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We establish the existence of a topological classification of many-particle quantum systems undergoing unitary
time evolution. The classification naturally inherits phenomenology familiar from equilibrium—it is robust
against disorder and interactions, and exhibits a nonequilibrium bulk-boundary correspondence, which connects
bulk topological properties to the entanglement spectrum. We explicitly construct a nonequilibrium classification
of noninteracting fermionic systems with nonspatial symmetries in all spatial dimensions (the ‘tenfold way’),
which differs from its equilibrium counterpart. Direct physical consequences of our classification are discussed,
including important ramifications for the use of topological zero-energy bound states in quantum information
technologies.
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I. INTRODUCTION

Topology has become one of the most prevalent concepts
in condensed matter physics. In mathematics, the objects of
interest for topologists are structures that remain invariant un-
der continuous deformations of the underlying system. Like-
wise, physical properties that do not change under continuous
deformation of the underlying Hamiltonian are of interest in
physics. In condensed matter, these topological properties are
naturally robust to system imperfections and in some cases
lead to accurately quantized responses, exemplified by the
transverse conductance in the integer quantum Hall effect
(IQHE) [1,2].

Classifying different phases of matter according to their
topological properties is one of the key aims of this field.
Roughly speaking, gapped systems belong to different topo-
logical phases when their Hamiltonians cannot be continu-
ously connected without meeting some topological quantum
phase transition [3]: a phase transition at zero temperature
that is not characterized by spontaneous symmetry breaking
[4]. These topological phases are typically understood to be
equilibrium (zero-temperature) properties of the Hamiltonian,
which itself may be restricted by the symmetries of the system
[5].

In this paper, rather than characterizing ground states of
Hamiltonians, we ask whether there is a topological classi-
fication of nonequilibrium states |�(t )〉 resulting from time
evolution under Hamiltonians with certain symmetries. We
answer this question in the affirmative by developing a formal-
ism for classifying wave functions which naturally generalizes
the more familiar equilibrium classification. When applied
to many-body systems undergoing unitary time evolution,
this nonequilibrium topological classification emerges, which
generally differs from that in equilibrium. The classification
is relevant in physical settings where the Hamiltonian varies
in time, e.g., through a deliberate quench or in the presence of
random noise.

We explicitly realize this nonequilibrium classification by
building on the understanding of topology in equilibrium.
Indeed many of the current theoretically [6–10] and ex-

perimentally [11–13] known topological phases of matter
can be understood through unifying perspectives. One key
feature common to many of these phases is the presence
of symmetries: Although two systems could in general be
continuously connected, they may be disconnected in the
subspace of states which respect certain symmetries—such
systems constitute the symmetry-protected topological (SPT)
and symmetry-enriched topological (SET) phases [5]. One
important subset of SPT phases is the wide range of topolog-
ical insulators and superconductors, which can be described
by Hamiltonians that are quadratic in fermionic creation and
annihilation operators (including mean-field Bogoliubov-de
Gennes Hamiltonians) and have nonspatial symmetries. The
equilibrium topology of these systems has been classified
under the ‘tenfold way’ [3,14–16].

Access to coherent dynamics in cold atom experiments
[17] has motivated recent studies of nonequilibrium physics
in topological insulators and superconductors [18–23]. A key
aspect of these studies is the behavior of topological bulk
indices after a quench between Hamiltonians. In 2D Chern
insulators (lattice analogues of the IQHE), it was shown that
the relevant topological index (the Chern number) is preserved
in time. However in Ref. [24] we demonstrated that in certain
1D systems, topological properties of symmetry-protected
states can change out of equilibrium, even if the Hamiltonian
never breaks the symmetries required to stabilize the phase in
equilibrium.

The nonequilibrium classification which we construct in
this paper unifies these previous results and establishes a
universal phenomenology which can be applied to any iso-
lated quantum system. We explicitly derive the nonequi-
librium analog of the ‘tenfold way,’ describing topological
insulators and superconductors in arbitrary spatial dimension
(Table II). Specifically, given the spatial dimension and the
set of symmetries possessed by the initial state and governing
Hamiltonian, we provide an Abelian group, the elements of
which represent states that remain topologically inequivalent
after time evolution. The classification naturally pertains to
physical properties that are robust to disorder and interactions,
and exhibits a bulk-boundary correspondence. As a first direct
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application of our results, we find that the classification can
be used to predict instabilities of topological edge (Majo-
rana) zero modes to decoherence from an external fluctuating
perturbation. We postulate that this connection between the
preservation (destruction) of bulk topology in our nonequi-
librium topological classification and the (lack of) robustness
of edge modes to symmetry-respecting temporal fluctuations
should hold generally.

We note that other topological aspects of nonequilibrium
dynamics have been discussed in recent works. One direction
concerns ‘Floquet-SPTs’ [25–28], wherein the periodic
micromotion of periodically driven systems is characterized.
A rather striking result in that context is the emergence
of ‘anomalous’ topologically protected edge modes which
have no equilibrium analog, in that their presence cannot be
deduced from static properties of the Floquet Hamiltonian
[29,30]. In a similar light, we demonstrate that a time-evolving
wave function can possess robust topological properties even
if the Hamiltonian which governs its dynamics is itself
trivial, which further highlights the distinction between
topology in and out of equilibrium. (The connections between
Floquet-SPT order and the results of our work are discussed
in Sec. VII.)

Separately, recent studies on noninteracting fermions
[31–34] have demonstrated that static topological phases can
be detected via dynamics. These characterizations of the
full wave-function trajectory after a quench, which can be
measured via Bloch state tomography, are different from
our nonequilibrium classification: They provide information
about the Hamiltonian governing time evolution, rather than
the wave function itself, and these protocols require transla-
tionally invariant, noninteracting systems.

Finally, there has recently been much attention focused on
the topological properties of systems which can be described
with effective non-Hermitian Hamiltonians [35–38], which
are intrinsically out of equilibrium. A complete treatment of
the effects of non-Hermiticity on the topology of a time-
evolving wave function is outside the scope of this work, how-
ever analogous results should be obtainable for such systems.

Our paper is structured as follows: In Sec. II, we review the
concept of ‘dynamically-induced symmetry breaking’ [24]—
the observation that unitary time evolution can break the
symmetries of the wave function even if the Hamiltonian
respects the symmetries at all times. We then discuss how
pure nonequilibrium states can be topologically classified in
Sec. III and go on to derive this classification for free fermion
systems with nonspatial symmetries in Sec. IV. Our classi-
fication is formulated such that it encapsulates all features
familiar from equilibrium systems, which naturally leads to
a nonequilibrium bulk-boundary correspondence that we de-
velop in Sec. V. We then discuss direct physical consequences
of our results in Sec. VI, before describing the relationships
between our results and those found for Floquet systems in
Sec. VII. We finally conclude in Sec. VIII.

II. SYMMETRY OF THE TIME-EVOLVED STATE

We are concerned with the topological properties of many-
body states after generic unitary time evolution. Of central
importance to topological properties in general is the impact

of symmetry constraints. These symmetries are imposed at the
level of the microscopic Hamiltonian in question. However,
the many-body states which we consider are far from equi-
librium, and so we must be careful to distinguish symmetry
properties of the post-quench state and the Hamiltonian. We
have established this relationship in Ref. [24]; we review the
results here.

The quench protocol which we will refer to in this paper is
highly general: The system starts in the ground state of some
initial Hamiltonian Ĥi at time t = 0 and evolves under some
final Hamiltonian Ĥf(t ) which may itself vary in time. We
then consider the properties of the state at some final time tf.

If a symmetry is present in the initial Hamiltonian, then
there exists some symmetry operator Ô which commutes with
Ĥi. By Wigner’s theorem, the operator Ô can be unitary or
antiunitary, i.e., ÔiÔ−1 = ±i. Now, if the symmetry is not
spontaneously broken, then the ground state of Ĥi (which
we call |�0〉) also respects this symmetry, in the sense that
the pure density matrix �̂0 := |�0〉〈�0| satisfies [Ô, �̂0] = 0.
Note that we work with density matrices for convenience,
but understand that they always represent a single pure wave
function.

The state evolves as |�(t )〉 = Û (t )|�(0)〉, where Û (t ) =
T exp(−i

∫ tf
0 dt ′Ĥf(t ′)) is the time evolution operator (T

denotes time ordering). Thus the density matrix after the
full quench is �̂(tf ) = Û (tf )�̂0Û (tf )†. To determine whether
the symmetry Ô is respected by the time-evolved state, we
compute [Ô, �̂(tf )], which will be zero if the symmetry is
respected and nonzero otherwise.

If the final Hamiltonian Ĥf(t ) does not commute with Ô,
then the state will also not respect the symmetry—this we call
explicit symmetry breaking. However, even if Ĥf(t ) satisfies
the symmetry at all times, the state will not be symmetric
([Ô, �̂(tf )] �= 0) if Ô is an antiunitary operator—this we call
dynamically induced symmetry breaking. One can see this as
the factor of i in the exponent of Û (t ) is not invariant under
antiunitary operations [24].

It is therefore possible for the symmetry properties of the
state and Hamiltonian to deviate out of equilibrium. This
dynamically induced symmetry breaking has profound con-
sequences for topology out of equilibrium.

Although we do not do so here, one could also consider
quench protocols in which the final Hamiltonian is non-
Hermitian, which captures certain gain and/or loss processes.
In doing so, one must be careful to consider the relationship
between symmetries of the initial state and the non-Hermitian
Hamiltonian, the latter of which can have a more general set of
symmetries [39]. Note, however, that this work is concerned
with properties of the instantaneous wave function rather
than the spectrum of the Hamiltonian, in contrast to previous
studies of non-Hermitian topology [35–38].

III. DEFINING TOPOLOGY OUT OF EQUILIBRIUM

The topology of gapped short-ranged entangled (SRE)
systems at zero temperature is a well-defined concept. Under
a particular set of symmetry constraints, one constructs a
set of topological phases, defined such that Hamiltonians
which belong to different phases cannot be continuously
deformed between each other without breaking the symmetry
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constraints or crossing some topological quantum phase tran-
sition. In the majority of this paper, we are concerned with
topological insulators under the ‘tenfold way’ (see Sec. IV),
where the scope of ‘continuous deformations’ is rather broad.
In particular, we are permitted to add trivial bands to a system,
which for example excludes Hopf insulators [40] from our
definition.

This approach to equilibrium topology naturally gives rise
to properties that are robust to perturbations including spatial
disorder and weak interactions [41,42]. In addition, such a
definition (which is in terms of the bulk) correctly predicts
the existence of gapless boundary edge modes. We show in
this section that one can take a similar approach to classifying
the topology of nonequilibrium states in a way that inherits
all these important properties. These arguments apply to both
noninteracting and interacting systems.

Although equilibrium topology is commonly associated
with physical observables, such as the Hall conductance,
which manifestly depend on the full Hamiltonian, topological
phases can be identified solely from the many-body ground
state. This is evident for noninteracting fermions: Starting
with a single-particle Hamiltonian Ĥ = ψ̂

†
i Hi jψ̂ j with single-

particle energies Eλ, one can perform the spectral flattening
procedure [15,16,43], where one smoothly modulates all the
energies Eλ to sgn Eλ = ±1 without changing the eigenstates.
Since this is a continuous deformation of the system which
can be done without breaking any symmetry or closing the
gap, the resultant Hamiltonian is topologically identified with
the physical one. We arrive at the flat-band Hamiltonian Q
which is related to the single-particle density matrix ρi j =
〈�0|ψ̂†

i ψ̂ j |�0〉 by Q = 1 − 2ρ. This matrix ρ is determined
by the ground state of Ĥ only. We see that all equilibrium
topological properties are uniquely determined by two ob-
jects: (1) a single many-body state (the ground state) and (2)
a collection of symmetries which define the allowed deforma-
tions of that state.

The above formulation of equilibrium topology has a
natural nonequilibrium generalization: We can use the time
evolved state |�(tf )〉 in place of the ground state and use
only the symmetries which are generically preserved under
time evolution to define the allowed deformations. This is
equivalent to constructing some fictitious Hamiltonian Q̂(tf )
for which |�(tf )〉 is the ground state and applying the equi-
librium classification. The result is a topological classification
which naturally inherits all the attractive physical features of
the equilibrium classification.

We will make use of the construction involving the ficti-
tious Hamiltonian Q̂(tf ) in much of this paper. For concrete-
ness (inspired by the spectral flattening procedure), we can
use

Q̂(tf ) = 1 − |�(tf )〉〈�(tf )|. (1)

This construction can be applied to any gapped system and at
any finite time yields a Hamiltonian with couplings that decay
exponentially with spatial separation [44].

Our definition of topology out of equilibrium is rather
natural in that it pertains only to properties of |�(tf )〉 [or
equivalently Q̂(tf )] and the set of symmetries which the
state generically possesses. We expect that our classification

scheme will correctly predict all characteristic signatures of
topology which are familiar from the study of systems at
equilibrium. In particular, nonequilibrium states which are
topologically nontrivial under our definition will exhibit a
bulk-boundary correspondence, which can be seen through
gapless edge modes of the entanglement spectrum [45]. We
show this explicitly in Sec. V.

With a less careful definition of nonequilibrium topology,
one might expect that any two states that are initialized in
topologically distinct wave functions must remain distinct
for all time, since one can always evolve backwards in time
using U(t )† and see that the two states began with different
topologies. Such an approach was adopted in previous stud-
ies, such as Refs. [33,46]. However, unlike our definition,
this interpretation is a characterization of the full historical
trajectory of the wave function, since one cannot necessarily
make the same conclusions from |�(tf )〉 alone. We shall see
that this definition would incorrectly predict the dynamics of
the entanglement spectrum.

Although the nonequilibrium classification we propose is
set up in an analogous way to equilibrium, it can in general
differ from the equilibrium classification due to the fact
that not all symmetries are generically preserved under time
evolution (see Sec. II). This means that the set of allowed
deformations of the state in question is wider. Indeed, in equi-
librium, two states are topologically equivalent if they can be
smoothly deformed between one another without breaking the
symmetries in question. However, out of equilibrium, we say
that states are equivalent if they can be connected via unitary
time evolution under some local Hamiltonian that respects the
given symmetries. The former is a stronger statement than the
latter.

Furthermore, a naïve expectation may be that the nonequi-
librium classification will simply be given by the equilibrium
classification under the subset of symmetries which are pre-
served dynamically. However, this neglects the fact that the
initial state itself has some symmetry constraints, which may
restrict which topological phases are accessible in the first
place. As a simple example in the context of free-fermion
systems (which are discussed in Sec. IV), class AII systems
in two spatial dimensions featuring time-reversal symmetry
are reduced to having no symmetry (class A) once out of
equilibrium. Although the equilibrium classification for this
reduced symmetry class is the Z-valued Chern number, the
nonequilibrium classification will be trivial, since the re-
quirement of a time-reversal invariant initial state necessitates
the Chern number to start at zero, which is then preserved
throughout evolution.

We schematically illustrate various ways in which the
classification can change out of equilibrium in Fig. 1. The
four panels (a)–(d) represent possible outcomes for a given
set of Hamiltonian symmetries (which we call ‘pre-quench
symmetries’). After time evolution, the wave function respects
only the ‘post-quench symmetries,’ which are the subset of
pre-quench symmetries that are unitary. The possibilities we
show are:

(a) The equilibrium classification under the pre-quench
and post-quench symmetries is the same, and topologically
distinct initial states (ρ1 and ρ2) remain topologically distinct
for t > 0. In this case, ρ1 will not be able to evolve into a state
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FIG. 1. Illustration of topological restrictions on unitary dynamics. The various topological phases are denoted ‘0,’ ‘+1,’ and ‘−1.’ In each
case (a)–(d), some phases are compatible with the symmetry constraints on the initial state, and others are not; the inaccessible phases are
marked with hatches. Diagrams (a), (b), and (d) feature initial states ρ1 and ρ2 that are separated by an equilibrium topological phase transition
(horizontal line), while in (c) the initial states are forced to be in the same equilibrium phase by the initial symmetries. In diagrams (a) and
(c), the phase boundaries persist even after dynamically induced symmetry breaking—it is not possible for a state with one topology to evolve
into a state with different topology. In (b) and (d), the topological distinction between the two phases is broken out of equilibrium, i.e., the
initial state topology is lost under dynamics. In cases (b)–(d), the nonequilibrium classification is trivial due to initial state restrictions and/or
the breakdown of equilibrium phase boundaries due to symmetry breaking.

with a different topology, and the ‘phase space’ that can be
explored under unitary dynamics is restricted, as illustrated in
Fig. 1(a) (e.g., Class CII in d = 4).

(b) The equilibrium classification under post-quench sym-
metries is trivial. The topologically distinct initial states ρ1

and ρ2 become indistinct out of equilibrium, owing to some
dynamically-induced symmetry breaking. Once the symmetry
is broken for t > 0, the topological obstruction between the
states is lifted, and there is no restriction on the accessible
phase space, as illustrated in Fig. 1(b) (e.g., Class AII in
d = 3).

(c) The equilibrium classification under post-quench sym-
metries is nontrivial, but the initial state classification is trivial.
The additional symmetry restrictions on initial states ensures
that all post-quench states are topologically equivalent, as
illustrated in Fig. 1(c) (e.g., Class AI in d = 2).

(d) The equilibrium classifications under pre- and post-
quench symmetries are both nontrivial, but topologically dis-
tinct initial states are indistinct under the post-quench classifi-
cation, as illustrated in Fig. 1(d) (e.g., Class DIII in d = 1, or
Class AII in d = 2).

It is worth noting that here we are considering systems
in the thermodynamic limit or timescales which are subex-
tensive in system size. For finite-sized systems, there will be
a time on the order of t ∼ L/vL.R. (where vL.R. is the Lieb-
Robinson velocity) beyond which the correlations of |�(t )〉
span the system size. At this point the system relaxes back into
equilibrium at finite energy density, and our nonequilibrium
classification no longer applies. Indeed such a thermalized
state does not have a well-defined topology, since the fictitious
Hamiltonian Q̂(tf ) will not be local. However, for times less
than this thermalization time, the wave-function topology is
well defined in the above sense. Additionally, if the system
is many-body localized then topology remains well defined
for a time which grows exponentially with the system size.
In the following section, we apply the formalism described

above to systems of noninteracting fermions with nonspatial
symmetries, yielding a topological classification that applies
to nonequilibrium states.

IV. CLASSIFICATION OF TOPOLOGICAL INSULATORS
OUT OF EQUILIBRIUM

The ‘tenfold way’ of topological insulators [3,14–16] enu-
merates all topologically distinct phases of noninteracting
fermionic systems subject to certain nonspatial symmetry
constraints. Specifically, systems in a given spatial dimension
d belong to one of ten symmetry classes, depending on the
presence of time-reversal (TRS), particle-hole (PHS), and
chiral (or sublattice) symmetry [15,47]. Each symmetry is rep-
resented by an on-site unitary matrix (T, C, or S, respectively)
subject to the constraints TT∗ = ±1, CC∗ = ±1 and S2 =
+1 [9]. The entries of the tenfold way are discrete groups
(0, Z2 Z, or 2Z), the elements of which represent different
topological phases. The structure of the table is shown in
Table I for reference. We shall construct a variant of this
table which identifies the topological classes that are retained
in the post-quench state, assuming that the initial and final
Hamiltonians are in the same symmetry class. This is the aim
of this section, the results of which are summarized in Table II.
Note that one could obtain analogous constructions for which
the symmetry classes of the initial state and final Hamiltonians
differ, however we do not do so here.

As described in Sec. II, the symmetry properties of the
time-evolved state can differ from the symmetry class of the
initial state and final Hamiltonian. Of the three symmetries
featured in the tenfold way, only PHS is unitary and thus
due to dynamically induced symmetry breaking, only PHS is
preserved [24]. The post-quench symmetry class is thus either
no symmetries (class A), PHS with CC∗ = +1 (class D), or
CC∗ = −1 (class C). As we described in the previous section,
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TABLE I. Periodic table of topological insulators at equilibrium
[3,14–16]. The ten symmetry classes (two complex and eight real)
are listed and given a label s. The zero-dimensional classification
is given, from which any dimensional classification can be in-
ferred. For a given dimension d , the equilibrium classification is
given by KC(s − d mod 2, 0) in the complex classes and KR(s − d
mod 8, 0) in the real classes.

Symmetries Classification

Class T C S Label s KC,R(s, d = 0)

Complex A 0 0 0 0 Z
AIII 0 0 1 1 0

Real AI + 0 0 0 Z
BDI + + 1 1 Z2

D 0 + 0 2 Z2

DIII − + 1 3 0
AII − 0 0 4 2Z
CII − − 1 5 0
C 0 − 0 6 0
CI + − 1 7 0

the reduction of symmetry in the post-quench state can lead to
a change of topology out of equilibrium.

To construct our classification, we will adopt similar ap-
proaches to those used to construct the equilibrium periodic
table. In particular, the equilibrium classification can be ob-
tained using the process of dimensional reduction [14], in
which the physical system is interpreted as a higher dimen-
sional system with one (or more) of its dimensions compact-
ified. This allows the topological properties of lower dimen-
sional systems to be associated with ‘parent’ systems in higher
dimensions. Before generalizing to nonequilibrium states, we
first review this procedure for systems in equilibrium, making

reference only to properties of the ground state rather than the
Hamiltonian.

For simplicity of presentation, we describe strictly nonin-
teracting translationally invariant systems. However, since we
are concerned with strong topological invariants, we expect
the results to hold in the presence of spatial disorder and weak
interactions in a manner analogous to topological systems in
equilibrium [41,42]. Such arguments can be applied thanks to
the interpretation of |�(tf )〉 as the ground state of some local
gapped Hamiltonian [Eq. (1)] with nontrivial topology.

A. Dimensional reduction in equilibrium

1. Nonchiral classes

In the absence of symmetry (class A), systems in even
dimensions d = 2n can be characterized by the nth Chern
number Chn. In terms of the Bloch wave functions |uα (�k)〉
(where α labels the occupied bands), we define the non-
Abelian Berry connection as a 1-form Aαβ = 〈uα (�k)|duβ (�k)〉,
and the corresponding Berry curvature Fαβ = (dA + A ∧
A)αβ . Then the Chern numbers are given by an integral of
the Chern form chn over the Brillouin Zone (BZ) [16]

Chn =
∫

BZ
chn , where chn := 1

(n + 1)!
Tr

(
iF
2π

)(n+1)

.

(2)

Now consider adding either TRS (with TT∗ = ±1) or
PHS (with CC∗ = ±1), yielding one of the nonchiral classes
AI, AII, D, or C. Depending on the dimension and type of
symmetry, this may or may not restrict the allowed values of
Chn. If the Chern number is not restricted by the additional
symmetry, then this entry in the periodic table is termed the
‘even primary series,’ and is Z classified [16].

Each member of the even primary series induces two Z2

entries in two lower dimensions, termed the first and second

TABLE II. Classification of topological insulators out of equilibrium. The nonequilibrium classification describes the set of topological
classes which remain distinct after time evolution under a Hamiltonian possessing the set of symmetries in question, as outlined in Sec. III.
The ten symmetry classes of the tenfold way are listed on the left and defined by the presence (+, −, 1) or absence (0) of time-reversal (T),
particle-hole (C), and chiral (S) symmetries [15,47]. For each symmetry class and spatial dimension d , the equilibrium and nonequilibrium
classifications are given. A single entry indicates that the classification does not change out of equilibrium, while the notation G1 → G2

indicates that the classification changes from G1 in equilibrium to G2 out of equilibrium. The different series of the classification are colored
as described in the main text, and the references to the discussions of each series are given below the table. Systems in dimension d > 7 have
the same classification as the corresponding system in (d − 8) dimensions (Bott periodicity).

Symmetries Spatial dimension d

Class T C S 0 1 2 3 4 5 6 7

A 0 0 0 Z 0 Z 0 Z 0 Z 0
AIII 0 0 1 0 Z → 0 0 Z → 0 0 Z → 0 0 Z → 0

AI + 0 0 Z 0 0 0 2Z 0 Z2 → 0 Z2 → 0
BDI + + 1 Z2 Z → Z2 0 0 0 2Z → 0 0 Z2 → 0
D 0 + 0 Z2 Z2 Z 0 0 0 2Z 0
DIII − + 1 0 Z2 → 0 Z2 → 0 Z → 0 0 0 0 2Z → 0
AII − 0 0 2Z 0 Z2 → 0 Z2 → 0 Z 0 0 0
CII − − 1 0 2Z → 0 0 Z2 → 0 Z2 Z → Z2 0 0
C 0 − 0 0 0 2Z 0 Z2 Z2 Z 0
CI + − 1 0 0 0 2Z → 0 0 Z2 → 0 Z2 → 0 Z → 0

Even primary (IV B 1); Even descendants (IV B 2); Odd primary (IV B 3); Odd descendants (IV B 4); 2Z series (IV B 5).
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descendants [14]. For concreteness, we study the canonical
example of the 4D primary insulator with TRS TT∗ = −1,
but all descendants can be understood in analogous ways.

Consider a 3D TRS state characterized by the density
matrix ρ(A)(�k) as our physical system. A one-parameter fam-
ily of states ρ(�k, θ ) can be constructed which connects this
insulator at θ = 0 to some trivial TRS insulator ρref (which
is independent of �k) at θ = π . The intermediate 3D states
for 0 < θ < π need not possess TRS. Now consider closing
this path into a loop θ = −π → 0 → π ≡ −π by invoking a
‘super-TRS’ condition

ρ(−�k,−θ ) = Tρ(�k, θ )T† 0 � θ � π. (3)

Since ρ(A)(�k) and ρref respect TRS, this loop can be made
without any discontinuities.

By reinterpreting θ as an extra momentum variable in 4D,
ρ(�k, θ ) represents a four-dimensional TRS insulator, which is
characterized by the second Chern number Ch2. Because the
reference Hamiltonian ρref is �k independent, we can contract
the subregions θ = ±π to a single point, and so the higher
dimensional momentum space is a ‘suspension’ �(BZ), as
illustrated in Fig. 2.

Following Teo and Kane [48], one can show that the super-
TRS condition (3) forces the contributions to Ch2 for θ > 0
and θ < 0 to be equal, and so we need only consider one
hemisphere, which we call �N (BZ). The Chern form ch2

can be written as a total derivative of a 3-form called the
Chern-Simons form ch2 = dQ3 [16], and so the integral over
θ > 0 can be computed as a surface integral on the boundary
θ = 0, i.e., the physical BZ. We then have

Ch2 = 2
∫

�N (BZ)
ch2 = 2

∫
BZ

Q3 =: 2CS3, (4)

where CS3 is the Chern-Simons (CS) invariant, which is
entirely determined by the physical system at θ = 0.

The CS invariant is gauge invariant only up to an inte-
ger. This gauge dependence reflects the fact that different

θ = 0

θ = +π

θ = −π

ΣN (BZ)

ΣS(BZ)

ρref

ρref

BZ

FIG. 2. The physical Brillouin zone (BZ) as the equator of a
higher dimensional momentum space �(BZ) parametrized by (�k, θ ).
At the poles θ = ±π , the BZ is contracted to a point, representing
the �k-independent reference state. We also identify the two poles,
ensuring periodicity in θ .

embeddings of ρ(A)(�k) in 4D can yield Chern numbers that
differ by an even integer. Ch2 mod 2 defines a Z2-valued
topological invariant which can characterize the 3D system
unambiguously—this relates the first descendant (3D) to the
primary series (4D) in class AII. A similar construction is also
possible for the second descendants, which are classified by
the Fu-Kane (FK) invariant [49]

FKd=2n =
∫

BZ1/2
chn −

∫
∂BZ1/2

Q2n−1, (5)

where BZ1/2 is the half of the BZ where one of the momenta
0 � ki < π , and ∂BZ1/2 is its boundary. To avoid ambiguity,
this quantity must be calculated in a particular gauge that is
specified by the TRS (or PHS) symmetry operator.

2. Chiral classes

Systems with only chiral symmetry (class AIII) in odd
dimensions also inherit their topology from a higher dimen-
sional insulator in a similar way. The procedure is slightly dif-
ferent from the above, in that the higher dimensional insulator
has a different symmetry to the physical state. Given a state
ρ(A)(�k) which respects a chiral symmetry operator S, we can
uniquely specify a higher-dimensional state via [50]

ρ(�k, θ ) = ρ(A)(�k) cos(θ/2) − 1
2 S sin(θ/2) + 1

2 [1 − cos(θ/2)]

θ ∈ [−π, π ), (6)

where the last term enforces the correct trace. The addition of
a term proportional to S breaks the chiral symmetry, and so
the (d + 1)-dimensional Hamiltonian belongs to class A and
is characterizable by a Chern number. It can be shown [50]
that topologically distinct chiral systems remain topologically
distinct in the higher dimension, and vice versa, i.e., this
mapping is a bijection between topological classes in different
dimensions. Thus chiral systems in odd dimensions are Z
classified according to the Chern number of ρ(�k, θ ). This can
be more easily calculated as a winding number ν2n+1, or from
the CS invariant calculated in a particular gauge [16].

If TRS or PHS are also present in the physical system
(classes BDI, DIII, CII, and CI), then we can still use the
mapping (6). In this case the symmetry of the higher di-
mensional system changes according to [from d to (d + 1)
dimensions] [16]

AIII → A; BDI → D; CII → C;

DIII → AII; CI → AI. (7)

These relations are related to the ordering of the symmetry
classes given in Tables I and II. If the higher dimensional
system belongs to the even primary series, then any Chern
number is realizable and we say that the chiral system belongs
to the odd primary series, which is also Z classified.

As in the nonchiral classes, the primary series gives
rise to two descendants in the same symmetry class. As in
Sec. IV A 1, a super-TRS condition is applied to the higher
dimensional insulator, as well as chiral symmetry. In this case
the fractional part of the CS invariant (CS2n+1 mod 1) of the
higher dimensional system determines the Z2 index for the
physical system.

075148-6



CLASSIFICATION OF TOPOLOGICAL INSULATORS AND … PHYSICAL REVIEW B 99, 075148 (2019)

B. Dimensional reduction out of equilibrium

The above dimensional reduction procedure in equilibrium
will motivate our approach to classifying nonequilibrium
states. We generalize the method in the following way. Start-
ing with an initial state ρ(�k, t = 0) belonging to a particular
symmetry class in d dimensions, we construct the higher-
dimensional insulator in (d + r) dimensions ρ(�k,�θ, t = 0)
in the appropriate manner for the equilibrium classification.
The physical (d-dimensional) system evolves under a final
Hamiltonian Hf

(d )(�k, t ). We then dimensionally extend this

final Hamiltonian to Hf
(d+r)(�k,�θ, t ) and consider the time

evolution of the higher-dimensional system, while ensuring
that the �θ = �0 subspace remains true to the physical system.

Of course, as in equilibrium, our conclusions regarding
the topology of the physical system should be independent
of the choice of embedding in this higher dimensional space;
however one should be restricted to embeddings which respect
the relevant symmetries of the system, e.g., by enforcing the
super-TRS condition (3). Furthermore, we are interested in
those properties of the system that can be inferred from the
instantaneous wave function |�(tf )〉 alone, without reference
to the history of the wave function at previous times t < tf, as
in Ref. [24]. If two choices of Hf

(d )(�k, t ) yield the same final
state |�(tf )〉, then our conclusions must be the same for both
quench protocols. Crucially, when looking at |�(tf )〉, one can-
not distinguish whether TRS and chiral symmetries are broken
dynamically or explicitly, since either process could yield the
same final state. We therefore make no assumptions about
the symmetry of Hf

(d )(�k, t ) except for the presence/absence of
PHS, which can be inferred from |�(tf )〉.

We note that, although in equilibrium the dimensional
reduction parameter θ is often interpreted as a time coordinate
which traces out an adiabatic evolution of the ground state,
one should not confuse this parameter with the physical
(generally nonadiabatic) time evolution in our nonequilibrium
protocol. Instead, θ can be thought of as a coordinate which
labels a one-parameter family of independent quench proto-
cols.

Having described the general procedure, we now system-
atically construct our nonequilibrium table of topological
insulators, considering each series in turn.

1. Primary series in d = 2n

As previously discussed, the primary series in even dimen-
sions refers to the Z-valued entries of the equilibrium table,
and these systems are classified by the Chern number. Each
member of the even primary series possesses one symmetry
(TRS in d = 4n or PHS in d = 4n + 2) which, heuristically,
is irrelevant for the topology of the system, since the classifi-
cation is neither restricted nor enriched by its addition. Indeed
the Chern number must remain invariant under any smooth
gap-preserving deformations of the wave function, even if the
underlying symmetries are broken.

Under unitary dynamics, the topology of the state is cap-
tured by the fictitious Hamiltonian Q̂(tf ) defined in (1). The
time t parametrizes a smooth deformation connecting Q̂(0)
to Q̂(tf ), and therefore the Chern number (and hence the
topology) of the initial state must be preserved in time. This

behavior has been proved for two dimensions in previous
studies [18–21,51]. Note that for finite systems, beyond a
certain time t ∼ L/vL.R. the correlations of |�(t )〉 will span
the whole system, at which point the Chern number is no
longer a well-defined quantity. The primary series in d = 2n
are colored black in Table II.

2. First and second descendants in d = 2n − 1 and d = 2n − 2

The first and second descendants of the even primary series
are constructed as described in Sec. IV A 1. Consider now the
dynamics of the higher dimensional insulator.

If the descendants are PHS-protected (class D in d =
0, 1 and class C in d = 4, 5), then we can impose particle-
hole symmetry on the dimensionally extended initial state
ρ(�k,�θ, t = 0) and final Hamiltonian Hf

(d+r)(�k,�θ, t ). This en-
sures that the PHS of the higher dimensional system is pre-
served in time, and so ρ(�k,�θ, t ) will also respect PHS; the
connection between insulators of different dimensions thus
holds out of equilibrium. Moreover, the descendants inherit
their topology from the even primary series, the topology of
which is preserved (Sec. IV B 1). Therefore the topology of
the descendants will not change in time.

However, if the descendants are TRS-protected (class AII
in d = 2, 3 and class AI in d = 6, 7), then for t > 0 the
(d + r)-dimensional state ρ(�k,�θ, t ) will not respect TRS due
to dynamically induced symmetry breaking. Even though
the Chern number of ρ(�k,�θ, t ) cannot change in time, the
connection between the insulators of different dimension no
longer holds. Indeed for first descendants, the relationship
(4) between Chn and CS2n−1 no longer holds, because the
contributions to Chn for θ > 0 and θ < 0 are not equal once
TRS is dynamically broken. Therefore the topology of TRS-
protected first descendants is lost out of equilibrium.

For the first TRS descendants, we expect that the CS
invariant will be free to vary continuously in time since there
is no symmetry to quantize CS2n−1 for t > 0, in a similar
way to class AIII in 1D [24]. This in turn implies that the
second descendants, which themselves inherit their topology
from the first descendants, must also lose their topology out
of equilibrium. Unlike the first descendants, the relevant bulk
index for second descendants [the FK invariant Eq. (5)], does
not vary in time [46], however the above argument highlights
that the relevance of the FK invariant to topology is lost when
out of equilibrium. Indeed the FK invariant is only meaningful
when a gauge determined by the TRS is adopted; once TRS is
dynamically broken this gauge is no longer uniquely specified
and thus the topology is lost. All the cases covered in this
section are marked in blue in Table II.

3. Primary series in d = (2n − 1)

We now turn to Z-classified systems that feature a chiral
symmetry, which constitute the odd primary series. In equi-
librium, these systems are often analyzed in terms of winding
numbers [15] without reference to dimensional reduction.
However, once chiral symmetry is broken, the density matrix
can no longer be brought into a canonical off-diagonal form
and so the usual definition of the winding number is no
longer well defined. We will instead make reference to the
dimensional reduction procedure outlined in Sec. IV A 2. Let
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+S

−S

+S̃(�k, t)

−S̃(�k, t)

θ = 0

θ = +π

θ = −π

U(�k, t)

FIG. 3. Dimensional extension of a chiral symmetric insulator
after unitary time evolution. The higher dimensional BZ, which was
compact at the poles θ = ±π , becomes open for t > 0.

us start with the case where no additional symmetries are
present (class AIII in d = 2n − 1).

In equilibrium, the primary series in d = (2n − 1) can be
related to the primary series in (d + 1) dimensions via the
extension (6), and so we consider the time evolution of this
(d + 1)-dimensional insulator. As was highlighted at the
beginning of Sec. IV B, we should not be able to distin-
guish explicit chiral symmetry breaking from dynamically
induced symmetry breaking, and so we should not assume
that Hf

(d )(�k, t ) is chiral. Therefore we no longer have a unique
prescription for dimensionally extending the final Hamilto-
nian, and so we can choose an arbitrary θ dependence for
Hf

(d+1)(�k, θ, t ).
Here we note an important difference between the dimen-

sional extensions described in Secs. IV A 1 and IV A 2. In the
former, the higher-dimensional insulator exhibits periodicity
in the θ direction, due to the TRS/PHS of the reference
system; this ensures that the BZ remains closed for all times,
regardless of the choice of Hf

(d+1)(�k, θ, t ). However, as can
be seen from (6), the parent systems of chiral insulators are
not periodic in θ ; rather, the closure of the BZ comes from
the �k independence of the state at the poles θ = ±π , which
allows the poles to be compactified (see, e.g., Ref. [50]). Since
we are free to choose any embedding of Hf

(d+1)(�k, θ, t ), the
�k independence at the poles may fail. Thus a boundary of
the higher dimensional system may open up at θ = ±π , as
illustrated in Fig. 3.

Because the BZ is no longer a closed manifold, the in-
tegral of the Chern form

∫
BZ chn is no longer quantized, as

contributions can ‘leak’ out through the boundary at θ = ±π .
We could try to redefine a topological invariant by subtracting
off the surface integral at the boundary, yielding a quantized
index

μ(t )AIII :=
∫

BZ(d+1)

chn(t ) −
∫

∂BZ(d+1)

Q2n−1(t ), (8)

where the surface ∂BZ(d+1) refers to the boundaries at θ =
±π . However, while μ(t )AIII is quantized to an integer, its
value is gauge dependent since the second term is gauge
invariant only up to an integer. Therefore we cannot ascribe
any physical meaning to μ(t )AIII. Clearly, the topology of
class AIII systems is lost out of equilibrium.

For members of the primary series that possess TRS and
PHS in addition to chiral symmetry, we must also consider the
symmetry of the higher-dimensional system, which is given
by (7). As before, the presence of TRS in the final Hamiltonian
is irrelevant since the symmetry will be dynamically broken.
However, if the higher dimensional system possesses PHS
(as for BDI and CII), then we should also impose PHS on
Hf

(d+1)(�k, θ, t ), thereby preserving the symmetry of ρ(�k,�θ, t ).
As we found for the nonchiral classes, these PHS-respecting
embeddings ensure that contributions to

∫
BZ chn are equal for

θ < 0 and θ > 0, so we can only consider the upper half
θ > 0. Now we can construct an index analogous to that
defined in (8)

μ(t )PHS := 2
∫

θ>0
chn(t ) − 2

∫
θ=+π

Q2n−1(t ). (9)

This index is quantized to an integer, and owing to the
factor of 2, gauge transforms can only change μ(t )PHS by
an even integer. Thus the parity μ(t )PHS mod 2 serves as a
topological index which is preserved under unitary dynamics.
Evidently, μ(t )PHS mod 2 equals the parity of the (d + 1)-
Chern number at t = 0. Additionally, if the first term of (9)
is evaluated using Stokes’ theorem, then we find μ(t )PHS =
2CS2n−1(t ). In essence, primary systems in classes BDI and
CII are reduced to first descendants of even-dimensional
systems, which have a Z2 classification. However for classes
DIII and CI, the absence of PHS in the higher dimensional
system results in the loss of topology for the same reasons
as in class AIII. The odd primary series are marked in red in
Table II.

4. First and second descendants in d = (2n − 1) − 1
and d = (2n − 1) − 2

Z2-classified insulators in the chiral classes inherit their
topology from the odd primary series. Clearly, if the parent
system loses its topology out of equilibrium (as is the case for
classes DIII and CI), then its descendants will also lose their
topology.

On the other hand, in classes BDI and CII, the parent in-
sulator is reduced from a Z-classified primary insulator to the
Z2-classified first descendant of the even primary series. We
construct a higher-dimensional initial state in the same sym-
metry class according to Sec. IV A 1 and time evolve under
a PHS Hamiltonian. The Z2 classification of the descendant
matches the parity of the higher-dimensional winding number.
Therefore, despite the reduction of the higher dimensional
system from Z to Z2, the topology of the physical system is
preserved, as it only depends on the bulk index modulo 2. We
see that the first descendant of the odd primary series becomes
the second descendant of the even primary series.

The second descendants of the odd primary series are
Z2 classified in equilibrium; however generalizing the above
construction would require us to reinterpret them as a third
descendant of the even primary series. As shown in Ref. [14],
one cannot construct a third descendant with a nontrivial
topological classification. Therefore, these systems lose their
topology out of equilibrium. These systems studied in this
section are marked in orange in Table II.
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5. 2Z classified systems

The only systems which remain to be classified are those
which have a 2Z classification in equilibrium; these occur
four dimensions below the primary series. In even dimensions,
these are classified by the Chern number just as in the primary
series, but the extra symmetry enforces the Chern number to
be even [16]. We can employ exactly the same reasoning as
in Sec. IV B 1 to show that these systems also preserve their
topology out of equilibrium, with the caveat that systems must
be initialized with an even Chern number.

Similarly, in odd dimensions the 2Z systems are classified
in the same way as the primary series, with the understanding
that only even topological indices are possible. We use our
results from Sec. IV B 3, which show that in classes CI and
DIII (in d = 3 and 7, respectively) the topology is lost. In
classes CII and BDI (in d = 1 and 5, respectively), the parity
of the winding number is preserved; however since the initial
state must have an even winding number, all states become
topologically trivial out of equilibrium. The systems covered
in the above are colored green in Table II.

C. Structure of the nonequilibrium classification

Having considered all possible topological systems in all
spatial dimensions, we arrive at our nonequilibrium classifi-
cation given in Table II. Some comments on its structure are
required.

The fact that PHS is the only symmetry which is preserved
under dynamics indicates that the state [or equivalently the fic-
titious Hamiltonian (1)] will collapse onto one of the symme-
try classes A, D, or C. The equilibrium classification of these
classes acts as an ‘upper bound,’ in that the nonequilibrium
entry must be a subgroup of the corresponding equilibrium
entry A, D, or C. For example, in d = 3 and 7, the equilibrium
classifications of classes A, D, and C are all 0, hence all
nonequilibrium classifications in d = 3 and 7 are 0.

The equilibrium table exhibits two forms of periodicity:
Firstly, the table is invariant if all spatial dimensions are
shifted by d → d + 8. This is naturally also seen in our
nonequilibrium table, since all our arguments are invariant
under such an eightfold dimensional shift. The equilibrium
table is also invariant if the dimension is increased by one and
the symmetry classes are all shifted down. More precisely, the
equilibrium classification only depends on s − d mod 8 (2),
where s is the label of the real (complex) symmetry class
given in Table I. This full periodicity is not reflected in
the nonequilibrium classification, because of the differences
between the three symmetries: Only PHS is preserved out of
equilibrium. However, a subset of this periodicity survives.
Between symmetry classes s and s + 4, all the symmetries are
the same, with the exception that the quantities TT∗ and CC∗

change sign. Their role under dynamics is therefore the same,
and so the nonequilibrium classification for (s, d ) is the same
as for (s + 4, d + 4).

V. BULK-BOUNDARY CORRESPONDENCE
AND ENTANGLEMENT SPECTRA

The arguments of Sec. IV are formulated in terms of
characterizations of the bulk of a system. This is a natu-

ral approach since bulk topological indices can be directly
calculated for a single state composed of full Bloch bands.
However, topological phases are also characterizable at their
boundary, via the presence of certain gapless edge modes. We
expect that one could alternatively derive our nonequilibrium
classification by considering boundary modes, in a manner
similar to the classification of edge theories in Ref. [15].
Of course, a wave function alone does not itself possess
edge excitations, since these are properties of a Hamiltonian
spectrum, so these edge modes are not directly observable,
but through our constructions described in Sec. III, we can
associate an edge theory to a state.

Specifically, since the topology of |�(tf )〉 is given by the
equilibrium topology of some fictitious Hamiltonian [e.g.,
Q̂(tf ) in Eq. (1)], we can consider the edge modes of this ficti-
tious Hamiltonian. In the case of noninteracting fermions, we
can calculate the time-evolved Bloch functions |uα (�k, t )〉 =
e−iHf (�k)t |uα (�k, 0)〉 for an infinite system and then construct a
noninteracting translationally invariant Hamiltonian Q(�k, tf )
for which |�(tf )〉 is the ground state. A real-space Hamiltonian
Q(tf ) can then be constructed from Q(�k, tf ) and given a
boundary of codimension 1. If |�(tf )〉 is topological, then
gapless modes will appear at this edge.

This is a rather indirect way of probing the bulk-boundary
correspondence associated with the topology of |�(tf )〉, in
part due to the fact that the choice of Q(tf ) is not uniquely
defined. A simpler strategy is to make use of the entangle-
ment spectrum [45], which is uniquely defined and can be
calculated directly from the wave function |�(tf )〉. In equilib-
rium, the entanglement spectrum reflects edge modes of the
governing Hamiltonian and can be computed from the ground
state alone. By analogy, studying the entanglement spectrum
of |�(tf )〉 is a simple and direct way to detect the edge
modes of Q̂(tf ). To be specific, we partition the system into
regions A and B and consider the reduced density matrix ρ̂A =
TrB |�(tf )〉〈�(tf )|. If the nonequilibrium state is topologically
nontrivial, then we should see gapless entanglement modes
in the entanglement Hamiltonian ĤE = − ln ρ̂A. Although
there may be quantitative differences between the spectrum
of Q̂(tf ) and the entanglement spectrum, the gaplessness of
one spectrum implies that the other spectrum is gapless [43].

The entanglement spectrum is more computationally prac-
tical, and we will present numerical results for the entan-
glement spectrum in Sec. V B. However, since the two edge
theories described above are equivalent, we simply refer to the
fictitious Hamiltonian Q(tf ) in our analysis, again considering
cases where the initial and final Hamiltonians are in the same
symmetry class.

A. Edge theory analysis

At t = 0, the Hamiltonian Q(t = 0) will belong to the pre-
quench symmetry class in question and will possess an edge
theory associated with the topological phase of Hi. After time
evolution, the Hamiltonian Q(tf ) will belong to a symmetry
class (A, D, or C), which may be reduced due to dynamically
induced symmetry breaking. Terms which were forbidden by
TRS or chiral symmetry at t = 0 may then appear in Q(tf ). If
these extra terms are able to gap out the edge modes, then
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the boundary theory becomes trivial and topology is lost.
However, if the edge modes survive for t > 0, then topology
is preserved.

In the following, we describe certain cases where edge
modes are either preserved or destroyed; this analysis is not
exhaustive, but it is clear how to generalize the arguments
to arrive at Table II. We neglect cases where the equilibrium
classification of class A, D, or C is trivial, since in these cases
Q(tf ) will be unable to support any edge modes, regardless of
the initial state.

1. 1D superconducting chains

The edge modes of one-dimensional systems are simply
discrete modes at the zero-dimensional edges of the system.
We compare classes BDI, D, and DIII, all of which reduce to
class D for t > 0, and are realizable as topological supercon-
ductors [52–54].

The edge states of these superconducting classes are all
composed of Majorana fermions. In class D, the nontrivial
phase simply hosts one Majorana fermion γ̂ L(R) at each edge
L or R. The addition of extra symmetries allows different
types of Majorana to appear. Class BDI systems with a
winding number ν will possess |ν| chiral Majorana zero
modes at each end γ̂

L(R)
1 , . . . , γ̂

L(R)
|ν| , whereas nontrivial DIII

systems possess a Kramers pair of Majorana fermions at each
end γ̂

L(R)
I , γ̂

L(R)
II [50] (here, Roman numerals label the two

Kramers-degenerate states). After time evolution, chiral and
TRS symmetries are broken, which allows local symmetry-
breaking terms to appear in Q(tf ). Majorana fermions on the
same edge will be able to couple in pairs, but as long as PHS
is preserved Majoranas on opposite ends cannot couple, and
Majoranas cannot couple to the bulk [52]. Any two Majoranas
which do couple will become gapped. It is clear that in the
DIII case, the existence of two Majoranas at each end means
that this Kramers pair will in general become gapped, leading
to a trivial edge theory and hence a reduction of topology. On
the other hand, in class BDI the |ν| Majoranas on a given edge
will gap out in pairs. If |ν| is even, then all Majoranas will gap
out and the edge theory will be trivial, but if |ν| is odd then
one Majorana on each end will survive, corresponding to a
nontrivial class D system. Therefore the Z classification of
BDI is reduced to Z2, in agreement with Sec. IV.

2. 2D insulators

One can also make a similar analysis of the 1D edge
modes of 2D systems. We contrast the chiral edge modes of
class A systems with the TRS-protected helical modes of AII
insulators [55]. When Ch1 = +1, the class A edge theory can
be described using only one band, while the class AII edge
features two bands (representing the spin degree of freedom).
Taking a boundary perpendicular to the x direction, the two
edge theories can be written as

Hb
A(kx ) = vkx; Hb

AII(kx ) = vkx σ z, (10)

where σ x,y,z are the Pauli matrices in spin space. The TRS
operator in the AII case takes the form T = iσ y. The gap-
less nature of each edge theory is robust, in the sense that
symmetry-respecting perturbations cannot open up a gap. For
class A, this is simply due to the lack of other states to scatter

into, whereas in class AII the TRS forbids any term that could
open up a gap at kx = 0.

After a quench, the class A edge theory will remain gapless
for the same reasons as in equilibrium; however for class
AII, dynamically induced symmetry breaking allows TRS-
breaking terms to appear in the edge theory. For example,
the term mσ x, which is allowed after time evolution, will gap
out the edge theory. Clearly, the Z2 edge mode is unstable
under unitary dynamics, and the nonequilibrium topological
classification can be identified as Z2 → 0.

B. Numerical results for the entanglement spectrum

We supplement our analytical results on the dynamics of
edge modes with some numerical simulations of the entan-
glement spectrum dynamics for 2D insulators. We use the
Haldane model [56] and the Kane-Mele model [55] as hosts
of nontrivial class A and AII systems, respectively. We take
periodic boundary conditions in the x direction and make the
entanglement cut perpendicular to the y direction so that the
wave vector kx is a good quantum number, as illustrated in
Fig. 4.

The Haldane model describes spinless fermions ĉ(†)
i hop-

ping on a honeycomb lattice (with sublattices A and B), with
Hamiltonian

ĤHal = J1

∑
〈 j,k〉

(ĉ†
j ĉk + H.c.) + J2

∑
〈〈 j,k〉〉

(eiφ jk ĉ†
j ĉk + H.c.)

+ m
∑
j∈A

ĉ†
j ĉ j − m

∑
j∈B

ĉ†
j ĉ j, (11)

where 〈 j, k〉 denotes nearest neighbors, and 〈〈 j, k〉〉 denotes
next-nearest neighbors. The phases φ jk originate from a stag-
gered magnetic flux and are equal to +φ for anticlockwise
hopping about their common nearest neighbor and −φ for
clockwise hopping. The mass term m serves to break the
inversion symmetry of the lattice. The model possesses two
bands associated with the sublattice degree of freedom and
realizes Chern numbers of 0, +1, and −1.

The Kane-Mele model has the same honeycomb structure
but features spinful fermions ĉ(†)

i,α where α =↑,↓. Instead of
a complex hopping (which breaks TRS), the model features
a spin-orbit interaction as well as a Rashba interaction. The
Hamiltonian is

ĤKM = J1

∑
〈 j,k〉,α

(ĉ†
j,α ĉk,α + H.c.) + iηs.o.

∑
〈〈 j,k〉〉,α,β

ν j,k ĉ†
j,ασ z

α,β ĉk,β

y

A B

x

FIG. 4. Geometry of the entanglement cut for 2D systems with
periodic boundary conditions in the x direction and open boundary
conditions with a large system size in the y direction. The dashed line
represents the divide between regions A and B.
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FIG. 5. Dynamics of the single-particle modes of the entangle-
ment spectrum (eigenvalues ζn of the reduced single-particle density
matrix Ci, j = 〈�(t )|ψ̂†

i ψ̂ j |�(t )〉, where i, j belong to the spatial
region A) for the Haldane model (top) and the Kane-Mele model
(bottom). In both systems, we start with a topologically nontrivial
initial state at t = 0 (left) and then time evolve under a different
Hamiltonian by a time t = 2J−1

1 . The entanglement spectrum of the
time-evolved state is plotted (right). In the Haldane model, where
topology is preserved, the edge state remains gapless after time
evolution. However, in the Kane-Mele model, the gapless modes are
TRS protected and topology is destroyed out of equilibrium, hence
the edge state becomes gapped at finite times.

+ iλR

∑
〈 j,k〉,α,β

ẑ · (�σ ×�r j,k )α,β ĉ†
j,α ĉk,β

+ m
∑
j∈A,α

ĉ†
j,α ĉ j,α − m

∑
j∈B,α

ĉ†
j,α ĉ j,α, (12)

where ν j,k = −1 (+1) for clockwise (anticlockwise) next-
nearest neighbor hopping, and �r j,k is a unit vector in the
direction from site j to k. We have also included the inversion
symmetry-breaking mass term.

To study the effect of nonequilibrium physics on the
entanglement spectra, we construct an initial state as the
ground state of the Hamiltonian in question. We then time
evolve under a final Hamiltonian which has different pa-
rameters and look at the entanglement spectrum of the
state after some finite time, which we choose to be tf =
2J−1

1 in both cases. For the Haldane model quench, we
choose (J1, J2, φ, m)t=0 = (1, 0.3, 0.4, 0.1) and then change
the phase to (φ)tf = −0.2. For the Kane-Mele model quench,
we choose (J1, ηs.o., λR, m)t=0 = (1, 0.5, 0.1, 0.2) and then
change the spin-orbit coupling to (ηs.o. )tf = 1.5. Using the
method of Peschel [57], we obtain the entanglement spectrum
by diagonalizing the ‘correlation matrix’ (or the reduced
single-particle density matrix) Ci, j = 〈�(t )|ψ̂†

i ψ̂ j |�(t )〉. The
eigenvalues of C are related to the single-particle excitation
energies εn of the entanglement Hamiltonian ĤE via ζn =
(eεn + 1)−1. Therefore an eigenvalue equal to ζ = 0.5 signals
an entanglement degeneracy εn = 0. The results are shown
in Fig. 5. We see that the entanglement spectrum of the

Haldane model remains gapless after the quench, however in
the TRS-protected Kane-Mele model, the entanglement edge
mode becomes gapped after the quench. This is consistent
with our arguments of the previous section.

VI. PHYSICAL CONSEQUENCES

In the previous sections, we have used a number of dif-
ferent theoretical tools to better understand the topological
structures of many-body wave functions out of equilibrium.
Here we describe some consequences of our results that are
directly relevant in experimental scenarios.

A. Preparation and stability of topological states

In an infinite 2D system, the time independence of the
Chern number implies that strictly a nontrivial Chern insulator
ground state cannot be realized using unitary dynamics alone
[20,21]. Additionally, as mentioned in Sec. III, even in a
finite-sized system the Chern number remains constant until
correlations span the system size, and the standard defini-
tion of the bulk invariant breaks down. Thus to realize a
ground state of a topologically nontrivial Hamiltonian in cold
atom experiments, one must adiabatically ramp the system
across some topological phase transition [58,59]. Since the
gap closes and the correlation length diverges at the phase
transition, one must proceed slowly enough to avoid Landau-
Zener tunneling into an excited state. At the transition point,
the gap to excited states is on the order of the level spacing
∼(�E )/N , where �E is the bandwidth of the Hamiltonian,
and N is the number of particles in the system. Thus to ensure
the fidelity of adiabatic preparation, one must sweep across
the transition over a time which grows extensively with the
system size.

Our results generalize this observation to all classes of
topological insulators and superconductors. Realizing a topo-
logical state which has a nontrivial entry classification in
Table II cannot be achieved via unitary dynamics alone unless
symmetries are explicitly broken in the governing Hamilto-
nian or we proceed by slow adiabatic evolution. On the other
hand, for systems which have trivial entries in Table II it is
possible to time evolve from a trivial state to a topological
one over a time which does not grow with the system size
while respecting the symmetries of the Hamiltonian. Note that
alternative nonadiabatic approaches to preparing topological
states have recently been proposed which involve nonunitary
dynamics, i.e., interaction between the system and its environ-
ment [60,61].

Conversely, topological states which are trivial under our
nonequilibrium classification are generically unstable to time-
dependent perturbations, for example external noise. In such
systems, any fluctuations of the Hamiltonian with frequency
component above the bulk gap will generically result in a
state which has trivial topology. However, if the topological
phase in question is stable out of equilibrium, then even in the
presence of these fluctuations, the wave function will possess
the same topology which it was initialized with.

Analogously, since in equilibrium bulk topological phases
are intimately related with the protection of their edge modes,
we expect that this instability of certain phases to time-
dependent perturbations will also have important effects for
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the robustness of edge modes in general. In the following two
sections, we study examples of these instabilities.

B. Local adiabatic mixing of edge modes

One proposed practical use of topological states is in
quantum information technology [62,63]. The nonlocal entan-
glement associated with 0D edge or defect modes allows for
robust qubit storage over timescales that grow exponentially
with system size—indeed this was the original motivation of
Kitaev’s proposal to realize Majorana fermions [52]. These
edge modes are protected against static perturbations by the
bulk topological phase in equilibrium. However, in cases
where the bulk topological phase is destroyed out of equilib-
rium, we expect that the edge modes will not be protected
against time-dependent perturbations. Here we discuss the
way in which this dynamical instability affects 0D modes
at the edges of 1D systems, however we expect that similar
instabilities should arise for edge modes in higher dimensions,
with equally important experimental consequences.

To facilitate quantum computation using 0D edge modes,
one will need to be able to externally manipulate these topo-
logical qubits, which could be done through local adiabatic
variation of some system parameters. The requirement of
adiabaticity ensures that the qubit cannot couple to the bulk
states, which are gapped out. However, the presence of Ma-
jorana edge modes implies the existence of an (almost) zero-
energy subspace, which can be understood using degenerate
adiabatic theory. Within this zero-energy subspace, there is
no energetic protection against transitions between different
zero-energy modes when the Hamiltonian is varied in time,
regardless of how slowly the variation is done. However,
the modes may still be protected against mixing due to the
symmetries that protect the bulk topological phase.

From a practical perspective, we should distinguish mix-
ing between Majoranas which is desired and that which is
undesired. The desired mixing will generally involve moving
the Majoranas on a global scale, so that their nontrivial
braiding statistics can be exploited [64,65]. The nonlocality
of this process ensures that it cannot happen ‘accidentally,’
i.e., through a lack of control over the system. Conversely, any
process which can happen locally is generally undesired, in
that these processes could occur accidentally. Here we focus
on the latter class of processes, and as such we will consider
only a local part of the adiabatic low-energy subspace. Any
mixing between edge modes within this local subspace is thus
undesirable for quantum computation.

As the adiabatic process evolves, one must consider the
full dynamics of this local low-energy subspace, which we
assume is fully isolated from the bulk. Crucially, one should
account for the possibility of dynamically induced symmetry
breaking within this subspace and the associated reduction
of topology described in the previous sections. Two edge
modes which were protected against mixing by symmetry
in equilibrium may be able to mix when the Hamiltonian
is externally varied in time, because the symmetry which
protects them is broken dynamically—this indicates that such
qubits would be susceptible to undesired local mixing. This
local adiabatic mixing has been predicted in the specific case
of class DIII in 1D [66], and here we provide a framework by
which this phenomenon can be understood more generally.

The question of which topological modes are vulnerable
to local adiabatic mixing is exactly equivalent to our previous
consideration of which bulk topological phases are destroyed
out of equilibrium, since both problems reduce to the question
of whether time-reversal and chiral symmetry-breaking terms
are enough to lift the equilibrium topological protection.
We therefore expect that our classification (Table II) should
generalize the results of Ref. [66] to all symmetry classes, in
that entries which become trivial out of equilibrium indicate
that the edge modes can adiabatically mix due to local pertur-
bations and therefore are inappropriate for qubit storage.

As an example, we consider 1D systems in class BDI
which are in phases with winding number |ν| > 1. Such sys-
tems would be expected to host |ν| chiral Majorana modes at
an edge; however when nonequilibrium effects are considered,
the topological classification reduces from νeq. ∈ Z to ν;eq. ∈
Z2. As a toy model of such a system (analogous to the one
used to demonstrate mixing in class DIII in Ref. [66]), we use
a semi-infinite extended Kitaev chain with beyond-nearest-
neighbor hopping and pairing [39,67]

Ĥν>0 = Eg

2

∞∑
j=1

iγ̂ B
j γ̂ A

j+ν . (13)

Here, we define Majorana operators γ̂ A
j = ĉ j + ĉ†

j and
γ̂ B

j = −i(ĉ j − ĉ†
j ) in terms of the spinless fermion creation

and annihilation operators ĉ j, ĉ†
j . The Hamiltonian features

equal amplitude hopping and p-wave superconducting pair-
ing. Clearly, the Majorana modes γ̂ A

1 · · · γ̂ A
ν are not involved

in the Hamiltonian and hence constitute a local set of zero-
energy modes. These modes cannot be gapped out as long
as the time-reversal symmetry (associated with the realness
of the hopping and p-wave pairing) is preserved. Note that
this time reversal symmetry ensures that terms with an even
number of ‘A’ or ‘B’ labels are not allowed, e.g., γ̂ A

j γ̂ A
k is

forbidden.
Class BDI in d = 1 has a nonequilibrium classification

Z → Z2, and so when ν = 2 we expect the topological pro-
tection of edge modes to be lifted. For this value of ν, we
only need to consider six Majorana operators: γ̂ A

1,2,3,4 and
γ̂ B

1,2, since all other operators decouple. We consider gradually
turning on additional terms in the Hamiltonian which satisfy
all the required symmetries and act only on these six local
Majoranas. Two such terms are

Ĥμ = iμ

2

[
γ̂ A

1 γ̂ B
1 + γ̂ A

2 γ̂ B
2

]

ĤJ = iJ

2

[
γ̂ A

1 γ̂ B
2 + γ̂ A

2 γ̂ B
1

]
. (14)

The first applies a chemical potential to the first two sites,
while the second enhances the single-particle hopping be-
tween the first two sites. Following Ref. [66], we calculate
the degree of mixing between the two modes γ̂ A

1 , γ̂ A
2 using

a non-Abelian Berry connection. Since the variation is slow
with respect to Eg, a Majorana zero mode � (which squares
to 1) must remain an instantaneous zero-energy eigenstate
after time evolution, which means we must have �(t ) =
cos ϕ(t )γ̂ I

�η(t ) + sin ϕ(t )γ̂ II
�η(t ), where the Roman numerals dis-

tinguish the two instantaneous zero modes. The dynamics of
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the mixing angle ϕ(t ) follow

ϕ(t ) = ϕ(0) +
∫ η(t )

η(0)
d�η · A(�η), (15)

where the Berry connection is

A(�η) = 1
2

{
γ̂ I
�η,

�∇ηγ̂
II
�η

}
(16)

with associated Berry curvature �i j = ∂ηiAη j − ∂η jAηi . For
the model considered above, we find a nonzero Berry cur-
vature �μJ = −E2

g (E2
g + μ2 + J2)−2 [68], indicating that in

general there will be a nonzero amplitude for one Majorana
mode to evolve into the other.

C. Decoherence of Majorana-based qubit storage due to noise

The local adiabatic mixing described above demonstrates
how temporal variation of external parameters can lead to
mixing between degrees of freedom that are topologically
protected in equilibrium. In the context of quantum compu-
tation, such external variation is necessary for manipulating
and/or accessing the information held in the Majorana qubits.
However, even when the qubit is simply stored and not ac-
cessed, local fluctuations due to external noise may be present.
These fluctuations, although nondeterministic, can still lead
to mixing between the local degrees of freedom if the topo-

logical phase in question is unstable in the nonequilibrium
classification (Table II). When the noise is accounted for and
averaged over, this should result in decoherence of the qubit
which was initially stored. In this section, we show that this
decoherence can even occur when the noise is statistically
time-reversal symmetric, so that there is no external bias
between forward and backward time directions in the noise
correlation functions. Note that, due to the adiabatic nature
of the mixing, this decoherence should appear for arbitrarily
small noise frequencies—specifically we show later that the
decoherence time to scale with the noise frequency � as τd ∼
E2

gapV
−2�−1, where V is the amplitude of the noise. This is in

stark contrast to decoherence due to mixing of edge and bulk
states, mediated by noise with frequency components above
the gap [69–71].

To test our hypothesis that the nonequilibrium classifica-
tion predicts which topological zero modes are unstable to
this decoherence, we numerically simulate systems in classes
BDI and DIII in d = 1 which are subject to external noise
and determine the extent to which information stored in the
Majorana modes is lost in time. Moreover, since class BDI
has an entry Z (equilibrium) → Z2 (nonequilibrium), we wish
to compare systems in that class with different parities of the
topological index, thus we take the winding number ν to be
1 (stable) and 2 (unstable). The three models we consider,
therefore, are

ĤDIII =
∑
j,σ

[
1

2
μ j ĉ

†
jσ ĉ jσ + Jj ĉ

†
jσ ĉ j+1 σ + � j ĉ

†
jσ ĉ†

j+1 σ

]
+

∑
j

[
�

(s)
j ĉ†

j↑ĉ†
j↓ + αR

j (ĉ†
j↑ĉ j+1↓ + ĉ†

j↓ĉ j+1↑)
] + H.c.; (17a)

ĤBDI
ν=1 =

∑
j,β

[
1

2
μ jβ ĉ†

jβ ĉ jβ + Jjβ ĉ†
jβ ĉ j+1 β + � jβ ĉ†

jβ ĉ†
j+1 β

]
+ H.c.; (17b)

ĤBDI
ν=2 =

∑
j

[
1

2
μ j ĉ

†
j ĉ j + Jj ĉ

†
j ĉ j+1 + � j ĉ

†
j ĉ

†
j+1 + J (2)

j ĉ†
j ĉ j+2 + �

(2)
j ĉ†

j ĉ
†
j+2

]
+ H.c. (17c)

Model (17a) features fermions ĉ jσ with a spin-1/2 in-
dex σ , model (17b) features fermions ĉ jβ where the label
β = 1, 2 distinguishes two disconnected chains, and Model
(17c), which generalizes the fine-tuned Hamiltonian (13) to
include generic terms allowed by symmetry, features spinless
fermions ĉ j . The various terms featured in the models, all
of which can vary spatially, are a chemical potential μ j , a
Rashba spin-orbit coupling term αR

j , a single-particle hop-
ping amplitude Jj , and a p-wave (s-wave) superconducting
pairing amplitude � (�(s)). The p-wave superconducting and
hopping amplitudes can couple fermions either one or two
sites apart—this difference allows us to access both the ν = 1
and ν = 2 phases in the class BDI cases. Each single-particle
Hamiltonian will respect PHS (CC∗ = +1) due to the re-
dundancy of the Bogoliubov-de Gennes description [72]. In
addition, when the parameters are real, both systems satisfy
a TRS. In the spinful system (17a) the TRS is symplectic
(TT∗ = −1), putting it in class DIII. On the other hand, the
latter two models possess a TRS satisfying TT∗ = +1 due
to the spinless nature of the fermions and hence belong to
class BDI.

The chains are duplicated in the model of (17b) so that each
of the three systems possesses four Majorana zero modes,
which is the minimum number required to store a qubit with-
out violating the fermion parity superselection rule. There-
fore, each model possesses two ‘left’ γ̂ 1,2

L and two ‘right’
γ̂ 1,2

R Majorana zero modes, which in models (17a) and (17c)
are protected against being gapped out by a time-reversal
symmetry (equivalently, a chiral symmetry).

In each case, the low energy subspace consists of four
states for which the bulk is in its ground state, and the nonlocal
Dirac fermions âα = γ̂ α

L + iγ̂ α
R (α = 1, 2) are occupied or

unoccupied. The fermion parity sectors cannot mix, and so
for concreteness we consider only the parity sector where an
odd number of edge modes are occupied (γ̂ 1

L γ̂ 1
R γ̂ 2

L γ̂ 2
R = +1)

so that the basis states for the qubit are the states |1, 0〉 and
|0, 1〉, where |n1, n2〉 denotes the states with 〈 f̂ α † f̂ α〉 = nα .
One can use Pauli operators σ̂ z = iγ̂ 1

L γ̂ 1
R; σ̂ x = iγ̂ 1

L γ̂ 2
L as a

basis of operators on this qubit space.
As would be expected in practice, the noise which we

introduce in these systems is local. Since we are interested
in the response of the edge modes, we choose noise sources
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which act only on the two leftmost and two rightmost sites
in each system independently. At each end, we consider two
simultaneous noise terms which are mutually uncorrelated
but overlap spatially. (The reason for considering two noise
sources is discussed below.) For each term, the time depen-
dence of the parameter η(t ) in question is an independent
random signal which is zero at t = 0, has mean equal to its
initial value, and with a Lorentzian power spectrum, i.e., the
noise correlator C(t ) := 〈η(t ′)η(t ′ + t )〉noise − 〈η(t ′)〉2

noise has
a Fourier transform C̃(ω) ∝ (ω2 + �2)−1, where the width
� characterizes the noise frequency. Note that the noise we
consider is statistically time-reversal symmetric, in the sense
that C(t ) = C(−t ).

To quantify the loss of information due to dephasing,
we use the ‘recovery fidelity’ developed by the authors of
Ref. [73], wherein the robustness of class D Majorana-based
memories to global fluctuations was studied. This quantity
characterizes the extent to which the initial information stored
can be recovered by some optimal recovery process. To
calculate the fidelity, the authors consider two initial pure
qubit states, labeled by +,− which are opposite on the
Bloch sphere, i.e., states such that the density matrix in the
Majorana subspace is ρ̂± = ρ̂Bulk

0 ⊗ (̂1 ± σ̂ x )/2, where ρ̂Bulk
0

is the ground state density matrix of the bulk, and the σ̂ x

acts in the Majorana subspace. These initial states are then
evolved for a time t under the same realization of the noise po-
tential, and the states obtained from different realizations are
averaged to obtain mixed density matrices ρ̂±(t ). Reference
[73] showed that the optimal Gaussian recovery process has a
fidelity

F opt(t ) = 2
3 + 1

6‖�+(t ) − �−(t )‖op. (18)

Here, ‖ · ‖op is the operator norm (which returns the largest
eigenvalue), and �±(t ) jk := Tr[ρ̂±(t )γ̂ j γ̂k] is the covariance
matrix, where j, k label the set of Majorana operators in the
system.

We calculate the time dependence of the fidelity for
each of the models (17) and plot the results in Fig. 6. All
Hamiltonian parameters are site independent, except for the
noise terms acting on the two leftmost sites. The initial
Hamiltonian parameters chosen are: (μ, J,�,�(s), αR)DIII =
(0.25, 1, 1, 0.3, 0.2) in (17a), (μ, J,�)BDI

ν=1 = (0.25, 1, 1)
in (17b), and (μ, J , J (2)�,�(2) )BDI

ν=2 = (0.25, 0.2, 1, 0.3, 1).
These values are chosen such that the systems are all in the
desired phases, and have approximately equal decay lengths
for the Majorana wave functions. Noise is introduced at each
edge through an explicit time dependence of μ j and �

(s)
j in

(17a), μ j β=1,2 and � j in (17b), and μ j and � j in (17c) (with
j = 1, 2 on the left edge, and j = N − 1, N on the right edge).
In ĤBDI

ν=1, the noise signals on the two disconnected wires
are independent and uncorrelated. These noise signals have
an amplitude such that the root mean square of the signal√

C(t = 0) = 0.1. We choose the width of the Lorentzian
noise spectrum to be small � = 0.02, so as to minimize
coupling of the edges and bulk. The length of each chain is
N = 24, and the density matrices are averaged over 20 noise
realizations.

In model (17b), the bulk topology is preserved under the
noise, since the topological index is odd and the nonequi-
librium classification for class BDI in d = 1 is Z → Z2. As

FIG. 6. Decoherence of Majorana qubit memories due to tempo-
ral noise, as witnessed by the recovery fidelity [Eq. (18)]. We com-
pare three systems in d = 1 [with Hamiltonians given in Eq. (17)],
in symmetry classes DIII and BDI—these have entries Z2 → 0 and
Z → Z2, respectively, in the nonequilibrium classification (Table II).
Accordingly, the topology of models (17a) and (17c) is unstable
out of equilibrium. This is reflected in the fidelity of storage in
the associated Majorana modes when local Lorentzian (TRS) noise
is present: The fidelity for the stable model (17b) saturates at a
constant value, indicating the preservation of the qubit, whereas the
initial state information stored in the unstable models decays away
completely, indicating that there is no measurement which can be
made to extract the initial qubit state.

such, the memory stored in the associated edge modes is not
susceptible to mixing by low-frequency noise, and as expected
the recovery fidelity is unaffected by the noise. On the other
hand, models (17a) and (17c) lose their topology according
to our classification (Table II). In these cases, the recovery fi-
delity decays until the states which started with opposite qubit
values become indistinguishable from one another. There is
thus no way of extracting the qubit in these cases where the
system topology is destroyed by nonequilibrium effects.

Simple arguments can be applied to estimate the rate at
which the fidelity decays in Fig. 6. We are generally working
in the regime where Emaj � V, T −1 � Egap, where Emaj is the
energy of splitting of the Majoranas (exponentially small in
the system size), V ∼

√
〈η(t )2〉 characterizes the energy scale

of the noise term, T ∼ �−1 is the time scale over which the
signal fluctuates, and Egap is the energy gap of the system. In
such a regime, the degenerate adiabatic theorem applies, as
described in Sec. VI B (this is independent of the ratio of V
and T −1). As such, all mixing effects are purely geometric
since any dynamical phases within the low-energy subspace
are on the order of Emaj. For small V , the dependence of
the Berry curvature on the instantaneous value of �η(t ) can
be neglected [74], so that the angle of mixing between two
Majoranas after a time t is θ (t ) ∼ �A(t ), where A(t ) is the
signed area swept out by the �η vector over a time t . Clearly,
if we only have one noise source, Dim�η = 1, then this area is
identically zero—this is why we included two (uncorrelated)
noise sources in the above. With multiple noise channels,
the root mean square area is roughly

√
〈A(t )2〉 ∼ V 2(t/T ).

Therefore at short times, the mean-square angle of mixing
grows with time as

√
〈θ (t )2〉 ∼ �V 2t�. The Berry curvature
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will be on the order of the inverse square of the energy scale
of the Hamiltonian ∼E−2

gap. Hence the timescale over which
the Majoranas mix is τd ∼ E2

gapV
−2�−1. After averaging over

the noise, this leads to a decoherence in the fidelity as e−t/τd .
Although the above arguments are specific to 0D edge modes,
wherein a degenerate adiabatic approximation can be reliably
applied, we expect that the relationship between the nonequi-
librium destruction of bulk topology listed in Table II and the
instability of edge modes against temporal fluctuations should
hold generally and in particular be observable in transport
signatures.

VII. RELATION TO FLOQUET-SPT PHASES

The nonequilibrium topological classification which we
have developed in the previous sections applies rather gener-
ally to systems undergoing unitary time evolution in which
the time dependence of the Hamiltonian is arbitrary (but
symmetry-respecting). There are, however, topological char-
acterizations of nonequilibrium dynamics which apply to
more specific protocols, most notably in the dynamics of
periodically driven systems, where Floquet-SPT order can
emerge [25–28]. It is worth understanding how our results
relate to those found in that context.

In order to make connection with observables, we have
only considered properties which can be inferred from the
wave function |�(tf )〉 at some instant in time tf. This ensures
that the topology which we refer to can be detected using, e.g.,
the entanglement spectrum. However, if periodicity of dynam-
ics is enforced (either by looking at a Floquet eigenstate, or by
considering the steady state of a many-body localized system),
then the micromotion over a period can also be character-
ized. Floquet-SPT order captures the topological properties
of this micromotion which cannot be inferred at a single
time during the cycle; for that reason, it is fundamentally
different from our characterization. Indeed given that generic
unitary evolution does not generate periodic evolution of
|�(t )〉, there is no discrete time-translational symmetry in our
protocol which is central to the stabilization of Floquet-SPT
phases.

This distinction can be seen most clearly in the dynamics
of the entanglement spectrum in 1D systems. We have demon-
strated that robust nonequilibrium topology of the wave func-
tion ensures that entanglement degeneracies are preserved
at all times throughout the time evolution. In contrast, as
shown in Ref. [27], the pattern of entanglement spectrum
dynamics in a Floquet SPT phase is one of ‘charge pumping,’
where the entanglement energies associated with entangle-
ment eigenstates of opposite symmetry charge are forced to
cross each other at some point during the time evolution.
Looking at the entanglement spectrum at a particular time
in the Floquet system, one would generically observe no
degeneracies.

Although the topological characterization of periodic and
nonperiodic systems captures different physics, both anal-
yses demonstrate the stark difference between equilibrium
and nonequilibrium systems. It is known that Floquet SPT
order can emerge independently of the static properties of

the Floquet Hamiltonian, which governs the stroboscopic time
evolution of one period [29,30]. In the same manner, the
wave-function topology which we discuss can be maintained
independently of the static properties of the Hamiltonian
governing time evolution. Consider as a simple example a
quench in which the initial state is the ground state of a TRS-
broken insulator with nonzero Chern number, but the final
Hamiltonian is time-reversal symmetric. (This quench where
the symmetry of the Hamiltonian changes was not covered
earlier but can be easily understood in the same manner.)
The TRS of the final Hamiltonian implies that its ground
state cannot be a Chern-insulating phase, but regardless the
wave function |�(t )〉 will be topologically nontrivial while it
evolves under the trivial Hf, analogous to the cases studied in
Refs. [20,21]. Rather generally, we find that the topological
properties of a time-evolving wave function are completely
independent from the static topological indices associated
with the governing Hamiltonian.

VIII. CONCLUSION

We have developed a formalism by which the topological
properties of pure many-body wave functions far from equi-
librium can be understood. Importantly, we show that such
systems possess a nonequilibrium topological classification
which can differ from that in equilibrium. This approach was
applied to noninteracting fermionic systems under the ‘tenfold
way’ in arbitrary spatial dimension, which led to our central
result, Table II. Robustness to disorder and weak interac-
tions are naturally incorporated in our results, as is familiar
from equilibrium topology. The results can be understood
using two complementary perspectives: one in terms of bulk
properties and one in terms of boundary theories, the latter
of which can be probed using the entanglement spectrum.
The physical implications of our results were discussed, and
we demonstrated that our classification correctly predicts
which topological zero-energy modes are unstable to external
fluctuating perturbations. This naturally has consequences
for the usage of such zero modes as a topological qubit
memory.

Recent results on 1D spin chains [24] also indicate that
nonequilibrium classifications could be constructed for wider
classes of systems that feature strong interactions and/or
spatial symmetries. Additionally, understanding further
implications of our classification for experimentally relevant
settings remains an important challenge. In analogy to our
results on decoherence of zero-energy bound states, we expect
that the effect of external time-dependent perturbations on
bulk and edge mode transport signatures, such as those studied
in Ref. [75], will be directly linked with our nonequilibrium
classification.
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