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ABSTRACT 

Germline aberrations in critical DNA repair and DNA-damage response (DDR) 

genes cause cancer predisposition, while various tumors harbor somatic 

mutations causing defective DDR/DNA repair. The concept of synthetic 

lethality can be exploited in such malignancies, as exemplified by approval of 

poly(ADP-ribose) polymerase inhibitors for treating BRCA1/2 mutated ovarian 

cancers (1). Herein, we detail how cellular DDR processes engage various 

proteins that sense DNA damage, initiate signaling pathways to promote cell 

cycle checkpoint activation, trigger apoptosis and coordinate DNA repair. We 

focus on novel therapeutic strategies targeting promising DDR targets and 

discuss challenges of patient selection and the development of rational drug 

combinations. 

 

SIGNIFICANCE: Various inhibitors of DDR components are in preclinical and 

clinical development. A thorough understanding of DDR pathway complexities 

must now be combined with strategies and lessons learnt from the successful 

registration of PARP inhibitors in order to fully exploit the potential of DDR 

inhibitors and to ensure their long-term clinical success. 
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INTRODUCTION  

Failure to accurately repair damaged DNA in cells manifests in various clinical 

phenotypes, including neurodegeneration, infertility, immunodeficiencies and 

cancer susceptibility (2). Furthermore, the production of DNA damage in cells 

following exposure to carcinogens increases cancer risk (3). Germline 

mutations in genes encoding key players in the DNA damage response (DDR), 

including BRCA1, BRCA2, BLM, FANCA, TP53, RAD51C and MSH2, result in 

cancer susceptibility syndromes (2), in part because failure to adequately 

protect the genome against endogenous and exogenous sources of DNA 

damage results in the accumulation of oncogenic mutations. Genomic 

instability is therefore a recognised hallmark of cancer (3).  

 

Cancer cells often harbor a reduced repertoire of DNA repair and DNA-

damage signalling capabilities compared to normal cells, and in some cases 

cancers also upregulate mutagenic repair pathways that drive oncogenesis 

(4). Consequently, cancer cells are often more reliant on a subset of repair 

pathways and are therefore more susceptible to DDR inhibition than are 

normal cells that maintain full DNA repair/DDR capacity. Faulty cell cycle 

checkpoint activation and suboptimal DNA repair capability in cancer cells 

also results in replication stress and subsequent accumulation of DNA 

damage in tumors. In addition, cancer cells often have dysfunctional redox 

homeostasis and therefore rely heavily on mechanisms that repair oxidative 

DNA damage, as well as on enzymes that counteract the incorporation of 

oxidised DNA precursors into genomic DNA (5,6). Both replication and 

oxidative stress, as well as other processes such as telomere attrition, provide 
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a background of ongoing DNA damage in cancer cells that can provide 

potential therapeutic windows for compounds that exacerbate these 

processes. Such compounds may achieve this by stressing replication further, 

impairing the ability of cancer cells to handle high levels of replicative or 

oxidative pressures, or potentially inhibiting DNA repair and associated 

processes (5–7). Such issues have led to intense interest in the therapeutic 

development of specific inhibitors of a range of components of the DDR 

network, several of which are now in clinical testing (8). 

 

A well-recognised sensor of DNA damage is the protein poly(ADP-ribose) 

polymerase (PARP), which is best known for its role in DNA base excision 

repair (BER) and repair of DNA single-strand breaks (SSBs; Table 1 + Figure 

1) (9), although it also has a less well-defined role in DNA double-strand 

break (DSB) repair by alternative non-homologous end-joining (alt-NHEJ; 

Table 1 + Figure 1) (10). The clinical development of PARP inhibitors in 

patients with germline BRCA1/2 mutations stemmed from the robust pre-

clinical data that demonstrated exquisite sensitivity of BRCA1/2 mutant cells 

and tumors to PARP inhibition (11,12). It was correctly hypothesised that in 

these patients, the cancer cells (in which both alleles of either BRCA1 or 

BRCA2 have been mutated or deleted) would depend on PARP activity for 

survival, whereas normal cells (that maintain a fully functional copy of BRCA1 

or BRCA2) would not. While these findings were initially thought to be due to 

a reliance of BRCA1/2 mutant cells on SSB-repair for survival, it has since 

become well-recognised that PARP trapping and the subsequent generation 

of replication-dependent DSBs also contributes significantly to the synthetic 
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lethal relationship between PARP and BRCA. In addition, the PARP family of 

enzymes plays key roles in multiple cellular processes beyond DNA repair, 

including cellular differentiation, gene transcription, inflammation, mitosis, cell 

death and metabolism, which may contribute to the antitumor activity of PARP 

inhibitors (13,14). Synthetic lethality between repair pathways has provided a 

paradigm for many current clinical strategies targeting DNA repair/DDR. 

Detailed reviews of the underlying mechanisms-of-action and clinical 

applications of PARP inhibitors have previously been published and are 

beyond the scope of this article (15–19). 

 

In this review, we summarise the current status with PARP inhibitors and then 

look beyond these, focusing on other protein components of the cellular DDR, 

which includes proteins that sense DNA damage, initiate signaling pathways 

that promote cell cycle checkpoint activation and coordinate the repair of 

damaged DNA with various other cellular processes. We highlight how such 

DDR enzymes represent rational targets for the discovery of novel 

therapeutics (Figure 1) and detail the development and future potential of 

such compounds. We also discuss the numerous challenges of discovering 

predictive biomarkers of response for optimal patient selection and the 

development of promising DDR combinations, including molecularly-targeted 

agents, compounds inhibiting epigenetic targets and immune checkpoint 

inhibitors.  
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DRUG TARGETING OF DNA DAMAGE SENSOR PROTEINS 

DDR sensor proteins detect the region of damaged DNA and direct ensuing 

cellular responses that include activation of one or more repair pathways. For 

DSBs, Ku (comprising the Ku70/Ku80 protein heterodimer) and MRN 

(MRE11-RAD50-NBS1) are the predominant sensor protein complexes. Ku 

binds DNA DSBs within seconds of them being generated, and serves as a 

platform for the subsequent recruitment of classical non-homologous end-

joining (NHEJ) proteins. The MRN complex plays key roles in triggering 

activation of the DNA-damage signalling kinase ATM, the initiation of DNA 

end-resection, and promotion of repair by HR. Chromatin context, 

transcriptional status, cell cycle stage and extent of end-resection are all 

factors that contribute to the selection of DNA repair, either by HR or NHEJ, 

and the mechanisms determining the choice of DNA repair pathway is an 

intense area of active research (20,21). Other DNA-damage sensors include 

components of the Fanconi anemia core complex (FANCA, B, C, E, F, G, L 

and M), mismatch repair proteins (MSH2, MSH3, MSH6, MLH1 and PMS2) 

and nucleotide excision repair proteins (XPC, DDB2 and CSA), which are 

sensors of DNA inter-strand crosslinks, base-base mismatches or insertion-

deletion loops and UV-induced photo-lesions (in particular cyclobutane 

pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts), respectively 

(Table 1). 

 

There are 17 PARP family members, of which PARP-1 has the predominant 

role in DNA repair, with PARP-2 and to a lesser extent PARP-3 functioning in 

fewer, but overlapping DNA repair processes (22). Through binding to single-
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stranded DNA breaks (SSBs), DNA nicks or DSBs, PARP catalytic function is 

activated to generate extensive poly(ADP-ribose) chains (PAR chains) on 

itself and proteins in the vicinity of DNA damage. These PAR chains and 

PARP itself then promote the recruitment of critical SSB repair proteins, such 

as XRCC1 to SSBs and modify chromatin structure to facilitate DNA repair (9). 

PARP auto-PARylation is also required for the dissociation of PARP from 

DNA-damage sites (23,24). Enzymatic inhibition by PARP inhibitors therefore 

results in both the suppression of SSB repair and BER, which molecularly 

converges with SSB repair in its downstream stages. Inhibition also results in 

the trapping of PARP to SSBs, causing the stalling and subsequent collapse 

of DNA replication forks, resulting in replication-dependent DNA DSBs (23,24). 

Such DSBs would normally be repaired by HR; however in HR deficient cells, 

such as BRCA1/2 mutant tumors, less effective and lower fidelity methods of 

repair are utilised, which result in an unsustainable levels of damage, 

chromosomal fusions/translocations and ultimately cell death (20,25).  

 

Following strong preclinical findings predicting a therapeutic rationale, early 

clinical trials assessing the PARP inhibitor olaparib (Lynparza; AstraZeneca) 

demonstrated multiple durable antitumor responses in patients with advanced 

germline BRCA1/2 mutated ovarian, breast or castration resistant prostate 

cancer (CRPC) (26,27). This patient benefit was confirmed in later-phase 

clinical trials (28–31) eventually leading to clinical registration. Olaparib is now 

approved by the European Medicines Agency (EMA) as maintenance therapy 

for responding patients with BRCA1/2 mutant ovarian cancer following 

platinum-based chemotherapy. It was also granted accelerated approval by 
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the US Food and Drug Administration (FDA) for use in patients with advanced 

BRCA1/2 mutant ovarian cancers, while confirmatory trials are being 

completed. Most recently, olaparib was given breakthrough therapy 

designation for treatment of BRCA1/2 or ATM gene mutated metastatic CRPC 

in patients who have received a prior taxane-based chemotherapy and at 

least one newer hormonal agent. Another potent PARP inhibitor, rucaparib 

(Clovis), has also recently been granted breakthrough therapy status by the 

FDA following the results of the Phase II ARIEL2 trial (32) for use as 

monotherapy in patients with BRCA1/2 mutant (germline or somatic) 

advanced ovarian cancer after at least two prior lines of platinum-containing 

therapies (33). There are additional potent and selective PARP inhibitors in 

late phase monotherapy and combination clinical trial development, including 

niraparib (MK4827; Tesaro), talazoparib (BMN673; Medivation) and veliparib 

(ABT-888; Abbvie) (Table 2).  

 

Although PARP inhibition is undeniably an effective treatment for BRCA1/2 

mutated cancers, with response rates in the region of 50% for platinum-

sensitive ovarian cancers (33), the overwhelming majority of patients will 

ultimately develop tumor resistance. Genetic reversion events that restore 

BRCA1/2 gene function have been identified in PARP inhibitor resistant cell 

lines, platinum-resistant patient-derived cell lines and tumors from patients 

that have developed clinical resistance to PARP inhibitors (34). In addition, in 

Brca1-null mouse embryonic stem cells, loss of DDR factors such as 53BP1 

at least partially rescues HR by removing a barrier to DNA end-resection 

(35,36), although this has yet to be rigorously identified as a resistance 
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mechanism in the clinic. A number of critical challenges therefore remain to 

optimise the clinical efficacy and widen the utility of PARP inhibitors. 

Identifying mechanisms of PARP inhibitor resistance remains a critical 

challenge; others include the development of promising PARP inhibitor 

combination regimens and the analytical validation of clinically meaningful 

predictive biomarker assays to identify HR-deficient tumors caused by 

BRCA1/2 mutations or by other mechanisms (33).  

 

TARGETING OF DNA DAMAGE SIGNALLING PROTEINS  

By triggering various protein post-translational modifications and promoting 

the assembly of protein complexes, DDR signalling proteins amplify and 

diversify the damage signal within a cell and coordinate the most appropriate 

cellular responses, including transcriptional changes, cell cycle checkpoint 

activation, alternative splicing, engagement of DNA repair processes, or in the 

context of overwhelming damage, activation of cell senescence or apoptotic 

pathways (2). DNA DSB signalling events are largely coordinated by the 

apical phosphatidylinositol 3-kinase-related kinases (PIKKs) DNA-PKcs (DNA-

dependent serine/threonine protein kinase catalytic subunit), ATM (ataxia 

telangiectasia mutated), and ATR (ataxia telangiectasia and Rad3-related 

protein; Figure 2).  

 

DNA-PK 

DNA-PKcs activity is essential for effective repair by classical NHEJ, which is 

the predominant DNA repair pathway of DSBs in human cells, occurring 

through all phases of the cell cycle (Figure 2A). DNA-PK is composed of Ku 
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plus a ~460 kDa catalytic subunit (DNA-PKcs), the activity of which is 

dependent on Ku-mediated DNA DSB binding (37). Ku binds to DNA DSBs 

and serves as a platform for the recruitment of other core NHEJ proteins 

including DNA-PKcs, XRCC4, LIG4, XLF and PAXX amongst others (38,39). 

Upon DNA binding, autophosphorylation of DNA-PKcs induces a 

conformational change that destabilises the NHEJ core complex, causing 

inward sliding of Ku on the DNA and enabling access of end-processing and 

ligation enzymes to DNA ends to facilitate repair (40). Autophosphorylation 

also stimulates the dissociation of DNA-PKcs from DNA and Ku, and 

inactivates the kinase activity of DNA-PK (38). The best described substrate 

for DNA-PK is itself, with autophosphorylation occurring at multiple sites (40). 

 

As well as being important for the repair of exogenous DNA DSBs, classical 

NHEJ also plays crucial roles in the repair of endogenous DSBs arising during 

physiological process, such as V(D)J and class-switch recombination (41). 

Mice with a disrupted Prkdc gene have severe combined immunodeficiency, 

as well as being radiosensitive (41). In addition, DNA-PK has an established 

role in innate immunity and pro-inflammatory signalling, which are important 

issues to consider with respect to long-term treatment with DNA-PK inhibitors, 

as well as the potential for combination approaches with immune-modulating 

agents (40). Interestingly, DNA-PK has also long been known to have links to 

transcription (42), and studies are currently ongoing to investigate the 

mechanisms by which transcriptional regulation by DNA-PK affects DNA 

repair (43).  
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DNA-PK mutants lacking kinase activity, or treatment of cells with small 

molecule inhibitors of DNA-PK kinase activity cause the latter to be stabilised 

on DNA ends, impeding NHEJ and also likely interfering with other repair 

processes, including HR by obstructing DNA end-resection (38). As it plays 

key roles in repair by NHEJ, DNA-PK inhibition profoundly hypersensitises 

cells and tumor xenografts to replication-independent DSB-inducing agents, 

such as radiotherapy and topoisomerase 2 inhibitors (44). In contrast, DNA-

PK inhibition alone has very little effect on cancer cell or tumor viability (44), 

perhaps because most endogenous DSBs arise in the context of DNA 

replication, where the preferred repair pathway is HR. These compounds are 

therefore predicted to be associated with modest antitumor activity as 

monotherapy, while, there is potential for antitumor synergy in combination 

with DNA damaging agents, albeit with a potentially narrow therapeutic index 

because of associated effects on normal cells in the patient. 

 

The clinical development of DNA-PK inhibitors with high potency and 

selectivity in vitro has been complicated by inadequate pharmacokinetic (PK) 

properties. However, a number of novel DNA-PK inhibitors have recently 

entered clinical development (Table 2). For instance, MSC2490484A (Merck 

KGaA; NCT02316197) is being evaluated in phase I trials as monotherapy 

and in combination with radiotherapy, while a phase I trial of VX-984 (Vertex 

pharmaceuticals) in combination with liposomal doxorubicin has recently 

started recruitment (NCT02644278). A dual inhibitor of DNA-PK and TOR 

kinase (a downstream effector of the PI3K-AKT pathway signaling and 

another member of the PIKK family), is CC-115 (Celgene), which was 
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developed through lead optimisation of existing mTOR inhibitors (45). In pre-

clinical studies, CC-115 inhibits proliferation and induces caspase-dependant 

cell death in chronic lymphoid leukaemia (CLL) cells, and also leads to death 

of CLL cells resistant to the PI3Kδ inhibitor idelalisib (46). The relative 

importance of DNA-PK versus TOR inhibition in this setting has however not 

been fully elucidated. In a recently reported phase I trial involving patients with 

advanced solid and hematological malignancies, CC-115 was well tolerated, 

with preliminary antitumor activity observed (47). There has been some 

suggestion that CC-115 may have greater activity in patients with CLL 

harboring biallelic ATM loss, although the mechanism for this has yet to be 

established (46).  

 

ATM 

Similar to DNA-PK, ATM promotes DNA DSB repair in cells and responds to 

DSBs generated throughout the cell cycle. Inherited mutations in the ATM 

gene result in the autosomal recessive condition Ataxia Telangiectasia, a 

syndrome characterised by progressive cerebellar ataxia, oculocutaneous 

telangiectasia, radiosensitivity, predisposition to lymphoid malignancies and 

immunodeficiency, with defects in both cellular and humoral immunity (48). A 

number of different factors have now been identified that promote ATM 

activation; however, following DNA DSBs, ATM is predominantly activated 

through interactions with NBS1 of the MRN complex (Figure 2B; (49,50). 

ATM is the principal kinase responsible for the phosphorylation of histone 

H2AX on serine 139 (known as γH2AX) (51), although some functional 

redundancy exists with ATR and DNA-PK. MDC1 (mediator of DNA damage 
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checkpoint protein-1) binds directly to γH2AX (52) and potentiates the DNA 

damage signal, leading to the spreading of γH2AX to over a megabase from 

its initial lesion (53). This amplification is thought to help sustain the DDR 

signal to enable sufficient recruitment and retention of DNA damage mediator 

proteins such as 53BP1 at sites of DNA damage, which can be visualised as 

foci in DNA damaged cells.   

 

Phospho-proteomic studies have identified hundreds of ATM substrates (54), 

although the physiological relevance of many of these proteins is currently 

unknown. A well-recognised substrate of ATM is CHK2, the activity of which is 

predominantly, but not exclusively important for G1-S phase checkpoint 

activation (55). ATM is also important for the stabilisation of p53 through the 

phosphorylation and subsequent inhibition of proteosomal degradation by 

MDM2 (55). 

 

ATM inhibition has been demonstrated to hypersensitize cells to ionizing 

radiation and the DNA DSB-inducing agents etoposide, camptothecin and 

doxorubicin (56). A phase I trial of the ATM inhibitor AZD0156 (AstraZeneca) 

is currently underway as monotherapy and in combination with olaparib and 

other cytotoxic or molecularly targeted agents (NCT02588105; Table 2). 

While there are likely to be other ATM inhibitors in development, to our 

knowledge, none have reached clinical studies. 

 

ATR 
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Although also important for DSB repair, the context for ATR activation is 

different to ATM and DNA-PK.  ATR is activated by RPA (replication protein 

A) bound ssDNA, which can arise as a result of stalled replication forks and 

also occurs following DNA end-resection during the early stages of 

homologous recombination (Figure 2C) (57). ATR is recruited to RPA-ssDNA 

by its obligate binding partner ATRIP (ATR-interacting protein), and is 

activated by TOPBP1 (topoisomerase binding partner 1) in complex with the 

Rad17-Rfc2-5 clamp loader, the 9-1-1 complex (Rad9-Rad1-Hus1), Claspin 

and RHINO (58). CHK1 is the best described substrate of ATR and once 

activated by ATR, CHK1 serves to inhibit cyclin-dependent kinase (CDK) 

activity through the phosphorylation of CDC25A. As such, CHK1 is a critical 

regulator of the G2-M and intra-S cell cycle checkpoints (Figure 2C) (59). 

Interestingly, recent preclinical studies have demonstrated that both ATR and 

CHK1 have distinct roles in the regulation of the intra-S checkpoint. ATR 

appears particularly important for the suppression of replication catastrophe in 

early S-phase cells through the promotion of ribonucleotide reductase 

accumulation and by limiting origin firing (60). In contrast, other S-phase cells 

are capable of recovering from replication insults through a CHK1-mediated 

back-up mechanism (60). A synthetic lethal relationship has now been 

established between ATR and CHK1 inhibition, with combination blockade 

leading to replication fork arrest, DNA SSB accumulation, replication collapse 

and synergistic cell death in cancer cells in vitro and in vivo (61).  

 

In addition, a third checkpoint kinase has now been identified (MK2; 

MAPKAP-K2), which functions independently of CHK1, downstream of ATM 
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and ATR to maintain G2/M and intra-S phase arrest (62–64). To our 

knowledge, there are currently no MK2 inhibitors in clinical development, 

although pre-clinical work has demonstrated interesting synergy between 

MK2 and CHK1 inhibitors, particularly in KRAS mutant tumors (65). 

 

VX-970 (Vertex pharmaceuticals) is a first-in-class ATR inhibitor, with 

preclinical data demonstrating chemosensitization of lung cancer cells 

predominantly to chemotherapeutics that result in replication fork collapse, 

such as cisplatin and gemcitabine in vitro, and increased antitumor activity in 

combination with cisplatin in vivo (66,67). Preliminary phase I trial data have 

shown that VX-970 is well tolerated as monotherapy with no dose limiting 

toxicities or grade 3-4 adverse events demonstrated up to weekly intravenous 

(IV) doses of 480mg/m2 (68). A durable RECIST (response evaluation criteria 

in solid tumors) complete response was observed in a patient with metastatic 

ATM-loss colorectal cancer, who remained on single agent VX-970 for more 

than 20 months. When VX-970 was combined with carboplatin, although the 

maximum tolerated dose was not established, because there was no more 

than 1 dose-limiting toxicity at each dose level, the recommended phase II 

dose (RP2D) was VX-970 90 mg/m2 + carboplatin area under the curve (AUC) 

5 based on carboplatin dose delays observed at higher dose levels. Crucially, 

paired tumor biopsy studies undertaken at this RP2D showed significant 

inhibition of ATR-targeted phosphorylation of Ser-345 on CHK1, confirming 

target modulation. At the RP2D, a patient with platinum-refractory, PARP 

inhibitor resistant, germline BRCA1 and TP53 mutant advanced high-grade 

serous ovarian cancer achieved a RECIST partial response and gynecologic 
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cancer intergroup (GCIG) CA125 tumor marker response lasting 6 months. As 

expected from the predicted mechanism-based toxicity profile of an ATR 

inhibitor and platinum chemotherapy, myelosuppression (neutropenia and 

thrombocytopenia) was the most commonly observed treatment-related 

toxicity (69). Combination trials with VX-970 and a number of other 

chemotherapeutics are ongoing, including cisplatin and gemcitabine, with 

promising antitumor responses observed in chemotherapy-resistant patients 

with advanced solid cancers (70,71) ( Table 2). AZD6738 (AstraZeneca) is an 

oral ATR inhibitor currently being assessed in phase I clinical trials as 

monotherapy or in combination regimens with olaparib, carboplatin, 

radiotherapy or the immune-checkpoint inhibitor durvalumab (MEDI4736; 

AstraZeneca). The optimal scheduling and sequencing of these agents with 

their respective partners, in order to balance the trade-off between antitumor 

activity and bone marrow toxicity, is not yet clear and full results of these trials 

are awaited with interest. 

 

CHK1 

Pre-clinically, CHK1 inhibitors have demonstrated most synergy with drugs 

that generate replication dependent DNA damage such as anti-metabolites, 

and therefore clinical development has focused on their use in combination 

with such drugs (72). MK8776 (Merck & Co) is a potent and selective CHK1 

inhibitor that is well tolerated as a monotherapy, as well as in combination 

with gemcitabine (Table 2) (73). Results from a recently published phase I 

trial of MK8776 as monotherapy or in combination with gemcitabine, has 

shown preliminary evidence of clinical efficacy, with 2/30 patients (7%) having 
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a partial response and 13/30 (43%) demonstrating stable disease (73). As 

expected, toxicity was more frequent in combination, and included fatigue, 

nausea, anorexia, thrombocytopenia, neutropenia and transient, dose-related 

electrocardiogram (ECG) abnormalities, specifically QTc prolongation. The 

recommended phase II dose of MK8776 is 200mg, with gemcitabine 

administered at 1000 mg/m2 on days 1 and 8 of a 21-day cycle. LY2603618 

(Eli Lilly) is a selective CHK1 inhibitor being evaluated at both 170mg and 

230mg in combination with gemcitabine (Table 2) (74). Preliminary results 

reported RECIST partial responses in 4/17 patients, with mainly hematological 

toxicities observed, and three patients discontinuing treatment because of 

adverse events. A phase I trial of CHK1 inhibitor CCT245737 (Sareum 

Holdings plc) as monotherapy, and in combination with cisplatin and 

gemcitabine has recently started accrual (NCT02797977, NCT02797964) 

(Table 2). 

 

CHK2 

There is some uncertainty as to whether the inhibition of CHK2 will be 

beneficial in the clinical setting, and at present there are no selective CHK2 

inhibitors in clinical development (72). Genetic deletion of the mouse Chek2 

gene alleviates p53-dependent cell death following irradiation and although 

the mechanisms for this protection have not been fully defined, there is a 

hypothetical risk that inhibition of CHK2 may be radio-protective in a clinical 

setting (75). Further studies are required to determine the appropriate clinical 

context in which CHK2 inhibition may lead to antitumor activity (76). Several 

of the early cell cycle checkpoint inhibitors, such as LY2606368 (Prexasertib; 
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Eli Lilly), are dual inhibitors of CHK1 and CHK2, and many of these have now 

discontinued clinical development due to lack of efficacy. LY2606368 has 

undergone evaluation in a phase I trial, defining a RP2D of 105mg/m2 every 

14 days, with a predominant toxicity of myelosuppression (Table 2) (77). 

Evidence of single agent activity was observed, with 2/45 patients achieving a 

RECIST partial response (one with anal cancer and one with head and neck 

squamous cell carcinoma), while 15/45 (33.3%) patients obtained clinical 

benefit with radiological stable disease. The trial is expanding, preferentially in 

patients with squamous histology tumors, and several combination strategies 

are currently ongoing.  

 

WEE1 

Working in parallel with CHK1, the WEE1 protein kinase also plays a critical 

role in the activation of the G2-M checkpoint through the regulation of cyclin 

dependent kinases (78,79). Unlike CHK1, however, WEE1 is not directly 

regulated by DNA damage, but is required for physiological cell cycle 

progression. The predominant mechanism-of-action of WEE1 inhibitors was 

initially believed to be failure of the G2-M checkpoint through inhibition of 

CDK1 Tyr15 phosphorylation, inactivation of the CDK1/CCNB1 complex and 

subsequent mitotic catastrophe (80). More recently, however, it has become 

clear that WEE1 inhibition also generates replication-dependent DNA damage 

in cells, due to aberrant DNA replication and CDK2 inhibition (81,82). The 

first-in-class WEE1 kinase inhibitor AZD1775 (MK1775; AstraZeneca) has 

been shown to potentiate the cytotoxic effects of a range of DNA damaging 

agents and demonstrate single agent activity In preclinical models (78). 
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AZD1775 has been evaluated in a single agent phase I clinical trial (83), 

where a maximum tolerated dose of 225mg twice daily for 2.5 days per week 

for two weeks in three-weekly cycles was established (Table 2). Dose limiting 

toxicities reported were reversible supraventricular tachycardia and 

myelosuppression, with common toxicities including myelosuppression and 

diarrhea. The study noted evidence of single agent activity with RECIST 

partial responses in two germline BRCA1 mutant patients (papillary serous 

ovarian and squamous cell carcinoma of the head and neck). Proof-of-

mechanism target modulation was demonstrated in paired tumor biopsies 

demonstrating reduced CDK1 Tyr15 phospho levels and increased γH2AX 

levels after treatment. 

 

Preliminary data from a phase II trial of AZD1775 in combination with 

carboplatin and paclitaxel versus chemotherapy alone in patients with 

platinum-sensitive TP53-mutant ovarian cancer demonstrated a superior 

progression free survival (PFS) benefit [hazard ratio (HR) 0.55, CI 0.32-0.95, 

p=0.030], with common toxicities including nausea, diarrhea, alopecia and 

fatigue (Table 2) (84). Interestingly, there is also evidence that WEE1 

inhibition may reverse platinum resistance, as the combination of AZD1775 

and carboplatin has shown antitumor activity in patients with TP53 mutant, 

platinum resistant/refractory ovarian cancer, with a reported RECIST partial 

response rate of 27% in evaluable patients to date (Table 2) (85). There is 

now a need to better define the patient populations predicted to respond to 

AZD1775 monotherapy and novel combination regimens, and numerous 
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biomarker-driven clinical trials with AZD1775 are currently ongoing to address 

such issues (Table 2). 

 

TARGETING DDR EFFECTOR PROTEINS AND REPAIR PATHWAYS  

DDR events converge on one or more repair pathways that are dedicated to 

specific types of DNA damage (Figure 1 and Table 1). Some established 

antitumor agents result in a single type of DNA lesion (e.g. topoisomerase 

inhibitors), while others generate a heterogenous mixture of DNA damage 

types, engaging multiple repair pathways simultaneously (e.g. radiotherapy). 

While NHEJ and HR remain the predominant DSB repair pathways, the 

importance of alternative homology-directed repair mechanisms is also now 

recognised (20). These are mutagenic pathways that are able to ‘back-up’ 

standard repair processes, which have either been genetically or chemically 

compromised. While there are multiple attractive DNA repair and DDR 

effector protein targets, there are still only a limited number of drugs currently 

in clinical development that target such proteins.  

 

APE1 (AP endonuclease-1) recognises abasic (AP) sites generated following 

the removal of damaged bases by DNA glycosylases, and its endonuclease 

activity is essential for BER (86). In addition, APE1 harbors exonuclease 

activity important for the removal of 3' obstructive lesions in DNA, including 

chain-terminating nucleoside analogs (87). TRC102 (Methoxyamine; 

TRACON pharmaceuticals) reacts with abasic sites to cause an AP-adduct 

that is resistant to APE1 action (88), exacerbating the cytotoxicity of alkylating 

agents and anti-metabolites in cells. Hematological toxicities were dose 
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limiting for TRC102 in combination with pemetrexed or temozolomide (89,90), 

and other early phase combination trials are ongoing (Table 2). 

 

Recent studies have demonstrated that HR deficient cells rely on error-prone 

microhomology-mediated end-joining (MMEJ; also known as alt-NHEJ) for 

survival (91,92). The polymerase activity of POLQ (DNA polymerase theta) is 

required for gap-filling during MMEJ, and POLQ also prevents hyper-

recombination by limiting RAD51 accumulation at resected DNA ends (91,92). 

POLQ is therefore an attractive drug target, particularly in the context of HR 

deficient tumors. The development of small molecule inhibitors that target 

protein-protein interactions of the RAD51 recombinase family are also 

ongoing (93). Targeting protein-protein interactions is challenging and has 

had limited success, although compounds have been identified that disrupt 

the self-association of RAD51 and successfully inhibit the interaction between 

RAD51 and BRCA1 (93). These compounds have the potential to inhibit 

RAD51-dependent HR in cells, and the demonstration of such effects in 

functional cellular assays is awaited. 

 

FINE-TUNING THE DDR 

Each step of the DDR is tightly regulated by reversible post-translational 

modifications (PTMs) including: phosphorylation, ADP-ribosylation, 

methylation, acetylation, ubiquitylation, sumoylation and neddylation (94–97). 

While DDR-specific kinase and ADP-ribosylation inhibitors are already in 

clinical development/use, given the essential role of ubiquitylation and de-

ubiquitylation in the DDR, modulating DNA repair through the use of specific 
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inhibitors of ubiquitylation, deubiquitylation or the ubiquitin-proteasome 

system is an active area of research (97,98). HR is particularly sensitive to 

proteasome inhibition (99) and proteasome inhibitors such as bortezomib 

(Velcade; Takeda Pharmaceutical Company Ltd) have been shown to block 

global ubiquitylation in cells, and disrupt protein turnover of several DDR 

proteins, such as MDC1, BRCA1 and RPA (100–102). Inhibiting a subset of 

ubiquitin ligases, namely the cullin-ring-ligases (CRLs), through inhibition of 

neddylation (the covalent attachment of the ubiquitin-like protein, NEDD8 to 

target proteins) in cells, also affects the DDR (94,103). Pevonedistat 

(MLN4924; Takeda Pharmaceutical Company Ltd) inhibits the NEDD8 E1, 

blocking NEDD8 conjugation and CRL activity in cells (104). A phase I study 

of pevonedistat showed that an intermittent dosing schedule was generally 

well tolerated, with hepatotoxicity being dose-limiting (105). In pre-clinical 

studies, pevonedistat exhibited particular synergy with DNA cross-linking 

agents (106,107) and phase I combination studies are currently ongoing.  

 

PTMs are reversible, with such turnover being important for various cellular 

processes. It’s perhaps unsurprising therefore that deubiquitylating enzymes 

(DUBs) also play key roles in promoting DNA repair in cells. Indeed, various 

DUBs are attractive drug targets (97), with several DUB inhibitors currently in 

pre-clinical development. Analogously, poly(ADP-ribose) glycohydrolase 

(PARG) catalyses the hydrolysis of poly(ADP-ribose) and therefore reverses 

the effects of PARP. Inhibition of PARG, in a similar fashion to PARP 

inhibition, leads to DNA damage that depends on HR for repair (108), and 

efforts are ongoing to generate specific PARG inhibitors for clinical use (109). 
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Several other classes of compounds have demonstrated inhibitory effects on 

the DDR, which may potentially be exploited in a clinical setting. Chromatin 

compaction significantly affects DNA repair (21) and the chromatin modifying 

inhibitors vorinostat (ZolonzaTM; Merck) and romidepsin (Istodax; Celgene) 

are both approved for the treatment of cutaneous T cell lymphoma (110). As 

well as relieving chromatin compaction, these histone deactylase (HDAC) 

inhibitors also transcriptionally down-regulate a number of DSB repair proteins, 

thereby hypersensitising cells to DSB-inducing agents and providing strong 

rationale for combination treatment with DNA-damaging compounds 

(111,112). There are numerous other compounds in pre-clinical and clinical 

development, which have inhibitory effects on DNA repair through targeting 

epigenetic modifier enzymes, such as EZH2 (H3K27 methyltransferase) (113), 

histone deacetylases (HDACs) (112) and G9A (histone lysine N-methyl-

transferase) (114). 

 

PATIENT SELECTION  

PARP inhibitors are selectively toxic to tumor cells with biallelic mutations/loss 

of BRCA1 or BRCA2 (BRCA1/2) (11,12), and olaparib is the first oncology 

drug to be licensed with a companion genetic diagnostic (BRCAnalysis 

CDxTM). Such a level of “synthetic lethality” has yet to be reproduced with any 

other DDR inhibitor. The effectiveness of PARP inhibitors is not restricted to 

patients with germline or somatic BRCA1/2 mutations however, and 

significant efforts are underway to determine tumors that are essentially HR 

deficient through other mechanisms (115). Genomic approaches to achieve 
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this include studies undertaken to identify mutations in single HR and/or other 

genes that predict for PARP inhibitor sensitivity (116,117). In addition, DNA 

repair dysfunction has the potential to lead to global DNA aberrations; the 

presence of a genome-wide mutational signature (or genomic scar) that 

occurs in the context of chronic HR deficiency, may thus also be a useful 

biomarker that is predictive of PARP inhibitor sensitivity (118). Scoring 

systems that measure genomic defects reflective of HR deficiency are also 

being utilised, including those that quantify loss of heterozygosity (LOH), 

telomeric allelic imbalance and large scale state transitions (defined as a 

chromosomal break between adjacent segments of DNA of at least 10 Mb) 

within tumors (119).  

 

The hypermethylation of genes and other epigenetic effects mean that 

focusing entirely on genomics will ultimately fail to identify all patients who are 

likely to benefit from a molecularly-targeted cancer therapy. To address this 

issue, functional assays of HR deficiency have been pursued and have 

included the detection of RAD51 foci at DNA-damage sites in breast cancer 

biopsies following neo-adjuvant chemotherapy, where a failure to generate 

RAD51 foci in cells was strongly predictive of a pathological complete 

response (p=0.011) (120). To date, however, there is no robust strategy to 

clinically determine which patients will benefit from PARP inhibitors outside of 

the BRCA1/2 mutant population and it may be that a combination of functional 

and genomic approaches is required. 
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Beyond PARP inhibitors, preclinical data have demonstrated synergy between 

ATR inhibition and impaired ATM signalling, particularly in the context of 

exogenous DNA damage (121). The mechanism for this synergy has yet to be 

defined; however, clinical studies exploring ATR inhibition in the context of 

ATM loss are ongoing (69). Certainly, a number of studies suggest that high 

levels of replication stress and consequently, increased endogenous DNA 

damage in tumors may be required for hypersensitivity to ATR inhibitor 

monotherapy. Overexpression of oncogenes such as CCNE1, CCND2 and 

MYC, adversely affects DNA replication by disrupting origin firing and 

replication progression, resulting in oncogene-induced replication stress (122). 

In keeping with this, CCNE1 amplification exaggerates the hypersensitivity of 

TP53 deficient cells to ATR inhibition (123), and both ATR and CHK1 

inhibitors are particularly toxic for Myc-driven lymphomas in mice (124). In 

addition, oncogenic stress as a result of activating KRAS mutations has been 

shown to hypersensitise cells to ATR inhibition (125), and selecting tumors 

with oncogene-induced replication stress has the potential to provide a much-

needed therapeutic window for ATR inhibitor/chemotherapy combination 

strategies. 

 

The physical ends of linear chromosomes, telomere ends, are naturally 

occurring DNA DSBs in cells that are protected by the Shelterin protein 

complex in order to prevent DDR activation (126). Maintaining telomere length 

is essential for the genomic stability of replicating cells and involves the 

concerted actions of several key DDR players, including ATM, ATR, DNA-PK 

and Ku (127,128). Telomere maintenance is achieved through telomerase 
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activation in 85% of cancers and telomerase recruitment to telomeres is 

dependent on ATM and ATR activity in human cells (128). ATR activity has 

also been shown to be important for alternative lengthening of telomeres 

(ALT) (129), a mechanism which relies on recombination events to maintain 

telomere length. In keeping with this, preclinical data have been published 

demonstrating hypersensitivity of ALT tumor cells to ATR inhibition (129). 

Given the role of the DDR PIKKs in telomere maintenance, DNA-PK, ATM 

and ATR inhibitors, all have the potential to negatively affect telomere length 

in cells. While this may potentially contribute to their antitumor effects, it may 

also result in detrimental genomic instability in replicating non-cancer cell 

populations. 

 

It is currently too preliminary to establish if TP53 deficiency, ATM 

loss/mutation, ALT reliance or CCNE1, CCND2 or MYC oncogene activation 

will predict for sensitivity to ATR inhibitors in the clinic, but it is likely that this 

will be a far from exhaustive list of putative genomic predictive biomarkers, 

and having a functional marker of replication stress in tumors will be helpful. 

Surrogate markers of replication stress might include phosphorylation of ATR 

substrates (e.g. CHK1pS345 and RPApS33) or levels of single-stranded DNA 

(60). How these markers might change over time and with treatment is of 

course currently unknown however, and the usefulness of measuring these 

biomarkers in archival tumor specimens has yet to be tested. 
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COMBINATION STRATEGIES  

Combining DDR inhibitors with DNA damaging agents has been the natural 

first step in the clinical development of combination strategies for DDR 

inhibitors (Table 2). A thorough understanding of the DNA lesions induced by 

different chemotherapies, and inhibition of the respective pathways required 

for repair will ultimately maximise the odds of synergistic antitumor efficacy. 

Nevertheless, toxicities will in many cases likely limit drug doses used in such 

combinations. Indeed, combining olaparib with carboplatin and paclitaxel 

chemotherapies in the clinic has been challenging because of 

myelosuppression, and reductions in the full single-agent doses of all drugs 

had to be undertaken to enable the combination to be administered safely 

(130,131). While olaparib showed promising data in a phase II trial of patients 

with advanced gastric cancer harboring ATM loss when combined with the 

paclitaxel chemotherapy (132), there was no statistically significant survival 

benefit in the phase III GOLD trial (according to a May 18th, 2016 

AstraZeneca press release). Optimizing drug scheduling may enable potential 

differences in repair kinetics of normal versus cancer cells to be exploited and 

may therefore, increase damage in tumors while sparing normal tissue. 

Careful consideration of the sequence of combination drug administration is 

required to optimize synergistic effects. Equally, selecting patients with tumors 

of specific genotypes or phenotypes may produce a therapeutic window for 

such combinations. 

 

Combining DDR inhibitors with small molecule inhibitors of other cellular 

signalling pathways also shows promise, and PARP inhibition has been tested 
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in combination with a number of agents. For example, an EGFR inhibitor 

combination has been explored following clinical data from the EURTAC trial 

showing that low BRCA1 mRNA levels were associated with longer PFS to 

erlotinib (Tarceva; Genentech) (133). A phase I trial of olaparib with gefitinib 

(Iressa; AstraZeneca) demonstrated safety and tolerability, as well as 

promising signals of antitumor activity (134); a phase 2 trial is now accruing 

(135). Recent pre-clinical data also suggest that inhibition of the receptor 

tyrosine kinase c-MET hypersensitises cells to PARP inhibition and the clinical 

evaluation of this finding is likely to follow (136). Preclinical evidence of 

phosphatidylinositide 3-kinase (PI3K) inhibition impairing BRCA1/2 expression 

and sensitising tumor cells to PARP inhibition in both BRCA1/2-mutant and 

BRCA1/2-wild type breast cancers (137,138) has led to phase I combination 

trials of olaparib with the PI3K inhibitor BKM120 (Buparlisib; Novartis) (139) 

and the AKT inhibitor AZD5363 (AstraZeneca) (140), respectively. Preliminary 

data suggest that these combinations are tolerable and effective, with final 

results awaited with interest. 

 

Preclinical evidence suggests that hypoxia results in impaired HR through the 

down-regulation of HR-related genes (141–143). This provided the rationale 

for a phase 1/2 trial of the pan-vascular endothelial growth factor (VEGF)1-3 

inhibitor cediranib (AZD2171; AstraZeneca) with olaparib in patients with 

platinum-sensitive ovarian cancer (144). A PFS benefit of 8.7 months (HR 

0·42 [95% CI 0·23–0·76; p=0·005]) was demonstrated with the combination 

versus olaparib alone in the overall patient population, with predominant 

toxicities of fatigue, diarrhea and hypertension in the combination arm 
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observed. Interestingly, however, no PFS difference was observed between 

the two treatment arms in patients with BRCA1/2 mutated ovarian cancer. 

 

Apart from molecularly targeted agents, we are also beginning to appreciate 

the considerable crosstalk between DNA repair and endocrine signalling (145). 

Steroid hormone signaling has been shown to promote NHEJ through 

transcriptional regulation of NHEJ components such as PRKDC, and has 

been demonstrated to have both positive and negative effects on HR 

depending on tumor model and context (145). In prostate cancer models, 

PARP1 has been demonstrated to support androgen transcriptional function, 

and is required for transcriptional activation of the oncogenic fusion 

TMPRSS2-ERG protein found in >50% of prostate cancers. Duel blockade of 

PARP activity and androgen receptor signaling delays tumor growth 

compared to either as monotherapy in mouse xenograft prostate cancer 

models (146). This has led to trials combining PARP inhibitors with hormonal 

manipulation, such as olaparib with the CYP17 inhibitor abiraterone (Zytiga; 

Janssen Biotech) (147).  

 

There are also now multiple combination studies involving immune checkpoint 

inhibitors with DDR inhibitors, such as PARP and ATR inhibitors (Table 2). 

There is pre-clinical evidence to suggest that immune checkpoint inhibition 

synergizes with PARP inhibitor treatment in BRCA1 deficient tumors and 

clinical trials investigating this hypothesis are ongoing (148). In addition, the 

success of anti-PD-1/PD-L1 therapeutics in MMR deficient tumors (149) 

raises the intriguing question as to whether increasing mutational load with 
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DDR inhibitors might increase the immunogenicity of cancers and subsequent 

responses to immunotherapy. Further studies are required to substantiate this 

hypothesis, and while high levels of microsatellite instability might prove to be 

a useful biomarker of response to immune checkpoint inhibitors, alternative 

mechanisms that might be driving sensitivity should not be discounted (150). 

Equally, we must be mindful that an intact DDR plays an important role in 

innate immunity (151). DDR signalling is important for the activation of 

inflammatory cytokines and induces the expression of immune-receptor 

ligands on damaged cells. As such, inhibitors of DDR signalling may in fact 

attenuate the immune response following DNA damage and therefore 

immunotherapy-DDR inhibitor combination studies need to be carefully 

considered.  

 

FUTURE PERSPECTIVES AND CONCLUSIONS 

With multiple DDR inhibitors now in preclinical and clinical pipelines, careful 

consideration of their mechanisms-of-action is required in order to maximise 

their potential. DDR-deficient tumors should not be grouped indiscriminately 

into a class of tumors that may respond to any DDR inhibitor. Through closer 

collaborations between scientists and clinicians, we must insist on a rational 

rather than empirical approach to the clinical development of DDR inhibitors. 

A number of factors will be critical to ensure clinical success, including the 

development of analytically validated pharmacodynamic assays and 

predictive biomarkers of response and resistance. As we have observed with 

PARP inhibitors, managing the toxicities of DDR inhibitor/DNA-damaging 

agent combinations is likely to be challenging, and so clinicians should not 
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shy away from aiming for a single agent synthetic lethal approach that has 

already led to some success in the clinic. Much attention has focused on 

genetic alterations to key DDR drivers, but the relative contribution of somatic 

epigenetic loss of such DDR players has not been extensively explored. For 

example, the silencing of the BRCA1 gene through promoter 

hypermethylation has been demonstrated in breast and ovarian cancers (152), 

which highlights the importance of also considering functional biomarker 

assays, rather than relying on genomics in isolation.  

 

Modern clinical trial designs will need to incorporate translational studies, 

which may be used to guide patient selection, drug scheduling and treatment 

response (153). Early phase trials should aim to consolidate preclinical 

understandings of drug mechanisms-of-action. Notably, understanding how 

many successful drugs function, including the PARP inhibitors, has changed 

over time, meaning that compounds showing preclinical promise should not 

be discounted on the basis of hypotheses that later appear to be incorrect. It 

is likely that combination regimens, either with drugs given together or 

sequentially to overcome resistance, will be required for the optimal 

application of these DDR inhibitors in the clinic. The use of longitudinal 

genomic profiling of circulating free DNA to support adaptive drug 

administration will also be important. 

 

The long-term effects of inhibiting the DDR in patients are still not known and 

needs further study. One recognised risk of DNA damage to normal tissue is 

the emergence of secondary cancers, particularly hematological malignancies, 
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following chemotherapy treatment and the potential mutagenic effects of 

inhibiting DNA repair. We will need to increase our clinical experience of DDR 

inhibitors before the long-term effects of these compounds are realised. 

Nevertheless, as PARP inhibitors move into the neo-adjuvant and adjuvant 

settings, the malignant potential of these drugs must be monitored. 

 

Precision medicine has heralded the advent of sophisticated modern 

technologies, which have permitted genomic profiling of both normal and 

tumor tissue at greater speeds and at lower costs than before. This has 

enabled the “real-time” identification of germline and somatic DNA repair gene 

aberrations, which has critical implications both for identifying families at risk 

of cancer predisposition, and also for predicting therapeutic responses to 

DDR inhibitors. Now that olaparib has been approved for clinical use and 

others will hopefully soon follow, we must not forget the lessons learned from 

the successful development of PARP inhibitors, nor ignore the multitude of 

opportunities that still exist within the DDR network, which now need to be 

exploited to impact positively on cancer medicine.  
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Double strand break repair pathways 
Classical (c)-
NHEJ 
 

• Predominant DNA DSB repair pathway in human cells, functioning throughout the cell cycle. 

• Involves the relatively rapid ligation of broken DNA ends, mediated by the core NHEJ complex 

including, DNA-PK, XRCC4, LIG4, XLF and PAXX amongst others.  

• DNA end-processing and DNA polymerase action may be required before ligation can occur, making 

NHEJ inherently error-prone. 

• NHEJ maintains genome stability however, by rapidly repairing DSBs in circumstances where 

recombinogenic events would likely result in gross chromosomal rearrangements; in non-cycling or 

G1 cells for example (38,39). 

Homology-directed repair  
Homologous 
recombination 
(HR) 

• Relatively slow and restricted to late-S phase/G2 as it generally relies on a homologous sister 

chromatid DNA strand for repair.  

• Extensive DNA end-resection by helicases and exonucleases such as DNA2, BLM, WRN and EXO1 

results in a 3′ –ssDNA overhang, committing the break to repair by HR.   

• RPA coats and stabilizes the ssDNA, leading to ATR activation and subsequent signaling events. 

• BRCA2, with the help of BRCA1 and PALB2, load RAD51 onto the RPA-coated ssDNA leading to 

strand invasion, with a number of factors negatively regulating this process to prevent hyper-

recombination such as POLQ, PARI, RECQL5, FANCJ and BLM (154). 

Alternative 
(Alt)- NHEJ or 
microhomology 
mediated end-
joining (MMEJ) 

• Ligation pathway for DSBs when c-NHEJ is genetically compromised (155). 

• Occurs following limited DNA end resection.  

• Contributes to the excessive genomic deletions and chromosomal translocations seen in tumors and 

may also provide a back-up repair pathway in HR deficient cells (10,20). 

Single-strand 
annealing 
(SSA) 

• Mutagenic, RAD51 independent repair pathway, involving annealing of short or longer complimentary 

DNA sequences on resected DNA with subsequent deletion of the intervening DNA sequence. The 

detailed mechanism has yet to be defined in mammalian cells (20). 

Other repair pathways 
Inter-strand 
crosslink (ICL) 
repair  

• ICLs cause DNA replication fork stalling and collapse, resulting in DNA DSBs.   

• ICLs are recognised by the FANCONI core complex, which engages HR, TLS and NER pathways to 

repair the DNA lesion (156). 

Single-strand 
break (SSB) 
repair  

• SSBs usually arise following the removal of a damaged nucleotide (157). 

• PARP1 (poly-ADP-ribose polymerase 1) is the DNA damage sensor protein for DNA strand breaks.  

PARP1 localises to sites of DNA damage, generating extensive PAR (poly ADP-ribose) chains. 

• Ribosylated PARP1 promotes recruitment of SSB-repair proteins to DNA damage sites (9). 

Base excision 
repair (BER) 

• DNA glycosylases recognize and remove damaged bases leading to basic sites that are processed 

by APE1 (AP-endonuclease 1).  

• Results in SSB generation, repaired using SSB repair pathways (86). 

Tran-lesion 
synthesis (TLS) 

• DNA damage tolerance pathway that helps prevent replication fork stalling (158). 

• Engages low-fidelity DNA Y-family polymerases (e.g. REV1, POLH, POLI, POLK) that accommodate 

the damaged lesion, replicating past it, at the expense of increased mutagenesis.  

Nucleotide 
excision repair 
(NER) 

• Removes helix-distorting lesions from DNA, in particular the UV-induced photo lesions. 

• Involves removal of a short oligonucleotide including the damaged lesion using structure specific 

endonucleases and subsequent restoration of the DNA sequence by DNA polymerases (159). 
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Mismatch 
repair (MMR) 

• MSH2, MSH3 and MSH6 recognize base-base mismatches and IDLs, where they recruit MLH1 and 

PMS2 to damaged sites.  The concerted actions of the mismatch repair proteins, engage EXO1 to 

remove the mismatch and then POLD and LIG1 to fill the gap and seal the nick respectively (160). 

 
Table 1: Predominant DNA repair pathways. 
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Target Agent Phase Intervention Cancer(s) enrolled Status / results Trial identifier Ref. 

DNA-PK MSC2490484A I MSC2490484A Solid tumors, CLL Recruiting NCT02316197 - 

 MSC2490484A I MSC2490484A ± RT Solid tumors Recruiting NCT02516813 - 

 VX-984 I VX-984 ± PLD Solid tumors Recruiting NCT02644278 - 

 CC-1151  I CC-115 GBM, HNSCC, Prostate, ES, CLL 
37% (3/8) PR in relapsed 

ATMmut CLL 
NCT01353625 (46,47) 

ATM AZD0156 I AZD0156 ± olaparib Solid tumors Recruiting NCT02588105 - 

ATR 
VX-970 ± 

chemotherapy 
I VX-970 ± carboplatin Solid tumors Recruiting 

EudraCT: 2013-

005100-34 
(68,69) 

  I 

VX-970 ± gemcitabine, 

etoposide, cisplatin or 

carboplatin 

Solid tumors Recruiting NCT02157792 (70,71) 

  II 
Gemcitabine ± VX-970 

(randomised) 

Ovarian, primary peritoneal or 

Fallopian tube 
Recruiting NCT02595892 - 

  I VX-970 + irinotecan Solid tumors Recruiting NCT02595931 - 

  II 
Carboplatin + gemcitabine 

± VX-970 (randomised) 
Advanced gynecologic cancers Not yet recruiting NCT02627443 - 

  I / II VX-970 + topotecan 
Advanced NSCLC, SCLC, 

Gynae or neuroendocrine 
Recruiting NCT02487095 - 

  II 
Cisplatin + gemcitabine ± 

VX-970 (randomised) 
Advanced urothelial  Recruiting NCT02567409 - 

 VX-970 ± RT I Cisplatin + RT ± VX-970 Locally advanced HNSCC Recruiting NCT02567422 - 

  I Whole brain RT + VX-970 NSCLC brain metastases Recruiting NCT02589522 - 
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VX-970 + 

targeted therapy 
I 

VX-970 + veliparib + 

cisplatin 
Solid tumors Recruiting NCT02723864 - 

 AZD6738 I AZD6738 
Relapsed CLL, PLL, B cell 

lymphomas 
Complete, full results awaited NCT01955668 - 

 
AD6738 ± 

chemotherapy 
I 

AZD6738 ± carboplatin, 

olaparib or MEDI4736  

Solid tumors, HNSCC, ATMloss 

NSCLC, gastric or GOJ carcinoma 
Recruiting NCT02264678 - 

  I AZD6738 + paclitaxel Solid tumors Recruiting NCT02630199 - 

 AZD6738 + RT I AZD6738 + palliative RT Solid tumors Recruiting NCT02223923 - 

CHK1 
MK8776  

(SCH 900776) 
II 

Cytarabine ± MK8776 

(randomised) 
Relapsed AML Complete, full results awaited NCT01870596 - 

  I Gemcitabine + MK8776 Relapsed lymphoma Complete, full results awaited NCT00779584 (73) 

  I Cytarabine + MK8776 Relapsed AML 33% (8/24) CR NCT00907517 (161) 

 LY2603618 I / II 
Cisplatin / pemetrexed ± 

LY2603618 
NSCLC 14% (2/14) PR NCT01139775 (162) 

  I / II Gemcitabine ± LY2603618 Pancreatic carcinoma Complete, full results awaited NCT00839332 - 

  II Pemetrexed + LY2603618 NSCLC Complete, full results awaited NCT00988858 - 

  I 
LY2603618 + pemetrexed 

or gemcitabine 
Solid tumors Complete, full results awaited NCT01296568 - 

  I LY2603618 + gemcitabine Solid tumors Complete, full results awaited NCT01341457 (74) 

  I LY2603618 + pemetrexed Solid tumors Complete, full results awaited NCT00415636 - 

 CCT245737 I CCT245737 Solid tumors Recruiting NCT02797964 - 

  I 
CCT245737 + cisplatin 

and/or gemcitabine 
Solid tumors Recruiting NCT02797977 - 
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GDC-0575 ± 

chemotherapy 
I GDC-0575 ± gemcitabine 

Solid tumors, relapsed 

lymphoma 
Complete, full results awaited NCT01564251 - 

CHK1/2 LY2606368 II LY2606368 Refractory SCLC  Recruiting NCT02735980 - 

  II LY2606368 Ovarian, breast, prostate Recruiting NCT02203513 - 

  II LY2606368 Solid tumors Recruiting NCT02873975 - 

  I LY2606368 Solid tumors 
4% (2/45) PR – anal SCC, 

HNSCC 
NCT01115790 (77) 

  I LY2606368 Solid tumors Recruiting NCT02778126 - 

  I LY2606368 Solid tumors Recruiting NCT02514603 - 

  I LY2606368 Pediatric solid tumors Recruiting NCT02808650 - 

 
LY2606368 + 

chemotherapy 
I 

LY2606368 + fludarabine 

+ cytarabine 
Relapsed AML, high risk MDS Recruiting NCT02649764 - 

  I 

LY2606368 + cisplatin, 

cetuximab, pemetrexed, 

fluorouracil and/or 

leucovorin 

Solid tumors Recruiting NCT02124148 - 

 
LY2606368 + 

targeted therapy 
I 

LY2606368 + ralimetinib 

(MAPK inhibitor) 
Solid tumors Recruiting NCT02860780 - 

 LY2606368 + RT I 
LY2606368 + RT + 

cisplatin or cetuximab 
Locally advanced HNSCC Recruiting NCT02555644 - 

WEE1 AZD1775 II AZD1775 SCLC Recruiting NCT02593019 - 

  I AZD1775 Solid tumors 8% (2/25) PR: BRCAmut NCT01748825 (78,83) 
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ovarian, BRCAmut HNSCC 

  I AZD1775 Solid tumors Recruiting NCT02482311 (163) 

  I AZD1775 Solid tumors Recruiting NCT02610075 - 

 
AZD1775 + 

chemotherapy 
II 

Carboplatin / paclitaxel ± 

AZD1775 
Ovarian, TP53mut 

Superior PFS with AD1775 vs 

chemotherapy alone. Median 

PFS 42.8w vs 34.8w. HR 0.55 

(95% CI 0.32 – 0.95, p= 0.03) 

NCT01357161 (84) 

  II Carboplatin + AZD1775 
Ovarian, TP53mut or platinum 

resistant 
27% (6/22) PR NCT01164995 (85) 

  II Gemcitabine ± AZD1775 
Ovarian, Primary Peritoneal, or 

Fallopian 
Recruiting NCT02101775 - 

  II 
Carboplatin / pemetrexed 

± AZD1775 
NSCLC, 1st line Complete, full results awaited NCT02087241 - 

  II Docetaxel + AZD1775 NSCLC, 2nd line Closed NCT02087176 - 

  II 
Carboplatin / Paclitaxel + 

AZD1775 
NSCLC Recruiting NCT02513563 - 

  II 
Paclitaxel weekly + 

AZD1775  
Gastric carcinoma Recruiting NCT02448329 - 

  II Cisplatin ± AZD1775 HNSCC Complete, full results awaited NCT02196168 - 

  I / II 
Gemcitabine / nab-

paclitaxel ± AZD1775 
Pancreatic Recruiting NCT02194829 - 

  I / II Irinotecan + AZD1775 Pediatric solid tumors Recruiting NCT02095132 - 

  I Cisplatin / docetaxel + Locally advanced HNSCC Recruiting NCT02508246 - 
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AZD1775 

  I 
Gemcitabine, cisplatin or 

carboplatin + AZD1775 
Solid tumors Complete, full results awaited NCT00648648 - 

 
AZD1775 + 

targeted therapy 
I 

AZD1775 + olaparib (PARP 

inhibitor) 
Solid tumors Complete, full results awaited NCT02511795 (164) 

   
AZD1775 + Belinostat 

(HDAC inhibitor) 

AML, other myeloid 

malignancies 
Recruiting NCT02381548 - 

 AZD1775 + RT I / II 
Radiation + gemcitabine + 

AZD1775 
Pancreatic Recruiting NCT02037230 - 

  I 
Radiation + cisplatin + 

AZD1775 
HNSCC Recruiting NCT02585973 (165) 

  I RT + cisplatin + AZD1775 
Locally advanced cervical 

cancer 
Recruiting NCT01958658 - 

  I 
Radiation + temozolomide 

+ AZD1775 
GBM Recruiting NCT01849146 - 

  I Radiation + AZD1775 Pediatric DIPG Recruiting NCT01922076 - 

 

AZD1775 + 

immune 

checkpoint 

inhibitor 

I MEDI4736 + AD1775 Solid tumors Recruiting NCT02617277 - 

BER TRC102 I TRC102 Solid tumors, lymphoma Complete, full results awaited NCT01851369 (90) 

 
TRC102 + 

chemotherapy 
II TRC102 + temozolomide GBM Recruiting NCT02395692 - 
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  I / II 
TRC102 + cisplatin and/or 

pemetrexed 
Solid tumors Recruiting NCT02535312 - 

  I TRC102 + pemetrexed Solid tumors 4% (1/28) PR: HNSCC NCT00692159 (89) 

  I TRC102 + fludarabine Haematologic malignancies Complete, full results awaited NCT01658319 - 

 TRC102 + RT I 
TRC + RT + cisplatin ± 

pemetrexed 
NSCLC Recruiting NCT02535325 - 

 
Table 2: Monotherapy and combination trials involving DDR inhibitors that have completed or are still active (www.clinicaltrials.gov). 

CLL, chronic lymphocytic leukemia; CR, complete response; CRUK, Cancer Research UK; DIPG, diffuse intrinsic pontine gliomas; ES, 

Ewing’s sarcoma; GBM, glioblastoma multiforme; GOJ, gastro-oesphageal carcinoma; HDAC, Histone deacetylase; HGSOC, high grade 

serous ovarian carcinoma; HNSCC, head and neck squamous cell carcinoma; mAb, monoclonal antibody; NCI, National Cancer Institute; 

NSCLC, non-small cell lung carcinoma; ORR, objective response rate; PLD, pegylated liposomal doxorubicin; PLL, prolymphocytic 

leukaemia; PR, partial response; RT, radiotherapy; SCLC, small cell lung carcinoma. 1 Dual DNA-PK and mTOR inhibitor. 

 

http://www.clinicaltrials.gov/
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FIGURE LEGENDS 

Figure 1  

Table showing predominant sensors, signaling and effector proteins for major 

DNA repair pathway. Main targets of drug development are in red (see text for 

details). 

Figure 2  

DNA DSB repair signaling pathways through the apical DDR kinases. 

A. DNA-PK: Ku binds to DNA DSBs and recruits DNA-PKcs. Upon DNA 

binding, autophosphorylation of DNA-PKcs induces a conformational change 

that destabilises the NHEJ core complex, causing sliding of Ku inwards on the 

DNA and enabling access of end-processing and ligation enzymes to DNA 

ends and facilitation of repair. 

B. ATM: Following DSBs ATM is predominantly activated through interactions 

with NBS1 of the MRN complex. ATM is the principle kinase responsible for 

phosphorylation of histone H2AX on serine 139 (known as γH2AX). MDC1 

(mediator of DNA damage checkpoint protein1) directly binds γH2AX and 

potentiates DNA damage signaling leading to spreading of γH2AX to over a 

megabase from its initial lesion. This in turn promotes recruitment and 

retention of DNA damage mediator proteins such as 53BP1. CHK2 is a well-

studied ATM substrate. 

C. ATR: ATR is activated by RPA (replication protein A) bound to ssDNA. The 

ATR-CHEK1 signaling cascade activates the G2-M checkpoint, promotes 

replication fork stabilisation and slows DNA replication by suppressing origin 

firing.  
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