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ABSTRACT. Let f be a cuspidal Hecke eigenform without complex multipli-
cation. We prove the automorphy of the symmetric power lifting Sym” f for
every n > 1.
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1. INTRODUCTION

Let F' be a number field, and let m be a cuspidal automorphic representation
of GLy(AF). Langlands’s functoriality principle predicts the existence, for any
n > 1, of an automorphic representation Sym" 7 of GL,,+1(A ), characterized by
the requirement that for any place v of F', the Langlands parameter of (Sym" ),
is the image of the Langlands parameter of m, under the nth symmetric power
Sym" : GLy — GL,,41 of the standard representation of GL,.

For a more detailed discussion of the context surrounding this problem, including
known results by other authors, we refer the reader to the introduction of [NT19b],
of which this paper is a continuation. In that paper we studied the problem of
symmetric power functoriality in the case that F = Q and 7 is regular algebraic
(in which case 7 corresponds to a twist of a cuspidal Hecke eigenform f of weight
k> 2, cf. [Gel75, §3]). We established the existence of the symmetric power liftings
Sym" 7 under the assumption that there is no prime p such that m, is supercuspidal.
(This includes the case that f has level SLy(Z).)

In this paper we remove this assumption, proving the following theorem:

Theorem A. Let w be a regular algebraic, cuspidal automorphic representation of
GL2(AqQ). Suppose that w is non-CM. Then for each integer n > 1, Sym" m exists,
as a regqular algebraic, cuspidal automorphic representation of GLy4+1(AQ).

In the ‘missing’ cases of 7 which are holomorphic limit of discrete series at oo or
CM, the existence of Sym" 7 for all n is well known, although of course Sym" 7 is
usually not cuspidal. The most difficult case of icosahedral weight one eigenforms
(IKim04, Theorem 6.4]) requires Kim and Shahidi’s results on tensor product and
symmetric power functoriality. We provide some details in Appendix [A]
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Using the modularity of elliptic curves over Q [BCDT01], we deduce the following
corollary:

Corollary B. Let E be an elliptic curve over Q without complex multiplica-
tion. Then, for each integer n > 2, the completed symmetric power L-function
A(Sym™ E, s) as defined in e.g. [DMWQ9], admits an analytic continuation to the
entire complez plane.

Our strategy to prove Theorem [A]is inspired by the proof of Serre’s conjecture
[KW(9a]. There one takes as given Serre’s conjecture in the level 1 case (i.e. for
every prime number p, the residual modularity of odd irreducible representations

71 Gal(Q/Q) — GLa(F,)

unramified outside p), proved in [Kha06], and hopes to reduce the general case to
this one by induction on the number of primes away from p at which p is ramified.

Here we associate to any regular algebraic, cuspidal automorphic representation
7 of GLa(Aq) the set sc(m) of primes p such that m, is supercuspidal. Fixing n > 1,
we prove the existence of Sym” 7w by induction on the cardinality of the set sc(r),
the case |sc(m)| = 0 being exactly the main result of [NT19b].

Our induction argument uses congruences between automorphic representations.
If p is a prime and ¢ : Qp — C is an isomorphism, then there is an associated Galois
representation

Try Gal(Q/Q) — GLQ(QP)

and its mod p reduction
Tro : Gal(Q/Q) — GL2(F,).
If 7’ is another regular algebraic, cuspidal automorphic representation of GL2(Agq),
and there is an isomorphism
?Tk’,L = F71",L
(in other words, a congruence modulo p between 7 and 7’), then passage to symmetric
powers gives an isomorphism

Sym" Tr, = Sym" Tp ,.

If Sym™ 7' is known to exist, and the image of the representation Sym" 7, , is suffi-
ciently non-degenerate (for example, irreducible), then automorphy lifting theorems
(such as those proved in [BLGGT14]) can be used to deduce the automorphy of
Sym" r, ,, hence the existence of Sym" 7.

If p is a prime such that 7, is supercuspidal, it may be possible to choose 7’ so
that sc(n’) = sc(w) — {p}, opening the way to an induction argument. This idea of
‘killing ramification’ plays a significant role in [KW09a].

The difficulty in applying this approach here is that if p < n then the represen-
tation Sym" 7, , is never irreducible, so the automorphy lifting theorems proved
in [BLGGT14] do not apply. (The automorphy lifting theorems for residually re-
ducible representations proved in [ANTI9] apply only for ordinary representations,
a possibility which is ruled out if 7, is supercuspidal.) This approach might perhaps
yield the existence of Sym"™ © when p > n for every p € sc(w), but to get a result
like Theorem [A] a new idea is required.

Here we prove a new kind of automorphy lifting theorem, Theorem specially
tailored to the problem of symmetric powers (although we hope that these ideas
will also be useful for other cases of Langlands functoriality). We consider the
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morphism P — R, where R is the universal deformation ring of the (supposed
irreducible) representation 7, , and P is the universal pseudodeformation ring of
the pseudocharacter associated to the symmetric power Sym” 7 ,; the morphism
P — R is the universal one classifying the pseudocharacter of Sym”™ of the universal
deformation of 7. ,. A version of the Taylor-Wiles—Kisin patching argument upgrades
this to a commutative diagram

P —— R

| ]

P—— R,

where Py, R are ‘patched deformation rings’ and the vertical arrows are surjections.
Since 7, is assumed to be irreducible, the arguments of [Kis09bl [Kis09a] show that
R is a domain which acts faithfully on a space of patched (rank-2) modular forms.

The essential additional ingredient is the main result of [NT19a], which shows that
Spec P is regular (of dimension 0) at the point corresponding to the pseudocharacter
of the representation Sym” 7/ ,; this in turn implies that Spec Py, is regular at
the image of this point in Spec P, and allows us to deduce that the image of
Spec Ry, — Spec Py, is contained in the support of a space of patched (rank-(n+1))
modular forms, leading to a proof of Theorem Our a priori knowledge about
the ring P obviates the need to kill the dual Selmer group of Sym” 7 ,.

To actually prove Theorem [A] we combine Theorem [2.1] with a modified version
of the ‘killing ramification’ technique of [KW09a], based on a variation of the notion
of ‘good dihedral’ representation introduced in that paper. This is not quite routine
since we need our ‘good dihedral” automorphic representations 7 to have the property
that, if ¢ is the good dihedral prime, then there is an isomorphism ¢, : Qq — C
such that 7, has large image. We achieve this by introducing Steinberg type
ramification at another auxiliary prime r, which is acceptable since the presence
of r does not affect the set sc(m). We call an automorphic representation 7 that
comes equipped with the requisite auxiliary primes ‘seasoned’ (see Definition [3.6]).
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programme (grant agreement No 714405). We thank Toby Gee and an anonymous
referee for comments on earlier versions of this manuscript.

Notation. If F' is a perfect field, we generally fix an algebraic closure F/F and
write G for the absolute Galois group of F' with respect to this choice. When the
characteristic of F' is not equal to p, we write € : Gp — Z, for the p-adic cyclotomic
character. We write (,, € F for a fixed choice of primitive n*® root of unity (when this
exists). If I is a number field, then we will also fix embeddings F — F,, extending
the map F — F, for each place v of F; this choice determines a homomorphism
Gp, = Gp. When v is a finite place, we will write Wgr, C Gp, for the Weil
group, Op, C F, for the valuation ring, w, € OF, for a fixed choice of uniformizer,
Frob, € G, for a fixed choice of (geometric) Frobenius lift, k(v) = O, /(w,) for
the residue field, and ¢, = #k(v) for the cardinality of the residue field. If R is
a ring and a € R*, then we write ury : Wp, — R* for the unramified character
which sends Frob, to a. When v is a real place, we write ¢, € G, for complex
conjugation. If S is a finite set of finite places of F' then we write Fg/F for the
maximal subextension of F unramified outside S and G s = Gal(Fs/F).
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If p is a prime, then we call a coefficient field a finite extension E/Q, contained
inside our fixed algebraic closure Qp, and write O for the valuation ring of F, @w € O
for a fixed choice of uniformizer, and k = O/(w) for the residue field. We write Co
for the category of complete Noetherian local O-algebras with residue field k. If G
is a profinite group and p : G — GL,, (Q ) is a continuous representation, then we
write p: G — GL,,(F,) for the associated semisimple residual representation (which
is well-defined up to conjugacy). If F is a number field, v is a finite place of F,
and p,p' : Gp, — GLn(Oap) are continuous representations, which are potentially

crystalline if v|p, then we use the notation p ~ p’ established in [BLGGT14, §1]
(which indicates that these two representations define points on a common component
of a suitable deformation ring).

We write T,, C B, C GL,, for the standard diagonal maximal torus and upper-
triangular Borel subgroup. Let K be a non-archimedean characteristic 0 local field,
and let € be an algebraically closed field of characteristic 0. If p : Gx — GL, (Qp) is
a continuous representation (which is de Rham if p equals the residue characteristic
of K), then we write WD(p) = (r, N) for the associated Weil-Deligne representation
of p, and WD(p)¥ ~** for its Frobenius semisimplification. We use the cohomological
normalisation of class field theory: it is the isomorphism Artg : KX — W which
sends uniformizers to geometric Frobenius elements. When Q = C, we have the
local Langlands correspondence recg for GL, (K): a bijection between the sets of
isomorphism classes of irreducible, admissible C[GL,, (K)]-modules and Frobenius-
semisimple Weil-Deligne representations over C of rank n. In general, we have the
Tate normalisation of the local Langlands correspondence for GL,, as described in
[CT14, §2.1). When Q = C, we have reck (1) = recg (7 @ | - |(1=)/2),

If F is a number field and x : F*\Aj; — C* is a Hecke character of type Ag
(equivalently: algebraic), then for any isomorphism ¢ : Qp — C there is a continuous

character ry, : Gp — QX which is de Rham at the places v|p of F and such that for

each finite place v of F', WD(r, ,) o Artp, = ¢~ X|F>< Conversely, if X' : Gp — Q
is a continuous character which is de Rham and unramified at all but finitely many
places, then there exists a Hecke character x : F*\ A5 — C* of type Ay such that
Ty, = X'. In this situation we abuse notation slightly by writing x = ¢x’.

If F'is a CM or totally real number field and 7 is an automorphic representation
of GL,,(AFr), we say that 7 is regular algebraic if 7, has the same infinitesimal
character as an irreducible algebraic representation W of (Res F/Q GL,)c

If 7 is cuspidal, regular algebraic, and polarizable, in the sense of [BLGGT14], then
for any isomorphism ¢ : Q — C there exists a continuous, semisimple representation

. o Gp — GL,(Q,) such that for each finite place v of F, WD(rr |g,, )" ** =

rect, (17'm,) (see e.g. [Carl4]). (When n = 1, this is compatible with our ex1st1ng

notation.) We use the convention that the Hodge-Tate weight of the cyclotomic
character is —1.

We use special terminology in the case n = 2: if k > 2 is an integer, we say that
7 has weight k if we can take W = (®rcHom(F,C) Sym*~2C2)V. (If F is totally
real, then the cuspidal automorphic representations of weight k are those which
are associated to cuspidal Hilbert modular forms of parallel weight k.) In this case
the Hodge-Tate weights of 7., with respect to any embedding 7 : F' — Qp are
{0,k — 1} and the character €*~!detr,, has finite order.
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If F is a number field, G is a reductive group over F, v is a finite place of F,
and U, is an open compact subgroup of G(F,), then we write H(G(F,),U,) for the
convolution algebra of compactly supported U,-biinvariant functions f : G(F,) —
Z (convolution defined with respect to the Haar measure on G(F,) which gives
U, volume 1). Then H(G(F,),U,) is a free Z-module, with basis given by the
characteristic functions [U,g,U,] of double cosets for g, € U,\G(F)/U,.

If 1 <i<n,let oy, ,; = diag(wy, ..., @y, 1,...,1) € GL,(F,) (where there are
i occurrences of w, on the diagonal). We define

T = [GL,(OF, ), iCL,(OF,)] € H(GL,(F,),GL,(OF,)).

We write Iw,, C GL, (OF,) for the standard Iwahori subgroup (elements which are
upper-triangular modulo w,) and Iw,1 C Iw, for the kernel of the natural map
Iw, — (k(v)*)™ given by reduction modulo w,, then projection to the diagonal. If
U, C lw, is a subgroup containing Iw, 1, and 1 <3 < n, then we define

UY) = [Upasw, iUy € H(GLn(F,),Uy).

2. AN AUTOMORPHY LIFTING THEOREM FOR SYMMETRIC POWER
REPRESENTATIONS

Let p be a prime and let F' be a totally real field. Fix an isomorphism ¢ : Qp — C.
Let n > 1. Let w be a regular algebraic, cuspidal automorphic representation of
GL2(A ) satisfying the following conditions:

e 7 has weight 2 and is non-CM.

e For each place v|p of F, 7 ,|c,, is not ordinary, in the sense of [Thol6),
§5.1]. Note that, together with the assumption that 7 has weight 2, this
implies that r,|g,, is potentially Barsotti-Tate.

e Let Proj7,, : Gr — PGL2(F,) denote the projective representation asso-
ciated to 7, ,. Then there exists a > 1 such that p* > max(5,2n — 1) and
there is a sandwich

PSLy(Fpe) C Proj 7y, (Gr) C PGLy(F0),

up to conjugacy in PGLy(F,).
We impose the final condition to ensure that we can choose Taylor—Wiles primes
such that the image of the corresponding Frobenius element under Sym”_1 Tr, 1S
regular semisimple.
The aim of this section is prove the following theorem:

Theorem 2.1. Suppose that there exists another reqular algebraic, cuspidal au-
tomorphic representation ©' of GLa(AFr) such that the following conditions are
satisfied:

(1) " has weight 2 and is non-CM.

(2) For each place v|p of F, rx1 |ay, is not ordinary.

(3) There is an isomorphism Trr , = Fr ,.

(4) For each place vt p of F, 7, is a character twist of the Steinberg represen-

tation if and only if 7l is.
(5) Sym™ ' 7., is automorphic.

Then Sym™ ! Tx, 15 automorphic.
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We begin with a preliminary reduction. Let E/Q, be a coefficient field. After
possibly enlarging E, we can find conjugates r,r’ of rr ,, 7., respectively which
take values in GLy(O). We can also assume that the eigenvalues of each element
in the image of 7 lie in k. After passage to a soluble totally real extension, we can
assume that the following additional conditions are satisfied:

(6) [F: Q] is even.

(7) detry, =detry, =€’

(8) For each place v|p of F, m, and 7} are unramified.

(9) For each finite place v t p of F, m, and 7, are Iwahori-spherical. The number
of places such that 7, is ramified is even.

(10) Let S, denote the set of p-adic places of F' and X the set of places v such

that m, is ramified. Let S = S, UX. Then for each v € S, 7|g,, is trivial.
For each v € ¥, ¢, = 1 mod p and m,, 7, are isomorphic to the Steinberg
representation (not just up to twist — note that condition already
implies that any such twist is by a quadratic character).

(11) There exists an everywhere unramified CM quadratic extension K/F, with

each place v € S split in K.

Let IT = wg. Then IT is RACSDC (i.e. regular algebraic, conjugate self-dual, and
cuspidal). We will show that the representation Sym"™ ! rm,, is automorphic; this
will imply Theorem by soluble descent. We let II' = 7%.. Then II' is also
RACSDC, there is an isomorphism 7y, = 71y, and Sym’k1 riv,, is automorphic.
We write IT/, for the RACSDC automorphic representation of GL,,(A k) such that
TH;”L = SyIIlni1 T11 .-

Recall that Co denotes the category of complete Noetherian local O-algebras
with residue field k. If v is a place of F, we write RE' € Cp for the object
representing the functor Lift, : Co — Sets which associates to A € Co the set of
homomorphisms 7 : G, — GLz(A) lifting 7|, (i.e. such that 7 mod m4 = 7) such
that det7 = e !|q,. . We introduce certain quotients of RD:

o If v € S}, the smallest reduced O-torsion-free quotient R, of RE such that
if F: RE — Qp is a homomorphism such that the pushforward of the
universal lifting to Q,, is crystalline of Hodge-Tate weights {0,1} (with
respect to any embedding F,, — Qp) and is not ordinary, then f factors
through R,. By [Kis09al, Corollary 2.3.13], R, is a domain of dimension
4+ [F, : Qpl.

o If v € ¥, the smallest reduced O-torsion-free quotient R, of RUD such that if
f: RE — Qp is a homomorphism such that the pushforward of the universal
lifting to Qp is an extension of e~! by the trivial character, then f factors
through R,. By [Kis09b, Corollary 2.6.7], R, is a domain of dimension 4.

e If v € S, (the set of infinite places of F), the quotient R, of RS denoted
R‘_/I}’D in [Kis09al, Proposition 2.5.6]. Then R, is a domain of dimension 3.

If @ is a finite set of finite places of F', disjoint from .S, then we write Defg : Co —
Sets for the functor which associates to A € Co the set of 1 + Msy(m4)-conjugacy
classes of lifts 7 : Gp — GLo(A) of 7 satisfying the following conditions:

e 7 is unramified outside S U Q, and det7 = e 1.

e For each v € S U S, the homomorphism RY — A determined by TlGp,
factors through the quotient RE — R, introduced above.
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Our assumption on the image of 7 implies that the functor Defg is represented by
an object Rg € Cp. If Q is empty then we write R = Ry. We also introduce some
variants. Let Rj,. = @%esusm R,. Then Ry, is an O-flat domain of Krull dimension
1+ 3[F : Q] + 3|S| (cf. [KisO9b, Lemma 3.4.12]). We write Defg : Co — Sets
for the functor of 1 + My(m4)-conjugacy of tuples (7, {A, }vesus., ), where 7 is as
above and A, € 1 + Ma(m4), and v € 1 + Ma(my) acts by v - (7, {Ay }vesus,, ) =
(vry =1, {vA, }uesus., )- This functor is represented by an object denoted RB € Co.
The tuple of representations (A4, 1?|GFU Ay)vesus,, is independent of the choice
of representative for a given conjugacy class, and the universal property of RE’
determines a homomorphism Rj,. — RS.

The objects in this paragraph will only be used in the case p = 2. We write
Def’Q : Co — Sets for the functor of 14+ My(m4)-conjugacy classes of lifts 7: Gp —
GLy(A) of 7 satisfying the following conditions:

e 7 is unramified outside SU Q, and if v € S then detFlg,, = ¢ '|a,, -
e For each v € S U Sy, the homomorphism RY — A determined by TlGp,
factors through the quotient RE — R, introduced above.

We write Def&;D for the functor of 14 Ms(m 4 )-conjugacy classes of tuples (7, { Ay }vesus., ),
where 7 is as above and A, € 14+ Ms(ma). Then the functors Def’Q and Def'é‘:I

are represented by objects R'Q, R/C’)D € Co and there is again a natural morphism
Rioe — Ry

Let t = det Sym" '(r|g,) and ¢ = det Sym™ ' (+'|¢, ) denote the group de-
terminants over O (in the sense of [Cheld]) associated to these two symmetric
power representations, and let ¢ denote the group determinant over k which is their
common reduction modulo w. We introduce the object P € C» which is the quotient
Rg of R;OA’:_H introduced in [NT19a, §2.19]. Informally, P represents the functor
of conjugate self-dual group determinants of G g lifting ¢ which have similitude
character e!~™ and are semistable with Hodge-Tate weights in the interval [0, n — 1].

Lemma 2.2. Let A € Co be Artinian, let v € Sy, and let 7: Gp, — GLa(A) be a
lift of 7 of determinant 671|GFU such that the associated homomorphism RE — A
factors through RY — R,. View A™ as an A|Gr,]-module via the representation
Sym™ ' 7 : Gp, — GL,(A) (we equip Sym™  A? with its standard ordered basis,
¢f. BLGGII Definition 3.3.1]). Then A™ is isomorphic, as Z,|Gg,]-module, to a
subquotient of a lattice in a crystalline (in particular, semistable) Qp[Gr,]-module
with all Hodge—Tate weights in the interval [0,n — 1].

Proof. Tt follows from the construction in [Kis09bl [Kis09a] that the dual of A? is
isomorphic, as Z,[G,]-module, to the generic fibre of a finite flat group scheme
over Op,. By [BBM82, Théoréme 3.1.1], there exists a lattice L in a crystalline
Q,[GF,]-representation with Hodge-Tate weights in the interval [0, 1] such that A?
is isomorphic, as Z,[Gr,]-module, to a quotient of L. Tt follows that Sym’; ' A2 is
isomorphic, as Z,[Gr,]-module, to a quotient of Sym%}?l L. The proof is complete
on noting that Sym’ZL;1 L is a lattice in (Sym’ZL;1 L)[1/p], a crystalline Q,[Gr,]-
representation with all Hodge—Tate weights in the interval [0,n — 1]. |

Let A € Co, and let 7 : Gp — GL2(A) be a lift of 7 which determines a map
R — A. Lemma shows that the pseudocharacter associated to Sym™ ' (¥|q, )
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satisfies condition (2.16.1) of [NT19a]. In particular there are morphisms P — O
associated to the pseudocharacters ¢,t’. Taking the pseudocharacter of the symmetric
power of the universal deformation over R determines a morphism P — R in Cp.
We will study this morphism using the Taylor-Wiles method. In this paper we
call a Taylor-Wiles datum of level N > 1 a tuple (Q, @, (o, Bv)veq), Where:
e () is a finite set of places of F, split in K, such that for each v € Q,
¢y = 1 mod pV.
e For each v € (), we have fixed a factorisation v = vv° in K such that

Q={v|veQ}
e For each v € Q, au, B, € k are eigenvalues of 7(Frob,). We require that
ar~t ar=28,,..., 8" ! are distinct elements of .

We note that this last condition is stronger than the one typically appearing in
applications to automorphy of 2-dimensional Galois representations and is specially
adapted to our purposes here.

Let 75" : Gp — GLa(Rq) denote a representative of the universal deformation.
If v € @ then rém”\GFu is conjugate (in GL2(Rg)) to a unique representation
of the form A, © B,, where A, mod mg, = ury,and B, mod mg, = urg,. The
characters A,, B, : Gp, — Ré are independent of the choice of r}j?"i”. We write
Ag = [l eq k(v)*(p) (i-e. product of maximal p-power quotients of k(v)*). The
collection of characters A,0Artp, |O; (v € Q) determine a homomorphism O[Ag] —

Rq with the property that the natural map Rg — R factors through a canonical
isomorphism Rq ®oa, O = R.

[0,n—1]
RE,SUQ

in [NT19al §2.19] corresponding to pseudodeformations t of T with the following
additional properties:

We write Pg € Cp for the quotient of the quotient Rgyg of introduced

e For each v € @, ﬂg Ky factors through the maximal Hausdorff abelian quo-

tient G, — G‘}(I’EH By [ANT19, Proposition 2.5] (cf. [NT19a, Lemma 4.28],
in [ANTT9] we generalise [BC09] Proposition 1.5.1] to arbitrary characteris-
tic), there are unique characters xy.1,- - -, Xv,n lifting Ur ,n—igi—1 such that

t~|GK~ is the pseudocharacter associated to Xy,1 @ -+ @ Xu,n-
e Let m = |n/2] and let i € {1,...,n}. If n = 2m is even, then xu|1, =

XaE 2 e I = 2m + 1 is odd, then Xuilre. = XV - %[1,. -

The characters x,.m (v € Q) give Pg the structure of O[Ag]-algebra, and again
there is a universal morphism Py — Rg. We remark that this need not be a
morphism of O[Ag]-algebras when n is odd, although it is when n is even.

To carry out the patching argument, we need to introduce spaces of automorphic
forms. We first discuss automorphic forms on a definite quaternion algebra over
F, following the set-up of [Kis09a, §3.1] and [KW09bl §7]. Let D be a definite
quaternion algebra over F', ramified precisely at the infinite places and at the
places of 3. Fix a choice of maximal order Op and for each finite place v ¢ X, an
identification Op ®o, O, = M3(Op,). LU =1][, U, C (D ®p A¥)* is an open
subgroup, then we write Hp(U) for the set of functions f : (D ®p, AF)* — O

1t is possible that our condition on the eigenvalues of Frob,, necessarily entails that % is abelian
at v. However, we haven’t verified this and it doesn’t cost us anything to build this in to the
definition of Pg.
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such that for all v € D*, z € (A¥)*, g € (D ®o, AF)*, and v € U, we have

f(vgzu) = f(g).
We define

Uy = H(OD(X)OFOFv)X x(H(D®FFv)X>-

vgY vEY

If (Q,@, {aw, Bu}veq) is a Taylor—Wiles datum of level N > 1, then we define

N
Ur(@Q;N) =TI, Ui1(Q; N)» C Up(Q) =[], Uo(Q)w by U1(Q; N)y = Un(Q)v = Up,v
if v @, and Up(Q), = Iw, and

U1(Q;N), = {( CCL Z ) clw,:ad ts1e k(v)x(p)/(pN)}
if v e Q. Thus Uy (Q; N) C Up(Q) is a normal subgroup with quotient

Uo(Q)/U1(Q; N) = Ag/(pN).

We introduce Hecke operators. If v € X U @ is a finite place of F', then the
unramified Hecke operators 75", 5% act on Hp(Up(Q)) and Hp(U1(Q; N)). If
v € @ then the operator Ufﬂlv) acts on Hp(Up(Q)) and Hp(U1(Q; N)). We write
T%’fg’UQ for the polynomial ring over O in the indeterminates Tv(l)7 TU(Q)(v ZXUQ)

univ, 1 1
and T d = THE o {US) }oeql-

There is a unique maximal ideal mp C T’l‘)’fg’ of residue field & such that for
all finite places v ¢ S of F, the characteristic polynomial of 7(Frob,) equals
X2 — Tv(l)X + quy(Q) mod mp and for each v € S, Tv(l) € mp and T1§2) —1€emp.
If (@, @, (v, Bv)veq) is a Taylor—Wiles datum, then we write mp ¢ for the maximal
ideal of Tg?;”o% generated by mp NTHY,, and the elements Ug) —a, (veQ).

If x @ F\(A®)*/detU(Q; N) — O* is a quadratic character and f €
Hp(U1(Q; N)), then we define f ® x € Hp(U1(Q; N)) by the formula (f ® x)(g) =
x(det(g))f(g). We observe that if p = 2 and f € Hp(Ui(Q;N))mp,, then
f®x e Hp(U(Q; N))mD,Q'

Let mp > 0 denote the p-adic valuation of the least common multiple of the
exponents of the Sylow p-subgroups of the finite groups F*\(U(A)* Nt~1D*t)
for t € (D ®@p A$®)™; this number is finite, see [KW09b, §7.2].

Proposition 2.3. Let N > 1 and let (Q,@, (v, By)veq) be a Taylor-Wiles datum
of level N +mp.

(1) The mazimal ideals mp and mp g are in the support of Hp(Up) and
Hp(Un(Q)), respectively.

(2) Hp(U1(Q; N))mp o is a THE,o@00[Aq/(p")]-module free as O[Aq/(p™)]-
module, and there is an isomorphism Hp(Ui(Q; N))mp o ®o[ag /Ny O =
HpUo)mp of TH'S,q-modules.

(3) There exists a structure on Hp(U1(Q; N))mp. o, of Rg-module such that for

av of the universal deformation of T and for each finite

any representative ro
place v ¢ SUQ of F, trrg"(Frob,) acts as T and det " (Frob, )

acts as qu,§2). Moreover, the O[Ag]-module structure induced by the map
O[Aqg] — Rq agrees with the one in the second part of the lemma.
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Proof. The first part is a consequence of the Jacquet—Langlands correspondence
(and the existence of 7). The second part is [KW09b, Corollary 7.5]. The third part
is proved in the same way as [KW09D, Lemma 9.1] (cf. also [Kis09al Lemma 3.2.7]);
note that since Tﬁl) € mp for each v € S, only automorphic representations which
are non-ordinary at each v € S, can contribute to Hp(U1(Q; N))m,,- O

We next discuss automorphic forms on a definite unitary group of rank n. We
therefore fix a unitary group G over F, split by K/F, as in [NT19al, §4.1], together
with an extension of G to a reductive group scheme over Op. We recall that G
comes equipped with isomorphisms ¢, : Go,, — Resoy o, GL;, for each place
v of F which splits v = ww® in K. Moreover, for each place vt co of F, G, is
quasi-split, while for each place v|oco of F'; G(F},) is compact.

If V=T1I[,V, € G(AY¥,) is an open compact subgroup, then we write Hg(V') for
the set of functions f : G(F)\G(A¥)/V — O. We define V; =[], Vo,» by choosing
Vo = G(Op,) if v € ¥ and Vo, = 5 Twy if v € 3. I (Q,Q, {aw, Bu}ueg) is a
Taylor-Wiles datum of level N > 1, then we define V1(Q; N) = [[, Vi(Q; N), C
Vo(Q) =TI, Vo(Q)w by Vi(Q; N)y = Vo(Q)y = Vo if v € Q, and Vp(Q)y = ¢5 ' Twy

and
n

VI(Q: N)y = i H(ay) € Iwy | [Tai™ ™ = 1 € k(@)% (0)/(0™)}
i=1
if v € @ and n is even, and

Vi(Q; N)w = 15 {(aig) € T | [ ™70 = 1 € h(@)* (0)/ (™)}

if v € @ and n is odd. Thus V1(Q; N) C V5(Q) is a normal subgroup with quotient

Vo(@)/Vi(Q:N) = Ag /(™).

We introduce Hecke operators for the group G. If v ¢ SUQ is a place of F' which
splits v = ww® in K, then the unramified Hecke operators Lngéf) (i=1,...n) act
on the spaces Hg(Vo(Q)) and He(V1(Q; N)). If v € @ then the operators LglUg%
(¢ =1,...,n) act on the spaces Hg(V5(Q)) and Hg(Vl(Q; N)). We write T¢'g!,q for
the polynomial ring over O in the indeterminates T 75,2) (where w is a place of K split
over F', not lying above SUQ and 1 < i <n), and TE6S = T“é"éﬁQ[{Ugg Yoeo "
Thus Hg(Vo(Q)) and Hg(V4(Q; N)) are Tgﬁlgﬁg-modules.

There is a unique maximal ideal mg C T¢"g” of residue field & such that for
all finite places w of K, split over F and not lying above S, the characteristic
polynomial of Sym” ' 7(Frob,,) equals Z?ZO(fl)iqu_l)/le(f)X”*i mod mg. If
(@, Q, (aw, By)veq) is a Taylor-Wiles datum, then we write mg ¢ for the maximal
ideal of Té"g%g generated by mg N Té"fgﬁQ and the elements

R | Ca
7 e
forve@,i=1,...,n.
The unitary group G comes with a determinant map det : G — U;, where
U1 = ker(NK/F : ResK/F Gm — Gm) If

0 : Uy (F)\U1(AS)/ det Vi (Q; N) — O



SYMMETRIC POWER FUNCTORIALITY, II 11

is a character and f € Hg(V1(Q; N)) then we define f ® 0 € Hg(V1(Q; N)) by the
formula (f @ 0)(g) = 6(det(g))f(g). If f € Ha(Vi(Q; N))me., and 8 is trivial, then
f®0 € Hg(Vi(Q; N))me.o- We will use this construction only in conjunction with
the following lemma.

Lemma 2.4. Suppose that n is even and that p = 2. Suppose that

X FP\(AF)*/det U1 (Q; N) — O*
18 a quadratic character. Then there exists a unique character

9X : Ul(F)\Ul(A%O)/det Vl(Q; N) — O

such that for all z € (AR)* we have 0, (z/2°) = x(22°).
Proof. There is a short exact sequence of F-groups

0— Gp — Resg/p Gy = U — 0,
where the last map is z — z/z¢. By Hilbert 90 we have a short exact sequence

0— FX\(AD?) = K*\(AR)" = U1 (F)\U1(ATY) — 0.

This shows that there is a unique character 8, : U1 (F)\U1(A%¥) — O* such that
0, (2/2°) = x(22°) for all z € (AR)*. We need to check that 6, is trivial on
det V1(Q; N). This can be checked locally at each finite place of F. At places v € Q
it follows from the fact that y is unramified at v. If v € @ then we see, using that
n is even and identifying Uy (F,) with F, that det V1(Q; N), is contained in the
subgroup of Oxv with square image in k(0)*. Since x is quadratic, 6, annihilates

this subgroup, and we’re done. (I

Let mg > 0 denote the p-adic valuation of the least common multiple of the
exponents of the Sylow p-subgroups of the finite groups G(F) NtVot~! (t € G(AR)).

Proposition 2.5. Let N > 1 and let (Q, Q, (0w, Bu)veq)) be a Taylor-Wiles datum
of level N +mg. Then:

(1) The mazimal ideals mq, ma, g are in the support of Ha(Vo) and Ha(Vo(Q)),
respectively.

(2) Ha(Vi(Q; N))me.q s a TS 0@00[Aq/ (pV)]-module free as O[Aq/(p™)]-
module, and there is an isomorphism Hg(Vi(Q; N))mg o ®o[ag/ V) O =
He(Vo)me of TE'E o-modules.

(3) There exists a structure on Hg(Vi(Q;N))me.o of Po-module such that
if AY" . G — Pg (i = 1,...,n) are the coefficients of the universal
characteristic polynomial, defined as in [Cheldl §1.10], then for any finite
place v ¢ SUQ of F which splits v = ww® in K, A¥""(Frob,,) acts on
He(Vi(Q;N))me., a8 g IPT | Moreover, the O[Ag]-module structure
on Ho(Vi(Q; N))me.o induced by the map O[Aq] — Pg agrees with the one
in the second part of the lemma.

Proof. The first part may be deduced, as in [NT19al, §4.3], from [Lablll Théoréme
5.4] (and the existence of II})). The other parts are proved in a very similar way
to the second and third parts of Proposition [2.3] as we now explain. We begin
by constructing a more familiar set of objects. Let Ay = [[,co k(v)*(p)". Let
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VI(Q;N) =TI, VI(@; N)u C Vo(Q) be the subgroup defined by V{(Q; N)y = Vo(Q)w
if v €@ and

VI(QiN)w = 5 {(ayy) € Iwg | Vi =1,..., 1,0 = 1 € k(D) (p)/(PV)}

ifv e Q. Thus V{(Q; N) C V5(Q) is a normal subgroup with quotient V5(Q)/V{(Q; N) =
A’Q/(pN). We write P, € Co for the quotient of the ring Rsuq introduced in [NT194,
§2.19] corresponding to pseudodeformations whose restriction to G i factors through
G%’E for each v € Q. As in the case of Py, [ANT19, Proposition 2.5] again shows

that for each v € Q there are unique characters A% : Gr, = (Pg)* (i=1,...,n)

such that Agi) mod Mpy = Ul n—igi-1 and det(AE,l) B P A$”>) is the restriction
to Gk, of the universal pseudocharacter over Gx. We now claim that the following
statements hold:

o Ho(V{(Q; N))mg o isa TE'E,o®00[A, /(p")]-module free as O[AL, / (p™)]-
module, and there‘ is an isomorphism He (V{(Q; N))me.q ®o(ag/(p¥) O =
He(Vo)me of TE'E g-modules.

e There is a unique structure on Hg(V{(Q; N))mg o of Py-module such that
for any place v ¢ S U Q of F which splits v = ww® in K, A% (Froby) acts
on Ha(V{(Q5 N))me o as g’ T,

e The two induced O[Af]-module structures on Hg(V{(Q; N))mg o (one
by the isomorphism V5(Q)/V{(Q; N) = Ap/(p"), the other by the map

(@)

Af — P associated to the tuple of characters AY o Arty, \OIX( ) are the

same.
To prove the first point, we need to explain why Hg(V{(Q; N))me., is an O[A’Q/(pN)]—
module with the claimed coinvariants. The action of Af,/ (p") is induced by the
action of Vp(Q) via the isomorphism Vo(Q)/V{(Q; N) = Af, /(p™) (which therefore
commutes with the action of Tg"g}(JQ) The freeness follows because Vo (Q)/V{(Q; N)
acts freely on the quotient G(F)\G(AY)/V{(Q; N), because V{(Q; N) contains all
the p-torsion elements of V;(Q); compare the proof of [KWQ9b, Lemma 7.4] and
[BHKTI9, Lemma 8.18]. The freeness of this action implies that there is an isomor-
phism Hg(V/(Q; N))me.q ®o(ag/(p¥) O = Ha(Vo(Q))me o of TS, g-modules. To
complete the proof of the first point, we need to explain why there is an isomorphism
He(Vo(@))me.o = Ha(Vo)me. This follows from [NT19a, Proposition 3.1]. The
second part is proved in the same way as [NT19al Lemma 4.7]. The third part is
proved using [NT19al Lemma 4.7] and [BC09, Proposition 1.5.1] (in particular, the
uniqueness of the decomposition of residually multiplicity-free pseudocharacters).
We now need to explain why the above claims imply the properties in the
statement of the proposition. There are canonical quotient morphisms Pé — Py
and A’Q — Agq. The proof is complete on noting that trace induces an isomorphism
He(V{(Qi N))me.q @oiag)/e) OlAq/(0™)] 2 Ha(Vi(Q; N))me o and that the
map Pp, — Pg factors through an isomorphism 7, ®o[ay)] OlAg] = Py. O

We are now ready to prove Theorem We will need to treat the cases p > 2
and p = 2 separately.

Proof of Theorem case p > 2. Define Hg = Hg(Vo)mg and Hp = Hp(Up)mp -
The proof of the theorem will be based on the following proposition:
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Proposition 2.6. We can find an integer ¢ > 0 with the following property: let
Weo = OY1,..., Yy, Z1, ..o, Zysus..|-1]- Then we can find the following data:

(1) Complete Noetherian local W, -algebras Py, Roo equipped with isomor-
phisms Py, @w.,, O =2 P and Roo @w.,, O = R in Co.

(2) A surjection Ripe[X1,...,X4] = R in Co, where g =g+ |SU Ss| — 1.

(3) A Poo-module Hg oo and an Rso-module Hp o such that both Hg o, Hp oo
are finite free Woo-modules, complete with isomorphisms Hg oo ®@w. O = Hg
(as P-module) and Hp o Qw., O = Hp (as R-module).

(4) A morphism Py, — Rso of O-algebras making the diagram

P —— R

| ]

P——R

commute.

Before giving the proof of Proposition we show how it implies the theorem.
Let p C P denote the kernel of the morphism P — O associated to t. It is
enough to show that p is in the support of Hg as P-module. Indeed, this would
imply (using [Labll, Corollaire 5.3] and the irreducibility of Sym™ ' r|g, ) the
existence of a RACSDC automorphic representation II,, of GL,(Ak) such that
., = Sym™ ' (r|g, ). By descent (in the form of e.g. [BLGHTTI) Lemma 1.5]),
this would imply the sought-after automorphy of Sym” ' r. Equivalently, we must
show that if p., is the pre-image of p under the morphism P, — P, then p, is in
the support of Hg o as Px-module. (Since Suppp Hg = Suppp_ Ha, oo N Spec P,
intersection taken inside Spec Ps,.)

The Py -module Hg o is a Cohen-Macaulay module (i.e. it is finite and the
dimension of its support is equal to its depth), since Hg o is a finite free We-
module. Applying [Stal3l Tag 0BUS], it follows that each irreducible component of
Suppp_ Ha,so has dimension g + 4]S U So|. Similarly, we see that each irreducible
component of Suppp_ Hp o has dimension ¢ + 4|5 U S|. Since R is a quotient
of Rioc[X1,...,X4], a domain of Krull dimension g + 4|S U S|, we see that
Rioc[X1,...,Xy] = Roo is an isomorphism, that Ry is a domain, and that Hp o
is a faithful R..-module.

Let p’ C P denote the kernel of the morphism P — O associated to ¢,
and let p’ denote the pre-image of p’ under the morphism P,, — P. Then
Poo € Suppp_ He oo, by hypothesis, and therefore dim(Py (pr_)) > ¢+4[SUS|—1.
We claim that the Zariski tangent space to the local ring P (p- ) has dimen-
sion at most g + 4|S U Se| — 1. Indeed, it suffices to note that the quotient
Poopry/ (Y1, Yy, Z1,s ey Zaysus. | -1) = Ppry equals its residue field E, by the
vanishing of the adjoint Bloch-Kato Selmer group of rr; , (i.e. by [NT19a, Theorem
A, Proposition 2.21, Example 2.34]). We deduce that P (pr.) is a regular local
ring of dimension ¢ + 4|5 U S| — 1, so there is a unique irreducible component
Z of Spec Py, containing the point p._, which has dimension g + 4|5 U S| and is
contained in Suppp_ Hg,oo-

Since Spec R is irreducible and the image of the morphism Spec Ro, — Spec Py,
contains p’_, we find that the morphism Spec Ro, — Spec P, factors through Z.
In particular, po lies in Z, hence in Suppp  Hg oo This completes the proof of the
theorem.
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The proof of Proposition [2.6] is based on a patching argument. We first prove
a lemma which shows that there are enough Taylor-Wiles data. The argument is
very similar (and essentially identical in the case n = 2) to the proof of [DDT97,
Theorem 2.49]. We spell out the details here just to show that the condition that
the numbers a?~?3:71 (i = 1,...,n) are distinct does not cause any difficulty.

Lemma 2.7. Let ¢ = dimy H'(Fs/F,ad7(1)), and let g = q+|S US| — 1. Then
for any N > 1, we can find a Taylor-Wiles datum (Q, Q, (e, Bv)veq) of level N > 1
such that there is a surjection Rioc[X1,..., X4] — RS of Ryoc-algebras.

Proof. Let (@, Q, (aw, By)veq) be a Taylor-Wiles datum. A standard computation
(compare e.g. [Kis09b, Proposition 3.2.5], [Thol6, Proposition 5.10]), shows that
there is a surjection Rjoc[X1,..., X ] — RS where g = Ao+ Q|+ [SUSx| —1 and
Aq is the dimension of the group

ker | H'(Fs/F,ad7(1)) — [[ H'(F,,ad"7(1))
veEQR
We therefore need to show that for any N > 1, we can find a Taylor—Wiles datum
of level NV such that |Q| = ¢ and Ag = 0. By induction, and the Chebotarev density
theorem, it is enough to show the following claim:
e Let [¢] € H'(Fs/F,ad’7(1)) be non-zero. Then for any N > 1, there exists

o € Gp(c,y) such that #(0) & (o0 —1)ad’7(1) and the eigenvalues a,  of

7(0) satisfy (a/B)* #1fori=1,...,n—1.
Let L/F denote the extension cut out by Proj7. Recall our assumption that
I' = Gal(L/F) is conjugate in PGLy(F,) either to PSLy(F,e) or PGLy(Fpa) for
some p® > max(5,2n — 1). In either case [I',I'] = PSLy(F,.) is a non-abelian simple
group that acts absolutely irreducible on ad’. Moreover, [CPS75| Table (4.5)] shows
that H'(PSLy(Fpa),ad”) = 0. The inflation-restriction exact sequence implies that
HY(L((pn )/ F, ad”7(1)) = 0. Another application of inflation-restriction shows that
Res L(,n)/ r|¢] # 0; we may identify this restriction with a non-zero G p-equivariant
homomorphism f : G L,n) ad’ 7(1). Since ad’7 is absolutely irreducible as a
k[PSLy(Fa)]-module, f(Gr(c ,)) spans ad’7(1) as k-vector space.

To prove the claim above,pchoose any 0 € G F(¢,n) such that the eigenvalues
a, € k of 7o) satisfy (a/B)" # 1 fori = 1,...,n — 1. (This is possible since
if ¢ generates F ., then #* has multiplicative order > (p® — 1)/2 > n — 1 and
Proj ?(GF(C,,N)) contains an element which is conjugate to diag(¢,t~!) = diag(t?,1).)

If ¢(0) & (0 — 1)ad”7(1) then we’re done. Suppose instead that ¢(o) € (o0 —
1)ad7(1). Since f(GL(C,,N)) spans ad’7(1), we can find 7 € GL(QPN) such that
f(r) & (0—1)ad’7(1). Then 7o € Grc y), Proj7(ro) = Proj7(c), and the cocycle
relation shows that '

$(10) = ¢(7) + ¢(0) & (o — 1) ad”7(1).
In either case we have established the claim; this completes the proof. O
Now we give the proof of Proposition Let ¢ = dimy, H'(Fg/F,ad’7(1)) and

g = q+|SUS|—1. Foreach N > 1, fix a Taylor-Wiles datum (Qn, Qn, (@, Bv)ve@y )
of level N + max(mp, mq) such that there exists a surjection Ryo.[X1,...,X,] —
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RSN of Ryoc-algebras. Fixvg € S and define T = O[{Z, i j bvesus. 1<ij<2]l/(Zvy,1,1)-
We view T as an augmented O-algebra via the augmentation which sends each Z,, ; ;
to 0. Choose for each N > 1 a surjection O[Y1,...,Y,] = O[Aqg,/(pY)]. Then we
get surjections Wa, — T®0O[Ag, /(pV)] = O[Ag, /(™).

Define Ry = Ry ., Hp .y = T®oHp(U1(Q; N))mp o, » Px = TR0 Pqy, Hon =
T<§>OH(V1(Q;N))mG,QN- We fix a representative 7" : G — GLy(R) for the
universal deformation over R, and representatives rg*" : Gp — GLa(Rgq, ) for
the universal deformations over Rg, lifting U for each N > 1. These choices
determine isomorphisms RY 2 T®oR and Ry = 'T@(QRQN, which classify the
universal S U Soo-framed liftings (7", {1 + (Zy.i,;) bvesus.,) (resp. (r&2, {1+
(Zy,i,j)}vesus.. ). Thus each ring Ry, Py has a Wo-algebra structure, and there
are isomorphisms Ry @w., O = R, Py Qw., O = P. Moreover, Proposition
and Proposition show that the modules Hg v, Hp v are finite free as
T®o0[Agy/(pY)]-modules. Finally, completed tensor product with 7~ promotes
the morphism Pg, — Rg, to a morphism Py — Ry.

To patch these objects together we now carry out a diagonalisation argument
along very similar lines to the proof of [Kis09b, Proposition 3.3.1]. By [NT19al
Lemma 2.16], we can find an integer go > 0 and for each N > 1 a surjection
O[X1,...,Xg] — Pn of O-algebras. Let a C W, denote the kernel of the
augmentation W, — O, and for any N > 1 let ay denote the kernel of the map
Wao — O[Ag, /(pY)]. Choose a sequence (by)n>1 of open ideals of W, satisfying
the following conditions:

e For each N > 1, by41 C by.

e Foreach N > 1, ay C by.

(] ONZle =0.
Let s = max(dimg Hp[1/p],dimg Hg[1/p]). Let ry = lengthy, (We/bn)®. Then
the sequence (ry)n>1 is non-decreasing and

lengthRN HD,N/(bN) = lengthwoo HD,N/(bN) S N,

so Hp n/(bn) has a natural structure of RN/m%ffv—module. Similarly, Ha n/(bn)
has a natural structure of Py/mpy -module. Thus for every pair of integers N >
M > 1 we have, by passage to quotient from the data constructed above, a diagram
(of rings and modules)

Hp n/(bym) — Hp/(bnr)
() ()

Rioe[ X1, .-, Xg|@0Wa — Ry /mpt —— R/mp
O[X1,..., Xy |®0Wae — Py /mpl —— P/mp"

J
Hg n/(bar) — Hg/(bar)

where the horizontal arrows are all surjective. Keeping M fixed, the cardinalities
of the rings and modules appearing in this diagram (excepting those in the first
column) are uniformly bounded as N varies. By the pigeonhole principle, we can
therefore find an increasing sequence (Nas)ar>1 of integers Ny > M such that for
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each M > 1 there is a commutative diagram of O-algebras

Rioc[X1, ... Xg|®oWs RNosys /MRy, ——— R/my"
\ . / T TM/
RNM/mRNM ‘ R/mR
Oﬂle"'ngoﬂ®OWw T PNM+1/mTP11V\1]M+1 P/m;?M

Pryy, /e P/mi

where the morphisms from the back square of the cube to the front are isomorphisms,
and there are commutative diagrams of modules

Hp Ny /(b)) ———— Hp/(bur)

Hp ny, /(bwm) Hp/(bar)

HG Ny gy /(b)) ————— Hg/(bm)

)/

HG,NM/(bM HG/(bM)a

compatible with the module structures arising from the previous commutative cube,
and where the arrows from back to front are again isomorphisms. We define

Ry = thRNM/m};j‘;M and Py, = I'%nPNM/m%M.
and similarly

Hp o =m Hp n,, /(bar) and Hg oo = lim He Ny, /(b)-
M M

By passage to inverse limit, there is a diagram (of rings and modules)

HDOOHHD

Rioe[X1,. .., X |@0Wse — Roo —— R

| ]

O[X1,..., Xy |®0Woo — Poo —— P

To complete the proof of the proposition, it remains to show that these objects have
the following properties:

e The morphism Rjo.[X1,...,X,] = R is surjective.

e The modules Hp o, Hg,oo are finite free over W, and the morphism
Hp oo — Hp (resp. Hg,oo — He) factors over an isomorphism Hp o /(a) =
Hp (resp. Hg oo/(a) = Hg).

e The morphism R,, — R (resp. Py, — P) factors over an isomorphism
Roo/(a) = R (resp. Poo/(a) = P).
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The first point holds because Rjoc[X1,...,X ] is a complete local ring and each
map Rioe[X1,...,X4] = Ry, /m}'{fj}M is surjective. The second follows from e.g.
Nakayama’s lemma and the freeness of the modules Hp n,, /by, He Ny, /0am. For
the third point, we recall that Ry,,/(a) = R, and consequently RNM/(m%”fVM ,a) =
R/m7". We therefore need to show that the natural map

(m RNM /m;cj\i’M> /(a) - I.&HRNM/(mT}’ﬁ’M ’ a)
M M

is an isomorphism, or equivalently that the ideal aR, of R is closed in the mp_ -
adic topology. This is true since R, is a Noetherian ring. The same proof applies
to the ring P.. O

Now we treat the case p = 2.

Proof of Theorem[2.1], case p = 2. Define Hg = H(Vy)mg and Hp = Hp(Up)mp -
The proof of the theorem in this case will be based on the following proposition,
incorporating ideas from the 2-adic patching argument given in [KWO09b, [Kis09a].
If A € Co, we follow [KW09bl §2.1] in writing Sp 4 for the functor Sp, : Co — Sets
represented by A. We write G, : Co — Groups for the functor which sends A € Cp
to the group ker(A* — (A/ma)*).

Proposition 2.8. We can find an integer q > |S U So| — 2 with the following
property: let Weo = O[Y1,..., Yy, Z1, ..., Zysus..|-1] and let v =2 —[SU S| +q.
Then we can find the following data:
(1) Complete Noetherian local W -algebras Pso, Roo equipped with isomor-
phisms Py, @w., O 2 P and Roo @w., O = R in Co.
(2) A complete Noetherian local O-algebra R, and surjections Rioc[X1, ..., Xg] —
R/ and R, — Ro in Co, where g =2q + 1.
(3) A Ps,-module Hg o and an Roo-module Hp o such that both Hg oo, Hp, oo
are finite free Woo-modules, together with isomorphisms Hg oo ®w_ O = Hg
(as P-module) and Hp o @w., O = Hp (as R-module).
(4) A morphism Pso — Roo of O-algebras making the diagram

P —— R

| ]

P——R
commute. . .
(5) A free action of G}, on Spr, and a G}, -equivariant morphism ¢ : Spp,  —
ek

m?’

where (A};Vn acts on itself by the square of the identity.
These objects have the following additional properties:
(6) We have 6~'(1) = Spg_. The induced action of G7,2](0) on Ry lifts to
Hp oo
(7) There exists an action of G},[2] on Spp_ such that the morphism Spg_ —
Spp._ is é% [2]-equivariant, and the induced action of é;’n [2](O) on Px lifts
to Hg oo-
Once again, we show how Proposition 2.8 implies the theorem in this case before
giving the proof of the proposition. Let p C P denote the kernel of the morphism
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P — O associated to t. It is again enough to show that p is in the support of Hg
as P-module, or equivalently that the pullback p,, C Py of p is in the support of
Hg o as Px-module.

The Py-module H¢ o is a Cohen-Macaulay module, and each irreducible com-
ponent of Suppp_ Hg o has dimension ¢ + 4|5 U S|. Similarly, each irreducible
component of Suppg_ Hp o has dimension ¢ + 4[5S U S|.

Let R C R’ denote the subring of invariants for the action of G7, (cf. [KW095,
§2.4]). Then the morphism Spg, — Spgine is smooth of relative dimension v (one
can apply [KW09b| Proposition 2.5], which is used for a very similar purpose in
the proof of [KW09b, Proposition 9.3]). On the other hand, Spg_ — Spgin is

a torsor for the group é% [2], showing that R has Krull dimension at least
q+4|S U Ss|. We conclude that Spec R, has dimension at least ¢ + 4|S U S| +
v = dim Ryoe[ X1, ..., Xg]. Since Rjoc[X1,...,X,] is a domain, it follows that
the map Ryoc[X1,. .., X4] — R, is an isomorphism, that Spec R, is irreducible,
that Spec R is irreducible of dimension q + 4|S U Sw|, and that é;’n [2](O) acts
transitively on the set of irreducible components of Spec R, all of which have
dimension ¢+4|SUSw|. Property @ of Propositionimplies that Suppg_ Hp o
is invariant under the action of G7,[2](O), so we conclude that H D,oo has full support
in Spec(Rs) (in fact, considering Hp o [5] over Roo[2] we can conclude that Hp o
is a faithful R.-module).

Let p’ C P denote the kernel of the morphism P — O associated to ¢', and let p/
denote its pullback to Ps. Then p/, € Suppp_ Hg oo, by hypothesis. Similarly, let
t,v' C R denote the kernels of the morphisms R — O associated to r, 7’ respectively,
and let too, t,, C Roo denote their pullbacks under the morphism R, — R. Then
Poo (resp. pl.) is the image of vt (resp t/ ) under the map Spec Ro, — Spec Py.
Let v, € Spec Rog denote a point which is in the G7,[2](O)-orbit of v/, and on the
same irreducible component of Spec Ry, as too, and let p2 denote the image of ¢/ in
Spec Ps,. Then p/_, poo lie on a common irreducible component of Spec Ps,. Since
the action of é%[?](@) extends to P, and Hg oo and the morphism P, — Ro is
equivariant for this action, Suppp_ Hg, oo is invariant under a%[Q}(O) and contains
poe-

We now observe that the Zariski tangent space of the local ring Py (p ) has
dimension at most ¢ + 4|S U S| — 1. Indeed, translating by the element of
G7,[2)(O) which takes p’, to p’y,, it suffices to show that the Zariski tangent space
of the local ring Py, ) has dimension at most ¢ + 4|S U S| — 1, or even that
Pm,(pgc)/(Yl, oYy, Zhy oo Zysus.|-1) = Ppry is a field. This again follows from
[NTT9a, Theorem A, Proposition 2.21, Example 2.34]. It follows that Py (. ) is a
regular local ring of dimension ¢+4|SUSs|—1 and that there is a unique irreducible
component of Py, containing the point p7, which has dimension ¢ 4+ 4|5 U S| and
is contained in Suppp_ Hg,oo- We deduce that po, € Suppp  Heo, as required.

The proof of Proposition [2.8]is again based on a patching argument. Here is the
analogue of Lemma [2.7] in our case.

Lemma 2.9. Let ¢ = dim H'(Fs/F,ad7) — 2, and let g = 2q + 1. Then g >|SU
Seo| —2 and for any N > 1, we can find a Taylor-Wiles datum (Q, Q, (o, By)veq))
of level N > 1 with the following properties:

(1) QI =q.
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(2) There is a surjection R [X1,..., X ] — R’Q’D of Ryoc-algebras.

(3) Let ©¢q denote the Galois group of the mazimal abelian pro-2 extension
of F which is unramified outside Q and (S'U S )-split. Then there is an
isomorphism ©¢/(2N) =2 (Z/2NZ)7, where v =2 — |S U S| + q.

Proof. This is contained in [KW09bl, Lemma 5.10], except that result specifies only
that if v € @ then the eigenvalues a, 8, € k of 7(Frob,) are distinct. Here we
require that the numbers a? ‘85! (i = 1,...,n) are distinct. However, reading the
proof of loc. cit. we see that we can indeed choose v so that 7(Frob,) satisfies this
stronger requirement (using of course our assumption that the projective image of 7
contains PSLo(Faa) for some a > 1 such that 2% > max(5,2n — 1), as we did in the

proof of Lemma . O

Now we give the proof of Proposition Let ¢ = dimy, H'(Fs/F,ad7) — 2 and
g =2q+1. For each N > 1, fix a Taylor-Wiles datum (Qx, Qn, (o, By)vegn) Of
level N +max(mp,m¢) such that there exists a surjection Ryo.[X1, ..., X,] — Ré’fv
of Rjoc-algebras. Define T = O[Zy, ..., Zy(s+|s.|)—1]- Choose for each N > 1 a
surjection O[Y1, ..., Y,] = O[Agy]- Then we get a surjection Woy — TR0 O[Agy]-

Define Ry = R%N,AR’N = Ry, Hpn = T@oHp(U1(Q; N))mpo,, Py =
T®oPoy, Han = T®0H0(V1(Q;N))mG,QN. We fix a representative r%™v :
Gr — GLa(R) for the universal deformation over R, and representatives TON
Gr — GL2(Rgq,) for the universal deformations over Rg, lifting " for each
N > 1. These choices determine compatible isomorphisms RY & T®oR and
Ry = T@)ORQ ~- Thus each ring Ry, Py has a W-algebra structure, and there
are isomorphisms Ry ®w,, O = R, Py ®w,, O = P. Moreover, Proposition
and Proposition show that the modules Hg v, Hp v are finite free as
T®00[Ag,/(P™)]-modules. Completed tensor product with 7 promotes the mor-
phism Pg, — Rg, to a morphism Py — Ry.

Let O, = SPoje, ] denote the group functor A — Hom(Og,, AX). Then B¢,
acts on Sp Ry by twisting: if r is a lifting corresponding to a morphism Ry — A
and x : ©g, — A* is a character, then r» ® x is a lifting which determines another
morphism Rf — A. There is a morphism dy : Sp Ry éQ ~ given by taking the
determinant and multiplying by €, and 5;[1(1) = Spg,- The induced action of
O¢x[2](0) on Ry lifts to an action on Hp (U (Q; N))wp o, » given by twisting by
quadratic characters as above (see also [KW09b, §7.5]). Similarly we can define
compatible actions of ©¢g,[2] on Py and of O¢,[2](0) on He(V1(Q; N)wc.ay s
which are trivial if n — 1 is even and which correspond to twisting by the quadratic
characters x|g, (resp. 0, for x € Og,[2](O)) when n — 1 is odd. We extend these
to actions on Hp y and Hg n by completed tensor product with 7. The morphism
Py — Ry is equivariant for these actions. A very similar argument to the proof
of [KWQ9bl, Proposition 9.3] (with modifications as in the proof of Proposition
above) now shows how to use the above data to construct the objects required by
the statement of Proposition [2.8 g

3. KILLING RAMIFICATION

Our goal in this section is to prove the following theorem (Theorem |A|of the
introduction):
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Theorem 3.1. Let n > 1. Let m be a regular algebraic, cuspidal automorphic
representation of GLa(Aq) which is non-CM. Then Sym"™ ! 7 exists.

We fix n, which we can assume to be > 3. The proof of Theorem will be
roughly by induction on the cardinality of sc(w), the set of primes p such that m, is
supercuspidal; the case where sc(m) is empty is exactly the main result of [NT19D].

We begin with some preparatory definitions and results.

Definition 3.2. Let m be a regqular algebraic, cuspidal automorphic representa-
tion of GL2(Aq). We define the semisimple conductor M, of m to be M, =
[I, N((recq,m)**) (where N denotes conductor).

Lemma 3.3. Let 7 be a regular algebraic, cuspidal automorphic representation of
GL2(Aq), let p be an odd prime, and let v : Q, — C be an isomorphism. If 7y , is
reducible or dihedmﬂ then the prime-to-p part of its conductor divides M.

Proof. If 7., is reducible or dihedral then its image has order prime to p, and for
any prime [ # p, 7, Ga, is semisimple. This shows that the conductor of Fﬂ7L|GQl
divides the conductor of (recq,m;)®*. .

Lemma 3.4. Let w be a regular algebraic, cuspidal automorphic representation of
GL2(Aq). Let p be a prime, let ¢ : Qp — C be an isomorphism, and suppose that
Proj7.,.(Gq) contains a conjugate of PSLy(Fpa) for some p* > 5. Then we can
find another regular algebraic, cuspidal automorphic representation @' of GL2(Aq)
with the following properties:
(1) There is an isomorphism Fr, = Tr ,.
(2) @ has weight 2 and is not t-ordinary.
(8) There is an isomorphism rechwz’) = wy D wa, where wi,ws 1 Wq, — C*
are characters of conductor dividing p>.
(4) For each prime l # p, m is a twist of the Steinberg representation (resp.
supercuspidal) if and only if m is.

Proof. Let % be the set of primes [ # p such that m; is a twist of the Steinberg
representation, and let T' be the set of primes [ # p such that m; is supercuspidal.
Let Iy > 5 be a prime such that Iy = 1 mod p, m, is unramified, and 7 ,(Froby,)
has distinct eigenvalues (such a prime exists because of our assumption on the
image of Proj7, ,). Fix a coefficient field £ containing a p*th root of unity. If [ is a
prime such that 7; is supercuspidal, then we can find, after possibly enlarging F, an
O[|GL2(Z;)]-module M;, finite free as O-module, such that M; ®o,, C is a type for
the Bernstein component containing 7, in the sense of [BM02, Definition A.1.4.1].
We define M = Quer M, M, = M ®0 k, and Mg = M ®p E. We write M"Y, My
and My, for the O-, k-, and E-linear duals of these U-modules, equipped with the
dual action of U.

Let D denote the quaternion algebra over Q such that if [ is a prime, then D
is ramified at { if and only if [ € ¥. (Thus D is ramified at oo if and only if |X|
is odd.) Fix a maximal order Op C D and for each prime I ¢ ¥ an identification
Op®zZ = My(Z;). fU =]],U; C (Op ®z 2)* is an open compact subgroup, we
write Y (U) for the locally symmetric space of level U (namely the object denoted

chsD/Q a,, in [NTI16, §3.1]). We regard M as an O[U]-module by projection to

2By dihedral, we mean that the representation is induced from an index two subgroup of Gq.
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[Licr GL2(Zy). If U, = GLa(Z,) and r > 1 then we write Up(p") C U for the open
compact subgroup with the same component at primes [ # p and component

{(i Z)GGLQ(ZPHC_Omode}

at the prime p. We identify any pair of characters x1,x2 : (Z/p"Z)* — O* with
the character x1 ® x2 : Up(p") — O given by the formula

b
X1 ® X2 (( CCL d )) = x1(a mod p")x2(d mod p").

We write M(x1 ® x2) = M ®o O(x1 ® X2), regarded as O[Uy(p")]-module. We use
similar notation for k- and F-valued characters.

Let § = 0 if D is ramified at oo and § = 1 otherwise. Let U = [[, U; be the open
compact subgroup defined as follows:

[ ] Ulo = IW[OJ.
o If I & X U{lp}, then U, = GLo(Z).
e If [ € ¥ and m = Sta(x;), then U; = ker(x; odet : (Op ®z Z;)* — C*).

Then U is neat, in the sense of [NT16, §3.1] (because of the choice of Uj,), and we
can find characters X,X5 : F; — k™ such that

H (Y (Us(p)), Mi(Xy ®X2)" )m, #0,

where m, C T}gfgjuTU {o.p} 18 the maximal ideal associated to :~!7°° (notation for
the Hecke algebra as in 7 cf. [BDJIO, Corollary 2.12].

Let x1,x2 : (Z/p3Z)* — O* be lifts of X, X5 such that xi/x2 has conductor p3.
We will show that

(3:4.1) HO(Y (Uo(p*)), Mi(a @ x2) )< # 0,

where the superscript denotes the subspace where the Hecke operator [Up(p*) a1 Uo (p?)]
acts with eigenvalues that have p-adic valuation 0 < s < 1. Assuing holds,
we can complete the proof of the lemma. Indeed, the Jacquet—Langlands corre-
spondence then implies the existence of a regular algebraic, cuspidal automorphic
representation 7’ of GL2(Aq) satisfying the following conditions:

There is an isomorphism 7 , = 7 ,.

7’ has weight 2.

1 7 |y pe) contains a copy of x1 ® x2 on which [Up(p?)ay1Us(p?)] acts
with eigenvalue of p-adic valuation 0 < s < 1.

If I € ¥ then 7 is a twist of the Steinberg representation.

If I € T then 7j|qr,(z,) contains M; ®o , C, hence (by definition of a type)
m; is supercuspidal.

o If | ¢ X UT U{p}, then 7 is a principal series representation.

By [BM02, A.2.4], there is an isomorphism recq,m, = wi; @ wa, where wy,wy :

Wq, — C* are characters such that w; o ArtQp|z; =1 and ws 0 ArtQp |pr = X2.

Moreover, the space Homg, sy (X1 ® X2, 1,_177;,) is 1-dimensional. Since the Hecke

operator [Up(p®)a, 1Uo(p?)] acts with eigenvalue of p-adic valuation 0 < s < 1, 7’ is
not ¢-ordinary and therefore satisfies our requirements (cf. [Gerl9, Lemma 5.2]).
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We now show that (3.4.1) holds. We have
R (Y (Uo(p™), Me(xa @ x2)V)as™<! + 12(Y (Uo(p*)), Me(x1 ® x2)" )inr
+ (Y (Uo(p*)), Mp(x1 ® x2)" )it
=1 (Y (Uo(p%)), ME(x1 ® X2)" ).
(where lowercase h denotes dimension of cohomology over k or E). For each 7’
contributing to H° (Y (Up(p®)), M (x1 ® Xx2)¥), ¢~ ) |uy(ps) also contains a copy of
X2 ® x1 with multiplicity one. The product of the eigenvalues of [Up(p®)a, 1Uo(p?)]
on the y1 ® x2 and y2 ® 1 isotypic spaces of L_IWZ/)‘UO(Z,B) has p-adic valuation 1.
We deduce that
R (Y (Uo(p*)): Mu(x1 © x2) )t = B0 (Y (Uo(0*)), ME(x2 © x1)" )i -

Moreover,

(Y (Uo(p*)), Me(x1 ® x2)")ar” = 1 (Y (Uo (), Mi (X1 @ Xa)* Jan s

and

W (Y (Uo(p*)), Me(x2 ® x1) )i = B (Y (Uo(p), Mi(X2 @ 1)V Jer
by Hida theory. It is therefore enough to show that

R(Y (Uo(p*)), ME(x1 @ X2)¥ )my > B (Y (Uo(p)), Mk (X, ® X)) or®
+ 1 (Y (Uo(p)), Me(X2 ® X1) )%,

or even that

W (Y (Uo(p%)), Mi(Xy @ X)), > B2 (Y (Uo(p)), Mk(Xy ®X2)" )m,
+ 1 (Y (Uo(p)), Me(X2 ® X1)" )., -

Using the exactness of H(Y (Up(p)), (7)Y )m, as a (contravariant) functor of smooth
k[Uo(p)]-modules, it is therefore enough to show that Indgsg 2),) X1 ® Xo contains
X1 ® X and Y, ® ; as Jordan-Holder factors with multiplicity at least 2 (or when
X1 = X2, that it contains X; ® X, with multiplicity at least 3).

This is true. Indeed, the semisimplification of a smooth k[Iw,]-module (say
finite-dimensional as k-vector space) is determined by its restriction to the diagonal

torus in Iw,, and we can then use Mackey’s formula to show that if ¢ : F — k* is
a character then the semisimplification of Indggg;) X1 ® X5 contains ;9 ® yﬂ_l
with multiplicity p + 2 if ) = 1 and multiplicity p + 1 if ¢ # 1. O

Lemma 3.5. Let 7 be a regular algebraic, cuspidal automorphic representation of
GL2(Aq). Let p > 3 be a prime, let ¢ : Q, — C be an isomorphism, and suppose
that Proj7. ,(Gq) contains a conjugate of PSLy(Fpa) for some p® > 5. Then we can
find another regular algebraic, cuspidal automorphic representation @' of GL2(Aq)
with the following properties:

(1) There is an isomorphism Tr , = Tr ,.

(2) 7 has weight 2 and is not t-ordinary.

(3) There is an isomorphism rechw; = wy © wy, where wy,wy : Wq, — C*

are characters of conductor dividing p®. In particular, N (,)|p°.
(4) For each prime l # p, Tx.|Gq, ~ Tn'.lGq, - In particular, N(m) = N(m).
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Proof. Lemma implies the existence of a 7’ satisfying requirements (1)—(3).
We can appeal to [Geelll Corollary 3.1.7] to replace it with a 7’ also satisfying
Tw,L|GQl ~ 7’7r’,L|GQl for each prime [ # p. By purity, rﬂ,L\GQL and rﬂ/7L|GQl ‘strongly
connect’ to each other in the terminology of [BLGGT14, §1.3]. Remark (6) of
[BLGGTI4, p. 524] implies that N(m;) = N (). O

Definition 3.6. Let m be a regular algebraic, cuspidal automorphic representation
of GL2(Aq) of weight 2 such that 2 & sc(w) and let g,t,r be prime numbers. We
say that w is seasoned with respect to (q,t,r) if the following properties hold:

(1) t divides ¢+ 1, t & sc(r), and t > max(10,8n(n — 1)) and (¢+ 1)/t > 2.
(2) There is an isomorphism recq,m, = IndWZZ2 X, where x : Wq , — C*

18 a character such that X\Iqq has order t. (In particular, q € sc(m) and
N(mg) =¢*.)

(3) r is a primitive root modulo q. If M denotes the least common multiple of
the prime-to-q part of M, and Hpesc(w)—{q} 8, then r =1 mod M.

(4) - is an unramified twist of the Steinberg representation.

(5) For each prime p € sc(m) and for each irreducible dihedral representation
p: Gal(Q/Q) — GLa(F,) of prime-to-p conductor dividing Mq?, there
exists a prime number s such that ws is an unramified twist of the Steinberg
representation, p(Froby) is scalar, and s Z 1 mod p.

Proposition 3.7. If 7 is seasoned with ‘respect to (q,t,r) then for each prime
p € sc(m) there exists an isomorphism ¢ : Q, — C such that 7 ,(Gq) contains a
conjugate of SLo(Fpa) for some p* > 2n — 1.

Proof. We split into cases depending on whether or not p = ¢. First suppose that

p = ¢, and fix an isomorphism ¢ : Q, — C. We first claim that 7, is irreducible.

Otherwise, there’s an isomorphism 7, , = %; ® X, for characters ¥, : Gq —+ F; of
prime-to-q conductor dividing M.
Let wp : Iq, — qu be the Teichmiiller lift of the fundamental character of niveau

2. Let b= (¢+1)/t. Then L_lx\qu = w;(qfl)b for some integer a € {1,...,t — 1}
(this tame character has niveau 2 since it extends to Wq,, and its order ¢ does
not divide ¢ — 1). Write a(q — 1)b = i + (¢ + 1)j for some ¢ € {1,...,q}. Then
(IGeelll, Theorem 4.6.1]) we have (X;/X2)|1q, = €'~ " or €' . After relabelling, we
can assume that (X;/Xa)|rq, = €' "

Since 7 = 1 mod M (in particular, the characters ¥, are unramified at r), we
have (X;/Xz)(Frob,) = =1, Since 7, is an unramified twist of the Steinberg
representation, we have (;/Xz)(Frob,) = r or r=1. Since r is a primitive root
modulo g, this implies that one of i, i — 2 is divisible by ¢ — 1.

Since b divides 4, ¢ is among the numbers b,2b,...,¢+ 1 —b. Since b > 2, we see
that neither ¢ nor ¢ — 2 can be divisible by ¢ — 1. This contradiction implies that
T, is irreducible.

We next claim that 7., is not dihedral. If 7., is dihedral, then Lemma
shows that the prime-to-¢ part of the conductor of 7 , divides M, so there exists a
prime number s such that 7, is an unramified twist of the Steinberg representation,
7. (Froby) is scalar, and s # 1 mod p. This is a contradiction.

To finish the proof in the case p = ¢, we need to make a particular choice of ¢.
Such a choice fixes the value of a € {1,...,t — 1}; conversely, any a € {1,...,t — 1}
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can be obtained by making a suitable choice of t. We choose a so that i = b.
Invoking [Geelll Theorem 4.6.1] once more, we see that the projective image of 7,
contains an element of order in the set

{(g+1)/ged(g+1,i+1),(¢g+1)/ged(q+ 1,0 —1),(qg — 1)/ ged(q — 1,0 — 1)},

therefore of order at least t/2. Since t/2 > 5, the classification of finite subgroups
of PGLy(F,) shows that the projective image of 7, contains PSLa(Fge) (and is
contained in PGLy(Fye)) for some a > 1. If ¢® < 2n — 1 then ¢%* — 1 < 4n(n — 1),
so every element of PGLy(F4a) of order prime to ¢ has order at most 4n(n — 1).
Since t/2 > 4n(n — 1), we see that we must have ¢* > 2n — 1.

Now suppose that p # ¢, and fix an isomorphism ¢ : Qp — C. Then p # ¢
and t{q—1, so FW7L|GQQ is irreducible and its projective image contains elements
of order ¢, and so 7, is irreducible and its projective image contains elements
of order ¢. Using again the classification of finite subgroups of PGLs (Fp), we see
that to complete the proof we just need to show that 7, is not dihedral. If it is
dihedral then there exists a prime number s such that 7w, is an unramified twist
of the Steinberg representation, 7, ,(Froby) is scalar, and s # 1 mod p. This is a
contradiction. O

To prove the next proposition, we need to find primes with special properties,
namely that their Frobenius elements act on the composita of certain field extensions
in a prescribed way. Using the Chebotarev density theorem, we see that it is
equivalent to exhibit Galois automorphisms acting in the correct way. In order to
do so, it is helpful to recall the following lemma from basic Galois theory.

Lemma 3.8. Let E/K be a finite Galois extension, and let K1 /K, Ko/ K be Galois
subextensions. Then the natural map Gal(K1K>/K) — Gal(K1/K) XGal(k,nK,/K)
Gal(K2/K) is an isomorphism.

Proposition 3.9. Let 7 be a reqular algebraic, cuspidal automorphic representation
of GL2(Aq) of weight 2 which is non-CM. Suppose that 2,3 & sc(m). Then we can
find a regular algebraic, cuspidal automorphic representation ©' of GLa(Aq) with
the following properties:

(1) There exist prime numbers (q,t,7) such that 7’ is seasoned with respect to
(g,t,7) and sc(n') = se(m) U {q}.
(2) Sym™ ' n’ exists if and only if Sym™ '« does.

Proof. Fix a prime ¢ > max(10,8n(n — 1), N(m)) such that ¢t = 1 mod 4 and there
exists an isomorphism ¢ : Q, — C such that G = Proj 7r..(Gq) is conjugate either to
PSLy(F,) or PGLy(F,). Since t > 5, the group PSLo(F;) is simple. The condition
t = 1 mod 4 implies that —1 mod ¢ is a square and that the image of complex
conjugation ¢ in G lies in [G, G]. Using the Chebotarev density theorem, we can
therefore choose a prime ¢ such that ¢ = —1 mod ¢, (¢ + 1) > 2t, and the image of
Frob, in G is in the conjugacy class of complex conjugation.

Similarly, we can choose a prime r such that r is a primitive root modulo g,

7r.(Frob,) is scalar, and r splits in Q(Car,+) and in Q({ys) for every p € sc(m).
Indeed, the prime ¢ is unramified in ler prol T"’L(C:th, {Cps tpese(r)) but totally
ramified in Q((,), so the intersection of these two fields in Q is Q. We choose r so

that it splits in the first field and is totally inert in the second.
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Let sc(m) = {p1,...,px} and let py1; = ¢q. For each i =1,...,k+ 1, let p, ;
(j € X;) be a set of representatives for the (finitely many) conjugacy classes of
irreducible dihedral representations p : Gq — GL2(F),) of prime-to-p; conductor
dividing lem(M,¢?, [csein p%). For any (i,5), the abelianization of the projective
image of p; ; is isomorphic either to Z/2Z or (Z/2Z)?. In either case we claim
that we can find a prime s; ; such that p; ;(Froby, ;) is scalar, s;; # 1 mod p;,

the image of Froby, ; in G is in the conjugacy class of complex conjugation, and

84,5 = —1 mod t.
. —~kerProjp; ; —~ker Proj7. , .
To see this, let F; = Q SN and By = Q I We want to show there is

o € Gal(E1E»(Cp,, (¢)/Q) such that og, =1, 0lq(c,,) # 1 and o|p,(¢,) = ¢ First we
find 7 € Gal(E1((p,)/Q) such that 7|, =1 and 7|q((,,) # 1. Gal(E1/Q) is soluble
and its maximal abelian quotient is a quotient of (Z/2Z)?2, so Gal(E1 N Q(¢,,)/Q)
is a quotient of (Z/2Z)?. This shows that E; N Q((p,) is either trivial or quadratic.
Since (F))? contains non-identity elements (because p; > 5, because p; € sc(m)) we
can find a 7 with the desired property using Lemma We can assume that 7
acts trivially on the maximal abelian subextension of E;((,,) of exponent 2.
Using Lemma again, we're done if we can show that 7|g, (¢, )nEs(c,) =
c| E1(Cp,)NE2(¢)- Let E$% denote the maximal abelian subfield of E,. It has degree

1 or 2 over Q (because of the form of the image of 7, ,) and Gal(E,/F$) is a
non-abelian simple group. Thus the maximal soluble quotient of Gal(E2((;)/Q) is
Gal(E$%(¢)/Q), which is in fact abelian. Since Gal(E1((p,)/Q) is soluble, this shows
that Gal(E1(¢p,) N E2(¢;)/Q) is abelian. Since ¢ is coprime to ¢N (), the prime ¢ is
unramified in E1((p, ), while the quotient of [E$%((;) : Q] by the ramification index
of tis 1 or 2. We conclude that E;((p,,) N E2(¢;) is either trivial or quadratic. In
particular, 7 acts trivially on it. The element ¢ also acts trivially on it, since it acts
trivially on E? and also on the quadratic subfield of Q((;) (since ¢t = 1 mod 4).
This completes the proof of the claim.

To conclude the proof of the proposition, we apply [Geelll Corollary 3.1.7]; it
implies the existence of a regular algebraic, cuspidal automorphic representation 7’
of GL2(Aq) of weight 2 such that 7, = 7, ,, such that for each s € {r,s; ;}, 7 is
an unramified twist of the Steinberg representation, such that recq, 7r(’1 = Indggq2 X

for a character y : WQq2 — C* such that x| Iq, has order ¢, and such that for every
other prime p, we have 7x,.[cq, ~ rw/’L|GQP, with notation as in [BLGGTT4, §1].
(The hypothesis ‘(ord)’ of [Geelll, Proposition 3.1.5] is automatic in our situation.)
In particular, we have M, = ¢?M,. We see that 7’ is seasoned with respect
to (g,t,7). To see that Sym” ' 7 exists if and only if Sym™ ' 7’ does, apply e.g.
[BLGGT14, Theorem 4.2.1]. The potential diagonalizability assumption is satisfied
because rﬂ,L|GQt,rw/7L|GQt are both Fontaine—Laffaille, while the representations

Sym"™ ! Tr, = Sym" ! T, are irreducible because the m™ symmetric power of the
standard representation of SLy(F,) is irreducible whenever ¢ > m. g

Proposition 3.10. Let w be a reqular algebraic, cuspidal automorphic representation
of GLa(Aq) of weight 2. Suppose that 7 is seasoned with respect to (q,t,r), and let
p € sc(m) satisfy p > 5. Then we can find a reqular algebraic, cuspidal automorphic
representation ' of GLa(Aq) with the following properties:

(1) " has weight 2 and is non-CM.
(2) sc(n') = se(w) — {p}. If p # q, then w' is seasoned with respect to (q,t,r).
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(3) If Sym™ ' 7 exists, then so does Sym™ ' .

Proof. By Theorem it’s enough to find an isomorphism ¢ : Qp — C and a
regular algebraic, cuspidal automorphic representation 7’ of GL2(Aq) with the
following properties:

The image of T, , contains a conjugate of SLy(Fpa) for some p* > 2n — 1.
7’ has weight 2 and is non-CM.

?w’,L = FT!',L'

se(') = se(r) — {p}.

For any prime [ # p, rﬂ/7L|GQl ~ rﬂ,L|GQL.

7' is not t-ordinary.

If p # q then the conductor of 7T; divides p°.

If p # q, then the last condition ensures that 7’ is still seasoned with respect to
(g,t,r) (more precisely, that conditions (3) and (5) in Definition [3.6] still hold). We
choose ¢ satisfying the first condition using Proposition then the existence of a
7’ satisfying the above requirements is the content of Lemma (3.5 (]

Proposition 3.11. Let 7 be a reqular algebraic, cuspidal automorphic representation
of GL2(Aq). Suppose that 7 is of weight 2 and non-CM, and suppose that 2,3 ¢
sc(m). Then Sym" ' 7 exists.

Proof. If k > 0, let (Hy) denote the hypothesis that the conclusion of the proposition
holds when |sc(m)| < k, and let (H},) denote the hypothesis that the conclusion of
the proposition holds when |sc(m)| < k and 7 is seasoned with respect to some tuple
(g,t,7). As remarked above, (Hp) follows from the results of [NT19b]. It therefore
suffices to prove the implications (Hy) = (Hj.,,) and (Hy}) = (Hy).

The first implication follows immediately from Proposition [3.10} For the second,
assume that (Hj) holds and let m be a regular algebraic, cuspidal automorphic
representation of GLo(Aq) which is of weight 2 and non-CM, and such that |sc(m)| =
k > 1. By Proposition [3.9] we can find a regular algebraic, cuspidal automorphic
representation 7' of GLa(Agq) which is seasoned with respect to (g, ¢,7), such that
sc(n’) = sc(m) U {q}, and such that the existence of Sym”™ ! 7 is equivalent to the
existence of Sym" ™! 7/,

Now choose a prime p € se(m) (so p € se(n’) and p # q). Applying Proposition
with this choice of p gives another regular algebraic, cuspidal automorphic
representation 7" of GLa(Aq) which is seasoned with respect to (g,t,7), such that
|sc(n"")| = k, and such that the existence of Sym” ' 7" implies that of Sym™ ' =’

The existence of Sym™ ' 7 follows from (H}), so we’re done. O
We can now give the proof of Theorem [3.1}

Proof of Theorem[3.1. Let m be a non-CM, regular algebraic, cuspidal automorphic
representation of GLy(Ag). We must show that Sym™ ! 7 exists. We first do
this under the additional assumption that 7 has weight 2 and that 2 & sc(r). We
can assume that 73 is supercuspidal. Fix a prime ¢ > max(5,4n(n — 1), N(m))
such that t = 1 mod 4 and there exists an isomorphism ¢; : Q, — C such that
G = Proj7,,,(Gq) is conjugate either to PSLy(F,) or PGLy(F;). Using the
Chebotarev density theorem, we can find a prime g satisfying the following conditions:

e The prime ¢ satisfies ¢ = —1 mod ¢, ¢ = 1 mod 8, and ¢ = 1 mod [ for

every prime [ < t.
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e The image of Frob, in G is in the conjugacy class of complex conjugation.

(Compare [KW09al Lemma 8.2].) By [Geelll Corollary 3.1.7], we can find another
regular algebraic, cuspidal automorphic representation 7’ of weight 2 satisfying the
following conditions:

L4 FT(,Lt = F‘n",Lt .

e If [ # ¢ is a prime, then TW,H|GQZ ~ rﬂ/7ét|GQl.
e There is an isomorphism recq, 7, = IndWZ;‘ X, where x : Wq_, — C*is a
q
character such that y| Iq, has order t.

Applying [BLGGTT4, Theorem 4.2.1] to Sym™ ™+ Tr,.,, We see that Sym™ ! 7 exists if
and only if Sym™ ! 7/ does. (The potential diagonalizability assumption is satisfied
because 77 .,|Gq, ,"r . lGq, are both Fontaine-Laffaille, while the representations
Sym"™~! T, = Sym"™™! Tar., are irreducible because the m*™® symmetric power of
the standard representation of SLy(F}) is irreducible whenever ¢ > m. )

Let ¢ : Q3 — C be an isomorphism. Then ([KW09a, Lemma 6.3]) there exists
a > 2 such that the image of Proj7, , is conjugate to PSLa(F3a) or PGLo(F3a). In
fact, we must have 3% > 2n — 1: otherwise ¢t < 3%¢ — 1 < 4n(n — 1), a contradiction
to our assumption ¢ > 4n(n — 1).

Applying Lemma[3.4] we can find another regular algebraic, cuspidal automorphic
representation 7 of GLo(Aq) of weight 2 such that 7, & 7rv\, 2,3 & se(n”),
r,ru,b|GQ3 is potentially Barsotti-Tate and non-ordinary, and for each prime [ # 3,
7] is a twist of the Steinberg representation if and only if )" is. Then Proposition
implies that Sym™ ! 7 exists. We can then invoke Theorem to see that

n—1 n—1

Sym"™ " 7’ exists and hence Sym" ™" 7 exists.

The next case to treat is when 7 has weight 2 but now 2 € se(). In this case we
can repeat the same argument with 3 replaced by 2 to conclude the existence of
Sym" ! 7.

Finally we treat the general case where 7 has weight k for some k > 2 and we
make no assumption on sc(7). In this case we can find a prime ¢ > max(5, k(n +1))
such that 7; is unramified and an isomorphism ¢ : Q, — C such that the image of
Tr,. contains a conjugate of SLo(F;). Applying Lemma again, we can find another
regular algebraic, cuspidal automorphic representation 7’ of GLa(Aq) of weight 2
such that 7, =7, , and r,/ , is potentially Barsotti-Tate. Then Sym" ! 7’ exists
and Sym"™ T, is irreducible. We can now apply [BLGGT14, Theorem 4.2.1] to
conclude that Sym” ™! Tr,, is automorphic and therefore that Sym"™ ! 7 exists. Note
that Sym" ! T, is the symmetric power of a 2-dimensional potentially diagonaliz-
able representation ([GK14, Lemma 4.4.1]), and hence potentially diagonalizable,
cf. the remark following [BLGG11], Definition 3.3.5]. O

APPENDIX A. THE CASE OF WEIGHT ONE FORMS

In this short appendix we record the automorphy of the symmetric power lifting
for cuspidal Hecke eigenforms of weight 1, or with CM. The most difficult case is
due to Kim [Kim04, Theorem 6.4].

Theorem A.1. Let n > 1. Let w be a cuspidal automorphic representation of
GL2(AqQ) with T holomorphic limit of discrete series, or with m the automorphic
induction of a Hecke character for a quadratic field. Then Sym" 7 exists.
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Note that in these cases Sym” 7 is usually not cuspidal.

Proof. First we assume that 7., is holomorphic limit of discrete series. Twisting
by an algebraic Hecke character, we can assume that 7 is generated by a holomor-
phic weight 1 cuspidal Hecke eigenform. In particular, Deligne and Serre [DS74]
constructed a continuous odd irreducible representation r, : Gq — GL2(C) with
rW|WQP = recap (mp) for all primes p. The projective image of r is a finite subgroup
of PGL3(C), and is therefore dihedral or isomorphic to a copy of A4, Sy or As (more-
over, each of these subgroups is unique up to conjugacy). We can then establish the
automorphy of Sym” r,; case by case, depending on the projective image. In the
dihedral case, r is induced from a character 1 of G for K/Q quadratic, Sym" r,
decomposes as a direct sum of characters and the inductions of characters from K
to Q, and therefore Sym™ r,; is automorphic.

In the other cases, we denote the inverse image of Proj(r,)(Gq) in SL2(C) by T'l.
It is a binary polyhedral group. The image 7, (Gq) is a subgroup of u2,I'" C GL2(C)
for some k (o is the cyclic subgroup of the scalar matrices with order 2k). We have
por 't 22 o x T'1/((—1, —1)), so its irreducible representations are of the form v x o,
with 1 a character of jgy, o an irreducible representation of I'l, and ¥(—1) = o(—1).
Twisting by a Dirichlet character, we can assume that r,(Gq) = u2xI'' (choose a
prime p where 7 is unramified and which is 1 mod 2k, then twist by a Dirichlet
character with conductor p and order 2k). Now to understand the decomposition
of Sym™ r, into irreducibles, it suffices to understand the decomposition of the
representation Sym”™ C? of I'l. See, for example, [Ste08, Appendix A] for the
character tables of the binary polyhedral groups, or use [GAP20].

For the As case, the irreducible representations of I'' and their relationship
to (symmetric powers of) the two Galois-conjugate irreducible two-dimensional
representations are described in [Kim04, §5]. This allows automorphy of Sym" r to
be deduced from the automorphy of Sym™ for m < 4, together with tensor product
functorialities GLy x GLy — GL4 and GLy x GL3 — GLg [Kim04, Theorem 6.4].

Now we turn to the Ay case. Considering the character table of the binary
tetrahedral group, we see that the irreducible representations of dimension > 1
comprise: three two-dimensional representations, isomorphic up to twist and a
three-dimensional representation which is isomorphic to the symmetric square of the
two-dimensional representations. Automorphy of Sym™ r; therefore follows from
automorphy of Sym? r.

Finally, in the S; case, we consider the character table of the binary octahedral
group. The irreducible representations of dimension > 1 are:

e two faithful two-dimensional representations Vi, V3, isomorphic up to twist,

e a two-dimensional representation induced from a character of the normal
index two subgroup,

e two three-dimensional representations isomorphic to Sym? V; and its twist,

e a four-dimensional representation isomorphic to Sym?® V;.

So in this case automorphy of general symmetric powers follows from the automorphy
of Sym™ r, for m < 3.

If 7 is an automorphic induction from a quadratic field K, as in the dihedral
case, one can construct Sym” 7 as an isobaric direct sum of Hecke characters and
automorphic inductions of Hecke characters for K. [
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