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Abstract:  
The cyclin dependent kinase (CDK) –retinoblastoma (RB) -E2F pathway plays a critical role in the 

control of cell cycle in estrogen receptor positive (ER+) breast cancer. Small molecule inhibitors of 

CDK4/6 have shown promise in this tumour type in combination with hormonal therapies, reflecting 

the particular dependence of this subtype of cancer on cyclin D1 and E2F transcription factors. mTOR 

inhibitors have also shown potential in clinical trials in this disease setting. Recent data has suggested 

cooperation between the phosphatidylinositol 3-kinase (PI3K)/mTOR pathway and CDK4/6 inhibition 

in preventing early adaptation and eliciting growth arrest, but the mechanisms of the interplay 

between these pathways have not been fully elucidated. Here we show that profound and durable 

inhibition of ER+ breast cancer growth is likely to require multiple hits on E2F mediated transcription. 

We demonstrate that inhibition of mTORC1/2 does not affect ER function directly, but does cause a 

decrease in cyclin D1 protein, RB phosphorylation and E2F mediated transcription. Combination of an 

mTORC1/2 inhibitor with a CDK4/6 inhibitor results in more profound effects on E2F dependent 

transcription, which translates into more durable growth arrest and a delay to the onset of resistance. 

Combined inhibition of mTORC1/2, CDK4/6 and ER delivers even more profound and durable 

regressions in breast cancer cell lines and xenografts. Furthermore, we show that CDK4/6 inhibitor 

resistant cell lines re-activate the CDK-RB-E2F pathway, but remain sensitive to mTORC1/2 

inhibition, suggesting that mTORC1/2 inhibitors may represent an option for patients that have 

relapsed on CDK4/6 therapy. 
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Introduction 

Hormone receptor positive (HR+) breast cancer is the most frequently occurring breast cancer 

subtype. Patients with HR+ advanced breast cancer typically respond well to endocrine therapy (1), 

but drug resistance remains a clinical challenge in this disease. Recent advances in elucidating the 

molecular mechanisms of pathway ‘cross-talk’ between the estrogen receptor (ER), cell cycle 

regulation and intracellular signalling pathways, such as the mTOR or the CDK-RB-E2F pathway, 

have provided the rationale for combining endocrine therapies with targeted agents (2-6). 

The mammalian target of rapamycin (mTOR) pathway is frequently hyper-activated in estrogen 

receptor positive (ER+) breast cancer and a number of clinical studies have shown benefit from 

combining inhibition of mTOR with estrogen receptor targeting therapies (3, 4, 7, 8). The 

serine/threonine kinase mTOR integrates a wide variety of cellular signals, including mitogen and 

nutrient signals to control cell proliferation, cell cycle and cell size. mTOR kinase forms two distinct 

multiprotein complexes called mTORC1 and mTORC2. The distinct cellular functions of the two 

mTOR complexes are regulated by the presence of a number of different subunits, which define the 

assembly, sub-cellular localization, substrate binding and unique functions of mTORC1 and mTORC2 

(9, 10). One of the inputs on the modulation of mTOR is the PI3K/ AKT pathway which has been 

shown to activate the mTORC1 complex. In response to nutrient and growth factor availability, mTOR 

can activate catabolic processes, suppress autophagy and control protein translation.  Moreover, 

mTOR orchestrates cell growth by stimulating anabolic pathways such as nucleotide and lipid 

synthesis (11, 12). Inhibition of both mTORC1 and 2 is hypothesised to be effective at inhibiting a 

broad range of mTOR functions, via inhibition of downstream substrates such as ribosomal protein 

S6, 4EBP1 and AKT (9, 10). 

In ER+ breast cancer, the functional relationship between estrogen receptor signalling and mTOR has 

not been elucidated. A reciprocal feedback mechanism between PI3K and estrogen receptor has 

been suggested, whereby inhibition of PI3K results in an increase in estrogen receptor levels in the 

endocrine resistance setting (13). However, these reciprocal feedback mechanisms have not been 

demonstrated between mTORC1/2 and estrogen receptor to date. Furthermore, recent analysis of 

patients that have responded to the mTORC1 inhibitor everolimus, combined with the aromatase 

inhibitor exemestane has shown that progression free survival benefit with everolimus was maintained 

regardless of alteration status of any components of the PI3K pathway (7).  

In addition to the mTOR pathway, endocrine resistance has often been associated with activation of 

CDK-RB-E2F signalling. The importance of this pathway in ER+ breast cancer is underscored by the 

frequent genomic aberrations in a number of components of this network. Cyclin dependent kinases 

(CDKs) are serine threonine kinases that modulate cell cycle progression. CDK4 and CDK6 together 

with D-type cyclins and cyclin E/CDK2 complexes control the commitment to cell cycle entry from 

quiescence and the G1 phase. These kinase complexes can phosphorylate RB, releasing the 

transcription factors E2F and modulating the expression of E2F target genes that are required for S 

phase entry (14-17). E2Fs are an evolutionarily conserved family of transcription factors that includes 

ten different proteins encoded by eight distinct genes. Their regulation and function is complex and 
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highly context dependent. Mechanistically, phosphorylation of RB proteins by CDKs disables their 

function as transcriptional repressors and allows the activation of the E2F transcriptional program. 

These processes are negatively regulated by p15INK4 and p16INK4 proteins, which block the formation 

and activation of the cyclin D/CDK4/6 complexes (14-18). A number of CDK4/6 inhibitors, including 

palbociclib are now being investigated in clinical trials in ER+ breast cancer and have been approved 

by the FDA in this setting (5, 19, 20).  

 

In pre-clinical models, inhibition of mTORC1/2 or CDK4/6 has been shown to result in a cytostatic 

phenotype and it remains unclear as to whether the effects elicited by single agent treatments 

targeting these pathways can result in effective long term control of tumour growth. Inhibition of either 

mTORC1/2 or CDK4/6 in combination with the ER down-regulator fulvestrant have also been shown 

to enhance efficacy in breast cancer models (21, 22). Moreover, combinations of therapies targeting 

PI3-kinases have been shown to synergise with CDK4/6 inhibitors through blockade of early 

adaptation (23-25) and these combinations have been proposed as a potential therapeutic modality to 

achieve more durable responses.  

Here we show that inhibition of mTOR with the dual mTORC1/2 inhibitor vistusertib (AZD2014) (26), 

does not modulate ER binding to DNA, suggesting a different mechanism of interaction with the ER 

pathway to that described previously for PI3K inhibitors (13). Instead, we find that mTORC1/2 

inhibition causes modulation of E2F mediated transcription and cooperates with the CDK4/6 inhibitor 

palbociclib in the inhibition of E2F function in estrogen receptor positive (ER+) breast cancer cells. 

The combination of the two agents does not result in an exacerbation of the senescence-like 

phenotype caused by palbociclib alone, but instead results in a prolonged and durable quiescent-like 

state. Finally, we demonstrate that the combination of inhibitors targeting the three independent 

pathways prevents the emergence of resistance and causes durable regressions in breast cancer 

xenografts. The data suggests cross talk between mTOR, CDK-RB-E2F and estrogen receptor 

pathways to control cell cycle progression. 
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Material and Methods 
Cell lines and cell culture 
All cell lines were maintained at 370C and 5% CO2 in a humidified atmosphere. MCF-7 cells were 

grown in RPMI-1640 (phenol red-free, SIGMA) supplemented with 10% FCS and 2mmol/L glutamine. 

HCC-1428 cells were grown in MEM (Richter’s modification; phenol red-free, Life Technologies) 

supplemented with 10% FCS and 2mmol/L glutamine. MCF-7 LTED cells were grown in RPMI-1640 

(phenol red-free, SIGMA) supplemented with 5% charcoal-stripped FCS and 2mmol/L glutamine. 

HCC-1428 LTED cells were grown in MEM (Richter’s modification; phenol red-free, Life Technologies) 

supplemented with 5% charcoal-stripped FCS and 2mmol/L glutamine. HCC-1428/LTED were 

obtained from C. Arteaga and grown as described in (26). All other cell line details and associated cell 

line identification procedures are summarized in Guichard et al (26). All cell lines were authenticated 

at AstraZeneca cell banking using DNA fingerprinting short-tandem repeat (STR) assays as 

previously described (26). MCF-7 cell line authentication date (STR fingerprinting): September 2015. 

MCF-7 LTED cell line authentication date (STR fingerprinting): September 2015. HCC-1428 cell line 

authentication date (STR fingerprinting): June 2015. HCC-1428 LTED cell line authentication date 

(STR fingerprinting): June 2015. 

 
Compounds 
AZD2014, palbociclib, and fulvestrant were obtained from AstraZeneca compound collection. RAD001 

was purchased from Selleckchem. Staurosporine was purchased from Sigma. AZD2014, palbociclib 

and fulvestrant were dissolved in DMSO to a concentration of 10 mmol/L and stored under nitrogen. 

 
Antibodies 
Antibodies used for S6, p-S6 S235/236, P70S6K, p-P70S6K T389, 4EBP1, p-4EBP1S65, AKT, p-

AKTS473, RB, p-RBS780, CDC6, E2F-1, TK1 and p21 were purchased from Cell Signalling Technology. 

RAD51 antibody was purchased from Santa Cruz. Cyclin D1 antibody was purchased from Abcam 

and vinculin antibody from SIGMA. 

 

In vitro cell proliferation measurements 
To measure cell confluency, 2000 cells/well were seeded in 96-well plates (Costar) and dosed with 

compounds 24 hours later. Cell confluency was monitored at 4 hourly intervals for the duration of the 

experiment using an Incucyte Zoom platform with 10x objective (Essen Bioscience).  

For live cell number analysis, one thousand MCF7 cells were seeded in 100 µl RPMI 1640, in each 

well of a 96 well clear bottom black plate (Costar), one plate per time point. Plates were incubated at 

37°C, 5% CO2 for 24 hours prior to being treated with vehicle, AZD2014 or Palbociclib either alone or 

in combination. For long term experiments, medium was changed once a week and fresh compound 

was added. Number of live cells were determined at day 0, 1, 2, 3 and then twice weekly for 24 days 

using a sytox green assay. Briefly, 5mM sytox green nucleic acid dye (Invitrogen) was diluted 1:2500 

in 500 mM TBS/EDTA solution and 7µl was added per well. Plates were then incubated in the dark at 
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room temperature for 1 hour and the number of green cells in each well (dead cells) was measured 

using an Acumen Explorer high-throughput cell imager (TTP Labtech, Melbourn, UK). Next, 14µl of 

0.25% w/v Saponin in TBS/EDTA solution was added overnight to permeabilise the cells therefore 

allowing a total cell count. Number of live cells was calculated by subtracting dead cell count from the 

total cell count. 

 

 
Immunoblotting 
Expression levels of total and phosphorylated protein were assessed using standard Western blotting 

techniques (NuPAGE Novex 4%-12% Bis-Tris gels). Cells were lysed in Pierce RIPA buffer Thermo 

Scientific), supplemented with HaltTM protease and phosphatase inhibitors (Thermo Scientific). 

Antibodies were diluted in 4% milk-PBS-Tween and signal detected using SuperSignal West Dura 

HRP substrate followed by visualization on a Syngene ChemiGenius Imager. 

 

Selection of E2F dependent genes 
Candidate E2F responsive genes were selected for transcriptional profiling on the basis of their 

reported association in the literature with E2F family transcription factors (28-31). A subset comprising 

43 E2F dependent genes common to these reports was subsequently prioritised for further 

investigation (Supplementary Table S1).  

 

Gene expression analysis 
RNA was isolated from cell lines using the RNeasy MiniKit (Qiagen-RLT Buffer), with an additional 

DNAse treatment step, following the manufacturer’s protocol. Reverse transcription was performed 

using 50 ng of RNA with the High Capacity cDNA Reverse transcription kit (Applied Biosystems), 

following manufacturer’s instructions. A number of E2F, ER or FOXO modulated genes were selected 

from publications (27-30) and internal data (Supplementary Table S1).  Targeted gene profiling was 

performed using the Fluidigm platform and cDNA was pre-amplified (14 cycles) using a pool of 

TaqMan primers (Life Technologies), following manufacturer’s instructions. Sample and assay 

preparation of the 96.96 Fluidigm Dynamic arrays was carried out according to the manufacturer’s 

instructions. Data was collected and analyzed using the Fluidigm Real-Time PCR Analysis 2.1.1 

software. 

Gene expression values and statistical analysis were calculated in Jmp-13 software and data 

represented in TIBCOTM Spotfire® 6.5.2. Data (Ct) were normalised to the average of the house 

keeping genes (ACTB, GAPDH, HPRT1, IPO8, PPIA, UBC, YWHAZ) to generate dCt; negative ddCt 

was calculated by subtracting treated dCt to DMSO dCt per matching treatment time point (negative 

ddCt-log2 fold change), and fold change after log2 transformation (2^ neg ddCt). Two technical 

replicates for each of the three biological replicate experiments were run and the mean and standard 

error of each group was calculated. A two-sided pairwise t-test was performed and data filtered 

comparing each treated group to DMSO control, and each combination group to the single agents 

with matching time points.  
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Beta-galactosidase staining 
Beta-galactosidase staining was carried out as previously described (31). Briefly, cells were plated in 

96-well plates and 8 days after compound treatment, cells were exposed to 100 nmol/L Bafilomycin 

A1 for 1h, followed by 2mmol/L C12FDG for a further 2h. Cells were then fixed with 4% formaldehyde, 

counterstained with Hoechst 33342 and analysed using the Cell Insight (Thermo Fisher Scientific). 

DMSO-treated cells and cells receiving doses of compound that were not cytostatic were re-plated 

24-48 hours before Bafilomycin A1 treatment to achieve equal confluency in all samples. For image 

analysis, the cut off for low beta-gal activity was set to include over 90% of the DMSO population. 

 

ChIP-seq 
MCF7 cells, cultured in DMEM supplemented with 10% FBS, 1% pen/strep and 2mM L-glutamine, 

were treated for 2 hours with 500 nM RAD001, vistusertib (AZD2014), or vehicle (DMSO) at 

approximately 70-80% confluency. Cells were crosslinked by 1% formaldehyde for 10 min at RT, and 

the formaldehyde was subsequently quenched by 0.1M Glycine. Chromatin was sonicated using the 

Diagenode Bioruptor so the bulk of the DNA was approximately 100-500 bp. Immunoprecipitation was 

done overnight using a polyclonal ER antibody (sc-543, Santa Cruz). Beads were subsequently 

washed six times in RIPA buffer (50mM HEPES pH=7.6, 1mM EDTA, 0.7% Sodium deoxycholate, 1% 

NP-40, 0.5M LiCl), once in TE buffer and then eluted/de-crosslinked in elution buffer (50mM Tris-HCl, 

pH=8, 10mM EDTA, 1% SDS) ON at 65 °C. Samples were treated with RNase (Ambion) and 

protease K (Invitrogen), and DNA was purified by phenol/chloroform extraction. ChIP’ed DNA was 

subjected to Illumina sequencing on the HiSeq 2500 platform according to the manufacturer’s 

instructions. Sequence reads (50 bp) were mapped to the human genome (hg38) using Bowtie2 (32), 

peaks were identified by MACS2 (33) using reads from all replicates, and differential binding sites 

were identified by DiffBind (Stark R, Brown G. DiffBind : differential binding analysis of ChIP-Seq peak 

data. 2011; http://bioconductor.org/packages/devel/bioc/vignettes/DiffBind/inst/doc/DiffBind.pdf). De 

novo motif analyses were performed using MEME (version 4.9.1). Four independent biological 

replicates were performed. The data is now available in GEO (GSE103023). 

 

Cell cycle distribution 
MCF-7 cells were seeded in 25cm2 flasks at 4x105 cells/flask and allowed to adhere overnight before 

being dosed with vistusertib, alone or in combination with palbociclib at the doses indicated. After 6 or 

24 hours compound treatment, media and cells were collected, and after washing in PBS cells were 

fixed in ice cold 70% ethanol for at least 24 hours.  Cells were treated with 100ug/ml RNase (Sigma) 

and stained with 50ug/ml propidium iodide (Life Technologies) for 20 mins before being analysed on 

the BD FACS Calibur (BD Bioscience) collecting a total of 10,000 events. FL2-A was plotted as a 

histogram and gates established to calculate the proportion of cells in each stage of the cell cycle 

(G1, S and G2/M). 

 

Annexin V assay 
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MCF7 cells were seeded into 96 well black with clear bottom assay plates at a density of 3000 cells 

per well. Twenty-four hours after incubation at 37°C/ 5% CO2, cells were treated with palbociclib, 

AZD2014 and/or fulvestrant using a HP D300 digital dispenser. Staurosporine was included as a 

positive control. In order to determine the percentage of apoptotic cells at each time point, cells were 

stained with Annexin V (CF568 conjugate, Biotium) and Hoechst 33258 (Life Technologies) at final 

dilutions of 1 in 500 and 1 in 1000 per well, respectively. Cells were subsequently analysed with a Cell 

Insight High Content Platform. Control wells were stained with Hoechst 33258 only.  

 
In vivo xenograft experiments 
Studies in MCF-7 xenograft models were performed at AZ and according to local regulations (Home 

Office UK), as previously described (26). Briefly, male SCID mice (Charles River UK) were implanted 

s.c. with a 0.5mg 21 day estrogen pellet then 24 hours later 5x106 MCF-7 cells (ICRF, London) in 

50% Matrigel (BD Bioscience) in a 0.1ml injection volume were given s.c. in the left flank. 

For efficacy studies, mice were randomized into groups of 8 to 15 when average tumour volume 

reached 0.3 to 0.4 cm3. Group sizes were determined by a statistical power calculation using historical 

data on variability of tumour growth for the cell line, typically set using a 40% TGI level. Mice were 

dosed for 3 or more weeks at defined doses and schedules as indicated in the figures. AZD2014 was 

orally dosed alone either at 7.5 mg/kg once daily or 10mg/kg twice daily on days 1 and 2, BID of a 

weekly cycle in 1% polysorbate. Fulvestrant was dosed at 5 mg per mouse, on day 1, 3, 5 each week 

in peanut oil subcutaneously. Palbociclib was given orally at 50 mg/kg once daily, orally in 1% 

polysorbate. Plasma samples were taken at the end of the study to measure PK and ensure we 

reached the expected exposure during the dosing period. Tumours were measured two to three times 

weekly by caliper and volume calculated using a formula assuming an elliptical tumour shape (pi/6 × 

width × width × length). Tumour growth inhibition (%TGI) from the start of treatment was assessed by 

comparison of the geometric mean change in tumour volume for the control and treated groups. 

Tumour regression was calculated as the percentage reduction in tumour volume from baseline (pre-

treatment) value: % Regression = (1 − RTV) ×100 % where RTV = Geometric Mean Relative Tumour 

Volume. Statistical significance was evaluated using a two-tailed t test.  

CTC174 (ER/PR positive, HER2 negative model) studies were conducted following implantation of a 

tumour fragment in female NSG mice (Jackson Laboratory). Tumour fragments were obtained by 

collecting a tumour from a donor mouse and cutting it into 50 mm3 pieces. Fragments were implanted 

orthotopically adjacent to mammary fat pad. The 0.18 mg 90 day 17β-estradiol pellets (Innovative 

Research of America) and were implanted at the same time into dorsal scapular region. Anaesthesia 

was maintained with isoflurane during the surgical procedures. Staples (9 mm) were used to close all 

incision sites and were removed 1 week after surgery. Mice were randomized into control and 

treatment groups once tumour sizes reached approximately 150mm3. All procedures were carried out 

in accordance with UK Home Office regulations and approved by an Institutional Animal Care and 

Use Committee (IACUC). 
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Results 

mTOR modulates the CDK-RB-E2F pathway and E2F dependent gene transcription. 
We have previously described that treatment of breast cancer cell lines with vistusertib (AZD2014) 

inhibits the phosphorylation of both mTORC1 and mTORC2 substrates (26). In this study, we also 

found that vistusertib (AZD2014) caused a decrease in the phosphorylation of RB at Serine 780 in a 

dose dependent manner in MCF-7 cells (Figure 1A). This was further confirmed in an additional ER 

positive cell line, HCC-1428 (Figure 1B) and in their long term estrogen deprived (LTED) variants, 

which have been described as a model of resistance to aromatase inhibitors (Figure 1A and B). The 

effects on RB phosphorylation were also measured 6 hrs following compound addition, suggesting 

that the effects on RB phosphorylation do not occur as a result of cell cycle arrest (Supplementary 

Figure S1). The effects on RB phosphorylation and cyclin D1 levels appeared to be consistent with 

the effects observed on the phosphorylation of 4EBP1, whilst effects on phosphorylation of the 

ribosomal S6 protein were evident at lower concentrations of vistusertib (AZD2014). 

Since the CDK-RB-E2F pathway controls E2F mediated gene transcription, we assessed the effect of 

vistusertib (AZD2014) on the expression of a panel of E2F dependent genes by qPCR. Treatment of 

MCF-7 cells with vistusertib (AZD2014) caused changes in the mRNA levels of 27 out of 43 (63%) of 

a selected set of E2F target genes analysed (Figure 1C), again suggesting an effect of vistusertib 

(AZD2014) on the CDK-RB-E2F signalling axis. 

 

The combination of the mTORC1/2 inhibitor vistusertib (AZD2014) and the CDK4/6 inhibitor 
palbociclib results in a decrease in growth and a decrease in E2F dependent gene 
transcription 
Following the discovery that vistusertib (AZD2014) treatment caused inhibition of the CDK-RB-E2F 

pathway, we investigated whether the CDK4/6 inhibitor palbociclib, would combine with vistusertib 

(AZD2014) to inhibit proliferation. Neither vistusertib (AZD2014) nor palbociclib, at either 30 or 

300nM, caused complete growth inhibition as a monotherapy. However, both concentrations of 

palbociclib enhanced the growth inhibitory effect of vistusertib (AZD2014), resulting in complete loss 

of proliferation over the five day time course (Figure 2A). We confirmed these findings using a sytox 

green assay, which allows a more direct assessment of live cell number (Figure 2B), where the 

combination of 300nM palbociclib and 100nM vistusertib (AZD2014) caused a significant decrease in 

live cell number compared to either monotherapy alone. The allosteric mTORC1 inhibitor everolimus 

(RAD001) had a similar effect on cell number when used alone or in combination with palbociclib 

(Supplementary Figure S2). 

Investigation of the effects of the treatments on downstream signalling pathways, revealed that both 

vistusertib (AZD2014) and palbociclib caused a decrease in the levels of RB phosphorylation, and this 

was further enhanced in the combination (Figure 2C). Furthermore, the addition of vistusertib 

(AZD2014) was able to prevent the apparent increase in cyclin D1 levels caused by palbociclib 
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treatment. Consistent with these findings, both vistusertib (AZD2014) and palbociclib caused 

downregulation in the mRNAs of a range of E2F target genes (including E2F1 itself), which were 

further reduced in the combination treatment (Figure 2D and Supplementary Table S2). These effects 

were observed at both 6 and 24 hours following the start of treatment, suggesting a direct effect on 

the E2F pathway rather than an indirect effect on gene expression through cell cycle inhibition. The 

changes in gene expression were confirmed at the protein level for a number of E2F dependent 

genes (Figure 2E). Interestingly, despite reports that CDK4/6 inhibition leads to increased 

phosphorylation of AKT through RB suppression of mTORC2 activation (24, 25), we found no 

evidence of increased AKT phosphorylation or altered mTOR signalling by palbociclib in our 

experiments (Figure 2C).  

We next examined whether the combination of vistusertib (AZD2014) and palbociclib was efficacious 

in vivo, using mice implanted with an MCF-7 xenograft model. The combination of palbociclib and 

vistusertib (AZD2014), each dosed at sub-efficacious doses (50 mg/kg and 7.5 mg/kg orally once 

daily, respectively) resulted in profound tumour growth inhibition, greater than either agent alone 

(106.4% tumour growth inhibition cf. 46.5% AZD2014 alone or 7.0% palbociclib alone), measured on 

day 22 of dosing (Figure 3A). Our data suggests that combination efficacy could be achieved using 

sub-efficacious doses of either compound. We confirmed the effects of mTORC1/2 inhibition by 

measuring phosphorylation of downstream markers AKT(S473) and 4EBP-1(Thr37/46) and the effects of 

CDK4/6 inhibition by measuring phosphorylation of RB(Ser780). Inhibition of both CDK4/6 and 

mTORC1/2 caused a greater decrease in the phosphorylation of RB(Ser780) than either agent alone. 

Furthermore, the combination decreased the levels of thymidine kinase 1 (TK1), an E2F dependent 

gene (Figure 3B), confirming our in vitro findings and suggesting a convergence of the two pathways 

on E2F mediated transcription in vivo. To confirm the in vivo efficacy effects observed with the 

continuous dosing schedule, we also tested a well-tolerated, sub-efficacious intermittent dose of 

vistusertib (10mg/kg BID 2 days on/ 5 off) in combination with palbociclib (7.5mg/kg, as above). This 

combination confirmed the efficacy benefit over a similar dosing period (Figure 3C). Similar results 

were obtained when testing the combination in the CTC-174 patient derived model (Supplementary 

Figure S3).  

 

Combined mTOR and CDK4/6 inhibition prevents early adaptation and the onset of resistance  
It has been reported that inhibition of CDK4/6 causes short term growth inhibition and early adaptation 

in ER+ breast cancer cells and that this adaptation can be prevented by combination with PI3K 

inhibitors. We therefore tested the effects of long term mTOR inhibition alone and in combination with 

CDK4/6 inhibition. In agreement with Herrera-Abreu et al. (21), we found that after an original phase 

of slow growth, the cultures of palbociclib treated cells (300nM) eventually reached confluence (Figure 

4A). Similarly, treatment with vistusertib (AZD2014) alone (100nM) slowed the growth of the cells, 

compared to DMSO control. In contrast, the combination of vistusertib (AZD2014) with palbociclib 

resulted in complete growth arrest, which was maintained for at least 24 days in culture (Figure 4A).   
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In order to investigate the mechanism of the long term growth inhibition observed when combining 

inhibition of mTORC1/2 and CDK-RB-E2F pathway, we assessed whether vistusertib (AZD2014) 

could exacerbate the reported effects of palbociclib on senescence induction. As a control for our 

experiments, we used a high concentration (3000nM) of palbociclib, reported to induce a senescence 

like state (29). Although both agents induced cell cycle arrest (Supplementary Figure S4A), 

palbociclib treatment induced a concentration dependent ‘large flat cell’ morphology (Supplementary 

Figure S4B) and increased β-galactosidase activity (Figure 4B and C), indicative of the induction of a 

senescence-like phenotype (31, 34, 35). In contrast, vistusertib (AZD2014) did not induce a large 

flattened morphology but rather a decrease in cell size (Supplementary Figure S4B). Furthermore, 

cells treated with the combination of vistusertib (AZD2014) plus palbociclib had a significantly lower 

percentage of high β-galactosidase staining compared to cells treated with palbociclib alone (13% cf. 

89%, Figure 4B, 4C), consistent with the reported role of mTOR in regulating cell size and in 

modulating the senescence phenotype (35, 36). To confirm our findings, we also measured the levels 

of induction of p21. Whilst palbociclib caused an increase in p21 levels (as expected), the 

combination of palbociclib and vistusertib (AZD2014) did not (Supplementary Figure S5). 

 

To confirm that combined inhibition of CDK4/6 and mTORC1/2 did not result in an exacerbated 

senescence-like phenotype, inhibitors were removed from the culture approximately three weeks into 

the study and the growth of the cells was monitored for a further 8 days. Following drug withdrawal, 

individual cells could be observed to start dividing as early as 24 hours and the cell population 

reached confluence within 7-8 days (Figure 4D). This was in contrast to a high dose palbociclib 

treatment (3000nM) which was known to induce senescence, where cells did not regrow following 

compound removal and remained in a senescence-like state (Figure 4D and Supplementary Figure 

S4C).  

 

To further characterise the long term treated cells which remain viable in cell culture, we analysed the 

levels of several key biomarkers by western blot analysis. As expected, cells treated for 21 days with 

a combination of 100nM vistusertib (AZD2014) and 300nM palbociclib maintained inhibition of the 

mTORC1/2 and CDK-RB-E2F signalling pathways as evidenced by low levels of phosphorylation of 

S6 and RB (Figure 4E). Cells ‘released’ from the drug treatment showed levels of phosphorylation of 

S6 similar to control cells, and appeared to reactivate the CDK-RB-E2F signalling pathway, measured 

by phosphorylation of RB and cyclin D1 levels (Figure 4E). 

 

Estrogen receptor function has been shown to impact E2F gene transcription through multiple 

mechanisms, including direct effects on E2F1 promoter function (37, 38). We therefore hypothesised 

that a triple combination of vistusertib (AZD2014), palbociclib and the ER down regulator fulvestrant, 

would be required to achieve maximum growth inhibition. Herrera-Abreu et al (21) had previously 

reported that the triple combination of a PI3K inhibitor with fulvestrant and palbociclib resulted in a 

significant reduction of colony formation and xenograft tumour growth. Upon treatment of MCF-7 

xenografts with vistusertib (AZD2014), palbociclib and fulvestrant, we observed prolonged tumour 
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regressions (110.2% tumour growth inhibition at day 48), suggesting benefit of the triple treatment 

combination over the other combinations (Figure 4F). Over a period of 58 days, tumours failed to re-

grow in the presence of the triple combination compared to vistusertib (AZD2014)/ palbociclib 

treatment, suggesting that the triple combination is necessary to maintain the growth inhibition in vivo.  

Analysis of tumours treated with triple combination at the regression stage (day 30) suggested both 

mTOR and RB-E2F pathways were profoundly suppressed (Supplementary Figure S6A and B). To 

determine whether the enhanced effect of the triplet was due to the induction of apoptosis we 

assessed the levels of cleaved PARP in these tumours but saw no changes in cleaved PARP levels. 

We hypothesize that this might be due to in vivo clearance of apoptotic cells. Further and more 

comprehensive time course studies would be needed to address the kinetics of tumour cell induced 

apoptosis in vivo. An assessment of apoptosis induction in vitro revealed a very small induction of 

apoptosis in both double and triple treatment groups (Supplementary Figure S6C). 

In summary, combination dosing of vistusertib (AZD2014), palbociclib and fulvestrant, delivered 

significant efficacy in MCF-7 xenografts. The combination of all three agents was required to induce 

tumour regression and to maintain long term inhibition of growth in vivo. 

 

 

Short term inhibition of mTOR signalling does not affect binding of the estrogen receptor to 
chromatin 

Cross talk between the PI3K pathway and ER signalling has been previously described (13, 39, 40). 

These findings led us to investigate if binding of ER to chromatin is directly affected by inhibition of 

mTORC1/2. We performed chromatin immunoprecipitation combined with deep sequencing (ChIP-

seq) for ER upon 2 hours of treatment of MCF-7 cells with the mTORC1 inhibitor everolimus 

(RAD001) or the mTORC1/2 inhibitor vistusertib (AZD2014) in full media, where ER is fully activated 

by estrogens. Under these conditions, vistusertib (AZD2014) potently inhibits both mTORC1 and 

mTORC2, whereas everolimus only inhibits mTORC1 function (Supplementary Figure S7A), 

consistent with previous findings (26). Surprisingly, differential binding analysis revealed as few as 37 

out of 23,537 binding sites, where ER binding is affected by everolimus and no binding sites affected 

by vistusertib (AZD2014) treatment (Figure 5A and Supplementary Figure S7B). The absence of any 

effect of everolimus or vistusertib (AZD2014) on ER binding is also clear at individual well known ER 

binding sites near GREB1, MYC, and RARA (Figure 5B). Importantly, the identified ER binding sites 

are highly enriched for the ER response element (ERE, Figure 5C), validating the ER ChIP-seq. 

Furthermore, we identify motifs for known ER-cooperating transcription factors (Figure 5C and 43), 

including the forkhead motif that is occupied by FOXA1 in breast cancer cells, where it plays an 

essential role as a pioneer factor for ER (41, 42, 43). Taken together, these genome-wide analyses 

demonstrate that inhibition of mTOR signalling, does not affect ER binding to chromatin and impinges 

on ER mediated growth via mechanisms that are downstream of ER. 
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Palbociclib resistant cells reactivate the CDK-RB-E2F pathway and are sensitive to mTORC1/2 
inhibition 
It has been previously reported that cells can readily adapt to prolonged treatment with palbociclib 

and develop resistance through a number of mechanisms, including CCNE1 amplification or RB1 loss 

(21-23). We therefore developed a panel of MCF-7 cell lines with acquired resistance to palbociclib. 

Ten discrete populations of MCF-7 cells were cultured in increasing concentrations of palbociclib over 

the course of 4-9 months until they were able to grow in 1000nM palbociclib (MCF-7_PC1 to 10). We 

selected four of these populations (PC1, PC5, PC6 and PC7) for further evaluation and measured the 

levels of phosphorylation of RB compared to control cells. The palbociclib resistant cell populations 

retained varying levels of RB phosphorylation as well as E2F transcriptional activity, even in the 

presence of 1000nM palbociclib (Figure 6A). No mutations in the CDK4 or CDK6 were identified in the 

resistant cell populations. Some of the cell populations were found to express lower levels of estrogen 

receptor, in agreement with previous reports (22).   

The palbociclib resistant cell lines were also found to be resistant to other CDK4/6 inhibitors, 

(Supplementary Table S3). Significantly, vistusertib (AZD2014) treatment caused significant growth 

inhibition in these populations (Supplementary Table S3). Furthermore, treatment of palbociclib 

resistant cells with vistusertib (AZD2014) resulted in inhibition of RB phosphorylation and decreased 

expression of E2F dependent genes such as E2F1, TK1 and the downstream effector FOXM1 (Figure 

6B), similarly to what was observed in parental cells.  Therefore, vistusertib (AZD2014) was able to 

modulate the CDK-RB-E2F axis even under conditions where cells have become resistant to 

palbociclib, suggesting that treatment with an mTOR inhibitor could be beneficial in patients that have 

relapsed on palbociclib treatment.  

 

Discussion 

A major limitation of some of the targeted therapies which are currently being tested in clinical trials in 

ER+ breast cancer is the short term, cytostatic nature of the inhibition of tumour growth. Early 

adaptation has been described as a phenomenon that may limit the effectiveness of both mTORC1 

and CDK4/6 inhibitors clinically (21-23). Here we describe the effects of combination therapies in 

estrogen receptor positive breast cancer models, where convergence on inhibition of E2F dependent 

transcription is required to deliver durable responses. Inhibition of either mTOR signalling or CDK-RB-

E2F signalling causes a decrease in E2F dependent transcription and the expression of genes 

required for S phase entry. Optimal inhibition of E2F mediated transcription is only achieved upon 

blockade of both pathways and the convergent effects of multiple pathway inhibition in repressing E2F 

activity is likely to be required to achieve sustained and durable growth inhibitory effects. Hence, 

‘triple’ combinations of mTOR inhibitors (dosed either as a continuous or intermittent schedule), 

CDK4/6 inhibitors and endocrine therapies may represent the most effective way to optimally inhibit 

E2F activity and the G1/S transition in this tumour type. 

The convergence of different interdependent pathways on the modulation of E2F transcription in ER+ 

breast cancer has been previously described (28, 38). Both cyclin D1 and E2F1 are estrogen 

regulated genes, therefore the combination of ER signalling blockade with CDK4/6 inhibition would be 
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expected to result in lower cyclin D1 levels, lower E2F1 levels and cooperation on the inhibition of the 

CDK-RB-E2F pathway to block proliferation and entry into the cell cycle from G1 phase. The 

effectiveness of mTORC1 inhibition in combination with aromatase inhibitors in estrogen receptor 

positive breast cancer may predict the basis for functional interactions between mTOR signalling, ER 

signalling and CDK-RB-E2F pathway activity. In this study, we determine that the mTOR pathway 

converges onto the CDK-RB-E2F signalling module. We demonstrate that the effects of mTOR 

inhibition in breast cancer are not mediated through modulation of ER function, and that ER binding to 

chromatin is not affected by mTORC1/2 inhibitor treatment. This is unlike the findings reported by 

Bosch et al (13), whereby PI3K inhibitors were shown to directly affect ER function and increase 

estrogen receptor binding to DNA. Instead, we show that inhibition of mTORC1 and 2 results in a 

decrease in cyclin D1 levels (possibly through effects on protein translation) and a decrease in the 

phosphorylation of RB. These effects result in the modulation of E2F mediated transcription by 

mTOR, consistent with a role of mTOR in modulating the G1/S checkpoint and the commitment to cell 

cycle entry from quiescence. In this setting, growth signalling and entry into S phase can only be 

triggered upon production of new nucleotides and other building blocks to accommodate an increase 

in RNA and DNA synthesis needed for ribosome biogenesis and anabolic growth (11, 12). The 

findings are also consistent with the notion that luminal estrogen receptor positive breast cancer cells 

are highly dependent on the G1/S transition modulated by cyclin D1 and CDK4/6. Cyclin D1 is often 

activated either by amplification or by other mechanisms in this disease setting (14-17). 

The mechanisms that can contribute to modulation of E2F mediated transcription are not fully 

characterised to date. The family of E2F transcription factors and their functional properties is 

complex, with some members acting as transcriptional activators and others as transcriptional 

repressors during quiescence or early G1 phase (37). Some of the E2F transcription factors are also 

known to act as transcriptional modulators at later stages of the cell cycle (37). Therefore, the 

mechanism of modulation of E2F mediated transcription is likely to be complex and involve multiple 

players. 

CDK4/6 inhibitors have been shown to cause a senescence-like phenotype in tumour cells (29).  As 

common pathways are involved in the modulation of cell cycle arrest in senescence and quiescence 

(44), we wanted to establish whether the combination of mTORC1/2 inhibition and CDK4/6 inhibition 

caused an exacerbation of the senescence-like phenotype. The role of cellular senescence in 

tumours is complex and modulated by both cell autonomous and non-cell autonomous effects (34). 

Therefore, understanding how this process is affected by the combinations of different therapeutics 

will be key to understand how different therapies affect both cancer cells and the surrounding tissue 

homeostasis. In this study, we confirm the role of CDK4/6 inhibition in the induction of senescence, 

but demonstrate that the combination of CDK4/6 inhibition with mTORC1/2 inhibition does not result 

in the exacerbation of a senescence-like phenotype, but rather causes cells to enter into a long term 

quiescent state.   

The ability of cells to survive drug treatments by developing a long term quiescent state has been 

described in other tumour types (45) upon treatment with kinase inhibitors. These cells, sometimes 

referred to as ‘drug tolerant persisters (DTPs), are characterised by their ability to revert back to their 
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original phenotype upon drug withdrawal. Transcriptional reprogramming and epigenetic changes 

have been strongly implicated in maintaining this subpopulation of cells in the presence of drug. In 

this study, we show that cells treated with CDK4/6 and mTOR inhibitors remain viable in culture for 

extended periods of time, in a similar fashion to that described for other kinase inhibitor therapeutics 

(45). 

A network of signalling pathways appears to converge onto the G1/S transition and E2F dependent 

transcription in many ER+ breast cancers. Estrogen receptor signalling activates the CCND1 

promoter and cyclin D1 is often expressed at high levels in this tumour type, in the presence or 

absence of CCND1 gene amplification. Cyclin D1 has also been reported to bind and facilitate 

estrogen receptor transcriptional activity (15-17). Our findings confirm clinical observations that these 

tumours remain dependent on E2F transcription to drive proliferation, even when they become 

resistant to CDK4/6 inhibitors, confirming the exquisite dependence of ER+ breast cancer cells on this 

checkpoint. In the CDK4/6 resistance setting, despite the reactivation of E2F mediated signalling, 

mTOR inhibition was able to effectively block proliferation. Furthermore, in palbociclib resistant cells, 

vistusertib (AZD2014) treatment was able to modulate the phosphorylation of RB and cause a 

decrease in E2F function. 

 

Recent pivotal phase III trials investigating CDK4/6 inhibitors have demonstrated a substantial 

improvement in progression free survival in patients with advanced breast cancer (1). As mechanisms 

of resistance to these agents begin to emerge, combination therapies which target the pivotal 

regulators of the G1/S checkpoint will have to be utilised for the successful inhibition of tumour 

growth. In this study, we suggest that treatment with an mTOR inhibitor may represent an option for 

patients that have relapsed on CDK4/6 inhibitor therapy, especially on a background of an anti-

hormonal therapy. 
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Figure legends 
 
Figure 1. Vistusertib (AZD2014) inhibits E2F mediated gene transcription.  
Effects of vistusertib (AZD2014) treatment (24 hours) on RB and mTORC1/2 substrates measured by 

Western blotting in the ER+ cell lines MCF-7 (A) and HCC-1428 (B). (C) Targeted gene expression 

profiling of 96 genes in MCF-7 cells, including 43 E2F dependent genes. Heatmap shows the 27 E2F 

dependent genes with a significant fold change modulation vs DMSO (-2 < fold change <2) and a p-

value <0.05. 

 
Figure 2. Combined vistusertib (AZD2014) and palbociclib treatment results in more profound 
growth inhibition and enhanced CDK-RB-E2F pathway modulation.  
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(A) The effect of vistusertib (AZD2014) and palbociclib, alone or in combination, on the growth of 

MCF-7 cells over 120 hours, measured using an Incucyte Zoom. (B) The effect of vistusertib 

(AZD2014, 100nM) and palbociclib (300nM), alone or in combination, on cell number (6 days). Dotted 

line represents cell number at day 0. ***<0.0001 by Student t-test. (C) Analysis of mTOR pathway and 

CDK-RB-E2F pathway biomarkers following 24 hours treatment with increasing concentrations of 

vistusertib (AZD2014) or palbociclib, alone and in combination. (D) qPCR analysis of six E2F 

dependent genes. Bar charts represent log fold change mRNA expression relative to DMSO control 

following 6 and 24 hours exposure to 100nM AZD2014, 300nM palbociclib or the combination. (E) 

E2F dependent protein levels measured by western blotting, following 24 hours treatment using 

stated concentrations of vistusertib (AZD2014) with or without palbociclib. 

 

Figure 3. Combined vistusertib (AZD2014) and palbociclib treatment results in significant 
tumour growth inhibition in ER+ breast cancer xenografts. (A) Efficacy combination study of 

vistusertib (AZD2014, 7.5mg/kg once daily p.o.) and palbociclib (50 mg/kg once daily p.o.) compared 

to either agent alone in MCF-7 xenograft grown in male SCID mice. (B) Biomarker analysis of MCF-7 

xenografts treated with vistusertib (AZD2014) and palbociclib. Tumours were excised at the end of the 

study and protein expression was analysed by Western blotting. (C) Efficacy combination study of 

vistusertib (AZD2014, 10mg/kg twice daily p.o., 2 days on/5 days off) and palbociclib (50 mg/kg once 

daily p.o.) compared to either agent alone in MCF-7 xenograft grown in male SCID mice. p values 

were calculated using two-sided Student’s t test. * p<0.05; ** p<0.01; *** p<0.001. 

 

Figure 4. Inhibition of mTORC1/2 and CDK4/6 signalling causes long term growth arrest via 
inhibition of E2F signalling. 
(A) MCF-7 cells were treated with vistusertib (AZD2014) and/or palbociclib and cell number was 

assessed at the indicated times using a sytox green endpoint.  (B)  β-galactosidase activity (green) 

and the nucleus (blue) were stained following treatment of MCF-7 cells as indicated (8 days). (C) Bar 

charts representing the proportion of cells expressing low or high levels of β-galactosidase activity. 

Each bar represents the mean +/- s.e.m from three independent experiments. (D) MCF-7 cells were 

treated with vistusertib (AZD2014) and/or palbociclib as indicated and % confluency was measured 

using an Incucyte Zoom. For some treatments, parallel wells were set up and after 19 days compound 

was removed from half the wells (washout) and % confluency measured for a further 8 days. (E) 

MCF-7 cells were treated with 100nM vistusertib (AZD2014) plus 300nM palbociclib for 21 days. Cells 

were then left in media containing the drugs (long term treated; LTT) or washed a returned to drug 

free media (release; Rel) for a further 72 hours before being lysed and subject to immunoblot with the 

antibodies indicated; (F) Efficacy combination study of vistusertib (AZD2014, 10mg/kg twice daily p.o., 

2 days on/5 days off), palbociclib (50 mg/kg once daily p.o.) and fulvestrant (5 mg/kg/ week, s.c.) 

compared to each agent alone in MCF-7 xenograft grown in male SCID mice. p values were 

calculated using two-sided Student’s t test. * p<0.05; ** p<0.01; *** p<0.001 

 
Figure 5. Inhibition of mTOR signalling does not affect binding of ER to chromatin.  
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(A) ChIP-seq signal in a 5 Kb window around 23,500 ER binding sites that are common between 

MCF-7 cells treated with vehicle, RAD001, or vistusertib (AZD2014, 500 nM) for two hours (see 

Supplementary Figure S2B for Venn diagram of the differential binding analysis of the three 

conditions). (B) Examples of ER binding at well-known ER binding sites from the UCSC genome 

browser (http://genome.ucsc.edu/). (C) Selected enriched motifs in the 17,561 ER binding sites 

identified by MACS2 (49) in vehicle treated MCF-7 cells. Similar motifs were identified in ER binding 

sites identified in MCF-7 cells treated with RAD001 or vistusertib (AZD2014).  

 

Figure 6. Palbociclib resistant cells reactivate CDK-RB-E2F signalling and retain sensitivity to 
vistusertib (AZD2014). (A) MCF-7 cells, (parental or palbociclib resistant PC1,5,6,7) were treated 

with 1000nM palbociclib for 24 hours before lysis and Western blotting. (B) Parental MCF-7 cells and 

palbociclib resistant MCF-7 cells (PC6) were treated with increasing concentrations of vistusertib 

(AZD2014) in the presence or absence of 1000nM palbociclib before lysis and Western blotting. 
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