment group at time point
2. Here, it can be seen that the weights are mostly shared between the TAS estimate for
time point 1 (60%) and the sample covariance matrix for time point 2 (40%).

A similar pattern is observed for the majority of arterial samples (both control and
treatment), where the TAS covariance estimate from the previous time point is allocated
a high weight when used as a target matrix for the current time point (not shown). This
result supports the use of TAS in this longitudinal data collection process, in which
earlier time points have relevant information to improve inference in later time points.

A different behaviour is observed for the microdialysis treatment samples, for which
TAS weights tend to prefer the regular default shrinkage targets (see Figure 4.8). This
is further justification behind using our multi target approach. Our intuition about
covariance estimates from previous time points does not hold in this case and would
have led to increased estimation error had we decided to use this target in single target
linear shrinkage.
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Fig. 4.7 TAS weights for the arterial samples of the treatment group for time point 2.
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Fig. 4.8 TAS weights for the microdialysis samples of the treatment group for time
point 2.

Cluster analysis

We wish to demonstrate how the estimate of a covariance matrix may be used for
downstream multivariate analyses. For the current dataset, we are interested in how
cytokines interact with each other so that we may better characterise the differences
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between the treatment and control groups. Cluster analysis is a widely-used method in
statistics and machine learning for grouping together items with similar quantitative
characteristics. It is ‘unsupervised’ in the sense that the algorithms are given no ground
truth to measure their success and adapt, meaning that they must find their own structure
in the data. It can therefore be a useful aid in exploratory analyses in which the
underlying system is not fully understood, as with cytokines in TBI.

Cluster analysis is the category name for a large number of methods, none of which
is perfect in all situations. The decision to choose a method is largely context-specific
and can depend upon decisions such as how to define similarity between measurements,
how clusters should be defined based on this similarity, and how the number of clusters
should be selected. For example, one might choose a clustering strategy for which the
distance between items in a cluster is minimised whilst the distance between clusters is
maximised.

Since we wish to investigate cytokine interactions, we use the Pearson (marginal)
correlation of cytokine expressions as the feature to be used as input for clustering.
The estimates for these coefficients are readily extracted from the covariance matrix
estimated by TAS. Agglomerative hierarchical clustering was then applied to these
correlation matrices using the Euclidean distance to define similar correlations and
Ward’s criterion [78] to distinguish between clusters of these correlations. The number
of clusters at each time point was determined by optimising the silhouette index [91].
The silhouette index is a metric based on the ratio of distances of points, maximised by
the clustering that shows maximum similarity within and discrepancy between clusters.
Given a clustering of k clusters labelled Ci, i = 1, . . . ,k, to which we have assigned data
points xn, n = 1, . . . ,N , then define the quantity

a(n) =
1

|Ci | −1

∑
xj∈Ci,n, j

d(n, j), (4.1)

for xn ∈ Ci with d(n, j) equal to some distance metric between two data points xn,x j (in
our case Euclidean). This makes a(n) the mean distance between xn and all other data
points assigned to the same cluster x j ∈ Ci. Further, define

b(n) =min
Cl

1
|Cl |

∑
xj∈Cl

d(n, j), (4.2)

where the minimum is computed over all clusters Cl of which xn is not a member. This
makes b(n) the minimum mean distance to the points in other clusters from xn if its
current cluster is excluded from the computation. The silhouette of point xn is then

s(n) =
b(n)− a(n)

max{a(n),b(n)}
. (4.3)
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It can be seen that −1 ≤ s(n) ≤ 1, with positive values arising when the intra-cluster
mean distance is small relative to the inter-cluster one, and vice versa for negative
values. The silhouette of a cluster Ci is

Si =
1
|Ci |

∑
xn∈Ci

s(n) (4.4)

and a clustering’s Silhouette Index is

S =
1
k

∑
i

Si, (4.5)

which can be interpreted as the average silhouette value across all of the N data points.
The clustering that maximises this value is selected as the number of clusters to proceed
with in the analysis. We note that other metrics could also have been used, but that our
aim is to demonstrate how covariance estimation can facilitate clustering, rather than
the clustering interpretation itself.

Applying cluster analysis to each stratified collection of patient-cytokine expression
values across time points gives different clusterings for each sample type and treatment
status. We use Cluster Of Cluster Analysis (COCA) [80, 20] to summarise multiple clus-
terings of the same set of cytokines, thereby identifying which cytokines’ correlations
were often clustered together over time. COCA proceeds as follows:

1. For each combination of sample type and treatment status, create a Matrix of
Clusters (MOC), which contains the clustering allocations obtained across the
time points. The rows of the MOC represent the cytokines and each column
represents a cluster for a specific time point. The entries are binary, taking the
value 1 only if that cytokine was in that cluster at that time point. For example, if
there were only two time points and three clusters were identified for the first and
two for the second, then the resulting MOC would have five columns.

2. Randomly subsample (without replacement) the rows of the MOC and apply
hierarchical clustering to each subsampled matrix.

3. Create a square consensus matrix whose rows and columns represent the consid-
ered cytokines. The entries of the consensus matrix are the proportion of times
two cytokines were clustered together when they were both subsampled in step 2.

4. Apply hierarchical clustering to the consensus matrix in step 3 and output the
corresponding clustering labels.

We ran COCA using 0.8 as the sampling fraction (step 2 above) of rows and columns to
include in 1000 subsamples (these last two values are default parameters in the software
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[20]) and by again optimising the silhouette index to determine the number of clusters
to use for step 4.

Steps 2 and 3 of COCA correspond to a method known as consensus clustering.
Consensus clustering aims to assess the robustness of a clustering structure both to
perturbations in the data and stochasticity of the clustering algorithm. In this way, the
clustering labels that COCA outputs can be seen as a robust global clustering of multiple
clustering structures.

As an illustration, Figure 4.9 shows the clustered correlation matrix for the arterial
samples of the treatment group at time point 2. In this case, the silhouette index has
selected three clusters of cytokines, with two being quite well-defined and the larger
one being more heterogeneous. The heterogeneous cluster can be seen as an example of
uncertainty in the identified clustering structure, which we expand upon in Section 4.5.
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Fig. 4.9 Correlation clustering for the arterial samples of the treatment group for time
point 2. The number of clusters identified by the silhouette index is shown by the
number of colours used in the dendrogram of the rows.

We now summarise the clusterings for each sample type and treatment group using
COCA. Figures 4.10 and 4.11 show the result of COCA for the arterial samples of the
control and treatment groups, respectively.
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Fig. 4.10 COCA for the arterial samples of the control group using TAS. The labels
of the columns indicate a cluster allocation for a given time point, e.g. time point 10
cluster 2 is denoted as TP10 C2. Each time point has been given its own colour for
clarity.
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Fig. 4.11 COCA for the arterial samples of the treatment group using TAS. The labels
of the columns indicate a cluster allocation for a given time point, e.g. time point 10
cluster 2 is denoted as TP10 C2. Each time point has been given its own colour for
clarity.

In this case, COCA identifies six clusters of cytokines that are consistently grouped
together across the time points for the arterial control group cytokines but only two
clusters for the arterial treatment group. However, there is considerable overlap between
the maroon cluster in the treatment group (Figure 4.11) and the combined yellow and
green clusters in the control group (Figure 4.10). The common cytokines between these
clusters are PDGF.ABBB, PDGF.AA, RANTES, sCD40L, and IFNa2, whereas IL2 and
GRO appear in the treatment cluster, but not in the analogous control cluster, and vice
versa for Eotaxin. Even though these clusters contain common cytokines, the biggest
difference is the position in their dendrograms. The position in the treatment dendrogram
is farthest away from the other cytokines. In the control group, their position is with
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the blue, pink, and purple clusters after the first branch of the dendrogram, and so they
are considered as more similar to the rest of the cytokines. Instead it is the maroon
cluster of the control cytokines that are considered as most different to the others, which
includes sIL.2Ra, IL12p70, VEGF, IL17, IFNg, and MDC. These cytokines are still
considered to be similar in the treatment group (appearing close to each other in the
dendrogram), but are also part of the large green cluster and thus deemed to cluster
similarly to the majority of other cytokines. It is unclear whether these contrasts in
clusterings are due to the treatment status of the patients, but it could provide some
target groups of cytokines to analyse in further studies.

Figures 4.12 and 4.13 display the outputs of COCA for the microdialysis samples.
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Fig. 4.12 COCA for the microdialysis samples of the control group using TAS. The
labels of the columns indicate a cluster allocation for a given time point, e.g. time point
10 cluster 2 is denoted as TP10 C2. Each time point has been given its own colour for
clarity.
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Fig. 4.13 COCA for the microdialysis samples of the treatment group using TAS. The
labels of the columns indicate a cluster allocation for a given time point, e.g. time point
10 cluster 2 is denoted as TP10 C2. Each time point has been given its own colour for
clarity.

This time, two clusters have been identified for the control group and five clusters
for the treatment group. However, unlike for the arterial samples, there does not seem
to be much overlap between the clusters or apparent similarity in dendrogram distances.
For the control group, the small cluster that is distinguished from the other cytokines
consists of RANTES and IP10. In the treatment group, these cytokines differ by a
couple of branches of separation. Their closest cytokines in the treatment group are
FGF2 and sCD40L for RANTES and PDGF.AA for IP10, all of which are largely
separated in the control group. The most different cluster in the treatment group consists
of MIP1b, MIP1a, VEGF, IL6, and GCSF. The only dendrogram distance of those
cytokines that remain within one branch of separation in the control group is between
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GCSF and IL6. This large difference in similarity for the microdialysis samples is
another avenue for future exploration.

Network reconstruction

As mentioned in Section 1.5 and Chapter 3, network reconstruction aims to identify
significant pairwise interactions between objects of interest, in our case cytokines. The
resulting significant interactions can then be visualised as edges between cytokines
(nodes) that represent cytokines in what is collectively termed a network. If desired,
groups of cytokines may then be manually extracted through consideration of the
resulting edges in the network.

Similar to cluster analysis, there are many different ways to define an interaction
(edge) in the network and estimate its significance. In this analysis, we assume a
Gaussian Graphical Model (GGM). By imposing an assumption of Gaussianity on the
log-expression values, the entries of the inverse covariance matrix (precision matrix)
encode the conditional dependencies of the cytokines through a statistic called the partial
correlation coefficient (Section 1.5). The partial correlation coefficient in this analysis
quantifies the interaction of two cytokines whilst conditioning on the interactions with
all others, inducing a more accurate measure of the direct pairwise relationship of
each cytokine. This powerful interpretation of interaction is a result of the Gaussian
assumption and can thus be thought of as a trade-off with model simplicity. For an
introduction to GGMs, see [32, 36].

Estimates for partial correlation coefficients can be obtained by inverting an es-
timated covariance matrix, obtained here using TAS. In order to determine which
interactions are statistically significant, we employ the popular empirical Bayes hy-
pothesis testing approach of Schäfer and Strimmer [94]. It assumes that the empirical
distribution of partial correlations is a mixture of a null and alternative distribution, cor-
responding to non-interesting interactions (partial correlation not significantly different
to zero) and interesting ones (partial correlation significantly different from zero) their
method determines a partial correlation threshold adaptively from the data, controlling
the estimated false positive rate. This generates a p-value for each interaction and
corresponding q-value after correction for multiple testing. These statistics enable
network reconstruction by forming edges from the significant interactions. This method
is not only capable of high-dimensional data but actually benefits from it, since the
more interactions there are the better it is able to fit its null and alternative models.

Similar to the cluster analysis, we estimate time-point specific cytokine networks
each category of sample type and treatment status. To summarise the results over time,
we opted to count the number of times a pair of cytokines has a significant interaction
across all time points for each sample type. The counts for the control and treatment
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groups were then compared. The rationale behind this summary and comparison is to
see which interactions are consistently present across time points. In this comparison,
there would be three interesting situations: (i) if a pair of cytokines has a consistently
present edge over time in the control group only (ii) vice versa for the treatment group
only (iii) or for both groups. However, care must be taken in this case to not compare
across sample types, since the partial correlation coefficient conditions on all other
observed cytokines and the set of observed cytokines is different for the arterial and
microdialysis group (due to our quality control step).

As an example, Figure 4.14 shows the reconstructed networks for the arterial
samples of both treatment groups at time point 10. In this case, the network shows that
for this time point there are only two edges in common between control and treatment
groups, IL6-GCSF and PDGF.AA-PDGF.ABBB.

Arterial time point 10: TAS
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Fig. 4.14 Reconstructed networks for arterial samples at time point 10 using TAS.
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Here, we summarise the networks for each sample type and treatment status by
counting the number of times an edge appears between each pair of cytokines across
the time points. Figure 4.15 displays the count of each edge between a pair of cytokines
for the arterial samples.
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Fig. 4.15 Network edge summaries for arterial samples using TAS. The x-axis shows
the number of times an edge appeared in the control group networks, whilst the y-axis
does the same for the treatment group. The number inside the blue boxes shows how
many pairs of cytokines had an edge appear that many times.

The edges that stand out from this figure are GCSF-IL6 (control=5, treatment=3),
PDGF.AA-PDGF.ABBB (control=8, treatment=2), sIL.2Ra-VEGF (control=7, treat-
ment=0) and IL.10-TNFa, IP.10-MCP.1, IP.10-MDC (control=5, treatment=0). It seems
as though the interactions between GCSF-IL6 and PDGF.AA-PDGF.ABBB are present
in both the treatment and control group. It also appears that no cytokine interactions are
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specific to the treatment group, but that sIL.2Ra-VEGF, IL.10-TNFa, IP.10-MCP.1, and
IP.10-MDC are specific to the control group.

Figure 4.16 displays the count of each edge between a pair of cytokines for the
microdialysis samples.
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Fig. 4.16 Network edge summaries for microdialysis samples using TAS. The x-axis
shows the number of times an edge appeared in the control group networks, whilst the
y-axis does the same for the treatment group. The number inside the blue boxes shows
how many pairs of cytokines had an edge appear that many times

The edges that stand out here are IP.10-PDGF.AA (control=0, treatment=5) and
MIP.1a-MIP.1b (control=5, treatment=4). In this case, MIP.1a-MIP.1b appears often
in both treatment cases, whereas IP.10-PDGF.AA seems to be specific to the treatment
group. As with the cluster analysis, it is unclear whether these differences are caused
by the treatment, but they could be useful for further analysis.
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4.5 Discussion

In this chapter, we have described the analysis of a cytokine expression dataset for
patients with TBI. This analysis has improved upon Helmy et al. [56] who did not
perform high-dimensional covariance estimation and pooled data between time points,
potentially averaging out meaningful effects. We have shown how TAS can overcome
the problem of high-dimensional cytokine datasets. We have also shown through TAS
that covariance information can be shared between time points to facilitate the multi-
variate analysis of a time-series dataset. Using clustering and network reconstruction,
we have identified some groups (and pairs) of cytokines that often interact with each
other over time and how these groups differ between sample type and treatment status.
This sheds some light on the largely uncharacterised multivariate molecular behaviour
of cytokines and their response to both TBI and IL1ra treatment and therefore presents
some potential avenues for further analysis and studies.

As with any real data analysis there are limitations to this study. Firstly, we have
used a fairly arbitrary cut-off of 20% for missing values in both sample types. Although
this can be considered as conservative and has some basis for justification through
our explanation in Section 4.3, it does exclude many cytokines from the analysis and
potentially useful information. In particular, the set of cytokines considered for the
partial correlation calculation is crucial. As such, if cytokines that are central to the
underlying interactions are excluded, then false positive edges will be included in the
estimated network. One possible route to overcoming this drawback is to perform more
diligent missing value imputation. Since our collaborators highlighted the similarity
between the arterial and venous datasets, one avenue would be to use the venous samples
to inform the imputation of the missing arterial values. The relationships between the
arterial and venous samples, including any correlation of missing values, would first
need to be established in order to do this.

The cluster analysis also comes with a number of potential limitations. The method
used to cluster, the metric used for distance, the metric used to define clusters, and the
method to determine the number of clusters are all subjective decisions that have other
alternatives. A more robust procedure for choosing the number of clusters could be
to run the clustering using multiple difference methods and then select an aggregate
for the number of clusters that was chosen by them, e.g. the most common number
of clusters. Whilst this, and other methods exist for the performing a cluster analysis,
we highlight that the purpose of this analysis was to present a pipeline of statistical
methods to analyse this type of dataset, rather than necessarily drawing biological
interpretation from the results. Therefore, whilst selecting other ways of the performing
each individual step, the process of using TAS to facilitate multivariate analysis remains
unchanged.
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The decision to not use PPCA for covariance estimation was based upon the missing
values of the dataset being censored, rather than missing at random. One way to
overcome this limitation is to explore PPCA for censored data [19]. PPCA could be
used to generate a target matrix for TAS in this case. Since the venous datasets were
not used and have been said to be biologically associated with the arterial samples,
PPCA could be trained on the venous dataset and used as a target matrix for the same
time point in the arterial dataset. The target that PPCA provides will contain latent
factor covariance information that is identified within the venous samples, and therefore
unable to be captured by the other target matrices used by TAS.

Another unused part of the dataset in our analysis was the abundance of clinical
variables that are available. We chose to only use the treatment status to simplify our
analysis. However, it would be interesting to explore how other quantitative metrics are
related to the cytokine expression values. These include multiple scores for TBI severity,
systemic infection status, and C-reactive protein and white blood cell count. We view
the analysis pipeline presented here as a starting point for tackling these questions, but
note that the dataset does not have enough samples to simultaneously stratify by all of
these metrics.





Chapter 5

Conclusions and further work

In this thesis, we considered the problem of high-dimensional covariance matrix esti-
mation from high-throughput molecular data. In particular, we focussed on regularised
covariance estimators that are computationally efficient, can handle missing values, and
are relatively scalable for large sample sizes and dimensionality. We have also shown
how to incorporate prior knowledge into covariance estimation. We finally aspired to
translate this research into practice by providing publicly available software packages
that will enable the adoption of our methods. While we focussed on applications in
the context of functional genomics, our methods are generic and can also be applied to
other types of high-dimensional data.

In Chapter 2 we focussed on linear shrinkage estimators, adopting a conjugate
Bayesian framework that enables an efficient computational implementation. We
introduced TAS, a new estimator that incorporates multiple shrinkage targets. We
showed that the proposed estimator can perform similarly to the best single target
shrinkage estimator, but that TAS is less prone to target misspecification because it is
possible to specify a set of shrinkage target instead of a single one. Our estimator is
therefore particularly useful in situations where there is uncertainty around the choice of
target matrix. Another advantage of TAS is that target matrices from external datasets
can be included into the target set without degradation in performance. For example,
we showed that on data from The Cancer Genome Atlas this had a very beneficial effect
when analysing the apoptosis pathway from ovarian cancer samples whereas this had no
beneficial effect when analysing the p53 pathway for breast cancer samples, yet it did
not harm the estimation. As such, TAS provides a low-risk method of including external
information without inducing large amounts error when the external information is not
relevant. TAS is implemented as an R software package and is publicly available at
http://github.com/HGray384/TAS.

In Chapter 3 we considered PPCA as an alternative method for covariance estimation.
While PPCA has been widely explored as a dimensionality reduction method, its use in

http://github.com/HGray384/TAS
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the context of covariance estimation has largely been overlooked in the literature. We
evaluated three different algorithms for model fitting in the presence of missing values
based on EM and VB implementations and proposed our own extension to another. We
also highlighted how this estimator represents a large computational benefit for invert-
ing the covariance matrix due to its low dimensional representation - especially useful
for reconstructing networks of a large number of variables. We introduced the soft-
ware package pcaNet that is publicly available at http://github.com/HGray384/pcaNet.
pcaNet implements all three algorithms and contains functions for performing network
reconstruction. The software was illustrated on a real Arabidopsis thaliana dataset.
Moreover, we showed that the VB implementations outperform the standard EM ones
through simulation study. Combined with an automatic selection of the latent dimen-
sion through the ARD prior, we advocate the use of VB for PPCA-based covariance
estimation. We showed that the PPCA estimator outperforms TAS with its default target
set when the underlying covariance structure is from a PPCA model, otherwise TAS
appears to perform better. This motivates the potential use of a PPCA-structured target
matrix within TAS, and we discussed how this may be constructed without reusing any
data.

In Chapter 4 we presented a real data analysis of a case-control cytokine expression
dataset for patients with TBI. We highlighted some of the difficulties associated with
data of this type, such as small sample sizes, multiple time points, and missing values.
We discussed that the nature of these missing values is complex, as they can be censored
due to technology limitations. We therefore adopted a conservative criterion to remove
cytokines with more than 20% missing values, imputing the remaining cytokines using
a nearest neighbours procedure. This overcame some limitations in previous studies
as it allowed us to study individual time points instead of pooling data across time
points, albeit at the expense of excluding more cytokines from the analysis. We showed
how multiple time points could be exploited by TAS to share information about their
covariance structure. We also performed cluster analysis and network reconstruction
in order to identify groups of cytokines that behave similarly over time and how these
groups might differ between arterial/microdialysis samples and control/treatment groups.
Whilst this has its limitations, and our results should be interpreted with caution, our
proposed pipeline introduces a novel approach to perform multivariate analyses based
on this type of data. This might also be relevant in other situations in which high-
dimensional data is collected over a time course.

Throughout our discussion sections at the end of each chapter, we have identified
promising directions for future work.

For TAS, the ability to include multiple target matrices has been shown to be greatly
beneficial. A natural direction for future work would be to design a more comprehensive
default target set when no external information is available or relevant. Steps towards

http://github.com/HGray384/pcaNet
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this could involve identifying more general forms of covariance matrices whose param-
eters could be adaptively estimated for the specific dataset at hand. Theoretically, this
can be done by parametrising target matrices (with parameters that have their own prior
distributions) and performing Bayesian inference over these parameters too. Practically,
this causes significant increases in computational complexity and arguably negates
the simplicity of a linear shrinkage model. A simpler empirical Bayes approach to
this problem in the single-target model has been outlined in Hannart and Naveau [52],
though it was shown that the solutions are the default targets for common parametri-
sations (e.g. when constrained to a diagonal matrix with equal or unequal entries).
The implementation has yet to be applied to more complex parametrisations or when
considering multiple targets, though this is a promising avenue for future work.

Validation of a default target set could be done by performing a large-scale simula-
tion study on a range of different datasets. One potential target matrix to consider would
be the PPCA estimator. The main challenge would be how to use the available data to
estimate the PPCA model, since subsetting might not be optimal for high-dimensional
datasets and using external data may bias the model training.

Another useful extension to the TAS model would be its applicability to non-
Gaussian settings, so that it could potentially be applied to count-based sequencing data.
Research in this direction would first be required to compile existing methods in the
literature, such as those presented at the end of Chapter 2. A simulation study with
non-Gaussian data-generating processes could then be used to determine the suitability
of each method.

A robust and comprehensive simulation study would also be greatly beneficial in
determining the advantages and disadvantages of the PPCA implementations explored
in Chapter 3. By varying factors such as the data-generating model and its parameter
settings, missing value percentage, the number of true latent dimensions (if any), and
the dimensionality of the data, it would then be possible to create some guidelines as to
which algorithm should be used for covariance estimation in which situation.

For both TAS and PPCA, another avenue for comparison with other methods would
be to assess their network inference performance. This can be done by using the inverse
of their estimated covariance matrix in combination with an edge selection method
such as Strimmer [100] to enforce sparsity, as implemented in pcaNet. In particular,
it would be interesting to theoretically assess the application of Strimmer [100] to
such a structured partial correlation matrix induced via the PPCA model. Obtaining
these sparse inverse covariance estimates would then allow the comparison against
simultaneous estimation and variable selection methods such as the popular graphical
lasso [45], and is another way of assessing the practical utility of accurate covariance
estimation.
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Future work on the cytokines analysis presented in Chapter 4 should be focussed
towards incorporating the excluded data from the venous samples of the experiment.
Since these samples are thought to biologically correlate with the arterial samples, they
could be used to improve the initial imputation of missing data. Since this imputation
would be biologically meaningful, the thresholding step taken in our analysis might
then need to be relaxed, allowing more cytokines to be analysed and more insights
could be gained. The venous dataset could also be used to train the PPCA model, which
could then be included as an extra target in TAS and potentially improve estimation.

In sum, the methodology presented in this thesis extends the existing pool of
available techniques for covariance estimation, not only through new methodology, but
also by providing open-source well-documented analysis tools.We expect that these
tools could be useful in a variety of contexts and, as discussed above, motivate further
methodological developments.
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[90] Ročková, V. and George, E. I. (2016). Fast bayesian factor analysis via automatic
rotations to sparsity. Journal of the American Statistical Association, 111(516):1608–
1622.

[91] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of computational and applied mathematics,
20:53–65.

[92] Roweis, S. T. (1998). EM Algorithms for PCA and SPCA. In Jordan, M. I.,
Kearns, M. J., and Solla, S. A., editors, Advances in Neural Information Processing
Systems 10, pages 626–632. MIT Press.

[93] Sanderson, C. and Curtin, R. (2016). Armadillo: a template-based c++ library for
linear algebra. Journal of Open Source Software, 1(2):26.

[94] Schäfer, J. and Strimmer, K. (2004). An empirical Bayes approach to inferring
large-scale gene association networks. Bioinformatics (Oxford, England), 21(6):754–
764.

[95] Schäfer, J., Strimmer, K., et al. (2005). A shrinkage approach to large-scale
covariance matrix estimation and implications for functional genomics. Statistical
applications in genetics and molecular biology, 4(1):32.

[96] Schilling, S. and Bock, R. D. (2005). High-dimensional maximum marginal
likelihood item factor analysis by adaptive quadrature. Psychometrika, 70(3):533–
555.
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Appendix A

Target-Averaged linear Shrinkage
Estimation

A.1 Uncertainty around the empirical Bayes estimate
of α

Here, we illustrate the statistical uncertainty surrounding the empirical Bayes estimate
α∗, defined as the value of α that maximises the marginal likelihood defined in A.2 for
fixed ∆. We generate a data matrix X = (x1, . . . ,xn) using xi ∼ N(0,2∗ I p×p), p = 200
and n = 20. For the generated data set, we observe that a range of values of α lead to
similar marginal likelihood values. Figure A.1 displays the Bayes factor

BF(α) =
p(X |α∗,I p×p)

p(X |α,I p×p)
,

which quantifies evidence in favour of α∗ when compared to alternative values of
α ∈ (0,1).
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Fig. A.1 Bayes factor quantifying the strength of support for α∗ (the empirical Bayes
estimate for α) compared to alternative values of α ∈ (0,1). Horizontal lines correspond
to the heuristic rules of Kass and Raftery (1995) for which BF < 3 is “not worth more
than a bare mention” and BF < 20 provides “less than strong evidence”.

A.2 Marginal likelihood of the Gaussian conjugate model

To derive Equation (2.7), we begin by using the original parametrisation of the Inverse
Wishart distribution. The marginal likelihood is found by calculating

p(X |α,∆) =

∫
p(X |Σ)p(Σ |α,∆)dΣ (A.1)

=

∫
1
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np
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(A.3)

The term inside the integral is the kernel of an inverse Wishart distribution with degree
of freedom parameter ν + n and scale matrix Ψ+ nS. Multiplying the inside of the
integral by its normalising constant makes it evaluate to 1. Therefore dividing by the
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normalising constant outside of the integral and substituting for Ψ leaves

p(X |α,∆) =
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Substituting in for ν then gives the expression

p(X |α,∆) =
Γp

{ 1
2 (

n
1−α + p+1)
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| α
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αn
1−α+p+1

(nπ)
np
2 Γp

{ 1
2 (

αn
1−α + p+1)

}
|S+ α

1−α∆|
n

1−α+p+1
. (A.8)
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A.3 Cardinality for the support of α

Our approach assigns a discrete prior distribution with support A to the shrinkage inten-
sity parameter α. As 0 < α < 1, a natural support for this prior is an equidistant grid of
values within the (0,1) interval. Here, we study the stability of the multi-target estimate
for different choices of support. We generate 100 data sets of size n = 25 from N(0,Σ)
with p = 100 and Σ = 4 ∗ I100×100. Subsequently, we compute Equation (2.10) using
D = {T 1, . . . ,T 9} (see Table 1 in main text) and d ∈ {0.2,0.1,0.05,0.01,0.005,0.001},
where d denotes the distance between consecutive elements of A. Figure A.2 shows
the PRIAL of estimator (2.10) as a function of the cardinality cardd(A) = d−1 −1 of A
and shows that for sufficiently small values of d, i.e. large values of cardd(A), minimal
improvement is obtained beyond d = 0.01 (card(A) = 99).
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Fig. A.2 PRIAL associated to the TAS estimator (D = {T 1, . . . ,T 9}, see Table 2.1)
across different cardinalities of A. Results are associated to the simulation setup
described in Section A.3.



A.4 Model-based simulation: additional results 113

A.4 Model-based simulation: additional results

Figures A.3, A.4, A.5 and A.6 complement Figures 2.1 and 2.2 in Section 2.6 by
providing results for n ∈ {50,75}.
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(b) Scenario 1: target-specific posterior weights
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(d) Scenario 2: target-specific posterior weights

Fig. A.3 Simulation results for scenarios 1 and 2 when n = 50. Barplots display the
PRIAL for each estimator and boxplots display target-specific posterior weights (see
Equation (2.11)) of the TAS estimator. ST1, . . . , ST9 refer to the nine STS estimators,
TAS to the estimator in Equation (2.10), AT1, . . . , AT3 to the three estimators of
Touloumis [103] and CPC to the estimator of Schäfer et al. [95].
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(b) Scenario 3: target-specific posterior weights
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(d) Scenario 4: target-specific posterior weights

Fig. A.4 Simulation results for scenarios 3 and 4 when n = 50. Barplots display the
PRIAL for each estimator and boxplots display target-specific posterior weights (see
Equation (2.11)) of the TAS estimator. ST1, . . . , ST9 refer to the nine STS estimators,
TAS to the estimator in Equation (2.10), AT1, . . . , AT3 to the three estimators of
Touloumis [103] and CPC to the estimator of Schäfer et al. [95].
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(b) Scenario 1: target-specific posterior weights
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(d) Scenario 2: target-specific posterior weights

Fig. A.5 Simulation results for scenarios 1 and 2 when n = 75. Barplots display the
PRIAL for each estimator and boxplots display target-specific posterior weights (see
Equation (2.11)) of the TAS estimator. ST1, . . . , ST9 refer to the nine STS estimators,
TAS to the estimator in Equation (2.10), AT1, . . . , AT3 to the three estimators of
Touloumis [103] and CPC to the estimator of Schäfer et al. [95].
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(b) Scenario 3: target-specific posterior weights

0

25

50

75

100

ST1 ST2 ST3 ST4 ST5 ST6 ST7 ST8 ST9 TAS AT1 AT2 AT3 CPC

P
R

IA
L

(c) Scenario 4: PRIAL
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(d) Scenario 4: target-specific posterior weights

Fig. A.6 Simulation results for scenarios 3 and 4 when n = 75. Barplots display the
PRIAL for each estimator and boxplots display target-specific posterior weights (see
Equation (2.11)) of the TAS estimator. ST1, . . . , ST9 refer to the nine STS estimators,
TAS to the estimator in Equation (2.10), AT1, . . . , AT3 to the three estimators of
Touloumis [103] and CPC to the estimator of Schäfer et al. [95].
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Fig. A.7 Heatmaps displaying the average Frobenius norm (over the 100 simulated data
sets) between all pairs of shrinkage targets in Table 2.1 for simulation scenarios 1, 2,
3 and 4 when n = 50 (results are omitted for n ∈ {25,75} as they are identical). The
true covariance matrices Σ1, . . . ,Σ4 were also included in the comparison. Light (dark)
colors indicate that the shrinkage targets are (dis-)similar.
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A.5 predictive validation simulation strategy

Figure A.8 complements Figure 2.5 by providing results for n = p/4 and n = 3p/4.
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(b) Σ̂TAS-info (n = p/2)

Fig. A.8 Target-specific posterior weights (see Equation (2.11)) obtained for estimators
Σ̂TAS and Σ̂TAS-info across the 1,000 random data partitions of the breast cancer data
set when n ∈ {p/2}. The target “ext” in Σ̂TAS-info stands for the shrinkage target Σ̂ext
estimated from external data.
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Fig. A.9 Target-specific posterior weights (see Equation (2.11)) obtained for estimators
Σ̂TAS and Σ̂TAS-info across the 1,000 random data partitions of the breast cancer data set
when n ∈ {p/4,3p/4}. The target “ext” in Σ̂TAS-info stands for the shrinkage target Σ̂ext
estimated from external data.
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(d) Σ̂TAS-info (n = 3p/4)

Fig. A.10 Target-specific posterior weights (see Equation (2.11)) obtained for estimators
Σ̂TAS and Σ̂TAS-info across the 1,000 random data partitions of the ovarian cancer data
set when n ∈ {p/4,3p/4}. The target “ext” in Σ̂TAS-info stands for the shrinkage target
Σ̂ext estimated from external data.
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Fig. A.11 Heatmaps displaying the average Frobenius norm (over the 1000 data parti-
tions) between all pairs of shrinkage targets in Table 2.1 for Breast and Ovarian cancer
datasets when n = p/2 (results are omitted for n ∈ {p/4,3p/4} as they are identical).
The true covariance matrix Σ for each cancer type is also included in the comparison.
Light (dark) colors indicate that the shrinkage targets are (dis-)similar.
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A.6 Assumption of normality

Figure A.12 provides normal Quantile-Quantile plots for the expression levels of four
different genes in two different cancer data sets from TCGA. This provides strong
evidence to suggest that the Gaussian assumption does not hold (even for individual
genes).
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Fig. A.12 Normal Quantile-Quantile plots for two genes from TCGA datasets. Sub-
figures (a) and (b) show the departure from normality for genes AKT3 and IL1A in the
ovarian cancer data whereas, sub-figures (c) and (d) show the departure from normality
for genes CCNE1 and CDK4 in the breast cancer data.
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A.7 The PANCAN32 data set

Cancer type TCPA acronym n

1 Adrenocortical carcinoma ACC 46
2 Bladder urothelial carcinoma BLCA 344
3 Breast invasive carcinoma BRCA 874
4 Cervical squamous cell carcinoma and endocervical adenocarcinoma CESC 171
5 Cholangiocarcinoma CHOL 30
6 Colon adenocarcinoma COAD 357
7 Lymphoid neoplasm niffuse large B-cell lymphoma DLBC 33
8 Esophageal carcinoma ESCA 126
9 Glioblastoma multiforme GBM 205
10 Head and neck squamous cell carcinoma HNSC 346
11 Kidney chromophobe KICH 63
12 Kidney renal clear cell carcinoma KIRC 445
13 Kidney renal papillary cell carcinoma KIRP 208
14 Brain lower grade glioma LGG 427
15 Liver hepatocellular carcinoma LIHC 184
16 Lung adenocarcinoma LUAD 362
17 Lung squamous cell carcinoma LUSC 325
18 Mesothelioma MESO 61
19 Ovarian serous cystadenocarcinoma OV 411
20 Pancreatic adenocarcinoma PAAD 105
21 Pheochromocytoma and paraganglioma PCPG 80
22 Prostate adenocarcinoma PRAD 351
23 Rectum adenocarcinoma READ 130
24 Sarcoma SARC 221
25 Skin cutaneous melanoma SKCM 353
26 Stomach adenocarcinoma STAD 392
27 Testicular germ cell tumors TGCT 118
28 Thyroid carcinoma THCA 372
29 Thymoma THYM 90
30 Uterine corpus endometrial carcinoma UCEC 404
31 Uterine carcinosarcoma UCS 48
32 Uveal melanoma UVM 12

Table A.1 Cancer types and number of samples in the PANCAN32 protein expression
data set from The Cancer Proteome Atlas.





Appendix B

Covariance estimation through
Probabilistic Principal Component
Analysis

B.1 EM algorithm in PPCA without missing values -
derivation

The equation for the joint log likelihood of the observed and latent variables is given by

lnp(X,Z |µ,W ,σ2) =

n∑
j=1

(
lnp(x j |z j,µ,W ,σ2)+ lnp(z j)

)
. (B.1)

From the assumption that z j ∼ N(0,I q×q), we have

lnp(z j) = −
q
2

ln(2π)−
1
2
z⊤j z j, (B.2)

while from x j |z j,µ,W ,σ2 ∼ N(Wz j + µ,σ
2I) we have

lnp(x j |z j,µ,W ,σ2) =−
p
2

ln(2πσ2)−
1

2σ2
(
(x j − µ)−Wz j

)⊤ (
(x j − µ)−Wz j

)
=−

p
2

ln(2πσ2)−
1

2σ2

(
(x j − µ)⊤(x j − µ)+ z⊤j W

⊤Wz j

−z⊤j W
⊤(x j − µ)− (x j − µ)⊤Wz j

)
. (B.3)

Note that (x j −µ)⊤Wz j is a scalar, so (x j −µ)⊤Wz j = ((x j −µ)⊤Wz j)
⊤ = z⊤j W

⊤(x j −

µ). Moreover, z⊤j W
⊤Wz j = Tr(z⊤j W

⊤Wz j) = Tr(z j z
⊤
j W

⊤W ), where we have used the
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cyclic property of the trace in the final equality. Equation (B.3) then becomes

lnp(x j |z j,µ,W ,σ2) =−
p
2

ln(2πσ2)−
1

2σ2

(
∥x j − µ∥2

+Tr(z j z
⊤
j W

⊤W )−2z⊤j W
⊤(x j − µ)

)
, (B.4)

where ∥ · ∥ denotes the Euclidean norm. Substituting Equations (B.2) and (B.3) into
Equation (B.1) then gives

lnp(X,Z |µ,W ,σ2) =

n∑
j=1

−
p
2

ln(2πσ2)−
q
2

ln(2π)−
1
2

Tr(z j z
⊤
j )

−
1

2σ2

(
∥x j − µ∥2+Tr(z j z

⊤
j W

⊤W )

−2z⊤j W
⊤(x j − µ)

)
. (B.5)

B.1.1 E step

In the E step, we find the expectation of the complete-date log likelihood with respect to
the posterior distribution of the latent factors (given the most recently estimated values
for the parameters, µ,W and σ2). This is given by

E
[
lnp(X,Z |µ,W ,σ2)

]
=

n∑
j=1

−
p
2

ln(2πσ2)−
q
2

ln(2π)−
1
2

Tr
(
E

[
z j z

⊤
j

] )
−

1
2σ2

(
∥x j − µ∥2+Tr

(
E

[
z j z

⊤
j

]
W⊤W

)
−2E

[
z j

]⊤
W⊤(x j − µ)

)
, (B.6)

from which it is clear that we require expressions for E
[
z j

]
and E

[
z j z

⊤
j

]
. Recall that

z j ∼ N(0,I q×q) and x j |z j ∼ N(Wz j + µ,σ
2I p×p), and so it follows that

z j |x j ∼ N

(
M−1W⊤(x j − µ),σ2M−1

)
, (B.7)

where M =W⊤W +σ2I q×q and from Equation (B.7) it follows that

E
[
z j

]
= M−1W⊤(x j − µ) (B.8)

E
[
z j z

⊤
j

]
= σ2M−1+E

[
z j]E[z j

]⊤
. (B.9)
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B.1.2 M step

In the M step, we maximise Equation (B.6) with respect to the parameters. Setting to
zero the derivative of Equation (B.6) with respect to µ gives the following expression:

0 =
∂

∂µ
E[lnp(X,Z |µ,W ,σ2)] (B.10)

= −
1

2σ2
∂

∂µ

n∑
i=1

(
(x j − µ)⊤(x j − µ)+2E[z j]

⊤W⊤µ
)

(B.11)

= −
1

2σ2

n∑
i=1

(
−2(x j − µ)+2WE[z j]

)
. (B.12)

Multiplying through by σ2 and solving for µ gives

µnew =
1
n

n∑
i=1

(
x j −WE[z j]

)
. (B.13)

Setting to zero the derivative of Equation (B.6) with respect to W gives the following
expression:

0 =
∂

∂W
E[lnp(X,Z |µ,W ,σ2)] (B.14)

= −

n∑
i=1

(
∂

∂W
Tr

(
E[z j z

⊤
j ]W

⊤W
)
−2

∂

∂W
E[z j]

⊤W⊤(x j − µ)

)
. (B.15)

Using the results ∂
∂W Tr(BW⊤W ) = W (B + B⊤) and ∂

∂W (a⊤W⊤b) = ba⊤, Equation
(B.15) becomes

0 = −
n∑

i=1

(
W

(
E[z j z

⊤
j ]+E[z j z

⊤
j ]

⊤
)
−2(x j − µ)E[z j]

⊤
)

(B.16)

= 2
n∑

i=1
(x j − µ)E[z j]

⊤−2W
n∑

i=1
E[z j z

⊤
j ], (B.17)

which we may rearrange to give the update equation for W as

W new =

(
n∑

i=1
(x j − µ)E[z j]

⊤

) (
n∑

i=1
E[z j z

⊤
j ]

)−1

. (B.18)
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Setting to zero the derivative of Equation (B.6) with respect to σ2 gives the following
expression:

0 =
∂

∂σ2E[lnp(X,Z |µ,W ,σ2)] (B.19)

= −

n∑
i=1

p
2σ2 −

1
2σ4

(
| |x j − µ | |2+Tr

(
E[z j z

⊤
j ]W

⊤W
)

−2E[z j]
⊤W⊤(x j − µ)

)
. (B.20)

After multiplying through by 2σ4 and rearranging, we obtain

npσ2 =

n∑
i=1

(
| |x j − µ | |2+Tr

(
E[z j z

⊤
j ]W

⊤W
)
−2E[z j]

⊤W⊤(x j − µ)
)
, (B.21)

from which we may straightforwardly obtain the update equation for σ2 as

σ2
new =

1
np

n∑
i=1

| |x j − µ | |2+Tr(E[z j z
⊤
j ]W

⊤
newW new)

−2E[z j]
⊤W⊤

new(x j − µ). (B.22)

B.2 EM algorithm 1 - derivation

Collecting the p-dimensional data vectors as X = (x1, . . . ,xn), we begin by assuming
that their shared mean vector µ = x = 1

n
∑n

j=1 x j has been subtracted, i.e. that their mean
is known and equal to its sample estimate, which is then subtracted as a preprocessing
step. This means that the conditional distribution is now x j |z j ∼N(Wz j,σ

2I p×p), with
the µ having been removed.

B.2.1 Handling of missing values

Assuming now that missing values are present, each x j can be partitioned (without loss
of generality) as follows:

x j =

[
x
(O j )

j

x
(Mj )

j

]
, (B.23)
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where the notation Mj is use for all indices not in O j , i.e. the missing indices as the
complement of the observed ones. Similarly, the loadings matrix can be partitoned as

W =

[
W (O j )

W (Mj )

]
, (B.24)

where we note that this defines multiple partitions of the matrix W , one for each
data vector x j corresponding to its (not necessarily) unique observed and missing
indices. More explicitly, for the matrices W (O j ) and W (Mj ), we have retained only
those rows of W which correspond to x

(O j )

j and x
(Mj )

j , respectively. The entries w(O j )

i j =

{wi j |i = 1, . . . , |O j |, j = 1, . . . ,q} and w
(Mj )

i j = {wi j |i = |O j |+1, . . . ,p, j = 1, . . . ,q} so that
the matrices W (O j ) and W (Mj ) are of dimension |O j | × q and (p− |O j |) × q, respectively.

The conditional distribution can now be written in a partitioned form as[
x
(O j )

j

x
(Mj )

j

]
|z ∼ N

([
W (O j )z j

W (Mj )z j

]
,

[
Σ(O j,O j ) Σ(O j,Mj )

Σ(Mj,O j ) Σ(Mj,Mj )

])
. (B.25)

From our knowledge of the conditional distribution, we see that Σ(O j,Mj ) = 0|O j |×(p−|O j |),
Σ(Mj,O j ) = 0(p−|O j |)×|O j |, Σ

(O j,O j ) =σ2I |O j |×|O j |, and Σ(Mj,Mj ) =σ2I (p−|O j |)×(p−|O j |). From
Equation (B.25), it can be seen that

x
(O j )

j |z j ∼ N

(
W (O j )z j,σ

2I |O j |×|O j |

)
(B.26)

and
x
(Mj )

j |z j ∼ N

(
W (Mj )z j,σ

2I (p−|O j |)×(p−|O j |)

)
. (B.27)

It is worth noting that that x(O j )

j and x
(Mj )

j are assumed to be conditionally independent

given the value of z j so that p
(
x
(O j )

j |x
(Mj )

j , z j,W
)
= p

(
x
(O j )

j |z j,W
)
.

Using this notation, the missing values may now be modelled as latent variables for
implementation of the EM algorithm. For the EM specification, we have the observed
data

{
x
(O j )

j

}
, the latent variables

{
x
(Mj )

j , z j

}
, and the model parameters

{
W ,σ2}. The

logarithm of the joint likelihood for the observed and latent variables can be expressed
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as

n∑
j=1

logp
(
x
(O j )

j ,x
(Mj )

j , z j |W ,σ2
)
=

n∑
j=1

logp
(
x
(O j )

j |x
(Mj )

j , z j,W ,σ2
)

+

n∑
j=1

logp
(
x
(Mj )

j |z j,W ,σ2
)

+

n∑
j=1

logp
(
z j |W ,σ2

)
. (B.28)

Using the distributional assumption of the z j in the PPCA model, as well as Equa-
tions (B.26) and (B.27), and rearranging terms, Equation (B.28) becomes

n∑
j=1

logp
(
x
(O j )

j ,x
(Mj )

j , z j |W ,σ2
)
=

n∑
j=1

−

(
|O j |

2
+
|Mj |

2

)
log2πσ2 −

q
2

log2π−
1
2
z⊤j z j

−
1

2σ2

(
x
(O j )⊤

j x
(O j )

j + x
(Mj )⊤

j x
(Mj )

j

+Tr
[
z j z

⊤
j W

(O j )⊤W (O j )
]

+Tr
[
z j z

⊤
j W

(Mj )⊤W (Mj )
]

− 2z⊤j W
(O j )⊤x

(O j )

j −2z⊤j W
(Mj )⊤x

(Mj )

j

)
(B.29)

=−
np
2

log2πσ2 −
nq
2

log2π−
n∑

j=1

1
2
z⊤j z j

−
1

2σ2

(
x
(O j )⊤

j x
(O j )

j +Tr
[
x
(Mj )

j x
(Mj )⊤

j

]
+Tr

[
z j z

⊤
j W

(O j )⊤W (O j )
]

+Tr
[
z j z

⊤
j W

(Mj )⊤W (Mj )
]

− 2z⊤j W
(O j )⊤x

(O j )

j −2z⊤j W
(Mj )⊤x

(Mj )

j

)
. (B.30)
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B.2.2 E step

For the E step we want to compute the expectation of Equation (B.30) over the joint
distribution of the latent variables

{
z j,x

(Mj )

j

}
, which can be given as

n∑
j=1
E
z j,x

(Mj )

j

[
logp

(
x
(O j )

j ,x
(Mj )

j , z j |W ,σ2
)]
=−

np
2

log2πσ2 −
nq
2

log2π

−

n∑
j=1

1
2

Tr
[
E
z j,x

(Mj )

j

[
z⊤j z j

] ]
−

1
2σ2

(
x
(O j )⊤

j x
(O j )

j

+Tr
[
E
z j,x

(Mj )

j

[
x
(Mj )

j x
(Mj )⊤

j

] ]
+Tr

[
E
z j,x

(Mj )

j

[
z j z

⊤
j

]
W (O j )⊤W (O j )

]
+Tr

[
E
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(Mj )

j

[
z j z

⊤
j

]
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]
−2E
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j

[
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]
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j

− 2E
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j

[
z⊤j

]
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z j,x
(Mj )

j

[
x
(Mj )

j

] )
.

(B.31)

We therefore require expressions for E
z j,x

(Mj )

j

[
z j

]
, E

z j,x
(Mj )

j

[
z j z

⊤
j

]
, E

z j,x
(Mj )

j

[
x
(Mj )

j

]
,

and E
z j,x

(Mj )

j

[
x
(Mj )

j x
(Mj )⊤

j

]
. For the first, we have

E
z j,x

(Mj )

j

[
z j

]
=E

x
(Mj )

j

[
E
z j |x

(Mj )

j

[
z j

] ]
(B.32)

=E
x
(Mj )

j

[
M−1W⊤x j

]
(B.33)

=M−1W⊤ x̃ j, (B.34)

where we have used the law of total expectation, M =W⊤W +σ2I q×q, and x̃ j is x j for

x
(O j )

j and E
x
(Mj )

j

[
x
(Mj )

j

]
for x(Mj )

j , i.e. with missing values replaced by their expectation.
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We also have

E
z j,x

(Mj )

j

[
z j z

⊤
j

]
=E

x
(Mj )

j

[
E
z j |x

(Mj )

j

[
z j z

⊤
j

] ]
(B.35)

=E
x
(Mj )

j

[
σ2M−1+E

z j |x
(Mj )

j

[
x
(Mj )

j

]
E
z j |x

(Mj )

j

[
x
(Mj )

j

]⊤]
(B.36)

=σ2M−1+E
z j,x

(Mj )

j

[
z j

]
E
z j,x

(Mj )

j

[
z j

]⊤ (B.37)

For the expectations involving the missing values, we first have

E
z j,x

(Mj )

j

[
x
(Mj )

j

]
=Ez j

[
E
x
(Mj )

j |z j

[
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We also have
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Some terms involving missing and observed indices can also be combined:

W (O j )⊤W (O j )+W (Mj )⊤W (Mj ) =
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where we have used the notation w̃i to represent the i-th row vector of W and we also
have
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Using Equations (B.34), (B.37), (B.40), (B.43), as well as the identities from Equa-
tions (B.45) and (B.48), Equation (B.31) becomes
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Noting the following identities:
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and
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the joint likelihood in Equation (B.49) can be written as
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B.2.3 M step

Differentiating Equation (B.67) with respect to W first, we get
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Maximisation with respect to σ2 gives
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The algorithm is executed by iterating through Equations (B.34), (B.37), (B.40),
(B.43), (B.70), and (B.71).
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B.3 EM algorithm 2 – derivation

Here we consider the EM algorithm of Ilin and Raiko [60]. This approach differs to
that of Stacklies et al. [98] in that µ is updated at each iteration and only the observed
values are used in the expectation and parameter updates. We derive the updates for this
situation as in Ilin and Raiko [60].

Since x j |z j ∼ N(Wz j + µ,σ
2I p×p), we have

x
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It follows that the distribution of z j given x
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where
M (O j ) = σ2I q×q +
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i∈O j

wiw
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with w⊤
i defined to be the i-th row of W , which has dimension q.

B.3.1 E step

Analogously to Equations (3.7) and (3.8), we then have the E-step updates

Ez j [z j] =
(
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)−1 ∑
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⊤. (B.76)

B.3.2 M step

Following steps similar to the case where there are no missing values in Section B.1,
one can obtain the iterative updates for the parameters [60]. Maximisation with respect
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to each parameter gives
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We see that Equations (3.9), (3.10), and (3.11) can be derived as special cases of those
above when there are no missing values. The algorithm is executed by iterating through
Equations (B.75), (B.76), (B.77), (B.78), and (B.79).

B.4 Variational algorithm 1 - derivation

In this Section we attempt to derive the variational algorithm using the model from Oba
et al. [82]. The full model is not provided in the paper and neither are the variational
updates. We were able to contact the author in order to obtain clarity on the full model
that was used. We were made aware of a further paper [81] in which details of a
different (but related) algorithm are given in a situation without missing values. This
paper does provide its model specification and variational approximation, but also emits
the explicit variational update equations. Update equations are provided for a more
simplified model but this is not the model assumed in the original paper [82] and again
the presence of missing values is not considered. We also note that the updates derived
in this Section do not completely agree with those presented in the code accompanying
the paper [82]. After contacting the author about this discrepancy, we received no
further reply. We also note that the mathematical details provided in Oba et al. [81]
have been claimed to contain a mistake [1]. We followed the derivations provided in
Agarwal and Bishop [1], which contain a more general model of that from Oba et al.
[82]. Moreover, we extended the model presented in Agarwal and Bishop [1] to include
the presence of missing values. The novelty of this Section is therefore an extension to
a general model for Bayesian PCA in the presence of missing values.

B.4.1 Handling of missing data

We note that x j may possess missing values and assume throughout that these are
missing at random. When missing values are present, we adopt the partition (rearranging
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the missing and observed values, and their respective rows of W and µ:
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, (B.80)

where x
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j and x
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j correspond to the sets of observed and missing values, respectively.
Denoting O j as the set that contains the indices (after partitioning) of x j that comprise
x
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j , we can see that our partitioning induces O j = {1, . . . , |O j |}, using the notation |O j |

to denote the cardinality of the set O j . Similarly using Mj for the missing indices we
have that Mj = {|O j |+1, . . . ,p}. Explicitly this can be written as x
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Equation (B.81) is analogous to Equation (B.80); for the matrices W (O j ) and W (Mj ), we
have retained only those rows of W which correspond to x

(O j )

j and x
(Mj )

j , respectively.
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The conditional distribution of x j given z j can now be written in this partitioned
form as[

x
(O j )

j

x
(Mj )

j

]
|z j,W ,µ,τ ∼ N

([
W (O j )z j + µ

(O j )

W (Mj )z j + µ
(Mj )

]
,

[
Σ(O j ),(O j ) Σ(O j ),(Mj )

Σ(Mj ),(O j ) Σ(Mj ),(Mj )

])
. (B.83)

It can then be inferred that Σ(O j ),(Mj ) = 0|O j |×(p−|O j |), Σ
(Mj ),(O j ) = 0(p−|O j |)×|O j | and Σ(O j ),(O j ) =

τ−1I |O j |×|O j |, and Σ(Mj ),(Mj ) = τ−1I (p−|O j |)×(p−|O j |). From Equation (B.83), it can be seen
that
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It is worth noting that that x(O j )

j and x
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j are assumed to be conditionally independent
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B.4.2 Priors

From Oba et al. [82], the prior specification is as follows:

p(µ,W ,τ |α) = p(µ |τ)p(W |τ,α)p(τ), (B.89)

p(µ |τ) =N(µ0,(γµ0τ)
−1I p×p), (B.90)

p(W |τ,α) =

q∏
g=1

p(wg |τ,αg) =

q∏
g=1

N(0,(αgτ)−1I p×p), (B.91)

p(τ) = Γ(τ0,γτ0), (B.92)

where wg denotes the g-th column of matrix W . The function Γ(τ0,γτ0) denotes the
univariate gamma probability density, defined as:

Γ(τ0,γτ0) ≡
γτ0τ

−1
0

Γ(γτ0)
exp

(
−γτ0τ

−1
0 τ+ (γτ0 −1) logτ

)
, (B.93)

where Γ(γτ0) denotes the Gamma function and the natural base logarithm is taken.
Using this definition yields E[τ] = τ0. In Oba et al. [82], the hyperparameters are fixed
as µ0 = 0, τ0 = 1, and γτ0 = γµ0 = 10−10 (although γµ0 = 10−3 in the code). Email
correspondence with the author revealed that there is also a prior on α that is used in
the code:

p(α) =
q∏

g=1
p(αg) =

q∏
g=1
Γ(α0,γα0), (B.94)

whose hyperparameters are fixed as α0 = 1, and γα0 = 10−10. In the following derivations,
no hyperparameter values are fixed. This is done so that clarity may be preserved in
seeing how the hyperparameters influence the variational updates. Recalling the prior
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on z j completes the prior specification:

p(z j) =N(0,I q×q). (B.95)

In the following sections, the missing values x(Mj ) are treated as latent variables akin to
z j , with their prior distribution given by Equation (B.85).

B.4.3 Joint distribution

Using this prior and likelihood, the joint distribution for all variables factors as so:
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The logarithm of Equation (B.96) is used to derive the variational updates, so expressions
for the logarithm of each of the terms on the right-hand side of Equation (B.96) are
required.

Using Equation (B.84), we have
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This can be simplified by noting that for a- and b-dimensional column vectors a and
b and a × b dimensional matrix C we have a⊤Cb = Tr
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have used the fact that a matrix and its transpose have the same trace. Using these
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properties, Equation (B.98) becomes
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Using Equation (B.99), we can generalise this for n independent data vectors distributed
as in Equation (B.84) as:

logp
(
x(O1)

1 , . . . ,x(On)
n |Z,W ,µ,τ

)
=

n∑
j=1

logp
(
x
(O j )

j |z j,W ,µ,τ
)

(B.100)

=−
n|O j |

2
log2π−

n|O j |

2
logτ−1

−
τ

2

n∑
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(
x
(O j )⊤

j x
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j +2µ(O j )⊤W (O j )z j

−2z⊤j W
(O j )⊤x
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j −2µ(O j )⊤x
(O j )

j

+z⊤j W
(O j )⊤W (O j )z j + µ

(O j )⊤µ(O j )
)
. (B.101)

Since x
(O j )

j and x
(Mj )

j have the same form of distribution, it is immediate from
Equations (B.85) and (B.99) that

logp
(
x
(Mj )

j |z j,W ,µ,τ
)
=−

p− |O j |

2
log2π−

p− |O j |

2
logτ−1

−
τ

2

(
x
(Mj )⊤

j x
(Mj )

j +2µ(Mj )⊤W (Mj )z j −2z⊤j W
(Mj )⊤x

(Mj )

j

−2µ(Mj )⊤x
(Mj )

j + z⊤j W
(Mj )⊤W (Mj )z j + µ

(Mj )⊤µ(Mj )
)
.

(B.102)
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Generalising to n independent data vectors as in Equation (B.101) using the individual
distributions in Equation (B.85) gives

logp
(
x(M1)

1 , . . . ,x(Mn)
n |Z,W ,µ,τ

)
=

n∑
j=1

logp
(
x
(Mj )

j |z j,W ,µ,τ
)

(B.103)

=−
n(p− |O j |)

2
log2π−

n(p− |O j |)

2
logτ−1

−
τ

2

n∑
j=1

(
x
(Mj )⊤

j x
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j +2µ(Mj )⊤W (Mj )z j

−2z⊤j W
(Mj )⊤x

(Mj )

j −2µ(Mj )⊤x
(Mj )

j

+z⊤j W
(Mj )⊤W (Mj )z j + µ

(Mj )⊤µ(Mj )
)
. (B.104)

For the latent variables z j , we use Equation (B.95) to obtain the simple expression

logp(z j) = −
q
2

log2π−
1
2
z⊤j z j, (B.105)

from which we also obtain the result for n vectors

logp(Z) = −
nq
2

log2π−
n∑

j=1

1
2
z⊤j z j . (B.106)

For the mean vector µ, we use Equation (B.90) to yield

logp(µ |τ) =−
p
2

log2π−
1
2

log
��(γµ0τ)

−1I p×p
��− γµ0τ

2
(
µ− µ0

)⊤ (
µ− µ0

)
(B.107)

= −
p
2

log2π−
p
2

log (γµ0τ)
−1 −

γµ0τ

2
(
µ⊤µ−2µ⊤µ0+ µ

⊤
0 µ0

)
, (B.108)

where we have evaluated the matrix determinant
��(γµ0τ)

−1I p×p
�� = (γµ0τ)

−p.
For the loadings matrix W , we use Equation (B.91) to obtain

logp(W |τ,α) = log
q∏

g=1
p(wg |τ,αg) (B.109)

=

q∑
g=1

{
−

p
2

log2π−
1
2

log |(αgτ)−1I p×p | −
αgτ

2
w⊤
g wg

}
(B.110)

=

q∑
g=1

{
−

p
2

log2π−
p
2

log (αgτ)−1 −
αgτ

2
w⊤
g wg

}
. (B.111)
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For the precision parameter τ, we use Equation (B.92) to get

logp(τ) = log

{
(γτ0τ

−1
0 )γτ0

Γ(γτ0)
exp

(
−γτ0τ

−1
0 τ+ (γτ0 −1) logτ

)}
(B.112)

= γτ0 logγτ0τ
−1
0 − logΓ(γτ0)−γτ0τ

−1
0 τ+ (γτ0 −1) logτ. (B.113)

Finally, for the automatic relevance determination parameter α, we use Equation
(B.94) to see that

logp(α) = log
q∏

g=1

{
(γα0α

−1
0 )γα0

Γ(γα0)
exp

(
−γα0α

−1
0 αg + (γα0 −1) logαg

)}
(B.114)

=

q∑
g=1

{
γα0 logγα0α

−1
0 − logΓ(γα0)−γα0α

−1
0 αg + (γα0 −1) logαg

}
, (B.115)

which completes the terms required for Equation (B.96), the joint likelihood.

B.4.4 Variational updates

Variational approximation

From email correspondence with Shigeyuki Oba, author of Oba et al. [82], the varia-
tional approximation that is used takes the form

q
(
x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

)
=

n∏
j=1

q
(
x
(Mj )

j

)
q(z j)q(µ,W ,τ)q(α). (B.116)
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Variational lower bound

The variational lower bound takes the form

L(q) =
∫

q
(
x(O1)

1 , . . . ,x(On)
n ,x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

)
× log

©­­«
p
(
x(O1)

1 , . . . ,x(On)
n ,x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

)
q
(
x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

) ª®®¬
×dx(M1)

1 . . .dx(Mn)
n dZdµdWdτdα (B.117)

=E

log
p
(
x(O1)

1 , . . . ,x(On)
n ,x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

)
q
(
x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

)  (B.118)

=E
[
logp

(
x(O1)

1 , . . . ,x(On)
n ,x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

)]
−E

[
logq

(
x(M1)

1 , . . . ,x(Mn)
n , z,µ,W ,τ,α

)]
(B.119)

=E
[
logp

(
x(O1)

1 , . . . ,x(On)
n |Z,µ,W ,τ

)]
+E

[
logp

(
x(M1)

1 , . . . ,x(Mn)
n |Z,µ,W ,τ

)]
+E [logp(Z)]

+E [logp(µ |τ)]+E [logp(W |τ,α)]+E [logp(τ)]+E [logp(α)]

−E
[
logq

(
x(M1)

1 , . . . ,x(Mn)
n

)]
−E [logq(Z)]−E [logq(µ,W ,τ)]

−E [logq(α)], (B.120)

where the expectations are taken over all variables with respect to the variational
distribution q. When the integration is performed over only a subset of the variables, a
subscript notation is used, e.g. Ez [·].

Optimal distributions q∗

in the following sections we will use a general solution for the optimal distributions q∗.
According to Equation (B.116), we may subset the variables as V1 =

{
x(M1)

1 , . . . ,x(Mn)
n

}
,

V2 = {Z}, V3 = {µ,W ,τ}, and V4 = {α} dictated by the assumed independence struc-
ture in the variational approximation. In order to obtain the form of the optimal
distributions for each subset Vl , l = 1, . . . ,4 one uses the following equation

logq∗(Vl) = EV¬l

[
logp

(
x(O1)

1 , . . . ,x(On)
n ,x(M1)

1 , . . . ,x(Mn)
n ,Z,µ,W ,τ,α

)]
+ const,

(B.121)
where ¬l indicates all indices not equal to l. This means that the expectation is computed
over the variables which are not in the subset Vl . In addition, terms from Equation
(B.96) that do not depend on the variables in Vl can be absorbed into the constant term
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of Equation (B.121). We will use this result when deriving the optimal distributions in
each of the next sections.

Form of q∗(µ,W ,τ)

Only including the terms from Equation (B.96) that include V3 = {µ,W ,τ}, and drop-
ping subscripts from the expectation notation when the term inside the expectation does
not depend upon on that particular variable, we have

logq∗(µ,W ,τ) =EZ

[
logp

(
x(O1)

1 , . . . ,x(On)
n |Z,W ,µ,τ

)]
+E

x
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[
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(
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+ logp(µ |τ)+Eα [logp(W |τ,α)]+ logp(τ)+ const. (B.122)

Substituting in the expressions from Equations (B.101), (B.104), (B.108), (B.111), and
(B.113) and moving terms not dependent on µ,W ,τ into the constant, we get

logq∗(µ,W ,τ) =−
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146 Covariance estimation through Probabilistic Principal Component Analysis

Rearranging gives

logq∗(µ,W ,τ) =
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The following identities are then useful to simplify this expression:

µ(O j )⊤µ(O j )+ µ(Mj )⊤µ(Mj ) =

|O j |∑
i=1

µ2
i +

p∑
i=|O j |+1

µ2
i =

p∑
i=1

µ2
i = µ⊤µ (B.125)

W (O j )⊤W (O j )+W (Mj )⊤W (Mj ) =

|O j |∑
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w̃⊤
i w̃i +

p∑
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i w̃i
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i w̃i =W

⊤W (B.126)

µ(O j )⊤W (O j )+ µ(Mj )⊤W (Mj ) =
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= µ⊤W . (B.129)

Also setting

x̃ j =
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x
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E
x
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j
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x
(Mj )
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] , (B.130)

gives the identities:
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=


∑p

i=1 x̃i jwi1

. . .∑p
i=1 x̃i jwiq


⊤

(B.133)

=x̃⊤j W . (B.134)
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Using these identities, Equation (B.124) becomes
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Noting that the logarithm of the density N(Wsµ +mµ,(γµτ)
−1I p×p) can be expressed

as

p
2

logτ−
γµτ

2
(µ⊤µ−2µ⊤(Wsµ +mµ)+ (Wsµ +mµ)

⊤(Wsµ +mµ))+ const, (B.137)



B.4 Variational algorithm 1 - derivation 149

comparing the µ⊤µ and µ⊤ terms in Equations (B.136) and (B.137) gives

−
τ

2
(γµ0 +n)µ⊤µ+ τµ⊤ ©­«

n∑
j=1

(
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so that

γµ = γµ0 +n, (B.139)

sµ = −
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n∑
j=1
Ez j

[
z j

]
, (B.140)

mµ =
1
γµ

©­«γµ0µ0+

n∑
j=1

x̃ j
ª®¬ . (B.141)

It can then be seen that q∗(µ |W ,τ) factors from the distribution q∗(µ,W ,τ) where it
takes the form

q∗(µ |W ,τ) =N(Wsµ +mµ,(γµτ)
−1I p×p). (B.142)
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Subtracting this distribution from Equation (B.136) gives
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Noting the identities
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=
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w̃idiag (Eα [α]) w̃⊤
i , (B.147)

b⊤W⊤Wb =b⊤
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i w̃i
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b (B.148)

=
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a⊤Wb =

p∑
i=1

aiw̃ib, (B.152)

where again w̃i denotes the i-th row-vector of W and diag (Eα [α]) is a diagonal matrix
whose non-zero elements are equal to Eαj

[
α j

]
. Using these identities in Equation

(B.144) gives

logq∗(µ,W ,τ) (B.153)

−q∗(µ |W ,τ) =
( p
2
(n+ q)+γτ0 −1

)
logτ

−
©­«γτ0τ

−1
0 +

1
2

n∑
j=1

x
(O j )⊤

j x
(O j )

j +
1
2

n∑
j=1
E
x
(Mj )

j

[
x
(Mj )⊤

j x
(Mj )

j

]
+
γµ0

2
µ⊤

0 µ0 −
γµ

2
m⊤

µmµ

)
τ−

τ

2

p∑
i=1

w̃i
©­«1

2

n∑
j=1
Ez j

[
z j z

⊤
j

]
−γµ sµ s

⊤
µ +diag (Eα [α])

)
w̃⊤

i

+ τ

p∑
i=1

w̃i
©­«

n∑
j=1

x̃i jEz j
[
z j

]
+γµmµi sµ

ª®¬+ const. (B.154)
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Note that the logarithm of the density
∏p

i=1N(mw̃i
,(τΛw̃)

−1) can be expressed as

p∑
i=1

[
−
τ

2
(
w̃⊤

i −mw̃i

)⊤
Λw̃

(
w̃⊤

i −mw̃i

) ]
−

p∑
i=1

1
2

log |(τΛw̃)
−1 |+ const (B.155)

=

p∑
i=1

[
−
τ

2

(
w̃iΛw w̃

⊤
i −2w̃iΛwm

⊤
w̃i
+m⊤

w̃i
Λwmw̃i

)]
+

pq
2

logτ+ const. (B.156)

Comparing the w̃iw̃
⊤
i and w̃i terms from Equations (B.154) and (B.156) gives

Λw̃ =

n∑
j=1
Ez j

[
z j z

⊤
j

]
−γµ sµ s

⊤
µ +diag (Eα [α]) (B.157)

mw̃i
=Λ−1

w̃

©­«
n∑

j=1
x̃i jEz j

[
z j

]
+γµmµi sµ

ª®¬ . (B.158)

It can then be seen that q∗(W |τ) factors from the distribution q∗(µ,W ,τ) where it takes
the form

q∗(W |τ) =

p∏
i=1

N(mw̃i
,(τΛw̃)

−1). (B.159)

Subtracting this distribution from Equation (B.154) gives

logq∗(µ,W ,τ)−q∗(µ |W ,τ)−q∗(W |τ) (B.160)

=
( p
2
(n+ q)+γτ0 −1

)
logτ

−
©­«γτ0τ

−1
0 +

1
2

n∑
j=1

x
(O j )⊤

j x
(O j )

j +
1
2

n∑
j=1
E
x
(Mj )

j

[
x
(Mj )⊤

j x
(Mj )

j

]
(B.161)

+
γµ0

2
µ⊤

0 µ0 −
γµ

2
m⊤

µmµ

)
τ

+
τ

2

p∑
i=1

m⊤
w̃i
Λw̃mw̃i

−
pq
2

logτ+ const (B.162)

=
(np

2
+γτ0 −1

)
logτ− ©­«γτ0τ

−1
0 +

1
2

n∑
j=1

x
(O j )⊤

j x
(O j )

j

+
1
2

n∑
j=1
E
x(Mj )

[
x
(Mj )⊤

j x
(Mj )

j

]
+
γµ0

2
µ⊤

0 µ0 −
γµ

2
m⊤

µmµ

−
1
2

p∑
i=1

m⊤
w̃i
Λw̃mw̃i

)
τ+ const. (B.163)
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Note that the logarithm of the density Γ(τ,γτ) can be expressed as

(γτ −1) logτ−γτττ+ const. (B.164)

Comparing the logτ and τ terms from Equations (B.163) and (B.164) gives

γτ =
np
2
+γτ0 (B.165)

τ =γτ
©­«γτ0τ

−1
0 +

1
2

n∑
j=1

x
(O j )⊤

j x
(O j )

j +
1
2

n∑
j=1
E
x
(Mj )

j

[
x
(Mj )⊤

j x
(Mj )

j

]
+
γµ0

2
µ⊤

0 µ0 −
γµ

2
m⊤

µmµ −
1
2

p∑
i=1

m⊤
w̃i
Λw̃mw̃i

)−1

. (B.166)

Finally, it can be seen that q∗(τ) factors from the distribution q∗(µ,W ,τ) where it takes
the form

q∗(τ) = Γ(τ,γτ). (B.167)

Subtracting this from Equation (B.163) leaves only the constant term, indicating that
the variational approximation takes the factored form

q∗(µ,W ,τ) = q∗(µ |W ,τ)q∗(W |τ)q∗(τ). (B.168)

Form of q∗(α)

Only including the terms from Equation (B.96) that include V4 = {α}, and dropping
subscripts from the integration notation when the integrand does not depend upon on
that particular variable, we have

logq∗(α) =EW ,τ [logp(W |τ,α)]+ logp(α)+ const. (B.169)

Substituting in the expressions from Equations (B.111) and (B.115) and moving terms
not dependent on α into the constant term, we get

logq∗(α) =
q∑

j=1

p
2

logα j −
α j

2
Ew j,τ

[
τw⊤

j w j

]
−γα0α

−1
0 α j + (γα0 −1) logα j + const

(B.170)

=

q∑
j=1

(
γα0 +

p
2
−1

)
logα j −

(
γα0α

−1
0 +

1
2
Ew j,τ

[
τw⊤

j w j

] )
α j . (B.171)
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Note that the logarithm of the density
∏q

j=1 Γ(α j,γα) can be expressed as

q∑
j=1

(γα −1) logα j −γαα
−1α j + const. (B.172)

Comparing the terms for α j and logα j from Equations (B.171) and (B.172) gives

γα =γα0 +
p
2

(B.173)

α j =γα

(
γα0α

−1
0 +

1
2
Ew j,τ

[
τw⊤

j w j

] )−1
, (B.174)

and so

q∗(α) =
q∏

j=1
Γ(α j,γα). (B.175)

Form of q∗(Z)

Only including the terms from Equation (B.96) that include V2 = {Z}, and dropping
subscripts from the integration notation when the integrand does not depend upon on
that particular variable, we have

logq∗(Z) =
n∑

j=1
logq∗(z j) =

n∑
j=1
EW ,µ,τ

[
logp

(
x
(O j )

j |z j,W ,µ,τ
)]

+

n∑
j=1
E
x
(Mj )

j ,W ,µ,τ

[
logp

(
x
(Mj )

j |z j,W ,µ,τ
)]
+

n∑
j=1

logp(z j)

+ const. (B.176)
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Substituting in the expressions from Equations (B.99), (B.102), and (B.105) and moving
terms not dependent on Z into the constant term, we get

logq∗(Z) =
n∑

j=1
EW ,µ,τ

[
−
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2

(
−2z⊤j W

(O j )⊤x
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j +2z⊤j W
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=
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[
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]
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z⊤j z j + const (B.178)

=

n∑
j=1
EW ,µ,τ

[
−
τ

2

(
−2z⊤j W

⊤ x̃ j +2z⊤j W
⊤µ+ z⊤j W

⊤Wz j

)]
−

1
2

n∑
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z⊤j z j + const (B.179)

=−
1
2

n∑
j=1

(
−2z⊤j EW ,µ,τ

[
τW⊤

(
x̃ j − µ

) ]
+z⊤j

(
I q×q +EW ,τ

[
τW⊤W

] )
z j

)
+ const. (B.180)

Note that the logarithm of the density N(z j,Σz) can be expressed as

−
1
2

[
z⊤j Σ

−1
z z j −2z⊤j Σ

−1
z z j

]
+ const. (B.181)

Comparing the terms for z⊤j z j and z⊤j in Equations (B.180) and (B.181) gives

Σz =
(
I q×q +EW ,τ

[
τW⊤W

] )−1
, (B.182)

z j =Σz
(
EW ,τ [τW ]⊤−EW ,µ,τ

[
τW⊤µ

] )
. (B.183)
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So we can see that

q∗(Z) =
n∏

j=1
q∗(z j) =

n∏
j=1

N(z j,Σz). (B.184)

Form of q∗
(
x(M1)

1 , . . . ,x(Mn)
n

)
Only including the terms from Equation (B.96) that include V1 =

{
x(M1)

1 , . . . ,x(Mn)
n

}
, and

dropping subscripts from the integration notation when the integrand does not depend
upon on that particular variable, we have

logq∗
(
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1 , . . . ,x(Mn)
n

)
=

n∑
j=1
Ez j,W ,µ,τ

[
logp

(
x
(Mj )

j |z j,W ,µ,τ
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+ const. (B.185)

Substituting in the expressions from Equation (B.102) and moving terms not dependent
on x

(Mj )

j into the constant term, we get

logq∗(x(M1)
1 , . . . ,x(Mn)

n ) =

n∑
j=1
Ez j,W ,µ,τ

[
−
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2

(
x
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+ const. (B.187)

Note that the logarithm of the density N

(
x
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j ,Σ
x
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)
can be expressed as

−
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Comparing the terms for x(Mj )⊤

j x
(Mj )

j and x
(Mj )⊤

j in Equations (B.187) and (B.188) gives

Σ
x
(Mj )

j

=Eτ [τ]
−1 I (p−|O j |)×(p−|O j |) (B.189)
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x
(Mj )

j

(
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]
+Eµ,τ
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. (B.190)

So we can see that

q∗
(
x(M1)

1 , . . . ,x(Mn)
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)
=
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j=1

q∗
(
x
(Mj )
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)
=
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(
x
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j ,Σ
x
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j

)
. (B.191)
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B.4.5 Computation of moments

The non-trivial moments (i.e. those not immediate from their variational distributions)
are as follows

Ez j

[
z j z

⊤
j

]
=Σz + z j z

⊤
j , (B.192)

E
x
(Mj )

j

[
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(Mj )⊤

j x
(Mj )

j

]
=Tr

[
Σ
x
(Mj )

j

]
+ x

(Mj )⊤

j x
(Mj )

j , (B.193)

EW ,τ [τW ] =

∫ ∫
τWq∗(W |τ)q∗(τ)dWτ (B.194)

=

∫
τ

[∫
Wq∗(W |τ)dW

]
q∗(τ)dτ (B.195)

=

∫
τM⊤

W̃
q∗(τ)dτ (B.196)

=τM⊤

W̃
, (B.197)

where MW̃ = (mw̃1, . . . ,mw̃p
). In addition we have

EW ,τ

[
τW⊤W

]
=

∫ ∫
τW⊤Wq∗(W |τ)q∗(τ)dWdτ (B.198)

=

∫
τ

[∫
W⊤Wq∗(W |τ)dW

]
q∗(τ)dτ (B.199)

=

∫
τ
[
p(τΛw)

−1+MW̃M⊤

W̃

]
q∗(τ)dτ (B.200)

=pΛ−1
w + τMW̃M⊤

W̃
, (B.201)

Ew j,τ

[
τw⊤

j w j

]
=p(Λ−1

w ) j j + τm
⊤
w̃i
mw̃i

, (B.202)
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Eµ,W ,τ

[
τW⊤µ

]
=

∫ ∫ ∫
τW⊤µq∗(µ |W ,τ)q∗(W |τ)q∗(τ)dµdWdτ (B.203)

=

∫ ∫
τW⊤

[∫
µq∗(µ |W ,τ)dµ

]
q∗(W |τ)q∗(τ)dWdτ (B.204)

=
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τW⊤

[
Wsµ +mµ

]
q∗(W |τ)q∗(τ)dWdτ (B.205)

=EW ,τ

[
τW⊤Wsµ

]
+EW ,τ [τW ]⊤ (B.206)

=pΛ−1sµ + τMWM⊤
W sµ + τMWmµ (B.207)

=pΛ−1sµ + τMW
(
M⊤

W sµ +mµ
)
, (B.208)

EW ,z j,τ

[
τW (Mj )z j

]
=

∫ ∫ ∫
τW (Mj )z jq∗(W |τ)q∗(τ)q∗

(
z j

)
dWdτdz j (B.209)

=

∫ ∫
τW (Mj )q∗(W )q∗(τ)dWdτ

∫
z jq∗

(
z j

)
dz j (B.210)

=EW ,τ

[
τW (Mj )

]
Ez j

[
z j

]
(B.211)

=τM⊤

W (Mj )
z j (B.212)

Eµ,τ

[
τµ(Mj )

]
=

∫ ∫
τµ(Mj )q∗(µ |W ,τ)q∗(τ)dµdτ (B.213)

=

∫
τ

[∫
µ(Mj )q∗(µ |W ,τ)dµ

]
q∗(τ)dτ (B.214)

=

∫
τ
[
W (Mj )sµ +m

(Mj )
µ

]
q∗(τ)dτ (B.215)

=τ
(
W (Mj )sµ +m

(Mj )
µ

)
. (B.216)

The algorithm is then executed by cycling through the updates in Equations (B.139),
(B.140), (B.141), (B.157), (B.158), (B.165), (B.166), (B.173), (B.174), (B.182), (B.183),
(B.189), and (B.190) using the moments above.

B.5 Variational algorithm 2 - derivation

In this Section we derive the algorithm from Ilin and Raiko [60]. The paper provides the
full model specification and variational updates, and so the contribution of this Section
is the explicit presentation of the derivation.

B.5.1 Handling missing values

Missing values are dealt with using the same notation as Section B.4.1. In this algorithm,
the missing values are not modelled probabilistically so that only the observed values
are used in the computation of the variational updates.
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B.5.2 Priors

The prior specification is as follows:

p
(
z j

)
=N(0,I q×q), (B.217)

p
(
wg

)
=N(0,νw,gI p×p), (B.218)

p (µ) =N(0,νµI p×p) (B.219)

p (ϵ ) =N(0,σ2I p×p). (B.220)

In this algorithm, (σ2,νµ,νw,k) are not formally given priors. They are instead treated
as hyperparameters whose values are set by analytically maximising the variational
lower bound. Since the lower bound aims to approximate the marginal likelihood, this
procedure approximates empirical Bayes estimation having assumed uniform priors on
the parameters.

B.5.3 Joint distribution

Writing X for the p× n matrix whose columns are the x j , and Z for the q× n matrix
whose columns are the z j , we can factorise the full joint model as follows:

p(X,W ,Z,µ) = p(X |W ,Z,µ)p(W )p(Z)p(µ) (B.221)

=

p∏
i=1

n∏
j=1

p(xi j |wi, z j, µi)

p∏
i=1

p(wi)

n∏
j=1

p(z j)

p∏
i=1

p(µi). (B.222)

Using the notation for observed values introduced in Section 3.3.2, the joint model
can be straightforwardly modified to allow for the possibility of missing values, as
follows:

p(X,W ,Z,µ) =
∏
i j∈O

p(xi j |wi, z j, µi)

p∏
i=1

p(wi)

n∏
j=1

p(z j)

p∏
i=1

p(µi). (B.223)
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For the VB derivations, it is useful to write down the log densities for each expression
in Equation (B.223). For the first term we have

logp(xi j |wi, z j, µi) = log

(
1

√
2πσ2

exp

(
−

xi j −(w⊤
i z j + µi)

2

2σ2

))
(B.224)

=−
1
2

log(2πσ2)−
1

2σ2
(
xi j −(w⊤

i x j + µi)
)2 (B.225)

=−
1
2

log(2πσ2)−
1

2σ2

(
x2

i j + (w
⊤
i z j)

2+ µ2
i +2µiw

⊤
i z j (B.226)

−2w⊤
i z j xi j −2µi xi j

)
It is also useful to note that we can alternatively write (xi j −(w⊤

i z j + µi))
2 as follows:

(xi j −(w⊤
i z j + µi))

2 =(xi j −(w⊤
i z j + µi))

⊤(xi j −(w⊤
i z j + µi)) (B.227)

=x⊤i j xi j − x⊤j wi xi j + z
⊤
j wiµi − xi jw

⊤
i z j + µ

⊤
i w

⊤
i z j (B.228)

+ z⊤j (wiw
⊤
i )z j + µ

⊤
i µi .

Substituting this into Equation (B.225) gives the alternative (but equivalent) expression

logp(xi j |wi, z j, µi) = −
1
2

log(2πσ2)−
1

2σ2

(
x⊤i j xi j − z⊤j wi xi j + z

⊤
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+µ⊤i µi − xi jw
⊤
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⊤
i w

⊤
i z j + z

⊤
j (wiw

⊤
i )z j

)
. (B.229)

For logp(wi) we have

logp(wi) = log©­«
q∏

g=1

1√
2πνw,g

exp−
w2

ig

2νw,g
ª®¬ (B.230)

=

q∑
g=1

(
−

1
2

log(2πνw,g)−
1

2νw,g
w2

ig

)
. (B.231)

For logp(z j) we have

logp(z j) = log©­«
q∏

g=1

1
√

2π
exp−

z2
g j

2
ª®¬ (B.232)

=

q∑
g=1

(
−

1
2

log(2π)−
1
2

z2
g j

)
. (B.233)
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For logp(µi) we have

logp(µi) = log

(
1√

2πνµ
exp−

µ2
i

2νµ

)
(B.234)

= −
1
2

log(2πνµ)−
1

2νµ
µ2

i . (B.235)

B.5.4 Variational updates

Variational approximation

We seek to approximate the posterior distribution, p(W ,Z,µ |X), by the mean field
approximation

q(W ,Z,µ) =q(W )q(Z)q(µ) (B.236)

=

p∏
i=1

q(wi)

n∏
j=1

q(z j)

p∏
i=1

q(µi). (B.237)

Variational lower bound

Using Equations (B.222) and (B.237), we can decompose the variational lower bound
as follows:

L(q) =
∑
i j∈O

E[logp(xi j |wi, z j, µi)]+

p∑
i=1
E[logp(wi)− logq(wi)]

+

n∑
j=1
E[logp(z j)− logq(z j)]+

p∑
i=1
E[logp(µi)− logq(µi)], (B.238)

where the expectation is computed with respect to the joint variational density of all
variables.

Optimal distributions q∗

According to Equation (B.237), we may subset the variables as V1 = {W }, V2 = {Z},
and V3 = {µ}. In order to obtain the form of the optimal distributions for each subset
Vl , l = 1,2,3 we use

logq∗(Vl) =
∑
i j∈O

EV¬l

[
logp

(
xi j,Z,µ,W

) ]
+ const, (B.239)

where ¬l indicates all indices not equal to l. As before, terms from Equation (B.222)
that do not depend on the variables in Vl can be absorbed into the constant term of
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Equation (B.239). We will use this result when deriving the optimal distributions in
each of the next sections.

Form of q∗(µi)

First, we isolate the terms in Equation (B.222) that involve µi, since all other terms are
constant as a function of µi and hence will be absorbed into a constant term, and then
consider the expectation of the log

logq∗(µi) =Ewi,z j

[
log

(
p(µi)

∏
j∈Oi

p(xi j |wi, z j, µi)

)]
+ const (B.240)

= logp(µi)+
∑
j∈Oi

Ewi,z j

[
logp(xi j |wi, z j, µi)

]
+ const (B.241)

=−
1

2νµ
µ2

i +
∑
j∈Oi

Ewi,z j

[
−

1
2σ2

(
µ2

i +2µiw
⊤
i z j −2µi xi j

)]
+ const (B.242)

=−
1

2νµ
µ2

i −
|Oi |

2σ2 µ
2
i −

1
2σ2 2µi

∑
j∈Oi

(
Ewi [wi]

⊤Ez j
[
z j

]
− xi j

)
+ const (B.243)

=−
σ2+ νµ |Oi |

2νµσ2 µ2
i +

1
σ2 µi

∑
j∈Oi

(
xi j −Ewi [wi]

⊤Ez j
[
z j

] )
+ const. (B.244)

Comparing the above to the form of the log of a univariate normal density with
mean µi and variance µ̃i

logN(µi |µi, µ̃i) = −
1

2µ̃i
(µ2

i −2µiµi)+ constant, (B.245)

we deduce that q∗(µi) is a univariate normal. Moreover, matching the coefficients of µ2
i ,

we see that

1
2µ̃i
=
σ2+ νµ |Oi |

2νµσ2 , (B.246)

which, after rearranging, gives,

µ̃i =
νµσ

2

σ2+ νµ |Oi |
(B.247)

=
νµσ

2

|Oi |(νµ+σ2/|Oi |)
. (B.248)
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Similarly, matching the coefficients of µi gives

µi

µ̃i
=

1
σ2

∑
j∈Oi

(
xi j −w⊤

i z j
)
. (B.249)

Rearranging and substituting in our expression for µ̃i, we obtain.

µi =
νµ

|Oi |(νµ+σ2/|Oi |)

∑
j∈Oi

(
xi j −Ewi [wi]

⊤Ez j
[
z j

] )
. (B.250)

Form of q∗(z j)

We proceed similarly for z j :

logq∗(z j) = Ewi,µi

[
log

(
p(z j)

∏
j∈Oi

p(xi j |wi, z j, µi)

)]
+ const (B.251)

= logp(z j)+
∑
j∈Oi

Ewi,µi

[
logp(xi j |wi, z j, µi)

]
+ const (B.252)

= −
1
2

q∑
g=1

z2
g j −

1
2σ2

∑
i∈O j

Ewi,µi

[
−z⊤j wi xi j + z

⊤
j wiµi − xi jw

⊤
i z j

+µ⊤i µi + µ
⊤
i w

⊤
i z j + z

⊤
j (wiw

⊤
i )z j

]
+ const (B.253)

= −
1
2
z⊤j z j −

1
2σ2

∑
i∈O j

Ewi

[
z⊤j (wiw

⊤
i )z j

]
−

1
2σ2

∑
i∈O j

Ewi,µi

[
µ⊤i w

⊤
i − xi jw

⊤
i

]
z j

−
1

2σ2

∑
i∈O j

z⊤j Ewi,µi

[
wiµi −wi xi j

]
+ const. (B.254)
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Note that Ewi [wiw
⊤
i ] = Σwi +Ewi [wi]Ewi [wi]

⊤, by the definition of covariance. Evalu-
ating the expectations, we obtain

logq∗(z j) = −
1
2
z⊤j z j −

1
2σ2 z

⊤
j
©­«
∑
i∈O j

(
Σwi +Ewi [wi]Ewi [wi]

⊤
)ª®¬ z j

−
1

2σ2
©­«
∑
i∈O j

(
Eµi [µi]

⊤Ewi [wi]
⊤− xi jE [wi]

⊤
)ª®¬ z j

−
1

2σ2 z
⊤
j
©­«
∑
i∈O j

(
Ewi [wi]Eµi [µi]−Ewi [wi] xi j

)ª®¬+ const (B.255)

= −
1

2σ2 z
⊤
j
©­«σ2I q×q +

∑
i∈O j

(
Σwi +Ewi [wi]Ewi [wi]

⊤
)ª®¬ z j

−
1

2σ2
©­«
∑
i∈O j

(
Eµi [µi]

⊤− xi j
)
Ewi [wi]

⊤ª®¬ z j

−
1

2σ2 z
⊤
j
©­«
∑
i∈O j

Ewi [wi]
(
Eµi [µi]− xi j

)ª®¬+ const (B.256)

Recall the form of the log of a multivariate normal density with mean z j and covariance
Σz j as

logN(z j |z j,Σz j ) = −
1
2

(
z⊤j Σ

−1
z j z j − z⊤j Σ

−1
z j z j − z⊤j Σ

−1
z j z j

)
+ const. (B.257)

Comparing Equations (B.256) and (B.257) and matching terms in z⊤j z j , we have

z⊤j
©­«σ2I q×q +

∑
i∈O j

(
Σwi +Ewi [wi]Ewi [wi]

⊤
)ª®¬ z j = σ

2z⊤j Σ
−1
z j z j (B.258)

= z⊤j

(
1
σ2Σz j

)−1
z j . (B.259)

Hence,

©­«σ2I q×q +
∑
i∈O j

(
Σwi +Ewi [wi]Ewi [wi]

⊤
)ª®¬ =

(
1
σ2Σz j

)−1
. (B.260)



B.5 Variational algorithm 2 - derivation 165

Inverting both sides, and multiplying through by σ2, we obtain

Σz j = σ
2 ©­«σ2I q×q +

∑
i∈O j

(
Σwi +Ewi [wi]Ewi [wi]

⊤
)ª®¬

−1

. (B.261)

Comparing Equations (B.256) and (B.257) and matching terms in z⊤j , we have

Σ−1
z j z j =

1
σ2

©­«
∑
i∈O j

Ewi [wi]
(
xi j −Eµi [µi]

)ª®¬, (B.262)

which, after rearranging, gives

z j =
1
σ2Σz j

©­«
∑
i∈O j

Ewi [wi]
(
xi j −Eµi [µi]

)ª®¬ . (B.263)



166 Covariance estimation through Probabilistic Principal Component Analysis

Form of q∗(wi)

Now we consider wi, in which we make use of the identity x⊤j wiw
⊤
i x j = w⊤

i x j x
⊤
j wi.

We have

logq∗(wi) =E

[
log

(
p(wi)

∏
j∈Oi

p(xi j |wi, z j, µi)

)]
+ const (B.264)

= logp(wi)+
∑
j∈Oi

Ez j,µi
[
logp(xi j |wi, z j, µi)

]
+ const (B.265)

=−
1
2

q∑
g=1

w2
ig

νw,g
+

∑
j∈Oi

Ez j,µi

[
−

1
2σ2

(
−z⊤j wi xi j + z

⊤
j wiµi − xi jw

⊤
i z j (B.266)

+µ⊤i w
⊤
i z j + z

⊤
j
(
wiw

⊤
i
)
z j

)]
+ const (B.267)

=−
1
2
w⊤

i diag
(
ν−1
w,g

)
wi −

1
2σ2

∑
j∈Oi

Ez j,µi

[
z⊤j

(
wiw

⊤
i
)
z j

]
(B.268)

−
1

2σ2

∑
j∈Oi

Ez j,µi

[
z⊤j wiµi − z⊤j wi xi j

]
(B.269)

−
1

2σ2

∑
j∈Oi

Ez j,µi
[
µ⊤i w

⊤
i z j − xi jw

⊤
i z j

]
+ const (B.270)

=−
1
2
w⊤

i diag
(
ν−1
w,g

)
wi −

1
2σ2

∑
j∈Oi

Ez j

[
w⊤

i

(
z j z

⊤
j

)
wi

]
(B.271)

−
1

2σ2

(∑
j∈Oi

Ez j,µi

[
z⊤j µi − z⊤j xi j

] )
wi

−
1

2σ2 w
⊤
i

(∑
j∈Oi

Ez j,µi
[
µ⊤i z j − xi j z j

] )
+ const (B.272)

=−
1

2σ2 w
⊤
i
©­«σ2diag

(
ν−1
w,g

)
+

∑
j∈O j

(
Σz j +Ez j

[
z j

]
E

[
z j

]⊤)ª®¬wi

+
1

2σ2

(∑
j∈Oi

Ez j
[
z j

]⊤ (
xi j −Eµi [µi]

))
wi

+
1

2σ2 w
⊤
i

(∑
j∈Oi

(
xi j −Eµi [µi]

⊤
)
Ez j

[
z j

] )
+ const. (B.273)

Note again the form of the log of a multivariate normal density, but now with mean wi

and covariance Σwi

logN
(
wi |wi,Σwi

)
= −

1
2

(
w⊤

i Σ
−1
wi
wi −w⊤

i Σ
−1
wi
wi −w⊤

i Σ
−1
wi
wi

)
+ constant. (B.274)
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Comparing the w⊤
i wi terms in Equations (B.273) and (B.274), we have

−
1
2
Σ−1
wi
= −

1
2σ2

©­«σ2diag
(
ν−1
w,g

)
+

∑
j∈O j

(
Σz j +Ez j

[
z j

]
Ez j

[
z j

]⊤)ª®¬ (B.275)

Σwi = σ
2 ©­«σ2diag

(
ν−1
w,g

)
+

∑
j∈O j

(
Σz j +Ez j

[
z j

]
Ez j

[
z j

]⊤)ª®¬
−1

. (B.276)

Now comparing the w⊤
i coefficients from Equations (B.273) and (B.274) we get

1
2
Σ−1
wi
wi =

1
2σ2

(∑
j∈Oi

(
xi j − µ

⊤
i
)
z j

)
(B.277)

wi =
1
σ2Σwi

(∑
j∈Oi

(
xi j − µ

⊤
i
)
z j

)
. (B.278)

It is now clear that the expectations in each of the q∗ distributions can be directly
computed as Eµi [µi] = µi, Ez j

[
z j

]
= z j , and Ewi [wi] = wi.

Hyperparameter updates

For convenience, can decompose the variational lower bound from Equation (B.238) as
follows:

−L(q) =
∑
i j∈O

Cxi j +

p∑
i=1

Cwi +

n∑
j=1

Cz j +

p∑
i=1

Cµi, (B.279)

where

Cxi j = E[− logp(xi j |wi, z j, µi)] (B.280)

Cwi = E[logq(wi)− logp(wi)] (B.281)

Cz j = E[logq(z j)− logp(z j)] (B.282)

Cµi = E[logq(µi)− logp(µi)] (B.283)

and the expectations are taken with respect to the variational density of all the random
variables (although in all but one term this can be reduced to just one variable due to
the independence assumption). We now derive expressions for each of these terms. For
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Cµi we note the following:

logq(µi)− logp(µi) = −
1
2

log(2πµ̃i)−
1

2µ̃i
(µi − µi)

2+
1
2

log(2πνµ)+
1

2νµ
µ2

i (B.284)

= −
1
2

log µ̃i +
1
2

logνµ−
1

2µ̃i
(µ2

i + µ
2
i −2µiµi)+

1
2νµ

µ2
i . (B.285)

Evaluating the expectation, and noting that Eµi
[
µ2

i

]
= µ̃i + µ

2
i , we obtain

Eµi [logq(µi)− logp(µi)] = −
1
2

log
µ̃i

νµ
−

1
2µ̃i

(µ̃i + µ
2
i + µ

2
i −2µ2

i )+
1

2νµ
(µ̃i + µ

2
i )

(B.286)

= −
1
2

log
µ̃i

νµ
−

1
2
+

1
2νµ

(µ̃i + µ
2
i ). (B.287)

For Cz j we note the following:

logq(z j)− logp(z j) = −
1
2

(
q log2π+ log |Σz j |

)
−

1
2
(z j − z j)

⊤Σ−1
z j (z j − z j)

−

(
−

q
2

log(2π)−
1
2
z⊤j z j

)
(B.288)

= −
1
2

log |Σz j | −
1
2

(
z⊤j Σ

−1
z j z j − z⊤j Σ

−1
z j z j − z⊤j Σ

−1
z j z j

+z⊤j Σ
−1
z j z j − z⊤j z j

)
(B.289)

To evaluate the expectation, it is useful to first note the following identity for a symmetric
matrix A and random variable y with mean y and variance Σy

Ey[y
⊤Ay] = Tr(AΣy)+ y

⊤Ay, (B.290)

where Tr(A) denotes the trace of matrix A. Thus, E[z⊤j Σ
−1
z j z j]=Tr(Σ−1

z j Σz j )+ z
⊤
j Σ

−1
z j z j =

q+ z⊤j Σ
−1
z j z j . Moreover, Ez j [z

⊤
j z j] = Tr(Σz j )+ z

⊤
j z j . Using this, we obtain

Ez j [logq(z j)− logp(z j)] = −
1
2

log |Σz j | −
1
2

(
q−Tr(Σz j )− z⊤j z j)

)
. (B.291)

For Cxi j we note that:

logp(xi j |wi, z j, µi) = −
1
2

log(2πσ2)−
1

2σ2

(
x⊤i j xi j − z⊤j wi xi j + z

⊤
j wiµi + µ

⊤
i µi

−xi jw
⊤
i z j + µ

⊤
i w

⊤
i z j + z

⊤
j (wiw

⊤
i )z j

)
. (B.292)
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Hence, taking the expectation, we have

Ewi,z j,µi [logp(xi j |wi, z j, µi)] =−
1
2

log(2πσ2)−
1

2σ2

(
x⊤i j xi j − z⊤j wi xi j

+ z⊤j wiµi +Eµi
[
µ⊤i µi

]
− xi jw

⊤
i z j

+µ⊤i w
⊤
i z j +Ewi,z j [z

⊤
j (wiw

⊤
i )z j]

)
(B.293)

=−
1
2

log(2πσ2)−
1

2σ2

( (
xi j −(w⊤

i z j + µi)
)2

− µ⊤i µi − z⊤j (wiw
⊤
i )z j +Eµi [µ

⊤
i µi]

+Ewi,z j [z
⊤
j (wiw

⊤
i )z j]

)
. (B.294)

It remains to evaluate the final two expectations in the above (and then to simplify). We
have

Eµi [µ
⊤
i µi] = µ̃i + µiµ

⊤
i , (B.295)

by the definition of variance. To evaluate the final expectation, we first evaluate the
expectation with respect to wi, and then with respect to z j , so that we have

Ewi,z j [z
⊤
j (wiw

⊤
i )z j] =Ez j [z

⊤
j Ewi [wiw

⊤
i ]z j] (B.296)

=Ez j [z
⊤
j (Σwi +wiw

⊤
i )z j] (B.297)

=Ez j [z
⊤
j Σwi z j]+Ez j [z

⊤
j (wiw

⊤
i )z j] (B.298)

=Tr
[
ΣwiΣz j

]
+ z⊤j Σwi z j +Tr

[
(wiw

⊤
i )Σz j

]
+ z⊤j (wiw

⊤
i )z j . (B.299)

Note also that, using the property that the trace of a product is invariant under cyclic
permutations, we have

Tr
[
ΣwiΣz j

]
= Tr

[
Σz jΣwi

]
(B.300)

and also

Tr
[
wiw

⊤
i Σz j

]
= Tr

[
w⊤

i Σz jwi
]

(B.301)

= w⊤
i Σz jwi, (B.302)

with the final equality following from the fact that w⊤
i Σz jwi is a scalar, and hence equal

to its trace. Thus,

Ewi,z j

[
z⊤j

(
wiw

⊤
i
)
z j

]
= Tr

[
Σz jΣwi

]
+ z⊤j Σwi z j +w

⊤
i Σz jwi + z

⊤
j
(
wiw

⊤
i
)
z j . (B.303)
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Substituting Equations (B.295) and (B.303) into Equation (B.294), we obtain:

Ewi,z j,µi

[
logp

(
xi j |wi, z j, µi

) ]
=−

1
2

log(2πσ2)−
1

2σ2

( (
xi j −(w⊤

i z j + µi)
)2

+µ̃i +Tr
[
Σz jΣwi

]
+ z⊤j Σwi z j +w

⊤
i Σz jwi

)
. (B.304)

Thus,

Cxi j =
1
2

log(2πσ2)+
1

2σ2

( (
xi j −(w⊤

i z j + µi)
)2
+ µ̃i +Tr

[
Σz jΣwi

]
+z⊤j Σwi z j +w

⊤
i Σz jwi

)
(B.305)

For Cwi we have

logq (wi)− logp (wi) =−
1
2

(
q log (2π)+ log |Σwi |

)
−

1
2
(wi −wi)

⊤Σ−1
wi
(wi −wi)

+
1
2

q log (2π)+
1
2

logνw,g +
1

2νw,g
w⊤

i wi (B.306)

=
1
2

logνw,g −
1
2

log |Σwi |

−
1
2
(wi −wi)

⊤Σ−1
wi
(wi −wi)

+
1

2νw,g
w⊤

i wi (B.307)

=−
1
2

log
|Σwi |

νw,g
−

1
2

(
w⊤

i Σ
−1
wi
wi −w⊤

i Σ
−1
wi
wi

−w⊤
i Σ

−1
wi
wi +w

⊤
i Σ

−1
wi
wi −

1
νw,g

w⊤
i wi

)
. (B.308)

Taking the expectation of this term gives

Ewi [logq (wi)− logp (wi)] =−
1
2

log
|Σwi |

νw,g
−

1
2

(
q+w⊤

i Σ
−1
wi
wi −w⊤

i Σ
−1
wi
wi

−w⊤
i Σ

−1
wi
wi +w

⊤
i Σ

−1
wi
wi

−
1
νw,g

(
Tr

[
Σwi

]
+w⊤

i wi
) )

(B.309)

=−
1
2

log
|Σwi |

νw,g
−

1
2

(
q−

1
νw,g

Tr
[
Σwi

]
−

1
νw,g

w⊤
i wi

)
. (B.310)
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The updates for the variance parameters (σ2,νµ,νw,g) are derived by finding where the
variational cost function has a minimum (the maximum of the variational lower bound).

Update for νµ

The only term in the variational cost function that includes νµ is the sum
∑p

i=1 Cµi , so

∂

∂νµ
(−L(q)) =

∂

∂νµ

( p∑
i=1

Cµi

)
(B.311)

=

p∑
i=1

∂

∂νµ
Cµi (B.312)

=

p∑
i=1

∂

∂νµ

(
−

1
2

log
µ̃i

νµ
−

1
2
+

1
2νµ

(µ̃i + µ
2
i )

)
(B.313)

=

p∑
i=1

∂

∂νµ

(
1
2

logνµ+
1
νµ

1
2
(µ̃i + µ

2
i )

)
(B.314)

=

p∑
i=1

(
1
2

1
νµ
+
−1
ν2
µ

1
2
(µ̃i + µ

2
i )

)
. (B.315)

Setting equal to zero, and multiplying through by 2ν2
µ, we obtain

0 =
p∑

i=1

(
νµ−(µ̃i + µ

2
i )

)
(B.316)

= pνµ−
p∑

i=1
(µ̃i + µ

2
i ). (B.317)

Hence,

νµ =
1
p

p∑
i=1

µ̃i + µ
2
i . (B.318)
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Update for σ2

The only term in the variational cost function that includes σ2 is the sum
∑

i j∈O Cxi j , so

∂

∂σ2 (−L(q)) =
∂

∂σ2

(∑
i j∈O

Cxi j

)
(B.319)

=
∑
i j∈O

∂

∂σ2

(
1
2

log2πσ2+
1

2σ2

[ (
xi j −

(
w⊤

i z j + µi
) )2
+ µ̃i (B.320)

+Tr
[
Σz jΣwi

]
+ z⊤j Σwi z j +w

⊤
i Σz jwi

] )
(B.321)
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1
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(
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) )2
+ µ̃i +Tr
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Σz jΣwi
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+ z⊤j Σwi z j +w
⊤
i Σz jwi

] )
(B.323)

Setting this equal to zero, multiplying through by 2σ4, and rearranging gives

σ2 =
1

np

∑
i j∈O

(
xi j −w⊤

i z j − µi
)2
+ µ̃i + z

⊤
j Σwi z j +w

⊤
i Σz jwi +Tr

[
Σz jΣwi

]
. (B.324)

Update for νw,g

The only term in the variational cost function that includes νw,g is
∑p

i=1 Cwi , so

∂

∂νw,g
(−L(q)) =

∂

∂νw,g

( p∑
i j∈O

Cwi

)
(B.325)
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1
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1
2ν2
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(
Tr

[
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i wi
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Equating this equal to zero and multiplying through by 2ν2
w,g gives:

0 =
p∑

i=1

(
νw,g −Tr

[
Σwi

]
−w⊤

i wi
)

(B.328)

νw,g =
1
p

p∑
i=1

Tr
[
Σwi

]
+w⊤

i wi . (B.329)
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The algorithm is then executed by cycling through the update Equations (B.248),
(B.250), (B.261), (B.263), (B.276), (B.278), (B.318), (B.324), and (B.329) until con-
vergence.

B.6 pcaNet vs. pcaMethods timing simulation

In this section we compare the timing of algorithms EM 1 from pcaMethods [98]
against their implementation in pcaNet. We present a small simulation study to demon-
strate this.

We generate M = 100 datasets of size n ∈ {p/5,p/2,p} from X =WZ + µ+ ϵ using
p ∈ {100,250,500}, q = 3, µ = 0, and logσ2 ∼ N(0,1). Recall that by construction, this
means that z j ∼ N(0,I3×3) for j = 1, . . . ,n and ϵ ∼ N(0,σI3×3).

To generate W , we first simulate a binary matrix of dimension (p×q) whose entries
are generated using B(0.5), the Bernoulli distribution with probability of success equal
to 0.5. We use this binary matrix to create W by simulating Wik ∼ N(0,1) for the
(i,k)-th binary entry equal to 1 i = 1, . . . ,p, k = 1, . . . ,q, and Wik = 0 when the Bernoulli
trial resulted in 0. There is one binary matrix for each specification of p and n, from
which the M loading matrices W are generated.

We measure the time taken for each function to run, replicating the actual time
that a user would experience when running the code. Since pcaNet only changes the
implementation of the iterative updates (using Rcpp instead) for algorithm EM 1, the
timing comparison is not biased by ‘housekeeping’ code such as argument checking
or other auxilliary functionality. We report the log-fold change in time taken for each
algorithm with the pcaNet version as the numerator. This is a relative measure of timing
such that positive values indicate an improvement of pcaNet over the pcaMethods
implementation, negative values vice versa, and values of 0 indicating no change. The
log scale was chosen as some changes were very high/low in real-time. We use box
plots to show the spread across the M datasets for each data dimension. All parameter
estimates do not practically differ (within exp(−15)) and so are not presented.

The results for EM algorithm 1 are shown in Figure B.1. We can see that the lower
quartile change for all values of n and p are above 0, showing the frequent decrease
in time taken by the pcaNet implementation relative to that of pcaMethods. Recall
that values of 0.5 and 1 on this log scale refer to improvements of approximately 1.6
and 2.7 times (respectively) in real-time. Few values lie in the negative range of the
log-fold change, with almost all of them regarded as outliers as defined by the 1.5 times
interquartile range whiskers.
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Fig. B.1 Log-fold improvement of pcaNet compared to pcaMethods for EM algorithm
1. the black horizontal line at y = 0 indicates the point of no difference between the
timings.

This simulation demonstrates the claim that pcaNet provides accelerated versions of
the algorithms contained within pcaMethods, at least for the data dimensions specified
here. The acceleration that is shown could most likely be improved with further
optimisation of the code, but that is beyond the scope of this work.

B.7 Model-based simulation: additional results

Figures B.2, B.3, B.4, B.5, B.6, and complement Figures 3.1 and 3.2 of Section 3.7 by
providing results for n ∈ (60,80).



B.7 Model-based simulation: additional results 175

ppcapM pca_full bpca_full

No missing values, p=80

P
R

IA
L

0
20

40
60

80
10

0

n=20
n=40
n=60

ppcapM pca_full bpca_full

No missing values, p=60

P
R

IA
L

0
20

40
60

80
10

0

n=15
n=30
n=45

Fig. B.2 PRIAL for p = 80,60 with no missing values.
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Fig. B.4 PRIAL for p = 60 with 30% and 50% missing values.
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Fig. B.5 Run-time in seconds of each PPCA algorithm for p = 80,60 with no missing
values.
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Fig. B.6 Run-time in seconds of each PPCA algorithm for p = 100,80,60 with 30%
missing values.
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Fig. B.7 Run-time in seconds of each PPCA algorithm for p = 100,80,60 with 50%
missing values.

B.8 Comparison with TAS: additional results

Figures B.8 and B.9 complements Figure 3.3 from Section 3.8 for n ∈ (50,75).
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Appendix C

Case study: cytokine expression in the
context of traumatic brain injury

C.1 Cytokines under study

Table contains the cytokines that were measured in the study and the corresponding
abbreviations.
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Cytokine Abbreviation

Epidermal Growth Factor EGF
Eotaxin Eotaxin

Basic Fibroblast Growth Factor FGF2
Fms-related tyrosine kinase 3 ligand Flt3 lig

Fractalkine Fractalkine
Granulocyte Colony Stimulating Factor G-CSF

Granulocyte-Monocyte Colony Stimulating Factor GM-CSF
GRO GRO

Interferon alpha-2 IFNa2
Interferon gamma IFNg
Interleukin-1 alpha IL1a
Interleukin-1 beta IL1b

Interleukin-1 receptor antagonist IL1ra
Interleukin-2 IL2
Interleukin-3 IL3
Interleukin-4 IL4
Interleukin-5 IL5
Interleukin-6 IL6
Interleukin-7 IL7
Interleukin-8 IL8
Interleukin-9 IL9

Interleukin-10 IL10
Interleukin-12 subunit beta IL12p40

Interleukin-12 IL12p70
x Interleukin-13 IL13
Interleukin-15 IL15
Interleukin-17 IL17

Chemokine (C-X-C motif) ligand 10 IP10
Monocyte Chemotactic Protein 1 MCP1
Monocyte Chemotactic Protein 3 MCP3

Macrophage Derived Chemoattractant MDC
Macrophage Inflammatory Protein-1 alpha MIP1a
Macrophage Inflammatory Protein-1 beta MIP1b

Platelet Derived Growth Factor AA PDGF AA
Platelet Derived Growth Factor AB/BB PDGF AB/BB

RANTES RANTES
Soluble CD40 Ligand sCD40L

Soluble Interleuking-2 Receptor sIL2R
Transforming Growth Factor alpha TGFa
Transforming Necrosis Factor alpha TNFa
Transforming Necrosis Factor beta TNFb
Vascula Endothilial Growth Factor VEGF

Table C.1 Cytokines measured in the study and their abbreviations.
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C.2 Alternative imputation values

Here we display the results from Section 4.4 after having run kNN with a different
number of neighbours.

C.2.1 k = 5

Figures C.1, C.2, C.3, C.4,C.5, and C.6 correspond to the Figures 4.10, 4.11, 4.12, 4.13,
4.15, and 4.16 having run the imputation algorithm with k = 5.
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Fig. C.1 COCA for the arterial samples of the control group using TAS having imputed
with k = 5. The labels of the columns indicate a cluster allocation for a given time point,
e.g. time point 10 cluster 2 is denoted as TP10 C2. Each time point has been given its
own colour for clarity.
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imputed with k = 5. The labels of the columns indicate a cluster allocation for a given
time point, e.g. time point 10 cluster 2 is denoted as TP10 C2. Each time point has been
given its own colour for clarity.
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Fig. C.3 COCA for the microdialysis samples of the control group using TAS having
imputed with k = 5. The labels of the columns indicate a cluster allocation for a given
time point, e.g. time point 10 cluster 2 is denoted as TP10 C2. Each time point has been
given its own colour for clarity.
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Fig. C.4 COCA for the microdialysis samples of the treatment group using TAS having
imputed with k = 5. The labels of the columns indicate a cluster allocation for a given
time point, e.g. time point 10 cluster 2 is denoted as TP10 C2. Each time point has been
given its own colour for clarity.
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Fig. C.5 Network edge summaries for arterial samples using TAS having imputed with
k = 5. The x-axis shows the number of times an edge appeared in the control group
networks, whilst the y-axis does the same for the treatment group. The number inside
the blue boxes shows how many pairs of cytokines had an edge appear that many times.
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Fig. C.6 Network edge summaries for microdialysis samples using TAS having imputed
with k = 5. The x-axis shows the number of times an edge appeared in the control group
networks, whilst the y-axis does the same for the treatment group. The number inside
the blue boxes shows how many pairs of cytokines had an edge appear that many times.

C.2.2 k = 7

Figures C.7, C.8, C.9, C.10,C.11, and C.12 correspond to the Figures 4.10, 4.11, 4.12,
4.13, 4.15, and 4.16 having run the imputation algorithm with k = 7.
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Fig. C.7 COCA for the arterial samples of the control group using TAS having imputed
with k = 7. The labels of the columns indicate a cluster allocation for a given time point,
e.g. time point 10 cluster 2 is denoted as TP10 C2. Each time point has been given its
own colour for clarity.
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Fig. C.8 COCA for the arterial samples of the treatment group using TAS having
imputed with k = 7. The labels of the columns indicate a cluster allocation for a given
time point, e.g. time point 10 cluster 2 is denoted as TP10 C2. Each time point has been
given its own colour for clarity.
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Fig. C.9 COCA for the microdialysis samples of the control group using TAS having
imputed with k = 7. The labels of the columns indicate a cluster allocation for a given
time point, e.g. time point 10 cluster 2 is denoted as TP10 C2. Each time point has been
given its own colour for clarity.
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Fig. C.10 COCA for the microdialysis samples of the treatment group using TAS having
imputed with k = 7. The labels of the columns indicate a cluster allocation for a given
time point, e.g. time point 10 cluster 2 is denoted as TP10 C2. Each time point has been
given its own colour for clarity.
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Fig. C.11 Network edge summaries for arterial samples using TAS having imputed with
k = 7. The x-axis shows the number of times an edge appeared in the control group
networks, whilst the y-axis does the same for the treatment group. The number inside
the blue boxes shows how many pairs of cytokines had an edge appear that many times.
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Fig. C.12 Network edge summaries for microdialysis samples using TAS having imputed
with k = 7. The x-axis shows the number of times an edge appeared in the control group
networks, whilst the y-axis does the same for the treatment group. The number inside
the blue boxes shows how many pairs of cytokines had an edge appear that many times.
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TAS package documentation

In this Appendix we provide the documentation for the TAS software package.
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Package ‘TAS’
September 27, 2019

Type Package

Title Target-Averaged Linear Shrinkage (TAS)

Version 1.0

Date 2019-09-27

Author Harry Gray

Maintainer Harry Gray <h.w.gray@dundee.ac.uk>

Description High-dimensional covariance matrix estimation
using linear shrinkage with multiple target matrices Gray, H.,
Leday, G.G.R., Vallejos, C.A. and Richardson, S.,
(2018) <arXiv:1809.08024>.
Multiple targets can be useful when
there is uncertainty around the choice of target or if there is
external data that can be used to construct a target matrix.

License GPL-3 | file LICENSE

Imports Rcpp (>= 0.12.13), matrixStats

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.1.1

URL https://github.com/HGray384/TAS

BugReports https://github.com/HGray384/TAS/issues

NeedsCompilation yes

R topics documented:
TAS-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
addTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
gcShrink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
getTarget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
getTargetSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
logML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
targetWeights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
taShrink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Index 10

1
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2 addTarget

TAS-package Target-Averaged Linear Shrinkage estimation

Description

Conjugate Bayesian covariance matrix estimation using linear shrinkage with multiple target ma-
trices (Gray et al., 2018). Most useful in high-dimensional data settings, where the number of
variables is greater than the number of samples.

Details

This package contains functions for covariance estimation using a conjugate Bayesian model. Whilst
the main functionality of the package is for multiple target linear shrinkage estimation, we also pro-
vide functionality for the single target analogue (Hannart and Naveau, 2014; Gray et al., 2018).

These shrinkage methods perform best when an external dataset is used to create a target ma-
trix/target matrices that is informative of the actual dataset under examination. An example of
this utility is provided in Gray et al. (2018), in which high-dimensional protein covariance matrices
for various cancer types are greatly informed by large sample covariance matrices from ’similar’
cancer types.

Author(s)

Harry Gray

Maintainer: Harry Gray <h.w.gray@dundee.ac.uk>

References

Gray, H., Leday, G.G.R., Vallejos, C.A. and Richardson, S., 2018. Shrinkage estimation of large
covariance matrices using multiple shrinkage targets. arXiv preprint.

Hannart, A. and Naveau, P., 2014. Estimating high dimensional covariance matrices: A new look
at the Gaussian conjugate framework. Journal of Multivariate Analysis, 131, pp.149-162. doi.

addTarget Add a new target to TAS without re-running taShrink()

Description

Add a new target to TAS without re-running taShrink()

Usage

addTarget(X, TASoutput, NEWtarget)

Arguments

X matrix – data matrix with variables in rows and observations in columns. This
method performs best when there are more variables than observations.

TASoutput list – output from the taShrink function.
NEWtarget matrix – a new target to add to the shrinkage estimation. Must have the same

dimensions as the other targets.
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gcShrink 3

Value

list – the updated TAS output having added the new target matrix to the target set.

See Also

taShrink

Examples

set.seed(102)
X <- matrix(rnorm(50), 10, 5) # p=10, n=5, identity covariance
X <- t(scale(t(X), center=TRUE, scale=FALSE)) # mean 0
targets <- getTargetSet(X)[,,c(1, 4, 7)] # use unit variance targets
alpha <- seq(0.01, 0.99, 0.01)
tas <- taShrink(X, targets = targets[,,c(1, 3)], plots = FALSE)
tw1 <- targetWeights(tas)
barplot(tw1, names.arg = c("target1", "target2", "S"),
main = "Target-specific shrinkage weights",
col = c("red", "green", "purple"), space = 0,
xlab = "Target", ylab = "Weight")
tas2 <- addTarget(X, tas, targets[,,2])
tw2 <- targetWeights(tas2)
par(mfrow=c(1, 2))
barplot(tw1, names.arg = c("target1", "target2", "S"),
main = "Target-specific shrinkage weights",
col = c("red", "green", "purple"), space = 0,
xlab = "Target", ylab = "Weight")
barplot(tw2, names.arg = c("target1", "target2", "target3", "S"),
main = "Target-specific shrinkage weights",
col = c("red", "green", "blue", "purple"), space = 0,
xlab = "Target", ylab = "Weight")
par(mfrow=c(1, 1))
plot(alpha, tas2$logmarginals[1,], col = 'red', pch = 16,
ylab = "log marginal likelihoods", xlab = expression(alpha))
points(alpha, tas2$logmarginals[2,], col = 'green', pch = 16)
points(alpha, tas2$logmarginals[3,], col = 'blue', pch = 16)
legend('bottomright', c("target1", "target2", "target3"), pch = 16,

col=c('red', 'green', 'blue'))

gcShrink Bayesian Gaussian conjugate (GC) single target linear shrinkage co-
variance estimator

Description

Implements a Bayesian Gaussian conjugate (GC) single target linear shrinkage covariance estimator
as in Gray et al. (2018) and Hannart and Naveau (2014). It is most useful when the observed data
is high-dimensional (more variables than observations) and allows a user-specified target matrix.

Usage

gcShrink(X, target = "none", var = 2, cor = 1, alpha = seq(0.01,
0.99, 0.01), plots = TRUE, weighted = FALSE, ext.data = FALSE)
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4 gcShrink

Arguments

X matrix – data matrix with variables in rows and observations in columns. This
method performs best when there are more variables than observations.

target character or matrix – if "none" then a default target specified by var and cor
will be used for shrinkage. If matrix then this will be used as the target for
shrinkage. The target must be a real symmetric positive definite matrix.

var numeric – c(1, 2, 3) variance structure for the target matrix. 1 sets all variances
equal to 1. 2 sets all variances equal to their sample mean. 3. sets all variances
to their sample values.

cor numeric – c(1, 2, 3) correlation structure for the target matrix. 1 sets the cor-
relations to 0. 2 sets the correlations equal to their sample mean. 3 sets the
correlations equals to an autocorrelation structure with parameter equal to the
sample mean.

alpha list – the grid of shrinkage intensities in (0, 1) to be used. Recommended to
be an equidistant grid that covers the whole interval. A short comparison of
estimation accuracy versus granularity is provided in ...

plots logical – if TRUE then plots the log-marginal likelihood for each value of
alpha with the value of alpha that maximises this highlighted.

weighted logical – if TRUE then average over all values of alpha and their respective
marginal likelihood value as in Gray et al (submitted). If FALSE then only use
the value of alpha that maximises the log-marginal likelihood as in Hannart and
Naveau (2014).

ext.data matrix – an external data matrix used a surrogate to estimate the parameters
in the default target set for X. Never recommended unless there is a belief that
ext.data is informative of the covariances of X.

Value

list –

sigmahat matrix – the estimated covariance matrix.

optimalpha numeric – the value of alpha that maximises the log-marginal likelihood.

target matrix – the target matrix used for shrinkage.

logmarg numeric – the values of the log marginal likelihood for each (target, alpha) pair.

References

Gray, H., Leday, G.G., Vallejos, C.A. and Richardson, S., 2018. Shrinkage estimation of large
covariance matrices using multiple shrinkage targets. arXiv preprint.

Hannart, A. and Naveau, P., 2014. Estimating high dimensional covariance matrices: A new look
at the Gaussian conjugate framework. Journal of Multivariate Analysis, 131, pp.149-162. doi.

Examples

set.seed(102)
X <- matrix(rnorm(50), 10, 5) # p=10, n=5, identity covariance
X <- t(scale(t(X), center=TRUE, scale=FALSE)) # mean 0
t1 <- gcShrink(X, var=1, cor=1) # apply shrinkage and view likelihood for T1
t2 <- gcShrink(X, var=2, cor=2) # apply shrinkage and view likelihood for T2
norm(t1$sigmahat-diag(10), type="F") # calculate loss
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getTarget 5

norm(t2$sigmahat-diag(10), type="F") # calculate loss
# one target clearly better but how to choose this a priori?

getTarget Construct a target matrix for single target linear shrinkage

Description

Construct a popular target matrix from the linear shrinkage literature. These targets consist of a
combination of variance and correlation structure. Possible variance structures are unit, sample
mean, and sample. Possible correlation structures are zero, sample mean, and autocorrelation.

Usage

getTarget(X, varNumber = 2L, corNumber = 1L)

Arguments

X matrix – data matrix with variables in rows and observations in columns.

varNumber numeric – c(1, 2, 3) variance structure for the target matrix. 1 sets all variances
equal to 1. 2 sets all variances equal to their sample mean (using X). 3. sets all
variances to their sample values (using X).

corNumber numeric – c(1, 2, 3) correlation structure for the target matrix. 1 sets the corre-
lations to 0. 2 sets the correlations equal to their sample mean (using X). 3 sets
the correlations equals to an autocorrelation structure with parameter equal to
the sample mean (using X).

Value

matrix – target matrix for linear shrinkage estimation.

See Also

gcShrink

Examples

set.seed(102)
X <- matrix(rnorm(50), 10, 5) # p=10, n=5, identity covariance
X <- t(scale(t(X), center=TRUE, scale=FALSE)) # mean 0
getTarget(X, varNumber = 1, corNumber = 1) # unit variance, zero correlation
getTarget(X, varNumber = 2, corNumber = 1) # equal variance, zero correlation
getTarget(X, varNumber = 3, corNumber = 1) # sample variances, zero correlation
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6 logML

getTargetSet Construct a set of target matrices for Target-Averaged linear shrinkage

Description

Construct a set of popular target matrices from the linear shrinkage literature. These nine targets
consist of the combinations of variance and correlation structures; variance structures are unit, sam-
ple mean, and sample; correlation structures are zero, sample mean, and autocorrelation.

Usage

getTargetSet(X)

Arguments

X matrix – data matrix with variables in rows and observations in columns.

Value

array – a pxpx9 array of target matrices, where p is the number of variables of X.

See Also

taShrink

Examples

set.seed(102)
X <- matrix(rnorm(50), 10, 5) # p=10, n=5, identity covariance
X <- t(scale(t(X), center=TRUE, scale=FALSE)) # mean 0
ts <- getTargetSet(X) # an array of targets
# inspect the variances of the targets
vars <- apply(ts, 3, diag)
colnames(vars) <- paste("target", c(1:9), sep="")
vars
boxplot(vars, ylab = "variances")
# inspect the correlations of the targets
corrs <- apply(ts, 3, function(x){cov2cor(x)[lower.tri(x)]})
colnames(corrs) <- paste("target", c(1:9), sep="")
corrs
boxplot(corrs, ylab = "correlations")

logML Log-marginal likelihood of a Gaussian-inverse Wishart conjugate
model

Description

Evaluate the log-marginal likelihood of a Gaussian-inverse Wishart distribution parametrised in
terms of its prior mean matrix and its prior variance parameter. In the Bayesian linear shrinkage
model, these parameters correspond to the target matrix and the shrinkage intensity (Hannart and
Naveau, 2014).
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targetWeights 7

Usage

logML(X, target, alpha)

Arguments

X matrix –data matrix with variables in rows and observations in columns.

target matrix – prior mean matrix parameter of the inverse-Wishart distribution.

alpha numeric – prior variance parameter of the inverse-Wishart distribution.

Value

numeric – log-marginal likelihood evaluated at (target, alpha). If alpha is a vector is a vector
then the function returns a vector evaluated at each element of alpha.

References

Alexis Hannart and Philippe Naveau (2014). Estimating high dimensional covariance matrices: A
new look at the Gaussian conjugate framework. Journal of Multivariate Analysis. doi.

See Also

gcShrink, taShrink

Examples

set.seed(102)
X <- matrix(rnorm(50), 10, 5) # p=10, n=5, identity covariance
X <- t(scale(t(X), center=TRUE, scale=FALSE)) # mean 0
target <- getTarget(X)
alpha <- seq(0.01, 0.99, 0.01)
lml <- logML(X, target, alpha)
plot(alpha, lml, col = 'blue', pch = 16,
ylab = "log marginal likelihoods", xlab = expression(alpha))
lines(x = rep(alpha[which(lml==max(lml))], 2), y = c(min(lml), max(lml)), col='red')

targetWeights Extract the target-specific and sample covariance shrinkage weights
from TAS output

Description

Extract the target-specific and sample covariance shrinkage weights from TAS output

Usage

targetWeights(TASoutput)

Arguments

TASoutput list – output from the taShrink function.
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Value

list – the weights from each target and sample covariance matrix in TAS.

See Also

taShrink

Examples

set.seed(102)
X <- matrix(rnorm(50), 10, 5) # p=10, n=5, identity covariance
X <- t(scale(t(X), center=TRUE, scale=FALSE)) # mean 0
targets <- getTargetSet(X)[,,c(1, 4, 7)] # use unit variance targets
tas <- taShrink(X, targets = targets[,,c(1, 3)], plots = FALSE)
tw1 <- targetWeights(tas)
barplot(tw1, names.arg = c("target1", "target2", "S"),
main = "Target-specific shrinkage weights",
col = c("red", "green", "purple"), space = 0,
xlab = "Target", ylab = "Weight")
tas2 <- addTarget(X, tas, targets[,,2])
tw2 <- targetWeights(tas2)
par(mfrow=c(1, 2))
barplot(tw1, names.arg = c("target1", "target2", "S"),
main = "Target-specific shrinkage weights",
col = c("red", "green", "purple"), space = 0,
xlab = "Target", ylab = "Weight", ylim = c(0, 0.6))
barplot(tw2, names.arg = c("target1", "target2", "target3", "S"),
main = "Target-specific shrinkage weights",
col = c("red", "green", "blue", "purple"), space = 0,
xlab = "Target", ylab = "Weight", ylim = c(0, 0.6))
par(mfrow=c(1, 1))

taShrink Bayesian Target-Averaged linear Shrinkage (TAS) covariance estima-
tor

Description

Implements a Bayesian target-averaged linear shrinkage covariance estimator as in Gray et al.
(2018). It is most useful when the observed data is high-dimensional (more variables than ob-
servations) and there are other datasets that can be used to include as prior data-driven targets to
shrink towards.

Usage

taShrink(X, targets = "default", without = 0, alpha = seq(0.01, 0.99,
0.01), plots = TRUE, ext.data = FALSE)

Arguments

X matrix – data matrix with variables in rows and observations in columns. This
method performs best when there are more variables than observations.
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targets character or array – "default" creates a target set of common literature targets,
or the user may specify an array of targets to use, e.g. ones that have been
derived from external data. All targets must be real symmetric positive definite
matrices.

without list – if targets=="default" then this indicates which of the default targets
should be excluded from shrinkage. This can be useful when exploring the
shrinkage behaviour with a subset of targets (e.g. through simulation).

alpha list – the grid of shrinkage intensities in (0, 1) to be used. Recommended to
be an equidistant grid that covers the whole interval. A short comparison of
estimation accuracy versus granularity is provided in ...

plots logical – if TRUE then create a barplot of the target-specific shrinkage weights.
Recommend option FALSE if using many iterations.

ext.data matrix – an external data matrix used a surrogate to estimate the parameters
in the default target set for X. Never recommended unless there is a belief that
ext.data is informative of the covariances of X.

Value

list –

sigmahat matrix – the estimated covariance matrix.
targets array – the targets used for shrinkage.
weights matrix – the weight of each (target, alpha) pair such that sum(weights)=1. The weights

are calculated by normalising the log-marginal likelihood values below.
logmarginals matrix – the values of the log marginal likelihood for each (target, alpha) pair.
alpha list – the values of shrinkage intensities used.

References

Gray, H., Leday, G.G.R., Vallejos, C.A. and Richardson, S., 2018. Shrinkage estimation of large
covariance matrices using multiple shrinkage targets. arXiv preprint.

Examples

set.seed(101)
X <- matrix(rnorm(50), 10, 5) # p=10, n=5, identity covariance
X <- t(scale(t(X), center=TRUE, scale=FALSE)) # mean 0
tas <- taShrink(X, plots = FALSE) # apply shrinkage and view target weight bar plot
barplot(targetWeights(tas), names.arg = c(1:9, "S"),
main = "Target-specific shrinkage weights",
col = rainbow(dim(tas$targets)[3]+1), space = 0,
xlab = "Target", ylab = "Weight")
abs(tas$sigmahat - diag(10)) # inspect absolute differences
norm(tas$sigmahat-diag(10), type="F") # calculate loss
# compare this to each single target
norm(gcShrink(X, var=1, cor=1)$sigmahat-diag(10), type="F")
norm(gcShrink(X, var=2, cor=1)$sigmahat-diag(10), type="F")
norm(gcShrink(X, var=3, cor=1)$sigmahat-diag(10), type="F")
norm(gcShrink(X, var=1, cor=2)$sigmahat-diag(10), type="F")
norm(gcShrink(X, var=2, cor=2)$sigmahat-diag(10), type="F")
norm(gcShrink(X, var=3, cor=2)$sigmahat-diag(10), type="F")
norm(gcShrink(X, var=1, cor=3)$sigmahat-diag(10), type="F")
norm(gcShrink(X, var=2, cor=3)$sigmahat-diag(10), type="F")
norm(gcShrink(X, var=3, cor=3)$sigmahat-diag(10), type="F")
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Package ‘pcaNet’
October 4, 2019

Type Package

Title Probabilistic principal components analysis - covariance
estimation and network reconstruction

Version 1.0

Date 2019-09-28

Author Paul DW Kirk and Harry Gray

Maintainer <paul.kirk@mrc-bsu.cam.ac.uk> <h.w.gray@dundee.ac.uk>

Description Various implementations of algorithms for probabilistic PCA,
with an emphasis on covariance matrix estimation and network reconstruction
in the presence of missing values.

License GPL (>= 2) | file LICENSE

Depends R (>= 3.3.0)

biocViews pcaMethods

Imports Rcpp (>= 0.12.9), pcaMethods (>= 1.70.0), fdrtool, plotrix,
igraph, pheatmap, methods, mvtnorm, RColorBrewer

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 6.1.1

NeedsCompilation yes

R topics documented:
pcaNet-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
bpcaNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
bpcapM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
compute_loglikeimp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
compute_loglikeobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
compute_rms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
initParms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
orthMat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
pcapM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
pca_full . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
pca_updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ppca2Covinv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
ppca2Covplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ppca2Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1
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ppcaNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ppcapM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
ppcaQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
subtractMu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Index 30

pcaNet-package Probabilistic principal components analysis - covariance estimation
and network reconstruction

Description

Various implementations of algorithms for probabilistic PCA, with an emphasis on covariance ma-
trix estimation and network reconstruction in the presence of missing values.

Details

Algorithms for PPCA have been ported from the PCAMV MATLAB toolbox (Ilin and Raiko, 2010)
and extended from the pcaMethods (Stacklies et. al., 2007) R-package to focus on covariance ma-
trix estimation and network reconstruction in the presence of missing values. Full PCA functionality
with pcaMethods is retained in pcaNet due to the use of the pcaRes class.

The inverse of the covariance matrix from PPCA can be computed efficiently, and this functionality
is provided in ppca2Covinv. Using the false discovery rate method from Strimmer (2008), the
estimated partial correlations can be tested to construct a network. Whilst default behaviour for
this is available, the full output of the testing is also provided, so that users may further explore the
statistics using fdrtool. Functionality for visualising the covariance matrix is provided, as well as
for the reconstructed network using igraph (Csardi and Nepusz, 2006).

Author(s)

Paul DW Kirk and Harry Gray

Maintainers: <paul.kirk@mrc-bsu.cam.ac.uk> <h.w.gray@dundee.ac.uk>

References

Oba, S., Sato, M.A., Takemasa, I., Monden, M., Matsubara, K.I. and Ishii, S., 2003. doi.

Stacklies, W., Redestig, H., Scholz, M., Walther, D. and Selbig, J., 2007. doi.

Ilin, A. and Raiko, T., 2010. link

Porta, J.M., Verbeek, J.J. and Kroese, B.J., 2005. link

Strimmer, K., 2008. link.

Strimmer, K., 2008. doi.

Csardi, G. and Nepusz, T., 2006. link.

See Also

pcaMethods
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bpcaNet Bayesian PCA updates

Description

Perform parameter updates for PPCA using the Variational Bayes framework from Oba (2003). Not
recommended to use standalone, rather it is called from within bpcapM and its wrapper pcapM.

Usage

bpcaNet(myMat, covy, N, D, hidden, numberOfNonNAvaluesInEachCol,
nomissIndex, missIndex, nMissing, nPcs = 2L, threshold = 1e-04,
maxIterations = 200L)

Arguments

myMat matrix – data matrix with observations in rows and variables in columns. (Note
that this is the transpose of X in pca_full.)

covy matrix – the unbiased sample covariance of the data matrix.

N numeric – the number of observations.

D numeric – the number of variables.

hidden numeric – indices of missing values in 1:length(myMat).
numberOfNonNAvaluesInEachCol

numeric – number of observed values in each column of the data (i.e. variables).

nomissIndex numeric – indices of rows (observations) without any missing values.

missIndex numeric – indices of rows (observations) with missing values.

nMissing numeric – total number of missing values.

nPcs numeric – number of components/latent variables to use.

threshold numeric – threshold for convergence, applied to the precision parameter tau.
Updates for which the change in tau are below this threshold value stop the
algorithm.

maxIterations numeric – the maximum number of iterations to be completed.

Value

A list of 5 elements:

W matrix – the estimated loadings.

ss numeric – the estimated model variance.

C matrix – the estimated covariance matrix.

scores matrix – the estimated scores.

m numeric – the estimated mean vector.

References

Oba, S., Sato, M.A., Takemasa, I., Monden, M., Matsubara, K.I. and Ishii, S., 2003. doi.

Stacklies, W., Redestig, H., Scholz, M., Walther, D. and Selbig, J., 2007. doi.
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See Also

bpcapM, pcapM

Examples

set.seed(102)
N <- 20
D <- 20
nPcs <- 2
maxIterations <- 1000
X <- matrix(rnorm(50), D, N)
X <- scale(X, center=TRUE, scale=FALSE) # mean 0
covX <- cov(X)
IX <- sample(1:D, 10)
JX <- sample(1:N, 10)
nMissing <- length(IX)+length(JX)
X[JX, IX] <- 0
hidden <- which(X==0)
numberOfNonNAvaluesInEachCol <- colSums(X!=0)
nomissIndex <- which(rowSums(X!=0)==N)
missIndex <- which(rowSums(X!=0)!=N)
threshold <- 1e-4
bpcaNetOutput <- bpcaNet(myMat=X, covy=covX, N=N, D=D, hidden=hidden,

numberOfNonNAvaluesInEachCol=numberOfNonNAvaluesInEachCol,
nomissIndex=nomissIndex, missIndex=missIndex, nMissing=nMissing,
nPcs=nPcs, threshold=threshold, maxIterations=maxIterations)

bpcapM Bayesian PCA (pcaMethods version)

Description

Implements a Bayesian PCA missing value estimator, as in pcaMethods. Use of Rcpp makes this
version faster and the emphasised output is the covariance matrix Sigma, which can be used for
network reconstruction.

Usage

bpcapM(myMat, nPcs = NA, threshold = 1e-04, maxIterations = 100,
loglike = TRUE, verbose = TRUE)

Arguments

myMat matrix – Pre-processed matrix (centered, scaled) with variables in columns and
observations in rows. The data may contain missing values, denoted as NA.

nPcs numeric – Number of components used for re-estimation. Choosing few com-
ponents may decrease the estimation precision.

threshold numeric – Convergence threshold. If the increase in precision of an update falls
below this then the algorithm is stopped.

maxIterations numeric – Maximum number of estimation steps.
loglike logical – should the log-likelihood of the estimated parameters be returned?

See Details.
verbose logical – verbose intermediary algorithm output.
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Details

Details about the probabilistic model underlying BPCA are found in Oba et. al 2003. The algo-
rithm uses an expectation maximation approach together with a Bayesian model to approximate the
principal axes (eigenvectors of the covariance matrix in PCA). The estimation is done iteratively,
the algorithm terminates if either the maximum number of iterations is reached or if the estimated
increase in precision falls below 1e−4.

Value

A list of 4 elements:

W matrix – the estimated loadings.

sigmaSq numeric – the estimated isotropic variance.

Sigma matrix – the estimated covariance matrix.

pcaMethodsRes class – see pcaRes.

References

Oba, S., Sato, M.A., Takemasa, I., Monden, M., Matsubara, K.I. and Ishii, S., 2003. doi.

Stacklies, W., Redestig, H., Scholz, M., Walther, D. and Selbig, J., 2007. doi.

See Also

pcapM

Examples

# simulate a dataset from a zero mean factor model X = Wz + epsilon
# start off by generating a random binary connectivity matrix
n.factors <- 5
n.genes <- 200
# with dense connectivity
# set.seed(20)
conn.mat <- matrix(rbinom(n = n.genes*n.factors,

size = 1, prob = 0.7), c(n.genes, n.factors))

# now generate a loadings matrix from this connectivity
loading.gen <- function(x){

ifelse(x==0, 0, rnorm(1, 0, 1))
}

W <- apply(conn.mat, c(1, 2), loading.gen)

# generate factor matrix
n.samples <- 100
z <- replicate(n.samples, rnorm(n.factors, 0, 1))

# generate a noise matrix
sigma.sq <- 0.1
epsilon <- replicate(n.samples, rnorm(n.genes, 0, sqrt(sigma.sq)))

# by the ppca equations this gives us the data matrix
X <- W%*%z + epsilon
WWt <- tcrossprod(W)
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Sigma <- WWt + diag(sigma.sq, n.genes)

# select 10% of entries to make missing values
missFrac <- 0.1
inds <- sample(x = 1:length(X),

size = ceiling(length(X)*missFrac),
replace = FALSE)

# replace them with NAs in the dataset
missing.dataset <- X
missing.dataset[inds] <- NA

# run bpca
bp <- bpcapM(t(missing.dataset), nPcs = 5)
names(bp)

# sigmasq estimation
abs(bp$sigmaSq-sigma.sq)

# X reconstruction
recon.X <- bp$pcaMethodsRes@loadings%*%t(bp$pcaMethodsRes@scores)
norm(recon.X-X, type="F")^2/(length(X))

# covariance estimation
norm(bp$Sigma-Sigma, type="F")^2/(length(X))

compute_loglikeimp Compute the log-likelihood of the observed data given PCA parameter
estimates

Description

The log-likelihood of the data for probabilistic PCA is known to be multivariate Gaussian. Us-
ing this, one can check the log-likelihood value of the observed data values given the parameter
estimates from the PCA model. This can be useful to compare different models.

Usage

compute_loglikeimp(dat, A, S, covmat, meanvec, verbose = TRUE)

Arguments

dat matrix – the data matrix with variables in rows and observations in columns.

A matrix – estimated loadings matrix with observed variables in rows and latent
variables in columns.

S matrix – estimated factor scores matrix with latent variables in rows and obser-
vations in columns.

covmat matrix – the estimated covariance matrix.

meanvec numeric – the estimated mean vector.

verbose logical – whether extra output should be displayed.
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Value

the log-likelihood value

Examples

p <- 20
n <- 20
set.seed(10045)

verbose <- 1
bias <- 1
rotate2pca <- 1
ncomp <- 2
maxiters <- 1000
opts <- list(init='random',
maxiters=as.numeric(1000),
niter_broadprior=as.numeric(100),
earlystop=as.numeric(0)
)
use_prior = 1
use_postvar = 1
X <- matrix(rnorm(p*n), p, n)
miss.inds <- sample(1:(p*n), round(p*n/10))
X[miss.inds] <- NaN
Xsaved <- X
M <- !is.nan(X)
X[X==0] <- .Machine$double.eps
X[is.nan(X)] <- 0

notmiss <- which(X!=0, arr.ind = TRUE)
IX <- notmiss[,1]
JX <- notmiss[,2]

Nobs_i = rowSums(M)
ndata <- length(IX)
# C++ indexing
IX <- IX -1
JX <- JX -1

initialisedParms <- initParms(p, n, ncomp, verbose = verbose)
A <- initialisedParms$A
S <- initialisedParms$S
Mu <- initialisedParms$Mu
V <- initialisedParms$V
Av <- initialisedParms$Av
Sv <- initialisedParms$Sv
Muv <- initialisedParms$Muv
Va <- 1000*rep(1,ncomp)
Vmu <- 1000
Mu <- rowSums(X) / Nobs_i
computedRMS <- compute_rms(X, A, S, M, ndata, verbose = verbose)
errMx <- computedRMS$errMx
rms <- computedRMS$rms
hpVa <- 0.001
hpVb <- 0.001
hpV <- 0.001
Isv <- rep(0, 2)
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# data centering
X <- subtractMu(Mu, X, M, p, n, bias, verbose = verbose)
ppcaOutput <- pca_updates(X=X, V=V, A=A, Va=Va, Av = Av, S = S, Sv = Sv,
Mu = Mu, Muv = Muv, Vmu = Vmu,
hpVa = hpVa, hpVb = hpVb, hpV = hpV, ndata = ndata, Nobs_i = Nobs_i,
Isv = Isv, M = M, IX = IX, JX = JX, rms = rms, errMx = errMx,
bias = bias, rotate2pca = rotate2pca, niter_broadprior = opts$niter_broadprior,
use_prior = use_prior, use_postvar = use_postvar,
maxiters = maxiters, verbose = verbose)
# initialised model log-likelihood
compute_loglikeimp(dat=Xsaved, A=A, S=S, covmat=tcrossprod(A)+diag(p),
meanvec=Mu, verbose=TRUE)
# estimated model log-likelihood
compute_loglikeimp(dat=Xsaved, A=ppcaOutput$W, S=t(ppcaOutput$scores), covmat=ppcaOutput$C,
meanvec=ppcaOutput$m, verbose=TRUE)

compute_loglikeobs Compute the log-likelihood of the observed data given PCA parameter
estimates

Description

The log-likelihood of the data for probabilistic PCA is known to be multivariate Gaussian. Us-
ing this, one can check the log-likelihood value of the observed data values given the parameter
estimates from the PCA model. This can be useful to compare different models.

Usage

compute_loglikeobs(dat, covmat, meanvec, verbose = TRUE)

Arguments

dat matrix – the data matrix with variables in rows and observations in columns.

covmat matrix – the estimated covariance matrix.

meanvec numeric – the estimated mean vector.

verbose logical – whether extra output should be displayed.

Value

the log-likelihood value

Examples

p <- 20
n <- 7
set.seed(10045)
X <- matrix(rnorm(p*n), p, n)
miss.inds <- sample(1:(p*n), (p*n)/4)
X[miss.inds] <- NA
M <- !is.na(X)
Nobs_i <- rowSums(M)
Mu <- rowSums(X, na.rm = TRUE) / Nobs_i
Mu2 <- rep(0, p)
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covmat <- diag(p)
# using sample mean
compute_loglikeobs(dat=X, covmat=covmat, meanvec=Mu, verbose=TRUE)
# using zero mean
compute_loglikeobs(dat=X, covmat=covmat, meanvec=Mu2, verbose=TRUE)

compute_rms Compute the root mean-squared error of a PCA projection

Description

Root mean-squared error is the square root of the element-wise error’s mean. This is a useful
quantity to display during parameter estimation in pca_updates since it is a measure of how well
the PCA projection is fitting the data.

Usage

compute_rms(X, A, S, M, ndata, verbose = TRUE)

Arguments

X matrix – the data matrix with variables in rows and observations in columns.

A matrix – initialised loadings matrix with observed variables in rows and latent
variables in columns.

S matrix – initialised factor scores matrix with latent variables in rows and obser-
vations in columns.

M matrix – logical matrix whose values indicate whether the corresponding entry
in X is observed.

ndata numerical – the total number of observed values.

verbose logical – whether extra output should be displayed.

Value

A list of length 2:

errMx matrix – matrix of element-wise differences (errors) between the observed data and the
PCA projection.

rms numerical – root mean-squared error of the PCA projection.

Examples

p <- 20
n <- 7
set.seed(10045)
X <- matrix(rnorm(p*n), p, n)
miss.inds <- sample(1:(p*n), (p*n)/4)
X[miss.inds] <- NA
M <- !is.na(X)
Nobs_i <- rowSums(M)
Mu <- rowSums(X, na.rm = TRUE) / Nobs_i
update_bias <- TRUE
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Xcent <- subtractMu(Mu=Mu, X=X, M=M, p=p, n=n, update_bias=update_bias, verbose=TRUE)
init.model <- initParms(p=p, n=n, ncomp=2, verbose = TRUE)
compute_rms(X=X, A=init.model$A, S=init.model$S, M=M, ndata=sum(Nobs_i), verbose=TRUE)

initParms Initialise model parameters for pca_updates

Description

Internal function within pca_full that initialises most model parameters. WARNING: does not
initialise all parameters by itself correctly (since this depends on context) and so care should be
taken when using as a standalone function.

Usage

initParms(p, n, ncomp, verbose = TRUE)

Arguments

p numeric – the number of variables

n numeric – the number of observations

ncomp numeric – the number of components/latent variables

verbose logical – whether extra output should be displayed

Details

Random initialisations are set for the loadings and scores matrices. The mean vector is initialised
to c() and set outside this function. Diagonal matrices are set for the elements of Av and Sv. V is
initialised to 1 and Muv is initialised to a vector of 1s.

Value

A list of length 7:

A matrix – initialised loadings matrix with observed variables in rows and latent variables in
columns.

S matrix – initialised factor scores matrix with latent variables in rows and observations in columns.

Mu numeric – initialised mean vector.

V numeric – scalar value corresponding to the initialised variance of the error parameter.

Av array – initialised covariance matrices of the rows of A.

Sv array – initialised covariance matrices of the rows of S.

Muv numeric – the initialisation of the prior variance of Mu.

Examples

init.model <- initParms(p=10, n=10, ncomp=2, verbose = TRUE)
init.model$A
init.model$Av



218 pcaNet package documentation

orthMat 11

orthMat Calculate an orthonormal basis

Description

A copied (unexported) function from pcaMethods. ONB = orth(mat) is an orthonormal basis for
the range of matrix mat. That is, ONB’ * ONB = I, the columns of ONB span the same space as the
columns of mat, and the number of columns of ONB is the rank of mat.

Usage

orthMat(mat, skipInac = FALSE)

Arguments

mat matrix – matrix to calculate the orthonormal basis of

skipInac logical – do not include components with precision below .Machine$double.eps
if TRUE

Value

orthonormal basis for the range of mat

Author(s)

Wolfram Stacklies

References

Stacklies, W., Redestig, H., Scholz, M., Walther, D. and Selbig, J., 2007. doi.

See Also

orth

Examples

set.seed(102)
X <- matrix(rnorm(10), 5, 2)
norm(X[,1], type="2")
norm(X[,2], type="2")
t(X[,1])%*%X[,2]
Xorth <- orthMat(X)
# now unit norms
norm(Xorth[,1], type="2")
norm(Xorth[,2], type="2")
# and zero dot product
t(Xorth[,1])%*%Xorth[,2]
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pcapM A wrapper for pcaMethods function implementations

Description

Implements the equivalent of pca. This function preprocesses the data as specified by the user, then
calls ppcapM or bpcapM, and finally handles this output to return a list. One element of the output
is a pcaRes object.

Usage

pcapM(myMat, nPcs = 2, method = "ppca", seed = NA,
threshold = 1e-04, maxIterations = 1000, center = TRUE,
scale = c("none", "pareto", "vector", "uv"), loglike = TRUE,
verbose = TRUE)

Arguments

myMat matrix – Data matrix with variables in columns and observations in rows. The
data may contain missing values, denoted as NA.

nPcs numeric – Number of components used for re-estimation. Choosing few com-
ponents may decrease the estimation precision.

method c("ppca","bpca") – frequentist or Bayesian estimation of model parameters.

seed numeric – the random number seed used, useful to specify when comparing
algorithms.

threshold numeric – Convergence threshold. If the increase in precision of an update falls
below this then the algorithm is stopped.

maxIterations numeric – Maximum number of estimation steps.

center logical – should the data be centered?

scale c("none","pareto","vector","uv") – which method of scaling should be
used? See pca.

loglike logical – should the log-likelihood of the estimated parameters be returned?
See Details.

verbose logical – verbose intermediary algorithm output.

Details

See ppcapM and bpcapM for the algorithm specifics. loglike indicates whether log-likelihood
values for the resulting estimates should be computed. This can be useful to compare different
algorithms.

Value

A list of 5 or 7 elements, depending on the value of loglike:

W matrix – the estimated loadings.

sigmaSq numeric – the estimated isotropic variance.

Sigma matrix – the estimated covariance matrix.
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m numeric – the estimated mean vector.

logLikeObs numeric – the log-likelihood value of the observed data given the estimated parame-
ters.

logLikeImp numeric – the log-likelihood value of the imputed data given the estimated parame-
ters.

pcaMethodsRes class – see pcaRes.

Examples

# simulate a dataset from a zero mean factor model X = Wz + epsilon
# start off by generating a random binary connectivity matrix
n.factors <- 5
n.genes <- 200
# with dense connectivity
# set.seed(20)
conn.mat <- matrix(rbinom(n = n.genes*n.factors,

size = 1, prob = 0.7), c(n.genes, n.factors))

# now generate a loadings matrix from this connectivity
loading.gen <- function(x){

ifelse(x==0, 0, rnorm(1, 0, 1))
}

W <- apply(conn.mat, c(1, 2), loading.gen)

# generate factor matrix
n.samples <- 100
z <- replicate(n.samples, rnorm(n.factors, 0, 1))

# generate a noise matrix
sigma.sq <- 0.1
epsilon <- replicate(n.samples, rnorm(n.genes, 0, sqrt(sigma.sq)))

# by the ppca equations this gives us the data matrix
X <- W%*%z + epsilon
WWt <- tcrossprod(W)
Sigma <- WWt + diag(sigma.sq, n.genes)

# select 10% of entries to make missing values
missFrac <- 0.1
inds <- sample(x = 1:length(X),

size = ceiling(length(X)*missFrac),
replace = FALSE)

# replace them with NAs in the dataset
missing.dataset <- X
missing.dataset[inds] <- NA

# run ppca
ppm <- pcapM(t(missing.dataset), nPcs=5, method="bpca", seed=2009,
maxIterations=1000, center=TRUE, loglike=TRUE, verbose=TRUE)



221

14 pca_full

pca_full A wrapper for PCAMV (MATLAB) function implementations

Description

Implements the PPCA algorithms from See Ilin and Raiko (2010), previously only available in
MATLAB. One element of the outputs is a pcaRes object, providing an interface between PCAMV
and pcaMethods.

Usage

pca_full(X, ncomp = NA, algorithm = "vb", maxiters = 1000,
bias = TRUE, rotate2pca = TRUE, loglike = TRUE, verbose = TRUE)

Arguments

X matrix – Data matrix with observations in columns and variables in rows. The
data may contain missing values, denoted as NA, or NaN.

ncomp numeric – Number of components used for re-estimation. Choosing few com-
ponents may decrease the estimation precision. Setting to NA results in ncomp =
min(n, p) -1, which will be slow for large data.

algorithm c("ppca","map","vb") – the algorithm to be used for estimation, see Details.

maxiters numeric – Maximum number of estimation steps.

bias logical – should the mean be estimated?

rotate2pca logical – should the solution be rotated to a PCA basis? See Details.

loglike logical – should the log-likelihood of the estimated parameters be returned?
See Details.

verbose logical – verbose intermediary algorithm output.

Details

The algorithm argument provides the option of performing either ’ppca’ for PPCA, ’vb’ for
BPCA using a variational approximation, or ’map’ for a variational approximation ignoring pos-
terior uncertainty (for faster computation). See Ilin and Raiko (2010) for the full models. Setting
rotate2pca will perform a post-estimation rotation of the scores and loadings matrices so that they
satisfy the PCA conditions of orthonormality, see See Ilin and Raiko (2010) for the derivations.
loglike indicates whether log-likelihood values for the resulting estimates should be computed.
This can be useful to compare different algorithms.

Value

A list of 6 or 8 elements, depending on the value of loglike:

W matrix – the estimated loadings.

sigmaSq numeric – the estimated isotropic variance.

Sigma matrix – the estimated covariance matrix.

m numeric – the estimated mean vector.

logLikeObs numeric – the log-likelihood value of the observed data given the estimated parame-
ters.
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logLikeImp numeric – the log-likelihood value of the imputed data given the estimated parame-
ters.

m numeric – the number of iterations taken to converge.

pcaMethodsRes class – see pcaRes.

References

Ilin, A. and Raiko, T., 2010. link

Examples

# simulate a dataset from a zero mean factor model X = Wz + epsilon
# start off by generating a random binary connectivity matrix
n.factors <- 5
n.genes <- 200
# with dense connectivity
# set.seed(20)
conn.mat <- matrix(rbinom(n = n.genes*n.factors,

size = 1, prob = 0.7), c(n.genes, n.factors))

# now generate a loadings matrix from this connectivity
loading.gen <- function(x){

ifelse(x==0, 0, rnorm(1, 0, 1))
}

W <- apply(conn.mat, c(1, 2), loading.gen)

# generate factor matrix
n.samples <- 100
z <- replicate(n.samples, rnorm(n.factors, 0, 1))

# generate a noise matrix
sigma.sq <- 0.1
epsilon <- replicate(n.samples, rnorm(n.genes, 0, sqrt(sigma.sq)))

# by the ppca equations this gives us the data matrix
X <- W%*%z + epsilon
WWt <- tcrossprod(W)
Sigma <- WWt + diag(sigma.sq, n.genes)

# select 10% of entries to make missing values
missFrac <- 0.1
inds <- sample(x = 1:length(X),

size = ceiling(length(X)*missFrac),
replace = FALSE)

# replace them with NAs in the dataset
missing.dataset <- X
missing.dataset[inds] <- NA

# run ppca
ppf <- pca_full(missing.dataset, ncomp=5, algorithm="vb", maxiters=5,
bias=TRUE, rotate2pca=FALSE, loglike=TRUE, verbose=TRUE)
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pca_updates PPCA updates

Description

Perform the parameter updates for PPCA using either Expectation- Maximisation or Variational
Bayes as in Ilin and Raiko (2010). Recommended to not use standalone, rather this function is
called within pca_full.

Usage

pca_updates(X, V, A, Av, Va, S, Sv, Mu, Muv, Vmu, hpVa, hpVb, hpV, ndata,
Nobs_i, Isv, M, IX, JX, rms, errMx, bias = 1L, rotate2pca = 1L,
niter_broadprior = 100L, use_prior = 1L, use_postvar = 1L,
maxiters = 1000L, verbose = 1L)

Arguments

X matrix – data matrix with variables in rows and observations in columns.

V numeric – scalar value corresponding to the initialised variance of the error
parameter.

A matrix – initialised loadings matrix with observed variables in rows and latent
variables in columns

Av array – initialised covariance matrices of the rows of A.

Va numeric – the hyperparameter of the prior variance of the rows of A.

S matrix – initialised factor scores matrix with latent variables in rows and obser-
vations in columns.

Sv array – initialised covariance matrices of the rows of S.

Mu numeric – vector corresponding to the initialised mean of the observed vari-
ables.

Muv numeric – the initialisation of the prior variance of Mu.

Vmu numeric – the hyperparameter of the prior variance of Mu

hpVa numeric – hyperparameter for the prior of the variance of Vmu and Va.

hpVb numeric – hyperparameter for the prior of the variance of Vmu and Va.

hpV numeric – hyperparameter for the prior of V.

ndata numeric – number of observed values.

Nobs_i numeric – number of observed values in each row of the data.

Isv numeric – indices j for Svj that are identical. Not currently used.

M matrix – logical values indicating which elements of the data are observed and
missing.

IX numeric – row indices of missing values

JX numeric – column indices of missing values

rms numeric – scalar indicating the initial rms

errMx matrix – initial error matrix whose elements correspond to difference between
the observed data and its model prediction.
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bias logical – value indicating whether the mean vector should be estimated or not.

rotate2pca logical – value indicating whether to rotate the pca solution during learning.
niter_broadprior

numeric – number of iterations before the prior parameters begin to be updated.

use_prior logical – whether or not a prior is assumed for the model parameters.

use_postvar logical – whether the posterior variance should be computed and taken into
account.

maxiters numeric – the maximum number of iterations to be completed.

verbose logical – whether extra output, such as the iteration number and cost function
value, should be displayed.

Value

A list of 6 elements:

scores matrix – the estimated scores.

m numeric – the estimated mean vector.

ss numeric – the estimated model variance.

W matrix – the estimated loadings.

C matrix – the estimated covariance matrix.

numIter numeric – the number of iterations.

References

Ilin, A. and Raiko, T., 2010. link.

See Also

pca_full

Examples

set.seed(102)
n <- 20
p <- 20
verbose <- 1
bias <- 1
rotate2pca <- 1
ncomp <- 2
maxiters <- 1000
opts <- list(init='random',

maxiters=as.numeric(1000),
niter_broadprior=as.numeric(100),
earlystop=as.numeric(0)

)
use_prior = 1
use_postvar = 1
X <- matrix(rnorm(50), p, n)
X <- t(scale(t(X), center=TRUE, scale=FALSE))
IX <- sample(1:p, 10)
JX <- sample(1:n, 10)
X[IX, JX] <- 0
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M <- X!=0
Nobs_i = rowSums(M)
ndata <- length(IX)
# C++ indexing
IX <- IX -1
JX <- JX -1

initialisedParms <- initParms(p, n, ncomp, verbose = verbose)
A <- initialisedParms$A
S <- initialisedParms$S
Mu <- initialisedParms$Mu
V <- initialisedParms$V
Av <- initialisedParms$Av
Sv <- initialisedParms$Sv
Muv <- initialisedParms$Muv
Va <- 1000*rep(1,ncomp)
Vmu <- 1000
if (is.null(Mu)){

if (bias){
Mu <- rowSums(X) / Nobs_i

}else{
Mu = rep(0, p)
}

}
computedRMS <- compute_rms(X, A, S, M, ndata, verbose = verbose)
errMx <- computedRMS$errMx
rms <- computedRMS$rms
hpVa <- 0.001
hpVb <- 0.001
hpV <- 0.001
Isv <- rep(0, 2)
# data centering
X <- subtractMu(Mu, X, M, p, n, bias, verbose = verbose)
ppcaOutput <- pca_updates(X=X, V=V, A=A, Va=Va, Av = Av, S = S, Sv = Sv,
Mu = Mu, Muv = Muv, Vmu = Vmu,
hpVa = hpVa, hpVb = hpVb, hpV = hpV, ndata = ndata, Nobs_i = Nobs_i,
Isv = Isv, M = M, IX = IX, JX = JX, rms = rms, errMx = errMx,
bias = bias, rotate2pca = rotate2pca, niter_broadprior = opts$niter_broadprior,
use_prior = use_prior, use_postvar = use_postvar,
maxiters = maxiters, verbose = verbose)

ppca2Covinv Inverse covariance matrix computation from PPCA

Description

Efficient inversion of the covariance matrix estimated from PPCA.

Usage

ppca2Covinv(ppcaOutput)
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Arguments

ppcaOutput list – the output object from running any of the PPCA functions in this pack-
age.

Details

The computation exploits the Woodbury identity so that a kxk matrix (where k is often less than 10)
is inverted instead of the potentially large pxp matrix. The closed-form expression for the inverse
depends upon parameters that are estimated in the PPCA algorithm.

Value

matrix – the inverse of the covariance matrix.

Examples

# simulate a dataset from a zero mean factor model X = Wz + epsilon
# start off by generating a random binary connectivity matrix
n.factors <- 5
n.genes <- 200
# with dense connectivity
# set.seed(20)
conn.mat <- matrix(rbinom(n = n.genes*n.factors,

size = 1, prob = 0.7), c(n.genes, n.factors))

# now generate a loadings matrix from this connectivity
loading.gen <- function(x){

ifelse(x==0, 0, rnorm(1, 0, 1))
}

W <- apply(conn.mat, c(1, 2), loading.gen)

# generate factor matrix
n.samples <- 100
z <- replicate(n.samples, rnorm(n.factors, 0, 1))

# generate a noise matrix
sigma.sq <- 0.1
epsilon <- replicate(n.samples, rnorm(n.genes, 0, sqrt(sigma.sq)))

# by the ppca equations this gives us the data matrix
X <- W%*%z + epsilon
WWt <- tcrossprod(W)
Sigma <- WWt + diag(sigma.sq, n.genes)

# select 10% of entries to make missing values
missFrac <- 0.1
inds <- sample(x = 1:length(X),

size = ceiling(length(X)*missFrac),
replace = FALSE)

# replace them with NAs in the dataset
missing.dataset <- X
missing.dataset[inds] <- NA

# run ppca
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ppf <- pca_full(missing.dataset, ncomp=5, algorithm="vb", maxiters=5,
bias=TRUE, rotate2pca=FALSE, loglike=TRUE, verbose=TRUE)

# compute the inverse
covinv <- ppca2Covinv(ppf)
system.time(ppca2Covinv(ppf))

covinv2 <- solve(ppf$Sigma)
system.time(solve(ppf$Sigma))

ppca2Covplot Covariance matrix visualisation

Description

Heatmap visualisation of the covariance matrix estimated within PPCA.

Usage

ppca2Covplot(ppcaOutput)

Arguments

ppcaOutput list – the output object from running any of the PPCA functions in this pack-
age.

Value

plot of the estimated covariance matrix

Examples

#' # simulate a dataset from a zero mean factor model X = Wz + epsilon
# start off by generating a random binary connectivity matrix
n.factors <- 5
n.genes <- 200
# with dense connectivity
# set.seed(20)
conn.mat <- matrix(rbinom(n = n.genes*n.factors,

size = 1, prob = 0.7), c(n.genes, n.factors))

# now generate a loadings matrix from this connectivity
loading.gen <- function(x){

ifelse(x==0, 0, rnorm(1, 0, 1))
}

W <- apply(conn.mat, c(1, 2), loading.gen)

# generate factor matrix
n.samples <- 100
z <- replicate(n.samples, rnorm(n.factors, 0, 1))

# generate a noise matrix
sigma.sq <- 0.1
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epsilon <- replicate(n.samples, rnorm(n.genes, 0, sqrt(sigma.sq)))

# by the ppca equations this gives us the data matrix
X <- W%*%z + epsilon
WWt <- tcrossprod(W)
Sigma <- WWt + diag(sigma.sq, n.genes)

# select 10% of entries to make missing values
missFrac <- 0.1
inds <- sample(x = 1:length(X),

size = ceiling(length(X)*missFrac),
replace = FALSE)

# replace them with NAs in the dataset
missing.dataset <- X
missing.dataset[inds] <- NA

# run ppca
ppf <- pca_full(missing.dataset, ncomp=5, algorithm="vb", maxiters=5,
bias=TRUE, rotate2pca=FALSE, loglike=TRUE, verbose=TRUE)

# plot the matrix
ppca2Covplot(ppf)

ppca2Net Network reconstruction from PPCA

Description

Constructs a conditional independence network of the observed variables from the data using the
implicitly estimated covariance matrix within PPCA.

Usage

ppca2Net(ppcaOutput, plot = TRUE, verbose = TRUE, vertex.size = 10,
edge.width = 2, vertex.label.cex = 0.4, vertex.color = "cyan",
vertex.label.color = "black", edge.color = "pink",
vertex.label.family = "Helvetica", vertex.label = NULL)

Arguments

ppcaOutput list – the output object from running any of the PPCA functions in this pack-
age.

plot logical – visualise the resulting network.

verbose logical – verbose intermediary output.

vertex.size see igraph.plotting

edge.width see igraph.plotting

vertex.label.cex

see igraph.plotting

vertex.color see igraph.plotting
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vertex.label.color

see igraph.plotting

edge.color see igraph.plotting

vertex.label.family

see igraph.plotting

vertex.label see igraph.plotting

Details

Covariance estimation is done as a preliminary step for this function. The function then inverts
this matrix, which can be done very efficiently, to obtain the precision matrix. Then the precision
matrix is scaled to unit variance (diagonal) to obtain partial correlation estimates in the off-diagonal
entries, which is a measure of conditional independence. A two component mixture model is then
fit to the distribution of partial correlations using fdrtool. The partial correlations that are not part
of the ’null’ component are then selected as true edges of the network, effectively setting the null
values to 0. The function then visualises the resulting network using plot.igraph. The user can
extract the fdr.stats element of this output to view the full output of fdrtool, from which the
magnitude and significance of each partial correlation can be seen (and customised thresholding can
be performed). The graph element of the output is an ‘igraph’ class, and so can be used to easily
make alternative visualisations or compute graph statistics.

Value

A list of 2 elements:

graph ‘igraph’ – Contains the network information.

fdr.stats list – the full output of an internal call to fdrtool. Can be useful to inspect the statistics
upon which the network was reconstructed.

References

Strimmer, K., 2008. link.

Strimmer, K., 2008. doi.

Csardi, G. and Nepusz, T., 2006. link.

See Also

igraph, fdrtool

Examples

#' # simulate a dataset from a zero mean factor model X = Wz + epsilon
# start off by generating a random binary connectivity matrix
n.factors <- 5
n.genes <- 200
# with dense connectivity
# set.seed(20)
conn.mat <- matrix(rbinom(n = n.genes*n.factors,

size = 1, prob = 0.7), c(n.genes, n.factors))

# now generate a loadings matrix from this connectivity
loading.gen <- function(x){

ifelse(x==0, 0, rnorm(1, 0, 1))
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}

W <- apply(conn.mat, c(1, 2), loading.gen)

# generate factor matrix
n.samples <- 100
z <- replicate(n.samples, rnorm(n.factors, 0, 1))

# generate a noise matrix
sigma.sq <- 0.1
epsilon <- replicate(n.samples, rnorm(n.genes, 0, sqrt(sigma.sq)))

# by the ppca equations this gives us the data matrix
X <- W%*%z + epsilon
WWt <- tcrossprod(W)
Sigma <- WWt + diag(sigma.sq, n.genes)

# select 10% of entries to make missing values
missFrac <- 0.1
inds <- sample(x = 1:length(X),

size = ceiling(length(X)*missFrac),
replace = FALSE)

# replace them with NAs in the dataset
missing.dataset <- X
missing.dataset[inds] <- NA

# run ppca
ppf <- pca_full(missing.dataset, ncomp=5, algorithm="vb", maxiters=5,
bias=TRUE, rotate2pca=FALSE, loglike=TRUE, verbose=TRUE)

# compute the network
pcanet <- ppca2Net(ppf, plot=TRUE)

ppcaNet Probabilistic PCA updates

Description

Perform parameter updates for PPCA using the Expectation-Maximisation framework from Porta
(2005) and also in the R-package pcaMethods (Stacklies, 2007). Not recommended to use stan-
dalone, rather it is called from within ppcapM and its wrapper pcapM.

Usage

ppcaNet(myMat, N, D, W, hidden, nMissing, nPcs = 2L, threshold = 1e-05,
maxIterations = 1000L)

Arguments

myMat matrix – data matrix with observations in rows and variables in columns. (Note
that this is the transpose of X in pca_full.)

N numeric – the number of observations.
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D numeric – the number of variables.

W matrix – initialised loadings matrix with observed variables in rows and latent
variables in columns.

hidden numeric – indices of missing values in 1:length(myMat).

nMissing numeric – total number of missing values.

nPcs numeric – number of components/latent variables to use.

threshold numeric – threshold for convergence, applied to the precision parameter tau.
Updates for which the change in tau are below this threshold value stop the
algorithm.

maxIterations numeric – the maximum number of iterations to be completed.

Value

A list of 4 elements:

W matrix – the estimated loadings.

ss numeric – the estimated model variance.

C matrix – the estimated covariance matrix.

myMat matrix – the data matrix with missing values replaced by their estimated projections.

References

Porta, J.M., Verbeek, J.J. and Kroese, B.J., 2005. link

Stacklies, W., Redestig, H., Scholz, M., Walther, D. and Selbig, J., 2007. doi.

See Also

ppcapM, pcapM

Examples

set.seed(102)
N <- 20
D <- 20
nPcs <- 2
maxIterations <- 1000
X <- matrix(rnorm(50), D, N)
X <- scale(X, center=TRUE, scale=FALSE) # mean 0
covX <- cov(X)
IX <- sample(1:D, 10)
JX <- sample(1:N, 10)
nMissing <- length(IX)+length(JX)
X[JX, IX] <- 0
hidden <- which(X==0)
threshold <- 1e-4
r <- sample(N)
W <- t(X[r[1:nPcs], ,drop = FALSE])
W <- matrix(rnorm(W), nrow(W), ncol(W), dimnames = labels(W) )
ppcaNetOutput <- ppcaNet(X, N, D, W, hidden, nMissing, nPcs, threshold, maxIterations)
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ppcapM Probabilistic PCA (pcaMethods version)

Description

Implements a probabilistic PCA missing value estimator, as in pcaMethods. Use of Rcpp makes
this version faster and the emphasised output is the covariance matrix Sigma, which can be used for
network reconstruction.

Usage

ppcapM(myMat, nPcs = 2, seed = NA, threshold = 1e-04,
maxIterations = 1000, loglike = TRUE, verbose = TRUE)

Arguments

myMat matrix – Pre-processed matrix (centered, scaled) with variables in columns and
observations in rows. The data may contain missing values, denoted as NA.

nPcs numeric – Number of components used for re-estimation. Choosing few com-
ponents may decrease the estimation precision.

seed numeric – the random number seed used, useful to specify when comparing
algorithms.

threshold numeric – Convergence threshold. If the increase in precision of an update falls
below this then the algorithm is stopped.

maxIterations numeric – Maximum number of estimation steps.

loglike logical – should the log-likelihood of the estimated parameters be returned?
See Details.

verbose logical – verbose intermediary algorithm output.

Details

Details about the probabilistic model underlying PPCA are found in Bishop 1999. The algorithm
(Porta, 2005) uses an expectation maximisation approach together with a probabilistic model to
approximate the principal axes (eigenvectors of the covariance matrix in PCA). The estimation is
done iteratively, the algorithm terminates if either the maximum number of iterations is reached or
if the estimated increase in precision falls below 1e−4.

Value

A list of 4 elements:

W matrix – the estimated loadings.

sigmaSq numeric – the estimated isotropic variance.

Sigma matrix – the estimated covariance matrix.

pcaMethodsRes class – see pcaRes.

References

Porta, J.M., Verbeek, J.J. and Kroese, B.J., 2005. link

Stacklies, W., Redestig, H., Scholz, M., Walther, D. and Selbig, J., 2007. doi.



233

26 ppcapM

Examples

# simulate a dataset from a zero mean factor model X = Wz + epsilon
# start off by generating a random binary connectivity matrix
n.factors <- 5
n.genes <- 200
# with dense connectivity
# set.seed(20)
conn.mat <- matrix(rbinom(n = n.genes*n.factors,

size = 1, prob = 0.7), c(n.genes, n.factors))

# now generate a loadings matrix from this connectivity
loading.gen <- function(x){

ifelse(x==0, 0, rnorm(1, 0, 1))
}

W <- apply(conn.mat, c(1, 2), loading.gen)

# generate factor matrix
n.samples <- 100
z <- replicate(n.samples, rnorm(n.factors, 0, 1))

# generate a noise matrix
sigma.sq <- 0.1
epsilon <- replicate(n.samples, rnorm(n.genes, 0, sqrt(sigma.sq)))

# by the ppca equations this gives us the data matrix
X <- W%*%z + epsilon
WWt <- tcrossprod(W)
Sigma <- WWt + diag(sigma.sq, n.genes)

# select 10% of entries to make missing values
missFrac <- 0.1
inds <- sample(x = 1:length(X),

size = ceiling(length(X)*missFrac),
replace = FALSE)

# replace them with NAs in the dataset
missing.dataset <- X
missing.dataset[inds] <- NA

# run ppca
pp <- ppcapM(t(missing.dataset), nPcs = 5)
names(pp)

# sigmasq estimation
abs(pp$sigmaSq-sigma.sq)

# X reconstruction
recon.X <- pp$pcaMethodsRes@loadings%*%t(pp$pcaMethodsRes@scores)
norm(recon.X-X, type="F")^2/(length(X))

# covariance estimation
norm(pp$Sigma-Sigma, type="F")^2/(length(X))
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ppcaQ2 Cross-validation for PCA

Description

Internal cross-validation can be used for estimating the level of structure in a data set and to optimise
the choice of number of principal components.

Usage

ppcaQ2(obj, originalData = obj$pcaMethodsRes@completeObs, fold = 5,
nruncv = 1, type = c("krzanowski", "impute"),
verbose = interactive(), variables = 1:(obj$pcaMethodsRes@nVar), ...)

Arguments

obj A pcaRes object (result from previous PCA analysis.)

originalData The matrix (or ExpressionSet) that used to obtain the pcaRes object.

fold The number of groups to divide the data in.

nruncv The number of times to repeat the whole cross-validation

type krzanowski or imputation type cross-validation

verbose boolean If TRUE Q2 outputs a primitive progress bar.

variables indices of the variables to use during cross-validation calculation. Other vari-
ables are kept as they are and do not contribute to the total sum-of-squares.

... Further arguments passed to the pca function called within Q2.

Details

A wrapper for the Q2 function from pcaMethods, which calculates Q2 for a PCA model. This is the
cross-validated version of R2 and can be interpreted as the ratio of variance that can be predicted
independently by the PCA model. Poor (low) Q2 indicates that the PCA model only describes noise
and that the model is unrelated to the true data structure. The definition of Q2 is:

Q2 = 1−
∑p

i

∑n
j (X − X̂)2∑p
i

∑n
j X

2

for the matrix X which has n rows and p columns. For a given number of PC’s X is estimated
as X̂ = TP ′ (T are scores and P are loadings). Although this defines the leave-one-out cross-
validation this is not what is performed if fold is less than the number of rows and/or columns.
In ’impute’ type CV, diagonal rows of elements in the matrix are deleted and the re-estimated.
In ’krzanowski’ type CV, rows are sequentially left out to build fold PCA models which give the
loadings. Then, columns are sequentially left out to build fold models for scores. By combining
scores and loadings from different models, we can estimate completely left out values. The two
types may seem similar but can give very different results, krzanowski typically yields more stable
and reliable result for estimating data structure whereas impute is better for evaluating missing
value imputation performance. Note that since Krzanowski CV operates on a reduced matrix, it
is not possible estimate Q2 for all components and the result vector may therefore be shorter than
nPcs(object).
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Value

A matrix or vector with Q2 estimates.

Author(s)

Henning Redestig, Ondrej Mikula

References

Krzanowski, WJ. Cross-validation in principal component analysis. Biometrics. 1987(43):3,575-
584

See Also

Q2

Examples

# analogously to pcaMethods...
data(iris)
x <- iris[,1:4]
pcIr <- pcapM(as.matrix(x), nPcs=3, method="ppca", seed=104, scale="none")
q2 <- ppcaQ2(pcIr)
barplot(q2, main="Krzanowski CV", xlab="Number of PCs",
ylab=expression(Q^2))

subtractMu Subtract the row means from a matrix of data with missing values

Description

internal function within pca_full to subtract the row means from a matrix of data using only the
observed values. Offers little utility standalone.

Usage

subtractMu(Mu, X, M, p, n, update_bias, verbose = TRUE)

Arguments

Mu numeric – the sample mean of the observed variables.

X matrix – the data matrix with variables in rows and observations in columns.

M matrix – logical matrix whose values indicate whether the corresponding entry
in X is observed.

p numeric – the number of variables.

n numeric – the number of observations.

update_bias logical – whether the mean should be subtracted. or not.

verbose logical – whether extra output should be displayed.
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Value

X matrix – centered data matrix.

Examples

p <- 20
n <- 7
set.seed(10045)
X <- matrix(rnorm(p*n), p, n)
miss.inds <- sample(1:(p*n), (p*n)/4)
X[miss.inds] <- NA
M <- !is.na(X)
Nobs_i <- rowSums(M)
Mu <- rowSums(X, na.rm = TRUE) / Nobs_i
update_bias <- TRUE
Xcent <- subtractMu(Mu=Mu, X=X, M=M, p=p, n=n, update_bias=update_bias, verbose=TRUE)
X-Xcent
Mu # all observed values in each column equal to Mu
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