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Relaxing the independent censoring
assumption in the Cox proportional
hazards model using multiple imputation
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The Cox proportional hazards model is frequently used in medical statistics. The standard methods for fitting
this model rely on the assumption of independent censoring. Although this is sometimes plausible, we often wish
to explore how robust our inferences are as this untestable assumption is relaxed. We describe how this can be
carried out in a way that makes the assumptions accessible to all those involved in a research project. Estimation
proceeds via multiple imputation, where censored failure times are imputed under user-specified departures from
independent censoring. A novel aspect of our method is the use of bootstrapping to generate proper imputations
from the Cox model. We illustrate our approach using data from an HIV-prevention trial and discuss how it can
be readily adapted and applied in other settings. © 2014 The Authors. Statistics in Medicine published by John
Wiley & Sons, Ltd.
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1. Introduction

Models for survival analysis [1-4] are very commonly applied to time-to-event data in medical statistics.
Typically, the analysis is complicated because the failure times are unobserved for a proportion of indi-
viduals; instead, we record the last time that they were under observation, known as the censoring time.
This type of censoring is called right censoring and will occur if individuals are still at risk of failure at
the scheduled end of the study, but often a non-trivial proportion of participants will be right censored
before this time.

Standard software assumes independent censoring, conditional on the covariates in the analysis model.
However, this assumption is untestable and will often be doubtful for individuals censored before the
scheduled end of the study. One reason for this is because dropout is a common reason for censoring.
Censoring might therefore be thought to be indicative that the participant is more likely to subsequently
fail more quickly because, for example, dropout could be associated with a deterioration in health and
hence also associated with failure. In the most extreme case, a participant could be lost to follow-up, and
hence censored, because failure is about to occur. On the other hand, the event of being censored might
be thought to have a protective effect, because participants could drop out because their condition has
improved and so no longer require the support of the trial that they enrolled in. Censoring could therefore
plausibly have either a protective or a harmful effect depending on the circumstances.

Rather than focus on the myriad of reasons why the assumption of independent censoring may be false,
here we develop a procedure to quantify the sensitivity of the conclusions from fitted Cox proportional
hazards models [5] where, for whatever reason, the independent censoring assumption is in doubt. The
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Cox model is the most commonly used model for survival analysis. This semi-parametric model allows
inferences to be made concerning covariate effects without the added complication of modelling the
baseline hazard function. This model provides our focus, but we will explain how to adapt our methods
so that they can be used in conjunction with parametric proportional hazards models.

We model the association between the censoring and failure mechanisms in a simple and direct manner,
motivated by the intuition that censoring is associated with a step change in the hazard of failure. This
step change may increase or decrease this hazard, so that censoring may be associated with either a
harmful effect or a protective effect. By modelling the association between censoring and failure in such
a transparent way, investigators can have an informed discussion about the model’s assumptions and the
plausible range of the sensitivity parameter or parameters. Our model is also easily interpretable, which
makes it relatively simple to translate our model into a wide variety of applications. We derive our model
in the context of a more general framework below and describe how this more general framework could
be implemented in the discussion, so that our approach could also be used in situations where a sudden
change in the hazard at the time of censoring is less plausible.

Related work has been carried out by Siannis and colleagues [6—8] who propose local sensitivity anal-
yses, where the implications of small associations between the failure and censoring mechanisms are
assessed. Our approach allows global sensitivity analyses but makes use of more computationally inten-
sive methods. Bivariate models [9] and shared parameter (or ‘frailty’) models [10] are alternatives for
invoking an association between the censoring and failure mechanisms. Scharfstein and Robins [11] make
this association explicit by modelling the censoring mechanism conditionally on the failure time, but we
avoid modelling the censoring mechanism. Methods using Kaplan—Meier (product limit) methods have
also been developed [12]. Our approach is similar in many respects to the one proposed by Zhao et al. [13]
who use Kaplan—Meier curves to impute data under informative censoring. However, Zhao et al. do not
include covariates and only describe the use of a single sensitivity parameter. Here, we provide a unified
modelling framework that can incorporate much more complicated informative censoring mechanisms.

We regard the censored observations as providing missing (unobserved) failure times and use multiple
imputation [14, Chapter 9] to impute censored failure times. Our method for imputing missing failure
times is similar to the one proposed by Faucett ef al. [15], but we include parameters that describe the
departure from independent censoring and propose a bootstrap approach [16] instead of Markov chain
Monte Carlo. Hsu and Taylor [17] and Liu et al. [18] generate ‘imputing risk sets’ or ‘imputing pools’
for each censored observation, but our method imputes failure times for censored participants from the
entire sample of observed failure times that are greater than their censoring times. In multiple imputa-
tion, we take both the uncertainty in the imputation model and the sampling variation into account when
creating the imputed datasets. Here, we also impute missing data given a user-specified sensitivity param-
eter or parameters that quantify the departure from independent censoring. These sensitivity parameters
are the step change parameters in our model, which the data provide no information about. The indepen-
dent censoring assumption is equivalent to assuming that all sensitivity parameters are zero. The term
‘sensitivity analysis’ covers a wide range of strategies, but the approach adopted here is to explore the
implications of a range of possible values of the sensitivity parameters. This approach for performing
sensitivity analyses has been referred to as a ‘principled sensitivity analysis’ [19]. The observed data that
we impute the missing failure times conditionally on include the censoring times, so that the imputed
failure times are generated conditionally on being greater than the corresponding censoring times, fol-
lowing Royston’s principle [20] explained in his Section 5.2. Dorey et al. [21] discuss ways for imputing
interval censored data, ensuring that the imputed failure times lie in the appropriate intervals. Once the
imputed datasets have been created, the parameters of interest are estimated by fitting an analysis model
to each of the imputed datasets. Finally, the resulting parameter estimates are combined using Rubin’s
rules [14, Chapter 9] in the usual way.

The rest of the paper is set out as follows. In Section 2, we describe our motivating example and present
the results from a Cox proportional hazards model where the independent censoring assumption is espe-
cially suspect. In Section 3, we describe our proposal for relaxing the independent censoring assumption.
In Section 4, we apply our methods to our example, in Section 5 we perform a simulation study, and we
conclude with a discussion in Section 6.
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2. Motivating example

Our motivating example is an analysis of a dataset from Watson-Jones et al. [22]. A total of 821 female
workers at recreational facilities in northwestern Tanzania participated in an HIV-prevention trial of
herpes simplex virus type 2 (HSV-2) suppressive therapy, where failure is HIV infection. Women were
randomised to acyclovir (400 mg twice daily) or placebo and were followed up for up to 12 (n = 203) or
30 (n = 618) months, depending on phase of enrolment. To be eligible for enrollment, women had to be
HSV-2 seropositive, 16-35 years of age, not pregnant or planning a pregnancy in the next 2 years, and
not breastfeeding. A total of 679 participants completed follow-up for the primary modified intention-to-
treat analysis. In this analysis, the women who become pregnant during the trial are censored at the date
of the first positive pregnancy test [22]. A summary of the participants’ outcomes is shown in the top part
of Table I. The analysis presented by Watson-Jones et al. reported no evidence that acyclovir HSV sup-
pressive therapy decreases the incidence of infection with HIV. Because this analysis censors women at
the times of pregnancy, the estimands relate to the time to HIV infection in women who are not pregnant.

It is of interest to know whether any of the baseline variables collected are good predictors of time to
infection with HIV. A complication described by Watson-Jones et al. is that 165 women became pregnant
during the course of the trial. These participants stopped taking the study tablets and were referred to
the nearest antenatal clinic. We follow the convention of the primary modified intention-to-treat analysis,
where women are censored at the first positive pregnancy test, and so we investigate the risk factors asso-
ciated with HIV infection among nonpregnant women. An exploratory analysis was performed using Cox
proportional hazards models, where the outcome measure was time to infection (in years). Three baseline
variables appeared to be good predictors of the hazard of HIV infection: age (at screening), the number of
alcoholic drinks per week (for which a categorical variable was used, to avoid assuming a linear effect),
and a binary variable indicating that the participant had lived at the screening site for less than 2 years.
A summary of these covariates is shown in the bottom part of Table I, and the parameter estimates (log
hazard ratios) from the Cox proportional hazards model, obtained by maximising the partial likelihood
in the usual way, are shown in Table II. This analysis suggests that younger women are at greater risk
and that consuming alcoholic drinks and participant mobility are also associated with an increased risk of
HIV infection. The estimate of f, is very similar to, and is slightly smaller than, the estimate of g;. This,
combined with the observation that only 3% of the women are considered heavy drinkers (Table I), may
encourage the collapsing of the last two categories of the drinking-related covariate into a single group.
However, the observation that ﬁ3 ~ ﬂ; could be dependent on the independent censoring assumption. We
will examine whether or not this is the case later in the paper when we relax this assumption.

The results in Table II assume independent censoring. This is not very plausible for several reasons.
First of all, one of the reasons for censoring is pregnancy. It is quite plausible that pregnancy, and hence
censoring, is associated with an increased risk of HIV infection because they both share the common
underlying cause of unprotected sexual intercourse. Furthermore, censoring may instead have occurred
because the participant has moved away. If greater mobility during the course of the trial is associated
with an increased risk of HIV infection, as the fitted proportional hazards model suggests, and the asso-
ciation between moving away and HIV risk is not fully explained by the covariates in Table II, then this

Table I. Summary statistics for the HIV infection data; there are
821 women in the sample.

Variable Summary
Lost to follow-up (censored) 142 (17%)
Pregnant (censored) 165 (20%)
Completed follow-up without HIV infection 459 (56%)
or pregnancy (censored)

HIV infection (event) 55 (7%)
Age, mean (SD) 274 (5.1)
Drinks per week =0 411 (50%)
Drinks per week = 1-9 272 (33%)
Drinks per week = 10-29 110 (13%)
Drinks per week =30+ 28 (3%)
Lived at site <2 years 129 (16%)
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too could invalidate the independent censoring assumption. However, the inclusion of alcohol-related
covariates in the model might be thought to make the independent censoring assumption more plausi-
ble because, if women with high alcohol intake have more chaotic lifestyles, this high intake of alcohol
could be thought to be associated with both censoring and HIV infection. The most obvious concern,
however, is that censoring may be associated with a permanent change, and in particular an increase, in
the risk of HIV infection at around the time it occurs, which would invalidate the independent censor-
ing assumption. In the next section, we develop our model, and an accompanying procedure for making
inferences, so that the independent censoring assumption made by the analysis reported in Table II may
be relaxed.

3. Relaxing the independent censoring assumption

In this section, we develop our model that relaxes the independent censoring assumption. We begin by
describing our full model that makes no assumptions about the conditional distribution of the failure time
given that it is after the censoring time. We then consider a simplification of this model so that it assumes
a step change at the time of censoring, because this simple model is both amenable to sensitivity analysis
and reflects our intuition, in the context of our example that there is a change in the hazard of failure
when censoring occurs.

3.1. Notation

We assume that both the time to failure, 7, and time to censoring, C;, for the ith participant are continuous
random variables. We treat failure and censoring as competing risks, so we observe ¥; = min(T}, C;)
and §;, where §; = 1if T; < C; and 6; = 0 otherwise. We also assume that all participants provide
complete data on the regression covariates and the variables on which we stratify, which we denote as
vectors Z; and §;, respectively. For our motivating example in the previous section, Z; consists of the
baseline covariates shown in Table II, and we do not stratify, so S; is empty. We denote any additional
variables that describe the hazard of failure after censoring as W;. We use h(t) to denote the hazard of
failure and H(¢) to denote the cumulative hazard of failure. We describe the association between T; and
C; and so allow departures from independent censoring, by modelling the conditional distribution of T;

given C;.

3.2. The independent censoring assumption

We follow Fleming and Harrington, who interpret independent censoring as meaning that the hazard of
failure at time ¢ is equal to the hazard of failure at time # given that censoring has not yet occurred [4, pp.
26-27]. In our notation, independent censoring is satisfied if

ntZ,S;) = ht|C; > t,Z,S;) (1)

for all participants, where h(t|C; > t,Z,,S;) is the conditional hazard of failure given that censoring
has not yet occurred. Condition (1) involves covariates, and so this assumption may be more, or less,
plausible depending on the covariates included in the model. The independent censoring assumption
implies that maximising the partial likelihood in the usual way provides valid inference for both h(t|Z;, S;)
and h(¢|C; > ¢, Z;, S;) when fitting Cox models [4, pp. 139-140], where the first of these hazard functions
is usually of scientific interest. The independent censoring assumption in (1) is slightly weaker than
the assumption of statistical independence of 7; and C; [4, p. 27], although the latter is often stated

Table II. Parameter estimates (log hazard ratios) from a proportional hazards
model fit to the HIV infection data assuming independent censoring.

Parameter Baseline covariate Estimate Standard error
B Age —0.084 0.030

b Drinks per week =1-9 0.684 0.342

b Drinks per week = 10-29 1.261 0.362

A Drinks per week =30+ 1.118 0.568

Ps Lived at site <2 years 0.687 0.301
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as justifying the use of standard methods. Hence, the commonly stated assumption that 7; and C; are
independent is a sufficient, but not necessary, condition for justifying standard methods.

3.3. Relaxing the independent censoring assumption

Our aim is to relax the independent censoring assumption for the Cox proportional hazards model, and
we begin by assuming that the conditional hazard of failure, given that censoring has not yet occurred, is
given by

h(t|C; > 1,Z;,S)) = h 5 (1) exp(BZ;) (2)

where /1 5,(?) is the baseline hazard function, stratified by variables S;, and f is the row vector of regres-
sion coefficients. Model (2) can be fitted to the observed data Y;, 6;, Z; and S;, i = 1,---,n, using the
partial likelihood in the conventional way. Model (2) therefore provides an interpretation of the hazard
ratios in fitted Cox models where the independent censoring assumption need not be true, and so it pro-
vides a vital link between our methodology and applied work where Cox proportional hazards models
have been fitted despite doubt about the independent censoring assumption. If a fully parametric model
were instead used for (2), then this model could be fitted using the full likelihood.
In order to extend model (2) to model the conditional hazard given C; < t, C; and the covariates,
we assume
h(t|C; < 1,C;, Z;, S)) = h 5,(0) exp(BZ) exp(y (¢, C;, Z;, S;, W) 3)

where y(t, C;, Z;, S;, W;) is the log hazard ratio at time ¢ of censored and uncensored individuals with equal
C;Z;, S; and W,. We allow y(-) to be a function of additional variables W,, to indicate that this function
could also depend on any other variables. For example, W; could include the reason for censoring. Because
we do not observe failure times after censoring, the data provide no information about y(¢, C;, Z,, S;, W,),
so the analyst must make an untestable assumption about what this function is in order to apply model (3).

Ify(t, C,2,S;,W;) = 0 for all i, then h(t|C; < t,C;,Z,,S;) = h(t|C; < t,Z,S;) = h(t|C; > t,Z,,S)),
and so the independent censoring assumption (1) is true. However, if y (¢, C;, Z;, S;, W;) # O for any i, then
the independent censoring assumption is false. Hence, in our conceptual framework, any departure from
v(t,C;, Z;, S;, W;) = 0 provides an alternative to the assumption of independent censoring.

3.4. A simplified model

To make convenient use of model (3) in a sensitivity analysis, we will consider the simplified form
r(t,C,, Z;,S;, W,) = y,, thatis, y(-) does not depend on time. This means that participants’ hazard functions
receive a step change at the time of censoring. The parameters y; represent log hazard ratios associated
with censoring in the model for the time to failure, where censoring is interpreted as a time-dependent
binary covariate. If y; > 0, then the ith participant is at an elevated risk of failure after censoring, but if
7; < 0, then this participant is instead at a reduced risk after censoring. Hence, both harmful and pro-
tective effects of censoring are possible. This simplified model has some similarities to Letué’s shock
model [23]. More general, time-dependent, forms of y (¢, C;, Z;, S;, W;) are feasible, and we return to this
possibility in the discussion. We perform a sensitivity analyses using the y; as sensitivity parameters.

3.5. Creating imputed datasets using proportional hazards models

We use multiple imputation to create datasets where there are no censored observations during the follow-
up period. When using multiple imputation, we must take the uncertainty in the imputation model into
account, and here, this includes both the regression parameters f and the baseline hazard function. Boot-
strapping [16] is a convenient way to take into account the uncertainty in the form of a semi-parametric
imputation model such as (2) and may be used in conjunction with multiple imputation [24]. Here, we
sample subjects with replacement to create m bootstrap samples, one for each subsequent imputed dataset,
where we include both censored and uncensored participants in this sampling. In our application, we
sampled subjects with replacement from the entire sample when creating our bootstrap samples, but in sit-
uations where the model involves different treatment groups, or other structural strata, we would usually
sample with replacement within these strata.

We estimate the regression parameters and cumulative baseline hazard function from the bootstrap
samples, using the Breslow estimator for the latter. The resulting estimates, ﬁj* and ﬁ] f:o’si)(t), j=1,---,m,
are used when imputing failure times for censored subjects in the m imputed datasets. As we will see later,
Cox regression models are then fitted to the imputed datasets. By imputing censored data under specific,
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user-defined, departures from the censoring at random assumption, we are able to avoid the large biases
that can result from incorrectly making this assumption.

We impute the participants’ censored failure times conditional on their observed data, which comprises
their covariates, C; and §; = 0, as follows. The hazard given S;, Z;, C; and ¢, = 0 is zero for t < C;
and is given by (3) for r > C,, and so the hazard from which we draw imputed failure times for the ith
participant in the jth imputed dataset is

h(tlcis 51’ = 0’ Zi’ Sl) = I,/\l;((O,Si)(t) exp(ﬂ?Zi + yl)

if t > C; and h(t|C;,6;, = 0,Z,S;) = 0if t < C;. A convenient way to impute a failure time from this
distribution is to simulate a time A;;, from the time of censoring to the failure time, from the distribution

with hazard

[j’

I (0 = g5t + Coexp( 77+ 7,) “)

and then calculate the imputed failure times for censored participants in the jth imputed dataset as T;; =
C; + A;;. To use the method proposed by Bender ez al. [25] to simulate times from (4), we require the
corresponding cumulative baseline hazard function. The cumulative baseline hazard function of A;; is

H,, () = Hi 5, (0 + C) = Hig o (C)

‘We therefore simulate Aij from a Cox model with cumulative baseline function H A, (#) and linear predictor
ﬁ;*Zi + y;. Following Bender et al. [25], we generate U ~ Unif(0, 1) and then calculate

Ay =H;' [~ 10aWpexp( =47, -1, 5)

However, this requires inverting H, (¢), which is not immediate because the cumulative hazard function
. . . iy .
in (5) is a step function. We define the inverse

H;;(y) = min{t : HA,-]-([) > y}

so that the failure time 7;; = C; + A; can be imputed for censored participants. If H, AU(t) < —log(Uy)
exp(— ,ﬁj*Zi—yi) for all #, then we impute a censored failure time at the end of the follow-up period. Because

H A,-,-(O) =0 < —log(U;) exp(—ﬂ}f"Zl- — ¥;), we never simulate Aij = 0 and hence deaths immediately after
censoring, when using any finite value of y;. This is appropriate because we know that failures occur after
the censoring times.

If instead y(z, C;, Z;, S;, W;) is a function of ¢, then the failure times would be simulated from a distri-
bution with a hazard function of the form in (3) for t > C;, and h(¢|C;, 6; = 0,Z;,S;) = 0 for t < C;. This
would require an alternative method for imputing failure times. We return to this issue in the discussion.

If a parametric proportional hazards model were used instead of a Cox model in (2) and (3), then we
would create multiple imputed datasets in a very similar way, except that to save computation time and
remove the need to bootstrap, we could simulate the #* and the parameters of the baseline hazard function
from the estimated asymptotic normal distribution of the maximum likelihood estimator, as in more
conventional multiple imputation procedures. Our procedure for creating imputed datasets is therefore
simplified when using a parametric proportional hazards model instead of a Cox model in (2) and (3).
We could also use this type of more conventional multiple imputation procedure in conjunction with
the Cox model if we were prepared to ignore the uncertainty in the estimated baseline hazard function.
However, it is very difficult to see how the uncertainty in this function could be taken into account when
using an alternative to our proposed bootstrap procedure. An advantage of ignoring the uncertainty in the
estimated baseline hazard function, and using more conventional multiple imputation procedures, would
be to greatly reduce the computational demand, and so this option might be deemed preferable in very
large datasets.
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3.6. The analysis of the imputed datasets

Having created m imputed datasets, the standard multiple imputation procedure is used to obtain param-
eter estimates: each imputed dataset is analysed separately using a standard method for survival analysis,
and the resulting estimates are combined using Rubin’s rules [14, Chapter 9.2].

We propose fitting the standard Cox proportional hazards model

ht|Z;, S;) = il(o,si)(f) exp(fZ;) (6)

to the imputed datasets, that is, (6) is the analysis model in the multiple imputation procedure. Although
the unconditional (on C;) model (6) is a Cox proportional hazards model of the same form as the con-
ditional (on C; > ) model (2), it has different parameter values unless all y; = 0. We follow the usual
procedure and fit the analysis model (6) to each of the imputed datasets and combine the resulting esti-
mates of § using Rubin’s rules to provide estimates that neither assume independent censoring nor require
that the estimands are interpreted conditionally on censoring not having occurred.

The assumption that the model in Section 3.3 and the analysis model (6) adequately describe the con-
ditional and unconditional distributions of the failure times, respectively, must be carefully checked in
practice. Letué’s [23] formulae for her marginal survivor functions in her Remark 2.1, interpreting her two
events as failure and censoring, show that, in general, models (2) and (6) cannot both be true. Although
this incompatibility is a theoretical concern, in practice, we are content to apply statistical models when
they describe the data reasonably well. Diagnostics to assess model fit are a crucial component of all
applied statistical work, but this is especially important here where we are using models that we know are
incompatible. We suggest using residuals to assess whether (2) and (6) are adequate, where the residuals
used for assessing (2) are from a Cox model fit to the observed data and those for assessing (6) are from
Cox model fits to the imputed datasets. We use the Schoenfeld residuals [26], but other types of residuals
could also be used for this purpose.

If a parametric proportional hazards model was used instead of a Cox model in (2) and (3), then
this same type of parametric model could also be used as the analysis model in (6), provided that this
parametric model adequately describes both the original dataset and the imputed dataset. In situations
where a parametric model were used in (2) to analyse the observed data, but this type of model provides
a poor fit to the imputed datasets, a Cox proportional hazards model could be used as the analysis model
in order to better describe the imputed data. If the Cox model does not adequately describe the imputed
datasets, then other analysis models should be considered, and we return to this issue in the discussion.

4. Application to the HIV-prevention trial

We now show how to apply our method in practice by extending the analysis in Table II. The association
between censoring and HIV infection, which need not be causal, could be due to the common cause
of unprotected sexual intercourse for both pregnancy (which results in censoring) and HIV infection.
Alternatively, this association could be because of greater participant mobility at the time of censoring,
a change in behaviour after censoring, or a combination of these or other reasons. The step changes
assumed in our model may be more, or less, plausible in other contexts, and we return to this issue in the
discussion.

We interpret the estimates from our procedure as estimating effects where censoring before the end of
the trial cannot occur. Hence, our estimates quantify the risk factors associated with HIV infection among
nonpregnant women, as the trial originally intended.

4.1. A sensitivity analysis

First of all, we assess whether model (2) is adequate for our data. The left panel of Figure 1, which
shows plots of the Schoenfeld residuals from the fitted model shown in Table II, suggests that model (2)
is adequate for this purpose because the residuals appear to be centred at zero and there is no evidence of
trends over time. Of course, diagnostics such as these should routinely accompany all regression models,
and under the assumption of independent censoring, Figure 1 would reassure the analyst that model (2)
is suitable for the unconditional failure times.

In order to relax the independent censoring assumption and perform an illustrative sensitivity analysis,
we take y; = y for all i, and we allow y to take the values —3,—2,—1,- - -, 10; this includes a wide
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Figure 1. Left: Schoenfeld residuals for the five parameters in Table II, from fitting model (2) to the incidence of
HIV data. Right: Schoenfeld residuals for the five parameters in Table II, from fitting model (6) to the first imputed
dataset using y = 5. LOWESS smoothers are also shown, together with + 2 standard deviation confidence bands.

range of possibilities as shown later. This illustrative analysis assumes that censoring for any reason is
associated with the same step change in the hazard of failure for all participants. We relax this assumption
in Section 4.2. We could plausibly use a shorter range of values of y in a sensitivity analysis, but here,
we intend to demonstrate that large positive and negative y effectively impute ‘censoring =immediate
infection’ and ‘censoring = never infected’, respectively. The most obvious concern is that there may be
a positive association between HIV infection and censoring. Hence, the suspicion is that y > 0, but some
negative values are also investigated in order to illustrate the methodology and perform a very thorough
sensitivity analysis. The parameter y denotes the log hazard ratio comparing censored with uncensored
participants. By comparing this parameter to the estimates in Table II, the magnitude of the effect of
censoring can be compared with the covariate effects of interest.

We generated a relatively large number m = 200 of imputed datasets for each value of y in order to
reduce the Monte Carlo error, but smaller values of m are usually considered acceptable. The intended
maximum follow-up period was 30 months, and the greatest observed time in the dataset was a censored
time of around 33 months. We took the end of the follow-up period to be 3 years so that imputed failure
times were taken to be censored at 3 years if H Ai,»(t) < —log( Ul-j) exp(— ﬁj*Zl- —y) for all ¢, as explained in
Section 3.5. "

Before combining the results using Rubin’s rules, however, we must check that model (6) adequately
describes the failure times in the imputed datasets. This involves examining a selection of, and ideally
all, the residual plots for the analyses of the imputed datasets. A representative set of residual plots are
shown in the right-hand panel of Figure 1, which shows the residuals for the first imputed dataset using
y = 5. The confidence bands are tighter in the right-hand panel of Figure 1, because y = 5 imputes many
infections, and so, there are considerably more residuals to estimate the smoothed fit in the right-hand
panel. Whilst recognising that it is possible to improve upon the model fit by considering more complex
models, our examination of residual plots such as those shown in Figure 1 reassure us that model (6)
provides a reasonable description of the failure times in the imputed datasets.

We are therefore prepared to use Rubin’s rules to combine the estimates applying model (6) to the
imputed datasets, and the results are shown in Figure 2 for all five regression parameters shown in Table II.
Note that a different vertical axis is used for the first regression coefficient in Figure 2. The curves connect
estimates for y = —3,-2,—1,---,10, and 95% confidence intervals, obtained as the estimate plus and
minus 1.96 standard errors, are also shown. The same 200 draws of ﬁ;* and I:I] ?EO, si)(t) were used across all
14 values of y.

The results from three further analyses are shown in Figure 2, where the estimates are displayed as
solid points and the 95% intervals are vertical lines. At the left-hand side of the plots in Figure 2, we show
the results from the analysis where all censored participants are treated as ‘never infected’; this results
in a single ‘imputation’ procedure where all censored participants’ censoring times are set equal to the
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Figure 2. Results from the sensitivity analysis for the HIV incidence data. The curves show the point estimates

and 95% confidence intervals for the log hazard ratios associated with the covariates indicated. Inferences from

the standard analysis assuming independent censoring from Table II are shown at y = 0. Inferences are also

shown from imputing all censored observations as ‘never infected’, and all censored observations as ‘immediate
failures’, at the left-hand and right-hand sides of the plots, respectively.

maximum time of 3 years. At y = 0, we show the results from the usual analysis assuming independent
censoring, as also shown in Table II. At the right of the plots, we show the results assuming participants
who are censored are immediately infected with HIV; this is another single ‘imputation’ procedure where
all participants’ censoring indicators ¢ are set equal to one and the resulting data are analysed. Hence, the
results at the left-hand and right-hand sides of the plots show the results from two very extreme departures
from independent censoring. Our sensitivity analysis enables us to consider all ‘shades of grey’ between
these two extremities.

The results in Table II and using our procedure with y = 0 are in very good agreement (Figure 2),
as anticipated because these analyses make the same assumptions. This shows that our method provides
appropriate inferences under the independent censoring assumption and validates our approach. How-
ever, the proposed approach uses multiple imputation and is subject to Monte Carlo error, so non-identical
numerical results are inevitable. Recalling that y is the log hazard ratio of censored and uncensored indi-
viduals, as y — —oo, the results tend towards ‘censored =never infected’. Figure 2 shows that y = -3
is sufficient to produce results that are close to this limiting result, because the HIV infection rate is not
very high (Table I). The results for y = 10 are in reasonable agreement with the analysis that assumes
‘censoring = immediate infection’ but are not in perfect agreement because the proposed procedure never
imputes immediate failures after censoring for finite y as explained in Section 3.5. However, increasing
y further did not change the estimates much, and an analysis assuming ‘censoring =immediate infec-
tion’ can easily be performed. These observations mean that the values y = —3,-2,—1,---,10 used in
the sensitivity analysis include a very wide range of possibilities that allow us to explore how rapidly the
extreme scenarios are approached. Figure 2 shows that as y increases, the lengths of the confidence inter-
vals shorten, which can be explained by the additional information obtained by assuming that censoring
is strongly associated with failure so that more failures are simulated in the imputed datasets.

The inference that age is an important predictor in the analysis assuming independent censoring, pre-
sented in Table II, is reinforced by the sensitivity analysis because a large and statistically significant
effect over the entire range of possibilities is seen. The inferences that the consumption of alcoholic
drinks is associated with higher infection rates is more sensitive however; as y increases, the magnitude
of the corresponding three estimates, and their statistical significance, falls. Recalling that the suspicion
is that y > 0, the sensitivity analysis greatly reduces the strength of evidence that consuming alcohol is
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an important predictor. The inference that mobility is associated with an increase in the infection rate is
insensitive to small departures from independent censoring, but for large y, both the magnitude and the
statistical significance of this effect drop sharply. A local sensitivity analysis would conclude that infer-
ences for this regression parameter are not sensitive to relaxing the independent censoring assumption,
but our global sensitivity analysis shows that these inferences are sensitive to larger departures from inde-
pendent censoring. The observation that ﬂ} & ﬁ4, discussed in Section 2, still holds in this and the other
sensitivity analyses we performed. This strengthens the case for collapsing the drinking-related covariate
into three groups.

4.2. A sensitivity analysis assuming independent censoring unless censored due to pregnancy

The assumption that y; = y for all i is not very plausible because participants are censored for different
reasons. In particular, for participants who are administratively censored because the end of their follow-
up period is reached, one can safely assume y; = 0. In our example, we have two main types of non-
administrative censoring: censoring due to pregnancy and censoring for other reasons. Censoring due to
pregnancy might be thought to be more positively associated with the change in rate of HIV infection
than other reasons for censoring. Hence, in Figure 3, we show the results from a sensitivity analysis
where y; = y for participants censored due to pregnancy and y; = O for all other participants. Alternative
values of y; for participants non-administratively censored for reasons other than pregnancy could also be
used however, perhaps to reflect the fact that their censoring may be associated with increased mobility
and therefore a higher infection rate. Alternatively, participants could become pregnant after censoring,
and an alternative value of y; could be used to reflect, but not directly model, that possibility. Further
possibilities include allowing y; to depend on further covariates and participants’ censoring times. In
the supporting information, we provide an illustrative sensitivity analysis, where y; is a function of the
mobility baseline covariate and where the sign of y; is allowed to be positive for some participants and
negative for others. Further analyses could also be performed, for example, by using different y; for all
three types of censoring in Table I. Hence, a very wide range of possibilities could be explored. Our data
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Figure 3. Results from the sensitivity analysis for the HIV incidence data assuming independent censoring unless

censored due to pregnancy. The curves show the point estimates and 95% confidence intervals for the log hazard

ratios associated with the covariates indicated. Inferences from the standard analysis assuming independent cen-

soring from Table II are shown at y = 0. Inferences are also shown from imputing all censored (due to pregnancy)

observations as ‘never infected’, and all censored (due to pregnancy) observations as ‘immediate failures’, at the
left-hand and right-hand sides of the plots, respectively.
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are not freely available, but the R code used to implement the sensitivity analysis performed in Section 4.1
is available from the first author on request.

The inferences assuming independent censoring are less sensitive to departures from this assumption
now that the independent censoring assumption is assumed to be true for many participants. The con-
fidence intervals for large positive y are wider in Figure 3 than in Figure 2 because fewer failures are
imputed. Model (6) was deemed suitable for the analysis of the imputed datasets from an examination of
the Schoenfeld residuals in the way described in Section 4.1.

5. Simulation study

A simulation study, loosely based on the HIV trial data, was used to investigate the performance of the
proposed method. Every simulated dataset involved 1000 participants, and there was a single categorical
covariate Z. We generated Z; = 0 with probability 0.5, Z, = 1 with probability 0.3, and Z; = 2 with
probability 0.2; this covariate was intended to mimic the ‘Drinks per week’ categorical covariate in the
HIV trial, with the last two categories collapsed into a single group. To simulate outcomes, we generated
C; ~ Exp(0.3) and T; ~ Exp(4,) independently, where Exp(1) denotes an exponential distribution with
rate A; weused A, = 0.03if Z;, =0, 4, = 0.05if Z; = 1, and A4; = 0.09 if Z; = 2. These rates produce
censoring and failure rates that are similar to those found in the HIV data. We set Y¥; = min(7}, C;, 3) and
6; = 1if T; < C; and T; < 3, and otherwise, we set 6; = 0. This means that the follow-up period in the
simulation study was 3 years, again imitating the HIV trial. The simulation study was performed under
the assumption that our imputation model (3) is correct and that y(-) = y for all i. A thousand simulated
datasets were produced for each of y = —2,—-1,0, 1,2, 3,4, 5. From the sensitivity analysis of the HIV
data in Section 4.1, these values of y can be seen to cover quite a wide range of possibilities.

To calculate the true log hazard ratios associated with the covariate Z when y # 0 (f in Equation 6), we
simulated for each value of y a single dataset with a million participants. We augmented these simulated
datasets with failure times for all participants as T = T; if T; < C;and T = C; + A, if T; > C,,
Where A; ~ Exp(4; exp(y)). We then fitted a Cox model using the 7} as fallure tlmes after ﬁrst censoring

T at 3years, and took the regression coefficients (two log hazard ratios comparing Z = 1 and Z = 2
to the reference category Z = 0) as the true log hazard ratios. This data generating process follows
model (3) over the follow-up period with y (¢, C;, Z;, S;, W;) = y. For y = 0, the true log hazard ratios are
1og(0.05/0.03) and 10g(0.09/0.03).

In order to assess the extent of the bias resulting from incorrectly assuming independent censoring, we
estimated the two log hazard ratios comparing Z; = 1 and Z; = 2 to Z; = 0, using the simulated outcome
data Y; and 6, and a standard Cox regression. In order to assess the performance of the proposed method,
we also estimated these two hazard ratios using the proposed method and the correct value of y.

To estimate biases, we took the difference between the average estimated log hazard ratios and the true
log hazard ratios. Furthermore, the proportion of the 1000 95% confidence intervals that contain the true
log hazard ratios provides an estimate of the coverage probabilities produced using the proposed method
and standard Cox regression.

To reduce the computational burden, we used m = 10 imputed datasets when implementing our pro-
posed method; m = 200 was used in the application in Section 4, but Rubin’s rules give valid inference
with smaller m, such as m = 10, so this is perfectly acceptable value to establish the statistical properties
of the method in a simulation study. However, small m will be subject to greater Monte Carlo error than
large m; hence, for applications (as here), we may well prefer to use a larger value of m.

The results are shown in Table III. The Monte Carlo standard errors of the biases for each value of y
were obtained from the empirical standard deviations of the estimated log hazard ratios using the two
competing approaches and the reported standard errors from the Cox regressions fitted to the very large
datasets that were used to calculate true values. The Monte Carlo standard errors for the proposed method
become smaller for large y because the imputed datasets contain more failures as y increases. The Monte
Carlo standard errors at y = 0 are slightly smaller than those for other values of y because there is no
uncertainty in the true values of the regression parameters when the independent censoring assumption
1s true.

The results in Table IIT show that the proposed method performs well across the entire range of y: there
is no evidence of bias in the estimates, and the actual coverage probability of all 95% confidence intervals
are reasonably close to the nominal levels. By comparison, the estimates from standard Cox regression
models that assume independent censoring become extremely biased for large y, and the coverage prob-
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Table ITI. Results from the simulation study.
First parameter: First parameter: Second parameter: Second parameter:
bias (MCSE) coverage bias (MCSE) coverage

y MI IC MI IC MI IC MI IC
-2 0.007 (0.012)  0.012 (0.012) 0.960  0.958 0.011 (0.011)  0.020 (0.011)  0.948 0.952
-1 0.003 (0.012)  0.007 (0.012) 0.947  0.948 0.006 (0.011) 0.011 (0.011) 0.955 0.950
0 0.018 (0.009) 0.019(0.009) 0.953 0.959 —0.001 (0.008) 0.000 (0.008) 0.960 0.961
1 0.017 (0.011)  0.025(0.010) 0.937  0.950 0.015 (0.010)  0.032 (0.010) 0.941 0.939
2 —-0.013 (0.009) 0.036 (0.010) 0.930 0.953  —-0.014(0.009) 0.120 (0.009) 0.931 0.936
3 —0.008 (0.008) 0.152(0.009) 0.920 0915 —0.003 (0.007) 0.397 (0.009) 0.926 0.655
4 —0.006 (0.005) 0.301 (0.009) 0.928  0.800 0.008 (0.006)  0.704 (0.009)  0.930 0.222
5 0.004 (0.004) 0.409 (0.009) 0.941  0.665 0.012 (0.005) 0.861 (0.009) 0.935 0.096

‘MI’ indicates that the proposed multiple imputation procedure (using the correct value of y) is used, and ‘IC’ indicates
that a standard Cox proportional hazards model assuming independent censoring is used. ‘First parameter’ indicates that
the results are for the log hazard ratio of Z = 1 relative to Z = 0; ‘second parameter’ indicates that the results are for the
log hazard ratio of Z = 2 relative to Z = 0. Monte Carlo standard errors (MCSE) of the estimated biases are provided in
parentheses, and ‘coverage’ denotes the estimated coverage probabilities of 95% confidence intervals. A total of 1000
simulated datasets were produced for each value of y, and ‘MI” and ‘IC’ were applied to the same sets of simulated
datasets.

abilities of 95% confidence intervals suffer very badly because of this. This is because larger values of y
result in true hazard ratios are much closer to zero and hence positive bias from standard Cox regressions
fitted to observed data.

6. Discussion

We have proposed and implemented a method for assessing the sensitivity of the inferences made from
Cox proportional hazards models to the independent censoring assumption. We have achieved this by
using a relatively simple model, but one that reflects the concern that censoring is associated with a sud-
den change in the risk of failure. This type of assumption is perhaps most plausible in the context of trials
where censoring is due to participants ceasing to take their randomised treatment, but our approach pro-
vides a relatively straightforward and direct way to assess the sensitivity of inferences to the independent
censoring assumption wherever Cox models are used. For example, a sharp, but continuous, change in
the hazard function at around the time of censoring may be thought more plausible than independent cen-
soring, which can be approximated by our method. Our methodology makes the assumptions required
conceptually straightforward and accessible to applied researchers.

We have explained how our methodology could be adapted for use when fully parametric proportional
hazards models, such as the Weibull model, are used. Perhaps the main difficulty that we can anticipate
when using parametric models is that the form of the model may not be suitable as the analysis model
for the imputed datasets, despite the fact that it was adequate for the observed data. This is because, by
fully specifying the form of the failure distribution, there is greater capacity for parametric models to
inadequately describe the imputed datasets. Alternative analysis models should be investigated in situa-
tions where the proposed analysis model is found not to describe the imputed data sufficiently well. In
particular, if a parametric model is used and provides a satisfactory fit for the observed data, but not for
the imputed datasets, Cox models could be used for the analysis of the latter. Pragmatically, there is no
requirement that the models used for the observed and imputed datasets are of the same form, but all
models used must describe the various datasets well. If a Cox model does not adequately describe the
imputed datasets, then alternatives to proportional hazards models could be considered, where we have
an abundance of possibilities to choose from [27, 28]. If however, in extreme cases, no model can be
found to describe the failure times in the imputed datasets, then this means that the attempt to describe
the distribution of failure times using the proposed model have failed.

More sophisticated models for the association between the failure and censoring mechanisms might be
thought more plausible in some contexts, including the HIV trial we use as our example here, and we hope
that our ideas will encourage the further development of models of this kind. By using more complicated
forms of y (¢, C;, Z;, S;, W;), more subtle types of departure from independent censoring could be explored.
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The data provide no information about failure times after censoring, however, so any parametric form for
this function makes untestable assumptions. More generally, when y(-) depends on ¢, the failure time 7
could be imputed as the solution of the equation

T A
‘/C. hj(O,S,)(t) exp(ﬁ/’ Zi + Y(t» Ci’ Zi’ Si7 Wz)) dr = — IOg(Ul])

where, as in (5), an exact solution for Cox models is not possible because I:I] T'Eo, S‘)(t) is then a step function
and a convention for approximately solving this equation for 7}; is required. The range of values of Vi
and more generally the form of y (¢, C;, Z;, S;, W,), should ideally be elicited from subject experts, but in
situations where this is not possible, a wide range of possibilities can be examined as in Section 4. We
could also consider giving the y; a distribution and elicit this from subject experts. In addition to making
untestable assumptions about the hazard of failure after censoring, our approach also makes testable
assumptions about the hazard of failure before censoring. Standard methods should be used to assess
these testable assumptions, and we have used residuals for this purpose.

Our methodology is concerned with right censoring, but left and interval censoring are also encountered
in practice. Another common extension is the use of time-dependent variables. Both of these additional
complications require extensions of our methodology, and we leave these issues as possibilities for future
work. However, the proposed approach does handle stratification, so many Cox models fit into our frame-
work. In particular, typical proportional hazards models resulting from randomised controlled trials,
where there is typically just a single parameter for the treatment effect, are incorporated. The results
from randomised controlled trials are likely to be most sensitive to the y; differing across trial arms; if we
have similar censoring mechanisms and values of y; in both treatment arms, then we can anticipate that
inferences from standard analyses will be similar to those using our method.

By conceptualising the censored failure times as missing data, we have essentially turned non-
independent censoring into a missing data problem. Because our proposal clearly distinguishes between
the parts of the model that are identifiable and those that are not, it is akin to a pattern mixture approach
[14, Chapter 3.6]. Because we have used multiple imputation, our approach provides a natural context for
also accommodating missing covariates. We leave the best way to do this in practice as an open question,
but the methods described by Carpenter and Kenward [29, Chapter 8] provide suitable starting points.

In summary, we believe our proposal provides a practical, flexible approach for exploring the sensitivity
of inferences from plausible departures from the ubiquitous assumption of independent censoring with
the Cox proportional hazards model.
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