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ABSTRACT. We consider recent work of [17] and [9], where deep
learning neural networks have been interpreted as discretisations
of an optimal control problem subject to an ordinary differential
equation constraint. We review the first order conditions for opti-
mality, and the conditions ensuring optimality after discretisation.
This leads to a class of algorithms for solving the discrete optimal
control problem which guarantee that the corresponding discrete
necessary conditions for optimality are fulfilled. The differential
equation setting lends itself to learning additional parameters such
as the time discretisation. We explore this extension alongside
natural constraints (e.g. time steps lie in a simplex). We compare
these deep learning algorithms numerically in terms of induced flow
and generalisation ability.

1. Introduction. Deep learning has had a transformative impact on
a wide range of tasks related to Artificial Intelligence, ranging from
computer vision and speech recognition to playing games [23, 27].

Despite impressive results in applications, the mechanisms behind
deep learning remain rather mysterious, resulting in deep neural net-
works mostly acting as black-box algorithms. Consequently, also theo-
retical guarantees for deep learning are scarce, with major open prob-
lems residing in the mathematical sciences. An example are questions
around the stability of training as well as the design of stable architec-
tures. These questions are fed by results on the possible instabilities
of the training (due to the high-dimensional nature of the problem in
combination with its non-convexity) [43, 11] which are connected to
the lack of generalisability of the learned architecture, and adversarial
vulnerability of trained networks [44] that can result in instabilities in
the solution and gives rise to systematic attacks with which networks
can be fooled [16, 24, 33]. In this work we want to shed light on these
issues by interpreting deep learning as an optimal control problem in
the context of binary classification problems. Our work is mostly in-
spired by a very early paper by LeCun [29], and a series of recent works
by Haber, Ruthotto et al. [17, 9].

Classification in machine learning: Classification is a key task
in machine learning; the goal is to learn functions, also known as clas-
sifiers, that map their input arguments onto a discrete set of labels
that are associated with a particular class. A simple example is image
classification, where the input arguments are images that depict cer-
tain objects, and the classifier aims to identify the class to which the
object depicted in the image belongs to. We can model such a classi-
fier as a function g : R® — {c% c',...,cF~1} that takes n-dimensional
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real-valued vectors and maps them onto a discrete set of K class la-
bels. Note that despite using numerical values, there is no particular
ordering of the class labels. The special case of K = 2 classes (and class
labels) is known as binary classification; for simplicity, we strictly focus
on binary classification for the remainder of this paper. The extension
to multi-class classification is straightforward, see e.g. [4].

In supervised machine learning, the key idea is to find a classifier
by estimating optimal parameters of a parametric function given pairs
of data samples {(x;,c;)}7,, for ¢; € {c",c'}, and subsequently defin-
ing a suitable classifier that is parameterised with these parameters.
The process of finding suitable parameters is usually formulated as a
generalised regression problem, i.e. we estimate parameters u, W, u by
minimising a cost function of the form®

%Z|C(Wh(:ci,u)+,u) — [P+ R(u), (1)

with respect to u, W and p. Here h is a model function parameterised
by parameters u that transforms inputs z; € R" onto n-dimensional
outputs. The vector W € R™" is a weight vector that weights this
n-dimensional model output, whereas u € R is a scalar that allows a
bias of the weighted model output, and C : R® — R is the so-called
hypothesis-function (cf. |20, 17]) that maps this weighted and biased
model output to a scalar value that can be compared to the class label
¢;. The function R is a regularisation function that is chosen to ensure
some form of regularity of the parameters u and existence of parameters
that minimise (1). Typical regularisation functions include the compo-
sition of the squared 2-norm with a linear operator (Tikhonov—Phillips
regularisation [47, 34]; in statistics this technique is called ridge regres-
sion, while in machine learning it is known as weight decay [35]) or the
I-norm to induce sparsity of the weights [38, 46]. However, depending
on the application, many different choices of regularisation functions
are possible.

Note that minimising (1) yields parameters that minimise the devi-
ation of the output of the hypothesis function and the given labels. If
we denote those parameters that minimise (1) by W, /i and @, and if
the hypothesis function C maps directly onto the discrete set {cg, ¢},
then a suitable classifier can simply be defined via

g(z) :=C (Wh(x, i) + ,1) .

1One can of course use other cost functions such as the cross-entropy [4]. Our
theory includes all smooth cost functions.
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However, in practice the hypothesis function is often rather continu-
ous and does not map directly on the discrete values {co,c;}. In this
scenario, a classifier can be defined by subsequent thresholding. Let ¢
and ¢; be real numbers and w.l.o.g. ¢y < ¢q, then a suitable classifier
can for instance be defined via

co C(Wh(z,a)+p) < @ta

¢ C(Wh(z,a)+ fu >%'

g(r) =

Deep learning as an optimal control problem: One recent
proposal towards the design of deep neural network architectures is
[13, 17,9, 48, 31]. There, the authors propose an interpretation of deep
learning by the popular Residual neural Network (ResNet) architecture
[21] as discrete optimal control problems. Let

= (KU Uy =0, N-1,  w=(u .. W)

where KU is a n x n matrix of weights, 5V! represents the biases, and
N is the number of layers.

In order to use ResNet for binary classification we can define the
output of the model function h in (1) as the output of the ResNet.
With the ResNet state variable denoted by y = (y[, ... 4, 4l =

(ygﬂ, o ,y,[f]), this implies that the classification problem (1) can be
written as a constraint minimisation problem of the form
m 2
min C(W INT >—ci + R(u), 2
i, 2 e (Wl + (u) 2)

subject to the constraint
g = L AL pP A, j=0,. . N—1, %=z, (3)

Here At is a parameter which for simplicity at this stage can be chosen
to be equal to 1 and whose role will become clear in what follows. The
constraint (3) is the ResNet parametrisation of a neural network [21].
In contrast, the widely used feed-forward network that we will also
investigate later is given by

YT = Uy, j=0,...,N—1, gl = ;. (4)
For deep learning algorithms, one often has
FP ul)y = o (K[a’] oV + ﬁm) , (5)

where o is a suitable activation function acting component-wise on its
arguments. For a more extensive mathematical introduction to deep
learning we recommend [22].
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Suppose, in what follows, that y; = y;(t) and v = u(t) = (K(t), (1)),
t € [0,T], are functions of time and yl[]] ~ y;(t;). To view (2) and (3) as
a discretisation of an optimal control problem [9], one observes that the
constraint equation (3) is the discretisation of the ordinary differential
equation (ODE) y; = f(y;,u), y;(0) = x;, on [0,T], with step-size At
and with the forward Euler method. In the continuum, the following
optimal control problem is obtained [9],

m

min Y |C (W ui(T) + p) — if” + R(u) (6)

Y,u,Wp Py
subject to the ODE constraint

Assuming that problem (6)-(7) satisfies necessary conditions for opti-
mality [42, ch. 9], and that a suitable activation function and cost
function have been chosen, a number of new deep learning algorithms
can be generated. For example, the authors of [10, 32] propose to use
accurate approximations of (7) obtained by black-box ODE solvers.
Alternatively, some of these new strategies are obtained by considering
constraint ODEs (7) with different structural properties, e.g. taking
f to be a Hamiltonian vector field, and by choosing accordingly the
numerical integration methods to approximate (7), [9, 17]. This entails
augmenting the dimension, e.g. by doubling the number of variables in
the ODE, a strategy also studied in [15]. Stability is perhaps not impor-
tant in networks with a fixed and modest number of layers. However,
in designing and understanding deep neural networks, it is of impor-
tance to analyse its behaviour when the depth grows towards infinity.
The stability of neural networks has been an important issue in many
papers in this area. The underlying continuous dynamical system offers
a common framework for analysing the behaviour of different architec-
tures, for instance through backward error analysis, see e.g. [19]. The
optimality conditions are useful for ensuring consistency between the
discrete and continuous optima, and possibly the adjoint variables can
be used to analyse the sensitivity of the network to perturbations in
initial data. We also want to point out that the continuous limit of
neural networks is not only relevant for the study of optimal control
problems, but also for optimal transport [41] or data assimilation [1]
problems.

Our contribution: The main purpose of this paper is the inves-
tigation of different discretisations of the underlying continuous deep
learning problem (6)-(7). In [17, 9] the authors investigate different
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ODE-discretisations for the neural network (7), with a focus on deriv-
ing a neural network that describes a ‘stable’ flow, i.e. the solution
y(T') should be bounded by the initial condition y(0).

Our point of departure from the state-of-the-art will be to outline the
well established theory on optimal control, numerical ODE problems
based on [18, 37, 39, 30|, where we investigate the complete optimal
control problem (6)-(7) under the assumption of necessary conditions
for optimality [42, ch. 9].

The formulation of the deep learning problem (2)-(3) is a first-discretise-
then-optimise approach to optimal control, where ODE (7) is first dis-
cretised with a forward Euler method to yield an optimisation problem
which is then solved with gradient descent (direct method). In this
setting the forward Euler method could be easily replaced by a differ-
ent and more accurate integration method, but the back-propagation
for computing the gradients of the discretised objective function will
typically become more complicated to analyse.

Here, we propose a first-optimise-then-discretise approach for deriv-
ing new deep learning algorithms. There is a two-point boundary value
Hamiltonian problem associated to (6)-(7) expressing first order opti-
mality conditions of the optimal control problem [36]. This boundary
value problem consists of (7), with y;(0) = x, together with its adjoint
equation with boundary value at final time 7', and in addition an al-
gebraic constraint. In the first-optimise-then-discretise approach, this
boundary value problem is solved by a numerical integration method.
It is natural to solve equation (7) forward in time with a Runge-Kutta
method (with non vanishing weights b;, i = 1,...,s), while the ad-
joint equation must be solved backward in time and with a matching
Runge-Kutta method (with weights satisfying (19)) and imposing the
constraints at each time step. If the combination of the forward integra-
tion method and its counterpart used backwards in time form a sym-
plectic partitioned Runge-Kutta method then the overall discretisation
is equivalent to a first-discretise-then-optimise approach, but with an
efficient and automatic computation of the gradients |18, 39], see Propo-
sition 1.

We implement discretisation strategies based on different Runge-
Kutta methods for (6)-(7). To make the various methods comparable
to each other, we use the same learned parameters for every Runge—
Kutta stage, in this way the total the number of parameters will not
depend on how many stages each method has. The discretisations are
adaptive in time, and learning the step-sizes the number of layers is
determined automatically by the algorithms. From the optimal control
formulation we derive different instances of deep learning algorithms
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(2)-(3) by numerical discretisations of the first-order optimality condi-
tions using a partitioned Runge-Kutta method.

Outline of the paper: In Section 2 we derive the optimal control
formulation of (6)-(7) and discuss its main properties. In particular,
we derive the variational equation, the adjoint equation, the associated
Hamiltonian and first-order optimality conditions. Different instances
of the deep learning algorithm (2)-(3) are derived in Section 3 by using
symplectic partitioned Runge—Kutta methods applied to the constraint
equation (9), and the adjoint equations (12) and (13). Using partitioned
Runge-Kutta discretisation guarantees equivalence of the resulting op-
timality system to the one derived from a first-discretise-then-optimise
approach using gradient descent, cf. Proposition 1. In Section 4 we
derive several new deep learning algorithms from such optimal control
discretisations, and investigate by numerical experiments their dynam-
ics in Section 5 on a selection of toy problems for binary classification
in two dimensions.

2. Properties of the optimal control problem. In this section we
review established literature on optimal control which justifies the use
of the numerical methods of the next section.

2.1. Variational equation. In this section, we consider a slightly sim-
plified formulation of (6)-(7). In particular, for simplicity we discard
the term R(u) in (6), and remove the index "i" in (6)-(7) and the sum-
mation over the number of data points. Moreover, as we here focus
on the ODE (7), we also remove the dependency on the classification
parameters W and p for now. We rewrite the optimal control problem
in the simpler form

min 7 (y(T)), (8)
subject to the ODE constraint
g =fly,u), y(0)=uz. (9)
Then, the variational equation for (8)-(9) reads
d
Do = 0, f(yt1),u) v + 0,1 (1) u(t)) w (10)

where 0, f is the Jacobian of f with respect to y, 9, f is the Jacobian of
f with respect to u, and v is the variation in y, while w is the variation
in u?. Since y(0) = z is fixed, v(0) = 0.

20(t) = y(t) + €v(t) for |¢|— 0 and similarly for a(t) = u(t) + Ew(t) |€|— 0.
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2.2. Adjoint equation. The adjoint of (10) is a system of ODEs for
a variable p(t), obtained assuming

(p(1), (1)) = (p(0),v(0)), VL €0, T]. (11)
Then (11) implies

{p(t), 0(t)) = = (B(t),v(t)),
an integration-by-parts formula which together with (10) leads to the
following equation for p:

d
“p=— @0, u0)" ) (12)
with constraint

(0uf (y(t), u(t) p =0, (13)
see [39]. Here we have denoted by (9, f )T the transpose of d,f with

respect to the Euclidean inner product (-, -), and similarly (8, f)" is the
transpose of d, f.

2.3. Associated Hamiltonian system. For such an optimal control
problem, there is an associated Hamiltonian system with Hamiltonian

H(y,p,u) = (p, f(y,u))
with
y=0H, p=-0H, OH=0, (14)
where we recognise that the first equation § = d,’H coincides with (9),
the second p = —0,H with (12) and the third 9, = 0 with (13).
The constraint Hamiltonian system is a differential algebraic equa-

tion of index one if the Hessian 0, ,H is invertible. In this case, by the
implicit function theorem there exists ¢ such that

u=p(y,p), and H(y,p)=H(y,p,oy,p)),

where the differential algebraic Hamiltonian system is transformed into
a canonical Hamiltonian system of ODEs with Hamiltonian #. Notice
that it is important to know that ¢ exists, but it is not necessary to
compute ¢ explicitly for discretising the problem.

2.4. First order necessary conditions for optimality. The solu-
tion of the two point boundary value problem (9) and (12),(13) with
y(0) = z and

p(T) = ayj<y>|y:y(T) )

has the following property
(04T Wl y—y(ry - v(T)) = (p(T),v(T)) = (p(0),v(0)) = 0,



DEEP LEARNING AS OPTIMAL CONTROL PROBLEMS 9

so the variation v(T") is orthogonal to the gradient of the cost function
Oy T (Y)|,=y(r)- This means that the solution (y(t),v(t), p(t)) satisfies
the first order necessary conditions for extrema of 7 (Pontryagin max-
imum principle) [36], see also [42, ch. 9.2].

3. Numerical discretisation of the optimal control problem.
We consider a time discrete setting y(, M, ... ¢V ol oIV
and a cost function J(y), assuming to apply a numerical time dis-
cretisation yV 1 = @A, (yV ull), j =0,..., N — 1 of (9), the discrete
optimal control problem becomes

: [N]
Jin J (™),

subject to
YVl = @At(y[j*”,u[j*”), Yl = 2. (15)

Here the subscript At denotes the discretisation step-size of the time
interval [0, 7. This discrete optimal control problem corresponds to a
deep learning algorithm with the outlined choices for f and 7, see for
example [17].

We assume that & is a Runge-Kutta method with non vanishing
weights for the discretisation of (9). Applying a Runge-Kutta method
to (9), for example the forward Euler method, we obtain

AR IEpyIC Atf(y[j],um),

and taking variations ylUt1 4 ol Ul 4 goll bl 4 gl for € —
0 one readily obtains the same Runge-Kutta method applied to the
variational equation

o) = oI+ AL [, £y, b o 4 8, F(y), ul) wl]

This means that taking variations is an operation that commutes with
applying Runge-Kutta methods. This is a well known property of
Runge-Kutta methods and also of the larger class of so called B-series
methods, see for example [19, ch. V1.4, p. 191] for details.

In order to ensure that the first order necessary conditions for op-
timality from Section 2.4 are satisfied also after discretisation, fixing
a certain Runge-Kutta method ®; for (9), we need to discretise the
adjoint equations (12) and (13) such that the overall method is a sym-
plectic, partitioned Runge-Kutta method for the system spanned by
(9), (12) and (13). This will in particular guarantee the preservation of
the quadratic invariant (11), as emphasised in [39]. The general format
of a partitioned Runge-Kutta method as applied to (9), (12) and (13)
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isforj=0,...,N—1

gt = bl A Zb" fi[j] (16a)
=1
fz[j] = f(yl[ }7 EJ])7 Z = 17 R 87 (16b>
P = Uil Ay Zb il (17a)
ggﬂ = -0 f(yz[]], u; )pr], i=1,...,s, (17b)
P = Pl At Zazle[” i=1,...,s (17¢)
(05, ,[?])) =0, i=1,...s (18)
and boundary conditions yl% = z, pM = 07 (yM). We will assume
b # 0,1 = 8.0

It is well known [19] that if the coefficients of a partitioned Runge-
Kutta satisfy

b; = i)i, biai’j + gjam- — bigj =0, ¢g=¢, t,j=1,...,s, (19)
then the partitioned Runge-Kutta preserves invariants of the form
S:RYx R — R,
where S is bilinear. As a consequence the invariant S(v(t),p(t)) =
(p(t),v(t)) (11) will be preserved by such method. These partitioned
Runge-Kutta methods are called symplectic.

The simplest symplectic partitioned Runge-Kutta method is the
symplectic Euler method, which is a combination of the explicit Eu-
ler method b; = 1, a1; = 0, ¢; = 0 and the implicit Euler method
by =1,a;; =1 ¢ = 1. This method applied to (9), (12) and (13) gives

it = bl At fly 1, [j])
. T .
plitil = — At (a f(y bl )) plt

0 = (a Fy u )) p[ﬁl}’

for j = 0,...,N — 1 and with the boundary conditions y!” = z, and
pN = ayj(y[N])-

3Generic b; in the context of optimal control is discussed in [39)].
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Proposition 1. If (9), (10) and (12) are discretised with (16)-(18)

with b; # 0, i = 1,...,s, then the first order necessary conditions for
optimality for the discrete optimal control problem
. T (y™), (20)
-1
{ui] §=0 >

{ym ;'V:la{yz[ﬂ §V:17

subject to
e N Y (21)
=1
= ) =1, (22)
Z[J’] = Yl At Z Aim Ul i=1,... s, (23)
m=1

are satisfied.

Proof. See appendix A. n

In (16)—(18) it is assumed that there is a parameter set ugﬂ for each
of the s stages in each layer. This may simplified by considering only
one parameter set ub! per layer. Discretisation of the Hamiltonian
boundary value problem with a symplectic partitioned Runge-Kutta
method yields in this case the following expressions for the derivative
of the cost function with respect to the controls.

Proposition 2. Let yU! and pl! be given by (16) and (17) respectively.
Then the gradient of the cost function J with respect to the controls is
given by

Ul el ONT (] AN SRabk )
0 = —0,f(y", u) (p] At; bi ek) i=1,...,s
(24a)
N AN ) BN [ A N @ik g
8u[]]j<y ) - At;bzaub]f(yi 7uj ) <pj At; bz gk ) :
(24b)
Remark 1. In the case that the Runge—Kutta method is explicit we

have ay; = 0 for i > k. In this case the stages E[Sj],ﬁgll, e ,E[lﬂ can be
computed explicitly from (24a).
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Remark 2. For the explicit Fuler method, these formulas greatly sim-
plify and the derivative of the cost function with respect to the controls
can be computed as

y[j+1} _ y + Atf( [J] [j]) (25)
P = — Ao f( Ty (26)
Dyt T (Y™ = At 0, f (yV m) pbﬂ]- (27)

Remark 3. The convergence of the outlined Runge—Kutta discretisa-
tions to the continuous optimal control problem has been addressed in
[18] see also [26] and recently also in the context of deep learning in

145].

4. Optimal Control motivated Neural Network Architectures.
An ODE-inspired neural network architecture is uniquely defined by
choosing f and specifying a time discretisation of (9). Here we will focus
on the common choice f(u,y) = o(Ky + f),u = (K, ) (e.g. ResNet)
and also discuss a novel option f(u,y) = ao(Ky + 5),u = (K, 3, «)
which we will refer to as ODENet.

4.1. Runge—Kutta networks, e.g. ResNet. Here we choose f(u,y) =
o(Ky+5),u= (K, p). For simplicity we focus on the simplest Runge—
Kutta method—the explicit Euler. This corresponds to the ResNet in
the machine learning literature.

In this case the network relation (forward propagation) is given by

y[j"rl} — y + AtO'( [j] + 6[]]) (28)

and gradients with respect to the controls can be computed by first
solving for the adjoint variable (backpropagation)

I (K[J] bl 4 gl ) © pbtil (29)
U = plil — A KUIT AU (30)
and then computing
Oxin T (y™) = AtAll Ut (31)
Dgin T (y™N) = AtAl1. (32)

4.2. ODENet. In contrast to the models we discussed so far, we can
also enlarge the set of controls to model varying time steps. Let u =

(K, 3,«) and define
flu,y) = ao(Ky+p5). (33)
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Algorithm 1 Training ODE-inspired neural networks with gradient
descent.
Input: initial guess for the controls u, step-size 7

1: fork=1,...do

2: forward propagation: compute y via (16)

3: backpropagation: compute p via (17)

4: compute gradient ¢ via (24) and (41)

5: update controls: u =u — g

The function « can be interpreted as varying time steps. Then the
network relation (forward propagation) is given by

g+l = bl 4 Aol o (Kl 4 gb)) (34)

and gradients with respect to the controls can be computed by first
solving for the adjoint variable (backpropagation)

pl i = plil — A UL (36)

and then computing

O T (y) = AtV bkt (37)
D T (Y1) = At AV (38)
(%U]J(ym) — At <p[j+1]’g (K[J’]y[ﬂ + ﬁ[j])> ) (39)

It is natural to assume the learned time steps « should lie in the set of
probability distributions
a >0, / o= 1} )

S = {a
ol >0, ) ol = 1} : (40)
J

or discretised in the simplex

This discretised constraint can easily be incorporated into the learning
process by projecting the gradient descent iterates onto the constraint
set S. Efficient finite-time algorithms are readily available [12].

S:{aGRN

5. Numerical results.
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Algorithm 2 Training ODE-inspired neural networks with gradient
descent and backtracking.

Input: initial guess for controls u and parameter L,

hyperparameters p > 1 and p < 1.

1: forward propagation: compute y with controls u via (16) and
¢ =T (y"N)

2: fork=1,...do

backpropagation: compute p via (17)

compute gradient ¢ via (24) and (41)

fort=1,...do
update controls: @ = u — %g
forward propagation: compute y with controls u and

b= g™

8: if ¢ <o+ (g,@—u)+ L||i — ul® then
9: accept:u:ﬂ,y:yf,gb:(zB,L:pL
10: break inner loop B
11: else reject: L = pL

donutild donut2d squares spiral

FIGURE 1. The four data sets used in the numerical study.

5.1. Setting, Training and Data sets. Throughout the numerical
experiments we use labels ¢; € {0, 1} and make use of the link function
o(z) = tanh(z) and hypothesis function H(z) = 1/(1 + exp(—z)). For
all experiments we use two channels (n = 2) but vary the number of
layers N*.

In all numerical experiments we use gradient descent with backtrack-
ing, see Algorithm 2, to train the network (estimate the controls). The
algorithm requires the derivatives with respect to the controls which we

4In this paper we make the deliberate choice of keeping the number of dimensions
equal to the dimension of the original data samples rather than augmenting or dou-
bling the number of dimensions as proposed in [15] or [17]. Numerical experiments
after augmenting the dimension of the ODE (not reported here) led to improved
performance for all the considered architectures.
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Net ResNet ODENet ODENet+Simplex

prediction

transformation

ODENet ODENet+S

implex

prediction

transformed

FIGURE 2. Learned transformation and classifier for
data set donut1d (top) and squares (bottom).

derived in the previous section. Finally, the gradients with respect to
W and p of the discrete cost function are required in order to update
these parameters with gradient descent, which read as

i = (covy™M 4 ) =) o Wyl + ) (ata)

ow TN W) = 47, (41b)
8, TN W) = . (41c)

We consider 4 different data sets (donut1d, donut2d, squares, spiral)
that have different topological properties, which are illustrated in Fig-
ure 1. These are samples from a random variable with prescribed prob-
ability density functions. We use 500 samples for data set donut1d and
each 1,000 for the other three data sets. For simplicity we chose not to
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time 0 time T’

Net

ResNet

ODENet

ODENet+Simplex

FIGURE 3. Snap shots of transformation of features for
data set spiral.

use explicit regularisation, i.e. R = 0, in all numerical examples. Code
to reproduce the numerical experiments is available on the University of
Cambridge repository under https://doi.org/10.17863/CAM.43231.

5.2. Comparison of Optimal Control Inspired Methods. We
start by comparing qualitative and quantitative properties of four dif-
ferent methods. These are: 1) the standard neural network approach
((4) with (5)), 2) the ResNet ((3) with (5)), 3) the ODENet ((3) with
(33)) and 4) the ODENet with simplex constraint (40) on the varying
time steps. Throughout this subsection we consider networks with 20
layers.

5.2.1. Qualitative Comparison. We start with a qualitative comparison
of the prediction performance of the four methods on donut1d and spiral,
see Figure 2. The top rows of both figures show the prediction perfor-
mance of the learned parameters. The data is plotted as dots in the
foreground and the learned classification in the background. A good


https://doi.org/10.17863/CAM.43231

DEEP LEARNING AS OPTIMAL CONTROL PROBLEMS 17

Net ResNet ODENet ODENet+Simplex

prediction

transformation

Net ResNet ODENet ODENet+Simplex

prediction

transformation

FIGURE 4. Learned transformation with fixed classifier
for data set donut1d (top) and spiral (bottom).

classification has the blue dots in the dark blue areas and similarly for
red. We can see that for both data sets Net classifies only a selection
of the points correctly whereas the other three methods do rather well
on almost all points. Note that the shape of the learned classifier is
still rather different despite them being very similar in the area of the
training data.

For the bottom rows of both figures we split the classification into
the transformation and a linear classification. The transformation is
the evolution of the ODE for ResNet, ODENet and ODENet -+ sim-
plex. For Net this is the recursive formula (4). Note that the learned
transformations are very different for the four different methods.

5.2.2. Ewvolution of Features. Figure 3 shows the evolution of the fea-
tures by the learned parameters for the data set spiral. It can be seen
that all four methods result in different dynamics, Net and ODENet



18 BENNING, CELLEDONI, EHRHARDT, OWREN AND SCHONLIEB

Net ResNet ODENet ODENet+Simplex

random seed 1

random seed 2

FIGURE 5. Robustness on random initialisation for
transformed data donut2d and linear classifier for two
different initialisations.

reduce the two dimensional point cloud to a one-dimensional string
whereas ResNet and ODENet+simplex preserve their two-dimensional
character. This observations seem to be characteristic as we qualita-
tively observed similar dynamics for other data sets and random ini-
tialisation (not shown).

Note that the dynamics of ODENet transform the points outside
the field-of-view and the decision boundary (fuzzy bright line in the
background) is wider than for ResNet and ODENet+simplex.

Intuitively, a scaling of the points and a fuzzier classification is equiv-
alent to leaving the points where they are and a sharper classification.
We tested the aforementioned effect by keeping a fixed classification
throughout the learning process and only learning the transformation.
The results in Figure 4 show that this is indeed the case.

5.2.3. Dependence on Randomness. We tested the dependence of our
results on different random initialisations. For conciseness we only high-
light one result in Figure 5. Indeed, the two rows which correspond to
two different random initialisations show very similar topological be-
haviour.

5.2.4. Quantitative Results. Quantitative results are presented in Fig-
ures 6 and 7 which show the evolution of function values and the clas-
sification accuracy over the course of the gradient descent iterations.
The solid lines are for the training data and dashed for the test data,
which is an independent draw from the same distribution and of the
same size as the training data.
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FIGURE 6. Function values over the course of the gra-
dient descent iterations for data sets donutld, donut2d,
spiral, squares (left to right and top to bottom). The
solid line represents training and the dashed line test
data.

We can see that Net does not perform as well for any of the data sets
than the other three methods. Consistently, ODENet is initially the
fastest but at later stages ResNet overtakes it. All three methods seem
to converge to a similar function value. As the dashed line follows es-
sentially the solid line we can observe that there is not much overfitting
taking place.

5.2.5. Estimation of Varying Time Steps. Figure 8 shows the (esti-
mated) time steps for ResNet/Euler, ODENet and ODENet+simplex.
While ResNet uses equidistant time discretisation, ODENet and
ODENet+simplex learn these as part of the training. In addition,
ODENet+simplex use a simplex constraint on these values which allow
the interpretation as varying time steps. It can be seen consistently
for all four data sets that ODENet chooses both negative and posi-
tive time steps and these are generally of larger magnitude than the
other two methods. Moreover, these are all non-zero. In contrast,
ODENet+Simplex picks a few time steps (two or three) and sets the
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FiGURE 7. Classification accuracy over the course of
the gradient descent iterations for data sets donutld,
donut2d, spiral, squares (left to right and top to bot-
tom). The solid line represents training and the dashed
line test data.

rest to zero. Sparse time steps have the advantage that less memory is
needed to store this network and that less computation is needed for
classification at test time.

Although it might seem unnatural to allow for negative time steps
in this setting, a benefit is that this adds to the flexibility of the ap-
proach. It should also be noted that negative steps are rather common
in the design of e.g. splitting and composition methods from the ODE
literature, [5].

5.3. Comparing different explicit Runge-Kutta architectures.
We are here showing results for 4 different explicit Runge-Kutta schemes
of orders 14, their Butcher tableaux are given in Table 1.

The first two methods are the Euler and Improved Euler methods
over orders one and two respectively. The other two are due to Kutta
[25] and have convergence orders three and four. The presented re-
sults are obtained with the data sets donutld, donut2d, spiral, and
squares. In the results reported here we have taken the number of
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TABLE 1. Four explicit Runge-Kutta methods:

ResNet/Euler, Improved Euler, Kutta(3) and Kutta(4

~—

layers to be 15. In Figure 9 we illustrate the initial and final config-
urations of the data points for the learned parameters. The blue and
red background colours can be thought of as test data results in the
upper row of plots. For instance, any point which was originally in a
red area will be classified as red with high probability. Similarly, the
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background colours in the bottom row of plots show the classification
of points which have been transformed to a given location. In the tran-
sition between red and blue the classification will have less certainty.

In Figures 10-12, more details of the transition are shown. The
leftmost and rightmost plot show the initial and final states respectively,
whereas the two in the middle show the transformation in layers 5 and
10. The background colours always show the same and correspond to
the final state.

Finally, in Figure 13 we show the progress of the gradient descent
method over 10,000 iterations for each of the four data sets.

5.4. Digit classification with minimal data. We test four network
architectures—three of which are ODE-inspired—on digit classification.
The training data is selected from the MNIST data base |28] where we
restrict ourselves to classifying Os and 8s. To make this classification
more challenging, we train only on 100 images and take another 500 as
test data. We refer to this data as MNIST100.

There are a couple of observations which can be made from the re-
sults shown in Figures 14 and 15. First, as can be seen in Figure 14, the
results are consistent with the observations made from the toy data in
Figure 7: the three ODE-inspired methods seem to perform very well,
both on training and test data. Also the trained step sizes show similar
profiles as in Figure 8, with ODENet learning negative step sizes and
ODENet+Simplex learning very sparse time steps. Second, in Figure
15, we show the transformed test data before the classification. Inter-
estingly, all four methods learn what looks to the human eye as adding
noise. Only the ODE-inspired networks retain some of the structure of
the input features.

6. Conclusions and outlook. In this paper we have investigated the
interpretation of deep learning as an optimal control problem. In par-
ticular, we have proposed a first-optimise-then-discretise approach for
the derivation of ODE-inspired deep neural networks using symplectic
partitioned Runge-Kutta methods. The latter discretisation guaran-
tees that also after discretisation the first-order optimality conditions
for the optimal control problem are fulfilled. This is in particular inter-
esting under the assumption that the learned ODE discretisation fol-
lows some underlying continuous transformation that it approximated.
Using partitioned Runge-Kutta methods, we derive several new deep
learning algorithms which we compare for their convergence behaviour
and the transformation dynamics of the so-learned discrete ODE iter-
ations. Interestingly, while the convergence behaviour for the solution
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ResNet/Euler Improved Euler Kutta(3) Kutta(4)

prediction

transformation

ResNet/Euler Improved Euler Kutta(3) Kutta(4)

prediction

transformation

ResNet /Euler Improved Euler Kutta(3) Kutta(4)

prediction

transformation

FIGURE 9. Learned prediction and transformation
for different Runge-Kutta methods and data sets
spiral (top), donut2d (centre) and squares (bottom).
All results are for 15 layers.
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time 0 time T’

ResNet /Euler

Imp. Euler

Kutta (3)

Kutta (4)

FIGURE 10. Snap shots of the transition from initial to
final state through the network with the data set spiral.

of the optimal control problem shows differences when trained with dif-
ferent partitioned Runge—Kutta methods, the learned transformation
given by the discretised ODE with optimised parameters shows simi-
lar characteristics. It is probably too strong of a statement to suggest
that our experiments therefore support our hypothesis of an underlying
continuous optimal transformation as the similar behaviour could be a
consequence of other causes. However, the experiments encourage our
hypothesis.

The optimal control formulation naturally lends itself to learning
more parameters such as the time discretisation which can be con-
strained to lie in a simplex. As we have seen in Figure 8, the simplex
constraint lead to sparse time steps such that the effectively only very
few layers were needed to represent the dynamics, thus these networks
have faster online classification performance and lower memory foot-
print. Another advantage of this approach is that one does not need to
know precisely in advance how many layers to choose since the training
procedure selects this automatically.
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time 0 time T’

ResNet /Euler

Imp. Euler

Kutta (3)

Kutta (4)

FIGURE 11. Snap shots of the transition from initial
to final state through the network with the data set
donut2d.

An interesting direction for further investigation is to use the optimal
control characterisation of deep learning for studying the stability of the
problem under perturbations of Y;. Since the optimal control problem is
equivalent to a Hamiltonian boundary value problem, we can study the
stability of the first by analysing the second. One can derive conditions
on f and J that ensure existence and stability of the optimal solutions
with respect to perturbations on the initial data, or after increasing the
number of data points. For the existence of solutions of the optimal
control problem and the Pontryagin maximum principle see [6, 14, 2,
42].

The stability of the problem can be analysed in different ways. The
first is to investigate how the parameters u(t) := (K (t), 3(t)) change
under change (or perturbation) of the initial data and the cost func-
tion. The equation for the momenta of the Hamiltonian boundary value
problem (adjoint equation) can be used to compute sensitivities of the
optimal control problem under perturbation on the initial data [39]. In
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time 0 time T’

Kutta (3) Imp. Euler  ResNet/Euler

Kutta (4)

FIGURE 12. Snap shots of the transition from initial
to final state through the network with the data set
squares.

particular, the answer to this is linked to the Hessian of the Hamiltonian
with respect to the parameters u. If H, , is invertible, see Section 2.3,
and remains invertible under such perturbations, then u = ¢(y,p) can
be solved for in terms of the state y and the co-state p.

The second is to ask how generalisable the learned parameters u are.
The parameters u, i.e. K and 8 determine the deformation of the data
in such a way that the data becomes classifiable with the Euclidean
norm at final time 7. It would be interesting to show that ¢ does
not change much under perturbation, and neither do the deformations
determined by wu.

Another interesting direction for future research is the generalisa-
tion of the optimal control problem to feature an inverse scale-space
ODE as a constraint, where we do not consider the time derivative of
the state variable, but of a subgradient of a corresponding convex func-
tional with the state variable as its argument, see for example [40, 8, 7].
Normally these flows are discretised with an explicit or implicit Euler
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FIGURE 14. Accuracy (left) and time steps (right) for
MNIST100 dataset [28].

scheme. These discretisations can reproduce various neural network
architectures [3, Section 9]. Hence, applying the existing knowledge of
numerical discretisation methods in a deep learning context may lead
to a better and more systematic way of developing new architectures
with desirable properties.
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FIGURE 15. Features of testing examples from
MNIST100 dataset [28] and transformed features by
four networks under comparison: Net, ResNet, ODENet,
ODENet+Simplex (from top to bottom). All networks
have 20 layers.

Other questions revolve around the sensitivity in the classification
error. How can we estimate the error in the classification once the
parameters are learned? Given u obtained solving the optimal control
problem, if we change (or update) the set of features, how big is the
error in the classification 7 (yM)?
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Appendix A. Discrete necessary optimality conditions. We prove
Proposition 1 for the general symplectic partitioned Runge-Kutta method.

Proof of Proposition 1. We introduce Lagrangian multipliers p2’, pli+1
and consider the Lagrangian

({y }] 17{%“]}; 1,{'[,6[]]}] i 7{p[a+1]}] s 7{p[J] N- 1) (42)

1=1,...,s,
[N] ey [i+1] y _y[]] - [J]
L= JuM) - Aty ity Zf b
=0
_ ] 5
- AtZAth e”,yz L = > a4 ul).
= m=1

An equivalent formulation of (3) subject to (21)-(23) is

mf sup L
{u ] L U, LYY,

{y j= la{y[]] évlv

Taking arbitrary and independent variations

i 1 gl y[J]+£U[J] ugj]_i_éwz[j] plUtl 4 eyt 4]’]_1_5%[1‘}
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and imposing 0L = 0 for all variations, we obtain
0= 6L =0Ty [N]) U[N]>
S y“ - y bl bl
_ Atz b+ be (Y, W)
=0

N-1
— ALY U —‘“—Zba F uyol)
7=0
1 .
+ [J+1 Zba £ %[117 EJ]) Z[J]>
=0
- th an) =y Zasz AT
7=0
N-1 ]+1 —U[]] s '
- th (W T +Zal Oy f (), ul )bl
7=0
N-1
7=0 m=1
Because the variations V!, ’yi[j I are arbitrary, we must have
[i+1] _ 4l
Y Y [4]
LA b,
At Z f yz ) ’L
U+ _ )
Yi ) _ [ 1w

corresponding to the forward method, (16a), (16b), and we are left

[s] [j]

with terms depending on w;” and v;” which we can discuss separately.

Collecting all the terms containing the variations wz[j ! we get

N—-1 s
(Zb U+ 0, f (), ulyw”)

j=0 \i= (43)

—Ath Zazm 0, f (yH) iyl >>-
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In (43), renaming the indexes so that i — & in the first sum and m — k
[s] (7]

and wy; — wy’ in the second sum, we get
> Y, O f () u Athm (6 0uf il i),
k=1

for y=0,...,N —1, and

> (“’kauf e - Atzbiai,kamy,aﬂ,uguw,w;ﬂ‘D) |

k=1 i=1
Because each of the variations w,[g] is arbitrary for £ = 1,...,s and
7=0,..., N —1 each of the terms must vanish and we get

b CLl k
<auf(y][g]7u[]] T [+ Atz Yk ,ULJ]>T£[J] > =0,
=1

and finally

: * bk
Duf (y, ubHT (p[”” — Aty Zk’%ﬂ> =0
i=1

corresponding to the discretised constraints, and where we recognise
that

[J+1] At Z bi i Qi kg[j]_
i=1

The remaining terms contain the variations vl[] } and we have

(0T (y™), vIN)

N-1

[+1] _
— Ay (b %—Zbam o)
j =0
N—-1 s . U —’U[J] s '
— A > T hi( —|—Zal w0y f (Y5 ulhullhy = 0
7=01=1

There are only two terms involving vy, leading to

T, 0™) = o) = 0
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corresponding to the condition p!™ = 7 (y!"). We consider separately
for each j terms involving vVl and V! for i = 1,..., s and see that

(P v +Atzb(’9 F uyol?)

=1

— A bt v - U]+Atza mOy f () udyp]

which we rearrange into
<p[j+1] _ p[ﬂ +h Z bz‘&m, o]
Ath Oy f( y,[g] u, )Tp[jﬂ},v,[cﬂ)
- Ay (w&ﬂ,v% +AtZai,m<ayf<y3;1,u£ﬁ>4ﬂ,vlfb) =0
i=1 m=1
This yields

[]+1] _ p Atz b; g[]]

and

Ath (O f (), Tl lly

- Athi<4”, o +AtZazmaf TARY LA W) -
=1

From the last equation we get
j i b; i (g, k
o= T — = a3

with

G =0,r ul)" [M Atz W].
=1
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