
Quantum Information and Computation, Vol. 17, No. 7&8 (2017) 0541–0567
c© Rinton Press

QUANTUM CONDITIONAL QUERY COMPLEXITY

IMDAD S. B. SARDHARWALLA
Department of Applied Mathematics and Theoretical Physics
Centre for Mathematical Sciences, University of Cambridge

Wilberforce Road, Cambridge CB3 0WA, U.K.

SERGII STRELCHUK
Department of Applied Mathematics and Theoretical Physics
Centre for Mathematical Sciences, University of Cambridge

Wilberforce Road, Cambridge CB3 0WA, U.K.

RICHARD JOZSA
Department of Applied Mathematics and Theoretical Physics
Centre for Mathematical Sciences, University of Cambridge

Wilberforce Road, Cambridge CB3 0WA, U.K.

Received September 15, 2016
Revised May 3, 2017

We define and study a new type of quantum oracle, the quantum conditional oracle, which
provides oracle access to the conditional probabilities associated with an underlying distri-
bution. Amongst other properties, we (a) obtain highly efficient quantum algorithms for
identity testing, equivalence testing and uniformity testing of probability distributions; (b)
study the power of these oracles for testing properties of boolean functions, and obtain an
algorithm for checking whether an n-input m-output boolean function is balanced or ε-far
from balanced; and (c) give an algorithm, requiring Õ(n/ε) queries, for testing whether an
n-dimensional quantum state is maximally mixed or not.

Keywords: quantum query complexity, boolean functions, quantum oracle, quantum spec-
trum testing

Communicated by: R Cleve & A Harrow

1 Introduction

One of the fundamental challenges in statistics is to infer information about properties of
large datasets as efficiently as possible. This is becoming increasingly important as we collect
progressively more data about our world and our lives. Often one would like to determine
a certain property of the collected data while having no physical ability to access all of it.
This can be formalised as the task of property testing: determining whether an object has
a certain property, or is ‘far’ from having that property, ideally minimising the number of
inspections of it. There has been an explosive growth in recent years in this field [21, 20, 7],
and particularly in the sub-field of distribution testing, in which one seeks to learn information

541

542 Quantum conditional query complexity

about a data set by drawing samples from an associated probability distribution.

The classical conditional sampling oracle (COND) [2, 10, 12] grants access to a distribution D
such that one can draw samples not only from D, but also from DS, the conditional distribu-
tion of D restricted to an arbitrary subset S of the domain. Such oracle access reveals a sep-
aration between the classical query complexity of identity testing (i.e. whether an unknown
distribution D is the same as some known distribution D∗), which takes a constant number
of queries, and equivalence testing (i.e. whether two unknown distributions D1 and D2 are
the same), which requires Ω(

√
log log N) queries, where N is the size of the domain [2]. In

this paper we introduce a natural quantum version of the COND oracle (see Definition 2.4
below) and study its computational power.

More specifically, we will consider the PCOND (pairwise-COND) oracle, which only accepts
query subsets S of cardinality 2 or N, and introduce the PQCOND (pairwise-QCOND) oracle.
While being rather restricted in comparison to the full COND and QCOND oracles, they nev-
ertheless offer significant advantages over the standard sampling oracles. Like the PCOND

oracle, it is not immediately clear how to implement the PQCOND oracle in practice. How-
ever, results for this oracle may be the first step to understanding general conditional models,
which occur in practice often, in more detail.

1.1 Results

Quantum algorithms for property testing problems. We study the following property test-
ing tasks for classical probability distributions and present efficient algorithms for their so-
lution using our PQCOND oracle. We compare our results with previously known bounds
for the standard quantum sampling oracle QSAMP and the classical PCOND oracle.

1. Uniformity Test: Given a distribution D and a promise that D is either the uniform
distribution A or |D−A| ≥ ε, where | · | is the L1-norm, decide which of the options
holds.

2. Known-distribution Test: Given a fixed distribution D∗ and a promise that either D = D∗

or |D− D∗| ≥ ε, decide which of the options holds.

3. Unknown-distribution Test: Given two distributions D(1) and D(2) and a promise that
either D(1) = D(2) or |D(1) − D(2)| ≥ ε, decide which of the options holds.

4. Distance from uniformity: Given a distribution D and the uniform distribution A, esti-
mate d̂ = |D−A|.

The query complexities for the above problems are listed in Table 1, with our new results
given in the last column. The notation Õ(f (N, ε)) denotes O(f (N, ε) logk f (N, ε)) for some
k, i.e. logarithmic factors are hidden.

Testing properties of boolean functions. A slight modification of the PQCOND oracle will
allow for the testing of properties of boolean functions.

Given f : {0, 1}n → {0, 1}m with n ≥ m, define Fi := |{x ∈ {0, 1}n : f (x) = i}|/2n for
i ∈ {0, 1}m. The function f is promised to be either:

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 543

Task Standard quantum
oracle (QSAMP) PCOND oracle [10] PQCOND

oracle [this work]

Uniformity Test O
(

N1/3

ε4/3

)
[9] Õ

(
1
ε2

)
, Ω
(

1
ε2

)
Õ
(

1
ε

)
Known-
distribution Test Õ

(
N1/3

ε5

)
[14] Õ

[(
log N

ε

)4
]

Õ
[(

log N
ε

)3
]

Unknown-
distribution Test O

(
N1/2

ε3/2

)
[25] Õ

[(
log2 N

ε7

)3
]

Õ

[(
log2 N

ε7

)2
]

Distance from uni-
formity O

(
N1/2

ε3/2

)
[25] Õ

(
1

ε20

)
Õ
(

1
ε13

)

Table 1: Query complexity for property testing problems using three different access models:
the standard quantum oracle (QSAMP), the PCOND oracle, and our PQCOND oracle.

• a balanced function, i.e. Fi =
1

2m ∀i ∈ {0, 1}m; or

• ε-far from balanced, i.e. ∑i∈{0,1}m |Fi − 1
2m | ≥ ε.

Provided we have PQCOND access to f , we present a quantum algorithm that decides which
of these is the case using Õ(1/ε) queries.

Testing Mixedness [26] of a Quantum State. The problem of deciding if a quantum state ρ of
dimension n is maximally-mixed or ε-far from it is a natural question within the framework
of Quantum Spectrum Testing. In the standard model, where one measures a number of
copies of ρ, it is found that Θ(n/ε2) measurements are needed [27]. It is of interest to study
whether the PQCOND model, a more powerful model, can improve the complexity of solving
this problem, without trivialising it.

Formally, the Mixedness problem is stated as follows: Given access to copies of a quan-
tum state ρ of dimension n and a constant ε > 0, it is promised that one of the following
holds:

• ‖ρ− 1/n‖1 = 0, i.e. ρ is the maximally-mixed state; or

• ‖ρ− 1/n‖1 ≥ ε, i.e. ρ is ε-far from the maximally-mixed state,

where ‖ · ‖1 is the trace norma. Decide which is the case.

We present a quantum algorithm to decide the above problem that uses Õ(n/ε) PQCOND
queries.

a For an (n× n) matrix A, ‖A‖1 = Tr
√

AA† = ∑i∈[n] ai , where the ai are the singular values of A.

544 Quantum conditional query complexity

1.2 Motivation

The conditional access model is versatile and well-suited to a wide range of practical appli-
cations, one example of which is mentioned below.

Lottery machine. A gravity pick lottery machine works as follows: N balls, numbered 1, . . . , N,
are dropped into a spinning machine, and after a few moments a ball is released. One might
wish to determine whether or not such a machine is fair, i.e. whether or not a ball is released
uniformly at random. A distribution testing algorithm would correctly decide between the
following options (assuming that one is guaranteed to be true) with high probability:

• The lottery machine is fair and outputs i with probability 1/N;

• The lottery machine is ε-far from uniform.

In this example, access to a COND oracle is equivalent to being able to choose which balls are
allowed into the spinner. Classically, it is known that Θ(N1/2/ε4) queries [5] to the SAMP

oracle are required to determine whether or not a distribution generated by such a lottery
machine is uniform. However, given access to the corresponding quantum oracle, QSAMP,
only O(N1/3/ε4/3) queries are required [9]. The COND oracle requires Ω(1/ε2) queries, and
using the PQCOND oracle we can achieve this with Õ(1/ε) queries.

Many related problems, such as determining whether or not two known/unknown distribu-
tions are identical, have been extensively studied in the classical [6, 31, 10, 11, 19, 22, 15, 14]
and quantum [9, 26, 25] literature, and near-optimal bounds have often been placed on the
number of queries required to solve the respective problems.

1.3 Outline

In Section 2 we introduce notation and define our quantum conditional oracles. In Section 3
we prove our main technical tool—the QCOMPARE function—which efficiently compares
conditional probabilities of a distribution. In Section 4 we apply it to obtain new, efficient
query complexity bounds for property testing of probability distributions. In Section 5 we
test properties of boolean functions, before presenting a test for the Mixedness of a quantum
state in Section 6.

2 Preliminaries and Notation

Let D be a probability distribution over a finite set [N] := {0, 1, . . . , N − 1}, where D(i) ≥ 0
is the weight of the element i ∈ [N]. Furthermore, if S ⊆ [N], then D(S) = ∑i∈S D(i)
is the weight of the set S. If D(S) > 0, define DS to be the conditional distribution, i.e.
DS(i) := D(i)/D(S) if i ∈ S and DS(i) = 0 if i /∈ S.

Below, we recall the definitions of the classical and quantum sampling oracles, and subse-
quently define the classical and quantum conditional sampling oracles.

Definition 2.1 (Classical Sampling Oracle [10]). Given a probability distribution D over [N], we
define the classical sampling oracle SAMPD as follows: each time SAMPD is queried, it returns a
single i ∈ [N], where the probability that element i is returned is D(i).

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 545

Definition 2.2 (Quantum Sampling Oracle [9]). Given a probability distribution D over [N], let
T ∈N be some specified integer, and assume that D can be represented by a mapping OD : [T]→ [N]
such that for any i ∈ [N], D(i) is proportional to the number of elements in the pre-image of i, i.e.
D(i) = |{t ∈ [T] : OD(t) = i}|/T. In other words, OD labels the elements of [T] by i ∈ [N], and
the D(i) are the frequencies of these labels, and are thus all rational with denominator T.

Then each query to the quantum sampling oracle QSAMPD applies the unitary operation UD,
described by its action on basis states:

UD |t〉 |β〉 = |t〉 |β + OD(t) mod N〉 .

In particular,
UD |t〉 |0〉 = |t〉 |OD(t)〉 .

As an example, note that querying with a uniformly random t ∈ [T] in the first register will result in
i ∈ [N] in the second register with probability D(i).

Definition 2.3 (Classical Conditional Sampling Oracle [10]). Given a probability distribution
D over [N] and a set S ⊆ [N] such that D(S) > 0, we define the classical conditional sampling
oracle CONDD as follows: each time CONDD is queried with query set S, it returns a single i ∈ [N],
where the probability that element i is returned is DS(i).

We are now ready to define a new quantum conditional sampling oracle, a quantum version of
CONDD.

Definition 2.4 (Quantum Conditional Sampling Oracle). Given a probability distribution D over
[N], let T ∈ N be some specified integer, and assume that there exists a mapping OD : P([N])×
[T] → [N], where P([N]) is the power set of [N], such that for any S ⊆ [N] with D(S) > 0 and
any i ∈ [N], DS(i) = |{t ∈ [T] : OD(S, t) = i}|/T.

Then each query to the quantum conditional sampling oracle QCONDD applies the unitary oper-
ation UD, defined below.

UD acts on 3 registers:

• The first consists of N qubits, whose computational basis states label the 2N possible query sets
S;

• The second consists of log T qubits that describe an element of [T]; and

• The third consists of log N qubits to store the output, an element of [N].

The action of the oracle on basis states is

UD |S〉 |t〉 |β〉 = |S〉 |t〉 |β + OD(S, t) mod N〉 .

In particular,
UD |S〉 |t〉 |0〉 = |S〉 |t〉 |OD(S, t)〉 .

Remark: Note that querying QCONDD with query set S = [N] is equivalent to a query to
QSAMPD.

546 Quantum conditional query complexity

Remark: In the above definition we have made two key assumptions: the first is that the D(i)
are rational values; and the second is that OD exists, which requires that the values DS(i)
are consistent for different subsets S ⊆ N. These are strong promises on D and perhaps
rather restrictive. However, by making T sufficiently large (requiring only log T qubits), we
can approximate any probability distribution closely enough that the algorithms discussed
in the remainder of this paper can still be applied (since the value of T does not affect the
number of queries).

The PCONDD oracle, described in [10], only accepts query subsets S of cardinality 2 or N.
This effectively allows us access to distributions formed from the relative probabilities of
pairs of elements. Below we define its quantum analogue, the PQCONDD oracle.

Definition 2.5 (Pairwise Conditional Sampling Oracle). The PQCONDD oracle is equivalent to
the QCONDD oracle, with the added requirement that the query set S must satisfy |S| = 2 or N, i.e.
the distribution can only be conditioned over pairs of elements or the whole set.

3 Efficient comparison of conditional probabilities

In this section we improve an algorithm given in [9] by reducing the number of queries it
makes to the standard quantum oracle. We subsequently use this result to prove our main
technical tool, the QCOMPARE algorithm, which compares conditional probabilities of a dis-
tribution, and is central to our improved property testers.

The following lemma, proved in [24], provides a general method for improving the de-
pendence between the number of queries made by an algorithm and its success probabil-
ity.

Lemma 3.1 (Powering lemma [25, 24]). Let ALG be an algorithm (quantum or classical) that aims
to estimate a quantity µ ∈ R, with its output µ̃ satisfying P[|µ̃− µ| ≤ ε] ≥ 1− γ, where γ < 1

2 is
fixed.

Then, for any δ > 0, it suffices to repeat ALG O(log(1/δ)) times and take the median to obtain an
estimate µ′ such that P[|µ′ − µ| ≤ ε] ≥ 1− δ.

Applying this lemma to Theorem 5 of [9] gives an exponential improvement, from 1/δ to
log(1/δ), in the dependence on the success probability given there. This is summarised in
the theorem below.

Theorem 3.2. There exists a quantum algorithm ADDESTPROB(D, S, M) that takes as input a
distribution D over [N], a set S ⊂ [N] and an integer M. The algorithm makes exactly M queries to
the QSAMPD oracle and outputs D̃(S), an approximation to D(S), such that P[|D̃(S)− D(S)| ≤
ε] ≥ 1− δ for all ε > 0 and δ ∈ (0, 1] satisfying

M ≥ c log(1/δ)max

(√
D(S)
ε

,
1√
ε

)
,

where c = O(1) is some constant.

A multiplicative version Theorem 3.2 follows straightforwardly:

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 547

Theorem 3.3. There exists a quantum algorithm MULESTPROB(D, S, M) that takes as input a
distribution D over [N], a set S ⊂ [N] and an integer M. The algorithm makes exactly M queries to
the QSAMPD oracle and outputs D̃(S), an approximation to D(S), such that P[D̃(S) ∈ [1− ε, 1 +
ε]D(S)] ≥ 1− δ for all ε, δ ∈ (0, 1] satisfying

M ≥ c log(1/δ)

ε
√

D(S)
,

where c = O(1) is some constant.

Access to the QCONDD oracle effectively gives us access to the oracle QSAMPDS for any
S ⊆ [N], and this allows us to produce stronger versions of Theorems 3.2 and 3.3:

Theorem 3.4. There exists a quantum algorithm ADDESTPROBQCOND(D, S, R, M) that takes as
input a distribution D over [N], a set S ⊆ [N] with D(S) > 0, a subset R ⊂ S and an integer M. The
algorithm makes exactly M queries to the QCONDD oracle and outputs D̃S(R), an approximation to
DS(R), such that P[|D̃S(R)− DS(R)| ≤ ε] ≥ 1− δ for all ε > 0 and δ ∈ (0, 1] satisfying

M ≥ c log(1/δ)max

(√
DS(R)

ε
,

1√
ε

)
,

where c = O(1) is some constant.

Theorem 3.5. There exists a quantum algorithm MULESTPROBQCOND(D, S, R, M) that takes as
input a distribution D over [N], a set S ⊆ [N] with D(S) > 0, a subset R ⊂ S and an integer M. The
algorithm makes exactly M queries to the QCONDD oracle and outputs D̃S(R), an approximation to
DS(R), such that P[D̃S(R) ∈ [1− ε, 1 + ε]DS(R)] ≥ 1− δ for all ε, δ ∈ (0, 1] satisfying

M ≥ c log(1/δ)

ε
√

DS(R)
,

where c = O(1) is some constant.

3.1 The QCOMPARE algorithm

An important routine used in many classical distribution testing protocols (see [10]) is the
COMPARE function, which outputs an estimate of the ratio rX,Y := D(Y)/D(X) of the weights
of two disjoint subsets X, Y ⊂ [N] over D. As stated in Section 3.1 of [10], if X and Y are dis-
joint, D(X ∪Y) > 0, and 1/K ≤ rX,Y ≤ K for some chosen integer K ≥ 1, COMPARE outputs
r̃X,Y ∈ [1− η, 1 + η]rX,Y with probability at least 1− δ using only O(K log(1/δ)/η2) CONDD
queries. Surprisingly, the number of queries is independent of N, the size of the domain of
the distribution.

Here we introduce a procedure called QCOMPARE, constructed from calls to ADDESTPROBQ-
COND and MULESTPROBQCOND, that uses the QCONDD oracle and subsequent quantum
operations to perform a similar function to COMPARE, achieving the same success probabil-
ity and bound on the error with O(

√
K log(1/δ)/η) queries.

548 Quantum conditional query complexity

Algorithm 1 QCOMPARE(D, X, Y, η, K, δ)

Input: QCOND access to a probability distribution D over [N], disjoint subsets X, Y ⊂ [N]
such that D(X ∪ Y) > 0, ‘range’ parameter K ≥ 1, ‘distance’ parameter η ∈ (0, 3

8K), and
‘failure probability’ parameter δ ∈ (0, 1].

1. Set M = O
(√

K log(1/δ)
η

)
.

2. Set w̃+(X) = ADDESTPROBQCOND(D, X ∪Y, X, M).
3. Set w̃+(Y) = ADDESTPROBQCOND(D, X ∪Y, Y, M).
4. Set w̃×(X) = MULESTPROBQCOND(D, X ∪Y, X, M).
5. Set w̃×(Y) = MULESTPROBQCOND(D, X ∪Y, Y, M).
6. Check that w̃+(X) ≤ 3K

3K+1 −
η
3 . If the check fails, return Low and exit.

7. Check that w̃+(Y) ≤ 3K
3K+1 −

η
3 . If the check fails, return High and exit.

8. Return r̃X,Y = w̃×(Y)
w̃×(X)

.

Theorem 3.6. Given the input as described, QCOMPARE (Algorithm 1) outputs Low, High, or a
value r̃X,Y > 0, and satisfies the following:

1. If 1/K ≤ rX,Y ≤ K, then with probability at least 1− δ the procedure outputs a value r̃X,Y ∈
[1− η, 1 + η]rX,Y;

2. If rX,Y > K then with probability at least 1− δ the procedure outputs either High or a value
r̃X,Y ∈ [1− η, 1 + η]rX,Y;

3. If rX,Y < 1/K then with probability at least 1− δ the procedure outputs either Low or a value
r̃X,Y ∈ [1− η, 1 + η]rX,Y.

The procedure performs O
(√

K log(1/δ)
η

)
QCONDD queries on the set X ∪ Y via use of ADDEST-

PROBQCOND and MULESTPROBQCOND.

The proof of this theorem is given in Section A.1.

4 Property testing of probability distributions

We now apply our results to obtain new algorithms for a number of property testing prob-
lems.

Corollary 4.1. Let A(N) be the uniform distribution on [N] (i.e. A(N)(i) = 1/N, i ∈ [N]). Given
PQCOND access to a probability distribution D over [N], there exists an algorithm that uses Õ(1/ε)
PQCONDD queries and decides with probability at least 2/3 whether

• |D−A(N)| = 0 (i.e. D = A(N)) (the algorithm outputs Equal), or

• |D−A(N)| ≥ ε (the algorithm outputs Far),

provided that it is guaranteed that one of these is true. Here | · | is the L1-normb.

The intuition behind Corollary 4.1 as well as a simpler, but slightly weaker, algorithm requir-
ing Õ(1/ε4) queries to the PCOND oracle is presented in Appendix B.

b For two distributions D(1) and D(2) over [N], |D(1) − D(2)| = ∑i∈[N] |D(1)(i)− D(2)(i)|.

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 549

Proof. We replace the calls to COMPARE with the corresponding calls to QCOMPARE in Al-
gorithm 4 of [10]. For this method, calls to QCOMPARE only require conditioning over pairs
of elements, and hence the PQCONDD oracle may be used instead of QCONDD.

Remark: The corresponding classical algorithm (Algorithm 4 in [10]) makes O
(

1
ε log

(
1
ε

))
calls to both the COMPARE procedure (with distance parameter Õ(εc), c ∈ [0, 1], range pa-
rameter 2, and failure probability parameter poly(ε)) and the SAMPD oracle, and in total
uses Õ(1/ε2) PCONDD queries. The authors also show (Section 4.2 of [10]) that any classi-
cal algorithm making CONDD queries must use Ω(1/ε2) queries to solve this problem with
bounded probability. Thus the above quantum algorithm is quadratically more efficient than
any classical COND algorithm.

Corollary 4.2. Given the full specification of a probability distribution D∗ (i.e. a known distribu-
tion) and PQCOND access to a probability distribution D, both over [N], there exists an algorithm

that uses Õ
(

log3 N
ε3

)
PQCONDD queries and decides with probability at least 2/3 whether

• |D− D∗| = 0 (i.e. D = D∗), or

• |D− D∗| ≥ ε,

provided that it is guaranteed that one of these is true.

Proof. We replace the calls to COMPARE with the corresponding calls to QCOMPARE in Al-
gorithm 5 of [10].

Remark: The corresponding classical algorithm (Algorithm 5 in [10]) makes Õ
(

log2(N/ε)
ε2

)
calls to both the COMPARE procedure (with distance parameter Õ

(
ε

log(N/ε)

)
, range param-

eter 2, and failure probability parameter Õ
(

ε2

log2(N/ε)

)
) and the SAMPD oracle, and in total

uses Õ
(

log4 N
ε4

)
PCONDD queries.

Corollary 4.3. Given PQCOND access to probability distributions D(1) and D(2) over [N], there
exists an algorithm that decides, with probability at least 2/3, whether

• |D(1) − D(2)| = 0 (i.e. D(1) = D(2)), or

• |D(1) − D(2)| ≥ ε,

provided that it is guaranteed that one of these is true. The algorithm uses Õ
(

log4 N
ε14

)
PQCONDD(1)

and PQCONDD(2) queries.

Proof. We replace the calls to COMPARE with the corresponding calls to QCOMPARE in Al-
gorithm 9 of [10].

Remark: The corresponding classical algorithm (Algorithm 9 in [10]) makes Õ
(

log2 N
ε7

)
calls

to the COMPARED(1) and COMPARED(2) procedures (crucially with distance parameter Õ
(

ε7

log2 N

)
,

550 Quantum conditional query complexity

range parameter 4, and failure probability parameter Õ
(

ε7

log2 N

)
) and the SAMPD(1) and

SAMPD(2) oracles, and in total uses Õ
(

log6 N
ε21

)
PCONDD(1) and PCONDD(2) queries.

Corollary 4.4. Given PQCOND access to a probability distribution D over [N], there exists an
algorithm that uses Õ(1/ε13) queries and outputs a value d̂ such that |d̂− |D−A(N)|| = O(ε).

Proof. We replace the calls to COMPARE with the corresponding calls to QCOMPARE in Al-
gorithm 11 of [10]. In addition, we trivially replace all queries to the SAMPD oracle with
queries to PQCONDD with query set [N].

Remark: The corresponding classical algorithm (Algorithm 11 in [10]) uses Õ(1/ε20) queries.

5 Property testing of Boolean functions

The results in Section 4 can be applied to test properties of Boolean functions. One challenge
in the field of cryptography is determining whether or not a given boolean function is ‘bal-
anced’. We present an algorithm to solve this problem with a constant number of PQCOND
queries.

Consider a function f : {0, 1}n → {0, 1}m, for n, m ∈ N with n ≥ m. If m = 1, we might
consider the following problem:

Problem 5.1 (Constant-balanced problem). Given f : {0, 1}n → {0, 1}, decide whether

• f is a balanced function, i.e. |{x ∈ {0, 1}n : f (x) = 0}|/2n = |{x ∈ {0, 1}n : f (x) =
1}|/2n = 1

2 , or

• f is a constant function, i.e. f (x) = 0 ∀x ∈ {0, 1}n or f (x) = 1 ∀x ∈ {0, 1}n,

provided that it is guaranteed that f satisfies one of these conditions.

With standard quantum oracle access to f , this problem can be solved exactly with one query,
through use of the Deutsch-Jozsa algorithm [16, 18]. Consider the following extension of this
problem:

Problem 5.2. Given f : {0, 1}n → {0, 1}, write Fi := |{x ∈ {0, 1}n : f (x) = i}|/2n. Decide
whether

• f is a balanced function, i.e. F0 = F1 = 1
2 , or

• f is ε-far from balanced, i.e.
∣∣∣F0 − 1

2

∣∣∣+ ∣∣∣F1 − 1
2

∣∣∣ = 2
∣∣∣F0 − 1

2

∣∣∣ ≥ ε,

provided that it is guaranteed that f satisfies one of these conditions.

This problem can be solved classically with bounded probability by querying f O(1/ε2)
times to estimate F0 to error ε/3 (Theorem 2.8 in [5], proved by using a simple Chernoff
bound in combination with the Chebyshev inequality).

Now we consider an even more general problem:

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 551

Problem 5.3. Given f : {0, 1}n → {0, 1}m, write Fi := |{x ∈ {0, 1}n : f (x) = i}|/2n. Decide
whether

• f is a balanced function, i.e. Fi =
1

2m ∀i ∈ {0, 1}m, or

• f is ε-far from any balanced function, i.e. ∑i∈{0,1}m

∣∣∣Fi − 1
2m

∣∣∣ ≥ ε,

provided that it is guaranteed that f satisfies one of these conditions.

By allowing PQCOND access to f , this can be solved in Õ(1/ε) queries. In what sense do
we allow PQCOND access to f ? We relate f to a probability distribution by setting N = 2m,
D(i) = Fi (i.e. D is the probability distribution formed from the image of f), and using the
definition of DS(i) given at the start of Section 2. The problem is now a question of uni-
formity testing, and is solved by an application of the algorithm presented in Corollary 4.1.
Using the standard quantum oracle QSAMP, this problem requires Ω(2m/3) queries (a lower
bound for uniformity testing given in [13]).

The problem does not naturally lend itself to the classical COND model, as our solution
makes use of the mapping OD (see Definition 2.2). Using the standard classical sampling
oracle SAMP, this problem requires Ω(2m/2) queries [5].

6 Mixedness Testing

Recall the description of Mixedness testing presented in Section 1.1.

Given an n-dimensional quantum state ρ ∈ Cn × Cn and a basis B = {|bi〉}i∈[n] where n is

even, let D(ρ,B)
[n] be the probability distribution over [n] defined by D(ρ,B)

[n] (i) := Tr(ρ |bi〉〈bi|) =
〈bi| ρ |bi〉. It is easy to see that for any basis B, D1/n,B

[n] = A(n), where A(n) is the uniform dis-
tribution over [n]. Then for any state ρ,

• if ‖ρ− 1/n‖1 = 0, then
∣∣∣Dρ,B

[n] −A
(n)
∣∣∣ = 0 for any basis B;

• if ‖ρ− 1/n‖1 ≥ ε, perhaps we can choose a basis B such that
∣∣∣Dρ,B

[n] −A
(n)
∣∣∣ ≥ ν(ε, n),

for some function ν.

Corollary 4.1, with distance parameter ν(ε, n), could then be used to distinguish between
these two options.

As the first case above is immediate, we henceforth assume that ‖ρ− 1/n‖1 ≥ ε. In order to
simplify the analysis, we assume that n is even, let ∆ = ρ− 1/n, and introduce

δ(B) :=
∣∣∣Dρ,B

[n] −A
(n)
∣∣∣ = ∑

i∈[n]
| 〈bi|∆ |bi〉 | ≥ 0.

Let B̃ =
{∣∣b̃i

〉}
i∈[n] be the eigenbasis of ∆, and let di :=

〈
b̃i
∣∣∆
∣∣b̃i
〉
, i ∈ [n] be the eigenvalues.

Thus, ∆ = ∑i∈[n] di
∣∣b̃i〉〈b̃i

∣∣. Note that Tr ∆ = ∑i∈[n] di = 0, and also η := ‖ρ − 1/n‖1 =
‖∆‖1 = ∑i∈[n] |di| ≥ ε.

552 Quantum conditional query complexity

Now suppose we choose a basis B = {|bi〉}i∈[n] uniformly at random, i.e. we choose W ∈
U (n) uniformly at random according to the Haar measure, and set |bi〉 = W

∣∣b̃i
〉
. Then

δ(B) = ∑
i∈[n]
| 〈bi|∆ |bi〉 | = ∑

i∈[n]

∣∣∣〈b̃i
∣∣W†∆W

∣∣b̃i
〉∣∣∣ . (1)

Theorem 8 in [23] provides the bound

E
(

δ(B)
)
≥ ‖∆‖2

3
.

Since ‖∆‖2 ≥ ‖∆‖1√
n = η√

n , we see that

E
(

δ(B)
)
≥ η

3
√

n
.

Remark: We can provide a tighter bound asymptotically, which is derived in Section C.1.

The following lemma allows us to relate this lower bound on E
(

δ(B)
)

to a lower bound on

P[δ(B) ≥ λ], for some λ.

Lemma 6.1.
P
[
δ(B) ≥ λ

]
≥ 1

η

(
E
(

δ(B)
)
− λ

)
Proof. Let p = p(µ) be the probability density function for δ(B). As noted in eq. (C.1),
0 ≤ δ(B) ≤ η. Thus, for λ ∈ [0, η] we can write

E
(

δ(B)
)
=
∫ η

0
µp(µ) dµ

=
∫ λ

0
µp(µ) dµ +

∫ η

λ
µp(µ) dµ

≤
∫ λ

0
λp(µ) dµ +

∫ η

λ
ηp(µ) dµ

≤ λ + ηP
[
δ(B) ≥ λ

]
.

Rearranging the inequality gives the result.

Applying this lemma, we deduce

P
[
δ(B) ≥ λ

]
≥ 1

3
√

n
− λ

η
.

Setting λ = min(1,ε)
6
√

n and recalling that ε ≤ η gives

P

[
δ(B) ≥ min(1, ε)

6
√

n

]
≥ 1

6
√

n
.

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 553

Suppose we repeat this test k times, choosing different bases B1, . . . ,Bk uniformly at random
according to the Haar measure on U (n). We callB ‘good’ if δ(B) ≥ min(1,ε)

6
√

n . Let K(k) represent
the event that at least one of B1, . . . ,Bk is ‘good’. Then

P[K(k)] ≥ 1−
(

1− 1
6
√

n

)k
.

Setting k = 24
√

n gives

P[K(24
√

n)] ≥ 1− 1
e4 ≥

49
50

.

6.1 Executing the algorithm

Suppose we run the above algorithm l times in total. Then by using a Chernoff bound (eq.
(1) in [10]) and considering Corollary 4.1, it follows that

• if the distributions are ‘equal’, P
[
algorithm outputs Equal ≥ 1

2 l times
]
≥ 1− e−l/18;

• if the distributions are ‘far’, P
[
algorithm outputs Far ≥ 1

2 l times
]
≥ 1− e−l/18.

The full algorithm has been set out below.

Algorithm 2 MAXIMALLYMIXEDSTATETEST(ρ)

Input: PQCOND access to a probability distribution D(ρ,B)
[n] over [n] for any B, as described

in Section 6, and parameter ε. Set l = 18 log(72
√

n).
1. Choose k = 24

√
n bases B1, . . .Bk uniformly at random.

2. For each j = 1, . . . , k, run the algorithm given in Corollary 4.1 on the distribution D
(ρ,Bj)

[n]

l times with distance parameter min(1,ε)
6
√

n , returning uj = 1 if at least 1
2 l of the runs return

Far, and uj = 0 otherwise.
3. If any uj is equal to 1, output Far, otherwise output Equal.

The analysis of this algorithm is separated into two cases:

• ‖ρ− 1/n‖1 = 0: The probability that a particular uj is equal to 1 in Step 2 is less than
e−l/18. Thus, the probability of the algorithm failing is, by the union boundc, at most
(24
√

n) e−l/18 = 1
3 , and hence the algorithm outputs Equal with probability at least 2

3 .

• ‖ρ− 1/n‖1 ≥ ε: Suppose that Bj is ‘good’. Then with probability at least 1− el/18 ≥
99

100 , we get uj = 1, and the algorithm will output Far in Step 3. The probability that one
of B1, . . . ,Bk is ‘good’ is at least 49

50 , and hence the probability that the entire algorithm
outputs Far is at least 0.97 ≥ 2

3 .

c For a countable set of events A1, A2, . . . , we have that P [
⋃

i Ai] ≤ ∑i P[Ai].

554 Quantum conditional query complexity

Each run of the algorithm given in Corollary 4.1 requires Õ(6
√

n/ε) PQCOND queries if
ε ≤ 1, and hence in total Algorithm 2 requires

Õ
(

6
√

n
ε

kl
)
= Õ

(n
ε

)
PQCOND queries.

7 Discussion

Quantum conditional oracles give us new insights into the kinds of information that are
useful for testing properties of distributions. In many circumstances such oracles serve as
natural models for accessing information. In addition, they are able to demonstrate sepa-
rations in query complexity between a number of problems, thereby providing interesting
new perspectives on information without trivialising the set-up. We now mention some
open questions.

Group testing and pattern matching are further important areas to which our notion of a
quantum conditional oracle could be applied. The structure of questions commonly consid-
ered there suggest that use of PQCOND would decrease the query complexity dramatically
for many practically relevant problems compared to the best known quantum and classical
algorithms [1, 17, 3, 8].

In our algorithms, we have made particular use of the PQCOND oracle, the quantum ana-
logue of the PCOND oracle. It is noted in [10] that the unrestricted COND oracle offers signif-
icant advantages over the PCOND oracle for many problems, and it is possible that similar
improvements could be achieved for some quantum algorithms through use of the unre-
stricted QCOND oracle.

We believe that a more detailed analysis of the Mixedness problem from Section 6 will yield
an algorithm requiring only Õ(

√
n/ε) queries. Through a slightly different approach we

have proved this up to a small conjecture.

The algorithm that we present for testing Mixedness (Algorithm 2) chooses several bases
B1, . . . ,Bk independently and uniformly at random. It remains open, however, whether or
not a more adaptive approach to choosing bases will yield an algorithm requiring fewer
queries.

Our definition of the spectrum testing problem in Section 6 made use of the trace norm, ‖ · ‖1.
One might wonder how the query complexity would be affected if the problem were defined
with a different norm, such as the operator normd, ‖ · ‖∞. Numerical simulations and limited
analysis suggest that the probability of picking a ‘good’ basis B tends to 1 as n → ∞, and
hence that the number of queries required to distinguish between the two options would be
independent of n. We leave the proof of this conjecture as an open question.

Acknowledgements

d For an (n× n) matrix A, ‖A‖∞ = maxi∈[n] ai , where the ai are the singular values of A.

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 555

I.S.B.S. thanks EPSRC for financial support. S.S. acknowledges the support of Sidney Sussex
College.

References

1. Problem 33: Group Testing - Open Problems in Sublinear Algorithms. Sublinear.info.
2. Jayadev Acharya, Clement Canonne, and Gautam Kamath. A Chasm Between Identity and Equiv-

alence Testing with Conditional Queries. Technical Report 156, 2014.
3. Andris Ambainis, Aleksandrs Belovs, Oded Regev, and Ronald de Wolf. Efficient Quantum Algo-

rithms for (Gapped) Group Testing and Junta Testing. arXiv:1507.03126 [quant-ph], July 2015. arXiv:
1507.03126.

4. Kendall E Atkinson. An introduction to numerical analysis. John Wiley & Sons, 2008.
5. Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick White. Test-

ing random variables for independence and identity. In Foundations of Computer Science, 2001. Pro-
ceedings. 42nd IEEE Symposium on, pages 442–451. IEEE, 2001.

6. Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White. Testing Close-
ness of Discrete Distributions. arXiv:1009.5397 [cs, math, stat], September 2010. arXiv: 1009.5397.

7. Eric Blais, Joshua Brody, and Kevin Matulef. Property Testing Lower Bounds via Communication
Complexity. computational complexity, 21(2):311–358, May 2012.

8. Annalisa De Bonis. Constraining the number of positive responses in adaptive, non-adaptive, and
two-stage group testing. Journal of Combinatorial Optimization, pages 1–34, September 2015.

9. S. Bravyi, A. W. Harrow, and A. Hassidim. Quantum Algorithms for Testing Properties of Distribu-
tions. IEEE Transactions on Information Theory, 57(6):3971–3981, June 2011.

10. C. Canonne, D. Ron, and R. Servedio. Testing probability distributions using conditional samples.
44(3):540–616.

11. Clément Canonne and Ronitt Rubinfeld. Testing Probability Distributions Underlying Aggregated
Data. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Au-
tomata, Languages, and Programming, number 8572 in Lecture Notes in Computer Science, pages
283–295. Springer Berlin Heidelberg, July 2014. DOI: 10.1007/978-3-662-43948-7 24.

12. S. Chakraborty, E. Fischer, Y. Goldhirsh, and A. Matsliah. On the Power of Conditional Samples in
Distribution Testing. SIAM Journal on Computing, pages 1261–1296, January 2016.

13. Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Ronald de Wolf. Quantum queries for testing
distributions, 2009.

14. Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Ronald de Wolf. New Results on Quantum
Property Testing. arXiv:1005.0523 [quant-ph], May 2010. arXiv: 1005.0523.

15. Siu-On Chan, Ilias Diakonikolas, Gregory Valiant, and Paul Valiant. Optimal Algorithms for Testing
Closeness of Discrete Distributions. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’14, pages 1193–1203, Philadelphia, PA, USA, 2014. Society for Indus-
trial and Applied Mathematics.

16. Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revis-
ited. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
volume 454, pages 339–354. The Royal Society, 1998.

17. A. De Bonis, L. Gasieniec, and U. Vaccaro. Optimal Two-Stage Algorithms for Group Testing Prob-
lems. SIAM Journal on Computing, 34(5):1253–1270, January 2005.

18. David Deutsch and Richard Jozsa. Rapid Solution of Problems by Quantum Computation. Proceed-
ings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 439(1907):553–
558, December 1992.

19. Ilias Diakonikolas, Daniel M. Kane, and Vladimir Nikishkin. Testing Identity of Structured Distribu-
tions. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’15, pages 1841–1854, Philadelphia, PA, USA, 2015. Society for Industrial and Applied Mathematics.

20. Oded Goldreich. Property Testing: Current Research and Surveys. Springer, October 2010. Google-

556 Quantum conditional query complexity

Books-ID: HIdqCQAAQBAJ.
21. Oded Goldreich, Shari Goldwasser, and Dana Ron. Property Testing and Its Connection to Learning

and Approximation. J. ACM, 45(4):653–750, July 1998.
22. Sudipto Guha, Andrew McGregor, and Suresh Venkatasubramanian. Streaming and Sublinear Ap-

proximation of Entropy and Information Distances. In Proceedings of the Seventeenth Annual ACM-
SIAM Symposium on Discrete Algorithm, SODA ’06, pages 733–742, Philadelphia, PA, USA, 2006.
Society for Industrial and Applied Mathematics.

23. Aram W Harrow, Ashley Montanaro, and Anthony J Short. Limitations on quantum dimension-
ality reduction. In International Colloquium on Automata, Languages, and Programming, pages 86–97.
Springer, 2011.

24. Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial struc-
tures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

25. Ashley Montanaro. Quantum speedup of monte carlo methods. In Proc. R. Soc. A, volume 471, page
20150301. The Royal Society, 2015.

26. Ashley Montanaro and Ronald de Wolf. A Survey of Quantum Property Testing. arXiv:1310.2035
[quant-ph], October 2013. arXiv: 1310.2035.

27. Ryan O’Donnell and John Wright. Quantum Spectrum Testing. arXiv:1501.05028 [quant-ph], January
2015. arXiv: 1501.05028.

28. Herbert Robbins. A remark on stirling’s formula. The American Mathematical Monthly, 62(1):26–29,
1955.

29. Michelle Schatzman. Numerical Analysis: A Mathematical Introduction. Clarendon Press, 2002.
Google-Books-ID: 3SuNiR1hzxUC.

30. Stanislav Sýkora. Quantum theory and the bayesian inference problems. Journal of Statistical Physics,
11(1):17–27.

31. G. Valiant and P. Valiant. The Power of Linear Estimators. In 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 403–412, October 2011.

Appendix A Efficient comparison of conditional probabilities

A.1 Proof of Theorem 3.6

We prove this case-by-case. We introduce the shorthand w(X) := DX∪Y(X) = D(X)/D(X ∪
Y), w(Y) := DX∪Y(Y) = D(Y)/D(X ∪ Y) and note that rX,Y = w(Y)/w(X). In addition,
since w(X)+w(Y) = 1, it is straightforward to show the following inequalities for a constant
T ≥ 1:

rX,Y ≥
1
T

=⇒ w(X) ≤ T
T + 1

, w(Y) ≥ 1
T + 1

rX,Y ≤
1
T

=⇒ w(X) ≥ T
T + 1

, w(Y) ≤ 1
T + 1

rX,Y ≥ T =⇒ w(X) ≤ 1
T + 1

, w(Y) ≥ T
T + 1

rX,Y ≤ T =⇒ w(X) ≥ 1
T + 1

, w(Y) ≤ T
T + 1

(A.1)

The strict versions of these inequalities also hold true.

1. 1/K ≤ rX,Y ≤ K

In this case we wish our algorithm to output r̃X,Y ∈ [1− η, 1 + η]rX,Y.

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 557

From eq. (A.1), we immediately have that

1
K + 1

≤ w(X), w(Y) ≤ K
K + 1

. (A.2)

Steps 2 and 3 use ADDESTPROBQCOND to estimate w(X) and w(Y) to within additive
error η/3 with probability at least 1− δ/4. As stated in Theorem 3.4, this requires

O

(
max

(√
w(X)

η
,

1
√

η

)
log(1/δ)

)
= O

(
log(1/δ)

η

)
queries to QCONDD, where the equality is due to the fact that w(X) ≤ 1, and thus M
(defined in Algorithm 1) queries suffice.

Step 4 uses MULESTPROBQCOND to estimate w(X) to within multiplicative error η/3
with probability at least 1− δ/4. From Theorem 3.5, we clearly require

O

(
log(1/δ)

η
√

w(X)

)
= O

(√
K log(1/δ)

η

)

queries to QCONDD in order to achieve these, where the equality is due to eq. (A.2),
and thus M queries suffice. Step 5 requires the same number of queries.

With a combined probability of at least 1− δ, Steps 2–5 all pass, and produce the fol-
lowing values:

w̃+(X) ∈ [w(X)− η/3, w(X) + η/3],

w̃+(Y) ∈ [w(Y)− η/3, w(Y) + η/3],

w̃×(X) ∈ [1− η/3, 1 + η/3]w(X),

w̃×(Y) ∈ [1− η/3, 1 + η/3]w(Y).

From eq. (A.2), we see that

w̃+(X), w̃+(Y) ≤
K

K + 1
+

η

3
<

3K
3K + 1

− η

3
,

where the final inequality is due to the algorithm’s requirement that η
3 < 1

8K .

Thus, the checks in Steps 6 and 7 pass, and Step 8 gives us

r̃X,Y ∈ [1− η, 1 + η]rX,Y.

2. K < rX,Y

This is split into two sub-cases.

(a) 3K < rX,Y

In this case we wish our algorithm to output High.

558 Quantum conditional query complexity

From eq. (A.1) we have that

w(X) <
1

3K + 1
, w(Y) >

3K
3K + 1

. (A.3)

As in Case 1, Steps 2 and 3 allow us to gain

w̃+(X) ∈ [w(X)− η/3, w(X) + η/3],

w̃+(Y) ∈ [w(Y)− η/3, w(Y) + η/3],

with combined probability at least 1− δ/2. (We henceforth assume that we have
gained such values.)

Using eq. (A.3) it is easy to show that w̃+(X) < 3K
3K+1 −

η
3 and that w̃+(Y) >

3K
3K+1 −

η
3 . Hence the check in Step 6 passes, but the check in Step 7 fails, and the

algorithm outputs High and exits.

(b) K < rX,Y ≤ 3K

In this case we wish our algorithm to either output High or output r̃X,Y ∈ [1− η, 1 +
η]rX,Y.

From eq. (A.1), we have that

1
3K + 1

≤ w(X) <
1

K + 1
,
(

1
3K + 1

<

)
K

1 + K
< w(Y) ≤ 3K

3K + 1
. (A.4)

Thus, with O(
√

K log(1/δ)/η) queries, as in Case 1, we gain

w̃+(X) ∈ [w(X)− η/3, w(X) + η/3],

w̃+(Y) ∈ [w(Y)− η/3, w(Y) + η/3],

w̃×(X) ∈ [1− η/3, 1 + η/3]w(X),

w̃×(Y) ∈ [1− η/3, 1 + η/3]w(Y),

with combined probability at least 1 − δ. (We henceforth assume that we have
gained such values.)

Using eq. (A.4), we see that w̃+(X) < 3K
3K+1 −

η
3 , and thus Step 6 will pass.

Assuming the check in Step 7 passes, Step 8 will output r̃X,Y ∈ [1− η, 1 + η]rX,Y.

However, given the upper bound for w(Y) in eq. (A.4), it is possible to have
w̃+(Y) > 3K

3K+1 −
η
3 , causing the check in Step 7 to fail and the algorithm to output

High.

3. rX,Y < 1/K

This is split into two sub-cases.

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 559

(a) rX,Y < 1/(3K)

This is equivalent to the condition that 3K < rY,X , and thus follows the same
argument as Case 2a, with X and Y interchanged and an output of Low instead of
High.

(b) 1/(3K) ≤ rX,Y < 1/K

This is equivalent to the condition that K < rY,X ≤ 3K, and thus follows the same
argument as Case 2b, with X and Y interchanged and an output of Low instead of
High.

Appendix B Property testing of probability distributions

B.1 An illustrative example

This section describes the intuition behind Corollary 4.1, and presents a simpler but slightly weaker
algorithm requiring Õ(1/ε4) queries to the PCOND oracle. This algorithm is presented in [10],
though here we give a more in-depth derivation.

Let A(N) be the uniform distribution on [N] (i.e. A(N)(i) = 1/N, i ∈ [N]). Given PCOND

access to a probability distribution D over [N], we wish to decide (with high probability)
whether

• |D−A(N)| = 0 (i.e. D = A(N)), or

• |D−A(N)| ≥ ε,

provided that it is guaranteed that one of these is true.

Suppose that the latter option is true, i.e. D is ε-far from uniform.

We now partition our domain into two sets: elements of weight at least 1/N; and elements
of weight less than 1/N. More formally, we define

H :=
{

h ∈ [N] : D(h) ≥ 1
N

}
, L :=

{
l ∈ [N] : D(l) <

1
N

}

Proposition 7.1.

∑
h∈H

(
D(h)− 1

N

)
= ∑

l∈L

(
1
N
− D(l)

)
≥ ε

2

560 Quantum conditional query complexity

Proof. First, note that ∑i∈[N] D(i) = 1 and thus

0 = ∑
i∈[N]

(
D(i)− 1

N

)

= ∑
h∈H

(
D(h)− 1

N

)
+ ∑

l∈L

(
D(l)− 1

N

)
= ∑

h∈H

(
D(h)− 1

N

)
−∑

l∈L

(
1
N
− D(l)

)
and the equality follows.

Since D is ε-far from uniform, we have that

ε ≤ ∑
i∈[N]

∣∣∣∣D(i)− 1
N

∣∣∣∣
= ∑

h∈H

∣∣∣∣D(h)− 1
N

∣∣∣∣+ ∑
l∈L

∣∣∣∣D(l)− 1
N

∣∣∣∣
= 2 ∑

h∈H

∣∣∣∣D(h)− 1
N

∣∣∣∣ = 2 ∑
l∈L

∣∣∣∣ 1
N
− D(l)

∣∣∣∣
and the inequality follows.

We define the ‘significantly heavy’ and ‘significantly light’ sets

H′ :=
{

h ∈ [N] : D(h) ≥ 1
N

+
ε

4N

}
⊆ H,

L′ :=
{

l ∈ [N] : D(h) <
1
N
− ε

4N

}
⊆ L

Now,

ε

2
≤ ∑

h∈H

(
D(h)− 1

N

)
= ∑

h∈H′

(
D(h)− 1

N

)
+ ∑

h∈H\H′

(
D(h)− 1

N

)
︸ ︷︷ ︸

< ε
4N

< D(H′)− |H
′|

N
+

ε

4N
(|H|︸︷︷︸
≤N

−|H′|)

≤ D(H′) +
ε

4
−
(
|H′
N

+
ε|H′|
4N

)
≤ D(H′) +

ε

4
,

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 561

and hence

D(H′) >
ε

2
− ε

4
=

ε

4
.

And,

ε

2
≤ ∑

l∈L

(
1
N
− D(l)

)
= ∑

l∈L′

(
1
N
− D(l)

)
+ ∑

l∈L\L′

(
1
N
− D(l)

)
︸ ︷︷ ︸

≤ ε
4N

≤ |L
′|

N
− D(L′) +

ε

4N
(|L|︸︷︷︸
≤N

−|L′|)

≤ |L
′|

N
+

ε

4
−
(

D(L′) +
ε|L′|
4N

)
≤ |L

′|
N

+
ε

4
,

and thus

|L′| ≥ Nε

4
.

We can obtain an element of L′ with high probability by sampling from SAMPA(N) O(1/ε)
times, and we can obtain an element of H′ with high probability by sampling from SAMPD

O(1/ε) times. These elements will have a multiplicative difference of at least 1/N+ε/(4N)
1/N−ε(4N)

≥
1 + ε

2 , which can be detected with high probability by using the COMPARE procedure with
parameters, say, η = ε/100 and K = 2, requiring Õ(1/ε2) PCONDD queries.

Since there will be O(1/ε2) pairs to test, and each use of COMPARE requires Õ(1/ε2) queries,
the overall sample complexity of the algorithm will be Õ(1/ε4).

Appendix C Mixedness Testing

C.1 A tighter asymptotic bound on E
(

δ(B)
)

This section provides a derivation of the asymptotic bound E
(

δ(B)
)
& η√

2πn
.

From eq. (1), we have

δ(B) = ∑
i∈[n]

∣∣∣∣∣∣ ∑
j∈[n]
|Wji|2dj

∣∣∣∣∣∣ ≤ ∑
j∈[n]

(
∑

i∈[n]
|Wji|2

)
|dj| = η. (C.1)

by the triangle inequality.

562 Quantum conditional query complexity

Let v(i)j = |Wji|2, introduce the vector V(i) = (v(i)0 , . . . , v(i)n−1), and write d = (d0, . . . , dn−1).
Then

δ(B) = ∑
i∈[n]
|V(i) · d|.

We now make use of Sykora’s theorem [30], which states that if W is chosen uniformly at
random according to the Haar measure on U (n), then the vector V(i), for any i, is uniformly
distributed over the probability simplex

Tn = {(v0, . . . , vn−1) : vi ∈ [0, 1], ∑i∈[n] vi = 1}.

Since all of the V(i)’s have the same distribution, we see that

E
(

δ(B)
)
= nE(|V · d|),

where V is a generic V(i).

We now write E(|V · d|) as an integral over the probability simplex Tn. We have

E(f (V)) =
∫

Tn
f (V)dV := (n− 1)!

∫ 1

v0=0
· · ·

∫ 1

vn−1=0
δ(1−∑i∈[n] vi) f (V) dv0 · · · dvn−1

where dV = (n− 1)! δ(1−∑i∈[n] vi) dv0 · · · dvn−1 is the normalised measure on Tn, defined
so that E(1) = 1.

Note that the integral expression for E(|V · d|) = E(|v0d0 + · · ·+ vn−1dn−1|) is completely
symmetric in the vi’s (and hence in the di’s). Thus, if σ is a permutation on [n], we have
that

E(|v0d0 + · · ·+ vn−1dn−1|) = E(|v0dσ(0) + · · ·+ vn−1dσ(n−1)|).

Using this observation, we can write

E(|v0d0 + · · ·+ vn−1dn−1|)

=
1
n

[
E(|v0dσ(0) + · · ·+ vn−1dσ(n−1)|) + E(|v0dσ(1) + · · ·+ vn−1dσ(0)|)

+E(|v0dσ(2) + · · ·+ vn−1dσ(1)|) + · · ·+ E(|v0dσ(n−1) + · · ·+ vn−1dσ(n−2)|)
]

=
1
n

[
E(|v0dσ(0) + · · ·+ vn−1dσ(n−1)|) + E(| − v0dσ(1) − · · · − vn−1dσ(0)|) (C.2)

+E(|v0dσ(2) + · · ·+ vn−1dσ(1)|) + · · ·+ E(| − v0dσ(n−1) − · · · − vn−1dσ(n−2)|)
]

≥ 1
n

E
[
|v0(dσ(0) − dσ(1) + · · · − dσ(n−1)) + v1(dσ(1) − dσ(2) + · · · − dσ(0)) (C.3)

+ v2(dσ(2) − dσ(3) + · · · − dσ(1)) + · · · vn−1(dσ(n−1) − dσ(0) + · · · − dσ(n−2))|
]

=
1
n
|dσ(0) − dσ(1) + dσ(2) − · · · − dσ(n−1)| E(|v0 − v1 + v2 − · · · − vn−1|),

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 563

where in eq. (C.2) minus signs are added inside every other expectation (note that n is even),
and eq. (C.3) is derived using the triangle inequality.

Since σ was an arbitrary permutation, we can instead write

E(|V · d|) ≥ 1
n

[
max

σ∈Sym([n])
|dσ(0) − dσ(1) + dσ(2) − · · · − dσ(n−1)|

]
E(|v0− v1 + v2−· · ·− vn−1|),

where Sym([n]) is the symmetric group on [n], and hence

E
(

δ(B)
)
≥ M(d)En,

where

M(d) := max
σ∈Sym([n])

|dσ(0) − dσ(1) + dσ(2) − · · · − dσ(n−1)|, (C.4)

En := E(|v0 − v1 + v2 − · · · − vn−1|). (C.5)

Evaluation of M(d) and En is carried out below in Sections C.1.1 and C.1.2, where we find
that M(d) ≥ 1

2 η and En ∼
√

2
π

1√
n for large n. Hence

E
(

δ(B)
)
&

η√
2πn

.

C.1.1 Evaluating M(d)

This section provides a lower bound for the quantity M(d), as defined in eq. (C.4).

Let D+ be the set of non-negative di’s, labelled such that d+0 ≥ d+1 ≥ · · · , and similarly
let D− be the set of negative di’s, labelled such that d−0 ≤ d−1 ≤ · · · . w.l.o.g. suppose
|D−| ≥ |D+|.

Let |D+| = n
2 − k, where k ≤ n

2 . Thus |D−| = n
2 + k. Note that ∑i d+i = −∑i d−i = 1

2 η.

We now define σ so that the following statements are true:

• dσ(1) = d−0 , dσ(3) = d−1 , . . . , dσ(n−1) = d−n
2−1;

• dσ(0) = d+0 , dσ(2) = d+1 , . . . , dσ(n−2k−2) = d+n
2−k−1;

• dσ(n−2k), dσ(n−2k+2), . . . , dσ(n−2) can be filled with the remaining members of D−.

Then

• dσ(0) + dσ(2) + · · ·+ dσ(n−2k−2) =
1
2 η;

• d−0 , . . . , d−n
2−1 ≤ d−n

2−1 =⇒ −dσ(1) − dσ(3) − · · · − dσ(n−1) ≥ − n
2 d−n

2−1;

• d−n
2

, . . . , d−n
2 +k−1 ≥ d−n

2−1 =⇒ dσ(n−2k) + dσ(n−2k+2) + · · ·+ dσ(n−2) ≥ kd−n
2−1.

564 Quantum conditional query complexity

Hence

|dσ(0) − dσ(1) + dσ(2) − · · · − dσ(n)| ≥
∣∣∣∣12 η +

(
k− n

2

)
d−n

2−1

∣∣∣∣ ≥ 1
2

η,

where the final inequality follows since k ≤ n
2 and d−n

2−1 < 0.

Thus M(d) ≥ 1
2 η.

C.1.2 Evaluating En

This section provides a lower bound for the quantity En, as defined in eq. (C.5).

To evaluate En we will use the Hermite-Genocchi Theorem (Theorem 3.3 in [4]), which relates
integrals over the probability simplex to associated divided differences.

The divided difference of n points (x0, f (x0)), . . . , (xn−1, f (xn−1)) is defined by

f [x0, . . . , xn−1] := ∑
j∈[n]

f (xj)

∏k 6=j(xj − xk)
, (C.6)

where limits are taken if any of the xj are equal. It can be shown that for repeated points (see
Exercise 4.6.6 in [29])

f [x0, . . . , x0︸ ︷︷ ︸
(r0+1) times

, x1, . . . , x1︸ ︷︷ ︸
(r1+1) times

, x2, . . . , xn−1] =
1

r0!r1!
∂r0+r1

∂xr0
0 ∂xr1

1
f [x0, x1, x2, . . . , xn−1], (C.7)

where x0, . . . , xn−1 ∈ R are distinct.

Now, the Hermite-Genocchi Theorem states that

f [x0, . . . , xn−1] =
1

(n− 1)!

∫
Tn

f (n−1)(v0x0 + · · · vn−1xn−1) dV,

where we recall that dV = (n− 1)! δ(1−∑i∈[n] vi) dv0 · · · dvn−1.

In order to evaluate En, we set f (n−1)(ξ) = (n− 1)!|ξ|. Thus

f (ξ) =
{ 1

n ξn ξ ≥ 0
− 1

n ξn ξ < 0

and En = f [1,−1, 1,−1, . . . , 1,−1].

Let m = n
2 − 1 (i.e. n = 2m + 2). Then by eq. (C.7) we have that

E2m+2 =
1

m!2
∂m

0 ∂m
1 f [x0, x1]|x0=−1,x1=1 ,

where we have used the notation ∂i ≡ ∂
∂xi

.

In the neighbourhood of x0 = −1, x1 = 1, we have (by eq. (C.6))

f [x0, x1] = −
1

2m + 2
x2m+2

0 + x2m+2
1

x0 − x1
,

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 565

and thus

E2m+2 = − 1
2m + 2

1
m!2

A|x0=−1,x1=1 , (C.8)

where

A = ∂m
0 ∂m

1

(
x2m+2

0 + x2m+2
1

x0 − x1

)
.

We see that

A = ∂m
1 ∂m

0

(
x2m+2

0
x0 − x1

)
− ∂m

0 ∂m
1

(
x2m+2

1
x1 − x0

)

= ∂m
1 ∂m

0

(
x2m+2

0
x0 − x1

)
− (same term with x0 and x1 interchanged). (C.9)

We use the Leibniz product ruleeto deduce that

∂m
0

(
xn

0

(
1

x0 − x1

))
=

m

∑
k=0

(
m
k

) [
(2m + 2)!

(2m + 2− k)!
x2m+2−k

0

] [
(−1)m−k

(x0 − x1)m+1−k (m− k)!

]
,

and hence that the first term in eq. (C.9) is

∂m
1 ∂m

0

(
xn

0

(
1

x0 − x1

))
=

m

∑
k=0

(
m
k

) [
(2m + 2)!

(2m + 2− k)!
x2m+2−k

0

] [
(−1)m−k

(x0 − x1)2m+1−k (2m− k)!

]

= (2m + 2)!(−1)m
m

∑
k=0

(
m
k

)
(−1)k(2m− k)!
(2m + 2− k)!

x2m+2−k
0

(x0 − x1)2m+1−k

= (2m + 2)!(−1)m(x0 − x1)
m

∑
k=0

(
m
k

)
(−1)k

(2m + 2− k)(2m + 1− k)

(
x0

x0 − x1

)2m+2−k
.

Substituting this into eq. (C.9) and setting x0 = −1, x1 = 1 gives

A|x0=−1,x1=1 = −4(2m + 2)!(−1)m
m

∑
k=0

(
m
k

)
(−1)k

(2m + 2− k)(2m + 1− k)

(
1
2

)2m+2−k
.

Now set

B = (−1)m
m

∑
k=0

(
m
k

)
(−1)k

(2m + 2− k)(2m + 1− k)
γ2m+2−k

so that
A|x0=−1,x1=1 = −4(2m + 2)!B|γ= 1

2
. (C.10)

e (uv)(m) = ∑m
k=0 (

m
k)u

(k)v(m−k)

566 Quantum conditional query complexity

Next, note that

∂2B
∂γ2 = (−1)m

m

∑
k=0

(
m
k

)
(−1)kγ2m−k = γm

m

∑
k=0

(
m
k

)
(−γ)m−k = γm(1− γ)m,

and thus

B|γ= 1
2
=
∫ 1

2

z=0

∫ z

α=0
αm(1− α)m dα dz + C

=
∫ 1

2

z=0
Bz(m + 1, m + 1) dz + C,

where Bz(p, q) =
∫ z

0 αp−1(1− α)q−1 dα is the incomplete Beta function. By setting m = 0 it
is easy to deduce that C = 0.

Now, the indefinite integral of the incomplete Beta function is∫
Bz(p, q) dz = zBz(p, q)− Bz(p + 1, q),

and hence we deduce that

B|γ= 1
2
=

1
2

B 1
2
(m + 1, m + 1)− B 1

2
(m + 2, m + 1)

=
∫ 1

2

0
αm(1− α)mdα−

∫ 1
2

0
αm+1(1− α)mdα

=
1
2

[∫ 1
2

0
αm(1− α)m (1− 2α)︸ ︷︷ ︸

=(1−α)−α

dα

]

=
1
2

∫ 1
2

0
(αm(1− α)m+1 − αm+1(1− α)m) dα

=
1

2(m + 1)

∫ 1
2

0

d(αm+1(1− α)m+1)

dα
dα

=
1

2(m + 1)
[αm+1(1− α)m+1]1/2

0

=
1

22m+3(m + 1)
.

Substituting this into eq. (C.10) and subsequently into eq. (C.8), we get

E2m+2 = − 1
2m + 2

1
m!2
· −4(2m + 2)! · 1

22m+3(m + 1)

=
(2m + 1)!

22m+1m!2(m + 1)

=
2m + 1
m + 1

· (2m)!
m!2

· 1
22m+1 . (C.11)

I.S.B. Sardharwalla, S. Strelchuk, and R. Jozsa 567

Stirling’s formula [28] tells us that for large m

m! ∼
√

2πmm+ 1
2 e−m,

and thus
(2m)!
m!2

∼
√

2π(2m)2m+ 1
2 e−2m

2πm2m+1e−2m =
22m
√

mπ
.

For large m, 2m+1
m+1 ∼ 2, and thus eq. (C.11) tells us that

E2m+2 ∼
1√
mπ

.

Replacing m with n
2 − 1, we deduce that

En ∼
√

2
π

1√
n

.

	Introduction
	Results
	Motivation
	Outline

	Preliminaries and Notation
	Efficient comparison of conditional probabilities
	The QCompare algorithm

	Property testing of probability distributions
	Property testing of Boolean functions
	Mixedness Testing
	Executing the algorithm

	Discussion

