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Abstract

Binding-sites which facilitate the transport of substrates across membranes are ubiquitous in
membrane proteins. To understand this fundamental process in cells, we build up a synthetic
membrane system consisting of microfluidic channels and colloidal particles. Holographic
optical tweezers are used to modulate the potential energy landscape in those channels.

We show how to extract the underlying energy potential by analysing local transition
probabilities. Our method is applicable both to equilibrium systems and non-equilibrium
steady states. Our method offers improved robustness when dealing with fragmented trajecto-
ries or small ensembles of data compared to other established approaches, such as probability
density function and splitting probability. Meanwhile, we utilise the intensity distribution of
the optical traps generated by holographic optical tweezers to estimate energy landscapes
featuring high energy barriers where transitions rarely occur.

We use this newly developed experimental system to mimic the functionality of membrane
protein transporters that are known to alternate their substrate-binding sites between the
extracellular and cytosolic side of the membrane. We study particle transport through a
channel coupled with an energy well that oscillates its position between the two entrances
of the channel deterministically and stochastically. Optimised particle transport across
the channel is obtained by adjusting the oscillation frequency. At the optimal oscillation
frequency, the translocation rate of particles through the channel is a hundred times higher
with respect to free diffusion across the channel. Our findings reveal the effect of time
dependent potentials on particle transport across a channel. This work adds a new tool for
the investigation of highly controlled membrane transport processes at the micron scale. Our
results are relevant for improving our understanding of membrane transport especially for
microfluidics application.
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Chapter 1

Introduction

1.1 Brownian motion

A microscopic particle suspended in a solvent collides with millions of solvent molecules,
which results in random movements of the particle, so called Brownian motion. Although
ubiquitous in nature, it was not detailed until the early 1800s when botanist Robert Brown
observed pollens undergoing random movement in aqueous solvent. The random movement
was previously attributed to that the moving particle is alive. However, Robert Brown
substituted the pollen with ashes from his chimney and observed similar movement which
demonstrated the motion is due to the solvent [1].

Brownian motions are frequently encountered and are of widespread significance in
cellular environments. Ions, proteins and other macromolecules are undergoing Brownian
motion [2–4]. For example, an ion diffusing outside a cell finds a protein channel embedded
in the cell membrane and squeezes through it [5]. Although Brownian motion of a pollen
grain and an ion happens under totally different time and length scales, the fundamental
mechanism is the same, random but constant bombardments from solvent molecules.

Meanwhile, a diffusion process can be demonstrated easily by putting a drop of ink
into a glass of water, which then spreads out over time. In 1905, Einstein and one year
later Smoluchowski, offered independent explanations connecting the diffusion phenomenon
to Brownian motion based on kinetic theory [6]. Since then, this simple but fundamental
physical motion has been studied in all kinds of systems, ranging from nutrition exchange in
cells to fluctuation in financial markets, from water purification to climate change [7].
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1.2 Transport proteins in cell membranes

Cell membranes are made up of lipid bilayers embedded with proteins. A protein-free lipid
bilayer is essentially impermeable to many polar molecules, such as ions, sugars and amino
acids. However, those molecules are essential for cell metabolism, communication and
function. The proteins embedded in the lipid bilayer actually transfer such solutes between
the cytosol and cell exterior. Transporters and channels are two main types of membrane
transport proteins. The transporters bind the specific solute and undergo conformational
changes to transport the solute across the membrane, while the channels form continuous
pores and interact weakly with the solute being transported [8].

The probability for an substrate to be transported through a membrane protein by diffusion
is extremely low considering the vast volume of the cellular environment compared to the
size of a molecule and the number of proteins. The access to binding sites which have high
affinity to specific substrate alternates between extracellular and cytosolic side. Proposed as
’alternating access model’ nearly half century ago, this conformational changes in membrane
proteins has been used to understand the transport process in all membrane transporters [9].
Three different mechanisms which can be incorporated by a single protein are sketched
in Fig. 1.1 [10]. The similarity between them is that the conformational change in the

Fig. 1.1 Models for alternating access mechanism in membrane proteins. (a) Rocker-switch
model, where substrate binds to the transporter at a site near the centre of the membrane.
The protein then undergoes conformational changes. (b) Gated-pore mechanism, where the
gates cannot open simultaneously. The protein is opened to extracellular environment to let a
substrate in and then open to cytosol to let substrate diffuse out. (c) Elevator mechanisms, the
substrate moves during the transport cycle. The protein undergoes a sliding movement but
the overall conformation remains the same. Note: the figure is adapted from literature [10].
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transporters alters access of substrate to channel thus the protein oscillates between open and
closed states. Take the ABC transporters family for example; each member has two highly
conserved ATP-Binding "cassettes", so called ATPases. The two ATPases can be brought
together by binding and dissociated by ATP hydrolysis. Those movements are transmitted to
the transmembrane segments which drive conformational changes in cycles [8, 11–14].

1.3 Building up a synthetic membrane system

Despite transport across membranes is ubiquitous, studying it experimentally is notoriously
hard and the transport mechanism is not fully understood. Crystal structures of proteins show
the position of binding sites and different structural conformations [15–18], but missing
dynamical information. Model lipid bilayers provide access to the transport of specific
solutes across membranes [19–21] but are impractical to modify in terms of individual binding
affinities. On the other hand, the physical mechanisms underlying transport optimisation have
been extensively investigated by molecular dynamics simulations [22, 23], and independently
rationalised by a continuum diffusion model based on the Smoluchowski equation [24],
a discrete stochastic model [25] and a general kinetic model [26]. It is therefore highly
desirable to develop an experimental model system in which the effect of binding sites and
conformational changes can be directly probed in channel transport.

One option is studying the transport of colloidal particles across microfluidic channels.
The suitability of colloids and channels as a model for membrane transport lies in a number
of their intrinsic properties. Firstly, colloidal particles undergo Brownian motion as solutes
in a cellular environment. Secondly, the size of colloidal particles is on the length scale
of µm which can be experimentally observed under an optical microscope. Thirdly, the
diffusion time scales of colloidal particles are on the order of seconds which can be recorded
with ease. Furthermore, colloidal particles can be directly manipulated by various sources,
such as electrical, magnetic, gravitational and optical methods [27–30]. Therefore, we study
binding-site effect in a synthetic membrane system composed of colloidal suspensions and
microfluidic channels. Particles are confined to single-file diffusion in the channel, which
is close to the realistic situation in natural channels and pores [31–34], and also makes our
result comparable with theoretical studies based on one-dimensional transport [24, 35–37].

We build up Holographic Optical Tweezers (HOTs), which are used to modulate the
energy landscape in the synthetic membrane system. Optically modulated potentials have
been employed to study particle diffusion [38, 39], to induce thermal ratchets [40, 41] to direct
[42] and sort Brownian particles [43–47], to study particle escape and synchronization [48]
and to investigate stochastic resonance and resonant activation [49, 50]. As demonstrated
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Fig. 1.2 Comparison between a protein transporter and a synthetic membrane model. (a,b) are
modified from Fig. 11-3 in literature [8]. A transporter alternates between two conformations
with binding sites exposed sequentially to one side of the bilayer. (c,d) An energy landscape
fluctuating in the colloidal channel model system which simulates the ’open’ and ’close’ of
the channel. Holographic optical tweezers are used to modulate the energy landscape.

by a previous work in our group, optical traps generated by the HOTs attract particles to
diffuse into the microfluidic channel, which is relevant to the binding between the membrane
channels and solutes [51, 52]. Inspired by the conformational changes observed in protein
transporters, the study of particle transport across a channel is extended to the transport
under a time-dependent energy landscape. As shown in Fig. 1.2, an energy well placed at
the channel entrance attracts particles to diffuse into the channel, which simulates the ’open’
state of the channel in the concept of energy landscapes. Meanwhile, a deep energy barrier
which impedes transport of particles, simulates the ’closed’ state of the channel. Although
matching a complicated protein structure at the atomic level to a simplified channel geometry
involves a certain degree of arbitrariness, our results provide guidelines to design artificial
membranes with optimal performances from a biomimetic perspective.

1.4 Scope of this thesis

In this thesis, particle transport across a channel via modulated energy landscapes is inves-
tigated. A synthetic membrane system composed of colloidal particles and microfluidic
channels is built up. HOTs are used to modulate the energy landscape in channels. In the
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following chapters, the intensity distribution of optical traps is calibrated to estimate energy
landscapes. The Local Transition Probability (LTP) of particles is used to reconstruct energy
landscapes under non-equilibrium conditions. This method is further combined with the
intensity distribution calibration to resolve energy landscapes in a complex environment.
With an accurate knowledge of the energy landscape, the effect of an oscillating energy
landscape on particle transport across a channel is studied. By monitoring the movement of
particles, an optimal oscillation frequency which significantly enhances the translocation rate
of particles is demonstrated and understood by diffusion theories.

The theoretical background behind this work is presented in Chapter 2. The Langevin
equation is used to describe the motion of a colloidal particle undergoing Brownian motion
in a modulated potential energy landscape. The Fokker-Planck (FP) equation is used to
describe the Probability Density Function (PDF) of positions of Brownian particles. The
mean exit time is introduced and the PDF is used to reconstruct the energy landscape, which
works at equilibrium. To resolve an energy landscape under non-equilibrium conditions,
the concept of Splitting Probability (SP) is introduced and used to calculate the underlying
energy landscape experienced by particles. At the end of this chapter, the idea of driving a
particle by external forces to map an energy landscape is discussed with the theoretical basis
laid out.

A synthetic membrane experimental system is built up in Chapter 3. The concept of
holographic optical trapping is first explained following the building and alignment of the
setup. The procedure of making a microfluidic sample with colloidal suspensions is described.
Then, trajectories of particles are extracted with the particle concentration estimated.

Having established the theoretical and technical basis for the experiment, Chapter 4
describes the reconstruction of potential energy landscapes. While the PDF method exhibits
the features of the energy landscape accurately at equilibrium, it fails to rebuild the energy
landscape with high barriers where transitions of particles rarely happen. However, deep
energy wells and high barriers are needed to simulate the open and closed states of a channel.
Therefore, the optical intensity is calibrated with the PDF method and used to estimate
energy landscapes with high barriers. The calibration result is further validated by dragging
a particle through the energy landscape. Meanwhile, all the potential reconstruction methods
discussed so far fail in systems out of equilibrium. The SP is in general applicable for both
equilibrium and non-equilibrium situations, but requires a large ensemble of trajectory data.
We develop a new method using LTP which improves the robustness of the result compared
to the SP method. The LTP method also provides error estimations which are not accessible
in the PDF and LTP approaches. The LTP method is further combined with the calibration
method to characterise the energy landscape in a more complex and realistic environment.
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Finally, in Chapter 5, particle transport across a channel under an oscillating potential is
studied. The potential is first oscillated deterministically. An optimal oscillation frequency is
found which maximises the translocation rate of particles across the channel. The translo-
cation rate is enhanced about one hundred times compared to the transport in a channel
without external potentials. This optimal frequency is understood by calculating the mean
exit time and solving the FP equation numerically. In the very end, the influence of a potential
oscillating stochastically based on exponential distributions on particle transport is probed.
The result sheds lights on further study of stochastic gating found in ion channels.



Chapter 2

Theoretical background

This thesis studies transport of colloidal particles across a modulated potential energy land-
scape. In this chapter, the theoretical background for the experimental work is laid out. A
Langevin equation is first written for motion of particles diffusing in a modulated energy
potential. Then the theoretical basis of direct transition time in a modulated potential energy
landscape is introduced. In order to map the modulated energy potential, two standard meth-
ods using trajectories of particles, i.e. probability density function and splitting probability
are discussed. In the end, the velocity of particles driven by an external force is also used to
reconstruct the underlying energy landscape.

2.1 Langevin equation

The motion of a small particle suspended in a solvent is determined by the total force acting
on it, described by Newton’s Second Law:

ΣFi = m
d2r
dt2 (2.1)

where ΣFi is the total force acting on the particle by fluid molecules, m is the mass of the
particle and r is the particle position in three dimensions. In this thesis, only one-dimensional
(1D) movement along x is considered so the vector sign is dropped in future discussions. It
is impossible to write down each Fi in Eq. 2.1 without the knowledge of initial positions
and velocities of those molecules, which is on the order of 1023 (the Avogadro constant).
However, the total force ΣFi acting on the particle can be decomposed into a viscous force Fv,
due to the movement of the particle in the solvent, and a fluctuating force ξ (t). The viscous
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force Fv is proportional to the velocity of the particle according to Stokes’ law

Fv = ζ
dx
dt

(2.2)

Here, ζ is the friction coefficient of the particle in the solvent, with ζ = 6πηa for a particle
with radius a in a bulk solution with viscosity η .

The fluctuating force ξ (t) is a random force with zero mean ⟨ξ (t)⟩= 0, which is uncor-
related with the actual particle position ⟨ξ (t)x(t)⟩= 0, and known as Brownian noise. The
relaxation time of solvent molecules (10−14 s) is significantly shorter than the relaxation time
of particles used in our experiment (10−8 s), so it is reasonable to state that ξ (t) is fluctuating
much faster than the particle position, such that

⟨ξ (t)ξ (t ′)⟩= 2ζ kBT δ (t− t ′) (2.3)

where kB is the Boltzmann constant, T is the absolute temperature and δ (t) is the Dirac delta
function.

By specifying the two kinds of force, Eq. 2.1 can be written as

m
d2x
dt2 =−ζ

dx
dt

+ξ (t) (2.4)

which describes the force and motion relation for a particle suspended in a solvent.
Here, we introduce Reynolds number (Re) which is the ratio of inertial forces to viscous

forces acting on an object moving in a fluid, calculated by Re = ρva/η . For the colloidal
system used in this thesis, Re ≈ 2.5× 10−7 is obtained by considering the particle radius
a = 255 nm, a typical particle speed v = 1 µm/s, solvent density ρ = 1×103 kg m−3 and
viscosity η = 1×10−3 Pa s. In a fluid environment with Re≪ 1 where the particle is over
damped, the inertial term d2x/dt2 in Eq. 2.4 can be ignored. The most simplified Langevin
equation is

ζ
dx
dt

= ξ (t) (2.5)

which is the equation of motion for a particle undergoing Brownian motion in suspension for
a time scale longer than the relaxation time of the solvent. In the presence of a modulated
potential energy landscape U(x), the particle experiences a force as

F(x) =−dU(x)
dx

(2.6)

which further influences the motion of the particle. With an additional potential, the Langevin
equation is written as
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ζ
dx
dt

=−dU(x)
dx

+ξ (t) (2.7)

This equation describes the motion of a Brownian particle in an arbitrary energy potential.
It will be used to understand the particle transport in an optically modulated potential in
this thesis. Particularly, the Langevin equation is used as the theoretical foundation of the
Brownian dynamics simulations conducted in Chapter 4 and 5.

2.2 Mean exit time and direct transition time

The Langevin equation and its solution explain Brownian motion in terms of random walks.
Meanwhile, the probability density distribution p(x, t) of the ensemble of Brownian particles
can be described by the Fokker-Planck (FP) equation

p(x, t)
∂ t

+ v
∂ p(x, t)

∂x
= D

∂ 2 p(x, t)
∂x2 (2.8)

where v is the velocity of drift and D is the diffusion coefficient of the particle in the solvent,
which relates to ζ through D = kBT/ζ . The FP equation can be solved analytically for
simple external forces [53]. When the external driving force is complicated, it can be solved
numerically by modern mathematical tools, for example Wolfram Mathematica. It is used to
understand the diffusion process in an oscillating potential in Chapter 5.

The FP equation expresses the evolution of the single particle density in an ideal 1D
infinitely long channel. By starting particles at an initial position, p(x,0) = δ (x) without
considering particle interactions and drift flow, the solution of Eq. 2.8 is

p(x, t) =
1√

4πDt
exp(− x2

4Dt
) (2.9)

Differentiating Eq. 2.9 by time t, one can get the mean first passage time:

< t >=
x2

2D
(2.10)

which is the averaged diffusion time for particles starting at position 0 to cross a distance x in
an infinitely long channel.
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2.2.1 Mean exit time

Eq. 2.10 provides us with a good intuition for how long it takes a particle to diffuse over
a distance. However, channels in reality are never really infinite. In the diffusion system
studied in this thesis, colloidal particles are undergoing Brownian motion in a 1D channel, as
sketched in Fig. 2.1(a). Absorbing boundaries are used to describe the channel ends a and
b [dashed lines in Fig. 2.1]. The movement of a particle is terminated once it reaches a or
b. The particle movement along the channel longitudinal direction is denoted as x, which is
plotted in Fig. 2.1(b) along the diffusion time t. In this case, x ends when the particle touches
absorbing boundary b.

Fig. 2.1 A Brownian particle diffusing in a 1D channel. (a) Sketch of a particle diffusing in a
1D channel with absorbing boundaries a and b (dashed lines) overlapping with positions of
the particle. (b) The movement of the particle on x direction is plotted against the diffusion
time t. x terminates once the particle reaches one of the absorbing boundaries.

The splitting probability π(x) is defined as the probability of a particle starting at x∈ [a,b]
to reach a before reaching b. By using the Laplace transform of Eq. 2.8, the splitting
probability π(x) of a particle starting at position x0 in a channel of length L is given by [54]

π−(x0) = 1− x0

L
π+(x0) =

x0

L

(2.11)

where π−(x0) and π+(x0) denote the probability that the particle reaches the left end a or the
right end b.

The mean first exit time to absorbing boundaries can then be written down as [54]

⟨t(x0)⟩− =
L2

6D
µ0(2−µ0)

⟨t(x0)⟩+ =
L2

6D
(1−µ

2
0 )

(2.12)
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where µ0 = x0/L with the initial particle position at x0 in a channel of length L.
The unconditional mean exit time, which is independent of which end the particle

trajectory terminates at is the weighted average of the first exit time [54], given by

⟨t(x0)⟩= π−(x0)⟨t(x0)⟩−+π+(x0)⟨t(x0)⟩+

=
L2

2D
µ0(1−µ0)

(2.13)

The mean exit time gives us a better description of the time a particle takes to escape a
channel of finite length than Eq. 2.10.

2.2.2 Direct transition time

In a more specific situation, in which the particle starts at one absorbing boundary and
reaches the other, the mean exit time in Eq. 2.12 can be written as:

Ttr =
2L2

3D
(2.14)

where the channel begins at −L and ends at L. In this case, the mean exit time is the direct
transition time Ttr, which is the time a particle goes from one boundary of the interval to the
opposite end without retouching the starting point [37].

In the presence of an external potential U(x) in the channel, the direct transition time
within two perfect absorbing boundaries is given by [37, 55]:

Text =
1
D

∫ b
a (

∫ x
a eβU(y)dy)(

∫ b
x eβU(y)dy)e−βU(x)dx∫ b

a eβU(y)dy
(2.15)

where [a,b] is the diffusion region, β = (kBT )−1 with kB and T denoting the Boltzmann
constant and temperature as discussed previously. With the knowledge of the energy potential
U(x) and diffusion coefficient D, Text is calculated and compared to experimental results in
Chapter 5.

2.3 Reconstructing the energy potential

The FP equation can be solved with an accurate knowledge of the underlying free energy
landscape U(x). U(x) also relates to the direct transition time of a Brownian particle in the
channel. Therefore, access to U(x) is of fundamental importance. Note here, the untracked
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spatial dimensions y and z remain constant in our 1D channel system therefore U(x) refers to
the potential energy landscape in the future discussion [29, 56].

2.3.1 Probability density function

The Probability Density Function (PDF) is one of the most commonly used methods to
resolve potential energy landscape under equilibrium conditions [57, 58]. The probability
that an equilibrium system is in state s at temperature T is given by the Boltzmann distribution

p(s) =
1
Z

exp
(−U(x)

kBT

)
(2.16)

where Z is the partition function. Take a particle of mass m moving in 1D for example,
the state s is defined by the particle position x and the particle velocity v so that Es =

U(x)+ 1
2mv2 [1]. Here,

p(s) = exp
(−U(x)

kBT

)
exp

(−1
2mv2

kBT

)
(2.17)

which infers to p(s) ∝ exp(−U(x)/kBT ). As sketched in Fig. 2.2(a), the PDF of particles
eventually settles down to a Boltzmann distribution that directly reflects the underlying
potential energy landscape in a sparsely populated system [51, 57, 58]. However, the PDF
method becomes impractical while mapping an energy landscape with an high energy barrier.
In the situation plotted in Fig. 2.2(b), the energy barrier impedes the movement of particles
which results in a biased sampling of the position histogram within the measurement time.
Meanwhile, an evenly flat distribution of particle positions can be mapped in the presence of
a hydrodynamic flow, as illustrated in Fig. 2.2(c). The distribution here does not reflect the
underlying energy landscape with an external force. Overall, the PDF is useful but limited to
characterise energy landscapes without high barriers at equilibriums.

2.3.2 Splitting probability

The splitting probability (SP) has been defined in Section 2.2.1. In a potential energy land-
scape, the probability of a particle starting at x to first reach the left or right boundary
is denoted as π−(x) and π+(x) as sketched in Fig. 2.3(a). In a double well energy land-
scape, π+(x) measured from trajectories of 200 simulated Brownian particles is reported
in Fig. 2.3(b). The detail of the simulation will be described in Chapter 4. Given a time-
stationary U(x), π(x) of an overdamped particle can be derived analytically from Eq. 2.8.
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Fig. 2.2 Distribution of particle positions in different environments. (a) The distribution
of particle positions (bars) in equilibrium systems reflects the underlying energy landscape
(solid line). (b) The distribution of particle positions can be biased with a high energy barrier
where few or no particle transitions happen within the measurement time. (c) In the presence
of a hydrodynamic flow, a flat distribution of particle position does not reflect the underlying
energy landscape. Note: Figure modified from the original plot by Dr. Sebastian Sturm.

Assuming a spatially constant diffusion coefficient D(x)≡ D [59],

π(x) =
∫ b

x eU(x)/kBT dx∫ b
a eU(x)/kBT dx

(2.18)

Inverting Eq. (2.18) allows us to obtain an estimate of the underlying energy potential,
denoted as USP(x), read as

USP(x) = β
−1 ln

(
−D

dπ(x)
dx

)
(2.19)

where β = (kBT )−1.
The SP has been recently proposed as an alternative method to reconstruct potential

energy landscapes from trajectories of Brownian particles [60]. Compared to the PDF
method, USP(x) is able to exhibit non-equilibrium force in a potential energy landscape due
to the fact that π(x) contains the information of preferred moving direction of particles.
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Fig. 2.3 Splitting probability of a particle diffusing in a potential energy landscape. (a)
A particle is diffusing within two absorbing boundaries a and b. π−(x) is the probability
that a particle starts at x reaches a before it reaches b. π+(x) is the probability to touch b
before it gets to a. (b) π+(x) calculated from trajectories of 200 simulated Brownian particles
diffusing in a double well energy landscape plotted in (a).

However, a large number of trajectory ensemble is required in this method due to the
differential operation in Eq. 2.19 which outputs a significant amount of noise with a non-
smooth π(x) profile. Meanwhile, the SP method suffers the same problem as the PDF method
in the face of a high energy barrier. The low probability of a particle jumping through an
energy barrier results in a constant π(x) which cannot be used to generate a valid USP(x) via
Eq. 2.19. Both the PDF and the SP methods are employed to reconstruct potential energy
landscape in Chapter 4.

2.3.3 Mapping energy potentials by driving particles

In order to map an energy landscape with high barriers, an external driving force Fdrive, which
is larger than the maximum of dU/dx can be applied to drag a Brownian particle [61, 62]. In
this case, the Langevin equation with an imposed energy landscape (Eq. 2.7) can be expanded
as

ζ
dx
dt

= Fdrive−
dU(x)

dx
+ξ (t) (2.20)

Considering the particle is moving at a high driving speed allows us to omit the fluctuating
force ξ (t) in Eq. 2.20. Therefore by measuring the particle velocity v(x), the potential U(x)
can be deduced as follows

U(x) =
∫ (Fdrive

ζ
− v(x)

)
dx (2.21)
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with a contribution from Fdrive to v(x) through the Stokes’ equation (Eq. 2.2). This way to
resolve U(x) is extremely useful for energy potentials with high barriers where transition
events rarely happen within the experimental time scale.

Fig. 2.4 Sketch of driving a particle through a potential energy landscape by an external
force Fdrive.

In addition to this driving method, there is another way to reconstruct an optically induced
potential from the intensity distribution, which will be applied and compared with other
methods in Chapter 4.

2.4 Conclusion

The motion of particles diffusing in a potential energy landscape can be described by the
Langevin equation and the FP equation. The theoretical basis of Brownian motion will be
used to conduct simulations and help us to understand the dynamics of particle transport
across a finite channel. The potential energy landscape in a 1D system can be mapped by
the PDF method at equilibrium and the SP method under non-equilibrium conditions. In
the face of a potential landscape with high energy barriers, driving a particle out of the
energy minimum provides another way to infer the underlying potential landscape which is
inaccessible to the SP and PDF method.





Chapter 3

Experimental methods

A synthetic membrane system which consists of colloidal particles and microfluidic channels
is built up to study transport in modulated potential energy landscapes. Holographic optical
tweezers are used to generate optical potentials in channels. The transport of colloidal
particles in channels is recorded and analysed to understand the effect of modulated energy
landscapes. In this chapter, the concept of optical tweezers is first introduced. The details
of setting up the holographic optical tweezers are described with notes for alignment. After
that, the fabrication process of microfluidic structures is reviewed, followed by steps to make
Polydimethylsiloxane samples. In the end, data analysis methods are discussed in the order
of tracking particles, calculating diffusion coefficient and estimating particle concentrations.

3.1 Introduction

Manipulating micro dielectric particles by focused laser beams was first achieved by Arthur
Ashkin in 1970 [56] and was recently awarded Nobel Prize in Physics. Since then, optical
trapping has been realised by different optical techniques and applied in a wide range of
studies [63, 64]. Specifically, optical tweezers have been used to modulate potentials in
various systems due to their ability to produce a large range of force and their flexibility to be
controlled in real time. Colloidal particle experimental systems are well established due to
their accessibility in time and length scales and their versatility for influencing with different
sources of forces [30, 65]. Inspired by the binding sides observed in membrane proteins,
we combine optical tweezers and colloidal suspensions to study the effect of modulated
potentials on particle transport.
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3.2 Principle of holographic optical trapping

Optical trapping is achievable due to the fact that the trapped object has a different refractive
index to its surrounding environment. A proper explanation of optical traps relies on solving
Maxwell equations, which involves complex calculations. However, an intuitive explanation
of the trapping effect can be given using ray optics where the trapped object is significantly
larger than the wavelength of the laser. In ray optics, light is refracted while passing through
a colloidal particle because the particle has a higher refractive index than the solvent, mostly
water. The change in the light direction induces a force which exerts on the particle due to
the momentum conservation. Most optical traps are generated by a Gaussian beam which
has a high light intensity in the beam centre. Once the particle is not aligned in the central
axis of the beam, the central ray causes a larger force F2 than the ray closer to the edge of
the beam F1 as sketched in Fig. 3.1(a). Overall, a net ’gradient’ force Fnet drags the particle
towards the beam centre. Meanwhile, the light also transfers momentum to the particle by
backscattering at the solvent-particle interface, which results in a ’scattering’ force along the
light propagation direction. When the particle is downstream offset from the beam waist as
shown in Fig. 3.1(b), the ’scattering’ force is balanced by the ’gradient’ force Fnet and the
particle can be firmly trapped near the beam waist [1].

Fig. 3.1 Schematic of the principle of optical trapping in ray optics. (a) In a Gaussion beam
profile, particle off-centred is forced to the beam central axis by the gradient force. (b) In
a focused beam, the scattering force balances the gradient force on the particle while it is
offset downstream from the beam waist.
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Optical tweezers have the capability of trapping micron-scale objects, but it involves
a substantial amount of effort if one wants to move the trapped object by either moving
the sample stage where the actual position of the trap stays or steering the optical beam to
change the trapping position. Here, a computer controlled Diffractive Optical Element (DOE)
makes it possible to control the position of an optical trap easily and generates multiple
traps simultaneously. Specifically, a Spatial Light Modulator (SLM) is used as the DOE in
Holographic Optical Tweezers (HOTs) setup, which is able to modulate the amplitude or the
phase of a transmitted or reflected light beam.

Fig. 3.2 Working principle of HOTs. The incoming laser beam Ebeam(x,y) is reflected by
the SLM with phase modulated by eiΦ(x,y). The SLM is positioned at the front focal plane
of the lens. At the back focal plane of the lens, E f ocus(x,y) is the Fourier transform of
eiΦ(x,y)Ebeam(x,y). f denotes the focal length of the lens.

The basic working principle of HOTs is explained as follows, based on a phase-modulated
SLM working in a reflection mode (illustrated in Fig. 3.2). At the beginning, an incoming
laser beam, denoted as Ebeam(x,y) is shining on a SLM. For simplicity, Ebeam(x,y) is assumed
to have a uniform distribution in phase. A hologram Φ(x,y), which is essentially a grey
scale image is loaded on the reflection area of the SLM. Two sample holograms used to
generate line traps and point traps are shown in Fig. 3.3(a,b). These holograms are calculated
based on superposition of light field corresponding single traps [66] and the algorithm has
been readily implemented in Red Tweezers [67], a Labview based program. Each pixel on
the SLM causes individual change to the phase of the reflected light. After reflection, the
electric field of the beam is modified to eiΦ(x,y)Ebeam(x,y). The SLM is placed at the front
focal plane of the convex lens. The lens collects the diffracted beam from the SLM and
focuses it to the back focal plane, denoted as E f ocus(x,y) which is the Fourier transform of
eiΦ(x,y)Ebeam(x,y) [1]. The whole process can be calculated by Fresnel diffraction integral [1]
by inputting a Gaussian beam profile with the phase change eiΦ(x,y). By putting holograms
shown in Fig. 3.3(a,b) into a Fresnel diffraction process, we obtained the corresponding
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electric field at focal domain or in other words the generated optical traps in Fig. 3.3(c,d)
respectively. Note here, the zeroth order of the diffraction is omitted deliberately to show
the high order diffractions. In the experimental setup described in the following section,
we manage to monitor the intensity distribution of the optical trap. The recorded intensity
distribution (Fig. 3.3(e,f)) matches the calculated first order of diffraction (Fig. 3.3(c,d))
qualitatively.

Fig. 3.3 Holograms and the corresponding intensity distributions of optical traps. (a,b)
The specific hologram is calculated and displayed on the SLM. (c,d) Calculated intensity
distributions of optical traps generated by the holograms in (a,b). The zeroth order of the
diffraction is omitted deliberately to show the high order diffractions. (e,f) The first order of
the diffraction captured by an infrared camera in our experiment.

3.3 Experiment methods

3.3.1 Building holographic optical tweezers

We built HOTs1 (sketched in Fig. 3.4 and photograph in Fig. 3.5) based on the configuration
proposed in [64]. Details of the components are listed in Appendix A. Briefly, a laser beam
with a wavelength of 1064 nm transmits through a polarisation beam splitter (PBS) and a

1The building and alignment of HOTs was carried out with Mr. Jannes Gladrow.
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half wavelength (λ/2) plate, which is used to control the beam intensity by rotating the
orientation of the λ/2 plate. The laser beam is then expanded 5 times through lenses L1
and L2 to overfill the reflection area of the SLM. A 4 f optical system consisting of SLM,
L3, L4 and the objective conjugates the phase modulated light to the back aperture of the
objective. Pinhole P2 is placed at the focal plane between L3 and L4 to block the zeroth order
diffraction, which is essentially a spot. The back aperture of the objective is positioned on
the end of the 4 f system which further focuses the laser beam into our microfluidic channels.
A collimated illumination made up by L7 and L8 is shining on the top of the microfluidic
sample. The image of the sample is collected by the same objective and recorded by a fast
camera (Camera1). Camera2 and a pellicle BS2 are used to monitor the back scattering of
the optical trap from the cover glass. In order to monitor the intensity of the generated optical
traps, a second 4 f system is built by L3 and L9 with 2% of the laser beam split by a pellicle
beam splitter BS1 from the main 4 f path. The laser traps are then focused and monitored by
Camera3.

3.3.2 Alignment of the holographic optical tweezers setup

The HOTs set up in our lab is made up of more than forty optical components. Careful and
correct alignment ensures trapping of micron sized particles in three dimensions and avoids
unintentional force gradients in generated traps. We summarise the following key steps in
the alignment process, although they are not the only ones worth attention,

1. The back aperture of the objective should be placed exactly at the end of the 4 f system
to ensure that the generated optical traps are the Fourier transform of the laser beam reflected
by the SLM. A misplacement of objective on the 4 f will end up with fractional Fourier
transform, which produces undesired optical distributions.

2. The back aperture of the objective should be overfilled by the incident laser beam to
generate a large enough gradient force to trap a particle. Otherwise, particles may be pushed
away by the optical trap due to an overwhelming scattering force.

3. The output beam from the expander and 4 f system should be accurately collimated. A
beam profiler is used to make sure the beam size stays constant while propagating. Pinholes
are easy to implement but they are not accurate enough to check the collimation of beams.

4. The back scattering of an optical trap from the cover glass should be a symmetric
four-lobe pattern, as shown in Fig. 3.6. The intensity distribution of the back scattering is
dependent on the distance z between the objective pupil and the cover glass as shown in
Fig. 3.6(a,b). However, the centre of mass of the pattern should be independent in z and a
good alignment example is shown in Fig. 3.6(c). By contrast, a changing centre of mass
along z indicates misalignment between the beam and the objective axes [1].
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Fig. 3.4 Schematic of the HOTs setup. M1-M10: AR-coated dielectric mirrors. PBS:
Polarizing beamsplitter cube. λ/2: Half wavelength plate. P1,P2: Iris. L1-L10: Plano-
convex lens. SLM: Spatial Light Modulator. F1-F3: Bandwidth filter. D1: Dichroic mirror.
BS1-BS2: pellicle. Details of the components are listed in Table. 3.1 in Appendix.A . The
inset shows the optical trap is focused into the microfluidic channel to manipulate colloidal
particles, which is not to scale.

5. The output power of the laser can be controlled by the laser driver or by adjusting the
orientation of the λ/2 plate. However, the actual laser power focused into the sample is hard
to estimate. We measured the laser power at the position of the objective’s back aperture via
a power meter, result shown in Fig. 3.7(a). The readout is sensitive to the hologram loaded
on the SLM and varies between different trap configurations. The actual power arriving into
the sample should also consider the absorption by the objective which is 66% at 1064 nm,
the absorption by the immersion oil and the reflection from the cover glass.

6. The position of the objective is fixed on our HOTs setup to minimise focus drift. The
whole optical path is enclosed and built on an air damped optical table. However, we still
find the position of a stationary optical trap strongly correlated with the lab temperature, with
measurement shown in Fig. 3.7(b).
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Fig. 3.5 Photograph of the HOTs setup. (a) The laser, beam expander and the 4 f configura-
tions for holographic optical trapping. Components are labelled corresponding to Fig. 3.4.
Photograph was taken without enclosure for clarity. (b) The Piezo stage, sample holder and a
microfluidic sample under illumination. (c) Screen shot of the HOTs control software which
is developed basing on red tweezers [67].

By carefully aligning the HOTs setup, we manage to trap not only Polystyrene particles
with diameter down to 300 nm but also gold particles of diameter of 80 nm in three dimensions.
The HOTs are used to modulate energy landscapes in the microfluidic domain in the rest of
the thesis.
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Fig. 3.6 Back scattering of an optical trap from the cover glass. (a,b) Image of the back
scattering of an optical trap taken at two different z, which is the distance between the cover
glass and the objective pupil, recorded by Camera2. (c) The centre of mass of the back
scattering measured by scanning the distance z by moving the Piezo stage.

Fig. 3.7 Output power of the HOTs and the effect of temperature on the position of an optical
trap. (a) Laser power measured at the position of the back aperture of the objective by a
power meter. (b) Correlation between lab temperature and the centre of mass of an optical
trap recorded by Camera3. The dashed line indicates the time when the aircon in lab was
switched off.

3.3.3 Fabrication of the sample cell2

A mould for making microfluidic chips is fabricated in two steps [68, 69]: firstly, platinum
micro-wires are fabricated on a silicon wafer via a focused ion beam assisted deposition as

2Part of this section has been published as Diffusion coefficients and particle transport in synthetic
membrane channels Stefano Pagliara, Simon Dettmer, Karolis Misiunas, Lea Lewis, Yizhou Tan, Ulrich F.
Keyser, The European Physical Journal Special Topics, 14(223), 3145-3163 (2014).
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shown in Fig 3.8(a). An organometallic precursor is decomposed by the ion beam resulting
in platinum atoms being deposited and the organic fragments being exhausted. Secondly,
polymer micro-chambers are fabricated by photolithography as shown in Fig 3.8(b). A 10
µm thick layer of photoresist (AZ 9260) is spun over the wires and substrate, then patterned
by photolithography through a Chromium/quartz mask. The region of the AZ layer exposed
to UV light remains on the substrate after chemical development, whereas the unexposed
regions on the AZ layer are washed away during development. This results in a mould
consisting of the silicon substrate, the platinum wires and the AZ micro-chambers, as shown
in Fig. 3.9(a)3.

Fig. 3.8 Fabrication process of microfluidic samples. (a) Platinum wires are fabricated on a
silicon substrate by FIB assisted platinum deposition. (b) A layer of photoresist (AZ 9260) is
spun over the wires and substrate, then patterned by photolithography through a mask. (c) A
PDMS mixture is poured over the silicon mould. Once totally solid, the PDMS replica is
peeled off the silicon mould carefully. (d) The PDMS replica and a glass slide are plasma
cleaned and bonded to form reservoirs and channels. This figure has been published in [68].

Fabricating a microfluidic chip consists of two steps: firstly, the structure on the silicon
mould is replicated with Polydimethylsiloxane (PDMS), shown in Fig 3.8(c). The replica
of the mould is realised by casting a 10:1 (polymer base:curing agent) PDMS mixture on it,
which is left to settle and degas for 30 minutes and then cured at 60◦C for 120 minutes in an
oven. The base and curing agent are well mixed by an electric drill beforehand. After cooling

3The fabrication processes (a,b) were done by Dr. Stefano Pagliara.
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down, the PDMS sample is peeled off the mould along the direction perpendicular to the
channel array in order to minimise the mechanical stress along the longitudinal axes of the
channels. The channel has a length of 4.8 µm and width of around 1 µm, measured by atomic
force microscopy in Fig 3.9(b,c). Two 1.5 mm wide circular holes are punched by a 1.5 mm
wide circular disposable biopsy punch (Kai Industries Co. Ltd., Seki City, Japan) to enable
fluid access to the microchannels, as shown in Fig 3.9(d). Secondly the PDMS sample is
chemically boned to a glass slide via air plasma functionalization as shown in Fig 3.8(d) [69].
The PDMS sample and a glass slide (50× 24 mm, thickness No.1, Glaswarenfabrik Karl
Hecht GmbH & Co KG) are placed in the chamber of a plasma etcher (Diener, Royal Oak,
127 MI) and degassed for 5 minutes. Afterwards, air is injected in the chamber at 25 sscm
and the pressure in the chamber is left to stabilize for two minutes. Finally the sample and
the glass slide are exposed to the air plasma (2.5W power, 10 seconds). Right after exposure,
the patterned surface of the PDMS replica which contains the channels is brought in contact
with the glass slide and a chemical bonding is formed by the air plasma functionalization of
the two surfaces. The hollow structures on the PDMS surface and the glass surface form the
microfluidic reservoirs and channels.

Polystyrene colloids with diameter of (510±10)nm (Polyscience, Warrington, PA) are
used in our experiment. A suspension of spherical particles in 5mM KCL is prepared
and sonicated for 15 minutes to break down possible aggregates of colloidal particles.
Approximately 4µl of 5mM KCL is injected in the bonded chip through a 27 gauge needle
connected to a plastic syringe. Attention is paid to avoiding the formation of air bubbles
which may introduce non-equilibrium forces inside the chip. The channels are connected
by two reservoirs, as shown in Fig 3.9(a). Afterwards, all the vertical fluid accesses are
completely filled with the colloidal suspension. The top surface of the device is finally sealed
with a rectangular piece of a cover slip slightly larger than the PDMS sample. In order to
protect the original structure on the silicon based mould, a replica procedure is performed and
successfully reproduces the micron structure using epoxy, details can be found in Appendix.B
and Fig. 3.13.

3.4 Analysis of the trajectory data

Particle tracking provides quantitative information from time-lapse microscopic images,
which is of crucial importance in the study of colloidal systems and intracellular dynamic
processes [70, 71]. The movement of Brownian particles in our microfluidic sample is
recorded as videos. By extracting trajectories of particles, the underlying energy potential
is estimated by different methods under equilibrium and non-equilibrium conditions in
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Fig. 3.9 Silicon mould, AFM characterisation and the PDMS sample. (a) Microscopic image
of the silicon mould taken under a 2.5x objective. The channels are located at the centre
of the image. (b) Three dimensional profile of microfluidic channels on a PDMS sample.
(c) Height profile of the section image of the dashed line on (b) shows the cross section of
channels. (d) Photo of a microfluidic sample ready for experiments. Colloidal suspension is
injected through the two highlighted inlets.

Chapter 4. By analysing those trajectories, the effect of modulated energy potentials on
particle transport is studied in Chapter 5.

3.4.1 Particle tracking method and accuracy

Trajectories of particles are extracted from recorded videos by implementing the method
proposed by [72] in Matlab. Firstly, a background image is generated by averaging all the
frames in one video. Only stationary features are shown on the background image, such
as the microfluidic structures and dusts on the camera. Secondly, the background image
is subtracted from the video frames. The resulting images contain particles undergoing
Brownian motion and other noise. A bandpass and a threshold filter is then applied to the
resulting images to eliminate the noise. Ideally, only moving particles are left on the image.
Thirdly, a two dimensional Gaussian function is used to fit the intensity profile of a particle
to get its positions (x,y) on the frames. Each frame has a frame number embedded by the
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recording camera which accurately shows the time line t of the experiment. After obtaining
[t,x,y] information of particles, individual trajectories are connected in adjacent frames.

Fig. 3.10 Tracking accuracy tested by moving the Piezo stage with step functions. The
position of a particle stuck on the cover glass (circles) is fitted by horizontal solid lines based
on the movement of the Piezo stage with a step function. The Piezo stage is moving at (a) 10
nm and (b) 5 nm per step per second.

The tracking accuracy is tested by moving a sample cell with particles stuck on the cover
glass. The sample sits on a Piezo stage, which is moved with a step function with position
accuracy down to 1 nm according to the manufacturer (Physik Instrumente). The movement
of a particle stuck on the cover glass is tracked by our algorithm. We find that our tracking
routine is able to distinguish step movement of 10 and 5 nm, as shown in Fig. 3.10. However,
the movement is mostly covered by noise when the step decreases to less than 5 nm per step
per second.

The magnification produced by an infinity objective is calculated by dividing the refer-
ence focal length (500 mm) by the focal length of the objective (180 mm for Olympus). The
relation between the pixel length to the real length is obtained by considering the magnifica-
tion and pixel size of the camera, which is 14 µm for Camera1. We obtain 50.4 nm/pixel
as the reference length of a sample on the image, which is further confirmed by imaging a
diffraction grating with known lengths.

3.4.2 Calculation of diffusion coefficient

As introduced in Chapter 2, the diffusion coefficient D characterises the mobility of an object
in a solvent. In bulk, D can be calculated by kBT

6πηa for a single particle with radius a in a
solution with viscosity η , where kB is the Boltzmann constant and T is the absolute temperate.
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By inputting a = 255 nm, η = 1×10−3 Pa s, we obtain D = 0.8 µm2/s. However, it has been
found in experiments that the value of D decreases when close to a wall or in a channel [73],
which can be estimated by Fax́en corrections [74]. In addition, the diffusion coefficient can
be measured from trajectories of particles. For a particle diffusing in one dimension, the
diffusion coefficient is calculated by

⟨x2⟩= 2D∆t (3.1)

where x is the trajectory of a Brownian particle, ⟨x2⟩ is the Mean Square Displacement (MSD)
and ∆t is the time difference between recorded frames. D is then obtained by fitting a linear
line to MSD on ∆t. In this thesis, 10 points of MSD are used for the fitting with an example
shown in Fig. 3.11(a). The fitting result provides D value of one particle. Considering the
variation of particle sizes, at least one hundred D values are calculated and averaged as the
diffusion coefficient of one type of particles in a channel.

Our group has previously reported hindered diffusion coefficient of particles close to
channel ends due to the increased space [75]. Here, we measure D as a function of channel
length x and plot the hindered D effect in Fig. 3.11(b).

Fig. 3.11 Calculating the diffusion coefficient of one particle diffusing in the channel. (a)
MSD of one particle is fitted by a linear line along 2∆t to obtain D. (b) The dependence of D
values on the channel position x. The dash-dotted lines indicate the channel ends. The dash
line is a guidance for a constant D along x.
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3.4.3 Estimation of particle concentration

The main question in this thesis is concerned with particle transport through channels,
and hence the concentration of particles in the microfluidic reservoirs, denoted as c, is a
key parameter. Firstly, we examine the effect of gravity in our microfluidic system. The
gravitational height hg of particles in solution can be written down as

hg =
kBT

4
3πa3∆ρg

(3.2)

where a is the radius of the particle, g is the gravitational acceleration, ∆ρ is the difference
in mass density between particles and the solvent, kB is the Boltzmann constant with T the
temperature [76]. By putting a = 255 nm and mass density 1.05 g/cm3 of the polystyrene
particles into Eq. 3.2, we get hg close to 0.1 mm which is significantly more than the depth
of the reservoirs at ∼ 12 µm. Therefore the gravitational effect can be neglected [77] and we
assume the colloidal particles disperse evenly in the reservoirs.

Secondly, c is estimated by the tracking algorithm described in Section 3.4.1. To do
this, we image a particle stuck on the cover glass in focus, as highlighted by a blue box in
Fig. 3.12(a). The microfluidic chip is then moved 1 µm away from the focus by controlling
the z position of the Piezo stage. The intensity profile of a particle decreases away from the
focus plane of the objective. A threshold value of particle intensity profile is then chosen
to detect particles within 1 µm distance to the cover glass in our tracking algorithm. It
is worth noting here that we obtain the intensity threshold for static particles. However
colloidal particles are undergoing Brownian motion while experiments take place, which
adds uncertainties for this detection method.

Finally, we estimate the particle concentration in a reservoir by averaging the number
of detected particles during an one-hour video. A typical image of particles diffusing in
reservoirs is shown in Fig. 3.12(a). The particle recognised by the tracking algorithm is
overlapped with a circle and the particle concentration is evaluated separately in the two
reservoirs. The algorithm ignores static (stuck) particles in both the channel and reservoirs.
The particle concentrations are estimated in terms of volume fraction for each reservoir and
plotted as a function of time in Fig. 3.12(b). From the result, concentrations of particles
in both reservoirs are found close to each other throughout the 150-hour measurements,
indicating a well equilibrated environment. However, the particle concentrations increase
gradually with time, which is in accordance with our previous publication [69]. We attribute
the increased particle concentration to the evaporation of solvent in the microfluidic chip. We
also mark here that although the current concentration estimation method is easy to implement
in a colloidal diffusion experiment, other measurements such as confocal microscopy or



3.5 Conclusion 31

UV-Vis Spectra [78] should be considered if more accurate concentration information is
needed.

Fig. 3.12 Estimating the particle concentration in reservoirs. (a) The particle tracking results
are plotted on one frame of the recorded video. Red circles represent the recognised particles.
(b) The volume fraction of particles in the two reservoirs is plotted against time. The error
bars are calculated from all the frames in one-hour videos.

3.5 Conclusion

We built up a synthetic membrane system with colloidal particles diffusing in microfluidic
channels. Holographic optical tweezers are used to modulate the energy landscape of the
channel. The motion of particle is extracted by implementing the particle tracking algorithm
in microfluidic environments. Our experimental system is going to be used to measure the
energy landscape in a fluid environment in Chapter 4. After the characterisation of energy
landscapes, we further explore particle transport in time-dependent energy landscapes in
Chapter 5.
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Appendix

A. Table of components in the HOTs setup

The components used to build the HOTs setup are listed in Table. 3.1.

Table 3.1 Components of the holographic optical tweezers setup

Component Model Detail

Objective UPLSAPO ×100 NA 1.4, back focal plane diameter 3.78 mm, Olympus
Laser YLM-5-1064LP IPG fibre laser, 1064 nm
SLM X10468 Hamamatsu, Optical Phase Modulators
Piezo stage P-561.3CD Controlled via (E-725.3CD)
Camera1 EoSens CL Full Mikrotron, High frame rate camera
Camera2,3 DMK 41BUC02 Imagingsource, USB 2.0 monochrome camera
M1-4, M8-9 BB1-E03 1" AR-coated dielectric mirrors
M5,6,7 BB1-E03 2" AR-coated dielectric mirrors
M10 PFE10-P01 1" Protected Silver Elliptical Mirror
λ/2 WPH10M-1064 Zero-Order Half-Wave Plate
PBS PBS253 1" Polarizing Beamsplitter Cube, 900 - 1300 nm
P1,P2 ID12/M Mounted Standard Iris
L1 LA1805-C 1", f = 30.0 mm, AR Coating
L2 LA1433-C 1", f = 150.0 mm, AR Coating
L3 LA1908-C 1", f = 500.0 mm, AR Coating
L4 LA1708-C 1", f = 200.0 mm, AR Coating
L5 LA1484-C 1", f = 300.0 mm, AR Coating
L6 LA1908-C 1", f = 500.0 mm, AR Coating
L7 LA1131 1", f = 50.0 mm
L8 LA1805 1", f = 30.0 mm
L9 LA1708-C 1", f = 200.0 mm, AR Coating
L10 LA1433-C 1", f = 150.0 mm, AR Coating
BS1 BP208 2" 8:92 (R:T) Cube-Mounted Pellicle Beamsplitter
BS2 BP108 1" 8:92 (R:T) Cube-Mounted Pellicle Beamsplitter
D1 Linos Dielectric-Coated Plane Mirrors DLHS NIR 1064 nm
F1,2 M254H00 1" UVFS Hot Mirror
F3 NE80A 1" Absorptive Neutral Density Filters
Lamp MWWHL4 White mounted LED
Optics table Newport I-2000 High performance laminar flow isolator
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B. Using epoxy to replicate micro-structures

The fabrication process described in Section 3.3.3 takes long hours with many trials to get
the desired structure. Meanwhile, the mould is fragile due to the rigidity of silicon. The
peeling process to separate PDMS from the mould makes the chance to snap the mould even
higher. In order to protect the original mould, we use epoxy to replicate the structure on the
mould. This idea has been explored by using PDMS with different stiffness as a copy of the
structure on a silicon mould [79]. So far, we find the protocol from Jun Lab at University of
California San Diego, which use epoxy as the new substrate provides the best replica result.
The original protocol has been tailored to perform in our lab conditions and described as
following:

1. A PDMS sample cell as a copy of the silicon mould is made as described in Fig 3.8(c,d).
2. In order to make the separation between epoxy and PDMS sample easy, a salinisation

agent is deposited on the surface of the PDMS sample first. To do this, 200 µl salinisation
agent (1H,1H,2H,2H-Perfluorodecyltrichlorosilane, 96%) is placed evenly in a glass vacuum
chamber with the PDMS sample inside. The chamber is vacuumed immediately after putting
the salinisation agent, other wise the agent oxidises shortly. The PDMS sample is left in the
vacuumed chamber for one hour to let the salinisation agent settle on the surface.

Fig. 3.13 Photos of an epoxy mould (a) and a silicon mould (b) which carry the same
microfluidic structures. (c) and (d) show the microfluidic channels made from (a) and (b)
respectively. Under microscope, the two samples appear to be identical and both used for the
experiments in this thesis.
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3. Epoxy (LOCTITE HYSOL 9483 50ML) is poured over the PDMS straight after the
saliniation process. The epoxy is mixed by a mixing tube and gun provided by the epoxy
manufacturer. Note here, many different types and brands of epoxy products have been tried
but the only product works is the above mentioned one.

4. After step 3, air bubbles are found in epoxy, the interface between epoxy and PDMS,
and mainly inside the porous PDMS. A key to make a successful epoxy replica is to get rid
of all the trapped air bubbles. Therefore, the liquid epoxy and the PDMS sample is degassed
in a vacuum chamber for 20 minutes. Degassing for too long will solid the epoxy due to
the low boiling point of epoxy in a vacuum environment. After 20 minutes, all the small
bubbles should have disappeared. The surface between epoxy and PDMS is checked to be
bubble-free.

5. Finally, the epoxy along with the PDMS chip is left for 24 hours on a flat surface to
become solid. It is then hardened enough to be separated from the PDMS and works as a
new mould. Due to the salinisation process in step 2, the separation should be effortless.

By using the epoxy shown in Fig. 3.13(a), the original silicon mould [Fig. 3.13(b)] is
backed up and can be reproduced easily. According to Jun lab, the accuracy of replica can be
down to nanometres. We find no differences between the geometry of the channels made
from an epoxy mould and a silicon mould [Fig. 3.13(c,d)].



Chapter 4

Reconstruction of potential energy
landscapes in microfluidic channels

Membrane protein undergoes conformational changes to transport specific solutes across
the membrane. To simulate this effect, we generate energy landscapes with high barriers by
holographic optical tweezers in our synthetic membrane system. Understanding the effect
of the energy landscape on particle transport requires an accurate knowledge of the energy
landscape experienced by the particles. There are many ways of determining the energy
landscape, including measurement of the Probability Density Function (PDF), the Splitting
Probability (SP), the intensity distribution of optical traps and the velocity of particles driven
by external forces. Each method is, however, associated with certain limitations especially
for reconstructing energy landscapes in systems out of equilibrium.

In this chapter, we first calibrate the intensity distribution of optical traps with the potential
energy landscape measured through the PDF method. The calibrated energy landscape is
further confirmed by comparing to the energy landscape rebuilt from velocity of particles
driven by external forces. Importantly, we develop a new method to extract the underlying
energy landscape by analysing Local Transition Probabilities (LTP). Our method is applicable
to both equilibrium and non-equilibrium steady states. Compared to the SP method, the LTP
approach offers improved robustness in the use of small trajectory ensembles or fragmented
trajectories, which is tested in colloidal diffusion experiments and Brownian dynamics
simulations. In the end, we demonstrate that combining the LTP with the measurement of the
intensity distribution of optical traps allows for the estimation of potentials with high barriers
which are inaccessible for trajectory-based methods.
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4.1 Reconstructing potential energy landscapes from opti-
cal intensity distributions

4.1.1 Introduction

Binding sites in membrane transporters which show high affinity to specific substrates
have been investigated via crystal structures [16–18], molecular simulations [22, 23] and
theoretical models [24, 25, 80]. HOTs have been used to generate energy wells near entrances
of microfluidic channels to mimic binding-site effect at the transporter mouths [51, 52]. A
colloidal particle in an attractive energy well experiences an increased affinity similarly to
what a solute experiences in a membrane transporter. In a previous research done by our
group [52], a 40-fold enhancement in translocation rate of particles across a channel was
found with an attractive potential in the channel compared to a channel without external
potentials. Besides binding, membrane proteins can also perform rigid-body rocking-type
movements to rearrange from an outward to an inward-open configuration and vice versa [14].
Conformational changes between open and closed states have been found in primary active
transporters like ABC transporters [11, 81], and secondary active transporters like sodium
coupled cotransporters [8]. However, it is difficult to change the geometrical landscape of a
channel dynamically in a synthetic experimental system. Therefore, in order to investigate the
effect of conformational changes on channel transport, we use HOTs to generate high energy
barriers which impede the movement of particles to simulate the effect of a ’closed’ state
in the channel, and deep energy wells to imitate the ’open’ state of a channel. Meanwhile,
the HOTs are able to oscillate the position of the energy barrier, which performs fluctuation
between the open and closed states.

In order to characterise a underlying potential energy landscape, trajectories of Brownian
particles have been used to reconstruct the potential energy landscape U(x). In systems at
equilibrium, the probability density function (PDF) of a large ensemble of single-particle
trajectories can be used to estimate U(x) [51, 57, 58] (details discussed in Section 2.3.1).
However, the PDF fails to describe deep energy wells (e.g. > 5 kBT) in our experimental
system due to few or no trajectories available in those regions. The PDF method is also
impractical to estimate a potential fluctuating at a time scale shorter than the particle diffusion
time.

An alternative way to measure an optically induced potential is by calibrating the intensity
distribution of the optical traps. An effective potential energy landscape is obtainable by
convoluting the intensity distribution with a form factor function [82]. The form factor
contains information of the material and the shape of the trapped object.
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In this section, we adopt the method proposed in [82] where the intensity distribution of
optical traps is calibrated to estimate the optically induced potential with high barriers. Our
work provides a method to characterise diffusion in confined geometries where molecules
strongly interact with their environment.

4.1.2 Theory

HOTs are used to generate optical traps with various configurations which modulate potential
energy landscapes. Importantly, objects of different geometry and composition in a same
environment experience different energy landscapes. The effective energy landscape UI(x)
can be calculated by convoluting the laser intensity distribution I(x) with a form factor
function f [82]

UI(x) = ( f ◦ I)(x), (4.1)

where f depends on the object and the environment. I(x) can be measured from images
captured by an infrared camera. In this thesis, we consider the form factor function f of a
uniform dielectric sphere of a radius a illuminated by light of wavelength λ , where λ > a [83]

f (x) = α

√
(a2− x2)Θ(a− x) (4.2)

where Θ is the Heaviside step function and

α =

√
ε0

c

(
ε0− ε

ε +2ε0

)
(4.3)

where ε0 is the dielectric constant of the medium, ε is the dielectric constant of the particle
and c is the velocity of light. Monitoring I(x) gives us a way to approximate the energy
landscape.

The optical trap is the only external contribution to the potential energy landscape at
equilibrium. However, the value of I(x) depends on the camera model and settings. As
a result, UI(x) only provides a qualitative estimation of the underlying potential energy
landscape. Meanwhile the PDF of particle positions can be related to the potential energy
landscape UPDF(x) through the Boltzmann distribution. Previous study on optical traps has
demonstrated that depth of optical traps is linearly proportional to the laser power up to 200
kBT [61] which also agrees with the theoretical prediction [84]. Therefore, we are able to
calibrate UI(x) with UPDF(x) for energy landscapes without high barriers using the following
equation,
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UPDF(x) =C ·UI(x) (4.4)

where C is a scaling factor between the two energy landscapes. We find C to be a constant
by calibrating UPDF(x) and UI(x) under various trap configurations, including different
depths, lengths and numbers of traps. Crucially, obtaining the scaling factor C for energy
landscapes without high barriers allows us to estimate the energy landscape with high barriers
through UI,PDF(x) =C ·UI(x), where the trajectory-based method fails due to extremely low
probability of escaping from those high energy barrier regions.

4.1.3 Experimental methods

Measurement of the trajectories of Brownian particles

Particle trajectories are measured by a drag-and-release experiment in a potential energy
landscape where the particle explores all regions of the channel within the experimental
time scale. We fabricated microfluidic devices as described in Section 3.3.3. Briefly, each
device is made of glass and Polydimethylsiloxane, and consists of two 12 µm deep reservoirs
connected by an array of channels with a length of 4.8 µm and a cross section of around
0.9×0.9 µm2. We filled the device with polystyrene colloidal particles with a diameter of
(510 ± 10) nm. The particles freely diffuse in the reservoirs but are restricted to single file
diffusion within the channels. A typical bright field image of a particle in the channel is
shown in Fig. 4.1(a). We used HOTs [51, 52, 67, 85, 86] to position the particle and generate
specific optical potential energy landscapes in each channel. The optical intensity distribution
is monitored by an infrared camera, as shown in Fig. 4.1(b) and sketched in Fig. 4.1(c).

Videos of the movement of each particle are recorded by a fast camera. The trajectories
of particles x(t) [sample in Fig. 4.1(d)] are extracted off-line from the recorded videos using
a custom implementation of the Crocker and Grier’s algorithm [72] (details in Section 3.4).
The first thirty frames of each particle movement are discarded in order to exclude the effect
of trapping on the reconstructed energy landscapes.

Our drag-and-release measurements consist of six steps as illustrated in Fig. 4.1(e): I.
Trap a single particle diffusing in either reservoir using HOTs. II. Position the particle at a
position chosen randomly from a uniform distribution along the channel. III. Use HOTs to
set up laser line traps which produce local potential wells. IV - VI. Release the particle and
record its trajectory until it escapes the channel. This process is repeated at least one hundred
times for each potential energy landscape configuration.
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Fig. 4.1 Measuring potential energy landscapes in microfluidic channels. (a) Bright-field
image of a polystyrene particle of diameter 510 nm trapped in the centre of a microfluidic
channel of length 4.8 µm and connecting two large reservoirs of depth 12 µm. (b) Dark-field
image of the intensity distribution of two laser line traps generated by the HOTs. The dashed
lines highlight the channel contour. (c) Sketch of the potential wells generated by the two
laser line traps in the channel. (d) Sample trajectory of one particle diffusing in the channel.
(e)Illustration of the protocol used for drag-and-release measurements.
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Calculating the probability density function of particle positions

The PDF approach, as described in Section 2.3.1 is applicable to systems at equilibrium. It
relates the underlying energy landscape UPDF(x) to the probability density function of particle
positions p(x) via Eq. 2.16. Here p(x) is the probability to find a particle in a bin centred at x,
with the width of the bin here defined to be one pixel of the camera. The position distribution

Fig. 4.2 Implementing the PDF method to reconstruct the energy landscape. The histogram
(bars) is the position distribution of particles diffusing in the energy landscape. UPDF(x)
(solid line) is inferred from the PDF through the Boltzmann distribution. Note: the relative
value of U(x) shows the energy landscape experienced by the particle but the absolute value
of U(x) is meaningless.

of particles diffusing in an energy landscape is first plotted in a histogram, represented by
bars in Fig. 4.2. Dividing each position count in the histogram by the sum of all the counts
leads to the particle density function p(x). p(x) is then put into Eq. 2.16, which gives us
UPDF(x) [solid line in Fig. 4.2]. From UPDF(x), we can clearly see two energy minima. Note
here, the absolute value of a potential energy landscape depends on the partition function
in Eq. 2.16, as described in Section 2.3.1. However, the differences between U(x) at each
position show the energy landscape experienced by the particle. Therefore U(x) is plotted
with a scale bar instead of absolute values in the rest of the thesis.

Measuring the optical intensity distribution

The intensity distribution of optical traps is recorded by a monochrome camera. The optical
path of the setup can be found in Section 3.2. To obtain a stable intensity distribution for
different laser trap configurations, the digital gain of the camera is set to be at a minimum
value. The shutter time of the camera is also chosen to have a large range of sensitivity.
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While a short shutter time introduces more background noise, a very long shutter time results
in overexposures. In addition to the gain value and the shutter time, all other settings of the
camera are kept constant.

Fig. 4.3 An intensity distribution of optical traps and the corresponding effective energy
landscape. (a) Normalised intensity distribution I(x) measured at the channel longitudinal
axis. Inset: Optical intensity distribution recorded by a monochrome camera. The dashed
lines indicate the contours of the channel. The red dash-dotted line represents the positions
where I(x) is obtained. (b) UI(x) is calculated by Eq. 4.1 using I(x) plotted in (a), considering
a Polystyrene particle of radius a = 255 nm diffusing in water.

To obtain an effective energy landscape, we first measure a two-dimensional intensity
distribution of the optical traps from a recorded grey scale image, an example of which is
shown in the inset of Fig. 4.3(a). Since the two laser lines are focused into the centre of
the channel in diffusion experiments, we measure a one-dimensional (1D) distribution in
the middle of the 2D intensity distribution [red dash-dotted line in the inset of Fig. 4.3(a)].
The 1D distribution is then normalised by 255, which is the maximum bit depth of one
pixel to make sure the image is not overexposured. Clearly from Fig. 4.3(a), the normalised
I(x) (dotted line) did not hit the maximum bit value so the image is not saturated. Next,
the effective potential energy landscape UI(x) is calculated by putting I(x), particle radius
a = 255 nm, dielectric constants of Polystyrene and water into Eq. 4.1 [Fig. 4.3(b)]. Notably,
small fluctuating structures in I(x) are smoothed out in UI(x). This is due to the physical
size of the particle being bigger than the fine structures in the intensity profile. In general, a
larger particle experiences the force gradient in an optical trap at a larger range compared to
a smaller particle [82].

By calibrating UI(x) with UPDF(x), we can obtain a scaling factor C via Eq. 4.4. C is
going to be used to estimate energy landscapes with high barriers which cannot be assessed
by the PDF method.
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4.1.4 Results and discussion

The scaling factor C is obtained from four different energy landscapes, L1 to L4. For one
potential energy landscape, we first measure UPDF(x) and UI(x) as previously described then
calibrate UI(x) by a scaling factor C to match UPDF(x) via a least-squares fitting by Eq. 4.4.
The least-squares fitting iterates the C and two-dimensional position parameters until it finds
the smallest summed square of residuals χ2. The fitting is done by Curve Fitting Toolbox
in Matlab. For example, We get C = 3.05 by calibrating UPDF(x) (dashed line) and UI(x)
(dash-dotted line) in Fig. 4.4(a). The fitted potential, denoted by UI,PDF(x) is plotted by a
solid line in Fig. 4.4(a). The same calibration procedure is carried out on energy landscapes
L2 to L4. As can be seen from Fig. 4.4(a-d), UI,PDF(x) matches UPDF(x) reasonably well
after calibrations. Fitting results including χ2 error are listed in Table 4.1. The value of C
varies in a range between 3.05 and 3.49. C = 3.05 is chosen as the general scaling factor
with the lowest χ2. We apply C = 3.05 to calibrate L2 to L4 with χC

2 listed in Table 4.1.
The difference between χ2 and χC

2 is within 17%. Finally, we use the obtained C to estimate
a potential with high energy barriers where no particle trajectory is available to resolve
UPDF(x) [dashed line in Fig. 4.4(e)]. We obtain an energy landscape UI,PDF(x) has a barrier
higher than 5 kBT [solid line in Fig. 4.4(e)].

Table 4.1 Calibration parameters for different landscapes. L is the landscape number. P is the
nominal output power of laser. l is the length of a line trap. G is the distance between two
line traps. The estimation boundary is calculated under 95% confidence. χ2 is the sum of
squares of error between UPDF and UI,PDF . χC

2 is the sum of squares of error between UPDF
and C ·UI with C = 3.05.

No. P (W) l (µm) G (µm) Scaling factor C Bounds of C χ2 χC
2

L1 0.5 1.5 1.3 3.05 [2.97,3.15] 1.78 1.78
L2 0.1 1.5 1.3 3.40 [3.21,3.57] 4.26 5.15
L3 0.5 1.0 2.4 3.18 [2.85,3.52] 11.64 11.43
L4 1.0 1.5 1.4 3.49 [3.24,3.74] 28.20 32.69
L5 2.0 1.5 1.4 - - - -

It is worth nothing here, Eq. 4.2 is valid under the condition that the particle size is
sufficient smaller than the wavelength of the light, called Rayleigh approximation [84].
Our experimental length scale, however, does not fall in the Rayleigh approximation range
thus the generalized Lorentz-Mie scattering theory should be applied to describe the force
interaction between light and object [84]. However, our method works surprisingly well
for rebuilding bias-free potential energy landscapes. The accuracy of the rebuilt potential
energy landscape is further demonstrated in the next section where the depth of potential
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Fig. 4.4 Reconstruction of energy landscapes in the presence of shallow and deep energy wells
at equilibrium. (a) Fitting the effective energy landscape UI(x) (dash-dotted line) evaluated
from the intensity distribution I(x) with UPDF(x) (dashed line). This allows us to obtain
the calibrated energy landscape UI,PDF(x) (solid line). (b-d) The same fitting procedure is
carried out on different energy landscape configurations. (e) UPDF(x) is invalid in the face of
a high energy barrier. UI,PDF(x) is applied to estimate the energy landscape using I(x) of the
optical traps. The insets sketch the configuration of optical traps used for each experiment.
Note: the relative value of U(x) at each position shows the energy landscape experienced by
the particle.

energy landscape is as deep as 15 kBT by showing that the potential reconstructed from
particle speed is in good agreement with this method. We suspect that the confinement of
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microfluidic channel which constrains the light matter interaction to 1D may be one of the
reasons that our method works outside Rayleigh range. The theoretical reason behind is
worth further investigation.

4.2 Mapping potential energy landscapes by driving parti-
cles

4.2.1 Introduction

In order to measure the profile of deep energy wells, one approach is to drive the trapped
particle away from the energy minimum. For example, particles have been flushed by a
syringe pump through an optical potential [61]. The potential experienced by the particle
is then rebuilt based on the change of the particle velocity. In another work, an optically
trapped particle was approached by another trapped particle as a probe [87]. The energy
landscape was rebuilt from the displacement of the probe particle. Beside those two examples,
Piezoelectric stages [88, 89], dual beam optical traps [90] and gravity force [91] have been
employed to drive particles to high energy barrier regions which are otherwise rarely explored
at thermal equilibrium. In this section, we drag particles through an optically induced
potential to validate the optical intensity distribution method introduced in Section 4.1.

4.2.2 Theory

For systems at a low Reynolds number, the velocity of a particle driven under a constant
force Fdrive(x) remains constant due to no particle inertia. Meanwhile, an optically induced
potential U(x) exists a force Fopt(x) on the particle which influences the velocity of particle.
Overall, U(x) can be inferred with the knowledge of the particle velocity v(x) through
Eq. 2.21 (details in Section 2.3.3). However, the particle is also undergoing Brownian motion,
so v(x) here denotes the mean velocity of particles at x which is later used to resolve the
energy landscape.

By assuming the potential energy landscape generated by a laser line trap is a Gaussian
function, U(x) can be written down as [92]

U(x) =U0 · (1− exp[−k(x− x0)
2

2 ·U0
]) (4.5)
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where x0 is the position of the centre of the trap, k and U0 can be interpreted as trap stiffness
and depth in a typical optical trap. Here, k and U0 are used as fitting parameters. The relation
between v(x) and U(x) can be deduced as follows [61]

v(x) = vdrive(x)+
1
ζ

k(x− x0) ·U0 · (−exp[−k(x− x0)
2

2 ·U0
]) (4.6)

where ζ is the friction coefficient of the particle. By obtaining the experimentally measured
v(x), we can fit the velocity profile using k and U0 in Eq. 4.6, which can then be used to
reconstruct the energy landscape.

Here we introduce the Péclet number to give an idea of the relative importance between
Brownian motion and drift flux. It is defined by the ratio of the time a particle takes to diffuse
over its own radius to the time to be driven over its own radius, written as

Pe =
a2ζ

kBT
/

a
v
=

ζ va
kBT

(4.7)

where a is the particle radius and v is the velocity of the particle. While the effect of Brownian
motion is negligible compared to the driving force with Pe≫ 1, diffusion becomes more
important when Pe gets close to 1 [62].

4.2.3 Experimental methods

In this experiment, the particle is driven by moving a Piezo stage on which the sample cell
sits1. The microfluidic sample containing channels and colloidal suspensions is fixed on the
Piezo stage by magnets. By controlling the position of the Piezo stage, we can move the
sample cell at a constant velocity. The optical potential to be mapped is first placed outside
the channel, as illustrated in Fig. 4.5(a). A colloidal particle is trapped by the HOTs and
dragged to the centre of the channel. A typical microscope image of a particle in a channel is
shown in Fig. 4.5(b). Once the particle is released, the sample moves at a constant velocity
vdrive(x) by the Piezo stage towards the optical potential until the particle and channel pass
the optical potential. Measurements are repeated at least one hundred times for one potential
energy landscape to obtain mean velocity of particles along x. Here x is the particle position
on the recorded video frames, which is irrelevant to the position of the channel. Positions of
particles are extracted by the algorithm described in Section 3.4.1. v(x) is calculated by the
position difference between two video frames with a time difference of 0.02 s. vdrive(x) is
chosen to be big enough to push particle out the energy minimum. However, motion blur in

1This idea was first implemented by Dr. Michael Juniper [30] at University of Oxford.
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the recorded videos gets worse with vdrive(x) increased. So vdrive(x) is optimised subject to
the configuration of different energy landscapes.

Fig. 4.5 Driving a particle in a channel through an optical potential. (a) Sketch of the initial
position of a line trap outside the channel. A particle is placed at the centre of the channel.
Once the particle is released, the sample is moved towards the optical potential at a constant
speed. (b) An image of the moving sample with a superimposed picture of a stationary laser
line trap. The arrow indicates the moving direction of the sample cell.

4.2.4 Results and discussion

Individual particles are first driven through the channel with no external optical potential
placed on the driving path. The velocity of the particles here only depends on the magnitude
of the driving force, which is imposed by moving the sample at a constant speed. In
Fig. 4.6(a), the particle velocity v(x) is plotted as circles for a sample moving at 6 µm/s.
Each v(x) is obtained by averaging the velocities of one hundred particles on x. As can
be seen from Fig. 4.6(a), v(x) is constant over x. Next, by averaging all v(x), we find the
averaged velocity vave of 5.9 µm/s, which is closed to vdrive = 6µm/s. The Péclet number
Pe = 6.1 by putting vdrive into Eq. 4.7. We repeat these measurements at different vdrive and
plot the result in Fig. 4.6(b). The nearly perfect agreement between the driving velocity vdrive

and vave shows that inertia is indeed negligible in our microfluidic environment.
To map an optical potential, the optical trap is placed outside the channel on the channel

axis. The influence of the optical force on the movement of a particle can be easily seen from
the trajectory of the particle. A sample trajectory is plotted in Fig. 4.7(a). At the beginning
and the end of the trajectory, the particle is moving at a constant speed. However, the velocity
of the particle suddenly increases, then decreases sharply when the particle falls into the
optical trap and is forced out [between two dashed lines on Fig. 4.7(a)]. The relative velocity
of particle to channel, (v(x)− vdrive(x)) is plotted in Fig. 4.7(b) which clearly traces the
change of the local force.
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Fig. 4.6 (a) Velocity profile of a particle v(x) dragged without passing an optical energy
landscape. (b) Averaged velocity of particles vave driven at a constant vdrive without passing
an optical potential.

Fig. 4.7 Velocity of a particle driven through an optical potential. (a) A sample trajectory
shows the optical force existing on a particle. The solid line indicates the linear relation
between t and x. Red dashed lines indicate the non-linear region between t and x. (b) The
relative velocity of a particle to microfluidic channel v(x)− vdrive(x) (circles), whilst moving
through an optical line trap. The velocity profile is fitted by Eq. 4.6, plotted by a solid line.

Two conceptually similar methods are used to resolve the underlying potential energy
landscape using v(x) with result plotted in Fig. 4.8(a). (i) By subtracting vdrive(x) from v(x),
the optical force Fopt(x) along the moving axis x is obtained through the Stokes’ law (Eq. 2.2).
Fopt(x) is then integrated along x through Eq. 2.21 with dx equal to the length of one camera
pixel. The integration gives us the potential energy landscape, denoted as Uvelocity(x) [circles
in Fig. 4.8(a)]. The same method is used to rebuild energy landscape from v(x) for a channel
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without an optical potential, result plotted in Appendix A. (ii) Based on the assumption that
a line trap induced potential can be fitted as a Gaussian function, the velocity profile of
particles is first fitted by Eq. 4.6 which outputs two fitting parameters k and U0. The fitting
result is plotted by a solid line in Fig. 4.7(b). The fitting parameters are then employed in
Eq. 4.5 to get U f it(x) [solid line in Fig. 4.8(a)]. The energy landscape rebuilt from the two
methods matches each other.

Uvelocity(x) is further compared with UI,PDF(x) introduced in Section 4.1 to resolve the
potential energy landscape. First, we calculate UI(x) [dash dot line in Fig. 4.8(b)] from
the intensity distribution of the optical traps then calculated UI,PDF(x) by previous found
scaling factor C [dashed line in Fig. 4.8(b)]. Next, we calculate the Uvelocity(x) based on the
first method described in the previous paragraph and plot it against UI,PDF(x) in Fig. 4.8(b).
Remarkably, the result from two independent methods shows great agreement which further
verifies the optical intensity calibration method (detail in Section 4.1). It is worth noting
that the standard deviation of velocity of a moving particle ∆v =

√
2 ·D/Tf rame, where

Tf rame is the frame duration of the camera. By putting D = 0.25 µm2/s and Tf rame = 0.02
s into the calculation, we get an estimation of ∆v = 4.47 µm/s. An example of standard
deviations of v(x) can be found in Appendix A , Fig. 4.19(b). The standard deviation of v(x)
originates from Brownian motion of particles and is independent of the local force. Therefore
Uvelocity(x) should not be expected to detect small force variations, i.e a few femtonewtons.

Fig. 4.8 (a) The potential energy landscape determined using the velocity profile by method
(i) integrating via Eq. 2.21 (Uvelocity(x), circles) and method (ii) from the fitting Eq. 4.5
(U f it(x), solid line). (b) Comparison of the potential energy landscape rebuilt by the velocity
of particles (Uvelocity(x), solid line) and the optical intensity distribution (UI,PDF(x), dashed
line).
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4.3 Reconstructing energy landscapes from local transition
probability

4.3.1 Introduction

Trajectories of Brownian motion are collected via a range of experimental methods to rebuild
the underlying potential energy landscape. For example, (i) Force spectroscopy measures
the molecular extension of single proteins or nucleic acids. A conformational free-energy
landscape can then be reconstructed from this data to access the folding dynamics of each
single molecule [93, 94]. (ii) Fluorescence microscopy and electrophoresis are employed
in DNA translocation across channels and pores to study the effect of entropic barriers [95–
97]. (iii) Colloidal suspensions have been used in a wide range of studies due to their
applicability to experimental time and length scales. Example studies include exploring
hydrodynamic interactions [65, 98, 99], stochastic resonance [49, 50], optical ratcheting and
sorting [40, 44, 100] and mimicking transport in membrane channels [51, 52, 69]. In all
those cases, the system dynamics depends sensitively on the underlying potential energy
landscape. However, it is difficult to accurately determine the energy landscape.

There are two conventional ways to rebuild a time-stationary potential energy landscape,
denoted as U(x), from Brownian trajectories. In a system at equilibrium, the Probability
Density Function (PDF) of a large ensemble of single-particle trajectories relates to a
Boltzmann distribution that directly reflects the underlying U(x) [51, 57, 58] (details can be
found in Section 2.3.1 and 4.1.3). However, many synthetic and living systems are often
far from equilibrium [11, 81] and thus cannot be analysed using the PDF method. Splitting
Probability (SP) has recently emerged as an alternative method that overcomes this limitation.
The SP is the probability of a particle starting at x0 ∈ [a,b], where [a,b] is the defined analysis
interval, to reach a before it reaches b. It relates to U(x) as described in Section 2.3.2. Thus
given a large enough ensemble of single-particle trajectories which end at a or b individually,
this relation can be used to reliably infer the potential energy landscape, as has recently been
demonstrated in single-molecule experiments [59, 60].
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However, experimental systems often contain small numbers of long trajectories and large
numbers of short fragmented trajectories. Therefore they do not readily generate enough
long single-particle trajectories to use the SP method. In the case of diffusion experiments at
low density, video frames involving more than one particle are typically removed in order to
exclude the effect of inter-particle interaction [98] on the potential energy landscape [52, 69].
As illustrated in Fig. 4.9(a), overlapped trajectories of two particles diffusing in [a,b] are
removed from the initial long trajectories. This strategy generates several fragments that
typically start at some point and terminate in the close vicinity, shown by black points in
Fig. 4.9(b). In principle, these shorter fragments could still be treated using a SP analysis.
However in practice, it is difficult to estimate for short observation intervals since the particle
may not reach the interval end a or b in the trajectory fragment.

Fig. 4.9 Strategy of filtering out overlapped trajectories. (a) Sketch of removing multi-
particle trajectories within region [a,b]. The overlapped trajectories (red lines) are eliminated,
generating fragments of single-particle trajectories (black lines). (b) A sample trajectory
of two particles diffusing in the same channel. Overlapped trajectories are removed (red
circles), leaving several fragments of single-particle trajectories (black dots). The dashed
lines indicate the channel ends.

In this section, a new analysis method, the Local Transition Probability (LTP) is developed
to estimate U(x) from fragmented trajectories, both under equilibrium and non-equilibrium
conditions. Following the rules of Bayesian statistics, individual LTP is used to estimate the
underlying energy landscape through a Gaussian propagator. This method is demonstrated in
our colloidal channel experimental system and Brownian dynamics simulations. Compared to
the SP method, our LTP method depicts the underlying U(x) more accurately with less noise
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from the same trajectory ensemble. Therefore, the LTP method provides a better estimate of
potentials in more complex and realistic circumstances.

4.3.2 Theory

The trajectories of particles is obtained by the drag-and-release experiment as illustrated in
Fig. 4.1. Using this measurement, we are able to obtain single-particle trajectories that can
also be analysed with the PDF and SP approaches. This allows us to directly compare results
and performance with our LTP method under realistic conditions. In total, three different
trajectory analysis methods are used to rebuild the underlying potential energy landscape.

I. Probability Density Function
The PDF approach, as described in Section 2.3.1 (applicable to systems at equilibrium).

II. Splitting Probability
As a baseline for non-equilibrium methods, the SP approach earlier introduced by [59] is
implemented (detailed in Section 2.3.2). Formally, π(x) is defined as the probability of a
particle starting at x ∈ [a,b] to reach a before reaching b, as sketched in Fig. 4.10(a). π(x),
is measured experimentally by considering the two channel ends as a and b. For particles
diffusing in a double well energy landscape, π(x) to exit from the left end of the channel is
presented by squares in the top panel of Fig. 4.10(a). For particles starting at the centre of
the channel, they have a 50% of chance exiting from either end of the channel. However, the
particles starting at the left part of the energy landscape have a higher chance to exit from
the left entrance instead of jumping across the barrier then exiting from the right end. In a
potential energy landscape with a constant force towards the left side, a particle has a higher
chance to exit to the left end compared to the right end, as illustrated by squares in the top
panel of Fig. 4.10(b). Note here, π(x) is smoothed by a 100 nm boxcar filter to reduce noise
as documented in [60].

III. Local Transition Probability
We propose a different method that roughly follows the spirit of the SP method by measuring
a particle’s transition event to move leftward2. If the particle is observed at x′ one video
frame time after it had been observed at x, we consider that a transition event, as illustrated
in Fig. 4.10. Overall we get the LTP along x which is the probability that a particle is moving
leftward one video frame later. Compared to the definition of π(x), we can get more statistics
from LTP by analysing the same trajectory ensemble. For example, LTP of particles diffusing
in a double well energy landscape shows less steep changes compared to SP in the top panel
of Fig. 4.10(a). In a tilted energy landscape as Fig. 4.10(b), LTP is nearly constant along

2The method is co-developed with Dr. Sebastian Sturm in Universität Leipzig.
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Fig. 4.10 (a) Sketch of SP in a double well energy landscape with probability profiles. SP is
defined by the probability of a particle exit through the left absorbing boundary a compared
to b. (b) Sketch of LTP in a tilted energy landscape with probability profiles. LTP is defined
by the probability of a particle at x to diffuse to the leftwards compared to the rightwards.

x with a value slight higher than 0.5 indicating that particles have a higher chance moving
towards left.

The LTP of a particle at position x, denoted as φ(x) is shown in Eq. 4.8 with the PDF of
the particle p(x)

φ(x) =
∫ x
−∞

p(x)dx∫ x
−∞

p(x)dx+
∫

∞

x p(x)dx
(4.8)

To find the relationship between φ(x) and U(x), we need to write down the average
position displacement of the particle xmean(x) and the Mean Square Displacement (MSD) of
a particle in a potential energy landscape. Assuming that the potential energy landscape is
locally quadratic, the external force acting on the particle is

fext = F− (x− x0)κ +ξ (4.9)

where F denotes the force landscape, κ is the potential’s local spring constant and ξ is
random thermal noise. The fext in Eq. 4.9 has to balance the drag force ζ ẋ(t), where ζ

presents the friction coefficient. For < xmean(t) >, the random part cancels out because
< ξ >= 0, so we integrate
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ζ ẋ(t) = F−κ(x(t)− x0) (4.10)

which gives us

xmean(δx,∆t) = e−
∆tκ
ζ

(
δx− F

κ

)
+

F
κ

(4.11)

For MSD ξ is important because the external force is deterministic, so the broadening of
the particle density distribution comes from the random part, and unlike < ξ >, the squared
expression < ξ 2 > is not, in general zero. The fluctuation-dissipation theorem says that
random thermal white noise satisfies < ξ (t)ξ (t ′)>= 2δ (t− t ′)kBT ζ . Therefore, an extra
force Aδ (t) is added to Eq. 4.10 which generates a term Aexp(−tκ/ζ )/ζ to the solution.
The extra trajectory part caused by ξ is:

xξ (t) =
∫ t

0

ξ (T )exp(−(t−T )κ
ζ

)

ζ
dT. (4.12)

Then we square Eq. 4.12:

< xξ (t)x
′
ξ
(t)>=<

∫ t

0

∫ t

0
ξ (T )ξ (T ′)exp(−(t−T )κ/ζ )

exp(−(t−T ′)κ/ζ )/ζ
2dT dT ′ >

(4.13)

Because exp and ζ are fully deterministic, we take the thermal average <> into the
integral and get:

< x2
ξ
(t)>=

∫ t

0

∫ t

0
exp(−(t−T )κ/ζ )

exp(−(t−T ′)κ/ζ )/ζ
2 < ξ (T )ξ (T ′)> dT dT ′

(4.14)

Now we replace < ξ (T )ξ (T ′)> by 2δ (T−T ′)kBT ζ , which removes one of the integrals
and the <> brackets:

< x2
ξ
(t)>= 2

∫ t

0

exp(−2(t−T )κ/ζ )

ζ
kBT dT (4.15)

After integration, we get

MSD(∆t) =
kBT

(
1− e−

2∆tκ
ζ

)
κ

(4.16)
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The probability density of a diffusion particle is

p(x|x0) = A
exp

(
−(x−xmean(x0,∆t))2

2MSD

)
√

2πMSD
(4.17)

Putting Eq. 4.16 and 4.11 into Eq. 4.17, we obtain the relation between p and F

p(x|x0) = A

exp

−
(

coth
(

D∆tκ
kBT

)
−1

)(
(κx−F)e

D∆tκ
KBT +F−κx0

)2

4κkBT


√

2π

√
kBT−kBTe

− 2D∆tκ
kBT

κ

(4.18)

where ∆t denotes the inverse of the frame rate and D is the particle’s diffusion coefficient.
Combining Eq. 4.8 and 4.18, LTP is able to be used to estimate the force landscape F ,

which can be further used to get the energy landscape U(x) through F(x) = dU(x)
dx .

4.3.3 Trajectory analysis

When we apply the LTP method to analyse particle diffusion experiment, the x axis along
microfluidic channel is split in bins. Our notion of what constitutes a transition explicitly
does not refer to the particle crossing the boundary from bin i to bin i−1, but to what we
can measure experimentally: if the particle is observed at some bin j < i one video frame
after it had been observed at bin i, that constitutes a transition event. Using this definition, it
is irrelevant whether there had been intermediate transitions between i and j, or even to the
opposite direction k > i. We rewrite Eq. 4.8 as

φi ≈
∫ xi−∆x/2
−∞ p(x | xi)dx∫ xi−∆x/2

−∞ p(x | xi)dx+
∫

∞

xi+∆x/2 p(x | xi)dx
(4.19)

where p(x | xi) is the PDF of particles starting at xi diffusing along x, xi denotes the centre of
the i-th bin, ∆x is the bin size, and the approximate relation between φi and its right-hand
side expression becomes exact in the limit ∆x→ 0.

Our approach is readily formulated in a way that can be implemented by modern proba-
bilistic programming tools, given the experimental set of transition counts |(i←)|, |(i→)|
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where

(i←)≡{video frame pairs (n,n+1)

where x(n) = i and x(n+1)< i},
(i→)≡{video frame pairs (n,n+1)

where x(n) = i and x(n+1)> i},

the transition counts should follow a binomial distribution with position-dependent parame-
ters,

P(|(i←)|= k ∈ [0, . . . ,ni]) =

(
ni

k

)
φ

k
i (1−φi)

ni−k,

ni = |(i←)|+ |(i→)|
(4.20)

Implementing Eq. 4.19 in Stan [101] allows us to automatically obtain both the expectation
value and the local uncertainty of φ(x) (i.e., a set of position-dependent standard deviations,
means, medians, 5- and 95-percentiles) following the rules of Bayesian statistics. Finally,
the estimated φ(x) is put in Eq. 4.18 and 4.19 to evaluate the force landscape and the
corresponding potential energy landscape U(x).

4.3.4 Results and discussion

Reconstructing potential energy landscapes from experimental trajectories at equilib-
rium

The three analysis methods discussed above are implemented to reconstruct potential energy
landscapes at equilibrium using trajectory data extracted from experiments. UPDF(x) obtained
from Eq. (2.16) is able to effectively depict features of the potential energy landscape where
non-equilibrium forces are weak or absent, with results plotted in Fig. 4.11. We measured
UPDF(x) for particles diffusing in a microfluidic channel with no external force applied. As
expected, UPDF(x) [dash line Fig. 4.11(a)] is a nearly flat line in our quasi-1D channel. When
line traps were generated and focused into the channel by HOTs, UPDF(x) clearly shows the
position and the depth of the energy well. In Fig. 4.11(b), L1 represents the energy landscape
with one optical line trap coupled. UPDF(x) here exhibits an energy well in the middle of the
channel which matches the position of the line trap. In Fig. 4.11(c,d), L2 and L3 represent
the energy landscapes induced by two laser line traps with different powers. The solved
UPDF(x) shows the position and depth of the two energy landscapes.

For comparison, we applied the LTP method to reconstruct L0-L3 using the same trajec-
tory ensembles. The energy landscapes reconstructed by the LTP approach [ULT P(x), solid
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lines in Fig. 4.11] are close to the ones reconstructed using the PDF approach. However, the
LTP approach also allows us to estimate the error associated with the landscape estimation
(grey areas in Fig. 4.11).

Fig. 4.11 Reconstructing potential energy landscapes from experimental trajectories at
equilibrium by the PDF and the LTP methods. (a) U(x) is found to be flat in a channel with
no external energy landscape, labelled as L0. (b) With a laser line trap placed in the middle
of the channel, U(x) shows one energy minimum at the centre of the energy landscape L1.
(c) Two energy minimums are found in the reconstructed U(x), where two line traps are
coupled in the channel L2. (d) Two line traps with higher laser power compared to L2 are
imposed in the channel, with the energy landscape L3 showing two deep energy wells. The
insets show the laser trap configurations in the channels. The shaded area represents the
estimated standard deviation of ULT P(x). Note here the relative value of U(x) shows the
energy landscape experienced by the particle but the absolute value of U(x) is meaningless.
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We further compare our LTP method with the SP method under equilibrium conditions.
Energy landscapes USP(x) estimated via the SP approach managed to show the features of
a flat potential (L1), one energy minimum (L2) and two energy minimums (L3) [circles in
Fig. 4.12(a-c)]. However, USP(x) exhibits large fluctuations which make the energy landscape
hard to distinguish. By comparison, our LTP approach allows us to reconstruct landscapes
with substantially reduced noise [solid lines in Fig. 4.12(a-c)]. Importantly, USP(x) becomes
invalid in the face of an energy barrier in Fig. 4.12(d). During the measurement, no particle
starting near the left energy minimum exits from the right end of the channel, rendering
π(x) = constant. However, LT P(x) is able to pick up the moving direction of the particle
and be used to calculate ULT P(x) [solid line in Fig. 4.12(d)].

Fig. 4.12 Reconstruction of U(x) from experimental trajectories at equilibrium. The under-
lying potential energy landscape is evaluated using the SP approach (USP(x), circles), and
our LTP approach (ULT P(x), solid lines). L0-L3 represent four different energy landscapes
measured in channels. (a-c) the potential obtained from the splitting probability method
USP(x) agrees with our result ULT P(x). (d) USP(x) is missing due to a constant π(x). The
insets show the laser trap configurations in the channels. The shaded area represents the
estimated standard deviation of ULT P(x). Note: the relative value of U(x) shows the energy
landscape experienced by the particle but the absolute value of U(x) is meaningless.
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Reconstructing potential energy landscapes from trajectories in experiments out of
equilibrium

Both the PDF and SP methods exhibit serious limitations when investigating systems out
of equilibrium. We consider two forms of potential energy landscapes in non-equilibrium
states. Firstly, no optical potential is coupled in the channel but a hydrodynamics flow exists
between the two reservoirs. In the measurement reported in L4 [Fig. 4.13(a,c)], 193 particles
are released at randomised starting positions along the channel, with 152 particles exiting
to the left entrance of the channel and 41 particles leaving via the right entrance. In total,
80% of the particles exit through the left entrance of the channel, indicating a bias to the
left direction in L4. By measuring the averaged speed of particles in the channel, we get
Pe = 0.15 as the Péclet number through Eq. 4.7. A constant bias, however, does not affect
the time-averaged probability density and leads to a flat position histogram, so the PDF
method resolved potential appears to be flat [UPDF(x), dashed line in Fig. 4.13(c)]. In the
measurement reported in L5 [Fig. 4.13(b,d)], 206 particles exit via the left entrance and one
particle exits via the right channel entrance with Pe = 0.92. However, UPDF(x) reconstructed
for L5 [dashed line Fig. 4.13(d)] still does not show the bias.

The splitting probability based USP(x) is generally able to resolve U(x) in non-equilibrium
conditions, but requires a reliable estimation of the underlying splitting probability π(x).
π(x) collected for L4 and L5 is plotted as squares in Fig. 4.13(a,b). In the case of a weak
bias, USP(x) describes the energy landscape reasonably but exhibits substantial fluctuations
[circles in Fig. 4.13(c)]. In the data used for L5, π(x) [squares in Fig. 4.13(b)] is essentially a
constant π(x < b) = 0 with a data set consisting almost solely of left-exit events, which can
not generate a valid USP(x) via Eq. 2.19. In contrast, the potential energy landscape ULT P(x)
reconstructed from φ(x) exhibits the bias in energy landscape L4 and L5. The strength of
bias in the channel can be identified by comparing the value of φ(x) presented by squares
in Fig. 4.13(a,b). Besides, slopes of ULT P(x) [solid lines in Fig. 4.13(c,d)] also shows the
differences between the bias in two channels.



4.3 Reconstructing energy landscapes from local transition probability 59

Fig. 4.13 Reconstructing potential energy landscapes from experimental trajectories in the
presence of an external bias. (a,b) π(x) measured with two channel ends set as absorbing
boundaries. (c,d) Energy landscape reconstructed by three methods using the same trajectory
ensemble. Dashed lines show UPDF(x) obtained from the PDF method, circles show USP(x)
obtained from the splitting probability method, solid lines show ULT P(x) obtained from our
approach. The shaded area represents the estimated standard deviation of ULT P(x). Note that
the absolute value of a potential energy landscape is meaningless.
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Secondly, we study potential energy landscapes with external bias forces and optical
potentials coupled in the channel. Not surprisingly, the same limitations of the PDF and SP
methods appear on the analysis of L6 and L7, as shown in Fig 4.14. UPDF(x) [dashed line in
Fig. 4.14] only shows the contribution of optical traps to the potential energy landscape with
bias information missing. Meanwhile, few transition events detected in the opposite direction
of the bias make π(x) constant on the region between -2.2 to -1 µm in Fig. 4.14(a), which
cannot be used to calculate USP(x) in L6. In the measurement reported in L7, no transition
to the right end of the channel makes π(x) a constant value over the whole observation
region [Fig. 4.14(b)]. USP(x) is therefore invalid and missing in Fig. 4.14(d). Crucially, our
LTP approach allows us to recapitulate the energy landscape successfully when a bias is
superimposed on potential wells generated by laser line traps [solid lines in Fig. 4.14(c,d)].

Fig. 4.14 Reconstructing potential energy landscapes from experimental trajectories in the
presence of an optical potential and an external bias. (a,b) π(x) measured with two channel
ends set as absorbing boundaries. (c,d) Energy landscape reconstructed by three methods
using the same trajectory ensemble. Dashed lines show UPDF(x) obtained from the PDF
method, circles show USP(x) obtained from the SP method, solid lines show ULT P(x) obtained
from our approach. The shaded area represents the estimated standard deviation of ULT P(x).
Note that the relative value of U(x) shows the difference of the potential energy landscape.
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Effect of energy barriers on the resolved potential energy landscape

In principle, larger ensemble sizes are all that is needed to obtain reliable results from the
SP method. However, since the probability p of thermal activation across a potential with
difference ∆U scales exponentially in ∆U , p ∝ exp(∆U/kBT ), this solution may require
exponentially more trajectories and becomes impossible to implement in practice. The SP
approach fails when no particles jump through the energy barrier to touch the absorbing
boundary on the other side within the experiment time scale, resulting π(x) = constant and
invalid USP(x). Qualitatively, our LTP method is subject to the same caveat; energetic barriers
impede the motion of a particle, thus decreases the number of observed transition events
and the reliability of the obtained result. Quantitatively, however, the energy differences that
must be overcome to generate the local transitions analysed by our method are much smaller
than the energy differences that must be overcome to generate the non-local exit events
considered by the SP method. To test this, we explicitly create a double well potential energy
landscape with a high barrier in the middle, as plotted in Fig. 4.15. Within the experiment
time, particles stay either at the left or the right energy well without transition through the
barrier. As discussed before, rebuilding USP(x) is then impractical in this situation. For
the similar reason, the estimated uncertainty in ULT P(x) with our method [grey area in the
Fig. 4.15(a)] increases much more quickly around energetic constrictions than in a flat and
featureless potential. However, ULT P(x) matches UPDF(x) well when it is only calculated

Fig. 4.15 Reconstruction of potential energy landscapes with a high barrier. UPDF(x) (dashed
line) and ULT P(x) (solid line) gained from the same experimental trajectories data when
calculated (a) along the whole observation region and (b) within the energy wells. The shaded
area represents the estimated standard deviation of ULT P(x). The experiment is conducted at
equilibrium. Note that the relative value of U(x) shows differences of the potential energy
landscape.
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within the regions where trajectories are available near the energy wells, as compared in
Fig. 4.15(b).

Effect of the size of trajectories on the resolved potential energy landscape

In general, one would collect more experimental data to improve the estimation of U(x).
We consider this for our method by using different sizes of trajectory data from the same
ensemble to rebuild an potential energy landscape at equilibrium. Using the LTP algorithm,
the standard deviation of ULT P(x) decreases with the increased size of experimental trajectory
data, as demonstrated by grey areas in Fig. 4.16(a-d). However, the LTP method managed to
output reasonable potential using the smallest tested number of trajectories, ULT P(x) plotted
by a solid line in Fig. 4.16(a) using N = 3966 particle trajectories.

Importantly, ULT P(x) remains constant with different data sizes, as compared in Fig. 4.16(e).
Meanwhile, UPDF(x) is in a good agreement with ULT P(x) in all the tests. However, having a
small size of trajectory (N = 3966) makes the SP incapable of reconstructing the potential
energy landscape [circles in Fig. 4.16(a)]. The results of USP(x) improve with increased
numbers of trajectories used for the calculation, but USP(x) is still significant more noisy
compared to ULT P(x) in all the cases.
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Fig. 4.16 Energy landscape reconstructed from ensembles of (a) N = 3966, (b) N = 9689,
(c) N= 20811 and (d) N= 39416 experimental particle trajectories obtained by coupling a
laser line in the centre of a microfluidic channel without any external bias. Comparison of
the energy landscape estimated via the PDF (UPDF(x), dashed lines), the SP (USP(x), circles)
and the LTP approach (ULT P(x), solid lines and grey areas indicating mean and standard
deviation, respectively). (e) shows the overlapping of ULT P(x) calculated by different N.
Note that the relative value of U(x) shows the difference of the potential energy landscape at
different positions.
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All three methods include binning the observation region x to measure the position
density, the splitting probability and the local transition probability. The effect of the bin size
is tested on an energy well at equilibrium with results plotted in Fig. 4.17. USP(x) is affected
by the bin size most severely. The fluctuation seen in USP(x) becomes more significant with
a smaller bin size by analysing the same trajectory ensemble (circles in Fig. 4.17). UPDF(x)
also fluctuates more with a smaller bin size which provides less data for one bin [dashed lines
in Fig. 4.17]. By comparison, the bin size on LTP analysis was found to have little effect on
the rebuilt potential energy landscape and the error bar, as the solid lines and grey areas in
Fig. 4.17(a-c) are almost identical.

Fig. 4.17 Energy landscape reconstructed from the same ensemble of experimental particle
trajectories obtained at equilibrium with a Bin Size (BS) of (a) BS = 0.05 µm, (b) BS = 0.025
µm and (c) BS = 0.0125 µm using the PDF (UPDF(x), dashed lines), the SP (USP(x), circles)
and the LTP approach (ULT P(x), solid lines and grey areas indicating mean and standard
deviation, respectively). Note that the relative value of U(x) shows the difference in the
potential energy landscape.
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4.4 Reconstructing energy landscapes with high barriers
at non-equilibrium

While the optical intensity distribution method does not contain information of non-equilibrium
forces, the trajectory-based method fails in reconstructing energy landscapes with high bar-
riers. However, high energy barriers appear frequently in non-equilibrium situations, for
example membrane proteins with binding sites transport solutes along the electrochem-
ical gradients. Therefore, measuring such energy landscapes is of vital importance for
understanding those transport processes.

4.4.1 Method

We combine the bias sensitive LTP analysis (Section 4.3) with calibrating the optical intensity
distribution method (Section 4.1) to estimate an potential energy landscape with high energy
barriers under non-equilibrium conditions. We first approximate the bias induced energy
landscape ULT P(x) using our LTP method in a microfluidic channel without optical potentials.
Then, we estimate the potential with high energy barriers and external bias by using the
following equation

UI,B,PDF(x) =UI(x) ·C+ULT P(x) (4.21)

where UI,B,PDF(x) denotes the assessed potential, C is the scaling factor and ULT P(x) is the
energy landscape of the bias.

4.4.2 Results and discussion

The reconstruction process consists of two steps. Step I: The drag-and-release measurements
are carried out in the channel without external optical potentials. The potential energy
landscape ULT P(x) is inferred from the LTP along x to obtain information about the bias
[solid line in Fig. 4.18(a)]. As demonstrated in Section 4.3.4, UPDF(x) [dashed line in
Fig. 4.18(a)] rebuilt through the PDF of particles does not show the bias information, but
ULT P(x) depicts well a tilted potential with an external bias towards the right end of the
channel. Here UI(x) = 0 because no optical potential is imposed in the channel. Step II:
optical traps are coupled into the channel by HOTs. UI(x) is calculated by putting the
intensity distribution I(x) into Eq. 4.1. Here I(x) is generated and measured by HOTs so
it does not include the information of the microfluidic environment. Finally, UI,B,PDF(x) is
obtained by putting the scaling factor C, the measured ULT P(x) and UI(x) into Eq. 4.21.
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Fig. 4.18 Reconstruction of energy landscapes in the presence of energy barriers combined
with bias. (a) Energy landscape in a channel with bias reconstructed via the PDF approach
UPDF(x) (dashed line) and the LTP approach ULT P(x) (solid line). Note here, UI(x) = 0
in this energy landscape and Pe = 0.7. (b) Energy landscape in a channel with bias and
shallow energy barriers. Both ULT P(x) and the bias calibrated UI,B,PDF(x) accurately describe
the energy landscape in the simultaneous presence of bias and shallow wells. (c) Energy
landscape in a channel with bias and high energy barriers. Both UPDF(x) and ULT P(x) fail
to reconstruct the energy landscape in the presence of external bias and a high barrier. The
bias calibrated UI,B,PDF(x) manages to estimate the energy landscape. The grey shaded area
represents the estimated standard deviation of ULT P(x). Note that the absolute values of the
left and right part ULT P(x) is adjusted to show the agreement with UI,B,PDF(x). Insets show
the configuration of optical potentials and the bias direction.

This method is first validated in an energy landscape with a low barrier and bias. With
particles travelling along the energy landscape, our LTP method is used to reconstruct the
energy landscape obtaining ULT P(x) [solid line in Fig. 4.18(b)] showing two energy wells
with a bias force to the right end of the channel. UI,B,PDF(x) [dash-dotted line in Fig. 4.18(b)]
obtained from Eq. 4.21 exhibits similar energy landscape compared to ULT P(x). The result
matches the nominal potential used in HOTs, as sketched in the inset of Fig. 4.18(b). We then
apply this method to reconstruct a potential with high barriers at non-equilibrium. Neither
ULT P(x) [solid line in Fig. 4.18(c)] nor UPDF(x) [dashed line in Fig. 4.18(c)] work in the
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energy barrier region as no particle transitions occur. Consequently, the relative difference
between the left and right part of the split energy landscape is unknown. However, UI,B,PDF(x)
[dash-dotted line in Fig. 4.18(c)] reconstructed from the intensity distribution and the bias
potential manages to provide an estimation of the underlying energy landscape. The absolute
values of the left and right part of ULT P(x) and UPDF(x) are adjusted to show the agreement
with UI,B,PDF(x).

4.5 Conclusion

In this chapter, HOTs are used to modulate potential energy landscapes inside microfluidic
channels and the potential energy landscapes experienced by colloidal particles are recovered
by a number of methods. We first consider the methods to reconstruct potential landscapes
with deep minima. An effective energy landscape is first estimated based on the intensity
distribution of optical traps. This is then calibrated with a potential energy landscape inferred
from the trajectories of particles. There is no high energy barrier in the potential energy
landscape used for calibration purpose to obtain a valid potential from the trajectory-based
methods. After obtaining a scaling factor from the calibration procedure, the optical intensity
distribution is used to estimate potential energy landscapes with high barriers where few
or no transitions event happen. Secondly, the energy landscape is measured independently
by driving a particle in the channel under a constant force. The change of mean particle
velocity relates to the potential of mean force experienced by the particle. Notably, the
velocity-resolved potential matches the potential obtained by measuring the effective energy
landscape from the intensity distribution of optical traps.

Next we consider methods to rebuild energy landscapes in systems out of equilibrium. We
develop a new approach using the local transition probability of particles to accurately char-
acterise stationary 1D potential energy landscapes. Our method is demonstrated in colloidal
diffusion experiences and Brownian dynamics simulations, with details in Appendix B and C.
Our method improves the conceptually similar splitting probability method by (i) allowing
for the unbiased usage of small trajectory fragments (ii) providing us with systematic error
estimates and (iii) increasing the accuracy of the obtained potential estimated at identical
ensemble sizes. Experimentally, our approach demands no specialized equipment as it
exclusively relies on the conventional microscopy technique, and is readily applied to single
molecule measurements via fluorescence microscopy, force spectroscopy or electrophoresis.

One step further, the optical intensity method is combined with our LTP method to
estimate potential energy landscape with high barriers under non equilibrium conditions.
To achieve this, the potential of the bias is first resolved via LTP without external optical
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potentials. Afterwards, the underlying potential is determined as the sum of the bias and the
optically induced potential. Our work provides a new method to estimate potential energy
landscape with high barriers which is inaccessible by trajectory based analysis methods. The
knowledge of an potential energy landscape is of fundamental importance to the application
of optical tweezers in sorting, optical ratcheting, stochastic resonance and measurements of
reaction profile in chemistry.

Appendix

A. Energy landscape in a channel and standard deviation of the velocity
profile

Fig. 4.19 (a) Energy landscape reconstructed from particle velocity v(x) for a channel with
no external potential. (b) Standard deviation of particles driving under a constant force.

B. Simulation method

Brownian dynamics simulations were carried out to compare with experimental results.
The simulation of Brownian motion in a 1D channel is implemented in Julia based on the
msdanalyzer algorithm proposed by [102]. External energy landscapes are added to the
simulation with help from Prof. Leonardo Dagdug [37, 103]. Based on the Langevin equation
(Eq. 2.7), the position of a Brownian particle xn+1 in a potential energy landscape UMODEL(x)
is obtained by

xn+1 = xn + xran +β ·D ·F ·∆t (4.22)

Here, xn is the previous position of the particle. xran is a pseudo random number generated
with a Gaussian distribution with average position displacement µ = 0 and standard deviation
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σ =
√

2D∆t, which represents the random walk of the particle. D is the diffusion coefficient
of the particle and assumed to be constant in the channel. β = (kBT )−1 with kB denoting
the Boltzmann constant and T denoting the absolute temperature. Force F is derived from
UMODEL(x) through Eq. 2.6.

UMODEL(x) is chosen to be in line with the potential energy landscape imposed in
experiments. For example, a double well energy landscape at equilibrium is modelled by
UMODEL(x) = x2 + cos(x) where x is the channel longitudinal axis. In a non-equilibrium
setting, a constant force is applied along x. UMODEL(x) = −B · x+ x2 + cos(x) is used to
describe the double well energy landscape under non-equilibrium conditions. In this case, a
constant force with strength B is exerting on the particle with a double well energy landscape
imposed simultaneously.

During the simulation, a single particle is started at a random position chosen from a
uniform distribution along the channel length. Experimentally obtained diffusion coefficient
D and camera frame time ∆t are used as parameters in Eq. 4.22. The first thirty positions of
each particle trajectory are eliminated to exclude the effect of starting positions. Trajectories
of particles are terminated at their first contact with each of the perfect absorbing boundaries,
which are set at the channel ends.

C. Reconstructing synthetic potential energy landscapes from Brownian
simulations

Brownian dynamics simulations are conducted as described in Appendix B. The simulation is
started by letting a particle diffuse from a random position inside the channel and terminated
when the particle hits one of the two channel ends. Trajectories of two hundreds particles are
used to reconstruct one potential energy landscape. Under the equilibrium condition, UPDF(x)
[dashed line in Fig. 4.20(a,b)] accurately reproduces the underlying UMODEL(x) [dotted line
in Fig. 4.20(a,b)] for a flat potential energy landscape S1 and a sinusoid potential S2. ULT P(x)
[solid line in Fig. 4.20(a,b)] using our LTP method gives similar results as the PDF method
under the equilibrium condition and matches with the underlying potential UMODEL(x). By
comparison, USP(x) [circles in Fig. 4.20(a,b)] calculated from the SP approach comes with
significant noise by analysing the same trajectory ensembles for S1 and S2.

In non-equilibrium setting S3 and S4, constant external forces are added to the energy
landscape S1 and S2 in opposite directions. In energy landscape S3, UMODEL(x) is a tilted
line with an external force pushing particle towards the left end of the region. UPDF(x)
deviates strongly from UMODEL(x) in the result reported in Fig. 4.20(c). USP(x) [circles in
Fig. 4.20(c)] is able to resolve part of the energy landscape but becomes invalid when all the
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particles exit to the left end. In energy landscape S4 plotted in Fig. 4.20(d), UPDF(x) exhibits
the position of the energy wells but not the external force. USP(x) [circles in Fig. 4.20(d)]
shows a potential energy landscape matching UMODEL(x) with an observable amount of
fluctuations in the resolved landscape. By comparison, our method ULT P(x) (solid lines in
Fig. 4.20) accurately reproduces UMODEL(x) in all the tested energy landscape configurations,
both in and out of equilibrium. ULT P(x) is in line with USP(x) in all the simulations but
comes with significantly less uncertainty (shaded area in Fig. 4.20).

Fig. 4.20 Comparison of the energy landscape used in simulations (UMODEL(x), dotted
lines) and the energy landscapes estimated via the PDF (UPDF(x), dashed lines), the SP
(USP(x), circles) and the LTP approach (ULT P(x), solid lines and grey areas indicating mean
and standard deviation, respectively). (a,b) is conducted at equilibrium settings. (c,d) is
conducted at non-equilibrium settings. Note that the relative value of U(x) shows the potential
energy landscape at different positions along the channel.



Chapter 5

Particle transport across a channel via
an oscillating potential1

Membrane protein transporters alternate their substrate-binding sites between the extracellular
and cytosolic side of the membrane according to the alternating access mechanism. Inspired
by this intriguing mechanism devised by nature, we study particle transport through a channel
coupled with an energy well that oscillates its position between the two entrances of the
channel. We optimise particle transport across the channel by adjusting the oscillation
frequency. At the optimal oscillation frequency, the translocation rate through the channel is
a hundred times higher with respect to free diffusion across the channel. We also test the
effect of particle concentrations in the reservoirs on the transport process.

To further investigate the stochastic gating phenomenon found in membrane transport,
we oscillate the potential energy landscape stochastically by frequencies randomly chosen
from exponential distributions. We find that a potential oscillating stochastically in channel
enhances the translocation probability compared to a potential oscillating deterministically.
Our findings reveal the effect of time dependent potentials on particle transport across a
channel and will be relevant for membrane transport and microfluidic applications.

1Part of this chapter has been published as Particle transport across a channel via an oscillating potential
Yizhou Tan, Jannes Gladrow, Ulrich F. Keyser, Leonardo Dagdug, and Stefano Pagliara, Phys. Rev. E, 96,
052401 (2017)
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5.1 Particle transport in a potential energy landscape os-
cillating deterministically

5.1.1 Introduction

Transport proteins are ubiquitously expressed in all kingdoms of life and allow for the
continuous exchange of ions and nutrients across cell membranes [8]. A feature common to
all transporters is their capability to bind their substrates. The number, position and strength
of the substrate-binding sites can be optimised in order to maximise substrate exchange
across the cell membrane [104]. The physical mechanisms underlying transport optimisation
have been extensively investigated experimentally. Crystal structure of GLUT1 has showed
the existing of binding sites in glucose transporters [15, 105]; binding site has been found
in LamB formed pores [106] and OmpF [16] in lipid bilayer experiments; binding effect
has been demonstrated in transport of maltodextrins through maltoporin by ionic current
analysis [107]; optical potential has been coupled in microfluidic channels to mimic the
binding effect in channel transport in our group [51, 52]. Molecular dynamics simulation
has revealed channel-glycerol hydrogen bonding interactions [22]. Meanwhile, the theory
behind the binding effect has been studied by a continuum diffusion model based on the
Smoluchowski equation which showed affinity for molecules helps transport in biological
channels [24], a discrete stochastic model [25] which demonstrated presence of attractive
binding sites in the pore can accelerate the particle current and a general kinetic model where
transport is affected by inter-particle interactions in a confined space [26].

However, these studies do not take into account a fundamental hallmark shared by
several transporters that is their capability to alternate their substrate-binding sites between
the extracellular and cytosolic side of the membrane according to the alternating access
mechanism proposed by Oleg Jardetzky in 1966 [9]. A simplified alternated particle transport
mechanism can be achieved by modulating the energy landscape in which particles diffuse.
To the best of our knowledge, the effect of oscillating potentials on particle transport across
one-dimensional (1D) channels remains to be investigated.

In this section, inspired by the naturally occurring alternating access transport, we use our
synthetic membrane experimental system [51, 52, 98] to couple a modulated potential in a
quasi 1D microfluidic channel. Specifically, Holographic Optical Tweezers (HOTs) [64, 67]
are used to create an optical potential that oscillates deterministically in time between the
two entrances of the channel. We find that (i) there is an optimal oscillation frequency that
maximises the particle transport rate through the channel; (ii) at this oscillation frequency,
the particle transport rate is two orders of magnitude larger with respect to free diffusion;
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(iii) the observed optimal oscillation frequency is close to the time which particles take to
diffuse across the region between the centres of the energy well positions.

5.1.2 Model

We first study the effect of an imposed external energy well on particle transport across a
channel in a 1D channel where particles start at a point. As sketched in the inset of Fig. 5.1(a),
all the particles initiate at point B in the channel. Channel ends A and C are two absorbing
boundaries which terminate the particle once it touches either side. Particle flux on the
absorbing boundary is related to the starting position of the particle and has been deducted in
literature [53] as:

JBA(t) =
πD
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where z̃(t)≡ exp(−π2Dt/L2), L is the channel length, v is the drift speed, D is the diffusion
coefficient of the particle, α is the length ratio between AB and BC, the theta function
ϑ3(r,q) = 2∑

∞
k=1 cos(2rk)qk2

.
In an equilibrium environment, we obtain the particle flux at A and C as plotted by

dashed and solid lines in Fig. 5.1(a) by putting α = 0.7/2.4, D = 0.25 µm2/s in Eq. 5.1. JBA

overshoots JBC at the beginning of the diffusion due to the starting position B is closer to A.
Then both fluxes decrease to zero as particles escape the channel eventually.

We then discuss the alternating access model in two stages. At stage I, particles start at B
and diffuse freely in the channel. If the particle touches boundary C, we assume it passes the
channel centre and starts diffusion again as stage II. The channel is divided into two parts as
AC and CE, sketched in the inset of Fig. 5.1(b). For a translocation event, the particle first
diffuses from B to C as stage I, then starts again at D and finally exits from E at stage II.
By integrating J, we can get the total number of particles absorbed by a boundary which is
N =

∫ T
0 Jdt. The translocation rate of particles through the channel can then be written down

as

JT =
NBC ∗NDE

2TΩ

(5.2)

where TΩ is the equivalent diffusion time for stage I and II. The calculated translocation rate
is plotted in Fig. 5.1(b) with a maximum found at 4.06 s. This is worth noting here that the
model simplifies the actual channel transport by excluding the process of particle diffusing
into the channel and the possibility of multiple transport periods. However, it gives us a
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guide line that an optimal oscillation frequency might exist. In the next section, experiment
is undertaking and the relationship between the diffusion period and the particle transport is
investigated in details.

Fig. 5.1 Particle flux in 1D diffusion between two absorbing boundaries. (a) Particles start at
point B within absorbing boundaries A and C. JBA (dashed line) represents the particle flux at
A and JAC (solid line) represents the particle flux at C. (b) In a two-stage model, a particle
first starts at B and terminates at C. Then it starts from D and ends at E. The translocation
rate JT from B to E is calculated by Eq. 5.2.

5.1.3 Experimental methods

Our microfluidic devices are fabricated as described in Section 3.3.3 [68, 69]. They consist
of two 3D reservoirs with a depth of 12 µm separated by a Polydimethylsiloxane barrier
and connected by an array of microfluidic channels. Each channel has a cross section of
around 0.9×0.9 µm2 and a length of 2L = 4.8 µm. The reservoirs are filled with spherical
polystyrene particles of diameter (510±10) nm. We use a laser line trap generated by HOTs
to create an attractive potential well that extends from the centre of the channel to 1.7 µm in
the left reservoir [Fig. 5.2(a), (c) and dotted line in Fig. 5.2(d)]. After a time interval TΩ, we
switch off this laser line and simultaneously switch on a second laser line trap that extends,
for a same time interval TΩ, from the centre of the channel to 1.7 µm in the right reservoir
[solid line in Fig. 5.2(d)]. In this way, we produce an attractive potential that oscillates at
frequency f = (2TΩ)

−1 between the two channel entrances [Fig. 5.2(a,d)]. We estimate the
extension, depth and shape of the energy wells from the intensity distribution of the line traps
as discussed in Chapter 4. Experiments are performed over a range of oscillation frequencies
and particle concentrations c in the reservoirs. The particle concentration in the reservoirs
are estimated by the method introduced in Section 3.4.3.
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Fig. 5.2 Schematics of particle transport via an oscillating potential. (a) Schematics illus-
trating the oscillation of the position of a laser line trap between the left and right hand side
of a channel at a frequency f. (b) Bright-field image of a polystyrene particle diffusing in a
microfluidic channel. (c) Corresponding dark-field image showing the intensity distribution
of a laser line trap positioned at the left entrance of the microfluidic channel. The dashed
lines highlight the channel contours. (d) Oscillating energy potential created when the laser
trap is positioned at the left (dotted line) and at the right channel entrance (solid line). The
potential extension, depth and shape are estimated from the intensity distribution of the laser
traps. The vertical lines indicate the channel entrances. (e) Schematics illustrating particle
return (e) and translocation (f) events.

Videos of particles undergoing Brownian motion in the channels and reservoirs are
recorded and particle trajectories are extracted (details in Section 3.4). We define an attempt
as the event for which a particle enters into the channel from either reservoirs and explores
it for at least 33 ms, one frame time of the camera that we use [52]. Once a particle has
entered the channel, it can either go back to the same reservoir, defined as a return event
[Fig. 5.2(e)], or translocate through the channel and exit to the opposite reservoir, defined as
a translocation event [Fig. 5.2(f)]. We determine the attempt rate JA which is the sum of the
return and translocation events, the translocation rate JT and the translocation probability PT ,
defined as JT/JA. Average rate values for each oscillation frequency are obtained from at
least five experiments of one hour duration each. In order to collect statistically sufficient
samples for the translocation time, we use HOTs for drag-and-release experiments. In the
drag-and-release experiment, a particle is first trapped in one of the reservoirs by the HOTs



76 Particle transport across a channel via an oscillating potential

[Fig. 5.3(a)]. The particle is then dragged into the channel and placed at the channel entrance
[Fig. 5.3(b)]. It is released with an optical line trap generated simultaneously [Fig. 5.3(c)].
The position of the line trap is oscillating between the two channel entrances at a frequency
f [Fig. 5.3(d)].

Fig. 5.3 Schematics of the drag-and-release experiment. (a) A particle is trapped in one
of the two reservoirs. (b) The particle is dragged and positioned at one of the two channel
entrances. (c) The particle is released from the optical trap and simultaneously a laser line is
switched on at the same channel entrance. (d) After TΩ this laser line is switched off and a
laser line is switched on at the opposite channel entrance. The laser line position is oscillated
at a frequency f = 1/(2TΩ) until the particle leaves the channel. This experiment is repeated
at least 300 times for each f and performed at particle concentration c = 0.01 nM in the
reservoirs.

5.1.4 Results and discussion

Dependence of translocation rate and probability on the frequency of the oscillating
potential

The effect of an oscillating potential on particle transport is first studied in a microfluidic
environment in which particles are diffusing freely in reservoirs, as sketched in Fig 5.2(a).
The optical potential is oscillating at frequencies f from 0.025 to 1 Hz. Three different con-
centrations of particles c are used for experiments. The effect of f and c on particle transport
is investigated in terms of attempt rate JA, translocation probability PT and translocation rate
JT , with results plotted in Fig. 5.4. The rates are averaged from at least five experiments of
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one hour duration. In order to better identify the peaks, an empirical two-term exponential
function is used to fit PT and JT for each c. The fitting details can be found in Appendix A.

Fig. 5.4 Dependence of (a) attempt rate JA, (b) translocation probability PT and (c) translo-
cation rate JT on the potential oscillation frequency f with a particle concentration of 0.07
(circles), 0.22 (triangles) and 1.01 nM (squares) in the reservoirs. Lines are two-term expo-
nential fitting of the data and allow identifying the following peak frequencies: 0.05, 0.10 and
0.15 Hz for PT and 0.14, 0.16 and 0.19 Hz for JT at c=0.07, 0.22 and 1.01 nM, respectively.

For the lowest tested particle concentration c = (0.07± 0.01) nM, the attempt rate JA

is (104± 27) particles (h−1) at f = 0.025 Hz. It increases with the oscillation frequency
up to (424± 105) particles (h−1) at f = 0.5 Hz [circles in Fig. 5.4(a)]. By contrast, the
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translocation probability PT first increases with f then sharply decreases down to 0.02
at f = 0.5 Hz [circles in Fig. 5.4(b)]. The maximum PT value is found at f = 0.05 Hz.
Meanwhile, the translocation rate JT has a weak dependence on the oscillation frequency
[circles in Fig. 5.4(c)] which peaks at 0.1 Hz with 16 particles (h−1) at c = 0.07 nM.

At higher particle concentrations, the frequency of the oscillation strongly affects particle
transport across the channel. For c = (0.22±0.06) nM, JA increases nearly linearly with f
up to a maximum of (1733± 163) particles (h−1) at f = 1 Hz, which is nearly five times
higher than JA at f = 0.05 Hz [triangles in Fig. 5.4(a)]. However, PT first increases with f
and peaks at 0.1 Hz with a measured PT of 0.1, then drops to 0.005 at f = 1 Hz [triangles in
Fig. 5.4(a)]. Meanwhile, JT measured under c = 0.22 nM shows a similar trend as PT . JT

reaches a maximum with 43 and 44 particles (h−1) at f = 0.1 and 0.25 Hz, then decreases to
10 particles (h−1) at f = 1 Hz [triangles in Fig. 5.4(c)]. From the exponential fitting, PT and
JT peak at 0.1 Hz and 0.16 Hz, respectively.

At an even higher particle concentration c = (1.01± 0.07) nM, JA decreases with f
from 0.025 Hz to 0.1 Hz then increases back to 5699 particles (h−1) at 1 Hz. From the
empirical exponential fitting results, PT and JT first increase and peak at an optimal oscillation
frequency f of 0.15 Hz and 0.19 Hz respectively, and then both decrease for higher f [squares
in Fig. 5.4(b) and (c)].

Overall, we find that JA and JT increase with c for all the tested oscillation frequencies f
[Fig. 5.4(a,c)], but this is not the case for PT . In the result plotted in Fig. 5.4(b), the maximum
PT at c = 1.01 nM (squares) is about three times lower than the maximum PT at c = 0.07 nM
(circles) and 0.22 nM (triangles). Interestingly, PT shows a maximum value for f close to 0.1
Hz for all three tested particle concentrations.

Moreover, we compare particle transport in an oscillating potential to transport in a
channel without external potentials and a channel with a stationary potential at c = 0.22 nM
in Fig. 5.5. In the channel without an external potential, particles enter the channel by free
diffusion. Without the help of an attractive potential at the channel entrances, JA and JT are as
measured as 85 and 0.4 particles (h−1) [dashed lines in Fig. 5.5(a,c)].The stationary potential
has the same extension but 42% smaller depth with respect to the oscillating potential.
The reduced depth avoids channel jamming in the presence of a static potential (details in
Appendix B). In the presence of a stationary potential, JA and JT reach 447 and 23 particles
(h−1) [dotted lines in Fig. 5.5(a,c)]. By comparison, JA in an oscillating potential [triangles in
Fig. 5.5(a)] overtakes JA in the stationary potential for f ≥ 0.25 Hz. In terms of JT , the value
measured in the oscillating potential at the optimal oscillation frequency f = 0.1 Hz is 102
times higher than the one measured in free diffusion [dashed line in Fig. 5.5(c)] and twice
the one measured for a static potential constantly switched on [dotted lines in Fig. 5.5(c)].
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Fig. 5.5 Comparison of (a) attempt rate JA, (b) translocation probability PT and (c) translo-
cation rate JT between the oscillating potential configuration (triangles), a static potential
with two energy wells with the same extension but 42% smaller depth with respect to the
oscillating potential (dotted line) and a channel without optical potential coupled (dashed
line).

PT in the oscillating potential at f = 0.1 Hz [triangles in Fig. 5.5(b)] is 2.5 times higher than
the one measured in the stationary potential [dashed line in Fig. 5.5(b)] and 20 times higher
the one in the channel without external potential [dotted line in Fig. 5.5(b)]. For c = 1.01
nM at f = 0.1 Hz, JT [squares in Fig. 5.4(c)] is 65 times higher than in free diffusion and 4
times higher than in the presence of the static double well potential. The details of particle
transport in a channel without an external potential at different c can be found in Appendix C.
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Dependence of the channel translocation time on the frequency of the oscillating po-
tential

In order to have a better understanding in the aspect of single particle diffusion, we perform
drag-and-release experiments to measure the translocation times of single particles across
the channel. The experiment method is illustrated in Fig. 5.3 and repeated at least 300 times
for each f at c = 0.01 nM. The low c ensures that particles rarely diffuse into the channel by
free diffusion. During experiments, a particle is released at the left channel entrance and a
translocation is defined as the particle exiting from the right channel entrance.

We first measure the distribution of the experimentally collected translocation times for
each particle under an oscillating potential with result plotted in Fig. 5.6. We find resonance-
like peaks with the first maximum located at 40.5, 20.5, 10.5 and 4.5 s for f = 0.025,0.05,0.1
and 0.33 Hz, respectively [red bins in Fig. 5.6(a-d)]. Interestingly, the position of the first
peak is the inverse of the oscillation frequency used in experiment. For example, the first
peak (10.5 s) in Fig. 5.6(c) is very close to the inverse of the oscillation frequency (0.1
Hz). By averaging six sets of independent measurements obtained in the drag-and-release
experiments, PT is normalised and plotted as a function of f in Fig. 5.6(f). We find that PT is
maximised at f = 0.1 Hz.

To have a better understand of the diffusion process, Brownian dynamics simulations in
a 1D channel with length 2L are performed using the experimentally measured oscillating
potential2. Particle trajectories start at −L and are terminated at their first contact with each
of the perfect absorbing boundaries set at −L and L that are the channel entrances. We
measured the fraction of particles that end at L/2 as well as their transit time defined as the
time that a particle takes to reach L for the first time. The actual position of a particle, xn+1,
is given by xn+1 = xn + xran +βDcF∆t, where xn is the previous position, xran is a pseudo
random number generated with a Gaussian distribution with average position displacement
µ = 0 and standard deviation σ =

√
2Dc∆t, β = (kBT )−1and force F was derived from the

measured potential [Fig. 5.2(d)]. When running simulations we set ∆t = 1×10−4 s and we
average over 100 millions random walkers. For a particle in free diffusion in the channel,
the translocation time calculated according to Eq. 2.14 [54] using L = 2.4 µm and Dc = 0.25
µm2/s [75], is 15.36 s. This is in agreement with the value obtained via Brownian simulation
(14.99 s).

During simulations, the potential starts oscillating at a frequency of f once the particle is
released. The distribution of the translocation times collected in simulations is plotted for
different f in Fig. 5.7. As we can see, the distributions show similar harmonic peaks as their
experimental counterpart (Fig. 5.6). Boarder peaks appear before the first harmonic peak in

2Brownian motion simulations were carried out by Prof. Leonardo Dagdug.
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Fig. 5.6 Experimental translocation time distribution on oscillation frequency. (a-e) His-
tograms reporting the normalised distribution of translocation times (red bars) measured in
drag-and-release experiments at c = 0.01 nM for different potential oscillation frequencies
f . (f) Experimental (triangles) translocation probability PT normalised to their maximum
values. Experimental PT is the mean of six sets of 50 independent measurements obtained in
drag-and-release experiments.

Fig. 5.7(a,b). The appearance of those peaks is due to the relative position of the absorbing
boundaries to the channel ends, which is discussed in Appendix D. It is worth noting that the
harmonic peaks are also found at f = 1 Hz [Fig. 5.7(e)] in the simulation result, but not the
experiment result [Fig. 5.6(e)] due to lack of translocation events for f = 1 Hz in experiment.
Importantly, our Brownian dynamics simulations confirm the frequency dependence of the
translocation probability with an optimal oscillation frequency of f = 0.125 Hz close to the
experimentally measured one [dots and triangles, respectively, in Fig. 5.7(f)].

For comparison, we also measured translocation times of particles at different c and f
for experiments with particles diffusing freely into the channel, which has been discussed
in Fig. 5.4. The distributions of translocation times are plotted in Fig. 5.8. At the optimal
oscillation frequency f = 0.1 Hz, harmonic peaks starting at 10 s are found in all three
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Fig. 5.7 Time distribution of simulated translocation events on the oscillation frequency.
(a-e) Histograms reporting the normalised distribution of translocation times measured via
Brownian dynamics simulations (blue bars) for different potential oscillation frequencies f .
(f) Experimental (triangles) and simulated (circles) translocation probability PT normalised
to their maximum values.

concentrations [Fig. 5.8 (a-c.ii)]. However, we can not identify any harmonic peak in other
oscillation frequency in the rest of the results.

Explanation of the observed optimal oscillation frequency

An intuitive explanation of the optimal oscillation frequency is provided by measuring the
transition times across portions of the channel. Firstly, let us consider a representative
translocation from the left to the right reservoir. Upon entering the channel, the particle
may diffuse to the minimum of the left attractive potential well, while the left laser line is
switched on [Region I in Fig. 5.9(a)]. The particle is trapped close to this position until, at
TΩ = (2 f )−1, the left laser line is switched off and the right line is turned on. At this time the
particle is free to diffuse either towards the left or right entrance of the channel. In the most
efficient scenario in terms of particle transport, the particle travels in free diffusion across
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Fig. 5.8 Histograms reporting the experimental distributions of translocation times for
f = 0.05 Hz, 0.1 Hz and 1 Hz (from left to right) and c = 0.07 nM, 0.22 nM and 1.01
nM (from top to bottom). The distributions are fitted with Gaussian functions (solid lines)
allowing for the extrapolation of harmonic peaks. The insets report the harmonic peak
positions obtained by fitting Gaussian functions.

region II [Fig. 5.9(b)] and region III where it reaches the right-hand side potential minimum
when the right laser line is still on [Fig. 5.9(c)]. Finally, when this line is switched off the
particle is free to diffuse through region IV out of the channel [Fig. 5.9(d)].

We perform drag-and-release experiments to evaluate the transition time across each
of the four regions above. The particle’s direct transition time by free diffusion in channel
portions of different length is plotted in Fig. 5.10(a). The experimental values match the
theoretical predictions according to Eq. 2.14, further demonstrating that our system is close
to the 1D scenario. The direct transition time through region II and III is TII&III = 2.8 s at the
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Fig. 5.9 Schematics illustrating a representative translocation from left to right in the presence
of an oscillating potential. (a) A particle enters the left entrance of the channel when the
laser line is on at the left channel entrance and diffuses through region I to the attractive well
energy minimum. (b) The left laser line is switched off and simultaneously the right one is
switched on, the particle freely diffuses through region II. (c) The particle diffuses through
region III into the minimum of the right attractive energy well. (d) The laser line at the right
entrance is switched off and the one on the left switched on and the particle diffuses through
region IV and out of the channel.

oscillation frequency f = 0 Hz (Fig. 5.10(b), that is when a particle is released from the HOTs
at the left entrance of the channel with the right-hand side potential constantly on). TII = 1.61
s at f = 0 Hz is smaller than the corresponding Ttr = 1.95 s calculated according to Eq. 2.14
due to the presence of the external potential. TIII = 1.02 s at f = 0 Hz is in agreement with the
value calculated according to Eq. 2.15 (Ttr = 1.13 s) by using the experimentally measured
potential. TII&III is close to TΩ = 5 s indicating that the optimal oscillation frequency is the
one that is close to the transition time through regions II and III. Notably, for f higher than
the optimal oscillation frequency, particle’s transition through regions II and III is interrupted
by the potential oscillation. For f lower than the optimal oscillation frequency, a particle
has a higher chance to exit the channel through region I resulting in a return event, although
the chance for a particle to be transported through regions II and II is increased. Overall for
frequencies different from the optimal frequency, particle diffusion through regions II and III
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Fig. 5.10 Calculated and measured direct transition time. (a) Transition times of a freely
diffusing particle through portions of the channel of different lengths. The experimental
values (circles) are mean and standard errors of the values obtained in 200 experiments.
The theoretical values (line) are calculated according to Eq. 2.14 by using experimentally
measured parameters. (b) Distribution of transition times through regions II and III for f = 0
Hz, measured by performing drag and release experiments at c = 0.1 nM. The peak position
is obtained by fitting the data with a Gaussian function.

does not synchronize with the time scale defined by the oscillation frequency. This explains
the observed decrease in translocation rate and probability at f lower and higher than the
optimal frequency (Fig. 5.4). Besides this argument, the optimised oscillation period 5 s
found in our experiment is close to our estimation 4s in the 1D diffusion model as discussed in
Section 5.1.2. Furthermore, we solve the Fokker-Planck equation numerically in Appendix E,
which supports our explanation that the optimal oscillation frequency matches the particle
diffusion across the region between energy wells in the channel.

5.1.5 Conclusion

Optical potentials modulated in time have been extensively employed to direct particle
motion [38–50], including in microfluidics applications [44]. However, these have yet to
be implemented for enhancing particle transport across a quasi-1D microfluidic channel
connecting two reservoirs. In this section we created a modulated optical potential consisting
of a laser line that alternates its position between the two entrances of a microfluidic channel
at constant frequencies. We optimised the oscillation frequency (Fig. 5.4) and explained the
physical mechanism underlying the optimal oscillation frequency (Fig. 5.6-5.10).

We studied the effect of a time dependent potential on particle transport through a mi-
crofluidic channel. We found that particle transport through the channel can be maximised by
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optimizing the oscillation potential frequency. Importantly, the optimal oscillation frequency
makes the alternating access channel more efficient in terms of transport compared to static
channels where particles are either in free diffusion or can simultaneously bind to the ends
of the channel. We found that the optimal frequency is the one that allows synchronizing
alternating access with particle diffusion across the region of the channel between the two
oscillating energy well positions. We also showed the effect of particle concentrations on
the transport rate experimentally and explored relationship between channel occupancy and
oscillation frequency at different particle concentration, details in Appendix. F. We anticipate
that our findings will stimulate further investigation on mimicking the functioning of mem-
brane protein transporters [108], on synchronized oscillations [30, 50, 109] and on the use of
modulated potentials for particle control in microfluidics applications [44].

5.2 Particle transport in a potential energy landscape os-
cillating stochastically

5.2.1 Introduction

Channel proteins switch between open and closed states spontaneously by rearranging their
structures, which is known as stochastic gating of membrane channel [110]. The phenomenon
was found by Patch Clamp experiments nearly half century ago where suction was applied
through a pipette to seal a small patch of membrane from cells. Later experiments showed
stochastic gating in different types of ligand and voltage gated ion channels, ligand binding
process to proteins [111, 112], migration of small molecules in proteins [113–115] and
fast electrical coupling in cardiac muscle within gap junctions between neurons [116, 117].
Although the gating is random in a single channel, the ensemble average of recorded currents
shows a smooth transient time course of opening and closing states [118, 119].

A large number of studies have been carried out to understand the effect of the stochastic
gating under a common assumption that the gating reduces flux of transported solutes
by a factor equivalent to the probability of a channel in its open state [118, 120]. Prof.
Berezhkovskii and Prof. Bezrukov showed in literature [120], however, that gating can
generate a much higher mean flux than the simple product of channel open probability and
the flux through the channel when the characteristic time of gating is comparable, or smaller
than, that of molecule diffusion through the channel. More recently, they demonstrated that
the gating effect on flux is independent of the gating position along the channel [110].

Intrigued by this new result on the effect of stochastic gating in 1D channels, we expand
our study of colloidal particles transport through microfluidic channels into the potential
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energy landscape, oscillating stochastically. In the previous section, we find that there is
a maximum translocation rate of particles transporting through an energy well oscillating
deterministically. Here, we oscillate the potential energy landscape stochastically at frequen-
cies from exponential distributions. Exponential distributions are chosen considering that
solutes entering channels are Poisson processes and electrophysiology experiments have
showed that opening and closing time of certain ion channels could be exponential [121, 122].
Interestingly, we find that the stochastically oscillated potential enhances the translocation
probability in channels compared to that which oscillates deterministically. However, the
harmonic peaks of particle translocation time found in the deterministically oscillated poten-
tial disappear in the stochastic oscillation experiment. Our result not only opens new way
for enhancing particle transport efficiency but also provides experiment data to establish
quantitative links between theory of stochastic gating and the channel transport process.

5.2.2 Experimental methods

The experiment setting is similar to the potential oscillation experiment described in Fig. 5.3
from Section 5.1.4. Briefly, a single particle is trapped within the reservoirs using HOTs,
dragged to the entrance of the channel, released, and allowed to diffuse until it escapes the
channel to the reservoir. Meanwhile, an optical line trap is generated by HOTs and starts to
oscillate its position between the channel entrances once the particle is released. Here, the
oscillation time TΩ is chosen randomly from an exponential distribution with a mean value
µ . More specifically, we first generate 300 sets of random numbers from the exponential
distribution with mean parameter µ . Then 300 particles are tested in the drag-and-release
experiment using individual sets of generated random numbers as oscillation periods. A
mean oscillation frequency f is related to µ by f = 1/(2µ) and we repeat above experiments
for seven different f . The probability density function P(x) of exponential distributions
with different µ is plotted in Fig. 5.11(a). The oscillation times used for µ = 5 s are plotted
against the corresponding P(x) in Fig. 5.11(b) and show good agreement. In order to compare
the effect of potential oscillating stochastically to the one oscillating deterministically, we
conduct both experiments in the same microfluidic channel consecutively.
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Fig. 5.11 (a) Probability density function of exponential distribution with three different
mean values µ . (b) The counts of oscillation times TΩ chosen randomly from the exponential
distribution with µ = 5 s show a good agreement with the probability density function
1
µ

e−
TΩ
µ .

5.2.3 Results and discussion

Firstly, we consider the translocation probability of particle transport across the channel
with an oscillating potential. To this end, in Fig. 5.12 we plot the averaged translocation
probability of particles transport through a channel with a potential oscillating stochastically
(Psto), along with the value measured with a potential oscillating deterministically (Pdet).
Note that for guidance, the data points are fitted by an empirical two term exponential
model. Pdet reached a peak at 0.1 Hz which is in consistent with the result in Section 5.1.4.
Meanwhile Psto showed the same qualitative behaviour as Pdet , which topped at the 0.1 Hz as
well. Interestingly, the measured Psto value is nearly double the Pdet in all the tested oscillation
frequencies except one frequency of 0.05 Hz. So far, we have seen that a potential, oscillating
stochastically enhances the transport probability of particles across channel compared to a
potential, oscillating deterministically. Meanwhile both cases are more efficient compared to
a static potential imposed in the channel, which is discussed in Section 5.1.4.

Next, we compare the distribution of the translocation time of particles in the channel.
Resonance-like peaks are seen in the translocation time of particles through the potential,
oscillating deterministically as shown in Fig. 5.13. The position of the first peak matches the
inverse of the oscillation frequencies at 0.1 Hz and 0.5 Hz (Fig. 5.13(e) and (f)). However, no
peak can be identified in the translocation time distribution of particles transporting through
a stochastically oscillated potential with result plotted in Fig. 5.14, exhibiting a somewhat
non periodic behaviour.
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Fig. 5.12 Translocation probability PT for particle diffusing in a channel permeated by a
potential oscillating deterministically (circles) or stochastically (squares). For the potential
which is oscillating randomly, each oscillation frequency is chosen from an exponential
distribution with a mean value of f . The lines are two component exponential fittings to the
data points. Note: the two experiments are taken in the same microfluidic channel.

Colloidal particles in microfluidics environment are undergoing Brownian motions, which
are a source of intrinsic noise in our system. The optical generated potential energy landscape
is oscillating temporally which switches the system between two states in the view of energy
landscape. The synchronization between the thermal motion of particles and the period
of energy potential oscillation has been widely studied as stochastic resonance (SR) [49].
Opposite to the general conception that noise deteriorates the system performance, a suitable
amount of noise can increase it [123]. Furthermore, a fluctuating optical potential has been
implemented to demonstrate that the probability distribution of the residence time of colloidal
particles escaping an energy barrier is close to an exponential distribution [48]. Inspired
by the SR thoery, we suspect that the stochastic oscillation frequency from the exponential
distribution assists the particle transport by improving the synchronization between the
potential changing and the particle diffusion. The particle translocation is a random event
with a probability distribution and we hypothesize that the random oscillation frequency
allows more particles to be transported in the first oscillation period which can be indicated by
the disappearing of the harmonics peak in the distribution of translocation time in Fig. 5.14.
However, we need to test different random oscillation frequency such as Gaussian distribution
to have a better understanding of the mechanism of this enhancement in the future work.
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Fig. 5.13 Histogram of translocation time in a potential oscillating deterministically at
constant frequencies. The experiment is conducted with particle concentration c = 0.01 nM
in the reservoirs. The solid line is obtained by fitting a Gaussian function to the data.
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Fig. 5.14 Histogram of translocation time in a potential oscillating stochastically based on
exponential distributions. The f denotes the averaged oscillation frequency. The experiment
is conducted with particle concentration c = 0.01 nM in the reservoirs.
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5.2.4 Conclusion

Following our previous work where the translocation probability of particles transport through
an oscillating potential is maximised around a certain frequency, we demonstrated that a
potential oscillating at random frequencies chosen from exponential distributions is able to
increase the translocation probability even more. The maximum translocation probability
appears when the mean frequency of the stochastic oscillation matches the free diffusion
time of particle through the channel. However, the resonance-like peaks vanished in the
distribution of translocation time when the potential is oscillating stochastically.

Although our experiment model system simplifies the channel transport to a 1D scenario,
our finding shows the efficiency of a stochastically oscillated potential which can be related to
the function of conformation changes found in channel proteins during the stochastic gating.
Our experiment indicates that oscillating potentials stochastically may be an additional
avenue for enhancing transport across synthetic channels or pores.
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Appendix

A. Fitting attempt rate and translocation rate

The experimental data for the attempt rate, translocation rate and translocation probability
plotted in Fig. 5.5 and 5.20 is fitted by a two-term exponential model f (x) = a ∗ exp(b ∗
x)+ c∗ exp(d ∗ x) via the nonlinear least-squares method, where a,b,c and d are the fitting
parameters. The values for these parameters estimated by the fitting are reported in Tables
5.1-5.3.

Table 5.1 Fitting of attempt rate data

c (nM) a b c d
0.07 9853436.5 -2.1 -9853424.6 -2.1
0.22 83037687.0 -0.3 -83037511.7 -0.3
1.01 3013.6 0.65 10014.3 -73.7

Table 5.2 Fitting of translocation rate data

c (nM) a b c d
0.07 26.7 -1.9 -19.0 -12.7
0.22 77.4 -2.0 -86.7 -14.5
1.01 137.6 -1.0 -187.9 -17.0

Table 5.3 Fitting of translocation probability data

c (nM) a b c d
0.07 0.2 -3.9 -0.1 -45.0
0.22 0.2 -3.9 -0.2 -23.9
1.01 0.05 -1.8 -0.1 -20.7

B. Channel jamming with static double well potential

We compared particle transport in a static double well potential with the same extension as
the oscillating potential. When we used a static double well potential with the same depth
used for the oscillating potential, we observed that the channel was quickly jammed with
particles, a typical image shown in Fig. 5.15. Therefore, for the experiments reported in
Fig. 5.5 and Fig. 5.20, we reduced the depth of the static double well potential to 42 % of the
oscillation potential.
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Fig. 5.15 Bright field image of 510 nm polystyrene particles jamming the entrances of
the channel permeated with static energy wells as deep as the potential wells used for the
oscillation.

C. Transport of particles through a channel in free diffusion

Particles transport through a microfluidic channel for different particle concentrations in the
reservoirs and without any optical potential coupled in the channel. Both the attempt rate
and translocation rate increase with the particle concentration as expected (Fig. 5.16).

Fig. 5.16 Dependence of attempt (triangles) and translocation rate (squares) with respect to
the particle concentration, for particles in free diffusion through the microfluidic channel
described in Fig. 5.5. Data and error bars are the mean and standard deviation of the values
measured in five different one hour long experiments.
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D. Effect of boundary position on the translocation time dis-
tribution

In the translocation time distribution obtained via Brownian dynamics simulations (Fig. 5.7),
a board peak is found on the left of the first resonance-like peak for frequencies f = 0.025,
0.5 and 0.1 Hz. These peaks indicate that some particles translocate through the channel
before the potential oscillation finishes for the first time, which is 2TΩ. This can be explained
by the exemplary translocation illustrated in Fig. 5.9. Once a particle diffuses through region
II and III [Fig. 5.9(b)], it stays near the minimum of the right-hand potential well [solid
line in Fig. 5.9(c)]. The longer the potential is on the right-hand side, the higher the chance
particle will touch the right end of the channel. Due to the definition of the channel end as
an absorbing boundary, the particle already fulfils a translocation event. The explanations
are supported by moving the absorbing boundary position relative to the channel end by a
distance ∆d. Here, ∆d < 0 represents the absorbing boundary is inside the channel. ∆d = 0
means the absorbing boundary is on the channel end. ∆d > 0 has the absorbing boundary
outside the channel end. The board peaks discussed above vanish with an increased value
of ∆d from negative to zero then to a positive value (Fig. 5.17). The vanishing of the board
peaks comes along with the surging of the first harmonics peak at the inverse of the oscillation
frequency.
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Fig. 5.17 Effect of absorbing boundary position on the translocation time distribution. The
normalised distribution of translocation times is measured depending on the distance ∆d
between the boundary position and the channel end at different oscillation frequency f . (a-c.i)
∆d =−0.2 µm means that the boundaries are inside the channel ends. (a-c.ii) ∆d = 0 µm
means that channel ends are set as the absorbing boundaries. (a-c.iii) ∆d = 0.2 µm means
that the boundaries are outside the channel ends.
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E. Numerical solution of the Fokker-Planck equation

In order to obtain a more quantitative understanding of the optimal oscillation frequency,
we solve the Fokker-Planck (FP) equation (Eq. 2.8) numerically using Mathematica. As
described in Section 2.2, the solution of the FP equation provides the probability density
distribution p(x, t) of particles diffusing in an energy potential. Particle current J at position x
can be calculated from ∂ p(x, t)/∂ t, which describes the number of particles passing through
x at time t.

Fig. 5.18 Particle currents calculated by solving the Fokker-Planck equation numerically with
an experimentally fitted energy potential (solid lines in the insets). (a) Stage I: a particle is
released at a2 with two absorbing boundaries at a1 and a3. Particle current JI is calculated at
a1. (b) Stage II&III: A particle is released at the position of the left-hand potential minimum
b2. The particle flux JII&III is calculated at b3 (dash-dotted line). b1 and b4 are the absorbing
boundaries. (c) Stage III: A particle is released at the right-hand potential minimum c2.
Particle current JIV is calculated at c3. c1 and c3 are the absorbing boundaries. The absorb
boundary is represented by a dashed line. The particle starting position is represented by a
dotted line.



98 Particle transport across a channel via an oscillating potential

The experimentally measured energy potential [Fig. 5.2(d)] is first fitted by a sixth-order
polynomial curve, shown by solid lines in the insets of Fig. 5.18. The fitted energy potential
U(x) and experimentally measured diffusion coefficient D are applied in the numerical
solution of the FP equations. The equations are solved in successive stages. Stage I: A
particle is released next to the left entrance of the channel at a2 [dotted line in the inset
of Fig. 5.18(a)]. The left (a1) and right (a3) entrances of the channel are set as absorbing
boundaries [dash lines in the inset of Fig. 5.18(a)]. Particle current is obtained from the
solution of the FP equation. Particle current at a1, denoted as JI peaks at 0.03 s then
decreases with time, shown by a solid line in Fig. 5.18(a). By integrating JI by time, we get
the percentage of particles absorbed by a1 during the period when the left-hand potential is
on. The percentage of particles left in the channel is then calculated by nI = 1−

∫ 200
0 JIdt,

with the integration limits denoting the time interval of the numerical solution with units of
second. nI is plotted in Fig. 5.19(a) as a solid line. Stage II: a particle initiates at the minimum
position of the left-hand potential b2 and diffuses in the right-hand potential, as sketched in
the inset of Fig. 5.18(b). The percentage of particles that arrive at b3 at time t is given by
integrating JII&III [solid line in Fig. 5.18(b)], denoted as nII&III [dotted line in the inset of
Fig. 5.19(a)]. Stage III: a particle is started at the right-hand potential minimum c2 [dotted
line in Fig. 5.19(c)]. The percentage of particles absorbed by the right channel entrance nIV

Fig. 5.19 Translocation probability of particles diffusing in an oscillating potential. (a) n is
the percentage of particles absorbed by an absorbing boundary or arriving at a certain position
by integrating the particle currents J (plotted in Fig 5.18). (b) The normalised translocation
probability PT is the product of nI ·nII&III ·nIV .

[dashed line in Fig. 5.19(a)] is calculated by integrating JIV [solid line in Fig. 5.18(c)]. As
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stage I to III happens subsequently, the translocation probability PT is estimated by

PT = nI ·nII&III ·nIV (5.3)

resulting in a maximum PT at f = 0.08 Hz, plotted in Fig. 5.19(b). This frequency matches
the optimal oscillation frequencies found in our experiment (0.1 Hz) and simulations (0.0125
Hz) in the drag-and-release model (Section 5.1.4).

F. Dependence of channel occupancy on the frequency of the
oscillating potential

In order to gain more insight on the presence of an optimal oscillation frequency, we measure
the channel occupation probability p(n), which is the probability to simultaneously find n
particles in the channel. The result is plotted in Fig. 5.20.

At high particle concentrations, we measure that the probability to find one particle in
the channel p(1) is at a maximum for frequencies close to the optimal oscillation frequency
(triangles and squares for c = 0.22 and 1.07 nM, respectively, in Fig. 5.20(b)). Notably,
the channel is predominantly empty at low frequencies (e.g. p(0)=0.58 for c = 0.22 nM
and f = 0.05 Hz, triangles in Fig. 5.20(a)) whereas at high frequency and concentration
the channel is crowded [Fig. 5.20(c,d)], e.g. p(≥ 3) = 0.94 for c = 1.07 nM and f = 1 Hz.
Therefore, the optimal oscillation frequency is the one that allows for populating the channel
without overcrowding it [52].
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Fig. 5.20 Dependence of the experimentally measured probability to find (a) no particle
p(n = 0), (b) one particle p(n = 1), (c) two particles p(n = 2) or (d) more than two colloidal
particles p(n≥ 3) on the oscillation potential frequency and particle concentration. Circles,
triangles and squares represent data for a particle concentration of 0.07 nM, 0.22 nM and 1.01
nM, respectively. Dotted and dashed lines represent data for a static potential and particle
free diffusion in the channel, respectively.



Chapter 6

Summary and outlook

In this thesis, we built up an experimental synthetic membrane system to study the transport
of particles across a channel permeated by modulated energy landscapes. The synthetic
membrane system is made up of microfluidics channels connecting two reservoirs containing
colloidal particles undergoing Brownian motion. Holographic Optical Tweezers (HOTs)
were used to modulate the energy landscape in the channel that also allows generating
time-dependent potentials and potentials with high energy barriers.

6.1 Characterisation of a potential energy landscape

In order to have a full characterisation of the optically induced energy potential, we first
calibrated the effective energy landscape obtained from the intensity distribution of the optical
traps with the energy landscape reconstructed from the Probability Density Function (PDF)
of particle positions. This calibration was validated by driving a particle through the optically
induced potential. The calibration method provides us a way to measure energy landscapes
with high barriers which are inaccessible to trajectory-based methods, such as PDF. However,
those methods cannot be used to rebuild the energy landscape in systems out of equilibrium.
Therefore, we developed a new method which uses the Local Transition Probability (LTP) of
particles to reconstruct the energy landscape. The LTP approach improves the robustness of
the result compared to the splitting probability (SP) method and it provides a better way to
estimate the energy landscape under non-equilibrium conditions. Furthermore, by combining
the LTP and the above described calibration method, we were able to reconstruct the energy
landscape in a complex environment.

Having a full map of the underlying energy landscape is a useful tool to explore the
origins of complex natural processes, but collecting large enough data ensembles from those
processes remains a tough challenge. For instance, reaction profiles have long been used to
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qualitatively analyse chemical reactions in chemical kinetics; resolving energy landscapes has
been a key approach to study protein folding in biology; the translocation through membrane
proteins has been rationalized by free energy landscapes which leads to the effect of size
and binding on transport [124]. However, all those processes are intrinsically stochastic and
the data collection involves lengthy experiments and a lot of effort for unstable reactions or
rare events. For example, the probability of a thermal activation across a potential with an
energy well scales exponentially with the depth of the well, which could make the experiment
unimplementable in practice. Here, the LTP method proposed by us utilizes the Bayesian
rules which trains a prior model with data. As a result, our method improves the accuracy of
the rebuilt potential energy landscape compared to PDF or SP. We are also able to estimate
the uncertainty of the rebuilt potential which is inaccessible to other methods.

Meanwhile, most natural phenomena are far away from equilibrium so their energy
landscapes cannot be assessed by the PDF method. The SP method is applicable at non-
equilibrium situation but requires a large data ensemble. Based on the original idea of SP
method, the LTP method works in both equilibrium and out of equilibrium environments.
Remarkably, our approach requires no additional infrastructure for data collection. Getting
more accurate result by analysing the same data set is extremely attractive for studies related
to energy potential. For example, the DNA trajectory data used to study giant acceleration
in entropic barriers [96] can be readily analysed by our method to map out the underlying
free energy landscape, which will provide a comparable way to probe the entropy. It is
worth mentioning that Bayesian analysis is an important deep learning algorithm in computer
science [125]. Our current algorithm is based on a preliminary idea of using Bayesian rules
to better fit the model, but the fruitful deep learning research will allow us to improve this
initial approach further.

6.2 Function of a fluctuating potential in channel trans-
port

In the second part of our work, particle transport across channels was studied under an
oscillating potential. By oscillating the position of the energy well deterministically, an
optimal frequency was found which maximises the the translocation rate of particles across
the channel. At the optimal oscillation frequency, the translocation rate was found to be
enhanced one hundred times compared to a channel with no external potential. The optimal
frequency was verified in Brownian dynamics simulations. The optimised transport was
further explained by calculating the mean exit time from the channel. We found that the
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optimal frequency is the one that matches the potential oscillation with the particle diffusion
time across the region between the positions of two oscillating energy wells. Our experiment
system provides a synthetic platform where the parameters of alternating access model can be
tested individually. Our result sheds light on the possibility of biomimetics by indicating that
an oscillating potential may be an additional avenue for enhancing transport across synthetic
channels or pores. The result also provides important insights for the function of stochastic
resonance (SR) in transport processes. Previous colloidal experiments have explored SR in
experiments where a single particle jumping across an energy barrier[49, 50]. On top of that,
it is possible to exam the SR theory with multiple particles in a channel with precise control
of the number in our experimental system, which is closer to the actual biological pores,
where several substrates can be in the pore simultaneously.

One step further, we tested particle transport through channels with a potential energy
landscape oscillating stochastically. We find that the translocation probability of particles
across the channel is enhanced even more compared to the case where the potential energy
landscape is oscillating deterministically. Besides the increased transport rate we observed in
a stochastically oscillated energy landscape; the selectivity of substrates which is omnipresent
in membrane proteins could be also related to fluctuations of the pore structure. Metabolite
channels, which accommodate metabolite molecules, for instance, have a wider radius
compared to ion channels but are found permanently closed under certain conditions which
allows the membrane to sustain its barrier function. In a recent published work [126],
stochastic gating is shown to favour large metabolites compared to small solutes during
channel-facilitated transport based on diffusion models. The fast gating reduces the flux of
small mobile solutes more strongly than the less mobile ones. Therefore, one very interesting
question to ask is can we find selectivity of different size particles in the potential oscillation
experiment. The experiment setting can be achieved by having two sizes of particles mixed
in the reservoirs and with one specie coated by dye. Then the diffusion of the particles can be
recorded and distinguished by switching between white illumination and the corresponding
fluorescence wavelength. We conjecture that the concentration and the ratio of the different
particles will also play a role in the transport. Besides, we have tested energy landscape
oscillating its position stochastically from exponential distributions based on the knowledge
that the solute entering channels is a Poisson process. Current theoretical models which
do not take the actual oscillation process into account [110, 120, 126]. Therefore other
stochastic distributions of oscillation times should be tested and compared, which shows
the strength of a synthetic membrane experiment system that can study different oscillation
modes. The result will be relevant not only to the ion channel transport, but also to solvent
filters with widespread applications.
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The stochastic gating is also reminiscent of the concept of Maxwell’s Demon which im-
proves the flux only in one direction by blocking the entrance of substrate from one chamber
to another. Maxwell’s Demon has been demonstrated in various system showing information
converted to energy, such as rotational Brownian motion between glasses [127] and coupled
single electron circuits [128]. It will be useful to explore the transport in a particle-position
dependent energy landscape. As found in membrane proteins, the conformational change
can be triggered by binding to one specific solute. In this case, the energy landscape is not
only time-dependent, but also position-dependent. It will be meaningful to demonstrate that
this mechanism plays a role in the alternating access model. The idea could be tested in
our colloids-channel experiment by tracking the particle’s position in real time and putting
feedback control to the energy landscape, which can be implemented by programming the
image processing and optical trap generating algorithm.

6.3 Mimicking the transport across membranes

It is worth noting here that our synthetic membrane system is a highly simplified model
compared to cell membranes. In order to mimic the membrane transport in living cells, we
should first seek a full control of the particle concentration in the reservoirs connected by the
channels. Currently we manage to set the particle concentration equivalent in both reservoirs
which provides an equilibrium environment. However, the concentration difference between
the extracellular side and the cytosol is a main factor in solute transport across the membrane.
While the concentration gradient of solutes powers up the facilitated diffusion, the active
transport process moves a substance across a membrane against its concentration gradient.
The effect of concentration difference on particle transport could be explored at least in terms
of entering probability, jamming and transport efficiency. The result will be more comparable
to the cellular environment. To achieve this, we need to separate the two reservoirs completely
by modifying the initial design of the microfluidics chip. Then different particle solvents
could be injected into the reservoirs, which might induce pressure differences but can be
controlled by adjusting the volume of the injected solvent. Secondly, it is possible to explore
asymmetric systems with charged particles in one of the two reservoirs. Thus our system
will be mimicking electrochemical gradients and even exhibit effects like charge polarisation
under applied external driving forces. To do this, we could put electrodes into the two
reservoirs then apply voltage across the channel. Thirdly our synthetic platform can be scaled
down to nanoscale where the characteristic diffusion time is closer to the one observed in
protein transporters. This can be achieved by using capillary nanopore on microfluidics or
DNA origami formed pore structure, as a promising candidate with flexibility to be modified
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chemically. Beside the above mentioned factors, there are other parameters in the membrane
domain which play important roles in the transport process such as the cytoskeleton inside
the cell and the energy consumed while conformational changes, which is also worth detailed
study. Overall, the complex and important transport process happening across membranes
will keep providing incentives to continue with this research.
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